POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* @(#)e_pow.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 /* __ieee754_pow(x,y) return x**y 00030 * 00031 * n 00032 * Method: Let x = 2 * (1+f) 00033 * 1. Compute and return log2(x) in two pieces: 00034 * log2(x) = w1 + w2, 00035 * where w1 has 53-24 = 29 bit trailing zeros. 00036 * 2. Perform y*log2(x) = n+y' by simulating multi-precision 00037 * arithmetic, where |y'|<=0.5. 00038 * 3. Return x**y = 2**n*exp(y'*log2) 00039 * 00040 * Special cases: 00041 * 1. (anything) ** 0 is 1 00042 * 2. (anything) ** 1 is itself 00043 * 3. (anything) ** NAN is NAN 00044 * 4. NAN ** (anything except 0) is NAN 00045 * 5. +-(|x| > 1) ** +INF is +INF 00046 * 6. +-(|x| > 1) ** -INF is +0 00047 * 7. +-(|x| < 1) ** +INF is +0 00048 * 8. +-(|x| < 1) ** -INF is +INF 00049 * 9. +-1 ** +-INF is NAN 00050 * 10. +0 ** (+anything except 0, NAN) is +0 00051 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 00052 * 12. +0 ** (-anything except 0, NAN) is +INF 00053 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF 00054 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) 00055 * 15. +INF ** (+anything except 0,NAN) is +INF 00056 * 16. +INF ** (-anything except 0,NAN) is +0 00057 * 17. -INF ** (anything) = -0 ** (-anything) 00058 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) 00059 * 19. (-anything except 0 and inf) ** (non-integer) is NAN 00060 * 00061 * Accuracy: 00062 * pow(x,y) returns x**y nearly rounded. In particular 00063 * pow(integer,integer) 00064 * always returns the correct integer provided it is 00065 * representable. 00066 * 00067 * Constants : 00068 * The hexadecimal values are the intended ones for the following 00069 * constants. The decimal values may be used, provided that the 00070 * compiler will convert from decimal to binary accurately enough 00071 * to produce the hexadecimal values shown. 00072 */ 00073 00074 #ifdef POK_NEEDS_LIBMATH 00075 00076 #include <libm.h> 00077 #include "math_private.h" 00078 00079 static const double 00080 bp[] = {1.0, 1.5,}, 00081 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ 00082 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ 00083 zero = 0.0, 00084 one = 1.0, 00085 two = 2.0, 00086 two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ 00087 huge = 1.0e300, 00088 tiny = 1.0e-300, 00089 /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ 00090 L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ 00091 L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ 00092 L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ 00093 L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ 00094 L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ 00095 L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ 00096 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ 00097 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ 00098 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ 00099 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ 00100 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ 00101 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ 00102 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ 00103 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ 00104 ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ 00105 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ 00106 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ 00107 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ 00108 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ 00109 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ 00110 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ 00111 00112 double 00113 __ieee754_pow(double x, double y) 00114 { 00115 double z,ax,z_h,z_l,p_h,p_l; 00116 double yy1,t1,t2,r,s,t,u,v,w; 00117 int32_t i,j,k,yisint,n; 00118 int32_t hx,hy,ix,iy; 00119 uint32_t lx,ly; 00120 00121 EXTRACT_WORDS(hx,lx,x); 00122 EXTRACT_WORDS(hy,ly,y); 00123 ix = hx&0x7fffffff; iy = hy&0x7fffffff; 00124 00125 /* y==zero: x**0 = 1 */ 00126 if((iy|ly)==0) return one; 00127 00128 /* +-NaN return x+y */ 00129 if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || 00130 iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) 00131 return x+y; 00132 00133 /* determine if y is an odd int when x < 0 00134 * yisint = 0 ... y is not an integer 00135 * yisint = 1 ... y is an odd int 00136 * yisint = 2 ... y is an even int 00137 */ 00138 yisint = 0; 00139 if(hx<0) { 00140 if(iy>=0x43400000) yisint = 2; /* even integer y */ 00141 else if(iy>=0x3ff00000) { 00142 k = (iy>>20)-0x3ff; /* exponent */ 00143 if(k>20) { 00144 j = ly>>(52-k); 00145 if((uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1); 00146 } else if(ly==0) { 00147 j = iy>>(20-k); 00148 if((j<<(20-k))==iy) yisint = 2-(j&1); 00149 } 00150 } 00151 } 00152 00153 /* special value of y */ 00154 if(ly==0) { 00155 if (iy==0x7ff00000) { /* y is +-inf */ 00156 if(((ix-0x3ff00000)|lx)==0) 00157 return y - y; /* inf**+-1 is NaN */ 00158 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ 00159 return (hy>=0)? y: zero; 00160 else /* (|x|<1)**-,+inf = inf,0 */ 00161 return (hy<0)?