POK
k_cos.c
1 /*
2  * POK header
3  *
4  * The following file is a part of the POK project. Any modification should
5  * made according to the POK licence. You CANNOT use this file or a part of
6  * this file is this part of a file for your own project
7  *
8  * For more information on the POK licence, please see our LICENCE FILE
9  *
10  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
11  *
12  * Copyright (c) 2007-2009 POK team
13  *
14  * Created by julien on Sat Jan 31 20:12:07 2009
15  */
16 
17 /* @(#)k_cos.c 5.1 93/09/24 */
18 /*
19  * ====================================================
20  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
21  *
22  * Developed at SunPro, a Sun Microsystems, Inc. business.
23  * Permission to use, copy, modify, and distribute this
24  * software is freely granted, provided that this notice
25  * is preserved.
26  * ====================================================
27  */
28 
29 #ifdef POK_NEEDS_LIBMATH
30 
31 /*
32  * __kernel_cos( x, y )
33  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34  * Input x is assumed to be bounded by ~pi/4 in magnitude.
35  * Input y is the tail of x.
36  *
37  * Algorithm
38  * 1. Since cos(-x) = cos(x), we need only to consider positive x.
39  * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
40  * 3. cos(x) is approximated by a polynomial of degree 14 on
41  * [0,pi/4]
42  * 4 14
43  * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
44  * where the remez error is
45  *
46  * | 2 4 6 8 10 12 14 | -58
47  * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
48  * | |
49  *
50  * 4 6 8 10 12 14
51  * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
52  * cos(x) = 1 - x*x/2 + r
53  * since cos(x+y) ~ cos(x) - sin(x)*y
54  * ~ cos(x) - x*y,
55  * a correction term is necessary in cos(x) and hence
56  * cos(x+y) = 1 - (x*x/2 - (r - x*y))
57  * For better accuracy when x > 0.3, let qx = |x|/4 with
58  * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
59  * Then
60  * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
61  * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
62  * magnitude of the latter is at least a quarter of x*x/2,
63  * thus, reducing the rounding error in the subtraction.
64  */
65 
66 #include <libm.h>
67 #include "math_private.h"
68 
69 static const double
70 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
71 C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
72 C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
73 C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
74 C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
75 C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
76 C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
77 
78 double
79 __kernel_cos(double x, double y)
80 {
81  double a,hz,z,r,qx;
82  int32_t ix;
83  GET_HIGH_WORD(ix,x);
84  ix &= 0x7fffffff; /* ix = |x|'s high word*/
85  if(ix<0x3e400000) { /* if x < 2**27 */
86  if(((int)x)==0) return one; /* generate inexact */
87  }
88  z = x*x;
89  r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
90  if(ix < 0x3FD33333) /* if |x| < 0.3 */
91  return one - (0.5*z - (z*r - x*y));
92  else {
93  if(ix > 0x3fe90000) { /* x > 0.78125 */
94  qx = 0.28125;
95  } else {
96  INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */
97  }
98  hz = 0.5*z-qx;
99  a = one-qx;
100  return a - (hz - (z*r-x*y));
101  }
102 }
103 
104 #endif