POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* e_lgammaf_r.c -- float version of e_lgamma_r.c. 00018 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. 00019 */ 00020 00021 /* 00022 * ==================================================== 00023 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00024 * 00025 * Developed at SunPro, a Sun Microsystems, Inc. business. 00026 * Permission to use, copy, modify, and distribute this 00027 * software is freely granted, provided that this notice 00028 * is preserved. 00029 * ==================================================== 00030 */ 00031 00032 #ifdef POK_NEEDS_LIBMATH 00033 00034 #include <libm.h> 00035 #include "math_private.h" 00036 00037 static const float 00038 two23= 8.3886080000e+06, /* 0x4b000000 */ 00039 half= 5.0000000000e-01, /* 0x3f000000 */ 00040 one = 1.0000000000e+00, /* 0x3f800000 */ 00041 pi = 3.1415927410e+00, /* 0x40490fdb */ 00042 a0 = 7.7215664089e-02, /* 0x3d9e233f */ 00043 a1 = 3.2246702909e-01, /* 0x3ea51a66 */ 00044 a2 = 6.7352302372e-02, /* 0x3d89f001 */ 00045 a3 = 2.0580807701e-02, /* 0x3ca89915 */ 00046 a4 = 7.3855509982e-03, /* 0x3bf2027e */ 00047 a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ 00048 a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ 00049 a7 = 5.1006977446e-04, /* 0x3a05b634 */ 00050 a8 = 2.2086278477e-04, /* 0x39679767 */ 00051 a9 = 1.0801156895e-04, /* 0x38e28445 */ 00052 a10 = 2.5214456400e-05, /* 0x37d383a2 */ 00053 a11 = 4.4864096708e-05, /* 0x383c2c75 */ 00054 tc = 1.4616321325e+00, /* 0x3fbb16c3 */ 00055 tf = -1.2148628384e-01, /* 0xbdf8cdcd */ 00056 /* tt = -(tail of tf) */ 00057 tt = 6.6971006518e-09, /* 0x31e61c52 */ 00058 t0 = 4.8383611441e-01, /* 0x3ef7b95e */ 00059 t1 = -1.4758771658e-01, /* 0xbe17213c */ 00060 t2 = 6.4624942839e-02, /* 0x3d845a15 */ 00061 t3 = -3.2788541168e-02, /* 0xbd064d47 */ 00062 t4 = 1.7970675603e-02, /* 0x3c93373d */ 00063 t5 = -1.0314224288e-02, /* 0xbc28fcfe */ 00064 t6 = 6.1005386524e-03, /* 0x3bc7e707 */ 00065 t7 = -3.6845202558e-03, /* 0xbb7177fe */ 00066 t8 = 2.2596477065e-03, /* 0x3b141699 */ 00067 t9 = -1.4034647029e-03, /* 0xbab7f476 */ 00068 t10 = 8.8108185446e-04, /* 0x3a66f867 */ 00069 t11 = -5.3859531181e-04, /* 0xba0d3085 */ 00070 t12 = 3.1563205994e-04, /* 0x39a57b6b */ 00071 t13 = -3.1275415677e-04, /* 0xb9a3f927 */ 00072 t14 = 3.3552918467e-04, /* 0x39afe9f7 */ 00073 u0 = -7.7215664089e-02, /* 0xbd9e233f */ 00074 u1 = 6.3282704353e-01, /* 0x3f2200f4 */ 00075 u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ 00076 u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ 00077 u4 = 2.2896373272e-01, /* 0x3e6a7578 */ 00078 u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ 00079 v1 = 2.4559779167e+00, /* 0x401d2ebe */ 00080 v2 = 2.1284897327e+00, /* 0x4008392d */ 00081 v3 = 7.6928514242e-01, /* 0x3f44efdf */ 00082 v4 = 1.0422264785e-01, /* 0x3dd572af */ 00083 v5 = 3.2170924824e-03, /* 0x3b52d5db */ 00084 s0 = -7.7215664089e-02, /* 0xbd9e233f */ 00085 s1 = 2.1498242021e-01, /* 0x3e5c245a */ 00086 s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ 00087 s3 = 1.4635047317e-01, /* 0x3e15dce6 */ 00088 s4 = 2.6642270386e-02, /* 0x3cda40e4 */ 00089 s5 = 1.8402845599e-03, /* 0x3af135b4 */ 00090 s6 = 3.1947532989e-05, /* 0x3805ff67 */ 00091 r1 = 1.3920053244e+00, /* 0x3fb22d3b */ 00092 r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ 00093 r3 = 1.7193385959e-01, /* 0x3e300f6e */ 00094 r4 = 1.8645919859e-02, /* 0x3c98bf54 */ 00095 r5 = 7.7794247773e-04, /* 0x3a4beed6 */ 00096 r6 = 7.3266842264e-06, /* 0x36f5d7bd */ 00097 w0 = 4.1893854737e-01, /* 0x3ed67f1d */ 00098 w1 = 8.3333335817e-02, /* 0x3daaaaab */ 00099 w2 = -2.7777778450e-03, /* 0xbb360b61 */ 00100 w3 = 7.9365057172e-04, /* 0x3a500cfd */ 00101 w4 = -5.9518753551e-04, /* 0xba1c065c */ 00102 w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ 00103 w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ 00104 00105 static const float zero= 0.0000000000e+00; 00106 00107 static float 00108 sin_pif(float x) 00109 { 00110 float y,z; 00111 int n,ix; 00112 00113 GET_FLOAT_WORD(ix,x); 00114 ix &= 0x7fffffff; 00115 00116 if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0); 00117 y = -x; /* x is assume negative */ 00118 00119 /* 00120 * argument reduction, make sure inexact flag not raised if input 00121 * is an integer 00122 */ 00123 z = floorf(y); 00124 if(z!