POK
e_pow.c
1 /*
2  * POK header
3  *
4  * The following file is a part of the POK project. Any modification should
5  * made according to the POK licence. You CANNOT use this file or a part of
6  * this file is this part of a file for your own project
7  *
8  * For more information on the POK licence, please see our LICENCE FILE
9  *
10  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
11  *
12  * Copyright (c) 2007-2009 POK team
13  *
14  * Created by julien on Fri Jan 30 14:41:34 2009
15  */
16 
17 /* @(#)e_pow.c 5.1 93/09/24 */
18 /*
19  * ====================================================
20  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
21  *
22  * Developed at SunPro, a Sun Microsystems, Inc. business.
23  * Permission to use, copy, modify, and distribute this
24  * software is freely granted, provided that this notice
25  * is preserved.
26  * ====================================================
27  */
28 
29 /* __ieee754_pow(x,y) return x**y
30  *
31  * n
32  * Method: Let x = 2 * (1+f)
33  * 1. Compute and return log2(x) in two pieces:
34  * log2(x) = w1 + w2,
35  * where w1 has 53-24 = 29 bit trailing zeros.
36  * 2. Perform y*log2(x) = n+y' by simulating multi-precision
37  * arithmetic, where |y'|<=0.5.
38  * 3. Return x**y = 2**n*exp(y'*log2)
39  *
40  * Special cases:
41  * 1. (anything) ** 0 is 1
42  * 2. (anything) ** 1 is itself
43  * 3. (anything) ** NAN is NAN
44  * 4. NAN ** (anything except 0) is NAN
45  * 5. +-(|x| > 1) ** +INF is +INF
46  * 6. +-(|x| > 1) ** -INF is +0
47  * 7. +-(|x| < 1) ** +INF is +0
48  * 8. +-(|x| < 1) ** -INF is +INF
49  * 9. +-1 ** +-INF is NAN
50  * 10. +0 ** (+anything except 0, NAN) is +0
51  * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
52  * 12. +0 ** (-anything except 0, NAN) is +INF
53  * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
54  * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
55  * 15. +INF ** (+anything except 0,NAN) is +INF
56  * 16. +INF ** (-anything except 0,NAN) is +0
57  * 17. -INF ** (anything) = -0 ** (-anything)
58  * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
59  * 19. (-anything except 0 and inf) ** (non-integer) is NAN
60  *
61  * Accuracy:
62  * pow(x,y) returns x**y nearly rounded. In particular
63  * pow(integer,integer)
64  * always returns the correct integer provided it is
65  * representable.
66  *
67  * Constants :
68  * The hexadecimal values are the intended ones for the following
69  * constants. The decimal values may be used, provided that the
70  * compiler will convert from decimal to binary accurately enough
71  * to produce the hexadecimal values shown.
72  */
73 
74 #ifdef POK_NEEDS_LIBMATH
75 
76 #include <libm.h>
77 #include "math_private.h"
78 
79 static const double
80 bp[] = {1.0, 1.5,},
81 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
82 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
83 zero = 0.0,
84 one = 1.0,
85 two = 2.0,
86 two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
87 huge = 1.0e300,
88 tiny = 1.0e-300,
89  /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
90 L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
91 L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
92 L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
93 L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
94 L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
95 L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
96 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
97 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
98 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
99 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
100 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
101 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
102 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
103 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
104 ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
105 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
106 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
107 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
108 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
109 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
110 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
111 
112 double
113 __ieee754_pow(double x, double y)
114 {
115  double z,ax,z_h,z_l,p_h,p_l;
116  double yy1,t1,t2,r,s,t,u,v,w;
117  int32_t i,j,k,yisint,n;
118  int32_t hx,hy,ix,iy;
119  uint32_t lx,ly;
120 
121  EXTRACT_WORDS(hx,lx,x);
122  EXTRACT_WORDS(hy,ly,y);
123  ix = hx&0x7fffffff; iy = hy&0x7fffffff;
124 
125  /* y==zero: x**0 = 1 */
126  if((iy|ly)==0) return one;
127 
128  /* +-NaN return x+y */
129  if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
130  iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
131  return x+y;
132 
133  /* determine if y is an odd int when x < 0
134  * yisint = 0 ... y is not an integer
135  * yisint = 1 ... y is an odd int
136  * yisint = 2 ... y is an even int
137  */
138  yisint = 0;
139  if(hx<0) {
140  if(iy>=0x43400000) yisint = 2; /* even integer y */
141  else if(iy>=0x3ff00000) {
142  k = (iy>>20)-0x3ff; /* exponent */
143  if(k>20) {
144  j = ly>>(52-k);
