POK
k_tan.c
1 /*
2  * POK header
3  *
4  * The following file is a part of the POK project. Any modification should
5  * made according to the POK licence. You CANNOT use this file or a part of
6  * this file is this part of a file for your own project
7  *
8  * For more information on the POK licence, please see our LICENCE FILE
9  *
10  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
11  *
12  * Copyright (c) 2007-2009 POK team
13  *
14  * Created by julien on Sat Jan 31 20:12:07 2009
15  */
16 
17 /* @(#)k_tan.c 5.1 93/09/24 */
18 /*
19  * ====================================================
20  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
21  *
22  * Developed at SunPro, a Sun Microsystems, Inc. business.
23  * Permission to use, copy, modify, and distribute this
24  * software is freely granted, provided that this notice
25  * is preserved.
26  * ====================================================
27  */
28 
29 #ifdef POK_NEEDS_LIBMATH
30 
31 /* __kernel_tan( x, y, k )
32  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
33  * Input x is assumed to be bounded by ~pi/4 in magnitude.
34  * Input y is the tail of x.
35  * Input k indicates whether tan (if k=1) or
36  * -1/tan (if k= -1) is returned.
37  *
38  * Algorithm
39  * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
40  * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
41  * 3. tan(x) is approximated by a odd polynomial of degree 27 on
42  * [0,0.67434]
43  * 3 27
44  * tan(x) ~ x + T1*x + ... + T13*x
45  * where
46  *
47  * |tan(x) 2 4 26 | -59.2
48  * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
49  * | x |
50  *
51  * Note: tan(x+y) = tan(x) + tan'(x)*y
52  * ~ tan(x) + (1+x*x)*y
53  * Therefore, for better accuracy in computing tan(x+y), let
54  * 3 2 2 2 2
55  * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
56  * then
57  * 3 2
58  * tan(x+y) = x + (T1*x + (x *(r+y)+y))
59  *
60  * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
61  * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
62  * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
63  */
64 
65 #include <libm.h>
66 #include "math_private.h"
67 
68 static const double xxx[] = {
69  3.33333333333334091986e-01, /* 3FD55555, 55555563 */
70  1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
71  5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
72  2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
73  8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
74  3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
75  1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
76  5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
77  2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
78  7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
79  7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
80  -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
81  2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
82 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
83 /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
84 /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
85 };
86 #define one xxx[13]
87 #define pio4 xxx[14]
88 #define pio4lo xxx[15]
89 #define T xxx
90 
91 double
92 __kernel_tan(double x, double y, int iy)
93 {
94  double z, r, v, w, s;
95  int32_t ix, hx;
96 
97  GET_HIGH_WORD(hx, x); /* high word of x */
98  ix = hx & 0x7fffffff; /* high word of |x| */
99  if (ix < 0x3e300000) { /* x < 2**-28 */
100  if ((int) x == 0) { /* generate inexact */
101  uint32_t low;
102  GET_LOW_WORD(low, x);
103  if(((ix | low) | (iy + 1)) == 0)
104  return one / fabs(x);
105  else {
106  if (iy == 1)
107  return x;
108  else { /* compute -1 / (x+y) carefully */
109  double a, t;
110 
111  z = w = x + y;
112  SET_LOW_WORD(z, 0);
113  v = y - (z - x);
114  t = a = -one / w;
115  SET_LOW_WORD(t, 0);
116  s = one + t * z;
117  return t + a * (s + t * v);
118  }
119  }
120  }
121  }
122  if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
123  if (hx < 0) {
124  x = -x;
125  y = -y;
126  }
127  z = pio4 - x;
128  w = pio4lo - y;
129  x = z + w;
130  y = 0.0;
131  }
132  z = x * x;
133  w = z * z;
134  /*
135  * Break x^5*(T[1]+x^2*T[2]+...) into
136  * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
137  * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
138  */
139  r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
140  w * T[11]))));
141  v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
142  w * T[12])))));
143  s = z * x;
144  r = y + z * (s * (r + v) + y);
145  r += T[0] * s;
146  w = x + r;
147  if (ix >= 0x3FE59428) {
148  v = (double) iy;
149  return (double) (1 - ((hx >> 30) & 2)) *
150  (v - 2.0 * (x - (w * w / (w + v) - r)));
151  }
152  if (iy == 1)
153  return w;
154  else {
155  /*
156  * if allow error up to 2 ulp, simply return
157  * -1.0 / (x+r) here
158  */
159  /* compute -1.0 / (x+r) accurately */
160  double a, t;
161  z = w;
162  SET_LOW_WORD(z, 0);
163  v = r - (z - x); /* z+v = r+x */
164  t = a = -1.0 / w; /* a = -1.0/w */
165  SET_LOW_WORD(t, 0);
166  s = 1.0 + t * z;
167  return t + a * (s + t * v);
168  }
169 }
170 
171 #endif