POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/e_exp.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)e_exp.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 /* __ieee754_exp(x)
00030  * Returns the exponential of x.
00031  *
00032  * Method
00033  *   1. Argument reduction:
00034  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
00035  *      Given x, find r and integer k such that
00036  *
00037  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
00038  *
00039  *      Here r will be represented as r = hi-lo for better
00040  *      accuracy.
00041  *
00042  *   2. Approximation of exp(r) by a special rational function on
00043  *      the interval [0,0.34658]:
00044  *      Write
00045  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
00046  *      We use a special Reme algorithm on [0,0.34658] to generate
00047  *      a polynomial of degree 5 to approximate R. The maximum error
00048  *      of this polynomial approximation is bounded by 2**-59. In
00049  *      other words,
00050  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
00051  *      (where z=r*r, and the values of P1 to P5 are listed below)
00052  *      and
00053  *          |                  5          |     -59
00054  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
00055  *          |                             |
00056  *      The computation of exp(r) thus becomes
00057  *                             2*r
00058  *              exp(r) = 1 + -------
00059  *                            R - r
00060  *                                 r*R1(r)
00061  *                     = 1 + r + ----------- (for better accuracy)
00062  *                                2 - R1(r)
00063  *      where
00064  *                               2       4             10
00065  *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
00066  *
00067  *   3. Scale back to obtain exp(x):
00068  *      From step 1, we have
00069  *         exp(x) = 2^k * exp(r)
00070  *
00071  * Special cases:
00072  *      exp(INF) is INF, exp(NaN) is NaN;
00073  *      exp(-INF) is 0, and
00074  *      for finite argument, only exp(0)=1 is exact.
00075  *
00076  * Accuracy:
00077  *      according to an error analysis, the error is always less than
00078  *      1 ulp (unit in the last place).
00079  *
00080  * Misc. info.
00081  *      For IEEE double
00082  *          if x >  7.09782712893383973096e+02 then exp(x) overflow
00083  *          if x < -7.45133219101941108420e+02 then exp(x) underflow
00084  *
00085  * Constants:
00086  * The hexadecimal values are the intended ones for the following
00087  * constants. The decimal values may be used, provided that the
00088  * compiler will convert from decimal to binary accurately enough
00089  * to produce the hexadecimal values shown.
00090  */
00091 
00092 #ifdef POK_NEEDS_LIBMATH
00093 
00094 #include "math_private.h"
00095 
00096 static const double
00097 one     = 1.0,
00098 halF[2] = {0.5,-0.5,},
00099 huge    = 1.0e+300,
00100 twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
00101 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
00102 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
00103 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
00104              -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
00105 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
00106              -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
00107 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
00108 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
00109 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
00110 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
00111 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
00112 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
00113 
00114 
00115 double
00116 __ieee754_exp(double x) /* default IEEE double exp */
00117 {
00118         double y,hi,lo,c,t;
00119         int32_t k,xsb;
00120         uint32_t hx;
00121 
00122         hi = lo = 0;
00123         k = 0;
00124         GET_HIGH_WORD(hx,x);
00125         xsb = (hx>>31)&1;               /* sign bit of x */
00126         hx &= 0x7fffffff;               /* high word of |x| */
00127 
00128     /* filter out non-finite argument */
00129         if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
00130             if(hx>=0x7ff00000) {
00131                 uint32_t lx;
00132                 GET_LOW_WORD(lx,x);
00133                 if(((hx&0xfffff)|lx)!=0)
00134                      return x+x;                /* NaN */
00135                 else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
00136             }
00137             if(x > o_threshold) return huge*huge; /* overflow */
00138             if(x < u_threshold) return twom1000*twom1000; /* underflow */
00139         }
00140 
00141     /* argument reduction */
00142         if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
00143             if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
00144                 hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
00145             } else {
00146                 k  = invln2*x+halF[xsb];
00147                 t  = k;
00148                 hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
00149                 lo = t*ln2LO[0];
00150             }
00151             x  = hi - lo;
00152         }
00153         else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
00154             if(huge+x>one) return one+x;/* trigger inexact */
00155         }
00156         else k = 0;
00157 
00158     /* x is now in primary range */
00159         t  = x*x;
00160         c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
00161         if(k==0)        return one-((x*c)/(c-2.0)-x);
00162         else            y = one-((lo-(x*c)/(2.0-c))-hi);
00163         if(k >= -1021) {
00164             uint32_t hy;
00165             GET_HIGH_WORD(hy,y);
00166             SET_HIGH_WORD(y,hy+(k<<20));        /* add k to y's exponent */
00167             return y;
00168         } else {
00169             uint32_t hy;
00170             GET_HIGH_WORD(hy,y);
00171             SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
00172             return y*twom1000;
00173         }
00174 }
00175 #endif