VOLUME TWO

MATHEMATICS

Its Content, Methods, and Meaning

EDITED BY

A. D. Aleksandrov, A. N. Kolmogorov, M. A. Lavrent'ev

TRANSLATED BY

S. H. Gould

Cambridge, Massachusetts

THE M.I.T. PRESS
Massachusetts Institute of Technology



MATEMATHKA
EE COIEPXAHHWE, METOJB W 3HAUYEHHUE

Hspatenvctso Axagemun Hayk CCCP
Mocksa 1956

Translation aided by grant NSF-G 16422 from the
National Science Foundation

Copyright © 1963 by the American Mathematical Society

All rights reserved. No portion of this book may be reproduced
without the written permission of the publisher.

Library of Congress Card Number: 64-7547
Printed in the United States of America



PREFACE TO
THE RUSSIAN EDITION

Mathematics, which originated in antiquity in the needs of daily life,
has developed into an immense system of widely varied disciplines. Like
the other sciences, it reflects the laws of the material world around us
and serves as a powerful instrument for our knowledge and mastery of
nature. But the high level of abstraction peculiar to mathematics means
that its newer branches are relatively inaccessible to nonspecialists. This
abstract character of mathematics gave birth even in antiquity to
idealistic notions about its independence of the material world.

In preparing the present volume, the authors have kept in mind the
goal of acquainting a sufficiently wide circle of the Soviet intelligentsia
with the various mathematical disciplines, their content and methods,
the foundations on which they are based, and the paths along which
they have developed.

As a minimum of necessary mathematical knowledge on the part of
the reader, we have assumed only secondary-school mathematics, but
the volumes differ from one another with respect to the accessibility of
the material contained in them. Readers wishing to acquaint themselves
for the first time with the elements of higher mathematics may profitably
read the first few chapters, but for a complete understanding of the
subsequent parts it will be necessary to have made some study of cor-
responding textbooks. The book as a whole will be understood in a
fundamental way only by readers who already have some acquaintance
with the applications of mathematical analysis; that is to say, with the
differential and integral calculus. For such readers, namely teachers of
mathematics and instructors in engineering and the natural sciences, it
will be particularly important to read those chapters which introduce
the newer branches of mathematics.
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vi PREFACE TO THE RUSSIAN EDITION

Naturally it has not been possible, within the limits of one book, to ex-
haust all the riches of even the most fundamental results of mathematical
research; a certain freedom in the choice of material has been inevitable
here. But along general lines, the present book will give an idea of the
present state of mathematics, its origins, and its probable future develop-
ment. For this reason the book is also intended to some extent for persons
already acquainted with most of the factual material in it. It may perhaps
help to remove a certain narrowness of outlook occasionally to be
found in some of our younger mathematicians.

The separate chapters of the book are written by various authors,
whose names are given in the Contents. But as a whole the book is the
result of collaboration. Its general plan, the choice of material, the suc-
cessive versions of individual chapters, were all submitted to general
discussion, and improvements were made on the basis of a lively exchange
of opinions. Mathematicians from several cities in the Soviet Union
were given an opportunity, in the form of organized discussion, to make
many valuable remarks concerning the original version of the text. Their
opinions and suggestions were taken into account by the authors.

The authors of some of the chapters also took a direct share in pre-
paring the final version of other chapters: The introductory part of
Chapter 11 was written essentially by B. N. Delone, while D. K. Faddeev
played an active role in the preparation of Chapter 1V and Chapter XX.

A share in the work was also taken by several persons other than the
authors of the individual chapters: §4 of Chapter X1V was written by
L. V. Kantorovi¢, §6 of Chapter VI by O. A. Ladyzenskaja, §5 of
Chapter 10 by A. G. Postnikov; work was done on the text of Chapter V
by O. A. Oleinik and on Chapter XI by Ju. V. Prohorov.

Certain sections of Chapters I, 11, VII, and XVII were written by
V. A. Zalgaller. The editing of the final text was done by V. A. Zalgaller
and V. S. Videnskii with the cooperation of T. V. Rogozkinaja and
A. P. Leonovaja.

The greater part of the illustrations were prepared by E. P. Sen’kin.

Moscow
1956 EDITORIAL BOARD



FOREWORD BY THE
EDITOR OF THE TRANSLATION

Mathematics, in view of its abstractness, offers greater difficulty to the
expositor than any other science. Yet its rapidly increasing role in modern
life creates both a need and a desire for good exposition.

In recent years many popular books about mathematics have appeared
in the English language, and some of them have enjoyed an immense
sale. But for the most part they have contained little serious mathematical
instruction, and many of them have neglected the twentieth century, the
undisputed “golden age” of mathematics. Although they are admirable
in many other ways, they have not yet undertaken the ultimate task of
mathematical exposition, namely the large-scale organization of modern
mathematics in such a way that the reader is constantly delighted by the
obvious economizing of his own time and effort. Anyone who reads
through some of the chapters in the present book will realize how well
this task has been carried out by the Soviet authors, in the systematic
collaboration they have described in their preface.

Such a book, written for “a wide circle of the intelligentsia,” must also
discuss the general cultural importance of mathematics and its continuous
development from the earliest beginnings of history down to the present
day. To form an opinion of the book from this point of view the reader
need only glance through the first chapter in Part 1 and the introduction
to certain other chapters; for example, Analysis, or Analytic Geometry.

In translating the passages on the history and cultural significance of
mathematical ideas, the translators have naturally been aware of even
greater difficulties than are usually associated with the translation of
scientific texts. As organizer of the group, I express my profound grati-
tude to the other two translators, Tamas Bartha and Kurt Hirsch, for
their skillful cooperation.

vil



viii FOREWORD

The present translation, which was originally published by the Ameri-
can Mathematical Society, will now enjoy a more general distribution in
its new format. In thus making the book more widely available the
Society has been influenced by various expressions of opinion from
American mathematicians. For example, “. . . the book will contribute
materially to 2 better understanding by the public of what mathematicians
are up to. . . . It will be useful to many mathematicians, physicists and
chemists, as well as to laymen. . . . Whether a physicist wishes to know
what a Lie algebra is and how it is related to a Lie group, or an under-
graduate would like to begin the study of homology, or a crystallographer
is interested in Fedorov groups, or an engineer in probability, or any
scientist in computing machines, he will find here a connected, lucid
account.”

In its first edition this translation has been widely read by mathemati-
cians and students of mathematics. We now look forward to its wider
usefulness in the general English-speaking world.

August, 1964
S. H. GouLp
Editor of Translations
American Mathematical Society
Providence, Rhode Island
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CHAPTER ~ I

PARTIAL
DIFFERENTIAL EQUATIONS

§1. Introduction

In the study of the phenomena of nature, partial differential
equations are encountered just as often as ordinary ones. As a rule this
happens in cases where an event is described by a function of several
variables. From the study of nature there arose that class of partial dif-
ferential equations that is at the present time the most thoroughly investi-
gated and probably the most important in the general structure of human
knowledge, namely the equations of mathematical physics.

Let us first consider oscillations in any kind of medium. In such oscil-
lations every point of the medium, occupying in equilibrium the position
(x, y, ), will at time ¢ be displaced along a vector u(x, y, z, t), depending
on the initial position of the point (x, y, z) and on the time ¢. In this case
the process in question will be described by a vector field. But it is easy
to see that knowledge of this vector field, namely the field of displacements
of points of the medium, is not sufficient in itself for a full description of
the oscillation. It is also necessary to know, for example, the density
p(x, y, z, t) at each point of the medium, the temperature T(x, y, z, ?),
and the internal stress, i.e., the forces exerted on an arbitrarily chosen
volume of the body by the entire remaining part of it.

Physical events and processes occuring in space and time always consist
of the changes, during the passage of time, of certain physical magnitudes
related to the points of the space. As we saw in Chapter II these quantities
can be described by functions with four independent variables, x, y, z,
and r, where x, y, and z are the coordinates of a point of the space, and
and 1 is the time.
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Physical quantities may be of different kinds. Some are completely
characterized by their numerical values, e.g., temperature, density, and
the like, and are called scalars. Others have direction and are therefore
vector quantities: velocity, acceleration, the strength of an electric field,
etc. Vector quantities may be expressed not only by the length of the
vector and its direction but also by its ‘‘components” if we decompose
it into the sum of three mutually perpendicular vectors, for example
parallel to the coordinate axes.

In mathematical physics a scalar quantity or a scalar field is presented
by one function of four independent variables, whereas a vector quantity
defined on the whole space or, as it is called, a vector field is described by
three functions of these variables. We can write such a quantity either in
the form

u(x, y,z,1),

where the bold face type indicates the u is a vector, or in the form of three
functions

Uy(x, ¥z t), ulx,y2z0, u(x, Y, z, 1),

where u, , u, , and u, denote the projections of the vector on the coordinate
axes.

In addition to vector and scalar quantities, still more complicated entities
occur in physics, for example the state of stress of a body at a given point.
Such quantities are called tensors; after a fixed choice of coordinate axes,
they may be characterized everywhere by a set of functions of the same
four independent variables.

In this manner, the description of widely different kinds of physical
phenomena is usually given by means of several functions of several
variables. Of course, such a description cannot be absolutely exact.

For example, when we describe the density of a medium by means of
one function of our independent variables, we ignore the fact that at a
given point we cannot have any density whatsoever. The bodies we are
investigating have a molecular structure, and the molecules are not
contiguous but occur at finite distances from one another. The distances
between molecules are for the most part considerably larger than the
dimensions of the molecules themselves. Thus the density in question is
the ratio of the mass contained in some small, but not extremely small,
volume to this volume itself. The density at a point we usually think of as
the limit of such ratios for decreasing volumes. A still greater simplification
and idealization is introduced in the concept of the temperature of a
medium. The heat in a body is due to the random motion of its molecules.
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The energy of the molecules differs, but if we consider a volume containing
a large collection of molecules, then the average energy of their random
motions will define what is called temperature.

Similarly, when we speak of the pressure of a gas or a liquid on the wall
of a container, we should not think of the pressure as though a particle
of the liquid or gas were actually pressing against the wall of the container.
In fact, these particles, in their random motion, hit the wall of the container
and bounce off it. So what we describe as pressure against the wall is
actually made up of a very large number of impulses received by a section
of the wall that is small from an everyday point of view but extremely
large in comparison with the distances between the molecules of the liquid
or gas. It would be easy to give dozens of examples of a similar nature.
The majority of the quantities studied in physics have exactly the same
character. Mathematical physics deals with idealized quantities, abstracting
them from the concrete properties of the corresponding physical entities
and considering only the average values of these quantities.

Such an idealization may appear somewhat coarse but, as we will see,
it is very useful, since it enables us to make an excellent analysis of many
complicated matters, in which we consider only the essential elements and
omit those features which are secondary from our point of view.

The object of mathematical physics is to study the relations existing
among these idealized elements, these relations being described by sets of
functions of several independent variables.

§2. The Simplest Equations of Mathematical Physics

The elementary connections and relations among physical quantities are
expressed by the laws of mechanics and physics. Although these relations
are extremely varied in character, they give rise to more complicated ones,
which are derived from them by mathematical argument and are even
more varied. The laws of mechanics and physics may be written in mathe-
matical language in the form of partial differential equations, or perhaps
integral equations, relating unknown functions to one another. To
understand what is meant here, let us consider some examples of the
equations of mathematical physics.

Equations of conservation of mass and of heat energy. Let us express
in mathematical form the basic physical laws governing the motions of a
medium.

1. First of all we express the law of conservation of the matter contained
in any volume 2 which we mentally mark off in a space and keep fixed.
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For this purpose we must calculate the mass of the matter contained in
this volume. The mass M,(¢) is expressed by the integral

Mg(t) = f_” plx, ¥, z, t) dx dy dz.
ir

This mass will not, of course, be constant; in an oscillatory process the
density at each point will be changing in view of the fact that the particles
of matter in their oscillations will at one time enter this volume and at
another leave it. The rate of change of the mass can be found by differentia-
tion with respect to time and is given by the integral

dM" f“apdxdm d.

This rate of change of the mass contained in the volume may also be
calculated in another way. We may express the amount of matter which
passes through the surface S, bounding our volume £, at each second of
time, where the matter leaving £2 must be taken with a minus sign. To this
end we consider an element ds of the surface S sufficiently small that it
may be assumed to be plane and have the same displacement for all its
points. We will follow the displacement of points on this segment of the

surface during the interval of time from

t to t + dt. First of all we compute the vector

du
dt’

which represents the velocity of each particle.
In the time dr the particles on ds move along
the vector v dt, and take up a position ds, ,
while the position ds will now be occupied by
the particles which were formerly at the
position ds, (figure 1). So during this time
the column of matter leaving the volume £
will be that which was earlier contained
between ds, and ds,. The altitude of this
small column is equal to v df cos (n, v), where
n denotes the exterior normal to the surface;
the volume of the small column will thus be
equal to

Fig. 1. v cos (m, v) ds dt,
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and the mass equal to
pv cos (n,v) ds dt.

Adding together all these small pieces, we get for the amount of matter
leaving the volume during the time dt the expression

” pv cos (n, v) ds dt.
°s

At those points where the velocity is directed toward the interior of £ the
sign of the cosine will be negative, which means that in this integral the
matter entering £2 is taken with a minus sign. The product of the velocity
of motion of the medium with its density is called its flux. The flux vector
of the mass is ¢ = puv.

In order to find the rate of flow of matter out of the volume £ it is
sufficient to divide this expression by d, so that for the rate of flow we have

II Pln ds = ‘[I qn dsa
where o F g

Un = U COS (ﬂ, 0), 4, = g Ccos (ﬂ, ?)-

The normal component of the vector v may be replaced by its expression
in terms of the components of the vectors v and a along the coordinate
axes. From analytic geometry we know that

v, = vcos(mv) = v, cos(n, x) L v,cos(nm y) + v,cos(n, z),
hence we can rewrite the expression for the rate of flow in the form
f f p(v, cos (m, x) + v, cos (m, y) + v, cos (n, 7)) ds.
5

From the law of conservation of matter, these two methods of computing
the change in the amount of matter must give the same result, since all
change in the mass included in £ can occur only as a result of the entering
or leaving of mass through the surface S.

Hence, equating the rate of change of the amount of matter contained
in the volume with the rate of flow of matter into the volume, we get

fff%dxdydz
7

= — f f [pv, cos (m, x) + pv, cos (m, y) + pv,cos (m, z)] ds
Y

-7 .” [g: cos (m, x) + g, cos (m, y) + g, cos (m, 7)) ds.
5
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This integral relation, as we have said, is true for any volume £. It is called
“the equation of continuity.”

The integral occuring on the right side of the last equation may be
transformed into a volume integral by using Ostrogradskii’s formula.
This formula, derived in Chapter II gives

” (pv; cos (m, x) + pt, cos (m, y) + pv, cos (m, 2)) ds

_ _[ _[ _[ [3(9%) 4 O(g;f”) 3(903)] 0.

Hence it follows that

f | f [dp 3(53;),) 8(5:,.) a(Plz)] de = 0.

So we get the following result; the integral of the function

a(P"ﬂ) a(Pvz
ay 0z

94,

34’: 3‘]
1 _ ¥ 1
6z

% , dpv) for 28 1 222

+

over any volume £ is equal to zero. But this is possible only if the function
is identically zero. We thus obtain the equation of continuity in differential
form
)
% , %pvs) | Aevy)

Apv,) _
ot ox ay =0 M

oz

-+

Equation (1) is a typical example of the formulation of a physical law in
the language of partial differential equations.

2. Let us consider another such problem, namely the problem of heat
conduction.

In any medium whose particles are in motion on account of heat, the
heat flows from some points to others. This flow of heat will occur through
every element of surface ds lying in the given medium. It can be shown that
the process may be described numerically by a single vector quantity, the
heat-conduction vector, which we denote by . Then the amount of heat
flowing per second through an element of area ds will be expressed by
T, ds, in the same way as g, ds earlier expressed the amount of material
passing per second through an area ds. In place of the flux of liquid
¢ = pv we have the heat flow vector «.

In the same way as we obtained the equation of continuity, which for
the motion of a liquid expresses the law of conservation of mass, we may
obtain a new partial differential equation expressing the law of conserva-
tion of energy, as follows.
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The volume density of heat energy Q at a given point may be expressed
by the formula
Q =CT,

where C is the heat capacity and T is the temperature.
Here it is easy to establish the equation

oT 31',,

Cat

4 25y 31',, + il 2
The derivation of this equation is identical with the derivation of the
equation of continuity, if we replace “density” by “density of heat energy”
and flow of mass by flow of heat. Here we have assumed that the heat
energy in the medium never increases. But if there is a source of heat
present in the medium, equation (2) for the balance of heat energy must
be modified. If ¢ is the productivity density of the source, that is the amount
of heat energy produced per unit of volume in one second, then the
equation of conservation of heat energy has the following more compli-
cated form:

oT 3-1'.1=

C_gt_l +

31',
ot 3)

3. Still another equation of the same type as the equation of continuity
may be derived by differentiating equation (1) with respect to time. Let us
do this for the equation of small oscillations of a gas near a position of
equilibrium. We will assume that for such oscillations changes of the
density are not great and the quantities dp/dx, 9p/dy, 0p/dz, and dp/ot
are sufficiently small that their products with v, ,v,, and v, may be
ignored. Then

ap v, v, o, \
R w T o) =0

Differentiating this equation with respect to time and ignoring the products
of dp/ot with dv_/dx, v /oy, and 8v,/0z, we obtain

. o (A= o (o Py
o, [ ) ),

Equation of motion.

1. An important example of the expression of a physical law by a
differential equation occurs in the equations of equilibrium or of motion
of a medium. Let the medium consist of material particles, moving with
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various velocities. As in the first example, we mentally mark off in space a
volume £2, bounded by the surface S and filled with particles of matter of
the medium, and write Newton’s third law for the particles in this volume.
This law states that for every motion of the medium the rate of change of
momentum, summed up for all particles, in the volume is equal to the sum
of all the forces acting on the volume. The momentum, as is known from
mechanics, is represented by the vector quantity

p=[[[rodn

The particles occupying in small volume dQ with density p will, after
time 4, fill 2 new volume d22’ with density p’, although the mass will be
unchanged

p d = pdQ.

If velocity v changes during this time to a new value v’, i.e., by the
amount dp = v’ — v, the corresponding change of momentum will be

pv dQ — pvdQ = pv’' dQ — pvdQ = p dv dQ,

or in the unit of time:
dp

Pj;d«g

A p i b ao.
Adding over all particles in the volume £, we find that the rate of
change of momentum is equal to

f1f a0

or, in other words

J1J G 2. 1] o G 0. [[] » G a0

(Here the derivatives dv,/dt, dv,/dt, and dv,/dr denote the rate of change
of the components of p not at a given point of the space but for a given
particle. This is what is meant by the notation d/dt instead of 2/or. As is
well known, d/dt = 8/ot + v,(0/8x) + v (8/ay) + v,(d]oz).)

The forces acting on the volume may be of two kinds: volume forces
acting on every particle of the body, and surface forces or stresses on the
surface S bounding the volume. The former are long-range forces, while
the latter are short-range.

To illustrate these remarks, let us assume that the medium under
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consideration is a fluid. The surface forces acting on an element of the
surface ds will in this case have the value p ds, where p is the pressure on
the fluid, and will be exerted in a direction opposite to that of the exterior
normal.

If we denote the unit vector in the direction of the normal to the surface
S by n, then the forces acting on the section ds will be equal to

—pn ds.

If we let F denote the vector of the external forces acting on a unit of
volume, our equation takes the form

J[J #Gide = [ Fao — [[pmas

This is the equation of motion in integral form. Like the equation of
continuity, this equation also may be transformed into differential form.
We obtain the system:
dv, op dv,, av,
p?+'€§_F dr +6y dr+3z
This system is the differential form of Newton’s third law.

=F,. (3)

2. Another characteristic example of the application of the laws of
mechanics in differential form is the equation of a vibrating string. A string
is a long, very slender body of elastic material that is flexible because of
its extreme thinness, and is usually tightly stretched. If we imagine the
string divided at any point x into two parts, then on each of the parts
there is exerted a force equal to the tension in the direction of the tangent
to the curve of the string.

Let us examine a short segment of the string. We will denote by u(x, 1)
the displacement of a point of the string from its position of equilibrium.
We assume that the oscillation of the string occurs in one plane and consists
of displacements perpendicular

to the axis Ox,and werepresent ~ §“ . T
the displacement u(x, t) graphi- N A
cally at some instant of time : TN
(figure 2). We will investigate \/

the behavior of the segment of
the string between the points
x; and x, . At these points there
are two forces acting, which are

equal to the tension T in the FiG. 2.
direction of the corresponding tangent to u(x, ).

(7] X, X2
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If the segment is curved, the resolvent of these two forces will not be
equal to zero. This resolvent, from the laws of mechanics, must be equal
to the rate of change of momentum of the segment.

Let the mass contained in each centimeter of length of the string be
equal to p. Then the rate of change of momentum will be

prdt“

If the angle between the tangent to the string and the axis Ox is denoted
by ¢, we will have

i < o
Tsing, — T'sing, = Fpa—::dx.
L3

This is the usual equation expressing the third law of mechanics in integral
form, It is easy to transform it into differential form. We have obviously

Pu 9 .
P F = a(TSlnlﬁ).

From well-known theorems of differential calculus, it is easy to relate
T'sin ¢ to the unknown function ». We get

g 22 gl tan ¢ _ oufox
VT +tanté V1 + (ufox)
and under the assumption that (du/x)? is small, we have
sing ~ %
Then i 5
u u
T~ Pom ©

This last equation is the equation of the vibrating string in differential
form.

Basic forms of equations of mathematical physics. As mentioned
previously, the various partial differential equations describing physical
phenomena usually form a system of equations in several unknown
variables. But in the great majority of cases it is possible to replace this
system by one equation, as may easily be shown by very simple examples.

For instance, let us turn to the equations of motion considered in the
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preceding paragraph. It is required to solve these equations along with
the equation of continuity. The actual methods of solution we will consider
somewhat later.

1. We begin with the equation for steady flow of an idealized fluid.

All possible motions of a fluid can be divided into rotational and
irrotational, the latter also being called potential. Although irrotational
motions are only special cases of motion and, generally speaking, the
motion of a liquid or a gas is always more or less rotational, nevertheless
experience shows that in many cases the motion is irrotational to a high
degree of exactness. Moreover, it may be shown from theoretical con-
siderations that in a fluid with viscosity equal to zero a motion which is
initially irrotational will remain so.

For a potential motion of a fluid, there exists a scalar function
U(x, y, z, 1), called the velocity potential, such that the velocity vector v
is expressed in terms of this functions by the formulas

g o= L Be . ol
T T x WT Gy T g

In all the cases we have studied up to now, we have had to deal with
systems of four equations in four unknown functions or, in other words,
with one scalar and one vector equation, containing one unknown scalar
function and one unknown vector field. Usually these equations may be
combined into one equation with one unknown function, but this equation
will be of the second order. Let us do this, beginning with the simplest
case.

For potential motion of an incompressible fluid, for which dp/ér = 0,
we have two systems of equations: the equation of continuity

( av,

T ov, ov, )

-+

and the equations of potential motion

_wo ., _aw_av

= = D, =

B T T e

Substituting in the first equation the values of the velocity as given in the

second we have ” R
otV U i)
ox? * oy? % 828 b )

2. The vector field of “‘heat flow” can also be expressed, by means of
differential equations, in terms of one scalar quantity, the temperature.
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It is well known that heat *“flows” in the direction from a hot body to a

cold one. Thus the vector of the flow of heat lies in the direction opposite

to that of the so-called temperature-gradient vector. It is also natural to

assume, as.is justified by experience, that to a first approximation the

length of this vector is directly proportional to the temperature gradient.
The components of the temperature gradient are

or or ot
dx ' oy’ a8z’

Taking the coefficient of proportionality to be k, we get three equations

oT eT T
_k—x- '-——Aa—y,‘rz——k?;z—.

These are to be solved, together with the equation for the conservation of

heat energy
C£+3T,_01’, oty _
ar " ox "oy Taz T

Replacing 7, . 7, , and 7, by their values in terms of T, we get

6"‘T 3“'7’ T
=k ( ox? dv’ d:." ) T ®)

3. Finally. for small vibrations in a gaseous medium, for example the
vibrations of sound. the equation

an oaxlar) +rap () +eg (G =0

and the equations of dynamics (5), give

op dt .
+zv_p dr 62_F"

dv,  op dv,
Par +5—Fx. P

and, assuming the absence of external forces (F, = F, = F, = 0) we get

)

2 #p
= (g + a5+ )

(to obtain this equation it is sufficient to substitute the expression for the
accelerations into the equation of continuity and to eliminate the density
p by using the Boyle-Mariotte law: p = a?p).

Equations (7), (8), and (9) are typical for many problems of mathe-
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matical physics in addition to the ones considered here. The fact that they
have been investigated in detail enables us to gain an understanding of
many physical situations.

§3. Initial-Value and Boundary-Value Problems;
Uniqueness of a Solution

With partial differential equations as with ordinary ones, it is the case,
with rare exceptions, that every equation has infinitely many particular
solutions. Thus to solve a concrete physical problem, i.e., to find an
unknown function satisfying some equation, we must know how to choose
the required solution from an infinite set of solutions. For this purpose
it is usually necessary to know not only the equation itself but a certain
number of supplementary conditions. As we saw previously, partial
differential equations are the expression of elementary laws of mechanics
or physics, referring to small particles situated in a medium. But it is not
enough to know only the laws of mechanics, if we wish to predict the
course of some process. For example, to predict the motion of the heavenly
bodies, as is done in astronomy, we must know not only the general for-
mulation of Newton’s laws but also, assuming that the masses of these
bodies are known, we must know the initial state of the system, i.e., the
position of the bodies and their velocities at some initial instant of time.
Supplementary conditions of this kind are always encountered in solving
the problems of mathematical physics.

Thus, the problems of mathematical physics consist of finding solutions
of partial differential equations that satisfy certain supplementary condi-
tions.

The equations (7), (8), (9) differ in structure among themselves.
Correspondingly different are the physical problems that may be solved
by means of these equations.

The Laplace and Poisson equations; harmonic functions and uniqueness
of solution of boundary-value problems for them. Let us analyze these
problems a little more in detail. We begin with the Laplace and Poisson
equations. The Poisson equation is*

du = —47p,

where p is usually the density. In particular, p may vanish. For p = 0
we get the Laplace equation
du = 0.

* The symbol du is an abbreviation for the expression &*uwfox®+ ufdy* + &*ufoz®
and is called the Laplacian of the function u.
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It is not difficult to see that the difference between any two particular
solutions #, and u, of the Poisson equation is a function satisfying the
Laplace equation, or in other words is a harmonic function. The entire
manifold of solutions of the Poisson equation is thus reduced to the mani-
fold of harmonic functions.

If we have been able to construct even one particular solution u, of the
Poisson equation, and if we define a new unknown function w by

U= uy+ w,

we see that w must satisfy the Laplace equation; and in exactly the same
way, we determine the corresponding boundary conditions for w. Thus it
is particularly important to investigate boundary value problems for the
Laplace equation.

As is most often the case with mathematical problems, the proper
statement of the problem for an equation of mathematical physics is
immediately suggested by the practical situation. The supplementary
conditions arising in the solution of the Laplace equation come from the
physical statement of the problem.

Let us consider, for example, the establishment of a steady temperature
in 2 medium, i.e., the propagation of heat in a medium where the sources
of heat are constant and are situated either inside or outside the medium.
Under these conditions, with the passage of time the temperature attained
at any point of the medium will be independent of the time. Thus to find
the temperature T at each point, we must find that solution of the equation

oT
where ¢ is the density of the sources of heat distribution, which is indepen-
dent of 1. We get

AT + q = 0.

Thus the temperature in our medium satisfies the Poisson equation. If
the density of heat sources g is zero, then the Poisson equation becomes
the Laplace equation.

In order to find the temperature inside the medium, it is necessary,
from simple physical considerations, to know also what happens on the
boundary of the medium.

Obviously the physical laws previously considered for interior points
of a body call for quite another formulation at boundary points.

In the problem of establishing the steady-state temperature, we can
prescribe either the distribution of temperature on the boundary, or the
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rate of flow of heat through a unit area of the surface, or finally, a law
connecting the temperature with the flow of heat.

Considering the temperature in a volume 2, bounded by the surface S,
we can write these three conditions as:

Tls = HQ), (10)
or
aT | ,
s = Q) (10%)

or finally, in the most general case

& %a‘f | + BT s = X(O), (10%)

where Q denotes an arbitrary point of the surface §. Conditions of the
form (10) are called boundary conditions. Investigation of the Laplace or
Poisson equation under boundary conditions of one of these types will
show that as a rule the solution is uniquely determined.

Thus, in our search for a solution of the Laplace or Poisson equation it
will usually be necessary and sufficient to be given one arbitrary function
on the boundary of the domain.* Let us examine the Laplace equation a
little more in detail. We will show that a harmonic function u, i.e., a
function satisfying the Laplace equation, is completely determined if we
know its values on the boundary of the domain.

First of all we establish the fact that a harmonic function cannot take
on values inside the domain that are larger than the largest value on the
boundary. More precisely, we show that the absolute maximum, as well
as the absolute minimum of a harmonic function are attained on the
boundary of the domain.

From this it will follow at once that if a harmonic function has a
constant value on the boundary of a domain £, then in the interior of this
domain it will also be equal to this constant. For if the maximum and
minimum value of a function are both the same constant, then the function
will be everywhere equal to this constant.

We now establish the fact that the absolute maximum and minimum of
a harmonic function cannot occur inside the domain. First of all, we note
that if the Laplacian du of the function u(x, y, z) is positive for the whole
domain, then this function cannot have a maximum inside the domain,
and if it is negative, then the function cannot have a minimum inside the

* The words “‘arbitrary function” here and in what follows mean that no special
conditions, other than certain requirements of regularity, are imposed on the functions.
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domain. For at a point where the function # attains its maximum it must
have a maximum as a function of each variable separately for fixed values
of the other variables. Thus it follows that every partial derivative of
second order with respect to each variable must be nonpositive. This
means that their sum will be nonpositive, whereas the Laplacian is positive,
which is impossible. Similarly it may be shown that if the function has a
minimum at some interior point, then its Laplacian cannot be negative
at this point. This means that if the Laplacian is negative everywhere in
the domain, then the function cannot have a minimum in this domain.

If a function is harmonic, it may always be changed by an arbitrarily
small amount in such a way that it will have a positive or negative
Laplacian; to this end it is sufficient to add to it the quantity

trt= L0+ + 29,

where 7 is an arbitrarily small constant:

The addition of a sufficiently small quantity cannot change the property
that the function has an absolute maximum or absolute minimum with
the domain. If a harmonic function were to have a maximum inside the
domain, then by adding + nr®to it, we would get a function with a positive
Laplacian which, as was shown above, could not have a maximum inside
the domain. This means that a harmonic function cannot have an absolute
maximum inside the domain. Similarly, it can be shown that a harmonic
function cannot have an absolute minimum inside the domain.

This theorem has an important corollary. Two harmonic functions that
agree on the boundary of a domain must agree everywhere inside the
domain. For then the difference of these functions (which itself will be a
harmonic function) vanishes on the boundary of the domain and thus is
everywhere equal to zero in the interior of the domain.

So we see that the values of a harmonic function on the boundary
completely determine the function. It may be shown (although we cannot
give the details here) that for arbitrarily preassigned values on the
boundary one can always find a harmonic function that assumes these
values.

It is somewhat more complicated to prove that the steady-state
temperature established in a body is completely determined, if we know
the rate of flow of heat through each element of the surface of the body
or a law connecting the flow of heat with the temperature. We will return
to some aspects of this question when we discuss methods of solving
the problems of mathematical physics.

The boundary-value problem for the heat equation. A completely dif-
ferent situation occurs in the problem of the heat equation in the non-
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stationary case. It is physically clear that the values of the temperature on
the boundary or of the rate of the flow of heat through the boundary are
not sufficient in themselves to define a unique solution of the problem.
But if in addition we know the temperature distribution at some initial
instant of time, then the problem is uniquely determined. Thus to deter-
mine the solution of the equation of heat conduction (8) it is usually
necessary and sufficient to assign one arbitrary function Ty(x, y, 2)
describing the initial distribution of temperature and also one arbitrary
function on the boundary of the domain. As before, this may be either
the temperature on the surface of the body, or the rate of heat flow
through each element of the surface, or a law connecting the flow of
heat with the temperature.

In this manner, the problem may be stated as follows. We seek a solution
of equation (8) under the condition

Tlo = Tolx, », 2) (n

and one of three following conditions

Tls = $(0), (12)

oT '

G| = v, (12)

a | +BTIs = X, . (12")

where Q is any point of the surface S.

Condition (11) is called an initial condition, while conditions (12) are
boundary conditions.

We will not prove in detail that every such problem has a unique
solution but will establish this fact only for the first of these problems;
moreover, we will consider only the case where there are no heat sources
in the interior of the medium. We show that the equation

1 eT
AT'= oxsr
under the conditions
T iy = Ti(x, y, 2),
T|s=&Q)

can have only one solution.
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The proof of this statement is very similar to the previous proof for the
uniqueness of the solution of the Laplace equation. We show first of all
that if

1 eT

then the function T, as a function of four variables, x, y, z, and
10 < t < 1), assumes its minimum either on the boundary of the domain
£ or else inside £, but in the latter case necessarily at the initial instant
of time, t = 0.

For if not, then the minimum would be attained at some interior point.
At this point all the first derivatives, including 8T/dr, will then be equal
to zero, and if this minimum were to occur for 1 = f,, then 87/3r would
be nonpositive. Also, at this point all second derivatives with respect to
the variables x, y, and z will be nonnegative. Consequently AT — (1/a%
(9T/or) will be nonnegative, which in our case is impossible.

In exactly the same way we can establish that if AT — (1/a®) (8T/2f) > 0,
then inside @ for 0 < ¢ < 1, there cannot exist a maximum for the
function T.

Finally, if AT — (1/a®) (6T/ér) = 0, then inside 2 for 0 <t < 1, the
function T cannot attain its absolute maximum nor its absolute minimum,
since if the function T were to have, for example, such an absolute mini-
mum, then by adding to it the term (¢ — ¢,) and considering the function
T,= T+ y(t —1,), we would not destroy the absolute maximum if
1 were sufficiently small, and then AT, — (1/a®) (8T,/2r) would be negative,
which is impossible.

In the same way we can also show the absence of an absolute maximum
for T in the domain under consideration.

However, an absolute maximum, as well as an absolute minimum of
temperature may occur either at the initial instant t = 0 or on the
boundary S of the medium. If T = 0 both at the initial instant and on the
boundary, then we have the identity T = 0 throughout the interior of the
domain for all r < 1,. If any two temperature distributions T, and T,
have identical values for + = 0 and on the boundary then their difference
T, — T, = T will satisfy the heat equation and will vanish for t =0
and on the boundary. This means that T, — T, will be everywhere equal
to zero, so that the two temperature distributions T, and T, will be
everywhere identical.

In the investigation given later of methods of solving the equations of
mathematical physics we will see that the value of T for t+ = 0 and the
right side of one of the equations (12) may be given arbitrarily, i.e., that
the solution of such a problem will exist.
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The energy of oscillations and the boundary-value problem for the
equation of oscillation. We now consider the conditions under which the
third of the basic differential equations has a unique solution, namely
equation (9).

For simplicity we will consider the equation for the vibrating string
*ufox® = (1/a?) (9*u/dr?), which is very similar to equation (9), differing
from it only in the number of space variables. On the right side of this
equation there is the quantity &%/0r* expressing the acceleration of an
arbitrary point of the string. The motion of any mechanical system for
which the forces, and consequently the accelerations, are expressed by
the coordinates of the moving bodies, is completely determined if we are
given the initial positions and velocities of all the points of the system.
Thus for the equation of the vibrating string, it is natural to assign the
positions and velocities of all points at the initial instant.

U | g = Uy(x)

ou
?’3‘_: fo = ul(x).

But as was pointed out earlier, at the ends of the string the formulas
expressing the laws of mechanics for interior points cease to apply. Thus
at both ends we must assign supplementary conditions. If, for example,
the string is fixed in a position of equilibrium at both ends, then we will
have

U |pay = U |zt = 0.

These conditions can sometimes be replaced by more general ones, but a
change of this sort is not of basic importance.

The problem of finding the necessary solutions of equation (9) is analo-
gous. In order that such a solution be well defined, it is customary to
assign the conditions

P limo = (%, ¥, 2),

2| = dinr 2, (13

and also one of the “boundary conditions”

Pls =40, (14)
2|, = wo. (14)
« 2| + frls = x(@-* (147

* If the right-l;and sides in conditions (13) and (14) are equal to zero, such conditions
are called “homogeneous.”
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The difference from the preceding case is simply that instead of the one
initial condition in equation (11) we have the two conditions (13).

Equations (14) obviously express the physical laws for the particles on
the boundary of the volume in question.

The proof that in the general case the conditions (13) together with an
arbitrary one of the conditions (14) uniquely define a solution of the
problem will be omitted. We will show only that the solution can be
unique for one of the conditions in (14).

Let it be known that a function u satisfies the equation

du 1 %
dxt — a ar?’
with initial conditions
ou

ulieg = 0, a1 lics =0
and boundary condition
ou
2l 0.

(It would be just as easy to discuss the case in which u | = 0.)

We will show that under these conditions the function # must be
identically zero.

To prove this property it will not be sufficient to use the arguments
introduced earlier to establish the uniqueness of the solution of the first
two problems. But here we may make use of the physical interpretation.

We will need just one physical law, the “law of conservation of energy.”
We restrict ourselves again for simplicity to the vibrating string, the
displacement of whose points u(x, ) satisfies the equation

Tasu_ *u
x: P

The kinetic energy of each particle of the string oscillating from x to x -+ dx
is expressed in the form

1 ;0u\2
> () px.

Along with its kinetic energy, the string in its displaced position also
possesses potential energy created by its increase of length in comparison
with the straight-line position. Let us compute this potential energy. We
concern ourselves with an element of the string between the points x and
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x -+ dx. This element has an inclined position with respect to the axis Ox,
such that its length is approximately equal to

@+ Ea);

1+ (2 )dx dx~l(§—:)2dx.

so its elongation is

Multiplying this elongation by the tension T, we find the potential energy
of the elongated element of the string

37 (a) o

The total energy of the string of length / is obtained by summing the
kinetic and potential energies over all of the points of the string. We get

E=3 [T +o (5]

If the forces acting on the end of the string do no work, in particular if
the ends of the string are fixed, then the total energy of the string must be
constant.

E = const.

Our expression for the law of conservation of energy is a mathematical
corollary of the basic equations of mechanics and may be derived from
them. Since we have already written the laws of motion in the form of
the differential equation of the vibrating string with conditions on the
ends, we can give the following mathematical proof of the law of conserva-
tion of energy in this case. If we differentiate E with respect to time, we
have, from basic general rules,

dE ou & ou
_dr'=j( SEn e

Using the wave equation (6) and replacing p(9%u/0r*) by T(0%u/0x?), we
get dE/dt in the form

&=L [ax aff'ér + 21 5]

_ I au au ou du du du

=Tl T s

6x 8x a: ax at
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If (Qu/ox) |,y OF 4|, vanishes, and also (du/9x)| ., or u#|,.; vanishes,

then
dE

bk
which shows that E is constant.

The wave equation (9) may be treated in exactly the same way to prove
that the law of conservation of energy holds here also. If p satisfies equation
(9) and the condition

op
pls =0 or 5,—,|s

then the quantity

e TS + () + () + & () wre

will not depend on t.

If, at the initial instant of time, the total energy of the oscillations is
equal to zero, then it will always remain equal to zero, and this is possible
only in the case that no motion occurs. If the problem of integrating the
wave equation with initial and boundary conditions had two solutions
Py and p,, then v = p, — p, would be a solution of the wave equation
satisfying the conditions with zero on the right-hand side, i.e., homoge-
neous conditions.

In this case, when we calculated the “energy” of such an oscillation,
described by the function v, we would discover that the energy E(v) is
equal to zero at the initial instant of time. This means that it is always
equal to zero and thus that the function v is identically equal to zero, so
that the two solutions p, and p, are identical. Thus the solution of the
problem is unique.

In this way we have convinced ourselves that all three problems are
correctly posed.

Incidentally, we have been able to discover some very simple properties
of the solutions of these equations. For example, solutions of the Laplace
equation have the following maximum property: Functions satisfying this
equation have their largest and smallest values on the boundaries of their
domains of definition.

Functions describing the distribution of heat in a medium have a
maximum property of a different form. Every maximum or minimum of
temperature occuring at any point gradually disperses and decreases with
time. The temperature at any point can rise or fall only if it is lower or
higher than at nearby points. The temperature is smoothed out with the
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passage of time. All unevennesses in it are leveled out by the passage of
heat from hot places to cold ones.

But no smoothing-out process of this kind occurs in the propagation
of the oscillations considered here. These oscillations do not decrease or
level out, since the sum of their kinetic and potential energies must remain
constant for all time.

§4. The Propagation of Waves

The properties of oscillations can be very clearly demonstrated by the
simplest examples. Let us consider two characteristic cases.
Our first example is the equation of the vibrating string

du 1 ¢%u
o F 15

This equation, as may be proved, has two particular solutions of the
form
Uy = dy(x —at), u, = y(x + ar),

where ¢, and ¢, are arbitrary twice-differentiable functions.
By direct differentiation it is easy to show that the functions %, and u,
satisfy equation (15). It may be shown that

u=u1+“g

is a general solution of this equation.

The general form of the oscillations described by the functions u, and u,
is of considerable interest. To consider it in the most convenient fashion,
we mentally carry out the following experiment. Let the observer of the
vibrating string be himself not stationary but moving along the axis Ox
with velocity a. For such an observer the position of a point on the string
will be defined not by a stationary coordinate system but by a moving
one. Let ¢ denote the x-coordinate of this system. Then ¢ = 0 will
obviously correspond at each instant of time to the value x = ar. Hence
it is clear that

£E=x—al

We can represent an arbitrary function u(x, r) in the form
u(x, = ¢(f9 7).
For the solution u#, we will have

uy(x, 1) = $($),
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so that in this coordinate system the solution u,(x, ) turns out to be
independent of time. Consequently, for an observer moving with velocity
a, the string looks like a stationary curve. For a stationary observer,
however, the string appears to have a wave flowing along the axis Ox with
velocity a.

In exactly the same way the solution u,(x, ) may be considered as a
wave travelling in the opposite direction with velocity a. With an infinite
string both waves will be propagated infinitely far. Moving in different
directions they may, by their superposition, produce quite strange shapes
in the string. The resultant displacement may be increasing at certain
times and decreasing at others.

— — — s\ of
S\

Al

A W \/_/L
e A A5

Fic. 3.

If u, and u, , as they arrive at a given point from opposite sides, have
the same sign, then they augment each other, but if they have opposite
signs, they counteract each other. Figure 3 shows several successive
positions of the string for two particular displacements. Initially
the waves move independently toward each other, and then begin
to interact. In the second case in figure 3 there will be an instant of
complete annihilation of the oscillations, after which the waves again
separate.

Another example that easily lends itself to qualitative investigation is
the propagation of waves in space.
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The equation

1 &%u
du = T (16)

derived earlier, has two particular solutions of the form
1 1
U = ;951(" —at), U= ;952(" + ai), an

where r denotes the distance of a given point from the origin of the
coordinate system r? = x® + y* + 2%, and ¢, and ¢, are arbitrary, twice-
differentiable functions.

The proof that u, and u, are solutions would take considerable time and
is omitted here.