=y) { /* inexact anyway */ 00125 y *= (float)0.5; 00126 y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */ 00127 n = (int) (y*(float)4.0); 00128 } else { 00129 if(ix>=0x4b800000) { 00130 y = zero; n = 0; /* y must be even */ 00131 } else { 00132 if(ix<0x4b000000) z = y+two23; /* exact */ 00133 GET_FLOAT_WORD(n,z); 00134 n &= 1; 00135 y = n; 00136 n<<= 2; 00137 } 00138 } 00139 switch (n) { 00140 case 0: y = __kernel_sinf(pi*y,zero,0); break; 00141 case 1: 00142 case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break; 00143 case 3: 00144 case 4: y = __kernel_sinf(pi*(one-y),zero,0); break; 00145 case 5: 00146 case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break; 00147 default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break; 00148 } 00149 return -y; 00150 } 00151 00152 00153 float 00154 __ieee754_lgammaf_r(float x, int *signgamp) 00155 { 00156 float t,y,z,nadj,p,p1,p2,p3,q,r,w; 00157 int i,hx,ix; 00158 00159 nadj = 0; 00160 GET_FLOAT_WORD(hx,x); 00161 00162 /* purge off +-inf, NaN, +-0, and negative arguments */ 00163 *signgamp = 1; 00164 ix = hx&0x7fffffff; 00165 if(ix>=0x7f800000) return x*x; 00166 if(ix==0) return one/zero; 00167 if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */ 00168 if(hx<0) { 00169 *signgamp = -1; 00170 return -__ieee754_logf(-x); 00171 } else return -__ieee754_logf(x); 00172 } 00173 if(hx<0) { 00174 if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */ 00175 return one/zero; 00176 t = sin_pif(x); 00177 if(t==zero) return one/zero; /* -integer */ 00178 nadj = __ieee754_logf(pi/fabsf(t*x)); 00179 if(t<zero) *signgamp = -1; 00180 x = -x; 00181 } 00182 00183 /* purge off 1 and 2 */ 00184 if (ix==0x3f800000||ix==0x40000000) r = 0; 00185 /* for x < 2.0 */ 00186 else if(ix<0x40000000) { 00187 if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ 00188 r = -__ieee754_logf(x); 00189 if(ix>=0x3f3b4a20) {y = one-x; i= 0;} 00190 else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} 00191 else {y = x; i=2;} 00192 } else { 00193 r = zero; 00194 if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */ 00195 else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ 00196 else {y=x-one;i=2;} 00197 } 00198 switch(i) { 00199 case 0: 00200 z = y*y; 00201 p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); 00202 p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); 00203 p = y*p1+p2; 00204 r += (p-(float)0.5*y); break; 00205 case 1: 00206 z = y*y; 00207 w = z*y; 00208 p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ 00209 p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); 00210 p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); 00211 p = z*p1-(tt-w*(p2+y*p3)); 00212 r += (tf + p); break; 00213 case 2: 00214 p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); 00215 p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); 00216 r += (-(float)0.5*y + p1/p2); 00217 } 00218 } 00219 else if(ix<0x41000000) { /* x < 8.0 */ 00220 i = (int)x; 00221 t = zero; 00222 y = x-(float)i; 00223 p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); 00224 q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); 00225 r = half*y+p/q; 00226 z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ 00227 switch(i) { 00228 case 7: z *= (y+(float)6.0); /* FALLTHRU */ 00229 case 6: z *= (y+(float)5.0); /* FALLTHRU */ 00230 case 5: z *= (y+(float)4.0); /* FALLTHRU */ 00231 case 4: z *= (y+(float)3.0); /* FALLTHRU */ 00232 case 3: z *= (y+(float)2.0); /* FALLTHRU */ 00233 r += __ieee754_logf(z); break; 00234 } 00235 /* 8.0 <= x < 2**58 */ 00236 } else if (ix < 0x5c800000) { 00237 t = __ieee754_logf(x); 00238 z = one/x; 00239 y = z*z; 00240 w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); 00241 r = (x-half)*(t-one)+w; 00242 } else 00243 /* 2**58 <= x <= inf */ 00244 r = x*(__ieee754_logf(x)-one); 00245 if(hx<0) r = nadj - r; 00246 return r; 00247 } 00248 00249 #endif 00250