145  if((uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
146  } else if(ly==0) {
147  j = iy>>(20-k);
148  if((j<<(20-k))==iy) yisint = 2-(j&1);
149  }
150  }
151  }
152 
153  /* special value of y */
154  if(ly==0) {
155  if (iy==0x7ff00000) { /* y is +-inf */
156  if(((ix-0x3ff00000)|lx)==0)
157  return y - y; /* inf**+-1 is NaN */
158  else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
159  return (hy>=0)? y: zero;
160  else /* (|x|<1)**-,+inf = inf,0 */
161  return (hy<0)?-y: zero;
162  }
163  if(iy==0x3ff00000) { /* y is +-1 */
164  if(hy<0) return one/x; else return x;
165  }
166  if(hy==0x40000000) return x*x; /* y is 2 */
167  if(hy==0x3fe00000) { /* y is 0.5 */
168  if(hx>=0) /* x >= +0 */
169  return __ieee754_sqrt(x);
170  }
171  }
172 
173  ax = fabs(x);
174  /* special value of x */
175  if(lx==0) {
176  if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
177  z = ax; /*x is +-0,+-inf,+-1*/
178  if(hy<0) z = one/z; /* z = (1/|x|) */
179  if(hx<0) {
180  if(((ix-0x3ff00000)|yisint)==0) {
181  z = (z-z)/(z-z); /* (-1)**non-int is NaN */
182  } else if(yisint==1)
183  z = -z; /* (x<0)**odd = -(|x|**odd) */
184  }
185  return z;
186  }
187  }
188 
189  n = (hx>>31)+1;
190 
191  /* (x<0)**(non-int) is NaN */
192  if((n|yisint)==0) return (x-x)/(x-x);
193 
194  s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
195  if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
196 
197  /* |y| is huge */
198  if(iy>0x41e00000) { /* if |y| > 2**31 */
199  if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
200  if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
201  if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
202  }
203  /* over/underflow if x is not close to one */
204  if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
205  if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
206  /* now |1-x| is tiny <= 2**-20, suffice to compute
207  log(x) by x-x^2/2+x^3/3-x^4/4 */
208  t = ax-one; /* t has 20 trailing zeros */
209  w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
210  u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
211  v = t*ivln2_l-w*ivln2;
212  t1 = u+v;
213  SET_LOW_WORD(t1,0);
214  t2 = v-(t1-u);
215  } else {
216  double ss,s2,s_h,s_l,t_h,t_l;
217  n = 0;
218  /* take care subnormal number */
219  if(ix<0x00100000)
220  {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
221  n += ((ix)>>20)-0x3ff;
222  j = ix&0x000fffff;
223  /* determine interval */
224  ix = j|0x3ff00000; /* normalize ix */
225  if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
226  else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
227  else {k=0;n+=1;ix -= 0x00100000;}
228  SET_HIGH_WORD(ax,ix);
229 
230  /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
231  u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
232  v = one/(ax+bp[k]);
233  ss = u*v;
234  s_h = ss;
235  SET_LOW_WORD(s_h,0);
236  /* t_h=ax+bp[k] High */
237  t_h = zero;
238  SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
239  t_l = ax - (t_h-bp[k]);
240  s_l = v*((u-s_h*t_h)-s_h*t_l);
241  /* compute log(ax) */
242  s2 = ss*ss;
243  r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
244  r += s_l*(s_h+ss);
245  s2 = s_h*s_h;
246  t_h = 3.0+s2+r;
247  SET_LOW_WORD(t_h,0);
248  t_l = r-((t_h-3.0)-s2);
249  /* u+v = ss*(1+...) */
250  u = s_h*t_h;
251  v = s_l*t_h+t_l*ss;
252  /* 2/(3log2)*(ss+...) */
253  p_h = u+v;
254  SET_LOW_WORD(p_h,0);
255  p_l = v-(p_h-u);
256  z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
257  z_l = cp_l*p_h+p_l*cp+dp_l[k];
258  /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
259  t = (double)n;
260  t1 = (((z_h+z_l)+dp_h[k])+t);
261  SET_LOW_WORD(t1,0);
262  t2 = z_l-(((t1-t)-dp_h[k])-z_h);
263  }
264 
265  /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
266  yy1 = y;
267  SET_LOW_WORD(yy1,0);
268  p_l = (y-yy1)*t1+y*t2;
269  p_h = yy1*t1;
270  z = p_l+p_h;
271  EXTRACT_WORDS(j,i,z);
272  if (j>=0x40900000) { /* z >= 1024 */
273  if(((j-0x40900000)|i)!=0) /* if z > 1024 */
274  return s*huge*huge; /* overflow */
275  else {
276  if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
277  }
278  } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
279  if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
280  return s*tiny*tiny; /* underflow */
281  else {
282  if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
283  }
284  }
285  /*
286  * compute 2**(p_h+p_l)
287  */
288  i = j&0x7fffffff;
289  k = (i>>20)-0x3ff;
290  n = 0;
291  if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
292  n = j+(0x00100000>>(k+1));
293  k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
294  t = zero;
295  SET_HIGH_WORD(t,n&~(0x000fffff>>k));
296  n = ((n&0x000fffff)|0x00100000)>>(20-k);
297  if(j<0) n = -n;
298  p_h -= t;
299  }
300  t = p_l+p_h;
301  SET_LOW_WORD(t,0);
302  u = t*lg2_h;
303  v = (p_l-(t-p_h))*lg2+t*lg2_l;
304  z = u+v;
305  w = v-(z-u);
306  t = z*z;
307  t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
308  r = (z*t1)/(t1-two)-(w+z*w);
309  z = one-(r-z);
310  GET_HIGH_WORD(j,z);
311  j += (n<<20);
312  if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
313  else SET_HIGH_WORD(z,j);
314  return s*z;
315 }
316 
317 #endif
318