The form of the waves described by these solutions is in general the
same as for the string. If we pay no attention to the factor 1/r occuring
on the right, then the first solution represents a wave travelling in the
direction of increasing r. This wave is spherically symmetric; it is identical
at all points that have the same value of r.

The factor 1/r produces the result that the amplitude of the wave is
inversely proportional to the distance from the origin. Such an oscillation
is called a diverging spherical wave. A good picture of it is given by the
circles that spread out over the surface of the water when a stone is
thrown into it, except that in this case the waves are circular rather than
spherical.

This second solution of (17) is also of great interest; it is called a
converging wave, travelling in the direction of the origin. Its amplitude
grows with time to infinity as it approaches the origin. We see that such a
concentration of the disturbance at one point may lead, even though the
initial oscillations are small, to an immense upheaval.

§5. Methods of Constructing Solutions

On the possibility of decomposing any solution into simpler solutions.
Solutions of the problems of mathematical physies formulated previously
may be derived by various devices, which are different specific problems.
But at the basis of these methods there is one general idea. As we have
seen, all the equations of mathematical physics are, for small values of
the unknown functions, linear with respect to the functions and their
derivatives. The boundary conditions and initial conditions are also
linear.

If we form the difference between any two ‘solutions of the same
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equation, this difference will also be a solution of the equation with the
right-hand terms equal to zero. Such an equation is called the corre-
sponding homogeneous equation. For example, for the Poisson equation
du = — 4mp, the corresponding homogeneous equation is the Laplace
equation du = 0.

If two solutions of the same equation also satisfy the same boundary
conditions, then their difference will satisfy the corresponding homo-
geneous condition: The values of the corresponding expression on the
boundary will be equal to zero.

Hence the entire manifold of the solutions of such an equation, for
given boundary conditions, may be found by taking any particular solution
that satisfies the given nonhomogeneous condition together with all
possible solutions of the homogeneous equation satisfying homogeneous
boundary conditions (but not, in general, satisfying the initial conditions).

Solutions of homogeneous equations, satisfying homogeneous boundary
conditions may be added, or multiplied by constants, without ceasing to
be solutions.

If a solution of a homogeneous equation with homogeneous conditions
is a function of some parameter, then integrating with respect to this
parameter will also give us such a solution. These facts form the basis of
the most important method of solving linear problems of all kinds for the
equations of mathematical physics, the method of superposition.

The solution of the problem is sought in the form

u=u0+2uk’
k

where u, is a particular solution of the equation satisfying the boundary
conditions but not satisfying the initial conditions, and the ,, are solutions
of the corresponding homogeneous equation satisfying the corresponding
homogeneocus boundary conditions. If the equation and the boundary
conditions were originally homogeneous, then the solution of the problem
may be sought in the form

U= 2 Uy .

In order to be able to satisfy arbitrary initial conditions by the choice of
particular solutions u, of the homogeneous equation, we must have
available a sufficiently large arsenal of such solutions.

The method of separation of variables. For the construction of the
necessary arsenal of solutions there exists a method called separation of
variables or Fourier’s method.



§5. METHODS OF CONSTRUCTING SOLUTIONS 29

Let us examine this method, for example, for solving the problem

o*u
du = W, (]8)

u|s =0, Ul =fo(x; ¥ 2), L7 P =fl(x9 s 2).

In looking for any particular solution of the equation, we first of all
assume that the desired function u satisfies the boundary condition u | = 0
and can be expressed as the product of two functions, one of which depends
only on the time ¢ and the other only on the space variables:

ux, y, z, 1) = U(x, y, 2) T(?).
Substituting this assumed solution into our equation, we have
(AU =T"®) U.
Dividing both sides by TU gives
T 4

T U

The right side of this equation is a function of the space variables only
and the left is independent of the space coordinates. Hence it follows that
the given equation can be true only if the left and right sides have the
same constant value. We are led to a system of two equations

T au

2
== —A, 7= —XA.

T U

The constant quantity on the right is denoted here by —A? in order to
emphasize that it is negative (as may be rigorously proved). The subscript
k is used here to note that there exist infinitely many possible values of
—AL, where the solutions corresponding to them form a system of
functions complete in a well-known sense.

Cross-multiplying in both equations, we get

T+ XT=0; AU+ XU =0.
The first of these equations has, as we know, the simple solution
T= Ay cos A;J + B;‘ sin l\kf,

where A, and B, are arbitrary constants. This solution may be further
simplified by introducing the auxiliary angle ¢. We have

A, : B,
f=sln¢k,m=cos¢k, VA2+82= Mk'
VAL + B: VA + B B
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Then

T = VAL + Bysin(\t + ) = Mysin (40 + ).

The function T represents a harmonic oscillation with frequency A,
shifted in phase by the angle ¢, .

More difficult and more interesting is the problem of finding a solution
of the equation

AU + XU =0 (19)

for given homogeneous boundary conditions; for example, for the
conditions

U|s=0

(where S is the boundary of the volume £ under consideration), or for
any other homogeneous condition. The solution of this problem is not
always easy to construct as a finite combination of known functions,
although it always exists and can be found to any desired degree of
accuracy.

The equation 4U + AU = 0 for the condition U|; = 0 has first of
all the obvious solution U = 0. This solution is trivial and completely
useless for our purposes. If the A, are any randomly chosen numbers,
then in general there will not be any other solution to our problem.
However, there usually exist values of A, for which the equation does have
a nontrivial solution.

All possible values of the constant A} are determined by the requirement
that equation (19) have a nontrivial solution, i.e., distinct from the
identically vanishing function, which satisfies the condition U|; = 0.
From this it also follows that the numbers denoted by —A? must be
negative.

For each of the possible values of A, in equation (19), we can find at
least one function U, . This allows us to construct a particular solution
of the wave equation (18) in the form

U, = M, sin (A2 + &) Un(x, p, 2).

Such a solution is called a characteristic oscillation (or eigenvibration) of
the volume under consideration. The constant A, is the frequency of the
characteristic oscillation, and the function U(x, y, z) gives us its form.
This function is usually called an eigenfunction (characteristic function).
For all instants of time, the function u, , considered as a function of the
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variables x, y, and z, will differ from the function Uy(x, y, z) only in
scale.

We do not have space here for a detailed proof of the many remarkable
properties of characteristic oscillations and of eigenfunctions; therefore
we will restrict ourselves merely to listing some of them.

The first property of the characteristic oscillations consists of the fact
that for any given volume there exists a countable set of characteristic
frequencies. These frequencies tend to infinity with increasing k.

Another property of the characteristic oscillations is called orthogonality.
It consists of the fact that the integral over the domain 2 of the product
of eigenfunctions corresponding to different values of A, is equal to zero.*

”f Uxx, , 2) Ux, y, 2) dx dy dz = O (j # k).

For j = k we will assume

Lﬂ Ux, vy, 2)¥dx dydz = 1.

This can always be arranged by multiplying the functions Uy(x, y, z) by
an appropriate constant, the choice of which does not change the fact
that the function satisfies equation (19) and the condition U | = 0.

Finally, a third property of the characteristic oscillations consists of the
fact that, if we do not omit any value of A, , then by means of the eigen-
functions U,(x, y, z), we can represent with any desired degree of exactness
a completely arbitrary function f(x, y, z), provided only that it satisfies
the boundary condition f|g = 0 and has continuous first and second
derivatives. Any such function f{x, y,z) may be represented by the
convergent series

fix, 3 2) = 3, G, 3, 2). 20)

The third property of the eigenfunctions provides us in principle with
the possibility of representing any function f{x, y, z) in a series of eigen-
functions of our problem, and from the second property we can find all

*If to one and the same value of A there correspond several essentially different
(linearly independent) functions U, then this value of A is considered as occurring a
corresponding number of times in the set of eigenvalues A, . The condition of ortho-
gonality for functions corresponding to the same value of A, may be ensured by proper
choice of these functions.
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the coefficients of this series. In fact, if we multiply both sides of equation
(20) by Uy(x, y, z) and integrate over the domain {2, we get

jjjf(x' ¥, 2) Uix, y, z) dx dy dz
2

= i C, fff Ui(x, v, 2) Ufx, y, z) dx dy dz.
k=1

In the sum on the right, all the terms in which k # j disappear because
of the orthogonality, and the coefficient of C, is equal to one. Consequently
we have

¢ = [[[ 15,3, 2) Ustx, y, 2) dx dy dz.

These properties of the characteristic oscillations now allow us to solve
the general problem of oscillation for any initial conditions.
For this we assume that we have a solution of the problem in the form

u = X Uxx, y, 2) (Ay cos At + B, sin A) ¥1))
and try to choose the constants A4, and By so that we have

u |t-0 = f0(x9 Vs Z),

ou
3 oo = filx, y, 2).

Putting + = 0 in the right side of (21), we see that the sine terms disappear
and cos At becomes equal to one, so that we will have

JSolx, y,2) = kZ] AUx(x, y, 2).

From the third property, the characteristic oscillations can be used for
such a representation, and from the second property, we have

A = I” JSolx, v, 2) Up(x, v, z) dx dy dz.
fr

In the same way, differentiating formula (21) with respect to r and putting
t = 0, we will have

0 = .
6_? - =[x, »,2) = 2, M(Bycos it — Aysin Mt) |iwoU(X, , 2)
k=1

= Z AeBiU(x, y, 2).
k=1
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Hence, as before, we obtain the values of B; as
1
B = 3, [ 10000 2) Uiy 2) de dy .

Knowing 4, and B, , we in fact know both the phases and the amplitudes
of all the characteristic oscillations.

In this way we have shown that by addition of characteristic oscillations
it is possible to obtain the most general solution of the problem with
homogeneous boundary conditions.

Every solution thus consists of characteristic oscillations, whose
amplitude and phase we can calculate if we know the initial conditions.

In exactly the same way, we may study oscillations with a smaller
number of independent variables. As an example let us consider the
vibrating string, fixed at both ends. The equation of the vibrating string
has the form

*u _ , *u
- e

Let us suppose that we are looking for a solution of the problem for a
string of length /, fixed at the ends

U|emg = Ulzm = 0.
We will look for a collection of particular solutions
uy = T(r) Up(x).
We obviously obtain, just as before,
U, = a®U[T,,
or

Tf.f U’f
E =gt = 2,

Ty U,
Hence
Tk = Ak cos Akf -+ Bk Sin Akf,
U, = Mkcos%x + Nksin%x.

We use the boundary conditions in order to find the values of A, . For
general X, it is not possible to satisfy both the boundary conditions. From
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the condition Uy|,., = 0 we get M, = 0, and this means that U, = N,
sin (Ax/a) x. Putting x = /, we get sin (A,//@) = 0. This can only happen if
Mdfa = km, where k is an integer. This means that

. =
The condition f Us dx = 1 shows that N, = ,\/ % . Finally

[1]
Uk(x} = ,J%Sink%x, T, = Akcosi{;ﬂ B;;Siﬂa—k’ﬂ—to
In this manner the characteristic oscillations of the string, as we see,
have sinusoidal form with an integral number of half waves on the entire
string. Every oscillation has its own frequency, and the frequencies may
be arranged in increasing order

am am am

asr
72737

3 k 'T ’ L
It is well known that these frequencies are exactly those that we hear in
the vibrations of a sounding string. The frequency is called the fundamental
frequency, and the remaining frequencies are overtones. The eigenfunctions
V’iﬁ sin (kzx/I) on the interval 0 << x </ change sign k — 1 times, since
kwx/l runs through values from 0 to k7, which means that its sine changes
signk — 1 times. The points where the eigenfunctions Uy vanish are
called nodes of the oscillations.

If we arrange in some way that the string does not move at a point
corresponding to a node, for example of the first overtone, then the
fundamental tone will be suppressed, and we will hear only the sound of the
first overtone, which is an octave higher. Such a device, called stopping,
is made use of on instruments played with a bow: the violin, viola, and
violoncello.

We have analyzed the method of separating variables as applied to
the problem of finding characteristic oscillations. But the method can be
applied much more widely, to problems of heat flow and to a whole series
of other problems.

For the equation of heat flow

with the condition
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we will have, as before,

T= E Fk(r) Uk(x’ Vs Z).
Here

B _

B = —M, AU, + MU, = 0.

The solution is obtained in the form
T= Z et Up(x, , 2).
k=1

This method has also been used with great success to solve some
other equations. Consider, for example, the Laplace equation

du =0
in the circle
X4+,

and assume that we have to construct a solution satisfying the condition
Ulmy = (D),

where r and & denote the polar coordinates of a point in the plane.
The Laplace equation may be easily transformed into polar coordinates.
It then has the form

2u 10ou 1 d%u

wrtratrm =

We want to find a solution of this equation in the form
u =Y Rdr) 0 (.
5 ri0000

If we require that every term of the series individually satisfy the equation,
we have

[REC) + 1 Ritr)] 6u8) + = 6:9) Rur) = 0.

Dividing the equation by R,(r) 8(#)/r?, we get

PRO+IRO] g
[0) N
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Again setting

B k( !?) ko
we have

P [R; + % R;] — XR, = 0.

It is easy to see that the function 8,(#) must be a periodic function of &
with period 27. Integrating the equation 63(3) + A26,(3) = 0, we get

8. = a, cos AP + by sin A5,

This function will be periodic with the required period only if A, is an
integer. Putting A, = k, we have

Bk = a; cos ka + bk Sin k'a.

The equation for R; has a general solution of the form
B

Retaining only the term that is bounded for r — 0, we get the general
solution of the Laplace equation in the form

U= a, + 2 (ay cos k& + b, sin k) r¥,

k=1

This method may often be used to find nontrivial solutions of the
equation AUy + A} U, = 0 that satisfy homogeneous boundary conditions.
In case the problem can be reduced to problems of solving ordinary
differential equations, we say that it allows a complete separation of
variables. This complete separation of variables by the Fourier method
can be carried out, as was shown by the Soviet mathematician V. V.
Stepanov, only in certain special cases. The method of separation of
variables was known to mathematicians a long time ago. It was used
essentially by Euler, Bernoulli, and d’Alembert. Fourier used it syste-
matically for the solution of problems of mathematical physics, particularly
in heat conduction. However, as we have mentioned, this method is often
inapplicable; we must use other methods, which we will now discuss.

The method of potentials. The essential feature of this method is, as
before, the superposition of particular solutions for the construction of a
solution in general form. But this time for the particular fundamental
solutions, we use functions that become infinite at one point. Let us illus-
trate with the Laplace and Poisson equations.
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Let M, be a point of our space. We denote by r(M, M,) the distance
from the point M, to a variable point M. The function 1/H(M, M,) for a
fixed M, is a function of the variable point M. It is easy to establish the
fact that this function is a harmonic function of the point M in the entire
space,* except of course, at the point M, , where the function becomes
infinite, together with its derivatives.

The sum of several functions of this form

Z} A son, My rw M)’

where the points M, , M, , ---, My, are any points in the space, is again a
harmonic function of the point M. This function will have singularities at
all the points M;. If we choose the points M,, M,, ---, My as densely
distributed as we please in some volume £, and at the same time multiply
by coefficients 4;, we may pass to the limit in this expression and geta

new function
A(M’)
= l’mz r(M A Lﬂ.—(M 7y %

where the points M’ range over all of the volume 2. The integral in this
form is called a Newronian potential. It may be shown, although we will
not do it here, that the function U thus constructed satisfies the equation
AU = — 4nA.

The Newtonian potential has a simple physical meaning. To understand
it, we will begin with the function 4;/r(M, M,).

The partial derivatives of this function with respect to the coordinates
are
X;— X

==X, A= ¢ gEBE

A r =

At the point M; we place a mass 4;, which will attract all bodies with
a force directed toward the point M, and inversely proportional to the
square of the distance from M; . We decompose this force into its compo-
nents along the coordinate axes. If the magnitude of the force acting on a
material point of unit mass is 4,/r%, the cosines of the angles between the
direction of this force and the coordinate axis will be (x; — x)/r, (y; — y)/r,
(z; — z)/r. Thus the components of the force exerted on a unit mass at the
point M by an attracting center M; will be equal to X, Y, and Z, the
partial derivatives of the function A,/r with respect to the coordinates. If

* That is, the function satisfies the Laplace equation.
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we place attracting masses at points M, , M, , ---, M, then every material
point with unit mass placed at a point M will be acted on by a force equal
to the resultant of all the forces acting on it from the given points M, .
In other words

4 i __ 0 i
axz r(M Mf) o a_yz (M, M)’ i 8z2 (M, M)’
Passing to the limit and replacing the sum by an integral, we get

%, Z:%’r, where U = flf%dﬂ.

- U -
X = TR Y =
The function U, with partial derivatives equal to the components of the
force acting on a point, is called the potential of the force. Thus the function
AJr(M, M;) is the potential of the attraction exerted by the point M, ,
the function X [4,/r(M, M,)] is the potential of the attraction exerted by
the group of points M, , M, , -+-, My, and the function U = [[[; (4/r) d2
is the potential of the attraction exerted by the masses continuously
distributed in the volume Q.
Instead of distributing the masses in a volume, we may place the points
M, , M,, -, My on a surface §. Again increasing the number of these
points, we get in the limit the integral

V=_L_[i'(ri)ds, (22)

where Q is a point on the surface S.

It is not difficult to see that this function will be harmonic everywhere
inside and outside the surface S. On the surface itself the function is
continuous, as can be proved, although its partial derivatives of the first
order have finite discontinuities.

The functions a(l/r)/éx,, &(1/r)/@y;, and &(l/r)/oz; also are harmonic
functions of the point M for fixed M;. From these functions in turn, we
may form the sums

2l ol a1

ZA‘EJC_: +Z B‘Ey_:-‘_zc‘-éz_:’

which will be harmonic functions everywhere except perhaps at the points
M, M, -, M.
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Of particular importance is the integral
al a1 2l
W = ”#(Q) Fp 08 (1, X) + = 005(" ¥ tgr GOS(!! 2)| ds

= [[wo K, My as, (23)
5

in which x’, ', and z’ are the coordinates of a variable point Q on the
surface S, n is the direction of the normal to the surface S at the point @
while x, y, and z are the directions of the coordinate axes, and r is the
distance from Q to the point M at which the value of the function W is
defined.

The integral (22) is called the potential of a simple layer, and the integral
(23) the potential of a double layer.* The potential of a double layer and
the potential of a simple layer represent a function harmonic inside and
outside of the surface S.

Many problems in the theory of harmonic functions may be solved by
using potentials. By using the potential of a double layer, we may solve
the problem of constructing, in a given domain, a harmonic function u,
having given values 2m¢(Q) on the boundary S of the domain. In
order to construct such a function, we only need to choose the function
#(Q) in a suitable way.

This problem is somewhat reminiscent of the similar problem of finding
the coefficients in the series

¢ = ZakUk

so that it may represent the function on the left side.

A remarkable property of the integral W consists of the fact that its
limiting value as the point M approaches Q, from the inner side of the
surface has the form

Jim W = 2mu(Q0) + [ [ K(Q, Q) w(Q) ds.

* The names of these potentials are connected with the following physical fact. We
assume that on the surface §, we have introduced electrical charges. They create in
the space an electric field. The potential of this field will be represented by the integral
(22), which is therefore called the potential of a simple layer.

We now assume that the surface § is a thin nonconducting film. On one side of it
we distribute, according to some law, electric charges of one sign (for example, positive).
On the other side of § we distribute, with the same law, electric charges of opposite
sign. The action of these two electric layers also generates in the space an electric field.
As can be calculated, the potential of this field will be represented by the integral (23).
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Equating this expression to the given function 2m¢(Q,), we get the
equation

w0 + o [ [ K(©Q. Q) () ds = $(00).

This equation is called an integral equation of the second kind. The theory
of such equations has been developed by many mathematicians. If we
can solve this equation by any method, we obtain a solution of our original
problem.

In exactly the same way, we may find a solution of other problems in the .
theory of harmonic functions. After choice of a suitable potential, the
density, i.e., the value of an arbitrary function appearing in it, is defined
in such a way that all the prescribed conditions are fulfilled.

From a physical point of view, this means that every harmonic function
may be represented as the potential of a double electric layer, if we
distribute this layer over a surface S with appropriate density.

Approximate construction of solutions; Galerkin’s method and the
method of nets. 1. We have discussed two methods for solving equations
of mathematical physics: the method of complete separation of variables
and the method of potentials. These methods were developed by scientists
of the 18th and 19th centuries, Fourier, Poisson, Ostrogradskil, Ljapunov,
and others. In the 20th century they were augmented by a series of other
methods. We will examine two of them, Galerkin’s method and the method
of finite differences, or the method of nets.

The first method was proposed by the Academician B. G. Galerkin for
the solution of equations of the form

Z 2 Z 2 Aom g o Ox. X, axj axk ax, 2 Z 2 e Bx 0%, Bx; 3x; oxy

+chffax o%; "‘29*3 BG4t =1;

containing an unknown parameter A, where the indices i, j, k, and /
independently take on the values I, 2, and 3. These equations are derived
from equations containing an independent variable 7, by using the method
of separation of variables in the same way as the wave equation

*u

du = 75

leads to the equation AU + A*U = 0. The problem consists of finding
those values of A for which the homogeneous boundary-value problem has
a nonzero solution and then constructing that solution.
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The essence of Galerkin’s method is as follows. The unknown function
is sought in the approximate form

N
U~ Z amwm(xl » X2 xs),

m=1

where the w,,(x; , X; , x3) are arbitrary functions satisfying the boundary
conditions.

The assumed solution is substituted in the left side of the equation,
resulting in the approximate equation

P wp, 03 W
2 Ot [Z Z z 2 A ox; ax::xk ox T Z Z 2 Bisx 55 dx; 0X; 0Xy

w. ow
— ———"1 A ~
+ 2 z il o dx ax + Z D: + Ewm] + mz'lamwm 0

For brevity we denote the expression inside the brackets by Lw, , and
write the equation in the form

2 anLw, + Az Ay, =~ 0.

Now we multiply both sides of our approximate equation by w, and
integrate over the domain £2 in which the solution is sought. We get

fﬂzﬂmﬂ’mﬂwmd&? + A Iifzamwmwn dQ ~ 0,

which may be rewritten in the form
élam J‘;!‘J‘ w,Lw, dQ + )‘,,.2.1 a, j,'!j w,w, d2 ~ 0.

If we set ourselves the aim of satisfying these equations exactly, we will
have a system of algebraic equations of the first degree for the unknown
coefficients a,, . The number of equations in the system will be equal to
the number of unknowns, so that this system will have a nonvanishing
solution only if its determinant is zero. If this determinant is expanded,
we get an equation of the Nth degree for the unknown number A.

After finding the value of X and substituting it in the system, we solve
this system to obtain approximate expressions of the function U.

Galerkin’s method is not only suitable for equations of the fourth order,
but may be applied to equations of different orders and different types.
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2. The last of the methods that we will examine is called the method of
finite differences or the method of nets.

The derivative of the function u with respect to the variable x is defined
as the limit of the quotient

u(x + 4x) — u(x)
dx :

This quotient in its turn may be represented in the form

] x+dx au
> o 4%,
Ax z axl

and from the well-known theorem of the mean value (cf. Chapter II, §8):

ux +Ax) —ux) _ ou
Ax B ox z-f,

where £ is a point in the interval
x < &< x4+ dx.

All the second derivatives of #, both the mixed derivatives and the deriv-
atives with respect to one variable, may also be approximately represented
in the form of difference quotients. Thus the difference quotient

u(x + dx) — 2u(x) + u(x — 4x)
(4xy

is represented in the form

I rulx +4x) —ux) u(x)—u(x—dx)]

Ax Ax Ax
““(xl + dx) — “(xl)]
Adx

1 Ty=x ]
Adx Ty=g—Ax ;
From the mean-value theorem the difference quotient of the function

_ul(x, + Ax) — u(x,)
H(xy) = Ax

may be replaced by the value of the derivative. Consequently

Px) —d(x, —dx)
Axl T ¢(£)’
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where £ is some intermediate value in the interval
x—Adx < & <x.
Thus

() 1 + 43) — 2ux) + g — 4]
_ A'_x [$(x) — $(x — Ax)] = F'(&).

On the other hand

(€ + Ax) — u(§)
#(é) = T .

which means that

Once more using the formula for finite increments, we see that

¢'(€) = u"(m),
where
E<n< €+ dx.
Consequently,

(T{l{?)2 [u(x + Ax) — 2u(x) + u(x — 4x)] = u"(y),

where x — dx <9 < x + 4x.

If the derivative #''(x) is continuous and the value of 4x is sufficiently
small, then u"(n) will be only slightly different from #”(x). Thus our
second derivative is arbitrarily close to the difference quotient in question.
In exactly the same way it may be shown, for example, that the mixed
second derivative

*u
ox oy

can be approximately represented by the formula

Pu 1

ox oy = M[“(x + dx,y + 4y) — u(x + 4x,y)

—u(x, y + 4y) + u(x, y)}

We return now to our partial differential equation.
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For definiteness, let us assume that we are dealing with the Laplace
equation in two independent variables
u  u
Err
Further, let the unknown function # be given on the boundary § of the
domain 2. As an approximation we assume that

Pu _ ulx + dx, y) — 2u(x, y) + u(x — 4x, y)

oxt (4x)* ’
Pu _ ulx,y + dy) — 2u(x, y) + u(x, y — 4y)
0y (4dyy?

If we put Ax = Ay = h, then

Py *u

G+ ot = 7 W R 3) - ux,y - B) + ux — By )

+ u(x, y — h) — 4u(x, y)].
ri Now let us cover the domain
£ with a square net with
] vertices at the points x = kh,
1 N y = bh (figure 4). We replace
) } the domain by the polygon
! consisting of those squares
f - of our net that fall inside £,
so that the boundary of the
= domain is changed into a
B broken line. We take the

: > values of the unknown func-
tion on this broken line to be
FiG. 4. those given on the boundary

of S. The Laplace equation

is then approximated by the equation
u(x + h, y) + u(x, y + h) + u(x — h, y) + u(x, y — h) — 4u(x, y) = 0

for all interior points of the domain. This equation may be rewritten in
the form

u(x, y) = $[u(x + h, p) + u(x, y + h) + u(x — h, y) + u(x, y — h)].

Then the value of u at any point of the net, for example the point | in
figure 4, is equal to the arithmetic mean of its values at the four adjacent
points.

We assume that inside the polygon there are N points of our net. Atevery
such point we will have a corresponding equation. In this manner we get a
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system of N algebraic equations in N unknowns, the solution of which
gives us the approximate values of the function u on the domain £,

It may be shown that for the Laplace equation the solution may be
found to any desired degree of accuracy.

The method of finite differences reduces the problem to the solution of
a system of N equations in N unknowns, where the unknowns are the
values of the desired function at the knots of some net.

Further the method of finite differences can be shown to be applicable
to other problems of mathematical physics: to other differential equations
and to integral equations. However its application in many cases involves
a number of difficulties.

It may turn out that the solution of the system of N algebraic equations
in N unknowns, constructed by the method of nets, either does not exist
in general or gives a result that is quite far from the true one. This happens
when the solution of the system of equations leads to accumulation of
errors; the smaller we take the length of the sides of the squares in the net
the more equations we get, so that the accumulated error may become
greater.

In the example given previously of the Laplace equation, this does not
happen. The errors in solving this system do not accumulate but, on the
contrary, steadily decrease if we solve the system, for example, by a method
of successive approximations. For the equation of heat flow and for the
wave equation it is essential to choose the nets properly. For these equa-
tions we may get both good and bad results.

If we are going to solve either of these equations by the method of nets,
after choosing the net for the values of ¢, we must not choose too fine a net
for the space variables. Otherwise we get a very unsatisfactory system of
equations for the values of the unknown function; its solution gives a
result that oscillates rapidly with large amplitudes and is thus very far
from the true one.

The great variety of possible results may best be seen in a simple
numerical example. Consider the equation

ou  u

b oxt
for the equation of heat flow in the case in which the temperature does not
depend on y or z. We take the mesh width of the net along the values of
t equal to k and along the values of x equal to #

a—“ﬁﬁ “(f -|~k,X}—“(f,X)
ot k ’

Au ult,x + hy — 2u(t, x) + u(t,x — h)
i Iz ‘
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Then our equation may be written approximately in the form
u(t + k, x) = %u(r,x+h) + (l —2%) u(t, x) +—;izu(r,x —h).

If, for a certain mesh-point value of ¢, we know the values of u at the points
X — h, x, and x + h, it is easy to find the value of « at the point x and the
next mesh point ¢t + k. Assume that the constant k, i.e., the mesh width
in the net with respect to ¢, is already chosen. Let us consider two cases
for the choice of A. We put #* = k in the first case and #* = 2k in the
second and solve the following problem by the method of nets.

At the initial instant, ¥ = 0 for all negative values of x, and u= 1 for
all nonnegative values of x. We will have, writing in one line the values
of the unknown function « for the given instant, two tables:
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In Table 2 we obtain values, for any given instant of time, which vary
smoothly from point to point. This table gives a good approximation to
the solution of the heat-flow equation. On the other hand, in Table 1,
in which, as it would seem, the exactness should have been increased
because of our finer division for the x-interval, the values of u oscillate
very rapidly from positive values to negative ones and attain values that
are much greater than the initially prescribed ones. It is clear that in this
table the values are extraordinarily far from those that correspond to
the true solution.

From these examples it is clear that if we wish to use the method of nets
to get sufficiently accurate and reliable results, we must exercise great
discretion in our choice of intervals in the net and must make preliminary
investigations to justify the application of the method.

The solutions obtained by using the equations of mathematical physics
for these or other problems of natural science give us a mathematical
description of the expected course or the expected character of the physical
events described by these equations.

Since the construction of a model is carried out by means of the
equations of mathematical physics, we are forced to ignore, in our abstrac-
tions, many aspects of these events, to reject certain aspects as non-
essential and to select others as basic, from which it follows that the results
we obtain are not absolutely true. They are absolutely true only for that
scheme or model that we have considered, but they must always be
compared with experiment, if we are to be sure that our model of the
event is close to the event itself and represents it with a sufficient degree
of exactness.

The ultimate criterion of the truth of the results is thus practical ex-
perience only. In the final analysis, there is just one criterion, namely
practical experience, although experience can only be properly understood
in the light of a profound and well-developed theory.

If we consider the vibrating string of a musical instrument, we can
understand how it produces its tones only if we are acquanted with the
laws for superposition of characteristic oscillations. The relations that hold
among the frequencies can be understood only if we investigate how these
frequencies are determined by the material, by the tension in the string,
and by the manner of fixing the ends. In this case the theory not only
provides 2 method of calculating any desired numerical quantities but
also indicates just which of these quantities are of fundamental importance,
exactly how the physical process occurs, and what should be observed in
it

In this way a domain of science, namely mathematical physics, not
only grew out of the requirements of practice but in turn exercised its
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own influence on that practice and pointed out paths for further progress.

Mathematical physics is very closely connected with other branches of
mathematical analysis, but we cannot discuss these connections here,
since they would lead us too far afield.

§6. Generalized Solutions

The range of problems in which a physical process is described by
continuous, differentiable functions satisfying differential equations may
be extended in an essential way by introducing into the discussion dis-
continuous solutions of these equations.

In a number of cases it is clear from the beginning that the problem
under consideration cannot have solutions that are twice continuously
differentiable; in other words, from the point of view of the classical
statement of the problem given in the preceding section, such a problem
has no solution. Nevertheless the corresponding physical process does
occur, although we cannot find functions describing it in the preassigned
class of twice-differentiable functions. Let us consider some simple
examples.

1. If a string consists of two pieces of different density, then in the

equation
Pu_ o, Pu

- e (24)
the coefficient will be equal to a different constant on each of the corre-
sponding pieces, and so equation (24) will not, in general, have classical
(twice continuously differentiable) solutions.

2. Let the coefficient a be a constant, but in the initial position let the
string have the form of a broken line given by the equation u);_, = #(x).
At the vertex of the broken line, the function ¢(x) obviously cannot have
a first derivative. It may be shown that there exists no classical solution
of equation (24) satisfying the initial conditions

Uleo = HX), Uif1ap = 0
(here and in what follows u, denotes odu/ar).

3. If a sharp blow is given to any small piece of the string, the resulting

oscillations are described by the equation

*u ®u

e aza_xg + f(x, 1),
where f(x, t) corresponds to the effect produced and is a discontinuous
function, differing from zero only on the small piece of the string and
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during a short interval of time. Such an equation also, as can be easily
established, cannot have classical solutions.

These examples show that requiring continuous derivatives for the
desired solution strongly restricts the range of the problems we can solve.
The search for a wider range of solvable problems proceeded first of all
in the direction of allowing discontinuities of the first kind in the derivatives
of highest order, for the functions serving as solutions to the problems,
where these functions must satisfy the equations except at the points of
discontinuity. It turns out that the solutions of an equation of the type
du = 0 or du/ot — Au = O cannot have such (so-called weak) discon-
tinuities inside the domain of definition. Solutions of the wave equation
can have weak discontinuities in the space variables x, y, z, and in 7 only
on surfaces of a special form, which are called characteristic surfaces. If a
solution u(x, y, z, ) of the wave equation is considered as a function
defining, for ¢ = 1,, a scalar field in the x, y, z space at the instant ¢, ,
then the surfaces of discontinuity for the second derivatives of u(x, y, z, 1)
will travel through the (x, y, z) space with a velocity equal to the square
root of the coefficient of the Laplacian in the wave equation.

The second example for the string shows that it is also necessary to
consider solutions in which there may be discontinuous first derivatives;
and in the case of sound and light waves, we must even consider solutions
that themselves have discontinuities.

The first question that comes up in investigating the introduction of
discontinuous solutions consists in making clear exactly which discontin-
uous functions can be considered as physically admissible solutions of an
equation or of the corresponding physical problem. We might, for example,
assume that an arbitrary piecewise constant function is *““a single solution”
of the Laplace equation or the wave equation, since it satisfies the equation
outside of the lines of discontinuity.

In order to clarify this question, the first thing that must be guaranteed
is that in the wider class of functions, to which the admissible solutions
must belong, we must have a uniqueness theorem. It is perfectly clear that
if, for example, we allow arbitrary piecewise smooth functions, then this
requirement will not be satisfied.

Historically, the first principle for selection of admissible functions was
that they should be the limits (in some sense or other) of classical solutions
of the same equation. Thus, in example 2, a solution of equation (24)
corresponding to the function ¢(x), which does not have a derivative at
an angular point may be found as the uniform limit of classical solutions
u,(x, r) of the same equation corresponding to the initial conditions
Unlimo = Pa(X), Uy |1=g = 0, where the ¢,(x) are twice continuously
differentiable functions converging uniformly to ¢(x) for n — oo.
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In what follows, instead of this principle we will adopt the following:
An admissible solution ¥ must satisfy, instead of the equation Lu = f,
an integral identity containing an arbitrary function ®.

This identity is found as follows: We multiply both sides of the equation
Lu = f by an arbitrary function @, which has continuous derivatives with
respect to all its arguments of orders up through the order of the equation
and vanishes outside of the finite domain D in which the equation is
defined. The equation thus found is integrated over D and then trans-
formed by integration by parts so that it does not contain any derivatives
of u. As a result we get the identity desired. For equation (24), for example,

it has the form
I« o[ — D] dedi =0

S. L. Sobolev has shown that for equations with constant coefficients
these two principles for the selection of admissible (or as they are now
usually called, generalized) solutions, are equivalent to each other. But for
equations with variable coefficients, the first principle may turn out to be
inapplicable, since these equations may in general have no classical
solutions (cf. example 1). The second of these principles provides the
possibility of selecting generalized solutions with very broad assumptions
on the differentiability properties of the coefficients of the equations. It is
true that this principle seems at first sight to be overly formal and to have
a purely mathematical character, which does not directly indicate how
the problems ought to be formulated in 2 manner similar to the classical
problems.

We give here a modification that, it seems to us, is more appropriate
physically, since it is directly connected with the well-known principle of
Hamilton.

As is well known, analysis of the methods of deducing various equations
of mathematical physics led in the first half of the 19th century to the
discovery of a new law known as Hamilton’s principle. Starting from this
principle, it was possible to obtain in a uniform manner all the known
equations of mathematical physics. We will illustrate this by the example
of the problem considered in §3 for the oscillations of a string of finite
length with fixed ends.

First of all we construct the so-called Lagrange function L(r) for our
string, namely the difference between the kinetic and potential energies.
From what was said in §3 it follows that

L(t) = f: (% pU; — ; u?) d.
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According to Hamilton’s principle, the integral
t
s=["Lna
4

assumes its minimum value for the function u(x, r), corresponding to the
true motion of the string compared with all other functions #(x, y) which
are equal to zero for x = 0 and x = ! and coincide with #(x, t;) and
u(x, t;) fort = 1, and t = 1, . Here ¢, and ¢, are fixed arbitrarily, and the
functions v must have finite integrals S. As a result of this principle the
so-called first variation of S (cf. Chapter VIII) must be equal to zero, ie.,

8§ = ,[ . J‘ . (pu, P, — Tu,P,) dx dt = 0, 25)
oo

where D(x, 1) is an arbitrary function differentiable with respect to x and ¢
and equal to zero on the edges of the rectangle 0 < x </, f, <1 < 1.

Equation (25) is also the condition that must be met by the desired
function u(x, ). If we know that u(x, t) has derivatives of the second
order, then condition (25) may be put in a different form. Integrating
(25) by parts and applying the fundamental lemma of the calculus of
variations, we find that wu(x, r) must satisfy the equation

o, ouy @, 0
7l ar) —m(Ta) =© @)

which is identical with (24), if p and T are constants and T/p = a®.

It is not difficult to see that any solution w(x, ) of equation (26) satisfies
the identity (25) for all given @. The converse turns out to be false, since
w(x, ) may in general not have second derivatives. So we are extending
the range of solvable problems, if we replace equation (26) by the identity
(25).

To determine a specific oscillation of the string, we must add to the
boundary conditions

u©, 1) = u(l,t) = 0, (27)
the initial conditions
u(x, 0) = ¢o(x),
ufx, 0) = ¢y(x). (28)

If a solution is sought in the class of continuously differentiable func-
tions, then conditions (27) and (28) may be stated separately from (25)
as requirements to be met. But if we allow the proposed solution to be
“worse,” then these conditions lose their meaning in the form given and
they must be partly or wholly included in the integral identity (25).
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For example, let u(x, r) be continuous for 0 < x </,0<r < T, but
let its first derivatives have discontinuities. The second equation in (28)
then loses its meaning as a limiting condition. In this case the problem
can be stated as follows: to find a continuous function ¥ which fuifills
condition (27) and the first of the conditions (28) for which the equation

[ [ eu®, — Tup)ydxdr + [ $,0(x,0dx = 0 (29)
oo 0

is identically satisfied for all continuous ®(x, 7) equal to zero for x = 0,
x = land t = T. Here the functions ¥ and @ must both have first deriv-
atives whose squares are integrable in the sense of Lebesgue on the
rectangle 0 < x </, 0 <t < T. This last requirement for ¥ means that
the mean value with respect to time of the total energy of the string

75
% L L (pu; + Tul) dx dt

must be finite. Such a restriction on the function u, and thus also on its
possible variations @, is a natural result of Hamilton’s principle.

The identity (29) is precisely the condition that the first variation of
the functional

S = j:j:(%uf ——;té)dxdr+J:¢lu[,_odx

be equal to zero. Thus the problem of the vibration of a fixed string in
the case considered may be stated as the problem of finding the minimum
of the functional S for all functions v(x, t) which are continuous, satisfy
condition (27), and are equal to u(x, T) for t = T. Moreover, the desired
function must satisfy the first of conditions (28).

This modification of Hamilton’s principle allows us not only to widen
the class of admissible solutions of equation (24) but also to state a well-
defined boundary-value problem for them.

The fact that these generalized solutions or some of their derivatives are
not defined at all points of the space does not lead to any contradiction
with experiment, as was repeatedly pointed out by N. M. Gjunter, whose
investigations were chiefly instrumental in establishing a new point of
view for the concept of the solution of an equation of mathematical
physics.

For example, if we wish to determine the flow of liquid in a channel,
then in the classical presentation we must compute the velocity vector
and the pressure at every point of the flow. But in practice we are never
dealing with the pressure at a point but rather with the pressure ona certain
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area and never with the velocity vector at a given point but rather with
the amount of the liquid passing through some area in a unit of time.
The definition of generalized solution thus proposes essentially the
computation of just those quantities that have direct physical meaning.

In order that a larger number of problems may be solvable, we must
seek the solutions among functions belonging to the widest possible class
of functions for which uniqueness theorems still hold. Frequently such a
class is dictated by the physical nature of the problem. Thus, in quantum
mechanics it is not the state function y(x), defined as a solution of the
Schrddinger equation, that has physical meaning but rather the integral
a, = [g(x) Yu(x) dx, where the i, are certain functions for which
[eytdx < co. Thus the solution ¢ is to be sought not among the twice
continuously differentiable functions but among the ones with integrable
square. In the problems of quantum electrodynamics, it is still an open
question which classes of functions are the ones in which we ought to
seek solutions for the equations considered in that theory.

Progress in mathematical physics during the last thirty years has been
closely connected with this new formulation of the problems and with
the creation of the mathematical apparatus necessary for their solution.
One of the central features of this apparatus is the so-called embedding
theorem of S. L. Sobolev.

Particularly convenient methods of finding generalized solutions in one
or another of these classes of functions are: the method of finite differences,
the direct methods in the calculus of variations (Ritz method and Trefftz
method), Galerkin’s method, and functional-operator methods. These
latter methods basically depend on a study of transformations generated
by these problems. We have already spoken in §5 of the method of finite
differences and of Galerkin’s method. Here we will explain the basic ideas
of the direct methods of the calculus of variations.

Let us consider the problem of defining the position of a uniformly
stretched membrane with fixed boundary. From the principle of minimum
potential energy in a state of stable equilibrium the function u(x, y) must
give the least value of the integral

J(u) = ” (4 + W) dx dy

in comparison with all other continuously differentiable functions v(x, y)
satisfying the same condition on the boundary, v|; = ¢, as the function u
does. With some restrictions on ¢ and on the boundary Sit can be shown
that such a minimum exists and is attained by a harmonic function, so
that the desired function u 1s a solution of the Dirichlet problem
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Au = 0, u|g = ¢. The converse is also true: The solution of the Dirichlet
problem gives a minimum to the integral J with respect to all v satisfying
the boundary condition.

The proof of the existence of the function u, for which J atuains its
minimum, and its computation to any desired degree of accuracy may be
carried out, for example, in the following manner (Ritz method). We
choose an infinite family of twice continuously differentiable functions
{va(x, ¥}, n =0, 1, 2, ---, equal to zero on the boundary for n > 0 and equal
to ¢ for n = 0. We consider J for functions of the form

n
v = E Civx + 0,
k=1

where n is fixed and the C, are arbitrary numbers. Then J(v) will be a
polynomial of second degree in the nindependent variables C, , C;, -+, C,.
We determine the C, from the condition that this polynomial should
assume its minimum. This leads to a system of n linear algebraic equations
in n unknowns, the determinant of which is different from zero. Thus the
numbers C, are uniquely defined. We denote the corresponding v by
v"(x, ). It can be shown that if the system {v,} satisfies a certain condition
of “completeness” the functions v* will converge, as n — o, to a function
which will be the desired solution of the problem.

In conclusion, we note that in this chapter we have given a description
of only the simplest linear problem of mechanics and have ignored many
further questions, still far from completely worked out, which are
connected with more general partial differential equations.
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CURVES
AND SURFACES

§1. Topics and Methods in the Theory of Curves and Surfaces

In a school course, geometry involves only the simplest curves: straight
lines, broken lines, and circumferences and arcs of circles; and as for
surfaces, merely planes, surfaces of polyhedra, spheres, cones, and
cylinders. In more extended courses other curves are considered, chiefly
the conic sections: ellipses, parabolas, and hyperbolas. But the study of
an arbitrary curve or surface is completely alien to elementary geometry.
At first sight it is even unclear how any general properties could be
selected for investigation when we are speaking of arbitrary curves
and surfaces. Yet such an investigation is completely natural and
necessary.

