POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/k_cos.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Sat Jan 31 20:12:07 2009 
00015  */
00016 
00017 /* @(#)k_cos.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 #ifdef POK_NEEDS_LIBMATH
00030 
00031 /*
00032  * __kernel_cos( x,  y )
00033  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
00034  * Input x is assumed to be bounded by ~pi/4 in magnitude.
00035  * Input y is the tail of x.
00036  *
00037  * Algorithm
00038  *      1. Since cos(-x) = cos(x), we need only to consider positive x.
00039  *      2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
00040  *      3. cos(x) is approximated by a polynomial of degree 14 on
00041  *         [0,pi/4]
00042  *                                       4            14
00043  *              cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
00044  *         where the remez error is
00045  *
00046  *      |              2     4     6     8     10    12     14 |     -58
00047  *      |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
00048  *      |                                                      |
00049  *
00050  *                     4     6     8     10    12     14
00051  *      4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
00052  *             cos(x) = 1 - x*x/2 + r
00053  *         since cos(x+y) ~ cos(x) - sin(x)*y
00054  *                        ~ cos(x) - x*y,
00055  *         a correction term is necessary in cos(x) and hence
00056  *              cos(x+y) = 1 - (x*x/2 - (r - x*y))
00057  *         For better accuracy when x > 0.3, let qx = |x|/4 with
00058  *         the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
00059  *         Then
00060  *              cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
00061  *         Note that 1-qx and (x*x/2-qx) is EXACT here, and the
00062  *         magnitude of the latter is at least a quarter of x*x/2,
00063  *         thus, reducing the rounding error in the subtraction.
00064  */
00065 
00066 #include <libm.h>
00067 #include "math_private.h"
00068 
00069 static const double
00070 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
00071 C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
00072 C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
00073 C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
00074 C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
00075 C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
00076 C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
00077 
00078 double
00079 __kernel_cos(double x, double y)
00080 {
00081         double a,hz,z,r,qx;
00082         int32_t ix;
00083         GET_HIGH_WORD(ix,x);
00084         ix &= 0x7fffffff;                       /* ix = |x|'s high word*/
00085         if(ix<0x3e400000) {                     /* if x < 2**27 */
00086             if(((int)x)==0) return one;         /* generate inexact */
00087         }
00088         z  = x*x;
00089         r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
00090         if(ix < 0x3FD33333)                     /* if |x| < 0.3 */
00091             return one - (0.5*z - (z*r - x*y));
00092         else {
00093             if(ix > 0x3fe90000) {               /* x > 0.78125 */
00094                 qx = 0.28125;
00095             } else {
00096                 INSERT_WORDS(qx,ix-0x00200000,0);       /* x/4 */
00097             }
00098             hz = 0.5*z-qx;
00099             a  = one-qx;
00100             return a - (hz - (z*r-x*y));
00101         }
00102 }
00103 
00104 #endif