POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/e_asin.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)e_asin.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 /* __ieee754_asin(x)
00030  * Method :
00031  *      Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
00032  *      we approximate asin(x) on [0,0.5] by
00033  *              asin(x) = x + x*x^2*R(x^2)
00034  *      where
00035  *              R(x^2) is a rational approximation of (asin(x)-x)/x^3
00036  *      and its remez error is bounded by
00037  *              |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
00038  *
00039  *      For x in [0.5,1]
00040  *              asin(x) = pi/2-2*asin(sqrt((1-x)/2))
00041  *      Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
00042  *      then for x>0.98
00043  *              asin(x) = pi/2 - 2*(s+s*z*R(z))
00044  *                      = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
00045  *      For x<=0.98, let pio4_hi = pio2_hi/2, then
00046  *              f = hi part of s;
00047  *              c = sqrt(z) - f = (z-f*f)/(s+f)         ...f+c=sqrt(z)
00048  *      and
00049  *              asin(x) = pi/2 - 2*(s+s*z*R(z))
00050  *                      = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
00051  *                      = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
00052  *
00053  * Special cases:
00054  *      if x is NaN, return x itself;
00055  *      if |x|>1, return NaN with invalid signal.
00056  *
00057  */
00058 
00059 #ifdef POK_NEEDS_LIBMATH
00060 
00061 
00062 #include <libm.h>
00063 #include "math_private.h"
00064 
00065 static const double
00066 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
00067 huge =  1.000e+300,
00068 pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
00069 pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
00070 pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
00071         /* coefficient for R(x^2) */
00072 pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
00073 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
00074 pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
00075 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
00076 pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
00077 pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
00078 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
00079 qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
00080 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
00081 qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
00082 
00083 double
00084 __ieee754_asin(double x)
00085 {
00086         double t,w,p,q,c,r,s;
00087         int32_t hx,ix;
00088 
00089         t = 0;
00090         GET_HIGH_WORD(hx,x);
00091         ix = hx&0x7fffffff;
00092         if(ix>= 0x3ff00000) {           /* |x|>= 1 */
00093             uint32_t lx;
00094             GET_LOW_WORD(lx,x);
00095             if(((ix-0x3ff00000)|lx)==0)
00096                     /* asin(1)=+-pi/2 with inexact */
00097                 return x*pio2_hi+x*pio2_lo;
00098             return (x-x)/(x-x);         /* asin(|x|>1) is NaN */
00099         } else if (ix<0x3fe00000) {     /* |x|<0.5 */
00100             if(ix<0x3e400000) {         /* if |x| < 2**-27 */
00101                 if(huge+x>one) return x;/* return x with inexact if x!=0*/
00102             } else
00103                 t = x*x;
00104                 p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
00105                 q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
00106                 w = p/q;
00107                 return x+x*w;
00108         }
00109         /* 1> |x|>= 0.5 */
00110         w = one-fabs(x);
00111         t = w*0.5;
00112         p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
00113         q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
00114         s = __ieee754_sqrt(t);
00115         if(ix>=0x3FEF3333) {    /* if |x| > 0.975 */
00116             w = p/q;
00117             t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
00118         } else {
00119             w  = s;
00120             SET_LOW_WORD(w,0);
00121             c  = (t-w*w)/(s+w);
00122             r  = p/q;
00123             p  = 2.0*s*r-(pio2_lo-2.0*c);
00124             q  = pio4_hi-2.0*w;
00125             t  = pio4_hi-(p-q);
00126         }
00127         if(hx>0) return t; else return -t;
00128 }
00129 
00130 #endif
00131