POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/tan.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)s_tan.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 #ifdef POK_NEEDS_LIBMATH
00030 
00031 /* tan(x)
00032  * Return tangent function of x.
00033  *
00034  * kernel function:
00035  *      __kernel_tan            ... tangent function on [-pi/4,pi/4]
00036  *      __ieee754_rem_pio2      ... argument reduction routine
00037  *
00038  * Method.
00039  *      Let S,C and T denote the sin, cos and tan respectively on
00040  *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
00041  *      in [-pi/4 , +pi/4], and let n = k mod 4.
00042  *      We have
00043  *
00044  *          n        sin(x)      cos(x)        tan(x)
00045  *     ----------------------------------------------------------
00046  *          0          S           C             T
00047  *          1          C          -S            -1/T
00048  *          2         -S          -C             T
00049  *          3         -C           S            -1/T
00050  *     ----------------------------------------------------------
00051  *
00052  * Special cases:
00053  *      Let trig be any of sin, cos, or tan.
00054  *      trig(+-INF)  is NaN, with signals;
00055  *      trig(NaN)    is that NaN;
00056  *
00057  * Accuracy:
00058  *      TRIG(x) returns trig(x) nearly rounded
00059  */
00060 
00061 #include <libm.h>
00062 #include "math_private.h"
00063 
00064 double
00065 tan(double x)
00066 {
00067         double y[2],z=0.0;
00068         int32_t n, ix;
00069 
00070     /* High word of x. */
00071         GET_HIGH_WORD(ix,x);
00072 
00073     /* |x| ~< pi/4 */
00074         ix &= 0x7fffffff;
00075         if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
00076 
00077     /* tan(Inf or NaN) is NaN */
00078         else if (ix>=0x7ff00000) return x-x;            /* NaN */
00079 
00080     /* argument reduction needed */
00081         else {
00082             n = __ieee754_rem_pio2(x,y);
00083             return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
00084                                                         -1 -- n odd */
00085         }
00086 }
00087 
00088 #endif