POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/k_rem_pio2.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Sat Jan 31 20:12:07 2009 
00015  */
00016 
00017 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 #ifdef POK_NEEDS_LIBMATH
00030 
00031 /*
00032  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
00033  * double x[],y[]; int e0,nx,prec; int ipio2[];
00034  *
00035  * __kernel_rem_pio2 return the last three digits of N with
00036  *              y = x - N*pi/2
00037  * so that |y| < pi/2.
00038  *
00039  * The method is to compute the integer (mod 8) and fraction parts of
00040  * (2/pi)*x without doing the full multiplication. In general we
00041  * skip the part of the product that are known to be a huge integer (
00042  * more accurately, = 0 mod 8 ). Thus the number of operations are
00043  * independent of the exponent of the input.
00044  *
00045  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
00046  *
00047  * Input parameters:
00048  *      x[]     The input value (must be positive) is broken into nx
00049  *              pieces of 24-bit integers in double precision format.
00050  *              x[i] will be the i-th 24 bit of x. The scaled exponent
00051  *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
00052  *              match x's up to 24 bits.
00053  *
00054  *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
00055  *                      e0 = ilogb(z)-23
00056  *                      z  = scalbn(z,-e0)
00057  *              for i = 0,1,2
00058  *                      x[i] = floor(z)
00059  *                      z    = (z-x[i])*2**24
00060  *
00061  *
00062  *      y[]     output result in an array of double precision numbers.
00063  *              The dimension of y[] is:
00064  *                      24-bit  precision       1
00065  *                      53-bit  precision       2
00066  *                      64-bit  precision       2
00067  *                      113-bit precision       3
00068  *              The actual value is the sum of them. Thus for 113-bit
00069  *              precison, one may have to do something like:
00070  *
00071  *              long double t,w,r_head, r_tail;
00072  *              t = (long double)y[2] + (long double)y[1];
00073  *              w = (long double)y[0];
00074  *              r_head = t+w;
00075  *              r_tail = w - (r_head - t);
00076  *
00077  *      e0      The exponent of x[0]
00078  *
00079  *      nx      dimension of x[]
00080  *
00081  *      prec    an integer indicating the precision:
00082  *                      0       24  bits (single)
00083  *                      1       53  bits (double)
00084  *                      2       64  bits (extended)
00085  *                      3       113 bits (quad)
00086  *
00087  *      ipio2[]
00088  *              integer array, contains the (24*i)-th to (24*i+23)-th
00089  *              bit of 2/pi after binary point. The corresponding
00090  *              floating value is
00091  *
00092  *                      ipio2[i] * 2^(-24(i+1)).
00093  *
00094  * External function:
00095  *      double scalbn(), floor();
00096  *
00097  *
00098  * Here is the description of some local variables:
00099  *
00100  *      jk      jk+1 is the initial number of terms of ipio2[] needed
00101  *              in the computation. The recommended value is 2,3,4,
00102  *              6 for single, double, extended,and quad.
00103  *
00104  *      jz      local integer variable indicating the number of
00105  *              terms of ipio2[] used.
00106  *
00107  *      jx      nx - 1
00108  *
00109  *      jv      index for pointing to the suitable ipio2[] for the
00110  *              computation. In general, we want
00111  *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
00112  *              is an integer. Thus
00113  *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
00114  *              Hence jv = max(0,(e0-3)/24).
00115  *
00116  *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
00117  *
00118  *      q[]     double array with integral value, representing the
00119  *              24-bits chunk of the product of x and 2/pi.
00120  *
00121  *      q0      the corresponding exponent of q[0]. Note that the
00122  *              exponent for q[i] would be q0-24*i.
00123  *
00124  *      PIo2[]  double precision array, obtained by cutting pi/2
00125  *              into 24 bits chunks.
00126  *
00127  *      f[]     ipio2[] in floating point
00128  *
00129  *      iq[]    integer array by breaking up q[] in 24-bits chunk.
00130  *
00131  *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
00132  *
00133  *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
00134  *              it also indicates the *sign* of the result.
00135  *
00136  */
00137 
00138 
00139 /*
00140  * Constants:
00141  * The hexadecimal values are the intended ones for the following
00142  * constants. The decimal values may be used, provided that the
00143  * compiler will convert from decimal to binary accurately enough
00144  * to produce the hexadecimal values shown.
