tngmath::SparseArpack Class Reference
Eigen analyses solver for sparse matrices based on ARPACK.  
More...
#include <sparsearpack.hpp>
List of all members.
|  | 
| 
 Public Types | 
| typedef Matrix | MatrixType | 
|  | the dense matrix/vector type for communication 
 | 
| typedef SparseMatrix | SparseMatrixType | 
|  | the base type of sparse input 
 | 
| 
 Public Member Functions | 
| const MatrixType & | Eigenvalues () const | 
|  | returns the eigenvalues after solving them 
 | 
| const MatrixType & | Eigenvectors () const | 
|  | returns the eigenvectors after solving them 
 | 
| bool | Largest (const SparseMatrixType &A, const SparseMatrixType &B, SparseSolver &solver, const unsigned int number) | 
| bool | Largest (const SparseMatrixType &A, const unsigned int number) | 
| const unsigned int | MaxIterations () const | 
|  | returns m_maxIter 
 | 
| const double | Precision () const | 
|  | returns the current precision 
 | 
| void | SetMaxIterations (unsigned int it) | 
|  | sets the max. number of allowed iterations in ARPACK 
 | 
| void | SetPrecision (double prec) | 
|  | sets the precision of ARPACK 
 | 
| bool | ShiftInvert (const SparseMatrixType &A, const SparseMatrixType &B, SparseSolver &solver, const double &shift, const unsigned int number) | 
| bool | ShiftInvert (const SparseMatrixType &A, SparseSolver &solver, const double &shift, const unsigned int number) | 
|  | SparseArpack () | 
|  | default constructor 
 | 
| virtual | ~SparseArpack () | 
|  | destructor 
 | 
| 
 Protected Member Functions | 
| MatrixType & | Eigenvalues () | 
| MatrixType & | Eigenvectors () | 
| 
 Protected Attributes | 
| MatrixType | m_eigenvalues | 
|  | stores the eigenvalues 
 | 
| MatrixType | m_eigenvectors | 
|  | stores the eigenvectors 
 | 
| unsigned int | m_maxIter | 
|  | stores the number of iterations for ARPACK 
 | 
| double | m_precision | 
|  | stores the set precision for ARPACK 
 | 
Detailed Description
Eigen analyses solver for sparse matrices based on ARPACK. 
Member Function Documentation
given a generalized symmetric eigen problem, this method computes the largest eigenvalues using a shift-inverse transformation. 
- Parameters:
- 
  
    |  | A | the input matrix A (stiffness) |  |  | B | the input matrix B (mass) |  |  | solver | the solver object used for factorizing B |  |  | number | the number of eigenvalues to be computed |  
 
- Returns:
- true if successful. 
 
 
      
        
          | bool tngmath::SparseArpack::Largest | ( | const SparseMatrixType & | A, | 
        
          |  |  | const unsigned int | number |  | 
        
          |  | ) |  |  |  | 
      
 
given a standard symmetric eigen problem, this method computes the largest eigenvalues using a shift-inverse transformation. 
- Parameters:
- 
  
    |  | A | the input matrix |  |  | number | the number of eigenvalues to be computed |  
 
- Returns:
- true if successful. 
 
 
given a generalized symmetric eigen problem, this method computes the smallest eigenvalues using a shift-inverse transformation. 
- Parameters:
- 
  
    |  | A | the input matrix A (stiffness) |  |  | B | the input matrix B (mass) |  |  | solver | the solver object used for factorizing A |  |  | shift | the shifting parameter (lower bound) |  |  | number | the number of eigenvalues to be computed |  
 
- Returns:
- true if successful. 
 
 
      
        
          | bool tngmath::SparseArpack::ShiftInvert | ( | const SparseMatrixType & | A, | 
        
          |  |  | SparseSolver & | solver, | 
        
          |  |  | const double & | shift, | 
        
          |  |  | const unsigned int | number |  | 
        
          |  | ) |  |  |  | 
      
 
given a standard symmetric eigen problem, this method computes the smallest eigenvalues using a shift-inverse transformation. 
- Parameters:
- 
  
    |  | A | the input matrix |  |  | solver | the solver object used for factorizing A |  |  | shift | the shifting parameter (lower bound) |  |  | number | the number of eigenvalues to be computed |  
 
- Returns:
- true if successful. 
 
 
The documentation for this class was generated from the following file:
- modules/tngmath/tngmath/sparsearpack.hpp