In every kind of practical activity and experience of nature, we con-
stantly encounter curves and surfaces of widely different forms. The path
of a planet in space, of a ship at sea, or of a projectile in the air, the
track of a chisel on metal, of a wheel on the road, of a pen on the tape
of a recording device, the shape of a camshaft governing the valves of a
motor, the contours of an artistic design, the form of a dangling rope,
the shape of a spiral spring coiled for some specific purpose, such examples
are endless. The surfaces of various objects, thin shells, cisterns, the
framework of an airplane, casings, sheetlike materials, provide an endless
diversity of surfaces. Methods for the processing of products, the optical
properties of various objects, the streamlining of bodies, the rigidity or
deformability of thin shells, these and many other features depend to a
great extent on the geometric form of the surfaces of objects.

Of course, the gouge left by a chisel on metal is not a mathematical

57
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curve. A cistern, even with thin walls, is not a mathematical surface.
But to a first approximation, which is sufficient for the study of many
questions, actual objects may be represented mathematically by curves
and surfaces.

In introducing the concept of a mathematical curve, we disregard all
the reasons why we cannot decrease the thickness without limit. By
means of this abstract concept, we succeed in representing those (com-
pletely concrete) properties of an object that are preserved when its
thickness and breadth are decreased in comparison with its length.

Similarly, if we disregard the limitations on our ability to decrease
the thickness of a shell or to determine precisely the actual boundaries
of a given object, we are led to the concept of a mathematical surface.
We will not give a rigorous description of these well-known concepts
but will only remark that the exact mathematical definitions are not
simple and belong to topology.

Finally, an important source of interest in various curves and surfaces
has been the development of mathematical analysis. It is sufficient to
remember, for example, that a curve is the geometric representation of
a function, which is the most important concept of analysis. Moreover,
every one is familiar with graphs quite apart from any study of analysis.

In elementary geometry as created by the ancient Greeks, there was
nothing about arbitrary curves or surfaces, but even in elementary analytic
geometry we are accustomed to say ‘“‘every curve is represented by an
equation” or “every equation in the two variables x and y represents
a curve in the coordinate plane.” Similarly the coordinates of surfaces
are given by the equations z = f{x, y) or F(x, y,z) = 0, and in general
the coordinate method, by establishing a close connection between
elementary geometry and analysis, enables us to define many different
curves and surfaces.

But analytic geometry, being restricted to the methods of algebra and
elementary geometry, goes no further than the investigation of certain
specific types of figures. The study of arbitrary curves and surfaces
represents a new branch of mathematics, known as differential
geometry.

It must be admitted at once that differential geometry imposes on its
curves and surfaces certain conditions arising from the methods of
analysis. However, this is not an essential limitation on the diversity of
the allowable curves and surfaces, since in the great majority of cases
they are capable of representing actual objects with the necessary degree
of precision. The name “differential geometry” itself gives an indication
of the methods of the theory; its basic tool is the differential calculus
and it primarily investigates the “differential” properties of the curves
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and surfaces, i.e., their properties “at a point.”* Thus, the direction of
a curve at a point is determined by its tangent at that point and the
amount by which it twists is described by its curvature (the exact definition
of this term will be given below). Differential geometry investigates the
properties of small segments of curves and surfaces and only in its later
developments does it proceed to the study of their properties “in the
large,” i.e., in their entire extent.

The development of differential geometry is inseparably connected
with the development of analysis. The basic operations of analysis,
namely differentiation and integration, have a direct geometric meaning.
As was mentioned in Chapter 11, differentiating a function f{x) corresponds
to drawing a tangent to the curve

y = f(x). n

The slope of the tangent line (ie.,
the trigonometric tangent of the
angle it makes with the axis Ox) is
precisely the derivative f’(x) of the
function f{x) at the corresponding
point (figure 1), and the area “under
the curve”

o g x b X

y = f(x) FiG. 1.

is precisely the integral f’ Sx) dx of
this function, evaluated between the corresponding limits. Just as in analysis
we investigate arbitrary functions, so in differential geometry we examine
arbitrary curves and surfaces. In analysis, the first object of study is the
general course of a curve on a plane, its rise and fall, its greater or smaller
curvature, the direction of its convexity, its points of inflection, and so
forth. The close connection between analysis and the curves is indicated
by the name of the first textbook in analysis, by the French mathematician
I’Hépital in 1695: *‘Infinitesimal analysis applied to the study of curves.”
By the middle of the 18th century, the differential and integral calculus
had been sufficiently developed by the immediate successors of Newton
and Leibnitz that the way was open for more profound applications to
geometry. Indeed, it is only from this moment that one may properly

* The properties of curves and surfaces “at a point” are those properties that depend
only on an arbitrarily small neighborhood of the point. Properties of this sort are
defined in terms of the derivatives (at the given point) of the functions occurring in the
equations of the curve or surface. It is for this reason that differential geometry imposes
conditions guaranteeing that the differential calculus is applicable; it is required that
the curve or surface be defined by functions with a sufficient number of derivatives.
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speak of a theory of curves and surfaces. For surfaces, and for curves
in space, the analogous problems are immeasurably richer in content
than for plane curves, so that with the passage of time these problems
outgrew the framework of a simple application of analysis to geometry
and led to the formation of an independent theory. During the second
half of the 18th century, many mathematicians shared in building up
the elements of this theory: Clairaut, Euler, Monge, and others, among
whom Euler must be considered as the founder of the general theory
of surfaces. The first comprehensive work on curves and surfaces was
the book of Monge “Application of analysis to geometry,” published in
1795.* From the investigations of these mathematicians, and, in particular,
from the book of Monge, we can easily understand the upsurge of interest
in differential geometry. This upsurge was due to the demands of me-
chanics, physics, and astronomy, i.e., in the final analysis to the needs
of technology and industry, for which the available results of elementary
geometry were completely insufficient.

The classical work of Gauss (1777-1855) in the theory of surfaces is
also related to practical questions. His “General investigations concerning
curved surfaces,” published in 1827, is basic for the differential geometry
of surfaces as an independent branch of mathematics. His general methods
and problems, discussed later in §4, originated to a great degree in the
practical needs of map making. The problem of cartography consists of
finding as exact a representation as possible of parts of the surface of
the earth on a plane. A completely exact representation here is impossible,
the mutual relations of various lengths being necessarily distorted because
of the curvature of the earth. Thus one has the problem of finding the
most nearly exact methods possible. The drawing of maps goes back to
remote antiquity, but the creation of a general theory is an achievement
of recent times and would not have been possible without the general
theory of surfaces and the general methods of mathematical analysis.
We note that one of the difficult mathematical problems of cartography
was investigated by P. L. CebySev (1821-1894), who obtained important
results relating to nets of curved lines on surfaces. His investigations also
arose from purely practical problems.

The general questions of deforming one surface so that it can be mapped
on another still constitute one of the main branches of geometry. Important
results in this direction were obtained in 1838 by F. Minding (1806-1885),
professor at the University of Dorpat (now Tartu).

* Gaspard Monge (1746-1828) was not only an outstanding scientist but also an
active French revolutionary (minister of naval affairs, and then director of the manu-
facture of cannon and powder). He followed the path, characteristic of the French
bourgeois of the time, from Jacobin to adherent of the emperor Napoleon.
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By the second half of the last century, the theory of curves and surfaces
was already well established in its basic features, provided we are speaking
of “‘classical differential geometry™ in contrast with the newer directions
discussed later in §5. The basic equations in the theory of curves, namely
the so-called Frenet formulas, had already been obtained, and in 1853
K. M. Peterson (1828-1881), a student of Minding’s at Tartu University,
discovered and investigated in his dissertation the basic equations of the
theory of surfaces, rediscovered 15 years later and published by the
Italian mathematician Codazzi, with whose name these equations are
usually associated. Peterson, after graduating from the university at
Tartu, lived and worked in Moscow, as a teacher in a gymnasium.
Though he never held any academic position corresponding to his
outstanding scientific achievements, he was nevertheless one of the
founders of the Moscow Mathematical Society and of the journal
“Matemati¢eskil Sbornik,” published in Moscow from 1866 up to the
present day. The Moscow school of differential geometry begins with
Peterson.

The results to date of the “classical” differential geometry were sum-
marized by the French geometer Darboux in his four-volume ‘‘Lectures
on the general theory of surfaces,” issued from 1887 to 1896. In the
present century classical differential geometry continues to be studied,
but the center of interest in curves and surfaces has largely shifted to
new directions in which the class of figures under study has been even
more widely extended.

§2. The Theory of Curves

Various methods of defining curves in differential geometry. From
analysis and analytic geometry we are accustomed to the idea of defining
curves by means of equations. In a rectangular coordinate system on the
plane, a curve may be given either by the equation

y = fx)
or by the more general equation
F(x,y) =0.

However, this method of definition is suitable only for a plane curve,
i.e., a line in the plane. We also require a method of writing equations
of space curves not lying in any plane. An example of such a curve
may be seen in the helix (figure 2).
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For the purposes of differential geometry, and for many other questions
as well, it is most convenient to repre-
sent a curve as the trace of a continuous
motion of a point. Of course, the given
curve may have originated in some
entirely different way, but we can always
think of it as the path of a point
moving along it.

Let us assume that we have a fixed
Cartesian coordinate system in space. If
a moving point X traces out a curve
from time t = a to t = b, then the
coordinates of this moving point are
given by the functions of the time
x(t), y(), and z(r); the flight of an
airplane or a projectile are examples.

Fic. 2. Conversely, if we are initially given

the functions x(z), y(r), and z(t), we

may let them define the coordinates of a moving point X, which traces

out some curve. Consequently, curves in space may be given by three
equations of the form

x=x(), y=y1, z=z().

z«

In the same way a plane curve is defined by two equations
x=x(t), y=y0).

This is the most general manner of defining curves.

As an example we consider the helix. It is produced by the spiral
motion of a point that revolves uniformly around a straight line, the axis
of the helix, and at the same time moves uniformly in a direction parallel
to this axis. Let us take the axis of the helix as the axis Oz and suppose
that at time ¢ = 0O the point lies on the axis Ox. We now wish to find
how its coordinates depend on the time. If the motion parallel to the
axis Oz has velocity ¢, then obviously the distance travelled in this direction
at time ¢ will be

z=_cl.

Also, if ¢ is the angle of rotation around the axis Oz and a is the distance
from the point to this axis, then, as can be seen in figure 2,

X = acos¢, y = asing.
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Since the rotation is uniform, the angle ¢ is proportional to time; that is,
¢ = wt, where w is the angular velocity of the rotation. In this manner
we get

X =acoswl, y=asinwt, z=cl

So these are the equations of the helix, which as ¢ changes will be traced
out by the moving point.

Of course the variable ¢ or, as it is usually called, the parameter, need
not be thought of as representing the time. Also, the given parameter ¢
may be replaced by another; for example we may introduce a parameter u
by the formula ¢ = «® or, in general, by ¢t = f(u).* In geometry the most
natural choice of parameter is the length s of the arc of the curve measured
from some fixed point 4 on it. Every possible value of the length s
represents a corresponding arc AX. Thus the position of X is fully
determined by the value of s and the coordinates of the point X are given
by the functions of arc length s

x=x(s), y=ps), z=z(s)

All these ways of defining curves, as well as other possible ones,t open
up the possibility of numerical computation. Only when curves have
been defined by equations can their properties be investigated by mathe-
matical analysis.

In the differential geometry of plane curves, there are three basic
concepts: length, tangent, and curvature. For space curves, there are in
addition the osculating plane and the torsion. We now proceed to explain
the meaning and significance of these concepts.

Length. Everyone has in mind a natural idea of what is meant by
length, but this idea must be converted into an exact definition of the
length of a mathematical curve, a definition with a specific numerical
character, which will enable us to compute the length of a curve with
any desired degree of accuracy and consequently to argue about lengths
in a rigorous way. The same remarks apply to all mathematical concepts.
The transition from informal ideas to exact measurements and definitions
represents the transition from a prescientific understanding of objects to

* Here, strictly speaking, it is necessary that the function f be monotone.

1 A curve in space may also be given as the intersection of two surfaces, defined
by the equations: F(x, y, z) = 0, G(x, y, z) = 0, i.e., the curve is given by this pair of
equations. In theoretical discussions a curve is most frequently given by a variable

vector, i.e., the position of the point X of the curve is defined by the vector r = OJX,
extending from the origin to this point. As the vector r changes, its end point X moves
along the given curve (figure 3).
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a scientific theory. The need for a precise definition of length arose in
the final analysis from the requirements of technology and the natural
sciences, whose development demanded investigation of the properties of
lengths, areas, and other geometric entities.

i
z4 X
,
o
/ 7
= o
FiG. 3. FiG. 4.

A simple and most useful definition of length is the following: The
length of a curve is the limit of the length of broken lines inscribed in
the curve under the condition that their vertices cluster closer and closer
together on the curve.

This definition arises naturally from our everyday methods of measuring.
On the curve we take a sequence of points A4,, A4,, A;, -+ - (figure 4)
and measure the distances between them. The sum of these distances
(which is the length of the broken line) expresses approximately the
length of the curve. In order to define the length more exactly, it is natural
to take the points A closer together, so that the broken line follows
the twists of the curve more closely. Finally, the exact value of the length
is defined as the limit of these approximations as the points 4 are chosen
arbitrarily close together.* Thus the earlier definition of length is a
generalization, based on taking finer and finer steps, of a completely
practical manner of measuring length.

From this definition of length, it is easy to derive a formula for com-
puting lengths when the curve is given analytically. We note, however,
that mathematical formulas are useful for more than just computation.

* The existence of the indicated limit, i.e., the length of the curve, is not initially
clear, even for curves lying in a bounded domain. If the curve is very twisted, its length
may be very great, and it is possible mathematically to construct a plane curve which
is so “twisted” that none of its arcs has a finite length since the lengths of broken lines
inscribed in it increase beyond all bounds.
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They are a brief statement of theorems that establish connections between
different mathematical entities. The theoretical significance of such
connections may far ex-
ceed the computational ¥
value of the formula. For
example, the importance

of the Pythagorean theo-

rem, expressed by the
formula

¢t =at+ b

is not confined to the
computation of the ©
square of the hypotenuse

¢ but lies chiefly in the FiG. §.

fact that it expresses a

relation among the sides of a right triangle.

Let us now introduce a formula for the length of a plane curve, given
in Cartesian coordinates by the equation y = f{x), assuming that the
function f(x) has a first derivative.

We inscribe a broken line in the curve (figure 5). Let 4, , 4,,, be two
of its adjacent vertices with coordinates x,,, y, and x,,;, ¥n, - The line
segment A,A,., is the hypotenuse of a right triangle the legs of which
are equal to

Axn = an+l — X ls Ayﬂ = IJ"ﬂ-ﬂ — P«

Thus, by the Pythagorean theorem,

. —————-——-A 2
AnAnﬂ = (Axn)z + (Ayn)z = ’Jl + (A_'?“) Axn -

It is easy to see that if the straight line drawn through the points 4,
and A4,,, is translated parallel to itself, then at the instant when the line
leaves the curve it will assume the position of a tangent to this curve
at some point B, i.e., on the arc of the curve 4,4,,,, there is at least
one point at which the tangent has the same direction as the chord
A.A.,., - (This obvious conclusion can easily be given a rigorous proof.)

Thus we may replace the ratio 4y,/dx, by the slope of the tangent
at B, i.e., by the derivative y’(£,), where £, is the abscissa of the point B.
Now the length of one link of the broken line is expressed by

mnq, =Vl +y’s(£n)Axn .
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The entire length of the broken line is the sum of the lengths of its pieces.
Denoting the addition by the symbol X, we have

S, =3, VI + y4&,) dx,.

To obtain the length of the curve, we must pass to the limit under
the condition that the greatest of the values 4x, tends to zero,

s = lim > VI +y%E) dx, .

But this limit is exactly the integral defined in Chapter II, namely the
integral of the function V14 y'% Thus the length of a plane curve is
expressed by the formula

i j: VI T yTdx, )

where the limits of integration a and b are the values of x at the ends
of the arc of the curve.

The corresponding, but somewhat different, formula for the length of
a space curve is derived in basically the same way.

The actual computation of a length by means of these formulas is,
of course, not always simple. Thus the calculation of the circumference
of a circle from formula (1) is rather complicated. However, as we have
said, the interest of formulas is not confined to computation; in particular,
formula (1) is also important for investigating the general properties of
length, its relations with other concepts, and so forth. We will have an
opportunity to make use of formula (1) in Chapter VIII.

Tangent. The tangent to a plane curve was already considered in
Chapter II. Its meaning for a space curve is completely analogous. In
order to define the tangent at a point 4, we choose a point X on the
curve, distinct from A, and consider the secant AX. Then we allow X to
approach A along the curve. If the secant AX converges to some limiting
position, then the straight line in this limiting position is called the tangent
at the point 4.*

If we distinguish between the initial point and the end point of the
curve and thereby establish an order in which the points of the curve

* The limiting position of the secant may not exist, as can be seen from the example
in figure 13, Chapter II. The curve represented by y = x sin 1/x oscillates near zero
in such a way that the secant 04, as 4 approaches O, constantly oscillates between
the straight lines OM and OL.
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are traversed, then we may say which of the points 4 and X comes first
and which comes second. (For example, if a train travels from Moscow
to Vladivostok, then Omsk obviously precedes Irkutsk.) So we may
define a direction along the secant from the first point to the second.
The limit of such “directed secants” gives us a ‘“‘directed tangent.” In
figure 6, the arrow shows the direction in which the point A is passed
through. For the motion of a point along the curve, the velocity at each
instant is directed along the tangent to the curve.

FiG. 6. Fic. 7.

The tangent has an important geometric property: Near the point of
tangency the curve departs less, in a well-defined sense, from this straight
line than from any other. In other words, the distance from the points
of the curve to the tangent is very small in comparison with their distance
to the point of tangency. More precisely, the ratio XX'/AX (figure 7)
tends to zero as X approaches A.* So a small segment of the curve may
be replaced by a corresponding segment of the tangent with an error
that is small in comparison with length of the segment. This procedure
often allows us to simplify proofs, since in a passage to the limit it gives
completely exact results.

It is interesting to observe that for a curve which is not a straight line,
i.e., does not have a direction in the elementary sense, we have been
able, by associating it with a straight line, to define its direction at each
point. Thus the concept of direction has been extended; it has been given
a meaning which it did not previously have. This new concept of direction
reflects the actual nature of motion along a curve; at each instant the
point is moving in some definite direction, which changes continuously.

* This result ?ollows immediately from the definition of the tangent itself. Evidently,
as is shown in figure 7, XX“/4X == sin «, where « is the angle between the tangent and
the secant AX. Thus, as « — 0, XX'/4X also tends to zero.
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Curvature. To be able to judge by eye whether a path, a thin rod,
or a line in a drawing is more or
less curved it is not necessary to
be a mathematician. But for even
the simplest problems of me-
chanics, a casual glance is not
sufficient; we need an exact quan-
titative description of the curva-
ture. This is obtained by giving
precise expression to our intuitive
impression of the curvature as
the rapidity of change of direction

of the curve.

Let A be a point on the curve and M a point near A (figure 8). The
angle between the tangents at these points expresses how much the curve
has changed direction in the segment from A to M. Let us denote this
angle by ¢. The average rate of change of direction (more precisely, the
average change per unit length of path along the segment A M of length 4ds)
will obviously be ¢/4s. Then the curvature, namely the rate of change
of direction of the curve at the point A itself, is naturally defined as the
limit of the ratio ¢/ds as M — A; in other words, as 4s — 0. Thus the
curvature is defined by the formula

T )
k= }alaﬂds'

As a particular example, let us consider the curvature of the circum-
ference of a circle (figure 9).
Obviously, the angle ¢ between
the radii OA4 and OM is equal
to the angle ¢ between the
tangents at the points 4 and M,
since the tangents are perpen-
dicular to the radii. The arc
AM, subtending the angle ¢,
has length ds = ¢r, so that

é 1

as~ r’

Fic. 9.

This means that the ratio ¢/ds
is constant, so that the curvature of the circumference of a circle, as the
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limiting value of this ratio, is equal at all points to the reciprocal of the
radius. *

Let us derive the formula for the curvature of a plane curve given by
the equation y = f{x). As the initial point for arc length we take a fixed
point N (figure 10). The angle ¢ between the tangents at the points A

Fig. 10.

and M is obviously equal to the difference in the angle of inclination of
the tangents at 4 to M.

¢ =|dx|.

Since the angle o« may decrease, we take the absolute value | do |.
We are interested in the value

[ do|
4 4 ¥
P oy L g
a0 As as0 As des0  As 5
Ax

The length of the arc of the curve NA is expressed by the integral

= r V1 ¥ ytdsx,

so that

5= V1 4y

* We note that in general the concept of the curvature of a curve at a point may be
defined by comparing the curve with the circumference of a certain circle, which plays
the role of a model or standard for the curvature. For in fact, the curvature of the
given curve proves to be equal to the reciprocal of the radius of the (unique) circle
which fits the curve most closely in the neighborhood of the point.
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It remains to find o’. We know that tan « = y'; thus o == arctany’,
Differentiating this last equation with respect to x, we get

’ l "

a=m}’.

Thus, finally
P A N P
s (L+ypeT

The corresponding formulas for other methods of representing plane and

space curves are given in the usual courses in analysis or differential
geometry.

This formula allows us to give another

geometric interpretation of curvature, which

is useful in many questions. Namely, the

y
curvature of a curve at a point is given by
\ /l; the formula
o] { x el

k = lim

l—)ﬂl_z’

Fig. 11.

where h is the distance of a second point on the curve to the tangent
at the given point and /is the length of the segment of the tangent between
the point of tangency and the projection on the tangent of the other
point on the curve (figure 11).

To prove this we choose a rectangular coordinate system such that
the origin falls at the given point of the curve and the axis Ox is tangent
to the curve at this point (figure 11). (For simplicity we assume that the
curve is plane.) Then y' = 0 and k = |y"|. Expanding the function
y = f(x) by Taylor’s formula, we get y = 3 )"x% + ex? (where we have
taken into account that y* = 0). Here ¢ — 0 as x — 0. Hence it follows
that k = | y" | = lim,,, 2| y |/x?, and thus, since |y | = h, x* = I?, we
have

This formula shows that the curvature describes the rate at which the
curve leaves the tangent,

Let us now turn to some very important applications of curvature to
problems of mechanics.

First we consider the following problem. Let a flexible string be
stretched over a support (figure 12) in such a way that the string remains



§2. THE THEORY OF CURVES 3!

in one plane. We wish to find the pressure of the string on the support
at every point, or to be more exact, to define the limit

o -
p=lm 7 @

where P is the magnitude of the force P acting on the support along
a piece of length 4s containing the given point. We assume for simplicity
that the magnitude T of the tension T is the same at all points of the
string.

7
7

7

LTSS

Fig. 12.

Now consider the point 4 and a segment of the string AB.* On this
segment AB of length 4s, in addition to the reaction of the support,
only two external forces are acting, namely the tensions at the ends,
which are equal in magnitude and are directed along the tangents at the
ends of the segment. Thus the force P exerted by the string on the support
is equal to the geometric sum of the tensions at the ends. As can be
seen from figure 12, the vector P is the base 4D of the iscosceles triangle
CAD. The two equal sides of this triangle have length T and the angle
at the vertex C'is equal to the change of direction of the tangent in passing
from A to B.

With decreasing 4ds the angle ¢ decreases and the angle between P
and the tangent at the point 4 approaches a right angle. Thus the pressure
is perpendicular to the tangent.

To find the magnitude of the pressure, we make use of the fact that
a small arc of the circumference has approximately the same length as

* It would be more natural to choose a segment with the point A in its interior;
this would not change the result but would make the computation somewhat more
complicated.
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the chord subtending it. Thus we replace the length of the chord AD,
i.e., the magnitude P, by the length T¢ of the arc AD. Then by formula (2)
we get p o 5

e raas - el e

Hence the pressure at each point is equal to the product of the curvature
and the tension on the string and is exerted perpendicularly to the tangent
at this point.

Consider a second problem. Let a mathematical point (ie., a very
small body) move along a plane curve with a velocity of constant mag-
nitude ». What is its acceleration at a given point A ? By definition, the
acceleration is equal to the limit of the ratio of the change in velocity
(during the time 4r) to the increment 4+ of the time. The velocity involves
not only magnitude but also direction, i.e., we consider the change in
the velocity vector. Therefore the mathematical problem of finding the
magnitude of the acceleration consists of finding the limit

\— lim |00+ D) — 00|
410 At

where v(t) is the velocity at the point A itself, and | v(t + 4f) — ov(?)] is
the length of the vector difference of the velocities. The limit which
concerns us may also be represented as

4350 As at-0 At

3

Fig. 13.
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where 4s is the length of the arc AB traversed during time 4r. Turning
to figure 13 and noting that the velocity at each point is directed along
the tangent while remaining constant in magnitude, we see geometrically
that finding the sum — u(r) + »(t + 4r) is identical with finding the
vector P in the preceding problem. So we may avail ourselves of the
result there and, replacing tension by velocity, write

lim | _”(t) + l)(f -+ Alﬁl = pk.

2850 As

Moreover, lim,,,,ds/dt = v. So we have the final result that the
acceleration of a body in uniform motion along the curve is equal to
the product of the curvature and the square of the velocity

w = kp? 3)

and is directed along the normal to the curve, i.e., along a straight line
perpendicular to the tangent.

Our recourse here to a geometric analogy, enabling us to use the
solution of the problem of the pressure exerted by a string in order to
solve a problem of the acceleration of a particle, shows once again how
useful it is to make an abstraction from the particular concrete properties
of a phenomenon to corresponding mathematical concepts and results;
for we can then make use of these results in the most varied situations.

We also note that the curvature, which from a mechanical point of
view reflects the change in the direction of motion, is seen to be closely
connected with the forces causing this change. The equation which
expresses this connection is easily derived if we multiply equation (3)
by the mass m of the moving point. We have

F, = mw = v*mk.

Here F, is the magnitude of the normal component of the force acting
on the point.

Osculating plane. Although a space curve does not lie in one plane,
still with each point 4 of the curve it is possible, as a rule, to associate
a plane P which in the neighborhood of this point lies closer to the curve
than any other plane. This plane is called the osculating plane of the
curve at the point.

Naturally the osculating plane, as the plane closest to the given curve,
passes through the point 4 and contains the tangent T to the curve.
But there are many planes containing the point 4 and the straight line T.
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In order to choose from among them the one plane that least deviates
from the curve, we investigate the deviation of the curve from the tangent.
For this purpose let us see how the curve runs along the tangent T;
in other words, let us project our curve onto the normal plane Q, which
is perpendicular to T at the point 4
(figure 14). The projection on the
plane Q of a segment of our curve
containing 4 forms a new curve,
indicated in figure 14 by a dotted
line. Usually it has a cusp at the
point A. If the curve so obtained
has a tangent N at the point A, then
the plane P determined by T and ¥
will naturally be closest to the
original curve in the neighborhood
of the point A, ie., it will be the
osculating plane at the point 4. It may be shown that when the functions
defining the original curve have second derivatives and the curvature of
the curve at the point A is not zero, then the osculating plane necessarily
exists, and its equation may be expressed very simply in terms of the
first and second derivatives of the functions defining the curve.

We saw earlier that the properties of the tangent allow us to consider
a small segment of a plane curve as though it were straight, thereby
making an error which is small in comparison with the length of the
segment; similarly the properties of the osculating plane allow us to
consider a small segment of a space curve as though it were a plane
curve, namely its projection on the osculating plane, and here the error
will be small in comparison with the square of the length of the segment
of the curve.

There are many straight lines in space that are perpendicular to the
tangent; they form the normal plane at the given point of the curve.
Among these straight lines there is one, the line N, which lies in the
osculating plane. This line is called the principal normal to the curve.
Usually we also fix a direction for it, namely the direction of the con-
cavity of the projection of the curve on the osculating plane. The principal
normal plays the same role for a space curve as the ordinary (unique)
normal for a plane curve. In particular, if a thin string under tension T
is stretched in the form of a space curve over a support, then the pressure
of the string on the support has at each point the magnitude Tk and is
directed along the principal normal. If a material point is moving along
a space curve with a velocity of constant magnitude v, then its acceleration
is equal to ku? and is directed along the principal normal.
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Torsion. From point to point along a curve the position of the
osculating plane will probably change. Just as the rate of change of
direction of the tangent characterized the curvature, so the rate of change
of direction of the osculating plane characterizes a new quantity, the
torsion of the curve. Here, as in the case of curvature, the rate is taken
with respect to arc length; that is, if ¢ is the angle between the osculating
planes at a fixed point 4 and at a nearby point X, and if 4s is the length
of the arc AX, then the torsion 7 at the point A is defined as the limit*

The sign of the torsion depends on the side of the curve toward which
the osculating plane turns as it moves along the curve.

We may imagine the osculating curve as the blade of a fan with the
two lines, the tangent and the principal normal, drawn on it. At each
moment the tangent is turning in the direction of the normal at a rate
determined by the curvature, while the osculating plane rotates around
the tangent with a speed and direction determined by the torsion.

The simplest results of the theory of differential equations may be used
to prove a fundamental theorem that states, roughly speaking, that two
curves with the same curvature and the same torsion are identical with
each other. Let us make this idea clearer. If we move along the curve
to various distances 4 from our initial point, we will arrive at points
where the curvature k and the torsion 7 will have various values, depending
on s. Thus k(s) and 7(s) will be certain well-defined functions of the arc
length s.

The theorem in question states that if two curves have identical
curvature and torsion as functions of arc length, then the curves are
identical (i.e., one of them may be rigidly moved so as to coincide with
the other). In this manner curvature and torsion as functions of arc
length define a curve completely except for its position in space; they
describe all the properties of the curve by stating the relationship between
its length, its curvature, and its torsion. In this way the three concepts
constitute a sort of ultimate basis for questions concerning curves. With
their help we can also express the simplest concepts in the theory of
surfaces, to which we now turn.

* It may be shown that a helix has the same torsion at all its points and consequently
that we may define the torsion of a curve by comparing the curve with the (unique)
helix which best approximates the curve in the neighborhood of the given point. The
torsion also characterizes the way in which a given space curve differs from a plane
curve. With a certain analogy to curvature, it characterizes the rate at which the curve
leaves its osculating plane.
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Of course, the theory of curves has not been exhausted by our present
remarks. There are many other concepts relating to curves: special types
of curves, families of curves, the position of curves on surfaces, questions
of the form of a curve as a whole, etc. These questions and the methods
of answering them are connected with almost every branch of mathe-
matics. The range of problems that may be solved by the theory of
curves is extremely rich and varied.

§3. Basic Concepts in the Theory of Surfaces

The basic methods of defining a surface. If we wish to study surfaces
by means of analysis we must, of course, define them analytically. The
simplest way is by an equation

z = f{x, y),

in which x, y, and z are Cartesian coordinates of a point lying on the
surface. Here the function f{x, y) need not necessarily be defined for all
x, y; its domain may have various shapes. Thus, the surface illustrated
in figure 15 is given by the function f{(x, y) defined inside an annulus.
Examples of surfaces given by equations of the form z = f(x, y) are also
familiar from analytic geometry. We know, for example, that the equation
= Ax + By + C represents a plane, and z = x* + y*a paraboloid of
revolution (figure 16). For the application of differential calculus it is
necessary that the function f{x, y) have first, second, and sometimes even
higher derivatives. A surface given by such
an equation is called regular. Geometrically z
this means (though not quite precisely) that

FiG. 15. Fic. 16.
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the surface curves continuously without breaks or other singularities.
Surfaces that do not have this property, for example, those with cusps,
breaks, or other singularities, require a new kind of investigation (cf. §5).

However, not every surface, even without singularities, can be entirely
represented by an equation of the form z = f(x, y). If every pair of
values of x, y in the domain of f{(x, y) gives a completely determined z,
then every straight line parallel to the axis Oz must intersect the surface
at no more than one point (figure 17). Even such simple surfaces as

P4

x / FiG. 17.

spheres or cylinders cannot be represented in the large by an equation
of the form z = f(x, y). In these cases the surface is defined in some
other manner, for example by an equation of the form F(x, y,z) = 0.
Thus a sphere of radius R with center at the origin has the equation

x* 4yt 4 22 = R

The equation x® + y* = r? gives a cylinder of radius r.

So when the investigation is concerned only with small segments of the
surface, as is usually the case in classical differential geometry, the
definition of a surface by an equation z = f{x, y) is perfectly general,
since every sufficiently small segment of a smooth surface can be rep-
resented in this form. We take this way as basic, and leave other methods
of defining surfaces to be considered later in §4 and 5.

Tangent plane. Just as at each point a smooth curve has a tangent
line which is close to the curve in a neighborhood of the point, so also
surfaces may have, at each of their points, a tangent plane.
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The exact definition is as follows. A plane P, passing through a point M
on a surface F, is said to
be tangent to the surface
F at this point if the angle
a between the plane P and
the secant MX, drawn
from M to a point X of
the surface, converges to
zero as the point X ap-
proaches the point M
(figure 18). All tangents
Fig. 18. to curves passing through
the point M and lying

on the surface obviously lie in the tangent plane.

A surface F is called smooth if it has a tangent plane at each point
and if, as we pass from point to point, the position of this plane varies
continuously.

Near the point of tangency, the surface departs very little from its
tangent plane: If the point X approaches the point M along the surface,
then the distance of the point X from the tangent plane becomes smaller
and smaller, even in comparison with its distance from the point M
(the reader can easily verify this by considering how X approaches M
in figure 18). In this way, the surface near the point M may be said to
merge into the tangent plane. In the first approximation a small segment
or, as it is called, an “element” of the surface may be replaced by a
segment of the tangent plane. The perpendicular to the tangent plane
which passes through the point of tangency acts as a perpendicular to
the surface at this point and is called a normal.

This possibility of replacing an element of the surface by a segment
of the tangent plane is useful in many situations. For example, the
reflection of light on a curved surface takes place in the same way as
the reflection on a plane, i.e., the direction of the reflected ray is defined
by the usual law of reflection: The incident ray and the reflected ray
lie in one plane together with the normal to the surface and they make
equal angles with this normal (figure 19), just as if the reflection were
occurring in the tangent plane. Similarly for the refraction of light in
a curved surface, each ray is refracted by an element of the surface with
the usual law of refraction, just as if the element were plane. These facts
are the basis for all calculations of reflection and refraction of light in
optical apparatus. Further, for example, solid bodies in contact with
each other have a common tangent plane at their point of contact. The
bodies are in contact over an element of their surface, and the pressure




§3. BASIC CONCEPTS IN THE THEORY OF SURFACES 79

of one body on the other, in the absence of friction, is directed along
the normal at the point of contact. This is also true when the bodies
are tangent at more than one point, in which case the pressure is directed
along the respective normals at each point of contact.

Fig. 19.

The replacement of elements of a surface by segments of the tangent
planes can also serve as the basis of a definition of the area of various
surfaces. The surface is decomposed into small pieces F,, F,, -, F, and
each piece is projected onto a plane tangent to the surface at some point
of this piece (figure 20). We thus obtain a number of plane regions
Py, Py, -, P,, the sum of whose areas gives an approximation to the

FiG. 20.
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area of the surfaces. The area of the surface itself is defined as the limit
of the sums of the areas of the segments P,, P,, ---, P, under the con-
dition that the partitions of the surface become finer.* From this we can
derive an exact expression for the area in the form of a double integral,

These remarks clearly demonstrate the significance of the concept of
the tangent plane. However, in many questions the approximate represen-
tation of an element of a surface by means of a plane is inadequate and
it is necessary to consider the curvature of the surface.

Curvature of curves on a surface. The curvature of a surface at a
given point is characterized by the rate at which the surface leaves its
tangent plane. But in different directions, the surface may leave its tangent
plane at different rates. Thus the surface illustrated in figure 21 leaves
the plane P in the direction OA at a faster rate than in the direction OB.
So it is natural to define the curvature of a surface at a given point by
means of the set of curvatures of all curves lying in the surface and
passing through the given point in different directions.

Fia. 21. Fig. 22.

This is done as follows. We construct the tangent plane P through
the point M and choose a specific direction for the normal (figure 22).
Then we consider curves which are sections of the surface cut by planes
passing through the normal at the point M; these curves are called
normal sections. The curvature of a normal section is given a sign, which
is plus if the section is concave in the direction of the normal and minus
if it is concave in the opposite direction. Thus, in a surface which is
saddle-shaped, as illustrated in figure 23 with the arrow indicating the

* This is exactly the expression for the area which was used in §l1, Chapter VIII.
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direction of the normal to the surface, the curvature of the section M A
is positive and that of the section MB is negative.

A normal section is defined by the angle ¢ by which its plane is rotated
from some initial ray in the tangent plane (figure 22). If we know the
curvature of the normal section k(¢) in terms of the angle ¢, we will
have a rather complete picture of the behavior of the surface in the
vicinity of the point M.

A surface may be curved in many different ways and thus it would
appear that the dependence of the curvature k on the angle ¢ may be
arbitrary. In fact this is not so. For the surfaces studied in differential
geometry, there exists a simple law, due to Euler, that establishes the
connection between the curvatures of the normal sections passing through
a given point in various directions.

It is shown that at each point of a surface there exist two particular
directions such that

1. They are mutually perpendicular;

2. The curvatures k, and k, of the normal sections in these directions
are the smallest and largest values of the curvatures of all normal sections;*

3. The curvature k(¢) of the normal section rotated from the section
with curvature k, by the angle ¢ is expressed by the formula

k(d) = k,cos®¢ + k, sin® . )

Such directions are called the principal directions and the curvatures
k, and k, are called the principal curvatures of the surface at the given
point.

This theorem of Euler shows that in spite of the diversity of surfaces,
their form in the neighborhood of each point must be one of a very
few completely defined types, with an accuracy to within magnitudes of
the second order of smallness in comparison with the distance from the
given point. In fact, if k, and k, have the same sign, then the sign of
k(¢) is constant and the surface near the point has the form illustrated
in figure 22. If k, and k, have opposite signs, for example k, > 0 and
k, < 0, then the curvature of the normal section obviously changes sign.
This is seen from the fact that for ¢ = O the curvature k = k, > 0 and
for ¢ = =/2 we have k = k, < 0.

From formula (4) for k(¢), it is not difficult to prove that as ¢ changes

* In the particular case k, = k, the curvature of all sections is the same; as, for
example, on a sphere.
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from O to = the sign of k(¢) changes twice,* so that near the point the
surface has a saddle-shaped form (figure 23).

When one of the numbers k, and k, is equal to zero, the curvature
always has the same sign, except for the one value of ¢, for which it
vanishes. This occurs, for example, for every point on a cylinder (figure 24).

Fig. 23, Fic, 24.

In the general case the surface near such point has a form close to that
of a cylinder.

Finally, for k, == k, = 0 all normal sections have zero curvature.
Near such a point the surface is especially “close” to its tangent plane.
Such points are called flar points. One example of such a point is given
in figure 25 (the point M). The properties of a surface near a flat point
may be very complicated.

FiG. 25. Fig. 26.

*It is a sirr;plg matter to show that k(¢) = k,cos’¢ + k;sin*¢ vanishes for
¢ = arctan V —k,/k; and ¢ = = — arctan V —k,jk,, changing sign the first time
from plus to minus and the second from minus to plus.
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Let us now consider a section of the surface cut by an arbitrary plane Q
(figure 26) not passing through the normal. The curvature k, of such a
curve L, as Meusnier showed,* is connected by a simple relation with
the curvature k, of the normal section in the same direction, i.e., the
one that intersects the tangent plane in the same straight line. This
connection is expressed by the formula

=lkwl
cos @’

L

where 8 is the angle between the normal and the plane Q. The correctness
of this formula may be visualized very conveniently on a sphere.

Finally, the curvature of any curve lying in the surface and having
the plane Q as its osculating plane may be shown to be identical with
the curvature of the intersection of Q with the surface.

Thus, if we know k, and k, , the curvature of any curve in the surface
is defined by the direction of its tangent and the angle between its oscu-
lating plane and the normal to the surface. Consequently, the character
of the curvature of a surface at a given point is defined by the two numbers
k, and k,. Their absolute values are equal to the curvatures of two
mutually perpendicular normal sections, and their signs show the direction
of the concavity of the respective normal sections with respect to a chosen
direction on the normal.

Let us now prove the theorems of Euler and Meusnier mentioned earlier.

1. For the proof of Euler’s theorem we need the following lemma.
If the function f{x, y) has continuous second derivatives at a given point,
then the coordinate axes may be rotated through an angle « such that
in the new coordinate system the mixed derivative f,.,. will be equal to
zero at this point.t We recall that after rotation of axes the new variables
x’, y' are connected with x and y by the formulas

x=x'cosa—y'sing; y=x"sina+ y cosa
(cf. Chapter IlI, §7). For the proof of the lemma we note that

ox . oy
-— = —sina, — = COS a.
Ox

= sin a, 3y

ay o
= COS a, a—x’ a—y,

* Meusnier (1754-1793) was a French mathematician, a student of Monge; he was
a general in the revolutionary army and died of wounds received in battle.

t+ We will denote partial derivatives by subscripts; for example, in place of &f/éx
we write [, in place of 9%]2yt we write f,, , etc.
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Computing the derivative f,.,, by the chain rule, we arrive after some
calculation at the result

fz’w =fm cos 2x + %‘(fw — fzo) 8iN 2a,

from which it readily follows that for

_ Vo —fow
cot 2o = 2 .
we will have
fzxgr = 0

We now consider the surface F, given by the equation z = f(x, ), in
which the origin is at the point M under consideration and the axes Ox
and Oy are so chosen in the tangent plane that f,, (0,0) = 0. In the
surface P we take an arbitrary straight line making an angle ¢ with the

FiG. 27.

axis Ox and consider the normal section L in the direction of this straight
line (figure 27). From the formula derived in §2, the curvature of L at
the point M, taking its sign into account, is equal to

_ o 2, 9)
k= 151_1.1:11 —&

Here f(x, y) is the distance (again taking its sign into account) of a point
on L to the chosen straight line. Expanding f(x, y) by Taylor’s formula
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(Chapter 11, §9) and noting that f,(0, 0) = f,(0, 0) = O (since the axes
Ox and Oy lie in the tangent plane) we get

[0, ) = 3 (farx® + 3D + €(x® + 3,

where ¢ — 0 as x — 0, y — 0. For a point on L, we have x = £cos¢,
y = €sing, £ = x* + y* (figure 27), and thus

k= ]ei_.“‘}famf2 cos®¢ +f‘zfg sin? ¢ + 2e£2

Putting ¢ = 0, = /2, we find that f., and f;, are the curvatures k, and
k, of the normal sections in the direction of the axes Ox and Oy. Thus the
formula derived is actually Euler’s formula: k = k, cos®¢ + k, sin®¢.
The fact that k, and k, are the maximal and minimal curvatures also
follows from this formula.

= fazcos® ¢ + £, sin’ §.

FiG. 28.

