POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Sat Jan 31 20:12:07 2009 00015 */ 00016 00017 /* @(#)k_cos.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 #ifdef POK_NEEDS_LIBMATH 00030 00031 /* 00032 * __kernel_cos( x, y ) 00033 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 00034 * Input x is assumed to be bounded by ~pi/4 in magnitude. 00035 * Input y is the tail of x. 00036 * 00037 * Algorithm 00038 * 1. Since cos(-x) = cos(x), we need only to consider positive x. 00039 * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. 00040 * 3. cos(x) is approximated by a polynomial of degree 14 on 00041 * [0,pi/4] 00042 * 4 14 00043 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x 00044 * where the remez error is 00045 * 00046 * | 2 4 6 8 10 12 14 | -58 00047 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 00048 * | | 00049 * 00050 * 4 6 8 10 12 14 00051 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then 00052 * cos(x) = 1 - x*x/2 + r 00053 * since cos(x+y) ~ cos(x) - sin(x)*y 00054 * ~ cos(x) - x*y, 00055 * a correction term is necessary in cos(x) and hence 00056 * cos(x+y) = 1 - (x*x/2 - (r - x*y)) 00057 * For better accuracy when x > 0.3, let qx = |x|/4 with 00058 * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. 00059 * Then 00060 * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). 00061 * Note that 1-qx and (x*x/2-qx) is EXACT here, and the 00062 * magnitude of the latter is at least a quarter of x*x/2, 00063 * thus, reducing the rounding error in the subtraction. 00064 */ 00065 00066 #include <libm.h> 00067 #include "math_private.h" 00068 00069 static const double 00070 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 00071 C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ 00072 C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ 00073 C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ 00074 C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ 00075 C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ 00076 C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ 00077 00078 double 00079 __kernel_cos(double x, double y) 00080 { 00081 double a,hz,z,r,qx; 00082 int32_t ix; 00083 GET_HIGH_WORD(ix,x); 00084 ix &= 0x7fffffff; /* ix = |x|'s high word*/ 00085 if(ix<0x3e400000) { /* if x < 2**27 */ 00086 if(((int)x)==0) return one; /* generate inexact */ 00087 } 00088 z = x*x; 00089 r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); 00090 if(ix < 0x3FD33333) /* if |x| < 0.3 */ 00091 return one - (0.5*z - (z*r - x*y)); 00092 else { 00093 if(ix > 0x3fe90000) { /* x > 0.78125 */ 00094 qx = 0.28125; 00095 } else { 00096 INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ 00097 } 00098 hz = 0.5*z-qx; 00099 a = one-qx; 00100 return a - (hz - (z*r-x*y)); 00101 } 00102 } 00103 00104 #endif