00145  */
00146 
00147 #include <libm.h>
00148 #include "math_private.h"
00149 
00150 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
00151 
00152 static const double PIo2[] = {
00153   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
00154   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
00155   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
00156   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
00157   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
00158   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
00159   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
00160   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
00161 };
00162 
00163 static const double
00164 zero   = 0.0,
00165 one    = 1.0,
00166 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
00167 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
00168 
00169 int
00170 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
00171 {
00172         int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
00173         double z,fw,f[20],fq[20],q[20];
00174 
00175     /* initialize jk*/
00176         jk = init_jk[prec];
00177         jp = jk;
00178 
00179     /* determine jx,jv,q0, note that 3>q0 */
00180         jx =  nx-1;
00181         jv = (e0-3)/24; if(jv<0) jv=0;
00182         q0 =  e0-24*(jv+1);
00183 
00184     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
00185         j = jv-jx; m = jx+jk;
00186         for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
00187 
00188     /* compute q[0],q[1],...q[jk] */
00189         for (i=0;i<=jk;i++) {
00190             for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
00191         }
00192 
00193         jz = jk;
00194 recompute:
00195     /* distill q[] into iq[] reversingly */
00196         for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
00197             fw    =  (double)((int32_t)(twon24* z));
00198             iq[i] =  (int32_t)(z-two24*fw);
00199             z     =  q[j-1]+fw;
00200         }
00201 
00202     /* compute n */
00203         z  = scalbn(z,q0);              /* actual value of z */
00204         z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */
00205         n  = (int32_t) z;
00206         z -= (double)n;
00207         ih = 0;
00208         if(q0>0) {      /* need iq[jz-1] to determine n */
00209             i  = (iq[jz-1]>>(24-q0)); n += i;
00210             iq[jz-1] -= i<<(24-q0);
00211             ih = iq[jz-1]>>(23-q0);
00212         }
00213         else if(q0==0) ih = iq[jz-1]>>23;
00214         else if(z>=0.5) ih=2;
00215 
00216         if(ih>0) {      /* q > 0.5 */
00217             n += 1; carry = 0;
00218             for(i=0;i<jz ;i++) {        /* compute 1-q */
00219                 j = iq[i];
00220                 if(carry==0) {
00221                     if(j!=0) {
00222                         carry = 1; iq[i] = 0x1000000- j;
00223                     }
00224                 } else  iq[i] = 0xffffff - j;
00225             }
00226             if(q0>0) {          /* rare case: chance is 1 in 12 */
00227                 switch(q0) {
00228                 case 1:
00229                    iq[jz-1] &= 0x7fffff; break;
00230                 case 2:
00231                    iq[jz-1] &= 0x3fffff; break;
00232                 }
00233             }
00234             if(ih==2) {
00235                 z = one - z;
00236                 if(carry!=0) z -= scalbn(one,q0);
00237             }
00238         }
00239 
00240     /* check if recomputation is needed */
00241         if(z==zero) {
00242             j = 0;
00243             for (i=jz-1;i>=jk;i--) j |= iq[i];
00244             if(j==0) { /* need recomputation */
00245                 for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
00246 
00247                 for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
00248                     f[jx+i] = (double) ipio2[jv+i];
00249                     for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
00250                     q[i] = fw;
00251                 }
00252                 jz += k;
00253                 goto recompute;
00254             }
00255         }
00256 
00257     /* chop off zero terms */
00258         if(z==0.0) {
00259             jz -= 1; q0 -= 24;
00260             while(iq[jz]==0) { jz--; q0-=24;}
00261         } else { /* break z into 24-bit if necessary */
00262             z = scalbn(z,-q0);
00263             if(z>=two24) {
00264                 fw = (double)((int32_t)(twon24*z));
00265                 iq[jz] = (int32_t)(z-two24*fw);
00266                 jz += 1; q0 += 24;
00267                 iq[jz] = (int32_t) fw;
00268             } else iq[jz] = (int32_t) z ;
00269         }
00270 
00271     /* convert integer "bit" chunk to floating-point value */
00272         fw = scalbn(one,q0);
00273         for(i=jz;i>=0;i--) {
00274             q[i] = fw*(double)iq[i]; fw*=twon24;
00275         }
00276 
00277     /* compute PIo2[0,...,jp]*q[jz,...,0] */
00278         for(i=jz;i>=0;i--) {
00279             for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
00280             fq[jz-i] = fw;
00281         }
00282 
00283     /* compress fq[] into y[] */
00284         switch(prec) {
00285             case 0:
00286                 fw = 0.0;
00287                 for (i=jz;i>=0;i--) fw += fq[i];
00288                 y[0] = (ih==0)? fw: -fw;
00289                 break;
00290             case 1:
00291             case 2:
00292                 fw = 0.0;
00293                 for (i=jz;i>=0;i--) fw += fq[i];
00294                 y[0] = (ih==0)? fw: -fw;
00295                 fw = fq[0]-fw;
00296                 for (i=1;i<=jz;i++) fw += fq[i];
00297                 y[1] = (ih==0)? fw: -fw;
00298                 break;
00299             case 3:     /* painful */
00300                 for (i=jz;i>0;i--) {
00301                     fw      = fq[i-1]+fq[i];
00302                     fq[i]  += fq[i-1]-fw;
00303                     fq[i-1] = fw;
00304                 }
00305                 for (i=jz;i>1;i--) {
00306                     fw      = fq[i-1]+fq[i];
00307                     fq[i]  += fq[i-1]-fw;
00308                     fq[i-1] = fw;
00309                 }
00310                 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
00311                 if(ih==0) {
00312                     y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
00313                 } else {
00314                     y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
00315                 }
00316         }
00317         return n&7;
00318 }
00319 
00320 #endif