2. For the proof of Meusnier’s theorem we consider a normal section
Ly and a section L whose plane forms an angle 6 with the plane of the
section Ly, as in figure 28. The axes Ox and Oy lie in the tangent plane,
and we also take the axis Ox to be tangent to the curves Ly and L at
the origin. The distance A(x, y) to the Ox axis of a point X on L with
coordinates x, y, f(x, y) is obviously equal to A(x, y) = | f(x, y)l/cos @
(figure 28). Using Taylor’s formula, we express the curvature k, of the
curve L in the following manner:

. x|
k=1 =1 L
L= a!-']11}2.1c’c-:‘.~sa‘j'

_ i Mo+ 2oy Sy + 2602 499 |

z-0 x¥cos @

2h(x, ¥)
o

).
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where € — 0 as x, y — 0. Since the axis Ox is tangent to the curve L,
obviously lim,_, y/x = 0. Thus, taking the limit in formula (5), we get

_ Nl

cos @’

L

But for the chosen coordinate system the curve Ly has the equation
z = f(x,0), for which |ky|=|f..|. Thus k, = | ky|/cos @ and
Meusnier’s theorem is proved.

Mean curvature. In many questions of the theory of surfaces, the
most important role is played not by the principal curvatures themselves
but by certain quantities dependent on them, namely the mean curvature
and the Gaussian or total curvature of the surface at a given point. Let
us examine them in detail.

The mean curvature of a surface at a given point is the average of the
principal curvatures

Kav = 3 (ky + ko).

As an example of the usefulness of this concept, we consider the
following mechanical problem. We assume that over the surface of some
body F there is stretched a taut elastic rubber film. We ask about the

pressure exerted by this film on
each point of the surface of F.
TAs, TAs, The pressure at a point M is
: AR measured by the force exerted by
the film on a segment of the
surface of unit area containing the
point M; to be more exact, the
pressure ‘‘at the point” M is
' \ defined as the limit of the ratio
TAs, TBsz  of this force to the area of the
FiG, 29. segment as the latter shrinks to the
point M.

We surround the point M on the surface with a small curvilinear
rectangle whose sides have lengths 4s, and 4s, and are perpendicular
to the first and second principal directions at M (figure 29).* On each
side of the rectangle there is exerted a force that is proportional (from
the assumed uniformity of the tension) to the length of the side and
the tension T acting on the film. Thus, on the sides perpendicular to

* Qur reasoning here is not rigorous. However, by making estimates of the errors
introduced, it is possible to give a rigorous proof of the result.
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the first principal direction, there are exerted forces that are approximately
equal to Td4s, and have the direction of the tangent to the surface.
Similarly, forces equal to T4s, act on the other pair of sides of the
rectangle. In order to find the pressure at the point M, we must divide
the resultant of these four forces by the area of the rectangle (approxi-
mately equal to ds, 4s,) and pass to the limit for 4s,, 4s, — 0. Let us
begin by dividing the resultant of the first two forces by 4s, 4s, .

If we examine the rectangle from its side (figure 30), we see that these
forces are directed
along tangents to the
curve of the first nor-
mal section and that
the distance between
their points of appli-
cation is exactly ds, .
So we have the same
problem here as in §2 TAs,
for the pressure of a 7 74s,
string on a support. FiG. 30.

Using the earlier result,

we find that the desired limit is equal to k,7, where k, is the curvature
of the first normal section. With a similar expression for the other two
forces, we obtain the formula:

PM — T(kl + kg) r—; 2TKav.

This result has many important consequences. Let us consider an
example.

It is known that the surface film of a liquid is under a tension that
is the same in all directions on the surface. For a mass of liquid bounded
by a curved surface, this tension, by the previous result, exerts a pressure
on the surface which is proportional to its mean curvature at the given
point.

So in drops of very small diameter the pressures are very large, a fact
that hinders the formation of such drops. In a cooling vapor the drops
begin to form, as a rule, around specks of dust and around charged
particles. In a completely pure, slightly cooled vapor, the formation of
drops is delayed. But if, for example, a particle passes through the vapor
at high speed, causing ionization of the molecules, then around the ions
formed in its path there will momentarily appear small drops of vapor,
constituting a visible track of the particle. This is the basis for con-
struction of the Wilson chamber, widely used in nuclear physics for
observing the motians of various charged particles.

M
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Since the pressure exerted by a liquid is the same in all directions,
a drop of liquid in the absence of other sources of pressure must assume
a form for which at all points of the surface the mean curvature is the
same. In the experiment of Plateau, we take two liquids of the same
specific weight, so that a clot of one of them will float in equilibrium
in the other. It may be assumed that the floating liquid is acted on only
by surface tension,* and it turns out that the “floating” liquid always
takes the form of a sphere. This result suggests that every closed surface
with constant mean curvature is a sphere, a theorem that is in fact true,
although the strict mathematical proof of it is very difficult.

It is possible to approach the question from still another side. In view
of the fact that the surface tension tends to decrease the area of the
surface, while the volume of the liquid cannot change, it is natural to
expect that the floating mass of liquid will have the smallest surface for
a given volume. It can be proved that a body with this property is a sphere.

The relation between the lateral pressure of the film and its mean
curvature can also be used to determine the form of a soap film suspended
in a contour. Since the lateral pressure over the surface of the film, being
directed along the normal to the surface, is not opposed by any reaction
of the support (the support in this case is simply not there), it must be
equal to zero, so that for the desired surface we have the condition

Kav = 0. (6)

From the analytic expression for mean curvature, we obtain a differential
equation, and the problem consists of solving this equation under the
condition that the desired surface passes through the given contour.t
There have been many investigations of this difficult problem.

The same equation (6) arises from the problem of finding the surface
of least area bounded by a given contour. From a physical point of view,
the identity of these two problems is a natural one, since the film tends
to decrease its area and reaches a position of stable equilibrium only
when it attains the minimal area possible under the given conditions.
Surfaces of zero mean curvature, by reason of their connection with this
problem, are called minimal.

The mathematical investigation of minimal surfaces is of great interest,
partly because of their wide variety of essentially different shapes, as

* The increase of pressure with depth may be ignored, since it is the same for both
liquids because of their having the same specific weight. So on their common boundary
the additional internal and external pressures caused by the depth are neutralized by
each other.

1 For a surface given by the equation z = z(x, y), equation (6) assumes the form

(1 + z;’jz;; - 22“2;2“r + (1 + z;*jz;; = 0.
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discovered by experiments with soap film. Figure 31 illustrates two soap
films suspended from different contours.

Fig. 31.

Gaussian curvature. The Gaussian curvature of a surface at a given
point is the product of the principal curvatures

K = klkg.

The sign of the Gaussian curvature defines the character of the surface
near the point under consideration. For X > 0 the surface has the form
of a bowl (k, and k, have the same sign) and for K < 0, when k, and k,
have different signs, the surface is like a saddle. The remaining cases,
discussed earlier, correspond to zero Gaussian curvature. The absolute
value of the Gaussian curvature gives the degree of curvature of the
surface in general, as a sort of abstraction from the various curvatures
in different directions. This becomes particularly clear if we consider a
different definition of Gaussian curvature, which does not depend on
investigating curves on the surface.

Let us consider a small segment G of the surface F, containing the
point M in its interior, and at each point of this segment let us erect
a normal to the surface.
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If we translate the initial points of all these normals to one point,
then they fill out a solid angle (figure 32). The size of this solid angle
will depend on the area of the segment G and on the extent to which
the surface is curved on this segment. Thus the degree of curvature of

FiG, 32.

the segment G may be characterized by the ratio of the size of the solid
angle to the area of G; so it is natural to define the curvature of the
surface at a given point as the limit of this ratio when the segment G
shrinks to the point M. * It turns out that this limit is equal to the absolute
value of the Gaussian curvature at the point M.

The most remarkable property of the Gaussian curvature, which
explains its great significance in the theory of surfaces, is the following.
Let us suppose that the surface has been stamped out from a flexible
but inextensible material, say a very thin sheet of tin, so that we can
bend it into various shapes without stretching or tearing it. During this
process the principal curvatures will change but, as Gauss showed, their
product k,k, will remain unchanged at every point. This fundamental
result shows that two surfaces with different Gaussian curvatures are
inherently distinct from each other, the distinction consisting of the fact
that if we deform them in every possible way, without stretching or
tearing, we can never superpose them on each other. For example, a
segment of the surface of a sphere can never be distorted so as to lie
on a plane or on the surface of a sphere of different radius.

We have now considered certain basic concepts in the theory of surfaces.
As for the methods used in this theory, they consist, as was stated
previously, primarily in the application of analysis and above all of

* To measure the solid angle itself, we construct a sphere of unit radius with center
at its vertex. The area of the region in which the sphere intersects the solid angle is
then taken as the size of the solid angle (figure 32).
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differential equations. Simple examples of the use of analysis are to be
found in the proofs for the theorems of Euler and Meusnier. For more
complicated questions, we require a special method of relating problems
in the theory of surfaces to problems in analysis. This method is based
on the introduction of so-called curvilinear coordinates and was first
widely used in the work of Gauss on problems of the type discussed in
the following section.

§4. Intrinsic Geometry and Deformation of Surfaces

Intrinsic geometry. As indicated previously, a deformation of a
surface is defined as a change of shape that preserves the lengths of all
curves lying in the surface. For example, rolling up a sheet of paper
inte a cylindrical tube represents, from the geometric point of view, a
deformation of part of the plane, since in fact the paper undergoes
practically no stretching, and the length of any curve drawn on it is not
changed by its being rolled up. Certain other geometric quantities
connected with the surface are also preserved; for example, the area of
figures on it. All properties of a surface that are not changed by defor-
mations make up what is called the intrinsic geometry of the surface.

But just which are these properties ? It is clear that in a deformation
only those properties can be preserved which in the final analysis depend
entirely on lengths of curves, i.e., which may be determined by measure-
ments carried out on the surface itself. A deformation is a change of
shape preserving the length of curves, and any property which cannot
change under any deformation must be definable in one way or another
in terms of length. Thus intrinsic geometry is simply called geometry on
a surface. The very meaning of the words “intrinsic geometry” is that
it studies intrinsic properties of the surface itself, independent of the
manner in which the surface is embedded in the surrounding space.*
Thus, for example, if we join two points on a sheet of paper by a straight
line and then bend the paper (figure 33), the segment becomes a curve
but its property of being the shortest of all lines joining the given points
on the surface is preserved; so this property belongs to intrinsic geometry.
On the other hand, the curvature of this line will depend on how the
paper was bent and thus is not a part of intrinsic geometry.

In general, since the proofs of plane geometry make no reference to
the properties of the surrounding space, all its theorems belong to the

* We note tha;t the ideas of intrinsic geometry have led to a wide generalization of
the mathematical concept of space and have thereby played a very important role in
contemporary physics; for details see Chapter XVII.,



92 VII. CURVES AND SURFACES

intrinsic geometry of any surface obtainable by deformation of a plane.
One may say that plane geometry is the intrinsic geometry of the plane.

Another example of intrinsic geometry is familiar to everyone, namely
geometry on the surface of a sphere, with which we usually have to deal

e

i

FiG. 33.

in making measurements on the surface of the earth. This example is a
particularly good one to illustrate the essential nature of intrinsic geome-
try; because of the large radius of the earth, any immediately visible
area of its surface appears to us as part of a plane, so that the deviations
from plane geometry observable in the measurements of large distances
impresses us as resulting not from the curvature of the earth’s surface
in space but from the inherent laws of “terrestrial geometry,” expressing
the geometric properties of the surface of the earth itself.

It remains to note that the idea of studying intrinsic geometry occurred
to Gauss in connection with the problems of geodesy and cartography.
Both these applied sciences are concerned in an essential way with the
intrinsic geometry of the earth’s surface. Cartography deals, in particular,
with distortions in the ratios of distances when part of the surface of
the earth is mapped on a plane and thus with distinguishing between
plane geometry and the intrinsic geometry of the surface of the earth.

The intrinsic geometry of any surface may be pictured in the same way.
Let us imagine that on a given surface there exist creatures so small
that within the limits of their range of vision the surface appears to be
plane (we know that a sufficiently small segment of any smooth surface
differs very little from a tangent plane); then these creatures will not
notice that the surface is curved in space, but in measuring large distances
they will nevertheless convince themselves that in their geometry certain
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nonplanar laws prevail, corresponding to the intrinsic geometry of the
surface on which they live. That these laws are actually different for
different surfaces may easily be seen from the following simple discussion.
Let us choose a point O on the surface and consider a curve L such
that the distance of each of its points from the point O, measured on
the surface (i.e., along the shortest curve connecting this point to the
point 0) is equal to a fixed number r (figure 34). The curve L, from the

Fic. 34.

point of view of the intrinsic geometry of the surface, is simply the
circumference of a circle of radius r. A formula expressing the length
s(r) in terms of r is part of the intrinsic geometry of the given surface.
But such a formula may vary widely in character, depending on the
nature of the surface: Thus on a plane, s(r) = 2#r; on a sphere of radius
R, as can easily be shown, s(r) = 2#R sin r/R; on the surface illustrated
in figure 35, beginning with a certain value of r, the length of the cir-

FiG. 35.

cumference with center O and radius r is at first independent of r but
then begins to decrease. Consequently, all these surfaces have different
intrinsic geometries.

The basic concepts of intrinsic geometry. To illustrate the wide range
of concepts and theorems in intrinsic geometry, we may turn to plane
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geometry which, as we have seen, is the intrinsic geometry of the plane.
Its subject matter consists of plane figures and their properties, which
are usually expressed in the form of relations among basic geometric
quantities such as length, angle, and area. For a rigorous proof that
angle and area belong to the intrinsic geometry of the plane, it is necessary
to show that they can be expressed in terms of length. But this is certainly
so; in fact, an angle may be computed if we know the length of the sides
of a triangle containing it, and the area of a triangle can also be computed
in terms of its sides, while to compute the area of a polygon we need
only divide it into triangles.

In considering plane geometry as the intrinsic geometry of the plane,
there is no need to restrict ourselves to ideas learned in school. On the
contrary, we may develop it as far as we like and study many new
problems, provided only they can be stated, in the final analysis, in
terms of length. Thus, in plane geometry we may successively introduce
the length of a curve, the area of a surface bounded by curves, and so
forth; they are all a part of the intrinsic geometry of the plane.

The same concepts are introduced in the intrinsic geometry of an
arbitrary surface. The length of a curve is the initial concept; the definition
of angles and areas is somewhat more complicated. If the intrinsic
geometry of a given surface differs from plane geometry, we cannot use
the customary formulas to define an angle or an area in terms of length.
However, as we have seen, a surface near a given point differs little
from its tangent plane. Speaking more precisely, the following is true:
If a small segment of a surface containing a given point M is projected
on the tangent plane at this point, then the distance between points,
measured on the surface, differs from the distance between their projec-
tions by an infinitesimal of higher than the second order in comparison
with distances from the point M. Thus in defining geometric quantities

Fig. 36.
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at a given point of a surface by taking a limit in which infinitesimals
occur of order no higher than the second, we may replace a segment
of the surface by its projection on the tangent plane. Thus the quantities
determined by measurement in the tangent plane turn out to belong to
the intrinsic geometry of the surface. This possibility of considering a
small segment of the surface as a plane is the basis of the definitions of
all the concepts of intrinsic geometry.

As an example let us consider the definitions of angle and area.
Following the general principle, we define the angle between curves on
a surface as the angle between their projections on the tangent plane
(figure 36). Obviously the angle defined in this manner is identical with
the angle between the tangents to the curves. The definition of area
given in §3 is based on the same
principle. Finally, in order that
the tendency of a curve to twist
in space may be defined ‘“‘within”
the surface itself, we introduce
the concept of “‘geodesic curva-
ture” the name being reminiscent
of measurements on the surface
of the earth. The geodesic curva-
ture of a curve at a given point is
defined as the curvature of its
projection on the tangent plane FiG. 37.

(figure 37).

In this manner we see that the basic concepts of plane geometry may
be introduced into the intrinsic geometry of an arbitrary surface.

In any arbitrary surface it is also easy to define figures analogous to
the basic figures on the plane. For example, we have been dealing
previously with circumferences of circles, which are defined precisely as
in the case of the plane. Similarly, we may define the analogue of a line
segment, namely a geodesic segment, as the shortest curve on the surface
joining two given points. Further, it is natural to define a triangle as a
figure bounded by three geodesic segments and similarly for a polygon,
and so forth. Since the properties of all these figures and magnitudes
depend on the surface, there exist in this sense infinitely many different
intrinsic geometries. But intrinsic geometry, as a special branch of the
theory of surfaces, pays particular attention to certain general laws
holding for the intrinsic geometry of any surface and makes clear how
these laws are expressed in terms of the quantities which characterize
a given surface.

Thus, as we have noted earlier, one of the most important characteristics
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of a surface, its Gaussian curvature, is not changed by deformation, i.e.,
depends only on the intrinsic geometry of the surface. But it turns out
that in general the Gaussian curvature already characterizes, to a re-
markable degree, the extent to which the intrinsic geometry of the surface
near a given point differs from plane geometry. As an example let us
consider on a surface a circle L of very small radius r, with center at
a given point 0. On a plane the length s(r) of its circumference is ex-
pressed by the formula s(r) = 2#r. On a surface differing from a plane,
the dependence of the circumference on the radius is different; here the
deviation of s(r) from 2rr, depends essentially, for small r, on the Gaussian
curvature K at the center of the circle, namely;

s(r) = 2mr — 13’- KP + e,

where € — 0 as r — 0. In other words, for small r the circumference
may be computed by the usual formula if we disregard terms of the
third degree of smallness, and in this case the error (with accuracy to
terms of higher than the third order) is proportional to the Gaussian
curvature. In particular, if X > 0, then the circumference of a circle of
small radius is smaller than the circumference of a circle with the same
radius in a plane, and if K < 0, it is larger. These latter facts are easy
to visualize: Near a point with positive curvature the surface has the
shape of a bowl so that circumferences are reduced, whereas near a point
with negative curvature the circumference, being situated on a *‘saddle,”
has a wavelike shape and is thus considerably lengthened (figure 38).

Fig. 38.

From the theorem just mentioned, it follows that a surface with varying
Gaussian curvature is extremely inhomogeneous from a geometric point
of view; the properties of its intrinsic geometry change from point to
point. The general character of the problems of intrinsic geometry causes
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it to resemble plane geometry, but this inhomogeneity, on the other
hand, makes it profoundly different from plane geometry. On the plane,
for example, the sum of the angles of a triangle is equal to two right
angles; but on an arbitrary surface the sum of the angles of a triangle,
(with geodesics for sides) is undetermined even if we are told that it lies
on a known surface and has sides of given length. However, if we know
the Gaussian curvature K at every point of the triangle, then the sum
of its angles, o, B, y, can be computed by the formula

a+B+y=mn+ [[Kdo,

where the integral is taken over the surface of the triangle. This formula
contains as a special case the well-known theorems on the sum of the
angles of a triangle in the plane and on the unit sphere. In the first
case K=0 and a« + B+ y = =, while in the second K =1 and
a+ B+ y=m+ S, where S is the area of the spherical triangle.

It may be proved that every sufficiently small segment of a surface
with zero Gaussian curvature may be deformed, or, as it is customary
to say, developed into a plane, since it has the same intrinsic geometry
as the plane. Such surfaces are called developable. And if the Gaussian
curvature is near zero, then although the surface cannot be developed
into a plane, still its intrinsic geometry differs little from plane geometry,
which indicates once again that the Gaussian curvature acts as a measure
of the extent to which the intrinsic geometry of a surface deviates from
plane geometry.

Geodesic lines. In the intrinsic geometry of a surface the role of
straight lines is played by geodesic lines, or, as they are usually called,
“geodesics.”

A straight line in a plane may be defined as a line made up of intervals
overlapping one another. A geodesic is defined in exactly the same way,
with geodesic segments taking the place of intervals. In other words, a
geodesic is a curve on a surface such that every sufficiently small piece
of it is a shortest path. Not every geodesic is a shortest path in the large,
as may be noted on the surface of a sphere, where every arc of a great
circle is a geodesic, although this arc will be the shortest path between
its end points only if it is not greater than a semicircle. A geodesic, as
we see, may even be a closed curve.

To illustrate certain important properties of geodesics, let us consider
the following mechanical model.* On the surface F let there be stretched

* As noted previously, our reasoning here is not a strict proof of the properties of
geodesic curves, It is given only to illustrate the most important of these properties,
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a rubber string with fixed ends (figure 39).* The string will be in equilibrium
when it has the shortest possible length, since
any change in its position will then involve an
increase of length, which could be produced
only by external forces. In other words, the
string will be in equilibrium if it is lying along
a geodesic. But for equilibrium, it is necessary
that the elastic forces on each segment of the
string be counterbalanced by the resistance of
the surface, directed along the normal to it.
(We assume that the surface is smooth and that
there is no friction between it and the string.)
But it was proved in §2 that the pressure on the support caused by the
tension of the string is directed along the principal normal to the curve
along which the string lies. Thus we are led to the following result:
The principal normal to a geodesic at each point coincides in direction
with the normal to the surface. The converse of this theorem is also
true: Every curve on a regular surface which has this property is a
geodesic,

This property of a geodesic allows us to deduce the following important
fact: If a material point is moving on a surface in such a way that there
are no forces acting on it except for the reaction of the surface, then it
follows a geodesic. For, as we know from §2, the normal acceleration
of a point is directed along the principal normal to the trajectory and
since the reaction of the surface is the only force acting on the point,
the principal normal to the trajectory is identical with the normal to
the surface, so that from the preceding theorem the trajectory is a
geodesic. This last property of geodesics increases their resemblance to
straight lines. Just as the motion of a free point, because of inertia, is
along a straight line, so the motion of a point forced to stay on a surface,
but not affected by external forces, will be along a geodesic.t

From the same property of geodesics comes the following theorem.
If two surfaces are tangent along a curve that is a geodesic on one of
them, then this curve will also be a geodesic on the other. For at each
point of the curve, the surfaces have a common tangent plane and
consequently a common normal, and since the curve is a geodesic on
one of the surfaces, this normal coincides with the principal normal to
the curve, so that on the second surface also the curve will be a geodesic.

* A stretched string will not remain on a surface unless the surface is convex; so
in order not to make exceptions, it is better to imagine that the surface is in two layers,
with the string running between them.

t Here by *‘external” forces we mean all forces except the reaction of the surface.
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From these results follow two further intuitive properties of geodesic
curves. In the first place, if an elastic rectangular plate (for example a
steel ruler) lies with its median line completely on a surface, then it is
tangent to this surface along a geodesic. (Evidently the line of contact
is a geodesic on the ruler, so that it must be a geodesic also on the surface.)
Second, if a surface rolls along a plane in such a way that the point of
contact traces a straight line on the plane, then the trace of this straight
line on the surface is a geodesic.* Both these properties are readily
demonstrated on a cylinder, where it is easy to convince oneself by ex-
periment that the median line of a straight plane strip lying on the cylinder
(figure 40) coincides with either a generator or the circumference of a

Fic. 40.

circle or a helix, and it is not difficult to prove that a geodesic curve on
a cylinder can be only one of these three. The same curves will be traced
out on a cylinder if we roll it on a plane on which we have drawn a
straight line in chalk.

The analogy between geodesics and straight lines in a plane may be
supplemented by still another important property, taken directly from
the definition of a geodesic. Namely, straight lines in the plane may be
defined as curves of zero curvature and geodesics on a surface as curves
of zero geodesic curvature. (We recall that the geodesic curvature is the
curvature of the projection of the curve on the tangent plane, cf. figure 37.)
It is quite natural that our present definition of a geodesic should coincide
with the earlier one; for if at every point of the curve the curvature of

* This proposition does not differ essentially from the preceding one, since the rolling
of a surface on a plane is equivalent in a well-defined sense to the unwinding of a
plane strip along the surface.
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its projection on the tangent plane is equal to zero, then the curve departs
from its tangent essentially in the direction of the normal to the surface,
so that the principal normal to the curve is directed along the normal to
the surface and the curve is a geodesic in the original sense. Conversely,
if a curve is a geodesic, then its principal normal, and so also its deviation
from the tangent line, are directed along the normal to the surface, so
that in projecting on the tangent plane we get a curve in which the
deviation from the tangent is essentially smaller than for the original
curve, and the curvature of the projection so formed turns out to be
equal to zero.

The course of a geodesic may vary widely for different surfaces. As
an example, in figure 41 we trace some geodesics on a hyperboloid of
revolution.

Deformation of surfaces. Since intrinsic geometry studies the proper-
ties of surfaces that are invariant under deformation, it naturally investi-
gates these deformations themselves. The theory of deformation of
surfaces is one of the most interesting and difficult branches of geometry
and includes many problems which, although simple to state, have not
yet been finally solved.

Certain questions about the deformation of surfaces were already
considered by Euler and Minding, but general results for arbitrary
surfaces were not derived until later.

In the general theory of deformation, we first of all raise the question
whether deformation is possible for all surfaces and, if so, to what extent.
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For analytic surfaces, i.e., surfaces defined by functions of the coordinates
that can be expanded in a Taylor series, this question was solved at the
end of the last century by the French mathematician Darboux. In par-
ticular, he.showed the following: If on such a surface we consider any
geodesic and assign in space an arbitrary (analytic) curve with the same
length, and with curvature nowhere equal to zero, then a sufficiently
narrow strip of the surface, containing the given geodesic, can be deformed
so that the geodesic coincides with the given curve.* This theorem shows
that a strip of the surface may be deformed rather arbitrarily. However,
it has been proved that if a geodesic is to be transformed into a preassigned
curve, then the surface' may be deformed in no more than two ways.
For example, if the curve is plane, then the two positions of the surface
will be mirror images of each other in the plane. If the geodesic is a
straight line, then this last proposition is not true, as can be shown by
deforming a cylindrical surface.

We have defined a deformation as a transformation of the surface that
preserves the lengths of all curves on the surface. Here we have considered
only the final result of the transformation; the question of what happens
to the curve during the process did not enter. However, in considering
a surface as made from a flexible but unstretchable material, it is natural
to consider a continuous transformation, at each instant of which the
lengths remain unchanged (physically this corresponds to the un-
stretchability of the material). Such transformations are called continuous
deformations.

At first glance it may seem that every deformation can be realized in
a continuous manner, but this is not so. For example, it has been shown
that a surface in the form of a circular trough (figure 42), does not admit

continuous deformations (this explains, among other things, the familiar
fact that a pail with a curved rim is considerably stronger than one with
a plain rim) although deformations of such a surface are possible: for

* The case of transforming a geodesic into a curve with zero curvature is excluded,
since it is easy to show that for surfaces of positive Gaussian curvature this is impossible.
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example, one may cut the trough along the circle on which it rests on
a horizontal plane and replace one half of it by its mirror image in this
plane (compare figure 43 with figure 42; to aid visualization we have
drawn only the left half of the surface). It is intuitively clear that the
impossibility of a continuous deformation is due to the circular shape
of the trough; for a straight trough such a deformation can be performed
continuously.

If we restrict ourselves to a sufficiently small segment of the surface,
then there are no obvious hindrances to its continuous deformation, and
we might expect that every deformation of a small segment of the surface
can be realized by a continuous transformation, followed perhaps by a
mirror reflection. This is in fact true, but only under the condition that
on the given small segment of the surface the Gaussian curvature never
vanishes (excepting the case that it vanishes everywhere). But if the
Gaussian curvature vanishes at isolated points, then, as N. V. Efimov
showed in 1940, even arbitrarily small segments of a regular surface may
not admit any continuous deformation without loss of regularity. For
example, the surface defined by the equation z = x® + Ax%)® + »° where
Ais a transcendental number, has the property that no segment containing
the origin, no matter how small it may be, admits sufficiently regular
continuous deformations. Efimov’s theorem is a new and somewhat
unexpected result in classical differential geometry.

In addition to these general questions about deformation, a great deal
of attention is being paid to special types of deformation of surfaces.

The connection of the intrinsic geometry of a surface with the form of
the surface in space. We already know that certain properties of a
surface, and of the figures on it, are defined by the intrinsic geometry
of the surface even though these properties are very closely related to
other properties that depend on how the surface is embedded in the
surrounding space, properties that are, as they say, “extrinsic” to the
surface. For example, the principal curvatures are extrinsic properties of
a surface, but their product (the Gaussian curvature) is intrinsic. Another
example, in order that the principal normal of a curve lying on a surface
should coincide with the normal to the surface, it is necessary and
sufficient that this curve have a property defined by its intrinsic geometry,
namely that it be a geodesic.

Consequently, the intrinsic geometry of a surface will determine its
space form only to a certain extent.

The dependence of the space form of a surface on its intrinsic geometry
may be expressed analytically in the form of equations containing certain
quantities that characterize the intrinsic geometry and certain other
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quantities that characterize the way in which the curved surface is
embedded in space. One of these equations is the formula expressing
the Gaussian curvature in intrinsic terms and is due to Gauss. Two other
such equations are those of Peterson and Codazzi, mentioned in §1.

The equations of Gauss, Peterson, and Codazzi completely express the
connection between the intrinsic geometry of a surface and the character
of its curvature in space, since all possible interrelations between intrinsic
and extrinsic properties of an arbitrary surface are included, at least in
implicit form, in these equations,

Since the form of a surface in space is not completely defined by its
intrinsic geometry, we naturally ask, What extrinsic properties must still
be assigned in order to determine the surface completely? It turns out
that if two surfaces have the same intrinsic geometry and if, at correspond-
ing points and in corresponding directions, the curvatures of the normal
sections of these surfaces have the same sign, then the surfaces are
congruent; that is, they can be translated so as to coincide with each
other. We note that Peterson discovered this theorem 15 years earlier
than Bonnet, with whose name it is usually associated.

Analytic apparatus in the theory of surfaces. The systematic applica-
tion of analysis to the theory of surfaces led to the building up of an
analytic apparatus especially suitable for this purpose. The decisive step
in this direction was taken by Gauss, who introduced the method of
representing surfaces by so-called curvilinear coordinates. This method
is a natural generalization of the idea of Cartesian coordinates on the
plane and is closely connected with the intrinsic geometry of the surface,
for which the presentation of the surface by an equation of the form
z = f(x, y) is not convenient. The inconvenience consists of the fact that
the x, y coordinates of a point on the surface change when the surface
is deformed. To eliminate this difficulty, the coordinates are chosen on
the surface itself; they define each point by two numbers « and v, which
are associated with the given point and remain associated with it even
after deformation of the surface. The space coordinates x, y, z of the
point will in each case be functions of ¥ and v. The numbers u and v
defining the point on a surface are called its curvilinear coordinates.
The choice of name is to be understood as follows: If we fix the value
of one of these coordinates, say v, and vary the other, then we get a
coordinate curve on the surface. The coordinate curves form a curvilinear
net on the surface, similar to the coordinate net on a plane. We note
that the familiar method of describing the position of a point on the
surface of the earth by means of longitude and latitude consists simply of
introducing curvilinear coordinates on the surface of a sphere; the coor-
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dinate net in this case consists of circles, namely the meridians and
parallels* (figure 44). To describe the spatial position of a surface by
means of curvilinear coordinates, we need to define the position of each
point in terms of « and v, for example by giving, as a function of v and v,
the vector r = r(u, v), issuing from some fixed origin to the points on
the surface and called the radius vector of the surface. (This is equivalent
to giving the x, y, and z components of the vector r as functions of u
and v.)t To define a curve lying on a given surface, we need to give the
coordinates u, v as functions of one parameter ¢; then the radius vector
to a point moving along this curve is expressed as a composite function

r[u(®), v(H].

For vector functions the concepts of derivative and differential may be
generalized word for word; from the definition of the derivative as the
limit of Ar/4t when At — O (r is a function of the parameter ¢) it follows

FIG. 44. F1G. 45.

* It is characteristic that geographic coordinates and their practical applications
were known long in advance of Descartes’ introduction of the usual coordinates in
the plane.

t Of course Gauss did not use vector notation, but defined the three coordinates
x, y, z of the points of the surface separately as functions of u and v. Vectors, which
were introduced as a result of the work of Hamilton and Grassmann, were at first used
widely in physics and only later (in fact, in the 20th century) became the traditional
apparatus for analytic and differential geometry.
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at once that the derivative of the radius vector of a curve is a vector
directed along the tangent to the curve (figure 45). For vector functions
the basic properties of ordinary derivatives are still valid; for example,
the chain rule

drlu(f),v(t)] érdu orde ,
——a @t Tawar - M + ryv;, M

where r, and r, are the partial derivatives of the vector function r(y, v).
The length of a curve, as can be shown, is expressed by the integral

s = J‘ VXD + yH0) + 2%0) dt.

Thus, the differential of the length of a curve is equal to

ds = VX'¥t) + y¥Nt) + 2'%t) dt.

But since x'(¢), y'(#), and z'(¢) are components of the vector dr/dt = r,,
we may write ds = | r, | dt, where | r; | denotes the length of the vector r; .
For curves lying on a surface, we get from (7)

ds = | r,uy 4 r,vp | dt.

Computing the square of the length of the vector on the right we obtain,
by the rules of vector algebra,*

ds* = [riu?® + 2r,rup, + riv? de.
Passing to differentials and introducing the notation

ri = Eu,v), ryr, = F(u,v), r5 = G(u, v),

we have
ds? = Edu 4+ 2F dudp + G dv*.

We see that the square of the differential of arc length on a surface is
a quadratic form in the differentials du and dv with coefficients depending
on the point of the surface. This form is called the first fundamental
quadratic form of the surface. Given the coefficients E, F, and G of this

* The square- :)f the length of a vector is the scalar product of the vector with itself,
and for scalar multiplication (cf. Chapter III, §9) the usual rules hold for the removal
of brackets.
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form at each point on a surface we may compute the length of any curve
on the surface by the formula

‘!
s = [ VEGF 2R, + Gop di,
4

so that its intrinsic geometry is thereby completely determined.

We show, as an example, how to express angle and area in terms of
E, F, and G. Let two curves issue from a given point, one of them given
by the equations uw = u,(¢), v = v,(¢) and the other by the equations
u = uy(t), v = vyt). Then the tangents to these curves are given by the
vectors

_ ., du dv,
S N T

o d“z dvs
Fog = Fy—- df + v df .

The cosine of the angle between these vectors is equal to the scalar
product rr; divided by the product of the lengths r,7,

COS x = _':lf.s—
Firy

2 dﬂl dﬂz +r (dul dvz + jdﬁ dl"'l ) z dﬂl dvz

“a de ™" \ar ar T ar ar "ar dr

nr

Recalling that r? = E, r,r, = F, vl = G, we get

COs x =

du, % n F( duy, dvy,  duy, dv, ) G dvy dv,

dt dt dr ?+dt dt dr dr

du, duy dv; dvl \/ du, dv, dog \*
\/E( @ ) +2r S @ a T - +2FdTaT+G(T)

To obtain a formula for area, we consider a curvilinear rectangle
bounded by the coordinate curves u = u,, v =v,, u = u, + du,
v = v, + dv, and we take as an approximation to it the parallelogram
lying in the tangent plane and bounded by the vectors r, du, r, 4v, tangent
to the coordinate curves (figure 46). The area of this parallelogram is
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4s = |r,| | r, | du Av sin $, where ¢ is the angle between r, and r, . Since
sing = VI — cos? ¢, it follows that As = | r, | | r, | du dv V1 — cos?¢
=Vl —|r, | r, |Pcos®d du Av. Recalling that r} = E, rl =G,
|7y || r,|cOSp = rr, = F, we get As = V' EG — F? Au Av. Summing
up the areas of the parallelograms and taking the limit as du, dv — 0
we obtain the formula for area § = _[j'n V'EG — F*du dv, where the
integration is taken over the domain D of the variables ¥ and v which
describe the given segment of the surface.

In this way, curvilinear coordinates are very convenient for studying
the intrinsic geometry of a surface.

It also turns out that the manner in which a curved surface is embedded
in the surrounding space can be characterized by a certain quadratic
form in the differentials du, dv. Thus if # is a unit vector normal to the
surface at the point M, and dr is the increment in the radius vector to

Fig. 46. FiG. 47.

the surface as we move from this point, then the deviation A of the surface
from the tangent plane (figure 47) is equal to n 4r. Expanding the incre-
ment dr by Taylor’s formula, we get

h=ndr+ 3nd¥ + e(d® + dv®),

where € — 0 as Vdu® + dv® — 0. Since the vector dr lies in the tangent
plane, we have mndr = 0. The last term, e(du® + dv®) is small in com-
parison with the squares of the differentials du and dv. There remains
the principal term 3 d%. Thus twice the principal part of A, namely
nd’, is a quadratic form with respect to du and dv

ndr = nr,, du* 4 2nr,, dudv 4 nr,, dv®.

This form describes the character of the deviation of the surface from
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the tangent plane. It is called the second fundamental quadratic form of
the surface. Its coefficients, which depend on u and v, are usually written:

nr,, = L, Ary, = M, nr,, = N.

Knowing the second fundamental quadratic form, we can compute
the curvature of any curve on a surface. Thus, applying the formula
k = lim,, 2h/I?, we obtain the result that the curvature of the normal
section in the direction corresponding to the ratio du/dp is equal to

K o ndr_ Ldu® +2M dudv + N dv*
" ds®  Edw*+2Fdudv 4+ Ga®

If the curve is not a normal section, then by Meusnier’s theorem it is
sufficient to divide the curvature of the normal section in the same direction
by the cosine of the angle between the principal normal to the curve
and the normal to the surface.

The introduction of the second fundamental quadratic form provides
an analytic approach to the study of how the surface is curved in space.
In particular, one may derive the theorems of Euler and Meusnier, the
expressions for the Gaussian and mean curvature, and so forth, in a
purely analytic way.

Peterson’s theorem, mentioned earlier, shows that the two quadratic
forms, taken together, define a surface up to its position in space, so
that the analytic study of any properties of a surface consists of the study
of these forms. In conclusion, we note that the coefficients of the two
quadratic forms are not independent; the connection mentioned earlier
between the intrinsic geometry of a curved surface and the way in which
it is embedded in space is expressed analytically by three relations (the
equations of Gauss-Codazzi) between the coefficients of the first and the
second fundamental quadratic forms.

§5. New Developments in the Theory of Curves and Surfaces

Families of curves and surfaces. Even though the basic theory of
curves and surfaces was to a large degree complete by the middle of the
last century, it has continued to develop in several new directions, which
greatly extend the range of figures and properties investigated in con-
temporary differential geometry. There is one of these developments
whose origins go back to the beginning of differential geometry, namely
the theory of “families” or of continuous collections of curves and surfaces,
but this theory may be considered new in the sense that its more profound
aspects were not investigated until after the basic theory of curves and
surfaces was already completely developed.
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In general a continuous collection of figures is called an n-parameter
family if each figure of the collection is determined by the values of n
parameters and all the quantities characterizing the figure (in respect to
its position, form, and so forth) depend on these parameters in a manner
which is at least continuous. From the point of view of this general
definition, a curve may be considered as a one-parameter family of points
and a surface as a two-parameter family of points. The collection of all
circles in the plane is an example of a three-parameter family of curves,
since a circle in the plane is determined by three parameters: the two
coordinates of its center and its radius.

The simplest question in the theory of families of curves or surfaces
consists of finding the
so-called envelope of the
family. A surface is called
the envelope of a given
family of surfaces if at
each of its points it is
tangent to one of the
surfaces of the family and
is in this way tangent to
every one of them. For
example, the envelope of FiG. 48.

a family of spheres of

equal radius with centers on a given straight line will be a cylinder
(figure 48), and the envelope of such spheres with centers on all points
of a given plane will consist of two parallel planes. The envelope of a
family of curves is defined similar-
ly. Figure 49 diagrams jets of
water issuing from a fountain at
various angles; in any one plane
they form a family of curves,
which may be considered approxi-
mately as parabolas; their enve-
lope stands out clearly as the
general contour of the cascade of
water. Of course, not every family
of curves or surfaces has an enve-
lope; for example, a family of
parallel straight lines does not
have one. There exists a simple
general method of finding the
envelope of any family; for a
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family of curves in the plane this method was given by Leibnitz.

Every curve is obviously the envelope of its tangents, and in exactly
the same way every surface is the envelope of its tangent planes. Inciden-
tally, this fact provides a new method of defining a curve or a surface
by giving the family of its tangent lines or planes. For some problems
this method turns out to be the most convenient.

Generally speaking, the tangent planes of a surface are different at
different points, so that the family of tangents to the surface is obviously
a two-parameter one. But in some cases, for example, a cylinder, it is
one parameter. It can be shown that the following remarkable theorem
holds. A one-parameter family of tangent planes occurs only for those
surfaces that are developable into a plane, ie., those in which any
sufficiently small segment may be deformed into a plane segment; these
are the developable surfaces noted in §4. Every analytic surface of this
kind consists of segments of straight lines and is either cylindrical
(parallel straight lines) or conical (straight lines passing through one
point), or consists of the tangents to some space curve.

The theory of envelopes is particularly useful in engineering problems,
for example in the theory of transmissions. We consider two gears A
and B. To study their motion relative
to each other, we may assume that
gear A is stationary and gear B moves
around it (figure 50). Then the contour
of a cog on gear B, as it assumes
various positions, traces out a family of
curves in the plane of gear 4, and the
contour of gear 4 must at all times be
tangent to them, i.e., must be the

Fig. 50. envelope of the family. Of course, this

is not a complete statement of the

situation, since in an actual transmission this engagement must be

transferred from one pair of cogs to the next, but this condition is never-
theless the basic one which must be satisfied by every type of gear.

As we have said, the question of envelopes is a relatively simple one,
solved long ago, in the theory of families of curves and surfaces. This
theory is just as rich in interesting problems as, let us say, the theory of
surfaces itself. Especially well developed is the theory of “congruences,”
i.e., two-parameter families of various curves (and in particular of straight
lines: the so-called “straight-line” congruences). In this theory one
applies essentially the same methods as in the theory of surfaces.

The theory of straight-line congruences originated in the paper of
Monge, “On excavations and fills,” the title of which already shows that
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Monge undertook the investigation for practical purposes; the main idea
was to find the most convenient way of transporting earth from an
excavation to a fill,

The systematic development of the theory of congruences, beginning
in the middle of the last century, is due in large measure to its connection
with geometric optics; the set of rays of light in a homogeneous medium
at any time constitutes a straight-line congruence.

Nonregular surfaces and geometry “in the large.” The theory of
curves and surfaces (and of families of them), as it had been constructed
by the end of the last century, is usually called classical differential
geometry; it has the following characteristic features.

First, it considers only “sufficiently smooth™ (i.e., regular) curves and
surfaces, namely those which are defined by functions with a sufficient
number of derivatives. Thus, for example, surfaces with cusps or edges,
such as polyhedral surfaces or the surface of a cone, are either excluded
from the argument or are considered only on the parts where they remain
smooth.

Second, classical differential geometry pays especial attention to
properties of sufficiently small segments of curves and surfaces (geometry
“in the small”) and nowhere considers properties of an entire closed
surface (geometry “in the large”).

Typical examples, illustrating the distinction between geometry “‘in the
small” and “in the large™ are provided by the deformation of surfaces.
For example, already in 1838 Minding showed that a sufficiently small
segment of the surface of a sphere can be deformed, and this is a theorem
“in the small.” At the same time, he expressed the conjecture that the
entire sphere cannot be deformed. This theorem was proved by other
mathematicians as late as 1899. Incidentally, it is easy to confirm by
experiment that a sphere of flexible but inextensible material cannot be
deformed. For example, a ping-pong ball holds its shape perfectly well
although the material it is made from is quite flexible. Another example,
mentioned in §4, is the tin pail ; it is rigid in the large, thanks to the presence
of a curved flange, but separate pieces of it can easily be bent out of
shape. As we see, there is an essential difference between properties of
surfaces “in the small”” and “in the large.”

Other characteristic examples are provided by the theory of geodesics,
discussed in §4. A geodesic “in the small,” i.e., on a small segment of
the surface, is a shortest path, but “in the large” it may not be so at all;
for example, it may even be a closed curve, as was pointed out earlier
for great circles of a sphere.