-y: zero; 00162 } 00163 if(iy==0x3ff00000) { /* y is +-1 */ 00164 if(hy<0) return one/x; else return x; 00165 } 00166 if(hy==0x40000000) return x*x; /* y is 2 */ 00167 if(hy==0x3fe00000) { /* y is 0.5 */ 00168 if(hx>=0) /* x >= +0 */ 00169 return __ieee754_sqrt(x); 00170 } 00171 } 00172 00173 ax = fabs(x); 00174 /* special value of x */ 00175 if(lx==0) { 00176 if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ 00177 z = ax; /*x is +-0,+-inf,+-1*/ 00178 if(hy<0) z = one/z; /* z = (1/|x|) */ 00179 if(hx<0) { 00180 if(((ix-0x3ff00000)|yisint)==0) { 00181 z = (z-z)/(z-z); /* (-1)**non-int is NaN */ 00182 } else if(yisint==1) 00183 z = -z; /* (x<0)**odd = -(|x|**odd) */ 00184 } 00185 return z; 00186 } 00187 } 00188 00189 n = (hx>>31)+1; 00190 00191 /* (x<0)**(non-int) is NaN */ 00192 if((n|yisint)==0) return (x-x)/(x-x); 00193 00194 s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ 00195 if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ 00196 00197 /* |y| is huge */ 00198 if(iy>0x41e00000) { /* if |y| > 2**31 */ 00199 if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ 00200 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; 00201 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; 00202 } 00203 /* over/underflow if x is not close to one */ 00204 if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; 00205 if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; 00206 /* now |1-x| is tiny <= 2**-20, suffice to compute 00207 log(x) by x-x^2/2+x^3/3-x^4/4 */ 00208 t = ax-one; /* t has 20 trailing zeros */ 00209 w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); 00210 u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ 00211 v = t*ivln2_l-w*ivln2; 00212 t1 = u+v; 00213 SET_LOW_WORD(t1,0); 00214 t2 = v-(t1-u); 00215 } else { 00216 double ss,s2,s_h,s_l,t_h,t_l; 00217 n = 0; 00218 /* take care subnormal number */ 00219 if(ix<0x00100000) 00220 {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } 00221 n += ((ix)>>20)-0x3ff; 00222 j = ix&0x000fffff; 00223 /* determine interval */ 00224 ix = j|0x3ff00000; /* normalize ix */ 00225 if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ 00226 else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ 00227 else {k=0;n+=1;ix -= 0x00100000;} 00228 SET_HIGH_WORD(ax,ix); 00229 00230 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ 00231 u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ 00232 v = one/(ax+bp[k]); 00233 ss = u*v; 00234 s_h = ss; 00235 SET_LOW_WORD(s_h,0); 00236 /* t_h=ax+bp[k] High */ 00237 t_h = zero; 00238 SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); 00239 t_l = ax - (t_h-bp[k]); 00240 s_l = v*((u-s_h*t_h)-s_h*t_l); 00241 /* compute log(ax) */ 00242 s2 = ss*ss; 00243 r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); 00244 r += s_l*(s_h+ss); 00245 s2 = s_h*s_h; 00246 t_h = 3.0+s2+r; 00247 SET_LOW_WORD(t_h,0); 00248 t_l = r-((t_h-3.0)-s2); 00249 /* u+v = ss*(1+...) */ 00250 u = s_h*t_h; 00251 v = s_l*t_h+t_l*ss; 00252 /* 2/(3log2)*(ss+...) */ 00253 p_h = u+v; 00254 SET_LOW_WORD(p_h,0); 00255 p_l = v-(p_h-u); 00256 z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ 00257 z_l = cp_l*p_h+p_l*cp+dp_l[k]; 00258 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ 00259 t = (double)n; 00260 t1 = (((z_h+z_l)+dp_h[k])+t); 00261 SET_LOW_WORD(t1,0); 00262 t2 = z_l-(((t1-t)-dp_h[k])-z_h); 00263 } 00264 00265 /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */ 00266 yy1 = y; 00267 SET_LOW_WORD(yy1,0); 00268 p_l = (y-yy1)*t1+y*t2; 00269 p_h = yy1*t1; 00270 z = p_l+p_h; 00271 EXTRACT_WORDS(j,i,z); 00272 if (j>=0x40900000) { /* z >= 1024 */ 00273 if(((j-0x40900000)|i)!=0) /* if z > 1024 */ 00274 return s*huge*huge; /* overflow */ 00275 else { 00276 if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ 00277 } 00278 } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ 00279 if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ 00280 return s*tiny*tiny; /* underflow */ 00281 else { 00282 if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ 00283 } 00284 } 00285 /* 00286 * compute 2**(p_h+p_l) 00287 */ 00288 i = j&0x7fffffff; 00289 k = (i>>20)-0x3ff; 00290 n = 0; 00291 if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ 00292 n = j+(0x00100000>>(k+1)); 00293 k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ 00294 t = zero; 00295 SET_HIGH_WORD(t,n&~(0x000fffff>>k)); 00296 n = ((n&0x000fffff)|0x00100000)>>(20-k); 00297 if(j<0) n = -n; 00298 p_h -= t; 00299 } 00300 t = p_l+p_h; 00301 SET_LOW_WORD(t,0); 00302 u = t*lg2_h; 00303 v = (p_l-(t-p_h))*lg2+t*lg2_l; 00304 z = u+v; 00305 w = v-(z-u); 00306 t = z*z; 00307 t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); 00308 r = (z*t1)/(t1-two)-(w+z*w); 00309 z = one-(r-z); 00310 GET_HIGH_WORD(j,z); 00311 j += (n<<20); 00312 if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */ 00313 else SET_HIGH_WORD(z,j); 00314 return s*z; 00315 } 00316 00317 #endif 00318