POK
e_log.c
1 /*
2  * POK header
3  *
4  * The following file is a part of the POK project. Any modification should
5  * made according to the POK licence. You CANNOT use this file or a part of
6  * this file is this part of a file for your own project
7  *
8  * For more information on the POK licence, please see our LICENCE FILE
9  *
10  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
11  *
12  * Copyright (c) 2007-2009 POK team
13  *
14  * Created by julien on Fri Jan 30 14:41:34 2009
15  */
16 
17 /* @(#)e_log.c 5.1 93/09/24 */
18 /*
19  * ====================================================
20  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
21  *
22  * Developed at SunPro, a Sun Microsystems, Inc. business.
23  * Permission to use, copy, modify, and distribute this
24  * software is freely granted, provided that this notice
25  * is preserved.
26  * ====================================================
27  */
28 
29 /* __ieee754_log(x)
30  * Return the logrithm of x
31  *
32  * Method :
33  * 1. Argument Reduction: find k and f such that
34  * x = 2^k * (1+f),
35  * where sqrt(2)/2 < 1+f < sqrt(2) .
36  *
37  * 2. Approximation of log(1+f).
38  * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
39  * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
40  * = 2s + s*R
41  * We use a special Reme algorithm on [0,0.1716] to generate
42  * a polynomial of degree 14 to approximate R The maximum error
43  * of this polynomial approximation is bounded by 2**-58.45. In
44  * other words,
45  * 2 4 6 8 10 12 14
46  * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
47  * (the values of Lg1 to Lg7 are listed in the program)
48  * and
49  * | 2 14 | -58.45
50  * | Lg1*s +...+Lg7*s - R(z) | <= 2
51  * | |
52  * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
53  * In order to guarantee error in log below 1ulp, we compute log
54  * by
55  * log(1+f) = f - s*(f - R) (if f is not too large)
56  * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
57  *
58  * 3. Finally, log(x) = k*ln2 + log(1+f).
59  * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
60  * Here ln2 is split into two floating point number:
61  * ln2_hi + ln2_lo,
62  * where n*ln2_hi is always exact for |n| < 2000.
63  *
64  * Special cases:
65  * log(x) is NaN with signal if x < 0 (including -INF) ;
66  * log(+INF) is +INF; log(0) is -INF with signal;
67  * log(NaN) is that NaN with no signal.
68  *
69  * Accuracy:
70  * according to an error analysis, the error is always less than
71  * 1 ulp (unit in the last place).
72  *
73  * Constants:
74  * The hexadecimal values are the intended ones for the following
75  * constants. The decimal values may be used, provided that the
76  * compiler will convert from decimal to binary accurately enough
77  * to produce the hexadecimal values shown.
78  */
79 
80 #ifdef POK_NEEDS_LIBMATH
81 
82 #include "math_private.h"
83 
84 static const double
85 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
86 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
87 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
88 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
89 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
90 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
91 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
92 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
93 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
94 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
95 
96 static const double zero = 0.0;
97 
98 double
99 __ieee754_log(double x)
100 {
101  double hfsq,f,s,z,R,w,t1,t2,dk;
102  int32_t k,hx,i,j;
103  uint32_t lx;
104 
105  EXTRACT_WORDS(hx,lx,x);
106 
107  k=0;
108  if (hx < 0x00100000) { /* x < 2**-1022 */
109  if (((hx&0x7fffffff)|lx)==0)
110  return -two54/zero; /* log(+-0)=-inf */
111  if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
112  k -= 54; x *= two54; /* subnormal number, scale up x */
113  GET_HIGH_WORD(hx,x);
114  }
115  if (hx >= 0x7ff00000) return x+x;
116  k += (hx>>20)-1023;
117  hx &= 0x000fffff;
118  i = (hx+0x95f64)&0x100000;
119  SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
120  k += (i>>20);
121  f = x-1.0;
122  if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
123  if(f==zero) { if(k==0) return zero; else {dk=(double)k;
124  return dk*ln2_hi+dk*ln2_lo;}
125  }
126  R = f*f*(0.5-0.33333333333333333*f);
127  if(k==0) return f-R; else {dk=(double)k;
128  return dk*ln2_hi-((R-dk*ln2_lo)-f);}
129  }
130  s = f/(2.0+f);
131  dk = (double)k;
132  z = s*s;
133  i = hx-0x6147a;
134  w = z*z;
135  j = 0x6b851-hx;
136  t1= w*(Lg2+w*(Lg4+w*Lg6));
137  t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
138  i |= j;
139  R = t2+t1;
140  if(i>0) {
141  hfsq=0.5*f*f;
142  if(k==0) return f-(hfsq-s*(hfsq+R)); else
143  return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
144  } else {
145  if(k==0) return f-s*(f-R); else
146  return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
147  }
148 }
149 #endif
150