The reader will readily note that the theorems on geodesics formulated
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in §4 are basically theorems “in the small.” Questions on the behavior
of geodesic curves throughout their whole course will belong to geometry
“in the large.” It is known, for example, that on a regular surface two
sufficiently adjacent points can be joined by a unique geodesic, remaining
entirely in a certain small neighborhood of two points. But if we consider
geodesics that during their course may depart as far as we like from
the two points, then by a theorem of Morse any pair of points on a
closed surface may be joined by an infinite number of geodesics. Thus,
two points A and B on the lateral surface of a curved cylinder may be
joined by very different geodesics: it is sufficient to consider helices which
run from A to B but wind around the cylinder a different number of
times. The theorem of Poincaré on closed geodesics, stated in §5 of
Chapter XVIII, and proved by Ljusternik and Snirelman, also belongs
to geometry “in the large.”

The proofs for these theorems, as for many theorems of geometry
“in the large,” were inaccessible with the usual tools of classical differential
geometry and required the invention of new methods.

When these problems of geometry “in the large” were inevitably
attracting the attention of mathematicians, the restriction to regular
surfaces could no longer be maintained, if only because we are continually
encountering surfaces that are not regular but have discontinuous curva-
ture ; for example, convex lenses with a sharp edge, and so forth. Moreover,
there are many analytic surfaces that cannot be extended in any natural
way without acquiring “singularities” in the form of edges or cusps and
thus becoming nonregular.

Thus, a segment of the surface of a cone cannot be extended in a natural
way without leading to the vertex, a cusp where the smoothness of the
surface is destroyed.

This last result is only a particular case of the following remarkable
theorem. Every developable surface other than a cylinder will lead, if
naturally extended, to an edge (or a cusp in the case of a cone) beyond
which it cannot be continued without losing its regularity.

Thus there is a profound connection between the behavior of a surface
“in the large” and its singularities. This is the reason why the solution
of problems ““in the large” and the study of surfaces with “‘singularities”
(edges, cusps, discontinuous curvature and the like) must be worked out
together.

Similar new directions were taken in analysis. For example, the
qualitative theory of differential equations mentioned in §7 of Chapter V,
studies the properties of solutions of a differential equation in its entire
domain of definition, ie., “in the large,” paying particular attention to
“singularities,” i.e., to violations of regularity, and to singular points of
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the equation. Moreover, contemporary analysis includes the study of
nonregular functions which did not occur in classical analysis (cf. Chapter
XV) and thereby provides geometry with a new means of studying more
general surfaces. Finally, in the calculus of variations, where we are
usually looking for curves or surfaces with some extremal property, it
sometimes happens that the limit curve, for which the extreme is attained,
is not regular. For such problems it is necessary that the class of curves
or surfaces under consideration should be closed (that is, should include
all its limit curves or surfaces), a fact which necessarily led to the study
of at least the simplest nonregular curves and surfaces. In a word, the
new directions taken by geometry did not originate in isolation but in
close connection with the whole development of mathematics.

The turning of attention to problems “in the large” and nonregular
surfaces began about 50 years ago and was shared by many mathemati-
cians. The first essential step was taken by Hermann Minkowski (1864-
1909), who laid the foundation for an extensive branch of geometry, the
theory of convex bodies. Incidentally, one of the questions which started
Minkowski on his investigations was the problem of regular lattices,
which is closely connected with the theory of numbers and geometric
crystallography.

A body is called convex if through each point of its surface we may
pass a plane that does not intersect the body, ie., at any point of its
surface the body may rest on a plane (figure 51). A convex body is defined

Fig. 51.

by its surface alone, so that for the most part it makes no difference
whether we speak of the theory of convex bodies or of closed convex
surfaces. The general theorems on convex bodies are proved, as a rule,
without any additional assumptions about the smoothness or “regularity”
of their surfaces. Thus these theorems are usually concerned with the
whole convex body or surface, so that the restrictions of classical dif-
ferential geometry are automatically removed. However, the two theories
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(of convex bodies and of nonregular surfaces) were at first very little
connected with each other, the combination of the two taking place
considerably later.

Beginning in 1940, A. D. Aleksandrov developed the theory of general
curves and surfaces, including both the regular surfaces of classical
differential geometry and also such nonsmooth surfaces as polyhedra,
arbitrary convex sets, and others. In spite of the great generality of this
theory, it is chiefly based on intuitive geometric concepts and methods,
although it also makes essential use of contemporary analysis. One of
the basic methods of the theory consists of approximating general surfaces
by means of polyhedra (polyhedral surfaces). This device in its simplest
form is known to every schoolboy, for example, in computing the area
of the lateral surface of a cylinder as the limit of the areas of prisms.
In a number of cases the method produces strong results that either
cannot be derived in another way or else, if they are to be proved by an
analytic method, require the introduction of complicated ideas. Its
essential feature consists of the fact that the result is first obtained for
polyhedra and is then extended to general surfaces by a limit process.

One of the beginnings of the theory of general convex surfaces was
the theorem on the conditions under which a given evolute (cf. figure 52)
may be pasted together
to form a convex poly-
hedron. This theorem,
completely elementary in
its formulation, has a
nonelementary proof and
leads to far-reaching cor-
ollaries for general con-
b vex surfaces. The reader
is, of course, familiar with
the pasting together of a
polyhedral surface from
segments; for example,
the assembling of a cube
from the cross-shaped
pattern in figure 52, or

Fig. 52. of a cylinder from a rec-

tangle and two circles.

This simple example of assembling surfaces from segments of them is

converted into a general method of “cutting apart and pasting together,”

which has produced profound results in various questions of the theory
of surfaces and has found practical applications.
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Deep-lying results in this theory were obtained by A. V. Pogorelov.
In particular, he showed that every closed convex surface cannot be
deformed as a whole with preservation of its convexity. This result,
achieved in 1949, completes the efforts of many well-known mathemati-
cians, who for the preceding 50 years had tried to prove it but had been
successful only under various additional hypotheses. The results of
Pogorelov, in conjunction with the “method of pasting together,” not
only provided a complete solution for the problem, but almost completely
cleared up the whole question of the deformability or nondeformability
of closed and nonclosed convex surfaces. They also established a
close connection between the new theory and “classical” differential
geometry.

In this way a theory of surfaces was constructed that included the
classical theory as well as the theory of polyhedra, of arbitrary convex
surfaces, and of very general nonconvex surfaces. Lack of space does
not allow us to discuss in detail the results or the still unsolved problems
of the theory, although this could readily be done, since they are for
the most part quite easily visualized and, in spite of the difficulty of
exact proofs, do not require any special knowledge.

In §4, in speaking of the deformation of surfaces, we had in mind
deformations of a regular (continuously curved) surface that preserved
its regularity. But in the theorem of Pogorelov, on the contrary, there
is no requirement of regularity for either the initial or the deformed
surface, although the requirement of convexity is imposed on both
surfaces.

It is obvious that deformation of a sphere, for example, becomes
possible if we allow breaks in the surface and violation of the convexity.
It is sufficient to cut out a segment of the surface and then replace it
after the deformation; that is, so to speak, to push a segment of the
surface into the interior. Considerably more unexpected is the result
obtained recently by the American mathematician Nash and the Dutch
mathematician Kuiper. They showed that if we preserve only the smooth-
ness of a surface and allow the appearance of any number of sharp jumps
in the curvature of the surface (i.e., if we eliminate any requirement of
continuity, boundedness, or even existence of the second derivatives of
the functions defining the surface) then it turns out to be possible to
deform the surface as a whole with a very great degree of arbitrariness.
In particular a sphere may be deformed into an arbitrarily small ball,
which has a smooth surface consisting of very shallow wavelike creases.
Some idea of a deformation of this sort may be gained by the easily
imagined possibility of rumpling up into almost any shape a spherical
cover made of very soft cloth. On the other hand, a small celluloid ball
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behaves very differently. The elastic material of its surface resists not
only extension but also sharp bending, so that such a ball is very rigid.

Differential geometry of various groups of transformations. At the
beginning of this century, there arose from classical differential geometry
a series of new developments based on one general idea, namely the study
of properties of curves, surfaces, and families of curves and surfaces which
remain invariant under various types of transformations. Classical
differential geometry investigated properties invariant under translation;
but of course there is nothing to prevent us from considering other
geometric transformations. For example, a projective transformation is
one in which straight lines remain straight, and projective geometry,
which has been in existence for a long time, studies those properties of
figures that remain invariant under projective transformations. Ordinary
projective geometry remains similar, in the problems it investigates, to
the usual elementary and analytic geometry, whereas “‘projective dif-
ferential geometry” (the theory of curves, surfaces, and families developed
at the beginning of the present century) is similar to classical differential
geometry, except that it studies properties that are invariant under
projective transformations. Fundamental in this last direction were the
contributions of the American Wilczynski, the Italian Fubini, and the
Czech mathematician, Cech.

In the same way arose “affine differential geometry,” which studies
the properties of curves, surfaces, and families invariant under affine
transformations, i.e., under transformations that not only take straight
lines into straight lines but also preserve parallelism. The work of the
German mathematician Blaschke and his students developed this branch
of geometry into a general theory. Let us also mention ‘“‘conformal
geometry,” in which one studies the properties of figures invariant under
transformations that do not change the angles between curves.

In general, the possible “geometries” are very diverse in character,
since essentially any group of transformations may serve as the basis of
a ‘“geometry,” which then studies just those properties of figures that
are left unchanged by the transformations of the group. This principle
for the definition of geometries will be discussed further in Chapter XVII.

Other new directions in differential geometry are being successfully
developed by Soviet geometers, S. P. Finikov, G. F. Laptev, and others.
But in our present outline it is not possible to give an account of all
the various investigations that are taking place nowadays in the different
branches of differential geometry.
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THE CALCULUS OF
VARIATIONS

§1. Introduction

Examples of variational problems. We will be able to give a clearer
description of the general range of problems studied in the calculus of
variations, * if we first consider certain special problems.

1. The curve of fastest descent. The problem of the brachistochrone,
or the curve of fastest descent, was historically the first problem in the
development of the calculus of variations.

Among all curves connecting the points M, and M,, it is required
to find that one along which a mathematical point, moving under the
force of gravity from M, , with no initial velocity, arrives at the point M,
in the least time.

To solve this problem we must consider all possible curves joining M,
and M, . If we choose a definite curve /,
then to it will correspond some definite
value T of the time taken for the descent
of a material point along it. The time T
will depend on the choice of /, and of all
curves joining M, and M, we must
choose the one which corresponds to
the least value of T. Mz

The problem of the brachistochrone
may be expressed in the following way. y

We draw a vertical plane through the Fig. 1.

oM,

X

* The derivation of the name “calculus of variations™ is explained later.
119
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points M, and M, . The curve of fastest descent must obviously lie in it,
so that we may restrict ourselves to such curves. We take the point M,
as the origin, the axis Ox horizontal, and the axis Oy vertical and
directed downward (figure 1). The coordinates of the point M, will be
(0, 0); the coordinates of the point M, we will call (x,, y;). Let us
consider an arbitrary curve described by the equation

y=flx), 0<x<x,, )]

where f is a continuously differentiable function. Since the curve passes
through M, and M, the function f at the ends of the segment [0, x,]
must satisfy the condition

f0) =0, fix =y, @

If we take an arbitrary point M(x, y) on the curve, then the velocity
v of a material point at this point of the curve will be connected with
the y-coordinate of the point by the well-known physical relation

$ot =gy,
or
v=V2gy

The time necessary for a material point to travel along an element ds
of arc of the curve has the value

ds _ _”"'y’gdx
v W2gy

and thus the total time of the descent of the point along the curve from
M, to M, is equal to

T

1 r’ Vi+y2 . 3)

Vil
Finding the brachistochrone is equivalent to the solution of the following

minimal problem: Among all possible functions (1) that satisfy conditions
(2), find that one which corresponds to the least value of the integral (3).

2. The surface of revolution of the least area. Among the curves
joining two points of a plane, it is required to find that one whose arc,
by rotation around the axis Ox, generates the surface with the least area.

We denote the given points by M,(x, , y,) and M,(x,, ;) and consider
an arbitrary curve given by the equation

y = fx). (4)
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If the curve passes through M, and M,, the function f will satisfy
the condition

Slx) = 3, f(xa) =y, (5)

When rotated around the axis Ox this curve describes a surface with
area numerically equal to the value of the integral

S=2«f’y VI T 72 dx. ®)
%

This value depends on the choice of the curve, or equivalently of the
function y = f(x). Among all functions (4) satisfying condition (5) we
must find that function which gives the least value to the integral (6).

3. Uniform deformation of a membrane. By a membrane we usually
mean an elastic surface that is plane in the state of rest, bends freely,
and does work only against extension. We assume that the potential
energy of a deformed membrane is proportional to the increase in the
area of its surface.

In the state of rest let the membrane occupy a domain B of the Oxy
plane (figure 2). We deform the
boundary of the membrane in a
direction perpendicular to Oxy and
denote by ¢(M) the displacement of
the point M of the boundary. Then
the interior of the membrane is also
deformed, and we are required to
find the position of equilibrium of o
the membrane for a given deforma-
tion of its boundary.

With a great degree of accuracy )X/
we may assume that all points of the M
membrane are displaced perpendic- FiG. 2.
ularly to the plane Oxy. We denote
by u(x, y) the displacement of the point (x, y). The area of the membrane
in its displaced position will be*

”(1 + u* + W1 dx dy.

B

* Here and everywhere in this chapter we use subscripts to denote the arguments
with respect to which the partial derivatives are taken.



122 VIII. THE CALCULUS OF VARIATIONS

If the deformations of the elements of the membrane are so small that
we can legitimately ignore higher powers of u, and wu,, this expression
for the area may be replaced by a simpler one:

[[ [ +302 + )] dxay.
B
The change in the area of the membrane is equal to
3 [f 6+ iy axay;
B
so that the potential energy of the deformation will have the value
Eff @2 +)axay, (7)
B

where p is a constant depending on the elastic properties of the membrane.
Since the displacement of the points on the edge of the membrane is
assumed to be given, the function u(x, y) will satisfy the condition

on the boundary of the domain B.

In the position of equilibrium the potential energy of the deformation
must have the smallest possible value, so that the function u(x, y), de-
scribing the displacement of the points of the membrane, is to be found
by solving the following mathematical problem: Among all functions
u(x, y) that are continuously differentiable on the domain B and satisfy
condition (8) on the boundary, find the one which gives the least value -
to the integral (7).

Extreme values of functionals and the calculus of variations. These
examples allow us to form some impression of the kind of problems
considered, but to define exactly the position of the calculus of variations
in mathematics, we must become acquainted with certain new concepts.
We recall that one of the basic concepts of mathematical analysis is
that of a function. In the simplest case the concept of functional depend-
ence may be described as follows. Let M be any set of real numbers.
If to every number x of the set M there corresponds a number y, we say
that there is defined on the set M a function y = f{x). The set M is often
called the domain of definition of the function.

The concept of a functional is a direct and natural generalization of
the concept of a function and includes it as a special case.
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Let M be a set of objects of any kind. The nature of these objects is
immaterial at this time. They may be numbers, points of a space, curves,
functions, surfaces, states or even motions of a mechanical system. For
brevity we will call them elements of the set M and denote them by the
letter x.

If to every element x of the set M there corresponds a number y, we
say that there is defined on the set M a functional y = F(x).

If the set M is a set of numbers x, the functional y = F(x) will be a
function of one argument. When M is a set of pairs of numbers (x, , x;)
or a set of points of a plane, the functional will be a function y = F(x, , x;)
of two arguments, and so forth.

For the functional y = F(x), we state the following problem:

Among all elements x of M find that element for which the functional
y = F(x) has the smallest value.

The problem of the maximum of the functional is formulated in the
same way.

We note that if we change the sign in the functional F(x) and consider
the functional —F(x), the maximum (minimum) of F(x) becomes the
minimum (maximum) of —F(x). So there is no need to study both
maxima and minima; in what follows we will deal chiefly with minima
of functionals.

In the problem of the curve of fastest descent, the functional whose
minimum we seek will be the integral (3), the time of descent of a material
point along a curve. This functional will be defined on all possible functions
(1), satisfying condition (2).

In the problem of the position of equilibrium of a membrane, the
functional is the potential energy (7) of the deformed membrane, and
we must find its minimum on the set of functions u(x, y) satisfying the
boundary condition (8).

Every functional is defined by two factors: the set M of elements x
on which it is given and the law by which every element x corresponds
to a number, the value of the functional. The methods of seeking the
least and greatest values of a functional will certainly depend on the
properties of the set M. ™

The calculus of variations is a particular chapter in the theory of
functionals. In it we consider functionals given on a set of functions,
and our problem consists of the construction of a theory of extreme
values for such functionals.

This branch of mathematics became particularly important after the
discovery of its connection with many situations in physics and mechanics.
The reason for this connection may be seen as follows. As will be made
clear later, it is necessary, in order that a function provide an extreme
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value for a functional, that it satisfy a certain differential equation.
On the other hand, as was mentioned in the chapters describing dif-
ferential equations, the quantitative laws of mechanics and physics are
often written in the form of differential equations. As it turned out,
many equations of this type also occurred among the differential equations
of the calculus of variations. So it became possible to consider the equa-
tions of mechanics and physics as extremal conditions for suitable
functionals and to state the laws of physics in the form of requiring an
extreme value, in particular a minimum, for certain quantities. New points
of view could thus be introduced into mechanics and physics, since
certain laws could be replaced by equivalent statements in terms of
“minimal principles.” This in turn opened up a new method of solving
physical problems, either exactly or approximately, by seeking the minima
of corresponding functionals.

§2. The Differential Equations of the Calculus of Variations

The Euler differential equation. The reader will recall that a necessary
condition for the existence of an extreme value of a differentiable function
f at a point x is that the derivative /' be equal to zero at this point:
f'(x) = 0; or what amounts to the same thing, that the differential of
the function be equal to zero here: df = f'(x)dx = 0.

Our immediate goal will be to find an analogue of this condition in the
calculus of variations, that is to say, to set up a necessary condition
that a function must satisfy in order to provide an extreme value for a
functional.

We will show that such a function must satisfy a certain differential
equation. The form of the equation will depend on the kind of functional
under consideration. We begin with the so-called simplest integral of the
calculus of variations, by which we mean a functional with the following
integral representation:

1) = [ Fx, . ) dx. ©

L1

The function F, occuring under the integral sign, depends on three
arguments (x, y, y'). We will assume it is defined and is twice continuously
differentiable with respect to the argument )’ for all values of this
argument, and with respect to the arguments x and y in some domain B
of the Oxy plane. Below it is assumed that we always remain in the
interior of this domain.
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It is clear that y is a function of x
y = yx), (10) 4

continuously differentiable on the seg-
ment x; < x < x;, and that ' is its
derivative,

Geometrically the function y(x) may
be represented on the Oxy plane by a
curve / over the interval [x,, x,]
(figure 3).

The integral (9) is a generalization of
the integrals (3) and (6), which we
encountered in the problem of the curve of fastest descent and the
surface of revolution of least area. Its value depends on the choice of
the function y(x) or in other words of the curve /, and the problem of
its minimum value is to be interpreted as follows:

Given some set M of functions (10) (curves /); among these we must
find that function (curve /) for which the integral /(y) has the least value.

We must first of all define exactly the set of functions M for which
we will consider the value of the integral (9). In the calculus of variations
the functions of this set are usually called admissible for comparison.
We consider the problem with fixed boundary values. The set of admissible
functions is defined here by the following two requirements:

Sl — —

7]

il X2
FiG. 3.

1. y(x) is continuously differentiable on the segment [x, , x,];
2. At the ends of the segment y(x) has values given in advance

Yx) =y, Hxd) = . (1D

Otherwise the function y(x) may be completely arbitrary. In the language
of geometry, we are considering all possible smooth curves over the
interval [x,, x;], which pass through the two points A(x,,y,) and
B(x,, y,) and can be represented by the equation (10). The function
giving the minimum of the integral will be assumed to exist and we will
call it y(x).

The following simple and ingenious arguments, which can often be
applied in the calculus of variations, lead to a particularly simple form
of the necessary condition which y(x) must satisfy. In essence they allow
us to reduce the problem of the minimum of the integral (9) to the problem
of the minimum of a function.

We consider the family of functions dependent on a numerical para-
meter «,

F(x) = px) + an(x). (12)
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In order that 7(x) be an admissible function for arbitrary «, we must
assume that x(x) is continuously differentiable and vanishes at the ends
of the interval [x,, x,].

n(x;) = n(xy) = 0. (13)
The integral (9) computed for ¥ will be a function of the parameter «

I(y) = I *Fx,y +on, ¥ + an’)dx = B(a).*

1

Since y(x) gives a minimum to the value of the integral, the function
@(a) must have a minimum for « = 0, so that its derivative at this point
must vanish

®0) = [“Fx )0+ Folopy)nlde =0 (14)

This last equation must be satisfied for every continuously differentiable
function 5(x) which vanishes at the ends of the segment [x, , x,]. In order
to obtain the result which follows from this, it is convenient to transform
the second term in condition (14) by integration by parts

z , 22 d
J.SF‘,:?} dx = '—J. T}d—waf dx
so that condition (14) takes the new form

o0 = [ (F, - %F,») FidE =0l (15)

It may be shown that the following simple lemma holds.
Let the following two conditions be fulfilled:
1. The function f{x) is continuous on the interval [a, b];

2. The function n(x) is continuously differentiable on the interval
[a, b] and vanishes at the ends of this interval.

If for an arbitrary function x(x) the integral j': f(x) p(x) dx is equal
to zero, then it follows that f{x) = 0.

* The difference ¥ — y = an is called the variation (change) of the function y and
is denoted by 3y, and the difference I(¥#) — I(y) is called the roral variation of the
Integral (9). Hence we get the name calculus of variations.
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For let us assume that at some point ¢ the function f is different from
zero and show that then a function 7(x) necessarily exists for which
j: Jx)n(x) dx £ 0, in contradiction to the
condition of the lemma.

Since f(c) # 0 and f'is continuous, there [ "
must exist a neighborhood [«, 8] of ¢ in
which f will be everywhere different from

zero and thus will have a constant sign
throughout. j\

We can always construct a function ...
n(x) which is continuously differentiable ¢ a ac B o
on [a, b], positive on [«, ], and equal to Fic. 4.

zero outside of [«, B] (figure 4).
Such a function #(x), for example, is defined by the equations

0 on |a,«l,
n(x) = {(x — o)} —x* on [x8B]
0 on [B,b].

But for such a function 7(x)

ﬂﬁﬂ:ﬁﬁ&

The latter of these integrals cannot be equal to zero since, in the interior
of the interval of integration, the product fy is different from zero and
never changes its sign.

Since equation (15) must be satisfied for every »(x) that is continuously
differentiable and vanishes at the ends of the segment [x,, x,], we may
assert, on the basis of the lemma, that this can occur only in the case

n—%n:& (16)

or, by computing the derivative with respect to x
FV(x’ Vs yt) - Fﬂr’(x' s y') - Fvv’(x’ » y')y' - v'v’(xv Vs y')y' = 0' (l?)

This equation is a differential equation of the second order with respect
to the function y. It is called Euwler's equation.

We may state the following conclusion.

If a function p(x) minimizes the integral [(y), then it must satisfy
Euler’s differential equation (17). In the calculus of variations, this last
statement has a meaning completely analogous to the necessary condition



128 VIII. THE CALCULUS OF VARIATIONS

df = 0 in the theory of extreme values of functions. It allows us im-
mediately to exclude all admissible functions that do not satisfy this
condition, since for them the integral cannot have a minimum, so that
the set of admissible functions we need to study is very sharply reduced.

Solutions of equation (17) have the property that for them the derivative
[(d/do)i(y + am)],_, vanishes for arbitrary n(x), so that they are analo-
gous in meaning to the stationary points of a function. Thus it is often
said that for solutions of (17) the integral /(y) has a stationary value.

In our problem with fixed boundary values, we do not need to find
all solutions of the Euler equation but only those which take on the
values y, , y, at the points x; , x,.

We turn our attention to the fact that the Euler equation (17) is of
the second order. Its general solution will contain two arbitrary constants

y = ¢(x’ Cl L] C2)°

These must be defined so that the integral curve passes through the points
A and B, so we have the two equations for finding the constants C, and C,

$(x;,C, C) =, $x:,Cp,C) = y,.

In many cases this system has only one solution and then there will
exist only one integral curve passing through 4 and B.

The search for functions giving a minimum for this integral is thus
reduced to the solution of the following boundary-value problem for
differential equations: On the interval [x,, x;] find those solutions of
equation (17) that have the given values y, , y, at the ends of the interval.

Frequently this last problem can be solved by using known methods
in the theory of differential equations.

We emphasize again that every solution of such a boundary-value
problem can provide only a suspected minimum and that it is necessary
to verify whether or not it actually does give a minimum value to the
integral. But in particular cases, especially in those occurring in the
applications, Euler’s equation completely solves the problem of finding
the minimum of the integral. Suppose we know initially that a function
giving a minimum for the integral exists, and assume, moreover, that
the Euler equation (17) has only one solution satisfying the boundary
conditions (11). Then only one of the admissible curves can be a suspected
minimum, and we may be sure, under these circumstances, that the
solution found for the equation (17) indeed gives a minimum for the
integral.

Example. It was previously established that the problem of the curve
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of fastest descent may be reduced to finding the minimum of the integral

I(y) = r' il;_y—ys dx

among the set of functions satisfying the boundary conditions
Y0 =0, plxy) = y.

ViT7
vy

In this problem
F —

Euler’s equation has the form

1 _sp d b
2 T2 [pe—2Y ___J—o.
i e ol Ly o o

After some manipulation it takes the form

2" 1
14 y? y
Multiplying both sides of the equation by y’ and integrating, we get

In1 4y =—Iny+ Ink,

or "
t =2,
Y y
y =
'\/k = dy = &+ dx.
Now letting

y=;(l —cosu), dy =§Sinudﬂ,

we find after substituting and simplifying

g(l —cos u)ydu = + dx,

from which, by integrating, we get: x = 4+ k/2 (v —sin 4) + C. Since
the curve must pass through the origin, it follows that we must put C = 0.
In this way we see that the brachistochrone is the cycloid

k . k
x=§(u—smu), y=§(l — COS ¥).



130 VIII. THE CALCULUS OF VARIATIONS

The constant & must be found from the condition that this curve passes
through the point My(x; , y»).

Functionals depending on several functions. The simplest functional
in the calculus of variations (17) depended on only one function. In the
applications such functionals will occur in those cases where the objects
(or their behavior) are defined by only one functional dependence. For
example, a curve in the plane is defined by the dependence of the ordinate
of a point on its abscissa, the motion of a material point along an axis
is defined by the dependence of its coordinate on time, etc.

But we must often deal with objects that cannot be defined so simply.
In order to define a curve in space, we must know the functional de-
pendence of two of its coordinates on the third. The motion of a point
in space is defined by the dependence of its three coordinates on time,
etc. Study of these more complicated objects leads to variational problems
with several varying functions.

We will restrict ourselves to cases in which the functional depends on
two functions y(x) and z(x), since the case of a larger number of functions
does not differ in principle from this one.

We consider the following problem. Admissible pairs of functions
y(x) and z(x) are defined by the conditions:

1. The functions
y=yx), z=1z(x) (18)
are continuously differentiable on the segment [x, , x.];
2. At the ends of the segment these functions have given values
Wx) =y, Yxx) = y,,
2(X) = 2z, 2x) = 2. (19)

Among all possible pairs of functions y(x) and z(x), we must find the
pair that gives the least value to the integral

10,2 = [ Fex, 3,2, 7, 2) d 20)

In the three-dimensional space x, y, z, each pair of admissible functions
will correspond to a curve /, defined by equations (18) and passing through
the points

My(xy, 31,21, My(xz, y2 5 22).

We must find the minimum of the integral (20) on the set of all such
curves.
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We assume that the pair of functions giving the minimum of the integral
(20) exists, and we will call these functions y(x) and z(x). Together with
them we consider a second pair of functions

y=y+oanx) Z=z+ al(x),

where 7(x) and {(x) are any continuously differentiable functions vanishing
at the ends x, , x, of the segment; 7, # will also be admissible, and for
a = 0 they will coincide with the functions y, z. We substitute them in (20)

.
15,8 = ["Fooy + anz + b,y + an', 2 + o) dx = B(a).

I

The integral so derived will be a function of «. Since 7 and Z coincide
with y and z when « = 0, the function ®(a) must have a minimum for
o = 0. But at 2 minimum point the derivative of @ must vanish

@'(0) = 0.

Computing the derivative gives
[*Fn+F -t +F o +F - Ddx =0,
*1
or, if the terms in %’ and {’ are integrated by parts
d
f’ [(F = £ F) 20 + (F. = 5 Fu) 100)] e = 0.

This last equation must be satisfied for any two continuously differentiable
functions n(x) and {(x) vanishing at the ends of the interval. Hence, from
the basic lemma proved earlier, the following two conditions must be
fulfilled:

F,—%F,r=0,
p @0
F‘_d_sz’=0.

Hence, if the functions y, z give a minimum for the integral (20), they
must satisfy the system of Euler differential equations (21).

This result again allows us to replace a variational problem for the
minimum of the integral (20) by a boundary-value problem in the theory
of differential equations: On the interval [x;, x,], we must find those
solutions y, z of the system of differential equations (21) that satisfy
the boundary conditions (19).
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As in the preceding case, this opens up a possible path for the solution
of the minimal problem.

As an example of an application of the Euler system (21), let us consider
the variational principle of Ostrogradskii-Hamilton in Newtonian me-
chanics. We restrict ourselves to the simplest form of this principle.

We consider a material body of mass m and assume that the dimensions
and form of the body may be ignored, so that we may consider it as a
material point.

We assume that the point moves from its position M,(x,, y,, z;) at
time ¢, to the position My(x,, y,, z,) at time f, . We also assume that
the motion occurs under the laws of Newtonian mechanics and is caused
by application of a force F(x, y, z, r) which depends on the position of
the point and on the time ¢ and possesses a potential function U(x, y, z, 1).
This last condition means the following: the components F,, F,, F, of
the force F along the coordinate axes are the partial derivatives of a
function U with respect to the corresponding coordinates

ol oU ou
oo B B

We assume the motion to be free, that is, not subject to any kind of
constraints. *
The equations of motion of Newton are

dx _8U  dy_aU  dz_ aU

Mar T "ar T 3y Mar T ez

If the point obeys the laws of Newtonian mechanics, it moves in a
completely determined manner. But together with these “Newtonian
motions” of the point, let us consider other (non-Newtonian) motions,
which for brevity we will call “admissible,” and which will be defined
by two requirements only, that at time ¢, the point is in the position M,
and at time 1, is in the position M, .

How can we distinguish the “Newtonian motion” of the point from
these other “admissible” motions ? Such a possibility is given by the
Ostrogradskii-Hamilton principle.

We introduce the kinetic energy of the point

T = m(x"* + y* + 2%

* This is not essential for the Ostrogradskii-Hamilton principle: We may impose
any restraints we like on the mechanical system, even nonstationary ones, provided
only that they are holonomic, i.e., that they may be described in the form of equations
not containing derivatives of the coordinates with respect to time.
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and form the so-called action integral
t
o= j’(r+ U)adt.
t

The principle states: The “Newtonian motion” of the point is distin-
guished among all its “admissible’’ motions by the fact that it gives the
action integral a stationary value.

The action integral / depends on three functions: x(r), y(1), z(f).

Since for all the motions under comparison the initial and final positions
of the point are identical, the boundary values of these functions are
fixed. We are dealing here with a variational problem for three varying
functions with fixed values at the ends of the interval [t , #,).

Previously we agreed to say that the integral (17) has a stationary
value for any curve which is an integral curve of the Euler equation.
In our problem we are integrating a function

F=T+U=43%mx*+y?+ 2%+ U,y 2,1

which depends on three functions, so that for a stationary value of the
integral we must satisfy the system of three differential equations

d
e =0
d
F S ey ;s = 0,
v dt ¥
d
F,——F,=0
z dr z
Since F, = oU/éx, F,, = mx’, ---, the system of Euler equations is

identical with the equations of motion of Newtonian mechanics, which
provides a verification of the Ostrogradskil-Hamilton principle.

The minimum problem for a multiple integral. The last problem in
the calculus of variations to which we wish to draw the attention of the
reader is the problem of minimizing a multiple integral. Since the facts
connected with the solution of such problems are similar for integrals
of any multiplicity, we will confine ourselves to the simplest case, that
of double integrals.

Let B be a domain in the Oxy plane, bounded by the contour /. The set
of admissible functions is defined by the conditions:

1. u(x, ) is continuously differentiable on the domain B,
2. On [ the function u takes given values

uly = fiM). (22)
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Among all functions we must find the one which gives a minimum
value for the integral

1) = f f F(x, y, 4, 1y , u,) dx dy. @3)
B

The given boundary values (22) for the function # in the space (x, y, ¥)
determine a given space curve I, lying above / (cf. figure 2, Chapter VII).

We consider all possible surfaces S passing through I'and lying above B,
Among these we want to find the one for which the integral (23) is minimal.

As before, we assume the existence of the minimizing function and
denote it by u. At the same time we consider another function

4 = u+ on(x, y),

where y(x, y) is any continuously differentiable function vanishing on
Then the function

D) = [[Foepu+ an,u + ome , 4y + om,) di dy = B()
B
must have a minimum for « = 0. In this case its first derivative must be
equal to zero for « = 0

&) =0,
or

[ Fan + Fupne + Funy) dx dy = 0. (24)
B '
We transform the last two terms by Ostrogradskii’s formula

f_[ (F, uz + F, u."?v) dx dy

= .”[6x (F%‘?)Jra (Fuyn)| dx dy — ”( . - Fun) mdx dy

i I [F., cos (n, x) + F,, cos (n, )] 7 ds
i
— -U (—% F,, + a—a} Fu_) n dx dy.

The contour integral along / must vanish, since on the contour / the
function 7 is equal to zero, so that condition (24) may be put in the form

“ (F“ ‘“%Fuz *%Fu,) ndxdy = 0.
B f
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This equation must be satisfied for every function » which is continuously
differentiable and vanishes on the boundary /.
We may conclude, as before, that all points of the domain B the equation

i 0
FomgoFo—goFuy =0 (25)
must be satisfied.

So if the function u gives a minimum for the integral (23), it must
satisfy the partial differential equation (25).

As in all the preceding problems, we have here established a connection
between a variational problem of minimizing an integral and a boundary-

value problem for a differential equation (in this case partial).

Example. The displacement u(x, y) of points of a membrane with a
deformed boundary is to be found from the condition of the minimum
of the potential energy

L[] a2+ iy dxdy
B

for the given boundary values u |;, = ¢.
Omitting, for simplicity, the constant factor u, we may set

F=%(ui+u’,,

so that equation (25) has the form

0 d
“Ht Ty =0
or
o %
M=ty ="

Thus the problem of determining the displacement of the points of a
membrane has been reduced to that of finding a harmonic function u
with given values on the boundary of the domain (cf. Chapter VI, §3).

§3. Methods of Approximate Solution of Problems in the
Calculus of Variations

We conclude the present chapter with an indication of the ideas involved
in some of the approximation methods in the calculus of variations.
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For definiteness we discuss the simplest functional
10) = [ F(x, y, ) d
bt}

for fixed boundary values of the admissible functions.

Let »(x) be an exact solution of the problem of minimizing /, with
m = I(y) the corresponding minimal value of the integral. It would
appear that if we determine an admissible function y for which the value
of the integral /(y) is very near to m, we may assume that y will also
differ little from the exact solution y. Moreover, if we are able to construct
a sequence of admissible functions ¥, , 7,, -+ for which K(y,) —»m, we
may expect that such a sequence will converge in some sense or other
to the solution y, so that computation of ¥, with sufficiently large index
will allow us to find the solution to any desired degree of accuracy.

Depending on how we go about choosing the “minimizing sequence”’
Yu(n = 1,2, --+), we will have one or another of the various approximation
methods in the calculus of variations.

Historically, the first of these was the method of broken lines, or
Euler’s method. We decompose the interval [x,, x,] into a number of
segments. For example, if we choose these segments of equal length,
the points of division will be

Xpo Xy + B Xy + 2k, xy + b= xy, h = 53_"1‘3
We now construct the broken line p,_, with vertices lying above the points
of division. The ordinates of the vertices we denote by

botbl’bz’""bﬂ-lvbu

and require that this broken line begin and end at the same points as
the admissible curves, so that b, = y, and b, = y,. Then the broken
line will be defined by the ordinates

b;.bz.'" ’bﬂ—:t'

The question now is to find out how to choose the broken line p,_,
(i.e., the ordinates b, of its vertices) so as to approximate as closely as
possible the exact solution of the problem.

To achieve this object it is natural to proceed as follows. We compute
the integral I for the broken line. Its value will depend on the b;

l(pﬁ-l) == ¢(b‘! ’ bs, SRS bﬂ—l)
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and will therefore be a function of these ordinates. We now choose the
b, so that they give I(p,_,) a minimum value. To define these b; we will
have the system of equations

0 :
b, p..y) =0 (i=12 " n—1).

Since any admissible curve, and in particular the exact solution of the
problem, may be approximated by broken lines with any desired accuracy,
both in its position on the plane and in the directions of its tangents,
it is clear that the sequence of broken lines p,_, thus constructed will,
in fact, be a minimizing sequence. By taking n sufficiently large, we may
expect to approximate the solution with any desired degree of accuracy
over the whole interval [x, , x,]. Of course, the fact of convergence must
be investigated in each case.

The following method, which is very convenient for calculation, is
widely used in physics and technology.

We choose any function ¢,(x) satisfying the boundary conditions
dolx;) = » and ¢y(x;) = y,, and a sequence of functions ¢,(x), dy(x), -*+,
vanishing at the ends of the interval [x, , x,).

We then form the linear combination

sa(x) = ‘ibo(x) + a1951(x) + -+ an‘f-’u(x)°

For arbitrary values of the numerical coefficients a,,a,, -, a,, the
function s,(x) will be admissible.

Replacing y by s,(x) in the integral / and making the necessary computa-
tions, we obtain a certain function of the coefficients a; .

We now choose the g; so that this function has the least possible value.
The coefficients must be found from the system

] .
6_05!(3") =0 (=1,2,-n).

Solving this system, we obtain, in general, the values of the coefficients
a,, -, a, producing a minimum value for /(s,) and with them we construct
an approximation to the solution

Sa(x) = ¢o(x) + d:‘f’:(x) + o0+ dua(x).

The sequence of approximations §, (n = 1, 2, ---) constructed in this
way will not be a minimizing sequence for arbitrary choice of the func-
tions ¢; . The necessary condition for it to be so is that the sequence
of functions ¢, satisfy a certain condition of “completeness” which we
will not define here.
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FUNCTIONS
OF A COMPLEX VARIABLE

§1. Complex Numbers and Functions of a Complex Variable

Complex numbers and their significance in algebra. Complex numbers
were introduced into mathematics in connection with the solution of
algebraic equations. The impossibility of solving the algebraic equation

x24+1=0 m

in the domain of real numbers led to the introduction of a conventional
number, the imaginary unit /, defined by the equation

= —1. @)

Numbers of the form a + bi, where a and b are real numbers, were
called complex numbers. These numbers were manipulated like real
numbers, being added and multiplied as binomials. If we also make use
of equation (2), the basic operations of arithmetic when carried out on
complex numbers produce other complex numbers.* The division of
complex numbers being defined as the inverse of multiplication, it turns out
that this operation also is uniquely defined, provided only that the
denominator is not equal to zero. In this manner, the introduction of
complex numbers first brought to light the interesting, though for the
time being purely formal, fact that in addition to the real numbers there
exist other numbers, the complex ones, on which all the arithmetic opera-
tions can be performed.

* Complex numbers are known to the reader from secondary school. See also
Chapter 1V, §3.

139
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The next step consists of the geometric representation of complex
numbers. Every complex number a + bi may be represented by a point
in the Oxy plane with coordinates (a, b), or by a vector issuing from the
origin to the point (@, b). This led to a new point of view concerning
complex numbers. Complex numbers are pairs (a, b) of real numbers
for which there are established definitions of the operations of addition
and multiplication, obeying the same laws as for real numbers. Here we
discover a remarkable situation: The sum of two complex numbers

(@+bi)+ (c+di)y=(a+c)+ (b+d)

is represented geometrically by the diagonal of the parallelogram con-
structed from the vectors representing the summands (figure 1). In this
way, complex numbers are added by the
same law as the vector quantities found in
mechanics and physics: forces, velocities,
fo+c)+(b+d)i  and accelerations. This was a further
reason for considering that complex
numbers are not merely formal generaliza-
tions but may be used to represent actual

x» physical quantities.
We will see later how this point of view
is very successful in various problems of

Fig. 1. mathematical physics.

However, the introduction of complex
numbers had its first successes in the discovery of the laws of algebra and
analysis. The domain of real numbers, closed with respect to arithmetic
operations, was seen to be not sufficiently extensive for algebra. Even
such a simple equation as (1) does not have a root in the domain of real
numbers, but for complex numbers we have the following remarkable
fact, the so-called fundamental theorem of algebra: Every algebraic
equation

"+ gzl 4 a2+ a, =0

with complex coefficients has n complex roots.*

This theorem shows that the complex numbers form a system of
numbers which, in a well-known sense, is complete with respect to the
operations of algebra. It is not at all trivial that adjoining to the domain
of real numbers a root of the single equation (1) leads to the numbers
a + bi in whose domain any algebraic equation is solvable. The funda-
mental theorem of algebra showed that the theory of polynomials, even

* Cf. Chapter 1V, §3.
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with real coefficients, may be given a finished form only when we consider
the values of the polynomial in the whole complex plane. The further
development of the theory of algebraic polynomials supported this point
of view more and more. The properties of polynomials are discovered
only by considering them as functions of a complex variable.

Power series and functions of a complex variable. The development
of analysis brought to light a series of facts showing that the introduction
of complex numbers was significant not only in the theory of polynomials
but also for another very important class of functions, namely those which
are expandable in a power series

S(x) = a, + a,(x — a) + ay(x — a)® + - 3)

As was already mentioned in Chapter II, the development of the infini-
tesimal analysis required the establishment of a more precise point of
view for the concept of a function and for the various possibilities of
defining functions in mathematics. Without pausing here to discuss these
interesting questions, we recall only that at the very beginning of the
development of analysis it turned out that the most frequently encountered
functions could be expanded in a power series in the neighborhood of
every point in their domain of definition. For example, this property
holds for all the so-called elementary functions.

The majority of the concrete problems of analysis led to functions that
are expandable in power series. On the other hand, there was a desire to
connect the definition of a “mathematical” functions with a “mathema-
tical” formula, and the power series represented a very inclusive kind
of “mathematical” formula. This situation even led to serious attempts
to restrict analysis to the study of functions that are expandable in
power series and thus are called analyric functions. The development
of science showed that such a restriction is inexpedient. The problems of
mathematical physics began to extend beyond the class of analytic
functions, which does not even include, for example, functions represented
by curves with a sharp corner. However, the class of analytic functions,
in view of its remarkable properties and numerous applications, proved
to be the most important of all the classes of functions studied by mathe-
maticians.

Since the computation of each term of a power series requires only
arithmetic operations, the values of a function represented by a power
series may be computed also for complex values of the argument, at
least for those values for which the series is convergent. When we thus
extend the definition of a function of a real variable to complex arguments,
we speak of the “continuation™ of the function into the complex domain.
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Thus an analytic function, in the same way as a polynomial, may be
considered not only for real values of the argument but also for complex.
Further, we may also consider power series with complex coefficients.
The properties of analytic functions, as also of polynomials, are fully
revealed only when they are considered in the complex domain. Toillustrate
we turn now to an example.

