POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* @(#)e_asin.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 /* __ieee754_asin(x) 00030 * Method : 00031 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... 00032 * we approximate asin(x) on [0,0.5] by 00033 * asin(x) = x + x*x^2*R(x^2) 00034 * where 00035 * R(x^2) is a rational approximation of (asin(x)-x)/x^3 00036 * and its remez error is bounded by 00037 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) 00038 * 00039 * For x in [0.5,1] 00040 * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) 00041 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; 00042 * then for x>0.98 00043 * asin(x) = pi/2 - 2*(s+s*z*R(z)) 00044 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) 00045 * For x<=0.98, let pio4_hi = pio2_hi/2, then 00046 * f = hi part of s; 00047 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) 00048 * and 00049 * asin(x) = pi/2 - 2*(s+s*z*R(z)) 00050 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) 00051 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) 00052 * 00053 * Special cases: 00054 * if x is NaN, return x itself; 00055 * if |x|>1, return NaN with invalid signal. 00056 * 00057 */ 00058 00059 #ifdef POK_NEEDS_LIBMATH 00060 00061 00062 #include <libm.h> 00063 #include "math_private.h" 00064 00065 static const double 00066 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 00067 huge = 1.000e+300, 00068 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ 00069 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ 00070 pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ 00071 /* coefficient for R(x^2) */ 00072 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ 00073 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ 00074 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ 00075 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ 00076 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ 00077 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ 00078 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ 00079 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ 00080 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ 00081 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ 00082 00083 double 00084 __ieee754_asin(double x) 00085 { 00086 double t,w,p,q,c,r,s; 00087 int32_t hx,ix; 00088 00089 t = 0; 00090 GET_HIGH_WORD(hx,x); 00091 ix = hx&0x7fffffff; 00092 if(ix>= 0x3ff00000) { /* |x|>= 1 */ 00093 uint32_t lx; 00094 GET_LOW_WORD(lx,x); 00095 if(((ix-0x3ff00000)|lx)==0) 00096 /* asin(1)=+-pi/2 with inexact */ 00097 return x*pio2_hi+x*pio2_lo; 00098 return (x-x)/(x-x); /* asin(|x|>1) is NaN */ 00099 } else if (ix<0x3fe00000) { /* |x|<0.5 */ 00100 if(ix<0x3e400000) { /* if |x| < 2**-27 */ 00101 if(huge+x>one) return x;/* return x with inexact if x!=0*/ 00102 } else 00103 t = x*x; 00104 p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); 00105 q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); 00106 w = p/q; 00107 return x+x*w; 00108 } 00109 /* 1> |x|>= 0.5 */ 00110 w = one-fabs(x); 00111 t = w*0.5; 00112 p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); 00113 q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); 00114 s = __ieee754_sqrt(t); 00115 if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ 00116 w = p/q; 00117 t = pio2_hi-(2.0*(s+s*w)-pio2_lo); 00118 } else { 00119 w = s; 00120 SET_LOW_WORD(w,0); 00121 c = (t-w*w)/(s+w); 00122 r = p/q; 00123 p = 2.0*s*r-(pio2_lo-2.0*c); 00124 q = pio4_hi-2.0*w; 00125 t = pio4_hi-(p-q); 00126 } 00127 if(hx>0) return t; else return -t; 00128 } 00129 00130 #endif 00131