POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/tanh.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)s_tanh.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 #ifdef POK_NEEDS_LIBMATH
00030 
00031 /* Tanh(x)
00032  * Return the Hyperbolic Tangent of x
00033  *
00034  * Method :
00035  *                                     x    -x
00036  *                                    e  - e
00037  *      0. tanh(x) is defined to be -----------
00038  *                                     x    -x
00039  *                                    e  + e
00040  *      1. reduce x to non-negative by tanh(-x) = -tanh(x).
00041  *      2.  0      <= x <= 2**-55 : tanh(x) := x*(one+x)
00042  *                                              -t
00043  *          2**-55 <  x <=  1     : tanh(x) := -----; t = expm1(-2x)
00044  *                                             t + 2
00045  *                                                   2
00046  *          1      <= x <=  22.0  : tanh(x) := 1-  ----- ; t=expm1(2x)
00047  *                                                 t + 2
00048  *          22.0   <  x <= INF    : tanh(x) := 1.
00049  *
00050  * Special cases:
00051  *      tanh(NaN) is NaN;
00052  *      only tanh(0)=0 is exact for finite argument.
00053  */
00054 
00055 #include <libm.h>
00056 #include "math_private.h"
00057 
00058 static const double one=1.0, two=2.0, tiny = 1.0e-300;
00059 
00060 double
00061 tanh(double x)
00062 {
00063         double t,z;
00064         int32_t jx,ix;
00065 
00066     /* High word of |x|. */
00067         GET_HIGH_WORD(jx,x);
00068         ix = jx&0x7fffffff;
00069 
00070     /* x is INF or NaN */
00071         if(ix>=0x7ff00000) {
00072             if (jx>=0) return one/x+one;    /* tanh(+-inf)=+-1 */
00073             else       return one/x-one;    /* tanh(NaN) = NaN */
00074         }
00075 
00076     /* |x| < 22 */
00077         if (ix < 0x40360000) {          /* |x|<22 */
00078             if (ix<0x3c800000)          /* |x|<2**-55 */
00079                 return x*(one+x);       /* tanh(small) = small */
00080             if (ix>=0x3ff00000) {       /* |x|>=1  */
00081                 t = expm1(two*fabs(x));
00082                 z = one - two/(t+two);
00083             } else {
00084                 t = expm1(-two*fabs(x));
00085                 z= -t/(t+two);
00086             }
00087     /* |x| > 22, return +-1 */
00088         } else {
00089             z = one - tiny;             /* raised inexact flag */
00090         }
00091         return (jx>=0)? z: -z;
00092 }
00093 
00094 #endif