Consider the two functions of a real variable

e* and

1 +x2°

Both these functions are finite, continuous, and differentiable an arbitrary
number of times on the whole axis Ox. They may be expanded in a
Taylor series, for example, around the origin x = 0

2
e =1+ +57 + @

1

—l—q_-;,—=l—x’+x‘—x°+"°. (5)

The first of the series so obtained converges for all values of x, while
the second series converges only for —1 < x < +1. Consideration of
the function (5) for real values of the argument does not show why its
Taylor series diverges for | x| = 1. Passing to the complex domain
allows us to clear up the situation. We consider the series (5) for complex
values of the argument

1 — 28 4 28 — 28 4 =, ©
The sum of n terms of this series
Sp=1—22 428 — 28 4 oo 4 (—1) 12202
is computed in the same way as for real values of z:

sp + 2%, = 1 + (—1)"z*",
hence
_ 14 (=D)nz
T 1+22

L]

This expression shows that for | z| < 1

]im Sn = ] 2 !
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since | z|** — 0. Thus for complex z satisfying the inequality | z | < 1
the series (6) converges and has the sum 1/(1 + z%). For |z| > | the
series (6) diverges, since in this case the difference s, — 5,_, = (—1)*"12"-?
does not converge to zero.

The inequality | z| < 1 shows that the point z is located at a distance
from the origin which is less than one. Thus the points at which the
series (6) converges form a circle in the complex plane with center at
the origin. On the circumference of this circle there lie two points 7 and
—i for which the function 1/(1 + z*) becomes infinite; the presence of
these points determines the restrictions on the domain of convergence
of the series (6).

The domain of convergence of a power series. The domain of con-
vergence of the power series

Ay + ay(z — a) + ay(z — @) + - + ax(z — a)* + - @)

in the complex plane is always a circle with center at the point a.
Let us prove this proposition, which is called 4bel’s theorem.
First of all we note that a series whose terms are the complex numbers w,

Wy Wy + ot oWy 0, 8

may be considered as two series, consisting of the real parts and the
imaginary parts of the number w, = u, + iv,

ty + g+ Uy ©)
U+ U ot Uy (10

A partial sum s, of the series (8) is expressed by the partial sums o,
and 7, of the series (9) and (10)

Sp = 0y + ITy,

so that convergence of the series (8) is equivalent to convergence of both
the series (9) and (10), and the sum s of the series (8) is expressed by the
sums ¢ and 7 of the series (9) and (10)

s=o+ ir.

After these remarks the following lemma is obvious:
If the terms of the series (8) are less in absolute value than the terms
of a convergent geometric progression

A+ Ag + - + A+
with positive 4 and g, where ¢ < 1, then the series (8) converges.



144 IX. FUNCTIONS OF A COMPLEX VARIABLE

For if | w,| < Aq", then

Ul = | wal < Aq",
[vn] = | wy| < Aq",

so that (cf. Chapter 11, §14) the series (9) and (10) converge and thus the
series (8) also converges.

We now show that if the power series (7) con-
verges at some point z,, then it converges at all
points lying inside the circle with center at a and
having z, on its boundary (figure 2). From this
proposition it follows readily that the domain of
convergence of the series (7)

dy + ay(z —a) + =+ + an(z —a)* + -

is either the entire plane, or the single point z = g,
or some circle of finite radius.

For let the series (7) converge at the point z, ; then the general term
of the series (7) for z = z, converges to zero for n — oo, and this means
that all the terms in the series (7) lie inside some circle; let 4 be the radius
of such a circle, so that for any n

| an(zo — @)*|< A. (1

We now take any point z closer than z, to a and show that at the point z
the series converges.
Obviously
lz—al <]z —al,
so that

|z—al
sy A& L ey 12
q Izo—a|< (12)

Let us estimate the general term of the series (7) at the point z

z—a \"* |z —al \"
a,lz —ﬂ“( ) |= a,(z, — a)*® (——)‘
n(ﬂ ) Zo—a | n(ﬂ ) I lzo_al 3

lay(z —a)* | =
from inequalities (11) and (12) it follows that
I a»(z = a)n | < AG’".

i.e., the general term of the series (7) at the point z is less than the general
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term of a convergent geometric progression. From the basic lemma
above, the series (7) converges at the point z.

The circle in which a power series converges, and outside of which it
diverges, will be called the circle of convergence; the radius of this circle
is called the radius of convergence of the power series. The boundary of
the circle of convergence, as may be shown, always passes through the
point of the complex plane nearest to a at which the regular behavior
of the function ceases to hold.

The power series (4) converges on the whole complex plane; the power
series (5), as was shown above, has a radius of convergence equal to one.

Exponential and trigonometric functions of a complex variable. A power
series may serve to ‘“continue’ a function of a real variable into the
complex domain. For example, for a complex value of z we define the
function ¢* by the power series

2
ghim | el (13)

In like manner the trigonometric functions of a complex variable are
introduced by

z3 zb

F z

et TR A T 5
2 4

cosz=l—-;—|-+:—'—--'. (15)

These series converge on the whole plane.

It is interesting to note the connection which occurs between the
exponential and trigonometric functions when we turn to the complex
domain.

If in (13) we replace z by iz, we get

z* . 2% z¢
I TH e TR T

£ ; Z
et l+1” +

Grouping everywhere the terms without the multiplier i and the terms
with multiplier i, we have

é* = cos z + /sin z. (16)
Similarly we can derive

e¥* = cos z — isinz. (16"
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Formulas (16) and (16’) are called Euler’s formulas. Solving (16) and
(16") for cos z and sin z, we get

cos z = —-——-——-——-—en T g
? 17
£ __ p-i
sinz = _e :
2i

It is very important that for complex values the simple rule of addition
of exponents continue to hold

% - pf1 = phritfy | (18)
Since for complex values of the argument we define the function e®

by the series (13), formula (18) must be proved on the basis of this
definition. We give the proof’

We will carry out the multiplication of series termwise. The terms
obtained in this multiplication of series may be written in the form of a
square table

) . 2 .23 _z§
bl =l pel g
+ zl ] zl z% zl z% + zl z; +
R VHS TR TR TR TR TR
2 2 2 2 3
2. LA . % A B L %
R TR T TR TR TR TR TR
3 3 2 3 3
A A . A . B 4h,a
L TR YR Y i YR TR YR TR

We now collect the terms which have the same sum of powers of z,
and z, . It is easy to see that such terms lie on the diagonals of our table.
We get

. 2. z 2 7, z z
ez.-e,=1+(%+—l‘T)+(—2%+]—1]—j+2—})+ < (19
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The general term of this series will be

n—1 a—z
Z2 2 31
n=D1 11 +(n—2)' T +

n ' ﬂr— n' = Tl
=1 B+ ey =‘Z:+T*“zws"z’+ +7)-

Applying the binomial formula of Newton, we get the general term in
the form

Zs

+

(z; 4 z)"
n! '

So the general term of the series (19) is identical with the general term
of the series for e®+#% , which proves the theorem on the rule for multi-
plication (18).

The multiplication theorem and Euler’s formula allow us to derive an
expression for the function e* in terms of functions of real variables in
finite form (without series). Thus, putting

=x+ iy,
we get
ef = eTHiv — g% . E“,
and since
e’ = cos y + isin y,
we find that

e* = e*(cos y + isin p). (20)

The formula so derived is very convenient for investigating the proper-
ties of the function e*. We note two of its properties: (1) the function e*
vanishes nowhere; for in fact, e* 3£ 0 and the functions cos y and sin y
in formula (20) never vanish simultaneously; (2) the function e* has

period 27, ie.,
e =t

This last statement follows from the multiplication theorem and the

equality
e¥™ = cos 27 + isin 27w = 1.

The formulas (17) allow us to investigate the functions cos z and sin z
in the complex domain. We leave it as an exercise for the reader to prove
that in the complex domain cos z and sin z have period 27 and that the
theorems about the sine and cosine of a sum continue to hold for them.
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The general concept of a function of a complex variable and the differen-
tiability of functions. Power series allow us to define analytic functions
of a complex variable. However, it is of interest to study the basic
operations of analysis for an arbitrary function of a complex variable
and in particular the operation of differentiation. Here we uncover very
deep-lying facts connected with the differentiation of functions of a
complex variable. As we will see on the one hand, a function, having a
first derivative at all points in a neighborhood of some point z, , necessarily
has derivatives of all orders at z,, and further, it can be expanded in a
power series centered at this point; i.e., it is analytic. Thus, if we consider
differentiable functions of a complex variable, we return immediately to
the class of analytic functions. On the other hand, a study of the derivative
uncovers the geometric behavior of functions of a complex variable and
the connections of the theory of these functions with problems in mathe-
matical physics.

In view of what has been said, we will, in what follows, call a function
analytic at the point z, if it has a derivative at all points of some neighbor-
hoed of z,.

We will say, following the general definition of a function, that a
complex variable w is a function of the complex variable z if some law
exists which allows us to find the value of w, given the value of z.

Every complex number z = x 4 iy is represented by a point (x, y) on
the Oxy plane, and the numbers w = u + Jv will also be represented by
points on an Ouv plane, the plane of the function, Then from the geometric
point of view a function of a complex variable w = f{z) defines a law
of correspondence between the points of the Oxy plane of the argument z
and points of the Ouv plane of the value w of the function. In other words,
a function of a complex variable determines a transformation of the
plane of the argument to the plane of the function. To define a function
of a complex variable means to give the correspondence between the pairs
of numbers (x, y) and (u, v); defining a function of a complex variable
is thus equivalent to defining two functions

u=d¢(xy, v=yx1y),
for which, obviously
w=u4 iv=¢(x,y) + i(x, y).
For example, if
w=2= (x4 iyP? = x* — y® + 2ixy,
then
u=d¢x y=x2—y, v=yxy = 2xp
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The derivative of a function of a complex variable is defined formally in
the same way as the derivative of a function of a real variable. The deriva-
tive is the limit of the difference quotient of the function

ft(z) = im ﬂz + AZ) _ﬂZ) ,

dz-0 AZ

1)

if this limit exists.

If we assume that the two real functions u and v, making up w = f(2),
have partial derivatives with respect to x and y, this is still not a sufficient
condition that the derivative of the function f{z) exists. The limit of the
difference quotient, as a rule, depends on the direction in which the
points z' = z 4 Az approximate the point z (figure 3). For the existence
of the derivative f”(2), it is necessary that the limit does not depend on
the manner of approach of z’ to z. Consider, for example, the case when
z' approaches z parallel to the axis Ox or parallel to the axis Oy.

In the first case

FRTAY
4z = Ax, I:’ Ay
Az 4+ 4z2) — fz) = u(x + dx, y) — u(x, y) v
+ ifo(x + 4x, y) — v(x, p)], FiG. 3.

and the difference quotient

Sz +42) —fz) _ ux+4Axy) —uxy) | ox + A%, p) — ox, )

Az Ax Adx
for Ax — 0 converges to
ou ov
% +1 x" (22)
In the second case
4z = idy,

and the difference quotient

fet+ds) —f2) _ _ uny+4y) —uxy)  o%y +4)) — o)
4z 4y dy

leads in the limit to

dv ,ou
a—y—:a—y. (23)
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If the function w = f{x) has a derivative, these two expressions must
be equal, and thus

du _Ov
7%= 3y
(24)
63{ _ dv
9y  ox’

Satisfying these equations is a necessary condition for the existence
of the derivative of the function w = u + iv. It can be shown that
condition (24) is not only necessary but also sufficient (if the functions u
and v have a total differential). We will not give a proof of the sufficiency
of conditions (24), which are called the Cauchy-Riemann equations.

It is easy to establish the fact that the usual rules for differentiating
functions of a real variable carry over without alteration to functions of
a complex variable. Certainly this is true for the derivative of the function z*
and for the derivative of a sum, a product, or a quotient. The method
of proof remains exactly the same as for functions of a real variable,
excepting only that in place of real quantities, complex ones are to be
understood. This shows that every polynomial in z

W =dag + @z + = + apz"

is an everywhere differentiable function. Any rational function, equal to
the quotient of two polynomials

W — ay+a,z +  +a,z"
Bo + byz + -+ + bpz™

is differentiable at all points where the denominator is not zero.

In order to establish the differentiability of the function w = &%, we
may use the Cauchy-Riemann conditions. In this case, on the basis of
formula (20)

u = e*cos y, v = e*sin y;

we substitute these functions in (24) and show that the Cauchy-Riemann
equations are satisfied. The derivative may be computed, for example
by formula (22). This gives

dw

— = €~
dz

On the basis of formula (17) it is easy to establish the differentiability of
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the trigonometric functions and the validity of the formulas known
from analysis for the values of their derivatives.

The function Ln z.  We will not give here an investigation of all the
elementary functions of a complex variable. However, it is important
for our purposes to become acquainted with some of the properties of
the function Ln z. As in the case of the real domain, we set

w= Lnz,
if
z = e,

In order to analyze the function Ln z, we write the number z in trigono-
metric form
z = r(cos ¢ 4 Isin ¢).

Applying the multiplication theorem to e¥, we get
z = e¥ = e¥ti? = ele’? = e¥(cos v + isin v).
Equating the two expressions derived for z, we have
et =r, ()
cosv + isinv = cos¢ + 7sin . ®B
Since u and r are real numbers, from formula («) we derive
u=Inr,

where In r is the usual value of the natural logarithm of a real number.
Equation (8) can be satisfied only if

cosv = cos¢, sinv = sin ¢,
and in this case v and ¢ must differ by a number which is a multiple of 27
v=1¢ + 2mn,

where for any integer n equation (B) will be satisfied. On the basis of the
expressions derived for u and v

Lnz = Inr + i($ + 2mn). (25)

Formula (25) defines the function Ln z for all values of the complex
number z that are different from zero. It gives the definition of the
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logarithm not only for positive numbers but also for negative and complex
numbers.

The expression derived for the function Ln z contains an arbitrary
integer n. This means that Ln z is a multiple-valued function. For any
value of n we get one of the possible values of the function Ln z. If we
fix the value of n, we get one of the possible values of this function.

However, the different values of
Ln z, as can be shown, are organically
related to one another. In fact, let us
fix, for example, the value n = 0 at the
point z, and then let z move contin-

c
Zp uously around a closed curve C,
¢ which surrounds the origin and returns

0 to the point z, (figure 4). During the
} motion of z, the angle ¢ will increase
continuously and when z moves around

the entire closed contour, ¢ will in-
FiG. 4. crease by 2. In this manner, fixing the
value of the logarithm at z,

b

| B

(Ln 2)y = Inry + ighy

and changing this value continuously while moving z along the closed
curve surrounding the origin, we return to the point z, with another
value of the function

(Ln 2), = Inry + i($o + 27).

This situation shows us that we may pass continuously from one value
of Ln z to another. For this the point need only travel around the origin
continuously a sufficient number of times. The point z = 0 is called a
branch point of the function Ln z.

If we wish to restrict consideration to only one value of the function
Ln z, we must prevent the point z from describing a closed curve sur-
rounding the point z = 0. This may be done by drawing a continuous
curve from the origin to infinity and preventing the point z from crossing
this curve, which is called a cur. If z varies over the cut plane, then it
never changes continuously from one value of Ln z to another and thus,
starting from a specific value of logarithm at any point z,, we get at
each point only one value of the logarithm. The values of the function
Ln z selected in this way constitute a single-valued branch of the function.

For example, if the cut lies along the negative part of the axis Ox,
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we get a single-valued branch of Ln z by restricting the argument to the
limits
2k — r <¢ < (2 + D,

where k is an arbitrary integer.
Considering a single-valued branch of the logarithm, we can study its
differentiability. Putting

r=vxt4)2, ¢=arctanJ—;,

it is easy to show that Ln z satisfies the Cauchy-Riemann conditions and
its derivative, calculated for example by formula (22), will be equal to

dLnz
dz

1
~x
We emphasize that the derivative of Ln z is also a single-valued function.

§2. The Connection Between Functions of a Complex Variable and
the Problems of Mathematical Physics

Connection with problems of hydrodynamics. The Cauchy-Riemann
conditions relate the problems of mathematical physics to the theory
of functions of a complex variable. Let us illustrate this from the problems
of hydrodynamics.

Among all possible motions of a fluid an important role is played by
the steady motions. This name is given to motions of the fluid for which
there is no change with time in the distribution of velocities in space.
For example, an observer standing on a bridge and watching the flow
of the river around a supporting pillar sees a steady flow. Sometimes a
flow is steady for an observer in motion on some conveyance. In the
case of a steamship travelling through rough water, the flow will appear
nonsteady to an observer on the shore but steady to one on the ship.
To a passenger seated in an airplane that is flying with constant velocity,
the flow of the air as disturbed by the plane will still appear to be a
steady one.

For steady motion the velocity vector V of the particle of the fluid
passing through a given point of space does not change with time. If
the motion is steady for a moving observer, then the velocity vector
does not change with time at points having constant coordinates in a
coordinate system which moves with the observer.

Among the motions of a fluid great importance has been attached to
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the class of plane-parallel motions. These are flows for which the velocity
of the particles is everywhere parallel to some plane and the distribution
of the velocities is identical on all planes parallel to the given plane.

If we imagine an infinitely extended mass of fluid, flowing around a
cylindrical body in a direction perpendicular to a generator, the distribu-
tion of velocities will be the same on all planes perpendicular to the
generator, so that the flow will be plane-parallel. In many cases the
motion of a fluid is approximately plane-parallel. For example, if we
consider the flow of air in a plane perpendicular to the wing of an air-
plane, the motion of the air may be considered as approximately plane-
parallel, provided the plane in question is not very close either to the
fuselage or to the tip of the wing.

We will show how the theory of functions of a complex variable may
be applied to the study of steady plane-parallel flow.

Here we will assume that the liquid is incompressible, i.e., that its
density does not change with change in pressure. This assumption holds,
for example, for water, but it can be shown that even air may be considered
incompressible in the study of its flow, if the velocity of the motion is
not very large. The hypothesis of incompressibility of air will not produce
a noticeable distortion if the velocities of motion do not exceed the range
of 0.6 to 0.8 of the velocity of sound (330 m/sec).

The flow of a liquid is characterized by the distribution of the velocities
of its particles. If the flow is plane-parallel, then it is sufficient to determine
the velocities of the particles in one of the planes parallel to which the
motion occurs.

We will denote by V(x, y, t) the vector velocity of the particle passing
through the point with coordinates x, y at the instant of time . In the
case of steady motion, V¥ does not depend on time. The vector V will
be given by its projections u and v on the coordinate axes. We consider
the trajectories of particles of the fluid. In the case of steady motion,
there is no change with time in the velocities of the successive particles
issuing from a given point in space. If we know the field of the velocities,
i.e, if we know the components of the velocity as functions of x, y,
then the trajectories of the particles may be determined by using the
fact that the velocity of a particle is everywhere tangent to the trajectory.
This gives

dy _ o))
dx  u(x,y)

The equation so obtained is the differential equation for the trajectories.
The trajectory of a particle in a steady motion is called a streamline.
Through each point of the plane passes exactly one streamline.
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An important role is played here by the so-called stream function.
For a fixed streamline C, let us consider the imaginary channel bounded
by the following four walls: One wall is the cylindrical surface (with
generators perpendicular to the plane of the flow) passing through the
streamline C,; the second wall is the same cylindrical surface for a
neighboring streamline C,; the third is the plane of the flow; and the
fourth is a parallel plane at unit distance (figure 5). If we consider two
arbitrary cross sections of
our channel, denoted by y,
and y,, then the quantity
of fluid passing through the
sections y, and y, in unit
time will be the same, as
follows from the fact that
the quantity of fluid inside
the part of the channel
marked off by C;, C, and
%1, y: cannot change, be-
cause of the constant density,
since the side walls of the FIG. 5.
channel C,and C, are formed
by streamlines, so that no fluid passes through them. Consequently the
same amount of fluid must leave in unit time through y, as enters
through y, .

Now by the stream function we mean the function {(x, y) that has a
constant value on the streamline C, equal to the quantity of liquid passing
in unit time through the cross section of the channel constructed on the
curves C, and C, .

The stream function is defined only up to an arbitrary constant,
depending on the choice of the initial streamline C,. If we know the
stream function, then the equations for the streamlines are obviously

(x, y) = const.

We now wish to express the components of the velocity of the flow at a
given point M(x, y) in terms of the derivatives of the stream function.
To this end we consider the channel formed by the streamline C through
the point M(x, y) and a neighboring streamline C’' through a nearby
point M'(x, y + 4y), together with the two planes parallel to the plane
of flow and a unit distance apart. Let us compute the quantity of the
liquid ¢ passing through the section MM’ of the channel during time dr.
On the one hand, from the definition of the stream function

9= —a
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On the other hand, ¢ is equal (figure 6) to the volume of the solid
formed by drawing the vector V dt from each point of the section MM’
If MM’ is small, we may assume that V is constant over the whole of
MM’ and is equal to the
value of V at the point M.
The area of the base of the
parallelepiped so constructed
is 4y x 1 (in figure 6 the
unit thickness is not shown),
and the altitude is the
projection of the vector V dt
on the Ox axis, i.e., u dr so

FIG. 6. that
q ~ udydt
and thus
udy ~ 4.
Dividing this equation by 4y, and passing to the limit, we get
_
it (26)
A similar argument gives for the second component
— a{ﬁ ’
Pl (26")

To define the field of the velocity vectors, we introduce, in addition to
the stream function, another function, which arises from considering
the rotation of small particles of the liquid. If we imagine that a particular
particle of the fluid were to become solidified, it would in general have
a rotatory motion. However, if the motion of the fluid starts from rest
and if there is no internal friction between particles, then it can be shown
that rotation of the particles of the fluid cannot begin. Motions of a
fluid in which there is no rotation of this sort are called irrotational;
they play a fundamental role in the study of the motion of bodies in a
fluid. In the theory of hydromechanics it is shown that for irrotational
flow there exists a second function ¢(x, y) such that the components of
the velocity are expressed by the formulas

% a4

“'_—-a_x’ v=‘a_y;

27

the function ¢ is called the velocity potential of the flow. Later, we will
consider motions with velocity potential.
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Comparison of the formulas for the components of the velocity from
the stream function and from the velocity potential gives the following
remarkable result.

The velocity potential ¢(x, y) and the stream function (x, y) for the
flow of an incompressible fluid satisfy the Cauchy-Riemann equations

b o
ax oy’
(28)
% _ .9
dy ax'

In other words, the function of a complex variable

w = §(x,y) + ip(x, y)

is a differentiable function of a complex variable. Conversely, if we choose
an arbitrary differentiable function of a complex variable, its real and
imaginary parts satisfy the Cauchy-Riemann conditions and may be
considered as the velocity potential and the stream function of the flow
of an incompressible fluid. The function w is called the characteristic
Sunction of the flow.

Let us now consider the significance of the derivative of w. Using,
for example, formula (22), we have

dw op

&~ ax ek

From (27) and (26") we find

d_w =u—1Iv
dz
or, taking complex conjugates,
aw
u + iv = (?) 3 (29)

where the bar over dw/dz denotes the complex conjugate.
Consequently, the velocity vector of the flow is equal to the conjugate
of the value of the derivative of the characteristic function of the flow.

Examples of plane-parallel flow of a fluid. We consider several examples.
Let
w = Az, (30)
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where A4 is a complex quantity. From (29) it follows that
u+iv=4A

Thus the linear function (30) defines the flow of a fiuid with constant
vector velocity. If we set
4= Uy — vy ,

then, decomposing into the real and imaginary parts of w, we have
B(x, y) = upx + vy,
'Ib(x, y) = Ugy — UpX,

so that the streamlines will be straight lines parallel to the velocity vector
(figure 7).
As a second example we consider the function

w= Az%

where the constant A is real. In order to graph the flow, we first determine
the streamlines. In this case

P(x, y) = 24xy,
and the equations of the streamlines are
xy = const.

These are hyperbolas with the coordinate axes as asymptotes (figure 8).
The arrows show the direction of motion of the particles along the stream-
lines for A > 0. The axes Ox and Oy are also streamlines.

If the friction in the liquid is very small, we will not disturb the rest
of the flow if we replace any streamline by a rigid wall, since the fluid

Y

//

/7
vo® iv
/

e

Q

Fic. 7. FiG. 8.
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will glide along the wall. Using this principle to construct walls along
the positive coordinate axes (in figure 8 they are represented by heavy
lines), we have a diagram of how the fluid flows irrotationally, in this
case around a corner.

An important example of a flow is given by the function

2,

w=a(z+%~), (31)

where g and R are positive real quantities.
The stream function will be

R?
¢=a(y__;§_+y?),

and thus the equation for the streamlines is

Ry
arET.

In particular, taking the constant equal to zero, we have either y = 0 or
x?* 4+ y* = R?; thus, a circle of radius R is a streamline. If we replace
the interior of this streamline by a solid body, we obtain the flow around
a circular cylinder. A diagram of the streamlines of this flow is shown in
figure 9. The velocity of the flow may be defined from formula (29) by
; Rr?
u+iv= a(l _F)'

= const.

At a great distance from the cylinder we find
ll_.rg (u + iv) = a;
i.e., far from the cylinder the velocity tends to a constant value and thus

the flow tends to be uniform. Consequently, formula (29) defines the
flow which arises from the passage

around a circular cylinder of a fluid A
which is in uniform motion at a ’/\
distance from the cylinder. v

The basic ideas of the theory of an air- V”’
plane wing; theorem of Zukovskii. FiG. 9.

The application of the theory of functions of a complex variable to the
study of plane-parallel flows of a fluid was the source of several remarkable
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discoveries in aerodynamics by Zukovskii and Caplygin. The study of
streamlines of bodies led them to discover the law for the formation of
lifting force on the wing on an airplane. In order to present the ideas
which led to this discovery, we need to consider one more concrete
example of fluid flow. Let us consider the characteristic function

r

W= —2—;1— Ln 2,
where I' is a real constant. Although w is a multiple-valued function,
its derivative " o

W

dz " 27z (%2)
is single valued, so that our function uniquely defines the velocity field
of some fluid flow. If we set z = re®®, the velocity potential and the
stream function may be computed from (25) as

r r
¢,_—2-;r-—6, l!;———z—;]l'll’.

The second of these formulas shows that the streamlines are the circles
r = const (figure 10).
The velocity of the flow is defined by formula (29) as

; r i
utiv=——-.

27 %
In particular, it follows that the value of the velocity vector will be

Iri

V=|u+iv|= 7y

i.e., the velocity is constant on every streamline. A more detailed investiga-
tion shows that the flow goes counterclockwise for I" > 0 and clockwise
for I' < 0.

If we replace one of the streamlines by
a rigid boundary, we obtain the circular
motion of a fluid around a cylinder. Such
a motion is called circulatory.

However, the potential of our motion
is not a single-valued function. In one
passage over a closed contour around the
cylinder the potential is changed by an
amount I'. This change in potential is

Fig. 10. called the circulation of the flow.
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If to the characteristic function of a flow past a cylinder (31), we add
the characteristic function of a circulatory flow (with clockwise circuit),
we get a new characteristic function

w=a(z+§~2)——%an. (33)

This characteristic function also represents the flow around a cylinder of
radius R. In fact, the stream function will be constant on a circumference
of radius R, since there the coefficients of the imaginary parts of both
terms are constant. The velocity of the flow, defined by the function (33),
will again converge to a as z — oo. This shows that the characteristic
function (33) defines, for any value of I', the streamlines of a translational
flow past a cylinder. Figure 11 illustrates the character of the flow for
I' > 0. This flow will not be
symmetric, since the stagna-
tion points a and b where the
streams meet and leave the
cylinder are displaced down-
ward. The potential of the flow
under consideration will be a
multiple-valued function. As
the result of one circuit around
the cylinder it will change by Fig. 11,

an amount equal to I,

Because of symmetry, the flow around a cylinder will usually be of the
form defined by the functions (32), but for nonsymmetric bodies the
flow which arises usually has a multiple-valued potential. Later we will
discuss the physical significance of this fact. The methods of the theory
of functions of a complex variable allow us to define the possible flows
around bodies of arbitrary shape. These methods will be discussed in the
following section. With their help we can make use of the flow around
a cylinder to construct the flow, with single-valued or multiple-valued
potential, around any body.

In studying the streamlines of the wing of an airplane, we are dealing
with a body with a sharp edge at the rear. The profile of the wing of an
airplane always narrows toward the rear. If for such a profile we construct
a flow with a single-valued potential, then the stagnation point where the
stream leaves the wing proves not to be at the edge (figure 12a). But it

w

(a} FiG. 12. (b}
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turns out that such a flow is physically impossible. (Infinite velocity,
with consequent infinite rarefaction of the fluid would occur at the sharp
edge.) The flow for which the point b falls on the edge of the wing
(figure 12b) is the uniquely possible fiow, and this fiow, as a rule, will
have a multiple-valued potential, i.e, will be a circulatory flow. The
circulation I"of such a flow again is defined as the change in the potential
for a circuit of a closed contour around the wing.
The physical realizability of a flow around the profile of a wing with a
stream leaving the rear edge is called Caplygin's postulate.
The remarkable discovery of Zukovskil consists of the fact that the
existence of circulation in the flow causes a lifting force on the wing,
in a direction perpendicular to
the velocity a of the oncoming
P:pal'  flow and equal in magnitude
to the quantity

o pal,

where p is the density of the
FiG. 13. medium and I' is the circula-
tion (figure 13).

This theorem of Zukovskil about the lifting force on a wing is basic
for all contemporary aerodynamics. We will not give the proof here,
merely noting that the usual proofs are based on the theory of integrals
of functions of a complex variable.

The basic results in aerodynamics as established by Zukovskii and
Caplygin have been extensively developed by the work of Soviet scientists.

Applications to other problems of mathematical physics. The theory
of functions of a complex variable has found wide application not only
in wing theory but in many other problems of hydrodynamics.

However, the domain of application of the theory of functions is not
restricted to hydrodynamics; it is much wider than that, including many
other problems of mathematical physics. To illustrate, we return to the
Cauchy-Riemann conditions

ou_ v
éx a8y’
u_
dy  ox

and deduce from them an equation which is satisfied by the real part of
an analytic function of a complex variable. If the first of these equations
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is differentiated with respect to x, and the second with respect to y, we
obtain by addition

Pu P

ox? ay?
This equation (which we have already met in Chapter VI) is known as the
Laplace equation. A large number of problems of physics and mechanics
involve the Laplace equation. For example, if the heat in a body is in
equilibrium, the temperature satisfies the Laplace equation. The study
of magnetic or electrostatic fields is connected with this equation. In
the investigation of the filtration of a liquid through a porous medium,
we also arrive at the Laplace equation. In all these problems involving
the solution of the Laplace equation the methods of the theory of functions
have found wide application.

Not only the Laplace equation but on the more general equations of
mathematical physics can be brought into connection with the theory of
functions of a complex variable. One of the most remarkable examples
is provided by planar problems in the theory of elasticity. The foundations
of the application of functions of a complex variable to this domain
were laid by the Soviet scientists G. B. Kolosov and N. I. Mushelisvili.

§3. The Connection of Functions of a Complex Variable with
Geometry

Geometric properties of differentiable functions. As in the case of
functions of a real variable, a great role is played in the theory of analytic
functions of a complex variable by the geometric interpretation of these
functions. Broadly speaking, the geometric properties of functions of a
complex variable have not only provided a natural means of visualizing
the analytic properties of the functions but have also given rise to a
special set of problems. The range of problems connected with the geometric
properties of functions has been called the geometric theory of functions.
As we said earlier, from the geometric point of view a function of a
complex variable w = f{z) is a transformation from the z-plane to the
w-plane. This transformation may also be defined by two functions of
two real variables

u = u(x,y),

v = v(x, y).

If we wish to study the character of the transformation in a very small
neighborhood of some point, we may expand these functions into
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Taylor series and restrict ourselves to the leading terms of the expansion

U —ty = (%)o(x — Xo) + (%)o(y — Yo+,

(%)o(x — X)) + (2_;1)0()’ —yo) +

b‘—b‘o

where the derivatives are taken at the point (x,, y,). Thus, in the neigh-
borhood of a point, any transformation may be considered approximately
as an affine transformation*

u—uy, = a(x — x) + by — »),
v — v, = c(x — x) + dy — »),

o= (5, - (5)

=), =),

Let us consider the properties of the transformation effected by the
analytic function near the point z = x + iy. Let C be a curve issuing
from the point z; on the w-plane the corresponding points trace out the
curve I, issuing from the point w. If z’ is a neighboring point and w'
is the point corresponding to it, then for z' — z we will have w' — w and

where

w —w ,
e — f'(2). (34)
In particular, it follows that
Aw —wl e, 39
|28 —z]|

This fact may be formulated in the following manner.

The limit of the ratio of the lengths of corresponding chords in the
w-plane and in the z-plane at the point z is the same for all curves issuing
from the given point z, or as it is also expressed, the ratio of linear elements
on the w-plane and on the z-plane at a given point does not depend on
the curve issuing from z.

The quantity |f’(z)|, which characterizes the magnification of linear
elements at the point z, is called the coefficient of dilation at the point z.

* Cf. Chapter I1I, §11.
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We now suppose that at some point z the derivative f'(z) % 0, so
that f'(z) has a uniquely determined argument.* Let us compute this
argument, using (34)

w —

arg ——

: = arg (W' — w) — arg (z' — z),

but arg(w’ — w) is the angle B’ between the chord ww' and the real axis,
and arg(z’ — z) is the angle «' between the chord zz' and the real axis.

ol “B:q+argftz)
Fig. 14.

If we denote by « and B the corresponding angles for the tangents to the
curves C and I at the points z and w (figure 14), then for z' — z

a' —>a BB,
so that in the limit we get

arg f'z) =B — o (36)

This equation shows that arg f'(z) is equal to the angle ¢ through which
the direction of the tangent to the curve C at the point z must be turned
to assume the direction of the tangent to the curve I' at the point w.
From this property arg f'(z) is called the rotation of the transformation
at the point z.

From equation (36) the reader can easily derive the following proposi-
tions.

As we pass from the z-plane to the w-plane, the tangents to all curves
issuing from a given point are rotated through the same angle.

If C, and C, are two curves issuing from the point z, and I', and I}
are the corresponding curves from the point w, then the angle between
Iy and T, at the point w is equal to the angle between C, and C, at
the point z.

" % Cf. Chapter 1V, §3.
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In this manner, for the transformation effected by an analytic function,
at each point where f'(z) 70, all linear elements are changed by the
same ratio, and the angles between corresponding directions are not
changed.

Transformations with these properties are called conformal transforma-
tions.

From the geometric properties just proved for transformations near a
point at which f'(z,) 7% 0, it is natural to expect that in a small neighbor-
hood of z, the transformation will be one-to-one; i.e., not only will
each point z correspond to only one point w, but also conversely each
point w will correspond to only one point z. This proposition can be
rigorously proved.

To show more clearly how conformal transformations are distinguished
from various other types of transformations, it is useful to consider an
arbitrary transformation in a small neighborhood of a point. If we
consider the leading terms of the Taylor expansions of the functions u
and v effecting the transformation, we get

U— Uy = (‘2%)0(3‘ — Xp) + (‘2—:)0(}’ )y

D—vy= (%)o(x —x9 + (-2—;)00 — ¥+ .

If in a small neighborhood of the point (x,, y,) we ignore the terms of
higher order, then our transformation will act like an affine transforma-
tion. This transformation has an inverse if its determinant does not vanish

4= (5), (), - &), ), =

If 4 = 0, then to describe the behavior of the transformation near the
point (x, , y,) we must consider terms of higher order.*

In case u + iv is an analytic function, we can express the derivatives
with respect to y in terms of the derivatives with respect to x by using
the Cauchy-Riemann conditions, from which we get

4= (59 + (55). = |50). +ilgm) | = 1rcor,

* In this last case, i.e., for 4 = 0, the transformation is not called affine. For affine
transformations see also Chapter III, §11.
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ie., the transformation has an inverse when f'(z) 350. If we set
f'(z4) = r(cos ¢ + isin ¢), then

(o), = (35), = reon,

(5e), == (35), = —rsns,

and the transformation near the point (x, , y,) will have the form

u —uy = r[(x — xp)cos ¢ — (¥ — yp) sin ] + -,
v — vy = rl(x — x,)sind + (y — yy) cos ] + .

These formulas show that in the case of an analytic function w = u + iv,
the transformation near the point (x,, y,) consists of rotation through
the angle ¢ and dilation with coefficient r. In fact, the expressions inside
the brackets are the well-known formulas from analytic geometry for
rotation in the plane through an angle ¢, and multiplication by r gives

the dilation.
To form an idea of the possibilities when f'(z) = 0it is useful to consider

the function
w = z" (37)

The derivative of this function w’' = nz*-! vanishes for z = 0. The
transformation (37) is most conveniently considered by using polar
coordinates or the trigonometric form of a complex number. Let

z = r(cos ¢ + ising),
w = p(cos 8 + isin 8).

Using the fact that in multiplying complex numbers the moduli are
multiplied and the arguments added, we get

" = r*(cos n¢ + isin ng),
and thus

p=1re
0 = ng.

From the last formula we see that the ray ¢ = const of the z-plane
transforms into the ray 8§ = n¢ = const in the w-plane. Thus an angle «
between two rays in the z-plane will transform into an angle of magnitude
B = na. The transformation of the z-plane into the w-plane ceases to
be one-to-one. In fact, a given point w with modulus p and argument 6
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may be obtained as the image of each of the n points with moduli r = V/p

and arguments T -
m T
p=csnt 5yt =D,
When raised to the power n, the moduli of the corresponding points
will all be equal to p and their arguments will be equal to

6,0 + 2m, -, 0 4 2m(n — 1),
and since changing the value of the argument by a multiple of 2x does

not change the geometric position of the point, all the images on the
w-plane are identical.

Conformal transformations. If an analytic function w = f{z) takes a
domain D of the z-plane into a domain 4 of the w-plane in a one-to-one
manner, then we say that it effects a conformal transformation of the
domain D into the domain 4.

The great role of conformal transformations in the theory of functions
and its applications is due to the following almost trivial theorem.

If { = F(w) is an analytic function on the domain 4, then the composite
function F[ f{z)] is an analytic function on the domain D. This theorem
results from the equation

ag 4w

dw A4z’

In view of the fact that the functions { = F(w) and w = f(z) are
analytic, we conclude that both factors on the right side have a limit,
and thus at each point of the domain D the quotient 4{/4z has a unique
limit d¢/dz. This shows that the function { = F[f(z)] is analytic.

The theorem just proved shows that the study of analytic functions
on the domain 4 may be reduced to the study of analytic functions on

the domain D. If the geo-
metric structure of the do-

main D is simpler, this fact
simplifies the study of the
functions.
The most important class
(o) (b) (e} of domains in which it is

necessary to study analytic
functions is the class of
simply connected domains.
\ This is the name given to do-
mains whose boundary con-

(d) sists of one piece (figure 15a)
Fic. 15. asopposed to domains whose

4L _
dz
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boundary falls into several pieces (for example, the domains illustrated
in figures 15b and 15c).

We note that sometimes we are interested in investigating functions
on a domain lying outside a curve rather than inside it. If the boun-
dary of such a domain consists of only one piece, then the domain is also
called simply connected (figure 15d).

At the foundations of the theory of conformal transformations lies the
following remarkable theorem of Riemann.

For an arbitrary simply connected domain 4, it is possible to construct
an analytic function which effects a conformal transformation of the
circle with unit radius and center at the origin into the given domain in
such a way that the center of the circle is transformed into a given point w,
of the domain 4, and a curve in an arbitrary direction at the center of
the circle transforms into a curve with an arbitrary direction at the point w,.
This theorem shows that the study of functions of a complex variable
on arbitrary simply connected domains may be reduced to the study of
functions defined, for example, on the unit circle.

We will now explain in general outline how these facts may be applied
to problems in the theory of the wing of an airplane. Let us suppose that
we wish to study the flow around a curved profile of arbitrary shape.

If we can construct a conformal transformation of the domain outside
the profile to the domain outside the unit circle, then we can make use
of the characteristic function for the flow around the circle to construct
the characteristic function for the flow around the profile.

Let { be the plane of the circle, z the plane of the profile, and { = f{(z)
a function effecting the transformation of the domain outside the profile
to the domain outside the circle, where

lim { = co.

Z=m

We denote by a the point of the
circle corresponding to the edge of
the profile A and construct the cir-
culatory flow past the circle with one
of the streamlines leaving the circle
at a (figure 16). This function will be
denoted by W({):

W) =@ + i¥.

A

Fic. 16.
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The streamlines of this flow are defined by the equation

¥ = const.
We now consider the function

w(z) = WLf(2)],

and set
w=2¢ + i

We show that w(z) is the characteristic function of the flow past the
profile with a streamline leaving the profile at the point 4. First of all
the flow defined by the function w(z) is actually a flow past the profile.
To prove this, we must show that the contour of the profile is a stream-
line curve, i.e., that on the contour of the profile

Y(x, ) = const.
But this follows from the fact that
'!’(x’ y) = 'P(f, 7?),

and the points (x, y) lying on the profile correspond to the points (£, )
lying on the circle, where ¥(¢, n) = const.

It is also simple to show that A4 is a stagnation point for the flow,
and it may be proved that by suitable choice of velocity for the flow
past the circle, we may obtain a flow past the profile with any desired
velocity.

The important role played by conformal transformations in the theory
of functions and their applications gave rise to many problems of finding
the conformal transformation of one domain into another of a given
geometric form. In a series of simple but useful cases this problem may
be solved by means of elementary functions. But in the general case
the elementary functions are not enough. As we saw earlier, the general
theorem in the theory of conformal transformations was stated by Riemann,
although he did not give a rigorous proof. In fact, a complete proof
required the efforts of many great mathematicians over a period of
several decades.

In close connection with the different approaches to the proof of
Riemann’s theorem came approximation methods for the general construc-
tion of conformal transformations of domains. The actual construction
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of the conformal transformation of one domain onto another is sometimes
a very difficult problem. For investigation of many

of the general properties of functions, it is often

not necessary to know the actual transformation of

one domain onto another, but it is sufficient to

exploit some of its geometric properties. This fact

has led to a wide study of the geometric properties

of conformal transformations. To illustrate the

nature of theorems of this sort we will formulate Fig. 17.

one of them.

Let the circle of unit radius on the z-plane with center at the origin
be transformed into some domain (figure 17). If we consider a completely
arbitrary transformation of the circle into the domain 4, we cannot
make any statements about its behavior at the point z = 0. But
for conformal transformations we have the following remarkable
theorem.

The dilation at the origin does not exceed four times the radius of the
circle with center at w,, inscribed in the domain

|f'(0) | < 4r.

Various questions in the theory of conformal transformations were
considered in a large number of studies by Soviet mathematicians. In
these works exact formulas were derived for many interesting classes of
conformal transformations, methods for approximate calculation of
conformal transformations were developed, and many general geometric
theorems on conformal transformations were established.

Quasi-conformal transformations. Conformal transformations are closely
connected with the investigation of analytic functions, i.e., with the study
of a pair of functions satisfying the Cauchy-Riemann conditions

ou_ o
ox oy’
w_ o
gy~ ox’

But many problems in mathematical physics involve more general systems
of differential equations, which may also be connected with transforma-
tions from one plane to another, and these transformations will have
specific geometric properties in the neighborhood of points in the Oxy
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plane. To illustrate, we consider the following example of differential
equations

ou ov

ox p(x» }') 5 ]

ov du (38)
ox = —p(x, ») 5}’. .

