POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* @(#)e_acosh.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 /* __ieee754_acosh(x) 00030 * Method : 00031 * Based on 00032 * acosh(x) = log [ x + sqrt(x*x-1) ] 00033 * we have 00034 * acosh(x) := log(x)+ln2, if x is large; else 00035 * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else 00036 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. 00037 * 00038 * Special cases: 00039 * acosh(x) is NaN with signal if x<1. 00040 * acosh(NaN) is NaN without signal. 00041 */ 00042 00043 #ifdef POK_NEEDS_LIBMATH 00044 00045 #include <libm.h> 00046 #include "math_private.h" 00047 00048 static const double 00049 one = 1.0, 00050 ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ 00051 00052 double 00053 __ieee754_acosh(double x) 00054 { 00055 double t; 00056 int32_t hx; 00057 uint32_t lx; 00058 EXTRACT_WORDS(hx,lx,x); 00059 if(hx<0x3ff00000) { /* x < 1 */ 00060 return (x-x)/(x-x); 00061 } else if(hx >=0x41b00000) { /* x > 2**28 */ 00062 if(hx >=0x7ff00000) { /* x is inf of NaN */ 00063 return x+x; 00064 } else 00065 return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */ 00066 } else if(((hx-0x3ff00000)|lx)==0) { 00067 return 0.0; /* acosh(1) = 0 */ 00068 } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ 00069 t=x*x; 00070 return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one))); 00071 } else { /* 1<x<2 */ 00072 t = x-one; 00073 return log1p(t+sqrt(2.0*t+t*t)); 00074 } 00075 } 00076 00077 #endif