If p(x,y) = 1, this is the system of Cauchy-Riemann equations. In
the general case of an arbitrary function p(x, y), we can also consider
every solution of the system (38) as a transformation of the Oxy plane
to the Ouv plane. Let us examine the geometric properties of this trans-
formation in the neighborhood of a point (x,, y,). Taking a small neigh-
borhood of (x,, y,), we retain only the first terms in the expansion of
the functions u and v in powers of x — x, and y — y,, and thereby
consider the following affine transformation

U—uy = (%) (x — x) + ('a—“) » — yo)
v ' ° 39
v—y, = (-é?)o (x — x0) + ( ) y — yo)-

If the functions u and v satisfy the system of equations (38), then for
this affine transformation we have the following property.

Ellipses with center at the point (x,, y,) with principal axes parallel to
the coordinate axes, and with ratio of semiaxes

= p(Xo, Yo)

are transformed in the Owuv plane to circles with center at the point

(#0 5 Vo)-
Let us prove this proposition. The equation of the circle with center
(4, , vp) in the Ouv plane will be

(4 — ug)* + (v — vp)* = p&

Replacing u — u, and v — v, by their expressions in terms of x and y,
we get the equation for the corresponding curve in the Oxy plane:

(22, (2 s -

"'2[(@0('2_;)04'(6” By )] = %0 =30

= At ST e |
+[6y.,+ ay.j(y Yo)* = p*
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Using the equations in (38) to express the derivatives of v in terms
of the derivatives of u, we get

(24 + 7 () =0 e (50, + 7 ()] 08 = .
If we set

a= £ §

V&, 7 G,
b= Pp ,
ou\? ou\*®
V&), 7 G,

this equation takes the form

(x — xp)*
P

(J”—‘J’o)e _
+ 5 ==,

Thus the curve that is transformed into a circle is in fact an ellipse with
the indicated properties.

If we do not consider the affine transformation given by the first terms
of the expansion but rather the exact transformation itself, then the above
property of the transformation will hold more and more exactly for
smaller and smaller ellipses, so that we may say that the property holds
for infinitely small ellipses.

In this manner, from equations (38) it follows that at every point the
infinitesimal ellipse that is transformed into a circle has its semiaxes
completely determined by the transformation, both with respect to their
direction and to the ratio of their lengths. It can be shown that this
geometric property completely characterizes the system of differential
equations (38); i.e., if the functions » and v effect a transformation with
the given geometric property, then they satisfy this system of equations.
In this way, the problem of investigating the solutions of equations (38)
is equivalent to investigating transformations with the given properties.

We note, in particular, that for the Cauchy-Riemann equations this
property is formulated in the following manner.

An infinitesimal circle with center at the point (x, , y,) is transformed
into an infinitesimal circle with center at the point (i, , v,).

A very wide class of equations of mathematical physics may be reduced
to the study of transformations with the following geometric properties.

For each point (x, y) of the argument plane, we are given the direction
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of the semiaxes of two ellipses and also the ratio of the lengths of these
semiaxes. We wish to construct a transformation of the Oxy plane to
the Ouv plane such that an infinitesimal ellipse of the first family transforms
into an infinitesimal ellipse of the second with center at the point (u, v).

Transformations connected with such general systems of equations
were introduced by the Soviet mathematician M. A. Lavrent’ev and have
received the name guasi-conformal. The idea of studying transformations
defined by systems of differential equations made it possible to extend
the methods of the theory of analytic functions to a very wide class of
problems. Lavrent’ev and his students developed the study of quasi-
conformal transformations and found a large number of applications
to various problems of mathematical physics, mechanics, and geometry.
It is interesting to note that the study of quasi-conformal transformations
has proved very fruitful in the theory of analytic functions itself. Of
course, we cannot dwell here on all the various applications of the geo-
metric method in the theory of functions of a complex variable.

§4. The Line Integral; Cauchy’s Formula and Its Corollaries

Integrals of functions of a complex variable. In the study of the

properties of analytic functions the concept of a complex variable plays

a very important role. Corresponding to the

2,7z definite integral of a function ofa real variable,

Zn-1 we here deal with the integral of a function of

a complex variable along a curve. We consider

Zz in the plane a curve C beginning at the point z,

2, and ending at the point z, and a function f{(z)

defined on a domain containing the curve C.

We divide the curve C into small segments
(figure 18) at the points

Fig. 18,
20,2y s EZp =12

and consider the sum
§= zf(zk) (2 — Zp—)-
k=1

If the function f(z) is continuous and the curve C has finite length,
we can prove, just as for real functions, that as the number of points
of division is increased and the distance between neighboring points
decreases to zero, the sum S approaches a completely determined limit.
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This limit is called the integral along the curve C and is denoted by
f fz)dz.
c

We note that in this definition of the integral we have distinguished
between the beginning and the end of the curve C; in other words, we
have chosen a specific direction of motion on the curve C.

It is easy to prove a number of simple properties of the integral.

1. The integral of the sum of two functions is equal to the sum of the
integrals of the individual functions:

f [f(z) + g(z)] dz = f flz) dz +j g(z) dz.
c c c
2. A constant multiple may be taken outside the integral sign:
f Af(z2)dz = A f f(2) dz.
c c

3. If the curve C is the sum of the curves C, and C;, then
[ fordz= | fiydz+ | fizydz.
c €1 Cq
4. If C is the curve C with opposite orientation, then

jcﬂz)dz = — fcﬂz) dz.

All these properties are obvious for the approximating sums and carry
over to the integral in passing to the limit.

5. If the length of the curve C is equal to L and if everywhere on C
the inequality

Il <M
is satisfied, then

”cf(z)dzl < ML.

Let us prove this property. It is sufficient to prove the inequality for
the sum S, since then it will carry over in the limit for the integral also.
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For the sum

[S]= | Ef(zk)(zk — Z—y) QZ [z 2 — 21 | < MZ 12y — 234 |.
But the sum in the second factor is equal to the sum of the lengths of
the segments of the broken line inscribed in the curve C with vertices
at the points z; . The length of the broken line, as is well known, is not
greater than the length of the curve, so that

|§] < ML.

We consider the integral of the simplest function f{z) = 1. Obviously
in this case

S=@—2)+(@—2)+ "+ (@ —2i0) =2, — 2 =2 —2z,.
This proves that
f l-dz=2z—z,.
c

This result shows that for the function f(z) = 1 the value of the integral
for all curves joining the points z, and z is the same. In other words,
the value of the integral depends only on the beginning and end points
of the path of integration. But it is easy to show that this property does
not hold for arbitrary functions of a complex variable. For example,
if f(z) = x, then a simple computation shows that

x? x
xdz = =— + iyx, xdz ="—, z=x+iy,
L.l gt fc, 2 y

where C, and C, are the paths of integration shown in figure 19.

We leave it to the reader to verify
V7 these equations.
(x +iy) A remarkable fact in the theory of
analytic functions is the following

G theorem of Cauchy.

G If f(z) is differentiable at every point
x  of a simply connected domain D, then
[7] — the integrals over all paths joining two
arbitrary points of the domain z, and z

FiG. 19. are the same.
We will not give a proof of Cauchy’s
theorem here, but refer the interested reader to any course in the theory
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of functions of a complex variable. Let us mention here some important
consequences of this theorem.

First of all, Cauchy’s theorem allows us to introduce the indefinite
integral of an analytic function. For let us fix the point z, and consider
the integral along curves connecting z, and z:

F(z) = J“ A dL.

Here we may take the integral over any curve joining z, and z, since
changing the curve does not change the value of the integral, which thus
depends only on z. The function F(z) is called an indefinite integral of f(z).

An indefinite integral of f(z) has a derivative equal to f{z).

In many applications it is convenient to have a slightly different for-
mulation of Cauchy’s theorem, as follows.

If f(z) is everywhere differentiable in a simply connected domain, then
the integral over any closed contour lying in this domain is equal to zero:

Lf(z} dz = 0.

This is obvious since a closed contour has the same beginning and end,
so that z, and z may be joined by a null path.

By a closed contour we will understand a contour traversed in the
counterclockwise direction. If the contour is traversed in the clockwise
direction we will denote it by I".

The Cauchy integral. On the basis of the last theorem we can prove
the following fundamental formula of Cauchy that expresses the value
of a differentiable function at interior points of a closed contour in
terms of the values of the function on the contour itself

oy = L [ fD

mil . —z

We give a proof of this formula. Let z be fixed and { be an independent
variable. The function
SO
{—z

$(0) =

will be continuous and differentiable at every point { inside the domain D,
with the exception of the point { = z, where the denominator vanishes,
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a circumstance that prevents the application of Cauchy’s theorem to the
function #({) on the contour C.

We consider a circle K, with center at the point z and radius p and
show that

[wdr=[ swat (40)
P

To this end we construct the auxiliary closed contour I',, consisting of
the contour C, the path ¥, connecting
C with the circle, and the circle K, ,
taken with the opposite orientation
(figure 20). The contour I', is
indicated by arrows. Since the point
{ = z is excluded, the function ¢({)
is differentiable everywhere inside I',
and thus

[ swa=o. @41

But the contour I', is divided into four parts: C, y, , K, and ¥,, so that
from property 3 in the last subsection, we have

[, o0dt=[ sOdt+ [ sOd+ [ s+ [, pOdr=o.

Replacing the integrals along K, and j, by integrals along K, and y,,
and using property 4, we get

[ swar=[ s@d—[ ¢tydr=o

which proves formula (40).
To compute the right side of (40), we set

[ SO 4 _ O=Sf2) f(z)dl
jqub(;)dc— Lpg_z‘“— d + |

Kp L’— xp‘:—z

J’ [ f(z)dC +f(z)_[ (42)

xpg—z
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We compute the second term first. On the circle K, ,
{ = z + p(cos 8 + isin 6).
Using the fact that z and p are constant, we get
dl = p(—sin 8 + icos 0) d6 = ip(cos 8 + isin 6) df,
and thus
{ —z = p(cos B + isin 6),
so that

d{
xp‘:-'z

= f ido = 2mi.
Ko

since for a circuit of the circumference the total change in 8 is equal to
27r. From (40) and (42) we have
d . =
| SOE _ i) + [ O —f@ 4
cl{—z2 & 2

In this equation let us take limits as p — 0. The left side and the first
term of the right side will remain unchanged. We will show that the limit
of the second term is equal to zero. Then for p — 0 our equation gives

us Cauchy’s formula. In order to prove that the second term tends to
zero as p — 0 we note that

1imf_T,C)_:_ﬂi) = f'(0),
2 c —7z

L=

i.e., the expression under the integral sign has a finite limit, and thus is

bounded
D=1 _
{—z

Applying property 5 of the integral, we have

|j ﬂ{‘g _':(z)d§| < M2mp — 0.

This completes the proof of Cauchy’s formula. Cauchy’s formula is one
of the basic tools of investigation in the theory of functions of a complex
variable.
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Expansion of differentiable functions in a power series. We apply
Cauchy’s theorem to establish two basic properties of differentiable
functions of a complex variable.

Every function of a complex variable that has a first derivative in a
domain D has derivatives of all orders.

In fact, inside a closed contour our function may be expressed by the
Cauchy integral formula

(S
f@) = 5 |yt

The function of z under the sign of integration is a differentiable function;
thus, differentiating under the integral sign, we get

)
211'! f (g 2)2

Under the integral sign there is again a differentiable function; thus we
can again differentiate, obtaining

ro =2 oL

c@—2p
Continuing the differentiation, we get the general formula
d
ft'“( )_ ftg) {

il Ty

In this manner we may compute the derivative of any order. To make
this proof completely rigorous, we need also to show that the differentia-
tion under the integral sign is valid. We will not give this part of the proof.

The second property is the following:

If f(z) is everywhere differentiable on a circle K with center at the point a,
then f(z) can be expanded in a Taylor series

f2) =fla) + I-l(—,"l z—a)+ - + f——:’,_(“)(z — )™ +

which converges inside K.

In §1 we defined analytic functions of a complex variable as functions
that can be expanded in power series. This last theorem says that every
differentiable function of a complex variable is an analytic function.
This is a special property of functions of a complex variable that has
no analogue in the real domain. A function of a real variable that has
a first derivative may fail to have a second derivative at every point.
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We prove the theorem formulated in the previous paragraphs.

Let f(z) have a derivative inside and on the boundary of the circle K
with center at the point a. Then inside K the function f{z) can be expressed
by the Cauchy integral

o= g | 2% @)
We write
l—z=((—a—(z—a),
then
1 1 1 1
L‘—z=(C—a)—(z—a)=§—al_z—a° e
{—a

Using the fact that the point z lies inside the circle, and £ is on the cir-

cumference we get
z—a

{—a

so that from the basic formula for a geometric progression

<1,

1
z—a

L—a

and the series on the right converges. Using (44) and (45), we can represent
formula (43) in the form

1= g | [P+ - L

z — a\"

=) T @

SR = R

l_ ;

(£ —a)
. SO
+e—ap el e

We now apply term-by-term integration to the series inside the brackets.
(The validity of this operation can be established rigorously.) Removing
the factor (z — a)*, which does not depend on {, from the integral sign
in each term, we get

J‘ ﬂé’)d‘; Z—HJ‘ AL dl
2ni V(L —a)?
(z—ar O
et f( .

c@—aytt '

fi2) o

21':!
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Now using the integral formulas for the sequence of derivatives, we
may write

L[ A0 _ 1)

2nil (L —aytt T !
so that we get

o =f@+L0 ¢ -0+ + L9 g

We have shown that differentiable functions of a complex variable
can be expanded in power series. Conversely, functions represented by
power series are differentiable. Their derivatives may be found by term-
by-term differentiation of the series. (The validity of this operation can
be established rigorously.)

Entire functions. A power series gives an analytic representation of
a function only in some circle. This circle has a radius equal to the distance
to the nearest point at which the function ceases to be analytic, i.e., to
the nearest singular point of the function.

Among analytic functions it is natural to single out the class of functions
that are analytic for all finite values of their argument. Such functions
are represented by power series, converging for all values of the argument z,
and are called entire functions of z. If we consider expansions about the
origin, then an entire function will be expressed by a series of the form

G(z) = ¢y + 2 + 28 + - + cp2™ + .

If in this series all the coefficients, from a certain one on, are equal to
zero, the function is simply a polynomial, or an entire rational function

P(2) = co+ 12 4+ ++ + c2™

If in the expansion there are infinitely many terms that are different from
zero, then the entire function is called transcendental.
Examples of such functions are:

z 2
=1k qr gt
; z z8 z°
A= A T st e
2 4
cosz=1—-242__ ..,
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In the study of properties of polynomials, an important role is played
by the distribution of the roots of the equation

P(z) = 0,

or, more generally speaking, we may raise the question of the distribution
of the points for which the polynomial has a given value A

P(z) = A.

The fundamental theorem of algebra says that every polynomial takes
a given value A in at least one point. This property cannot be extended
to an arbitrary entire function. For example, the function w = e* does
not take the value zero at any point of the z-plane. However, we do have
the following theorem of Picard: Every entire function assumes every
arbitrarily preassigned value an infinite number of times, with the possible
exception of one value.

The distribution of the points of the plane at which an entire function
takes on a given value A is one of the central questions in the theory
of entire functions.

The number of roots of a polynomial is equal to its degree. The degree
of a polynomial is closely related to the rapidity of growth of | P(2)| as
| z]| = o0. In fact, we can write

n-y
z

|P@)| = z1" |an + 22 4 o 4 22|,

and since for | z| — oo, the second factor tends to | a, |, a polynomial
of degree n, for large values of | z |, grows like | a,, |- | z|*. So it is clear
that for larger values of n, the growth of | P,(z)| for | z| — oo will be
faster and also the polynomial will have more roots. It turns out that
this principle is also valid for entire functions. However, for an entire
function f(z), generally speaking, there are infinitely many roots, and
thus the question of the number of roots has no meaning. Nevertheless,
we can consider the number of roots n(r, a) of the equation

f)=a

in a circle of radius r, and investigate how this number changes with
increasing r. The rate of growth of n(r, a) proves to be connected with
the rate of growth of the maximum M(r) of the modulus of the entire
function on the circle of radius r. As stated earlier, for an entire function
there may exist one exceptional value of a for which the equation may
not have even one root. For all other values of a, the rate of growth
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of the number n(r, a) is comparable to the rate of growth of the quantity
In M(r). We cannot give more exact formulations here for these laws.

The properties of the distribution of the roots of entire functions are
connected with problems in the theory of numbers and have enabled
mathematicians to establish many important properties of the Riemann
zeta functions,* on the basis of which it is possible to prove many theorems
about prime numbers.

Fractional or meromorphic functions. The class of entire functions
may be considered as an extension of the class of algebraic polynomials.
From the polynomials we may derive the wider class of rational functions

P(z)
0@)°

which are the quotients of two polynomials.

Similarly it is natural to form a new class of functions by means of
entire functions. A function f{z) which is the quotient of two entire
functions G,(z) and Gy(z)

R(z) =

Gy(2)
Gy(z)

is called a fractional or meromorphic function. The class of functions
arising in this way plays a large role in mathematical analysis. Among the
elementary functions contained in the class of meromorphic functions
are, for example:

flz) =

sin z cos z
tan z = . cotz = — ;
cos z sin z

A meromorphic function will not be analytic on the whole complex
plane. At those points where the denominator G,(z) vanishes, the function
J(z) becomes infinite. The roots of G,(z) form a set of isolated points
in the plane. In neighborhoods of these points, the function f{z) naturally
cannot be expanded in a Taylor series; in a neighborhood of such a
point a, however, a meromorphic function may be represented by a
power series that also contains a certain number of negative powers
of (z —a):

C. C,

f()——?);"i"“ﬁ-z

+C4-Cz-a)+ - +C(z-a)* +
(46)

* Cf. Chapter X on the theory of numbers,
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As z approaches the point a, the value of f(z) tends to infinity. An
isolated singular point at which an analytic function goes to infinity is
called a pole. The loss of analyticity of the function at the point a comes
from the terms with negative powers of z — a in the expansion (46).
The expression & .,

P P
characterizes the behavior of a meromorphic function near a singular
point and is called the principal part of the expansion (46). The behavior
of a meromorphic function is determined by its principal part in a neigh-
borhood of a pole. In many cases, if we know the principal part of the
expansion of a meromorphic function in the neighborhood of all its
poles, we may construct the function. Thus, for example, if f(z) is rational
and vanishes at infinity, then it is equal to the sum of the principal parts
of its expansions about all of its poles, the number of which, for a rational
function, is finite:
(kl Cl:l
fl2) = m[(z__a)mit to T

In the general case a rational function may be represented as the sum

of all of its principal parts and a polynomial

(k) k)
S = 3 [t = S

m (z —a )"'it

+Co+ Ciz + -+ + Cuz™
47
Formula (47) gives an expression for a rational function in which the
role played by its singular points is clear. Expression (47) for a rational
function is very convenient for various applications of rational functions
and also has great theoretical interest as showing how the singular points
of the function define its structure everywhere. It turns out that, just as
in the case of a rational function, every meromorphic function may be
constructed from the principal parts of its poles. We introduce without
proof the appropriate expression, for example, for the function cot z.
The poles of the function cot z are obtained as the roots of the equation

sinz =0

and are situated at the points: ---, —k=w, -+, —, 0,7, -**, k7, -+, It may
be shown that the principal part of the expansion of the function cot z
in a power series at the pole z = k= will be.

1

z—kmn’



186 IX. FUNCTIONS OF A COMPLEX VARIABLE

and the function cot z is equal to the sum of the principal parts with
respect to all poles

- 1 1
cotz = +2(z—kﬂ+z+kw)' (48)

k=1

LR

The expansion of a meromorphic function in a series of the principal
parts is noteworthy in that it clearly shows the position of all the singular
points and also allows us to compute the function on the whole of its
domain of definition.

The theory of meromorphic functions has become fundamental for
the study of many classes of functions that are of great importance in
analysis. In particular, we must emphasize its significance for the equations
of mathematical physics. The creation of the theory of integral equations,
providing answers to many important questions in the theory of the
equations of mathematical physics, was based to a great extent on the
fundamental theorems for meromorphic functions.

Since that time the development of that part of functional analysis
which is most closely connected with mathematical physics, namely the
theory of operators, has very often depended on facts from the theory
of analytic functions.

On analytic representation of functions. We saw previously that in a
neighborhood of every point where a function is differentiable it may be
defined by a power series. For an entire function the power series converges
on the whole plane and gives an analytic expression for the function
wherever it is defined. In case the function is not entire, the Taylor series,
as we know, converges only in a circle whose circumference passes through
the nearest singular point of the function. Consequently the power
series does not allow us to compute the function everywhere, and so it
may happen that an analytic function cannot be given by a power series
on its whole domain of definition. For a meromorphic function an analytic
expression giving the function on its whole domain of definition is the
expansion in principal parts.

If a function is not entire but is defined in some circle or if we have
a function defined in some domain but we want to study it only in a
circle, then the Taylor series may serve to represent it. But when we
study the function in domains that are different from circles, there arises
the question of finding an analytic expression for the function suitable
for representing it on the whole domain. A power series giving an expres-
sion for an analytic function in a circle has as its terms the simplest
polynomials a,z". It is natural to ask whether we can expand an analytic



§5. PROPERTIES AND ANALYTIC CONTINUATION 187

function in an arbitrary domain in a more general series of polynomials.
Then every term of the series can again be computed by arithmetic
operations, and we obtain a method for representing functions that is
once more based on the simplest operations of arithmetic. The general
answer to this question is given by the following theorem.

An analytic function, given on an arbitrary domain, the boundary of
which consists of one curve, may be expanded in a series of polynomials

@) = Poa) + Poa) + 4 Pol2) +

The theorem formulated gives only a general answer to the question
of expanding a function in a series of polynomials in an arbitrary domain
but does not yet allow us to construct the series for a given function,
as was done earlier in the case of the Taylor series. This theorem raises
rather then solves the question of expanding functions in a series of
polynomials. Questions of the construction of the series of polynomials,
given the function or some of its properties, questions of the construction
of more rapidly converging series or of series closely related to the behavior
of the function itself, questions of the structure of a function defined
by a given series of polynomials, all these questions represent an extensive
development of the theory of approximation of functions by series of
polynomials. In the creation of this theory a large role has been played
by Soviet mathematicians, who have derived a series of fundamental
results.

§5. Uniqueness Properties and Analytic Continuation

Uniqueness properties of analytic functions. One of the most remarkable
properties of analytic functions is their uniqueness, as expressed in the
following theorem.

If in the domain D two analytic functions are given that agree on some
curve C lying inside the domain, then they agree on the entire domain.

The proof of this theorem is very simple. Let f,(z) and f(2) be the two
functions analytic in the domain D and agreeing on the curve C. The
difference

#(2) = f1(2) — £(2)

will be an analytic function on the domain D and will vanish on the curve C.
We now show that ¢(z) = O at every point of the domain D. In fact,
if in the domain D there exists a point z, (figure 21) at which ¢(z,) # 0,
we extend the curve C to the point z, and proceed along the extended
curve toward z, as long as the function remains equal to zero on I
Let { be the last point of I' that is accessible in this way. If ¢(z,) # 0,
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then { 3 z,, and on a segment of the curve I" beyond { the function ¢(z),
by the definition of the point {, will not be equal to zero. We show that
this is impossible. In fact, on the part I'; of the curve I" up to the point {,
we have ¢(z) = 0. We may compute all derivatives of the function ¢(z)
on I'; using only the values of ¢(z) on I';, so that on I, all derivatives
of ¢(z) are equal to zero. In particular, at the point {

HO = FQ = =W = - =0.

Let us expand the function ¢({) in a Taylor series at the point {. All
the coefficients of the expansion vanish, so that we get

$(z) =0

in some circle with center at the point {, lying in the domain D. In
particular, it follows that the equation ¢(z) = 0
must be satisfied on some segment of the curve I
lying beyond {. The assumption ¢(z,) 7 O gives
us a contradiction.
This theorem shows that if we know the
values of an analytic function on some segment
FiG. 21. of a curve or on some part of a domain, then
the values of the function are uniquely deter-
mined everywhere in the given domain. Consequently, the values of an
analytic function in various parts of the argument plane are closely
connected with one another.

To realize the significance of this uniqueness property of an analytic
function, it is only necessary to recall that the general definition of a
function of a complex variable allows any law of correspondence between
values of the argument and values of the function. With such a definition
there can, of course, be no question of determining the values of a function
at any point by its values in another part of the plane. We see that the
single requirement of differentiability of a function of a complex variable
is so strong that it determines the connection between values of the
function at different places.

We also emphasize that in the theory of functions of a real variable
the differentiability of a function does not in itself lead to any similar
consequences. In fact, we may construct examples of functions that are
infinitely often differentiable and agree on some part of the Ox axis
but differ elsewhere. For example, a function equal to zero for all negative
values of x may be defined in such a manner that for positive x is differs
from zero and has continuous derivatives of every order. For this it is
sufficient, for example, to set, for x > 0

fixy = e,
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Analytic continuation and complete analytic functions. The domain of
definition of a given function of a complex variable is often restricted
by the very manner of defining the function. Consider a very elementary
example. Let the function be given by the series

fy=14+z4+2% f o p 20 4 oo, (49)

This series, as is well known, converges in the unit circle and diverges
outside this circle. Thus the analytic function given by formula (49) is
defined only in this circle. On the other hand, we know that the sum of
the series (49) in the circle | z| < 1 is expressed by the formula

1
1—z°

fl2) =

(50

Formula (50) has meaning for all values of z 3£ 1. From the uniqueness
theorem it follows that expression (50) represents the unique analytic
function, agreeing with the sum of the series (49) in the circle |z | < 1.
So this function, given at first only in the unit circle, has been extended
to the whole plane.

If we have a function f(z) defined inside some domain D, and there
exists another function F(z) defined in a domain 4, containing D, and
agreeing with f(z) in D, then from the uniqueness theorem the value of
F(z) in 4 is defined in a unique manner.

The function F(z) is called the gnalytic continuation of f(z). An analytic
function is called complete if it cannot be continued analytically beyond
the domain on which it is already defined. For example, an entire function,
defined for the whole plane, is a complete function. A meromorphic
function is also a complete function; it is defined everywhere except at
its poles. However there exists analytic functions whose entire domain
of definition is a bounded domain. We will not give these more complicated
examples.

The concept of a complete analytic function leads to the necessity of
considering multiple-valued functions of a complex variable. We show
this by the example of the function

Lnz =Inr + ig,

where r = | z| and ¢ = arg z. If at some point z, = ry(cos ¢, + i sin ¢,)
of the z-plane we consider some initial value of the function

(Ln 2), = In ry + id,,

then our analytic function may be extended continuously along a curve C.
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As was mentioned earlier, it is easy to see that if the point z describes
¥ a closed path C,, issuing from the point =,
and circling around the origin (figure 22),

% and then returning to the point z,, we find

) X  at the point z, the original value of In r, but

o the angle ¢ is increased by 2. This shows
Co that if we extend the function Lnz in a
Fic. 22. continuous manner along the path C, we

increase its value by 2/ in one circuit of the
contour C. If the point z moves along this closed contour » times, then
in place of the original value

(Ln z), = Inr, - ig,

we obtain the new value
(Ln 2), = Inry + Qan + ¢ )i.

If the point z describes the contour m times in the opposite direction,
we get
(Ln2)_, = Inry + (—2mm + @)

These remarks show that on the complex plane we are unavoidably
compelled to consider the connection between the various values of Ln z.
The function Ln z has infinitely many values. With respect to its multiple-
valued character, a special role is played by the point z = 0, around
which we pass from one value of the function to another. It is easy to
establish that if z describes a closed contour not surrounding the origin,
the value of Ln z is not changed. The point z = 0 is called a branch
point of the function Ln z.

In general, if for a function f(z), in a circuit around the point a, we
pass from one of its values to another, then the point a is called a branch
point of the function f{(z).

Let us consider a second example. Let

w= ¥z

As noted previously, this function is also multiple-valued and takes on
n values

\‘VF(cos%+fsinz—:), \'VF(cos‘ﬁ —:2" +l’sin—-¢—-—%-2—”),

‘-y;(oos?s"‘z‘”:"— 1) +isin¢+2¢:§n— 1))‘



§5. PROPERTIES AND ANALYTIC CONTINUATION 191

All the various values of our function may be derived from the single
one

A ¢0 g ¢0
Wo = V7o (cos? + i'sin _ri_)
by describing a closed curve around the origin, since for each circuit
around the origin the angle ¢ will be increased by 2.
In describing the closed curve (n — 1) times, we obtain from the first
value of vz, all the remaining (n — 1) values. Going around the contour
the nth time leads back to the value

na ¢0+2ﬂ” . ¢0+2ﬂ' o ¢0 i ¢0
Vzy = \/ro(cos—"— +:sm-——--5-—-ﬂ) = \/r,,(cos? +1sln7) g
i.e., we return to the original value of the root.

Riemann surfaces for multiple-valued functions. There exists an easily
visualized geometric manner of representing the character of a multiple-
valued function.

We consider again the function Ln z, and on the z-plane we make a
cut along the positive part of the axis Ox. If the point z is prevented
from crossing the cut, then we cannot pass continuously from one value
of Ln z to another. If we continue Ln z from the point z,, we can arrive
only at the same value of Ln z.

The single-valued function found in this manner in the cut z-plane
is called a single-valued branch of the function Ln z. All the values of
Ln z are distributed on an infinite set of single-valued branches

Inr 4 ip, 2mn <¢ < 2m(n 4+ 1).

It is easy to show that the nth branch takes on the same value on the
lower side of the cut as the (n + l)th branch has on the upper side.

To distinguish the different branches of Lnz, we imagine infinitely
many examples of the z-plane, each of them cut along the positive part
of the axis Ox, and map onto the nth sheet the values of the argument z
corresponding to the nth branch. The points lying on different examples
of the plane but having the same coordinates will here correspond to one
and the same number x + /y; but the fact that this number is mapped
on the nth sheet shows that we are considering the nth branch of the
logarithm.

In order to represent geometrically the fact that the nth branch of the
logarithm, on the lower part of the cut of the nth plane, agrees with the
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(n + Dth branch of the logarithm on the upper part of the cut in the
(n + 1)th plane, we paste together the nth plane and the (» + 1)th,
connecting the lower part of the cut in the nth plane with the upper part
of the cut in the (n + 1)th plane, This construction leads us to a many-
sheeted surface, having the form of a spiral staircase (figure 23). The
role of the central column of the staircase is played by the point z = 0.

Fic. 23.

If a point passes from one sheet to another, then the complex number
returns to its original value, but the function Ln z passes from one branch
to another.

The surface so constructed is called the Riemann surface of the function
Ln z. Riemann first introduced the idea of constructing surfaces repre-
senting the character of multiple-valued analytic functions and showed
the fruitfulness of this idea.

Let us also discuss the construction of the Riemann surface for the
function w = 4/z. This function is double-valued and has a branch
point at the origin.

We imagine two examples of the z-plane, placed one on top of the
other and both cut along the positive part of the axis Ox. If z starts from
z, and describes a closed contour C containing the origin, then v/z
passes from one branch to the other, and thus the point on the Riemann
surface passes from one sheet to the other. To arrange this, we paste the
lower border of the cut in the first sheet to the upper border of the cut
in the second sheet. If z describes the closed contour C a second time,
then v/Z must return to its original value, so that the point in the Riemann
surface must return to its original position on the first sheet. To arrange
this, we must now attach the lower border of the second sheet to the
upper border of the first sheet. As a result we get a two-sheeted surface,



§5. PROPERTIES AND ANALYTIC CONTINUATION 193

intersecting itself along the positive part of the axis Ox. Some idea of
this surface may be obtained from figure 24, showing the neighborhood
of the point z = 0.

In the same way we can construct a many-sheeted surface to represent
the character of any given multiple-valued function. The different sheets
of such a surface are connected with one another around branch points

of the function. It turns out that the properties of analytic functions are
closely connected with the geometric properties of Riemann surfaces.
These surfaces are not only an auxiliary means of illustrating the character
of a multiple-valued function but also play a fundamental role in the
study of the properties of analytic functions and the development of
methods of investigating them. Riemann surfaces formed a kind of
bridge between analysis and geometry in the region of complex variables,
enabling us not only to relate to geometry the most profound analytic
properties of the functions but also to develop a whole new region
of geometry. namely topology, which investigates those geometric
properties of figures which remain unchanged under continuous defor-
mation.

One of the clearest examples of the significance of the geometric
properties of Riemann surfaces is the theory of algebraic functions, i.e.,
functions obtained as the solution of an equation

flz,w)y =0

the left side of which is a polynomial in z and w. The Riemann surface
of such a function may always be deformed continuously into a sphere
or else into a sphere with handles (figure 25). The characteristic property



194 IX. FUNCTIONS OF A COMPLEX VARIABLE

of these surfaces is the number of handles. This number is called the
genus of the surface and of the algebraic function from which the surface
was obtained. It turns out that the genus of an algebraic function determines
its most important properties.

§6. Conclusion

The theory of analytic functions arose in connection with the problem
of solving algebraic equations. But as it developed it came into constant
contact with newer and newer branches of mathematics. It shed light
on the fundamental classes of functions occurring an analysis, mechanics,
and mathematical physics. Many of the central facts of analysis could
at last be made clear only by passing to the complex domain. Functions
of a complex variable received an immediate physical interpretation in
the important vector fields of hydrodynamics and electrodynamics and
provided a remarkable apparatus for the solution of problems arising
in these branches of science. Relations were discovered between the
theory of functions and problems in the theory of heat conduction,
elasticity, and so forth.

General questions in the theory of differential equations and special
methods for their solution have always been based to a great extent on
the theory of functions of a complex variable. Analytic functions entered
naturally into the theory of integral equation and the general theory
of linear operators. Close connections were discovered between the
theory of analytic functions and geometry. All these constantly widening
connections of the theory of functions with new areas of mathematics
and science show the vitality of the theory and the continuous enrichment
of its range of problems.

In our survey we have not been able to present a complete picture of
all the manifold ramifications of the theory of functions. We have tried
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only to give some idea of the widely varied nature of its problems by
indicating the basic elementary facts for some of the various fundamental
directions in which the theory has moved. Some of its most important
aspects, its connection with the theory of differential equations and
special functions, with elliptic and automorphic functions, with the
theory of trigonometric series, and with many other branches of mathe-
matics, have been completely ignored in our discussion. In other cases
we have had to restrict ourselves to the briefest indications. But we hope
that this survey will give the reader a general idea of the character and
significance of the theory of functions of a complex variable.

Suggested Reading

R. V. Churchill, Introduction to complex variables and applications, McGraw-
Hill, New York, 1948.

P. Franklin, Functions of complex variables, Prentice-Hall, Englewood Cliffs,
N. J., 1958.

G. N. Watson, Complex integration and Cauchy’s theorem, Hafner, New York,
1960.
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CHAPTER X

PRIME NUMBERS

§1. The Study of the Theory of Numbers

Whole numbers. As the reader knows from the introduction to
Chapter I, mankind had to deal even in the most ancient times with whole
numbers, but the passage of many centuries was necessary to produce
the concept of the infinite sequence of natural numbers

1,2,3,4,5, . (D

Nowadays, in the most various questions of practical activity, we are
constantly faced with problems involving whole numbers. Whole numbers
reflect many quantitative relations in nature; in all questions connected
with discrete objects, they form the necessary mathematical apparatus.

Moreover, whole numbers play an important role in the study of the
continuous. Thus, for example, in mathematical analysis one considers
the expansion of an analytic function in a power series with integral
powers of x

fx)=ay + ax + agx® + - + ax® + -

All computations are essentially carried out with whole numbers, as is
immediately obvious from even a superficial examination of automatic
computing machines or desk calculators, or of mathematical tables, such
as tables of logarithms. After these operations on whole numbers have
been carried out, decimal points are inserted in well-defined positions,
corresponding to the formation of decimal fractions; such fractions, like
all rational fractions, represent quotients of two whole numbers. In
dealing with any rea!/ number in practical work (for example, #), we
replace it in fact by a rational fraction (for example, we assume that
7 = 22/7, or that # = 3.14).

199
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While the establishment of rules for operating on numbers is the concern
of arithmetic, the deeper properties of the sequence of natural numbers (1),
extended to include zero and the negative integers, are studied in the
theory of numbers, which is the science of the system of integers and, in
an extended sense, also of systems of numbers constructed in some definite
manner from the integers (see, in particular, §5 of this chapter). It is
understood that the theory of numbers considers integers not as isolated
one from another but as interdependent; the theory of numbers studies
properties of integers that are defined by certain relations among them.

One of the basic questions in the theory of numbers concerns divisibility
of one number by another; if the result of dividing the integer a by the
integer b (not equal to zero) is an integer, i.e., if

a=b-¢c

(a, b, c are integers) then we say that a is divisible by b or that b divides a.
If the result of dividing the integer a by the integer b is a fraction, then we
say that g is not divisible by b. Questions of divisibility of numbers are
encountered constantly in practice and also play an important role in
some questions of mathematical analysis. For example, if the expansion
of a function in integer powers of x

) = ag + arx + apx® + - + @ x" + o e
is such that all odd coefficients (with indices not divisible by 2) are equal
to zero, i.e., if

J(x) = ag + ax* + - + ax™ + -,
then the function satisfies the condition
A= x) = fx);

such a function is called an even function, and its graph is symmetric
with respect to the axis of ordinates. Butif in the expansion (2) all the even
coefficients (with indices divisible by 2) are equal to zero, in other words,
if
) = arx + agx® + 0 + Gy x4 oy
then
f(= %) = —fx);

in this case the function is called odd, and its graph is symmetric with
respect to the origin.
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Thu:v», for example

sinx = x — 3T + - (odd function);
2
cosx =1 — % + % — (even tunction).

The geometric question of the possibility of construction of a regular
n-polygon with ruler and compass turns out to depend on the arithmetic
nature of the number n.*

A prime number is any integer (greater than one) that has only the two
positive integer divisors, one and itself. One is not considered as a prime
number since it does not have two different positive divisors.

Thus the prime numbers are

2,3,5,7, 11, 13, 17, 19, 23, 29, -, 3)

Prime numbers play a fundamental role in the theory of numbers because
of the basic theorem: Every integer n > 1 may be represented as the
product of prime numbers (with possible repetition of factors), i.e., in the
form

n = pype T Pt (4)

where p, < p, < -+ < p; are primes and q,, a;, -+, a; are integers not
less than one; furthermore, the representation of n in the form (4) is unique.

The properties of numbers connected with the representation of numbers
as a sum of terms are called additive; the properties of numbers relating
to their representation in the form of a product are called multiplicative.
The connection between additive and multiplicative properties of numbers
is extraordinarily complicated; it has given rise to a series of basic pro-
blems in the theory of numbers.

The existence of these difficult problems in the theory of numbers
together with the fact that the whole number is not only the simplest and
clearest of all mathematical concepts but is closely related to objective
reality have led to the creation, for use in the theory of numbers, of
profound new ideas and powerful methods, many of which have become
important in other branches of mathematics as well. For example, a vast
influence on all developments of mathematics has been exerted by the idea
of the infinite sequence of natural numbers, reflecting the infiniteness of
the material world in space and time. Of great significance also is the fact
the terms in the sequence of natural numbers are ordered. Study of the

* See Chapter 1V.
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operations on integers has led to the concept of an algebraic operation,
which plays a basic role in several different branches of mathematics.

Of immense importance in mathematics has been the concept, partic-
ularly applicable to arithmetical questions, of an algorithm, a process of
solving problems based on the repeated carrying out of a strictly defined
procedure; in particular, the role of the algorithm is fundamental to the
use of mathematical machines. The essential nature of the algorithmic
method for solving a problem is clearly illustrated by the Euclidean
algorithm for finding the greatest common divisor of two natural numbers
a and b.

Suppose a > b. We divide a by b and find the quotient g, and, if b does
not divide a, the remainder r,

a=1bg +ry, 0<ry<b (5)
Further, if r, = 0, we divide b by r,
b=ryge+rs, 0<rys<r,. (52)

Then we divide r, by r; and continue until we get to a zero remainder,
which must necessarily happen for a decreasing set of nonnegative integers
ro,rg, . Let

Fog = rn-l‘i'n—l + T (Su—l)

Fa—1 = FoGn s (Sﬂ)

then r, is at once seen to be the greatest common divisor of ¢ and b. For if
two integers / and m have a common divisor d, then for any integers /
and k the number Al + km will also be divisible by d. Let us denote the
greatest common divisor of @ and b by 8. From equation (5,) we see that
& is a divisor of r,; from (5,) it follows that & is a divisor of r3, -*-; from
(5,-,) that & is a divisor of r,, . But r,, itself is a common divisor of e and b,
since in (5,) we see that r, divides r,,_,; from (5,_,) that r, divides r,_;,
etc. Thus & is identical with r, and the problem of finding the greatest
common divisor of a and b is solved. We have here a well-defined
procedure, of the same type for all a and b, which leads us automatically
to the desired result and is thus a characteristic example of an algorithm.

The theory of numbers has exerted an influence on the development of
many mathematical disciplines: mathematical analysis, geometry, classical
and contemporary algebra, the theory of summability of series, the theory
of probability, and so forth.

Methods of the theory of numbers., In its methods, the theory of
numbers is divided into four parts: elementary, analytic, algebraic, and
geometric.
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The elementary theory of numbers studies the properties of integers
without calling on other mathematical disciplines. Thus, starting from
Euler’s identity

O} + x5 + x5 + xDOS + 23 + 25+ ¥D = (cwy + Xye + Xas + X0
4 (x9¥a — Xo¥y + Xg¥s — Xo¥a)® + (X1¥s — Xa¥y + XgVe — Xo¥y)?
+ (174 — Xgpy + Xa¥s — Xa¥a), (6)

we may very simply prove that every integer N > 0 may be expressed as
the sum of the squares of four integers; i.e., every integer is representable
in the form

N=xt+y4+224 0

where x, y, z, and u are integers. *

The analytic theory of numbers makes use of mathematical analysis for
problems of the theory of numbers. Its foundations were laid by Euler
and it was developed by P. L. Ceby3ev, Dirichlet, Riemann, Ramanujan,
Hardy, Littlewood, and other mathematicians, its most powerful methods
being due to Vinogradov. This part of the theory of numbers is closely
connected with the theory of functions of a complex variable (a theory
that is very rich in practical applications), and also with the theory of
series, the theory of probability, and other branches of mathematics.

The basic concept of the algebraic theory of numbers is the concept of
an algebraic number, i.e., 2 root of the equation

apx™ + @ x" 1 4 @px™? o+ o+ a1 x 4 a, = 0,

where @, , 4, , a,, -, a, are integers.t

The greatest contributions to this branch of the theory of numbers were
made by Lagrange, Gauss, Kummer, E. 1. Zolotarev, Dedekind, A. O.
Gel’'fond, and others.

The basic objects of study in the geometric theory of numbers are
“space lattices™; that is, systems consisting entirely of “integral” points,
all of whose coordinates in a given rectilinear coordinate system, rectan-
gular or oblique, are integers. Space lattices have great significance in
geometry and in crystallography, and are intimately connected with
important questions in the theory of numbers; in particula., with the

* We have here an example of an indeterminate equation, to be investigated from
the point of view of its solvability in integers.

t If @, = |, the algebraic number is called an algebraic integer. A number which
is not algebraic is called transcendental.
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arithmetic theory of quadratic forms, i.e., the theory of quadratic forms
with integer coefficients and integer variables. Basic work in the geometric
theory of numbers is due to H. Minkowski and G. F. Voronol.

It is-to be noted that the methods of the analytic theory of numbers
have important applications in the other two branches, the algebraic
and the geometric. Particularly noteworthy is the problem of counting
the number of integral points in a given domain, a problem which is
important in certain branches of physics. Various means of approach to
this problem were indicated by G. F. Voronoi and methods for its solution
were developed by 1. M. Vinogradov.

The deep-lying reason for the power of analytic methods in the theory
of numbers is that they enrich our study of the interrelations among
discrete integers by summoning to our aid new relations among continuous
magnitudes.

We must emphasize that in this chapter we are considering only certain
selected questions in the theory of numbers.

§2. The Investigation of Problems Concerning Prime Numbers

The number of primes is infinite. In considering the sequence (3)
of prime numbers

2,35 7,11,13,17, 19, -~

it is natural to ask the question: Is this sequence infinite ? The fact that any
integer can be represented in the form (4) does not yet solve the problem,
since the exponents a, , -*-, a, may take on an infinite set of values. An
affirmative answer to the question was given by Euclid, who proved that
the number of primes cannot be equal to any finite integer k.

Let p, , Py, ***, Pi be primes; then the number

m=pp - p+ 1,

since it is an integer greater than one, is either itself a prime or has a
prime factor. But m is not divisible by any one of the primes p, , p;, -, P&
since, if it were, the difference m — p,p, --- p; would also be divisible by
this number; which is impossible, since this difference is equal to one.
Thus, either m itself is a prime or it is divisible by some prime p,,,,
different from p, , -'*, px . So the set of primes cannot be finite.

The sieve of Eratosthenes. The Greek mathematician Eratosthenes in
the 3rd century B.C. described the following “‘sieve” method for finding
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all the primes not exceeding a given natural number N. We write all the
integers from | through N

lv 2v 3’ 4’ s Nv

and then cross out, from the left, first the number |, then all numbers
except 2 that are multiples of 2, then all except 3 that are multiples of 3,
and then all except 5 that are multiples of 5 (the multiples of four have
already been crossed out), and so forth; the remaining numbers will then
be primes. It is worthy of note that the process of crossing out needs to
be continued only to the point where we have found all primes less than
V/'N, since every composite number (i.e., not prime) that is not greater
than N will necessarily have a prime divisor not exceeding V' N.

Examination of the sequence of prime numbers in the sequence of all
positive integers would lead us to believe that the law of distribution of
prime numbers must be very complicated; for example, we encounter
primes such as 8,004,119 and 8,004,121 (the so-called twin primes)
whose difference is two, and also primes that are far from each other,
such as 86,629 and 86,677, between which there is no other prime. But the
tables show that ““on the average” prime numbers occur more and more
rarely as we traverse the sequence of integers.

Euler’s identity; his proof that the number of primes is infinite. The
great 18th century mathematician L. Euler, a member of the Russian
Academy of Sciences, introduced the following function, with argument
s > 1, which at the present time is denoted by {(s):

1 1 1
W=+ +gm++om+. (M

As we know from Chapter II, this series converges for s > 1 (and
diverges for s < 1). Euler derived a remarkable identity that plays a very
important role in the theory of prime numbers:

- 1 1
2 ~II— ®
n=1 i ] i
ps
where the symbol I1,, means that we must multiply together the expressions

1/[1 — (1/p%)] for all primes p. To see how the proof of this identity goes,
we note that 1/(1 —¢) =1+ g + g* + - for | g| < I, so that

1
1 —

1 1
1 —I+To"—+;§;+ .

pl
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Multiplying these series for the various primes p and recalling that every n
is uniquely representable as the product of primes, we find that

| | | | |
];[(1+——+pz, o) = I+ g+ b=+
For a rigorous proof, of course, we must establish the validity of our limit
process, but this presents no particular difficulty.

From identity (8) we may derive as a corollary the fact that the series
X, 1/p, consisting of the reciprocals of all the primes, diverges (this pro-
vides a new proof of the fact already known to us that the prime numbers
cannot be finite in number), and also that the quotient of the number of
prime numbers not exceeding x, divided by x itself, converges to zero for
unboundedly increasing x.

The investigations of P. L. Ceby3ev on the distribution of the prime
numbers in the sequence of natural numbers. We denote by =(x), as is
now customary, the number of prime numbers not exceeding x; for
example, #(10) = 4, since 2, 3, 5, and 7 are all the primes not exceeding
10, #(7) = 2, since 2 and 3 are all the primes not exceeding =. As noted
earlier

fim T8 _
x

I-soc

But just how does the ratio m(x)/x decrease; in other words what is the
law of growth for w(x)? May we look for a fairly simple, well-known
function that differs only a little from =(x)? The famous French mathe-
matician Legendre, in considering tables of prime numbers, stated that
such a function will be

X

Inx — A"’

9)

where 4 = 1.08---, but he did not give a proof of this proposition. Gauss,
who also considered the question of the distribution of the prime numbers,
conjectured that =(x) differs comparatively little from j’ dtfIn t (we note
that the following relation holds:

dt
§ Int
2 —_—
= s 10
In x

which is established by integrating by parts and finding estimates for the
new integral).
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The first mathematician since the time of Euclid to make real progress
in the very difficult question of the distribution of the prime numbers
was P. L. CebySev. In 1848, basing his work on a study of Euler’s function
{(s) for real s, CebySev showed that for arbitrarily large positive n and
arbitrarily small positive « there exist arbitrarily large values of x for which

ox

dt
w(x) >KW‘ Innx ’

and also arbitrarily large x for which

oxX

Tf(x)<,[ ]nt x In®x °

which is in good agreement with Gauss’s assumption. In particular,
taking n = 1 and applying (10), CebySev established the fact that

lim —— (%) =1,

rvo X

In x

)

provided that the limit in (11) exists.

Cebysev also refuted Legendre’s assumption concerning the value of the
constant 4 which occurs in expression (9) as giving the best approximation
to r(x); he showed that this value can only be 4 = 1.

The well-known French mathematician Bertrand was led by his
investigations in the theory of groups to the following conjecture, which
he verified empirically from the tables up to quite large values of n: If
n >3, then between n and 2n — 2 there is at least one prime. All the
attempts of Bertrand, and of other mathematicians, to prove this con-
jecture proved fruitless until 1850, when CebySev published his second
article on prime numbers, in which he not only proved the conjecture
(“Bertrand’s postulate”) but also showed that for sufficiently large x

Al<$<43, (12)

In x
where
092 < A, <land 1l < 4, <L
In §3 we give a simplified presentation of CebySev’s method, which

leads, however, to considerably less precise results than those of CebySev
himself.
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Cebysev’s works had a great influence on many mathematicians, in
particular Sylvester and Poincaré. In the course of more than forty years
a number of scientists busied themselves with the improvement of
Cebysev’s inequality (12) (increasing the constant on the left side of the
inequality. and decreasing the constant on the right side), but they were
unable to establish the existence of the limit

lim ——= #x)

Z-va0 x

In x

(as was pointed out previously, we know from the work of CebySev that
if this limit exists it is equal to one).

Only in 1896 did Hadamard, using arguments from the theory of
functions of a complex variable, prove that the function 8(x), introduced
by Cebysev and defined by the equation

B(x) = 2 In p,

p<z
satisfies the condition

(i &) (13)

0 X

from which it is relatively easy to obtain the relation (11) without any
further assumptions; this is the so-called asymptotic law for the distribu-
tion of primes.

The result (13) was found by Hadamard on the basis of the investigations
by the famous German 19th century mathematician Riemann, who
studied the {(s) function of Euler (7) for complex values of the variable
s = o + it (CebySev himself had considered this function only for real
values of the argument).*

Riemann showed that the function {(s), defined in the half plane ¢ > 1
by the series (7)

U =3

n=1
has the property that
1
() =1

*In 1949 A, Selberg gave an elementary proof (i.e., not using complex variables)
of the asymptotic law of distribution of primes.
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is an entire transcendental function (for ¢ < 1 the series (7) ceases to
converge, but the values of {(s) in the half plane o < 1 are defined by
analytic continuation) (see Chapter IX). Riemann made the conjecture
(“the Riemann hypothesis™) that all roots of {(s) in the strip 0 < o < 1
have real part equal to £, i.e., lie on the straight line ¢ = ; the question
of the correctness of this assumption remains open to this day.

An important step in the proof of (13) was the establishment of the fact
that on the straight line ¢ = 1 there are no roots of (s).

The investigation of the behavior of {(s) led to the development of an
elegant theory of entire and meromorphic functions, with important
practical applications.

The work of Vinogradov and his students in the theory of prime numbers.
From equation (13), which by (10) may be written in the form
”("‘) = (14)

lim ——— =1,
Z0 J“
Ins

there arose the question of the degree of exactness with which the function
f' dt/In ¢ represents (x). The best results in this direction were found by
N G. Cudakov and were based on Vinogradov’s method of trigonometric
sums (this method will be described in §4), which also allowed Cudakov
to decrease considerably the bounds between which we can find at least
one prime. Namely, it had been established previously that if we consider
the sequence

lm’ 2250’ 3250’ T ”m’ (" + 1)250’ TR (15)

then, starting with some n = n,, there must exist, between any two
adjacent terms, i.e., between 7% and (n 4+ 1)*%, at least one prime.
We note that, as follows from the binomial formula

(n + 1) — 280 > 250,29,

this difference is very large. N. G. Cudakov succeeded in replacing the
sequence (15) by
li‘ 24’ 31’ ool ni’ (n + ])l’ e (16)

whose terms lie considerably closer together than those of the sequence
(15) but which also contains at least one prime between every two suc-
cessive terms, i.e., between n* and (n + 1)%, beginning at some n = n,.
Subsequently, this result has been improved by replacing the fourth
powers by cubes.
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If k and [ aré relatively prime, i.e., have no common divisor larger than
one, then an arithmetic progression with general term k¢ 4+ / contains
infinitely many prime numbers. This fact, a generalization of the result of
Euclid, was established in the 19th century by Dirichlet. But can we find
a bound that will certainly not be exceeded by the smallest prime in the
progression k¢ + 1? The Leningrad mathematician Ju. V. Linnik proved
the existence of an absolute constant C with the property that in progres-
sion kt + I (k and [ relatively prime) there necessarily exists at least one
prime less than k€. Thus Linnik provided an essentially complete solution
of the problem, raised many years before, of the least prime in an arith-
metic progression; further investigators can only decrease the value of
the constant C. Linnik also carried out very important investigations
concerning the zeros of the function {(s) and more general functions.

As mentioned previously, the best results with regard to the distribution
of primes were found by the method of Vinogradov for estimating trigono-
metric sums.

A trigonemetric sum is a sum of the form

eﬁl“f{t]
»
A<z<B

where f(x) is a real function of x, and x takes on all integral values between
A and B, or some specific subset of these values, for example the primes
between A and B. Since the modulus of &¥** for real z is equal to one, and
the modulus of a sum does not exceed the sum of the moduli of its terms,
we have

»
emira | < p. (17)

Z=1

This “‘trivial” estimate can be improved considerably in a number of
cases; the decisive steps in this direction were taken by Vinogradov. For
definiteness, let f{x) be a polynomial

J(X) = X 4 oty x® 4 v anx + .

If all the « are integers, then *™/=) = | for integral x, and in this case
the estimate (17) obviously cannot be improved. But if «, , -, «,, are not
all integers then, as Vinogradov showed, the estimate (17) may be sharp-
ened by approximating any of these coefficients by rational fractions with
denominators not exceeding some bound (it may be shown that any o
lying between O and 1 is representable in the form « = afg + z, where a
and g are relatively prime integers, ¢ <, |z | < 1/¢* and 7 is a pre-
assigned integer greater than 1).
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The creation of the method of trigonometric sums by Vinogradov allowed
him to solve a series of very difficult problems in the theory of numbers.
In particular, in 1937 he solved a famous problem stated by Goldbach,
by proving that every sufficiently large odd N is representable as the sum
of three primes

N=p +p+p;. (18)

This problem arose in 1742 in correspondence between Euler and another
member of the Russian Academy of Sciences, C. Goldbach, and remained
unsolved for almost two centuries, despite the efforts of a number of emi-
nent mathematicians.

As we have seen, the inequality (4) shows that prime numbers play a
fundamental role in the multiplicative representation of an odd number
by means of primes. It is easy to show from (18) that one can represent a
sufficiently large even number as the sum of no more than four primes.*
In this manner, the Vinogradov-Goldbach theorem established a profound
connection between additive and multiplicative properties of numbers.

The significance of the method of trigonometric sums created by
Vinogradov is not restricted to the theory of numbers. In particular, it
plays an important role in the theory of functions and in the theory of
probability. Some idea of Vinogradov’s method may be obtained from
§4 of this chapter.

Readers who are interested in a more detailed treatment may consult
Vinogradov’s book “The method of trigonometric sums in the theory of
numbers,” after a preliminary reading of his book “Foundations of the
theory of numbers.”

§3. Cebysev’s Method

éebyéev’s 6 function and its estimates. We now give a simplified
presentation of Ceby$ev’s method for computing the number of primes
lying with given limits. For brevity we agree to use the following notation:
if B is a positive variable quantity that may grow unboundedly, and 4 is
another quantity such that | 4 | grows “no more rapidly” than CB, where
C is a positive constant (more precisely, if there exists a constant C > 0
such that starting from some instant we always have | 4 |/B < C), then we
will write

= O(B).

* The correctness of Euler's conjecture that every sufficiently large even number
N can be represented as the sum of two primes remains an open question to this day.
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This is usually read as: “A is a quantity of the order of B.” Thus, for
example

sin x = O(1),
since everywhere

| sin x |

< b
in exactly the same way
5x%cos 2x = O(x?).

We will also denote by [x] the integral part of x, i.e., the largest integer not
exceeding x; thus, for example

[7] = 3, [5] =5, [— 1.5] = — 2, [0.999] = O.

We now pose the following question: Let p be a prime, and » a natural
number, and let n!, as usual, denote the product 1 -2 - 3 - ---- n; we note
incidentally that as » increases the value of n! grows very rapidly. What is
the largest power a of the prime p that divides n! with no remainder?

Among the numbers 1, 2, ---, n, there will be precisely [#/p] numbers
divisible by p; the number of these which will also be divisible by p* is
[n/p?]; further, of these there will be [n/p®] divisible by p3, etc. Hence it is

easy to show that
o= [+l 4 Lp)+

(where the series terminates, since [n/p*] > 0 only for n = p*). Thus, in
the last sum every factor of the product 1 - 2 - 3 - ---- n such that thehighest
power of the number p by which it is divisible is equal to p™ will occur
precisely m times, once as a multiple of p, once as a multiple of p® once as
a multiple of p3, -+, and finally once as a multiple of p™.

From this result and from the representability of any natural number
in the form (4) it follows that n! will be the product of powers of the form

n n L3 [
y J‘;]*[ﬁ;]'f[‘;h ’
tnx taken for all primes p <n. Thus
In (') will be the sum of the loga-
rithms of these powers, which can be
concisely written in the form

o ! m m+! x
n n
. - Eﬁ([;] +[?
o 1 +[5] +)mp a9
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We simplify equation (19). Since y = In x is an increasing function,
we have

m+1 41 m+1
lnm=lnmj dx<_[ lnxdx<ln(m+l)f dx = In(m + 1)

as is clear from figure 1. Thus

Innt=Inl+4+In2+4+--+Inn

<f:lnxdx+J.:lnxdx+---

+ " lnxdx+]nn=rlnxdx+lnn,
1

n-1

on the other hand

2
Inn! >1Inl +_[ In xdx + -~
1

-1 n e
In x dx Inxdx = | Inxdx.
+ J:—2 + '[n—l '[ 1
Using the formula for integration by parts, we find

j“lnxdx=[x-lnx]fﬂjﬂx cdx=nlnn—(n— 1.
1 1

A
X
Thus
nlnn—n+ 1l <lnnl<nlnn—n+1+Inn,
and hence it follows that
Inn! =nlnn + O(n). 20

We note that In n = O(n); further, for n — oo, the function In n increases
more slowly than any positive power of n, i.e., for any constant « > 0

. Inn
lim —= =0, @n

since by the rule for indeterminate forms (cf. Chapter II)

|-

. Inn
lim =0.
-

1
nﬁ

R | ==

= lim

lim
n® n=o gp%-1 nm
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Further, we find

3 (] B+ ) mr < 3 (Gt o+

rpEn

| | |
= ,%, :l—npl <2n p;n 2;0 <2n mz-l 1;1;" = 2nCy = O(n),
R ( - 5) (22)

Inm

m2

convergence of this series is established by using (21), for example, for
a = %, by the comparison test and the so-called integral test for conver-
gence (cf. Chapter II, §14). In view of (20) and (22), equation (19) may be
put in the form

. The absolute

ag
where C, is the sum of the convergent series Z

2 [:—:] Inp =ninn + O(n). (23)
PEn
We now consider the function introduced by Ceby%ev
6(n)= 3 Inp (24)
PEn

(the logarithm of the product of all prime numbers not exceeding #).
Equation (23) can be rewritten as:

8(7)+6() +6(3) +8(;)+ =ninntom. @5

In fact, every given In p enters into all the sums of the form 6(n/s),
where p < n/s, i.e., where s < n/p, and the number of such sums &(n/s)
is equal to [n/p].

Equation (25) is also valid for any noninteger n. To see this, it is
obviously sufficient to prove that it is true for all x under the condition
n < x < n+ 1; and for this it is enough to prove that replacing n by x
in the left side of (25) does not change that side, and that the first term in
the right side may increase by an amount which is O(n). But the first follows
from the fact that such a replacement will not increase the value of any
one of the terms of the left-hand side (such an increase would be'possible
only if n were increased by more than unity) and, of course, the left side
is not decreased. The second follows from the fact that by the formula
for the increment of a function (cf. Chapter II)

Jx) —fla) = (x —a)f'(§), a<é<x,
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we have

xInx —nlnn=(x—n)-(Mné+ 1), n<é<x
and the right side of this last equation is less than In (n + 1) + | = O(n),

since0 < x — n < 1. From equation (25) let us subtract twice the equation
derived from (25) by replacing n by n/2;

o) + () +9() + o)+ = rins + 00

29(;)+29(;)+-“=2-;'ln%+0(n),

we obtain
9(?)—O(g)+9(§)-—9(§)+-"=nln2+0(n)< Cn,

where C, is some positive constant. But &(n/1) — 6(n/2) is not larger
than the whole left side, since the differences, O(n/3) — O(n/4),
&(n/5) — ©(n/6), -+ cannot be negative. Thus it follows from this last
inequality that

o) -0 () <G

Inserting here the numbers n/2, n/4, -+- in place of n, we also get

o) -6 <a-3
6@ -0 <3

hence, using the fact that &(n/2*¥) = 0 for sufficiently large k (when
nf2* < 2), addition of terms gives

6(n) < C, {n+g+g—|—---) = 2Cyn. (26)
Returning to equation (23), we find

0< Y 2inp— [p] np< S Inp= < 2Cn = O(n),
psap P<n pEn
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so that equation (23) gives

Zflnp=nlnn+0(n),

PEn
> “‘TP =Inn + 6C, @7
P<n

where C is a constant greater than zero and 6 depends on the number n
in such a manner that | 6| < 1.

An estimate for the number of primes in a given interval. We now
show that one may choose a positive constant M in such a manner that
between n and Mn there will lie as many primes p as desired, if » is
sufficiently large. Namely, we establish simple inequalities for the number
T of primes in the interval n < p << Mn. Obviously,

2 Inp - _l_n_,.p__ Inp ) 28)
n<p<Mn P P<Mn 4 p<n p

From equation (27), replacing n by Mn, we get

2‘ Inp =InMn) +6C=InM +Inn+6C, (29)
PEMn

where | 8’ | < 1; thus, in view of equations (28), (29), and (27), we have

» P M ieCc—6C=InM+20,C

n<p<Mn ?

Where I eol g l’ Le‘)
InM—2C < hnp

n<p<Mn

<InM +2C. (30)

On the other hand, since y = In x/x for x > e is a decreasing function
(since y) = (1 —Ilnx)/x®* <O for Inx > |, ie, x > ¢), it follows that
forn=>=3

In Mn o Inp <T

T <
Mn n<p<Mn p n

hence, from (30), we have

Inn

T >InM —2C 31
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and
In (Mn)

TMn

<InM +2C. (32)

We now choose the constant M such that the right side of (31) is equal to
one
InM-—-2C=1,
ie.,
M = &,
and we set
L = M(InM + 2C).

Then for the number T of primes lying between n and Mn, we get from
(31) and (32) the inequalities

n n
Ton < T<Llqmn: 33)
which it was our purpose to establish. Since »/In n — oo for unbounded
increase in n, it follows that T — oo also.

§4. Vinogradov’s Method

Vinogradov’s method in its application to the solution of Goldbach’s
problem. We attempt in this section to give some account of Vinogradov’s
method for the particular case of Goldbach’s problem of representing an
odd number as the sum of three prime numbers.

An expression in the form of an integral for the number of representations
of N as the sum of three primes. Let N be a sufficiently large odd number.
We denote by /(N) the number of representations of N as the sum of three
primes; in other words, the number of solutions of the equation

N=p+p+ps (34)

in prime numbers p, , p, , and p; .

Goldbach’s problem will be solved if it can be established that (V) > 0.
Vinogradov’s method allows us not only to establish this fact (for
sufficiently large N), but also to find an approximating expression for
I(N).

f(N) may be written in the following form

1
IN) = 278 Py +P3+Py—Na ’ 35
( ) pEN %%N hzsh' '[oe . o ( )
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where the summations are taken over the prime numbers not exceeding N.
In fact, for integer n3£4 0

1 1 |
2nina _— mina] — — (plnni __ —
f:"" " do: 27mni [e*<], 2mni (e ey=0,

since
e = cos 2mn + isin 2mn = |;
but if n = 0, then

I: ewmin goy = J: de = 1.

Thus, every time the primes p,, p,, and p; have the sum N the integral
inside the summation sign in (35) has the value one, and when the sum
Py + P2 + P37~ N, this integral is equal to zero, which proves the validity
of equation (35).

Since e?ia - g2nib — grita+d) and the integral of a sum of terms is equal
to the sum of the integrals of these terms, it follows from equation (35)

that
1

IN) = j (Z e”'*“”)se's’““"da.

0 ‘pN

Introducing the notation

T,= 3, e (36)
PN
we then have .
IN) = f T2 e=viaN dy, (37)
0

Decomposition of the interval of integration into basic and complementary
intervals. Let h be a quantity, chosen in an appropriate manner depending
on N, which increases unboundedly with N but is small in comparison with
N and even with ¥/N/2, and set + = N/h. Since the function integrated
in (37) has a period equal to one, the interval of integration in (37) may be
replaced by the segment from — (1/7) to 1 — (1/7). Thus

1-1/%
I(N) = T2 e 2N do, (38)
-1/T
We now consider all proper irreducible fractions a/g with denominators
not exceeding A, and distinguish in the segment — (l/7) K a <1 — (1/7)
the “basic” intervals corresponding to these fractions

€a< : (39)

40—

_F

41—

L3R~
LSRR~
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for sufficiently large N these intervals, as may be proved,* will have no

points in common. In this manner, the segment — (1/7) <a <1 — (1/7)

can be decomposed into basic intervals and “‘complementary’ intervals.
We represent I(N) as the sum of two terms

I(N) = L(N) + I(N), (40)

where I,(N) denotes the sum of the integrals on the basic intervals and
I,(N) is the sum of the integrals on the complementary intervals. As will
be seen below, for unbounded growth of odd N we also have unbounded
growth of [,(N), with

H(N) _
fim 203 =0, @D

So we see from (40) that the number of representations of an odd N as the
sum of three primes grows unboundedly with N, so that, in particular,
we have proved Goldbach’s conjecture for all sufficiently large odd N.

An expression for the integral on the basic intervals. Leta belongto
one of the basic intervals; from (39), « = a/q + z, where 1 < ¢ < hand
| z| < 1/7. We break up the sum (36)

T, = Z etmive — Z eﬁﬂlafq-rzw’

P<N P<N

extended over all primes not exceeding N into partial sums T, ,, of the

form
Tu,M — e%wiiuqﬂlp’

M<p<M/’

where M’ is so chosen that e%*» differs “little’ from e2?mizM; since we intend
to give only the idea of Vinogradov’s method, and not a proof of the
Goldbach-Vinogradov theorem, we will not state precisely what we mean

*If two such intervals surrounding the points a,/q, and a,/q, intersect, then at a
common point we will have the equation
a [} a. )
2422402 where [61< 1, |6 <1,
[} T q: T
aqy — asgy _ 0, — 8,
T T

But the absolute value of the left side of this last equation is not less than 1/gq,, i.e.,
is greater than 1/A*, and the right side is not greater than 2/, i.e., is less than 2A/N.
So if this last equation were true, it would imply the inequality 1/A* < 2A/N which
contradicts the choice of A.
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by the expression “differs little”; in his proof Vinogradov deals with
rigorously defined inequalities, involving a great deal of calculation. Thus

T A R eﬁriMz eltritalalp — plmiMz Tnfq.M . (42)
M<p<M’

where the symbol ~ means that the first of the three expressions on the
last relation differs “little” from the second.
We further break up each of the sums

; etmitalap 43)
M<p<M’

into sums T,, », taken over all primes p, satisfying the relation
M < p, < M’ and belonging to arithmetic progressions gx -+ I, where /
takes on all values from 0 to g — | which are relatively prime to g. But

etmila/aipl — e2uiz+21r£la!qll = eﬁﬁ(w’alt’

and thus
Talq.M"l = g¥rilalat . ‘”(M’ M” I)’ (44)

where #(M, M’, ) is the number of primes satisfying the conditions
M < p < M’ and belonging to the arithmetic progression gx +- /. In the
development of formula (14) for the number #(x) of primes not exceeding
x, it was established that =(M, M’, 1), for values of ¢ which are “small”
in comparison with the dlﬂ‘ercnce M — M, differs little from
1/4(q) j'" dx/In x, where ¢(q) is Euler’s function. This is a number-theoretic
function (i.e., a function defined for natural numbers g) representing the
number of positive integers not exceeding ¢ and relatively prime to g.
From (44) we may thus derive

~ etrita/oll .

Torg.mn = 45)

M
¢(4) f ln X’

In the expression on the right side of (45), only the first factor depends on
1, i.e., on the choice of the arithmetic progression gx + / (we now consider
g as fixed). After summing on /, we obtain

T, M 2mita/a)t
la.M R qb(q) fM T e
and further, from (42),
M?
Ta.M’ Ay eimiMz . _‘*;(l?j_‘[. ]ﬁ':: Z eﬁwﬂa;‘qu (46)
M
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where

M’ dx M elrizz
e*“‘"‘f i j' dx,
M Inx a Inx

which allows us to replace (46) by the relation

M esnizz
T, MN.[ Eeznua,-‘qn_

lnx

After summing on M it is established that

N egﬂiﬂ l
T & L LA milaja)l,
* jz nx &(q) 2; ¢

2 etmitajai
i

The sum

221

(47)

(48)

occuring on the right side of (48), with the summation taken over natural
numbers / not exceeding ¢ and relatively prime to ¢ may be expressed as a
number-theoretic function u(g) defined in the following manner: u(g) = 0
if ¢ is divisible by the square of an integer greater than one; u(1) = |

and u(g) =(— 1" if g=pp, -+ p, where py,p,,
primes. Thus, for relatively prime a and ¢

Z et/ — y(g),

]

Thus equation (48) may be written in the form

N pimizx
T, ~ (Ve
$(g) 72 Inx

From the fact u¥g) = u(g) we have

8 P’( ) N emm:x 3
T~ or U, )

and from the definition of I,(N)

1/
W= 3 " T3 g-tmiaN g,

t<g<h a * afa-UF

-, P, are distinct

(49)

(50)

(51)
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where for a given g the summation is taken over all nonnegative a less
than ¢. Since « = a/q = z, we then have, as a result of (50),

L(N) ~ Z _J‘_‘Q_l_z e—2milajON J’l" UN el dx)s e-2mizN gy

lsg<h (é(Q) . —1it 2 In x
(52)
We introduce the notation
_ 17 N e‘lwiu 3 e
R(N) - J‘-l!‘l’ (J‘g ll’l X dx) € dz' ('53)

From relation (52) it follows that

II(N) ~ R(N) ’2 ’ —[g(_(qq))]T 2 e—tmilajaIN, (54)

Here we must draw attention to the fact that R(V)is an analytic expression,

which can therefore be calculated approximately; in fact, it runs out that
N2

2(In N)® °

The expression occuring as a factor of R(N) on the right side of (54) differs
““little” from the sum of the infinite series

R(N) ~ (55)

S(N) = a: % Z; e—tmita/aN, (56)

so that, from (54) and (55), it can be established that
N2

LiN) ~ WS(N), (57)
or, more precisely,
LN) = sy SOV) 7)) (58)
where
Jim y,(N) = 0. (59)

We note that number-theoretic expression S(N) may be written in the
form

1
S(N) = C]_:[(l —m)» (60)
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where Cis a constant, the multiplication is extended over all prime divisors
of the number W, and, as the computations show,

S(N) > 0.6. (61)

Estimate of the integral on the complementary intervals. We turn now
to an estimate of the sum I, of the integrals on the complementary intervals.
Since the modulus of the integral does not exceed the integral of the
modulus of the function being integrated, and since | e 2N | = | for
real « N, we have

1-1/r
Ll <max|Tol- [ I Tyl de, (62)
where max | T, | represents the largest value of | T, | for « belonging to
the complementary intervals (we have strengthened the inequality by taking
as the factor of max | T, | the integral extended over the whole interval
—(mn<a<l =17
But the square of the modulus of a complex number is equal to the
product of the number with its complex conjugate, so that

|Tﬂ|2=TCI.TCI’

where from (36) we have

Te= D, et

rN

since e~*m2» = cos 2map — isin 2mxp. Thus, inequality (62) may be
rewritten in the form

1-1fr

| I;] < max|T,|- I Z e2miap Z e-2mipy gy
n<

“U¥ pgN N

or in the form

1-1/7
|| < max| Ty| - j 3, 3 emier-n g, (63)

“UT p<N ;<N

But the integral in the inequality (63), from what was said at the beginning
of the present section, represents the number of U of solutions in primes
p, P, not exceeding N, of the equation p — p, = 0, or simply the number
of primes not exceeding N, i.e., #(N). From the result (12) of Ceby3ev we
have

N

B
w(N) < B,
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where B is a constant. In this manner

N
|12|<B-ﬁ-max|n|, (64)

where, to repeat, max | T, | represents the largest value of | T, | on the
complementary intervals. From (58) and (59) it follows that in order to
complete the proof of the Goldbach-Vinogradov theorem, we must now
show that max | T, | has order less than N/(In N)?; however, the establish-
ment of this fact presents the greatest difficulty and constitutes the essential
part of the whole proof of the theorem.

Every « belonging to a complementary interval can be represented in the
form « = a/q + z, where h < g < 7 and | z| < l/g7. The problem thus
consists of estimating the modulus of the trigonometric sum

T, = 2 e2rilajatz)p

PN
under the given conditions. Vinogradov established, in particular, that

max T,

m 5 - 0; (65)
(In N)®

here he made use of a very important identity which he discovered for the
function u(n) discussed previously.

Unfortunately, it is not possible here to give a proof of equation (65);
the interested reader is referred to Chapter X in Vinogradov’s book
“Methods of trigonometric sums in the theory of numbers.”

From (65) and (64), as we noted, it follows that

L(N) _
MBI
In this manner, from (40), (58), and (59) we have

N

i = 2(In N)®

[S(NV) + »(M)], (66)
where

lim y(N) =0,

and S(N) has the value (60), so that, from (61), S(N) > 0.6. This completes
the proof of the theorem.
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§5. Decomposition of Integers into the Sum of Two Squares;
Complex Integers

The importance of the study of prime numbers is chiefly because of the
central role they play in most of the laws of number theory: It frequently
happens that questions which at first sight seem far removed from divi-
sibility are nevertheless shown by more careful consideration to be inti-
mately connected with the theory of prime numbers. We illustrate this
statement by the following example.

One of the problems of number theory consists of finding those natural
numbers that can be decomposed into the sum of the squares of two
integers (not necessarily different from zero).

The rule for the sequence of numbers that are the sum of two squares
is not immediately clear. From | to 50, for example, it consists of the
numbers 1, 2, 4, 5, 8, 9, 10, 13, 16, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40,
41, 45, 49, 50 a sequence which seems quite erratic. The 17th century
French mathematician Fermat noticed that here everything depends
on how the number can be represented as the product of primes, i.e., the
question is inherently related to the theory of prime numbers.

Prime numbers, other than p = 2, are odd, so that division by 4 gives
a remainder equal to | (for a prime number of the form 4n + 1) or to
3 (for a prime number of the form 4n 4+ 3).

We will consider the question of expressing a given number as the sum
of two squares under the following three headings.

1. A prime number p is the sum of two squares if and only if p = 4n 4 1.

The proof of the fact that a number of the form 4n + 3 cannot be
expressed as the sum of two squares is almost obvious: The sum of
the squares of two even numbers is divisible by 4, the sum of the square
of two odd numbers gives a remainder of 2 when divided by 4, and the
sum of the squares of an even and an odd number, when divided by 4,
gives a remainder of .

Let us now prove a preliminary theorem, namely that if p is a prime,
then (p — 1)! + 1 is divisible by p. The numbers not divisible by p, when
divided by p give the remainder 1, 2, 3, ---, p — 1. We choose an integer r,
I <r<p—1 and multiply r by 1, 2, -, p — 1; when we divide the
products so constructed by p we obtain, as is not difficult to prove, all
these same remainders, but in general in a different order. In particular,
among these remainders will be the number 1, that is to say, for every r
one can find an r, such that r - r, = | + kp. We note that r = r, only
ifr=1orr=p— 1. Forifrt =1 4 kp, then(r + 1) (r — 1) is divisible
by p; but for numbers | < r < p — | this is possible only for r = | and
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r=p— 1. Let us find the remainders on dividing (p — I)! =1-2
-« (p — 1) by p. In this product, for every factor r, exceptl andp — |,
there occurs a corresponding r, , distinct from r, such that r - r, gives the
remainder 1. Thus (p — 1)! will give a remainder dividing by p which is
the same as if only the two factors | and p — | were present, i.e., it gives
the remainder p — 1. Thus, (p — I)! + 1 is divisible by p.

Now let p = 4n + 1. Further, we write

=D+ 1=]1-2- 2 A (p 20 e p—2p — )] + 1.

The second expression in braces, when divided by p, will leave the
remainder (— 1)*-12 [(p — 1)/2]!. But (p — 1)/2 = 2n is an even
number, so that in this case [(p — 1)/2]!* + 1 is also divisible by p. We
denote by A the remainder on dividing [(p — 1)/2]! by p. It is obvious that
A* 4 1 is also divisible by p.

We consider the expression x — Ay, in which x and y range inde-
pendently over the number 0, 1, ---, [v/p]; (here [x] denotes the largest
interger not exceeding x). We thus obtain ([v/p] + 1)* = p + | numerical
values for x — Ay, which may be distinct or may in some cases coincide.
Since the various remnainders on dividing by p can only be p(0, 1, 2, -+,
p — 1), while we here have at least p + | values for x — Ay, there must
exist two distinct pairs (x,,y,) and (x;,y;) such that x, — Ay, and
x; — Ay, leave the same remainder on dividing by p; ie,
(x; — x3) — A(y; — y,) is divisible by p. We set xo= x, — x,,
Yo = Y1 — y». Obviously, |x,| <4/2,|y| <+/p. Since A*+ 1 is
divisible by p, it follows that y3(42 4+ 1) = (Ay,)* + yi is divisible by p;
but since x, — Ay, is divisible by p, the number xi — (Ay)? = (xo — Ayo)
(xo + Ayo) is divisible by p. Thus the quantity x2 +- y2, which is equal
to  (xg — (Ayo)® + (Aye)* + y;), is divisible by p. But | x,| </,
| ¥o |< 4/p. Hence xj 4 y2 = 0 or x5 + y2 = p. The first is impossible,
since the pairs (x, , ;) and (x,, y,) were distinct. Thus a prime number
of the form 4n + 1 is representable as the sum of two squares.

2. We turn to the decomposition of an arbitrary integer into the sum
of two squares. It is easy to establish the identity

(a® + b (c* + d%) = (ac — bd)? + (ad + bo).

This identity shows that the product of two integers that are the sum of
two squares is again the sum of two squares. Hence the product of any
powers of prime numbers of the form 4n + | (or which are equal to 2) is
the sum of two squares. Since multipliying the sum of two squares by a
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square gives the sum of two squares, any number in which the prime
factors of the 4n + 3 occur in even powers is the sum of two squares.

3. We now show that if a prime number of the form 4»n + 3 enters
into a number in an odd power, the number cannot be expressed as the
sum of two squares, The original question will then be completely settled.

We will consider complex numbers of the form a + bi, where a and b
are ordinary integers. Such a complex number will be called a complex
integer. If an integer N is the sum of two squares N = a*® 4 b* then
N = (a + bi) (@ — bi) = « - & (where & denotes the complex conjugate
of the number «), i.e., N is factored in the domain of complex integers
into complex conjugate factors.

In this domain of complex integers, we may construct a theory of
divisibility completely analogous to the theory of divisibility in the domain
of ordinary integers. We will say that the complex integer « is divisible by
the complex integer B, if /B is again a complex integer. There exist only
four complex integers o which divide 1, namely I, —1, i, and —i. We will
say that a complex integer « is a prime, if it does not have any divisors
other than |, —1, i, —i, o, —a, i, —ai. But now the problem solved under
the first heading above will have a different meaning; it will now turn out
that numbers of the form 4n + | (or equal to 2) which in the previous case
were prime will cease to be prime in the domain of complex integers; while
it is easy to prove that primes of the form 4n + 3 remain prime.

For, if p = af, then p = &B and p* = a&BP. But a& and BB are ordinary
positive integers; and p 7= «a, since prime numbers of the form 4n + 3 are
not the sum of two squares. This means that & = 1; thus « can be
only 41 or 4+, so that p has no divisors other than the obvious ones.

For complex integers the theorem on the unique decomposition into
prime factors still holds. Uniqueness here means, of course, that the order
of multiplication is ignored and also all factors of the form 1, —1, i, —i.

Let N be the sum of two squares, N = ad. Let p be 2 prime number of
the form 4n + 3. Let us calculate what power of p appears in the number
N. From the fact that p remains a prime in the complex domain, it is
sufficient to calculate what power of p appears in « and in & But these
powers are equal, so that p necessarily appears in N to an even power,
which proves the proposition.

The discovery that a rich theory of divisibility is possible elsewhere than
in the domain of whole rational numbers greatly extended the field of
vision of 19th century mathematicians. The development of these ideas
called for the creation of new general concepts in mathematics, such as,
for example, rings and ideals. The significance of these concepts at the
present time has far outgrown the frame of number theory.
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CHAPTER X I

THE THEORY
OF PROBABILITY

§1. The Laws of Probability

The simplest laws of natural science are those that state the conditions
under which some event of interest to us will either certainly occur or
certainly not occur; i.e., these conditions may be expressed in one of the
following two forms:

1. If a complex (i.e., a set or collection) of conditions S is realized, then
event A certainly occurs;

2. If a complex of conditions S is realized, then event 4 cannot occur.

In the first case the event 4, with respect to the complex of conditions
S, is called a “certain” or “necessary” event, and in the second an
“impossible” event, For example, under atmospheric pressure and at
temperature ¢ between 0° and 100° (the complex of conditions S) water
necessarily occurs in the liquid state (the event A, is certain) and cannot
occur in a gaseous or solid state (events A, and A4; are impossible).

An event A, which under a complex of conditions S sometimes occurs
and sometimes does not occur, is called random with respect to the
complex of conditions. This raises the question: Does the randomness of
the event 4 demonstrate the absence of any law connecting the complex
of conditions S and the event 4? For example, let it be established that
lamps of a specific type, manufactured in a certain factory (condition §)
sometimes continue to burn more than 2,000 hours (event A), but some-
times burn out and become useless before the expiration of that time.
May it not still be possible that the results of experiments to see whether
a given lamp will or will not burn for 2,000 hours will serve to evaluate

229
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the production of the factory ? Or should we restrict ourselves to indicating
only the period (say 500 hours) for which in practice all lamps work
without fail, and the period (say 10,000 hours) after which in practice all
lamps do not work ? It is clear that to describe the working life of a lamp
by an inequality of the form 500 < T < 10,000 is of little help to the
consumer. He will receive much more valuable information if we tell him
that in approximately 80%, of the cases the lamps work for no less than
2,000 hours. A still more complete evaluation of the quality of the lamps

will consist of showing
v% for any T the percent
v(T) of the lamps which

100 work for no less than T

aol hours, say in the form of
the graph in figure 1.

| The curve »(T)is found

s in practice by testing with

20 a sufficiently large sample
. ; : : : (100-200) of the lamps.

0 2000 4000 6000 8000 10,000 Of course, the curve
Fig. 1. found in such a manner is

of real value only in those

where it truly represents an actual law governing not only the given sample
but all the lamps manufactured with a given quality of material and under
given technological conditions; that is, only if the same experiments
conducted with another sample will give approximately the same results
(ie., the new curve »(T) will differ little from the curve derived from
the first sample). In other words, the statistical law expressed by the curves
»(T) for the various samples is only a reflection of the law of probability
connecting the useful life of a lamp with the materials and the technological
conditions of its manufacture.

This law of probability is given by a function P(T), where P(T) is the
probability that a single lamp (made under the given conditions) will
burn no less than T hours.

The assertion that the event A occurs under conditions S with a definite
probability

P(4/S) = p

amounts to saying that in a sufficiently long series of tests (i.e., realizations
of the complex of conditions S) the frequencies

Hr
n,

Ve =
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of the occurrence of the event A (where #, is the number of tests in the rth
series, and p, is the number of tests of this series for which event A occurs)
will be approximately identical with one another and will be close
to p.

The assumption of the existence of a constant p = P(A/S) (objectively
determined by the connection between the complex of conditions S and
the event A) such that the frequencies v get closer “generally speaking”
to p as the number of tests increases, is well borne out in practice for a
wide class of events. Events of this kind are usuaully called random or
stochastic.

This, example belongs to the laws of probability for mass production.
The reality of such laws cannot be doubted, and they form the basis of
important practical applications in statistical quality control. Of a similar
kind are the laws of probability for the scattering of missiles, which are
basic in the theory of gunfire. Since this is historically one of the earliest
applications of the theory of probability to technical problems, we will
return below to some simple problems in the theory of gunfire.

What was said above the “closeness™ of the frequency » to the prob-
ability p for a large number 7 of tests is somewhat vague; we said nothing
about how small the difference v — p may be for any n. The degree of
closeness of v to p is estimated in §3. It is interesting to note that a certain
indefiniteness in this question is quite unavoidable. The very statement
itself that v and p are close to each other has only a probabilistic character,
as becomes clear if we try to make the whole situation precise.

§2. The Axioms and Basic Formulas of the Elementary Theory
of Probability

Since it cannot be doubted that statistical laws are of great importance,
we turn to the question of methods of studying them. First of all one thinks
cof the possibility of proceeding in a purely empirical way. Since a law of
probability exhibits itself only in mass processes, it is natural to imagine
that in order to discover the law we must conduct a mass experiment.

Such an idea, however, is only partly right. As soon as we have
established certain laws of probability by experiment, we may proceed to
deduce from them new laws of probability by logical means or by computa-
tion, under certain general assumptions. Before showing how this is done,
we must enumerate certain basic definitions and formulas of the theory
of probability.

From the representation of probability as the standard value of the
frequency v —= my/n, where 0 << m < n, and thus 0 < v < 1, it follows that
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the probability P(A4) of any event 4 must be assumed to lie between zero
and one*

O<SPU<L

Two events are said to be mutually exclusive if they cannot both occur
(under the complex of conditions S). For example, in throwing a die, the
the occurrence of an even number of spots and of a three are mutually
exclusive. An event A is called the union of events A4, and 4, if it consists
of the occurrence of at least one of the events 4, , 4, . For example, in
throwing a die, the event 4, consisting of rolling 1, 2, or 3, is the union
of the events A4, and A, , where A, consists of rolling 1 or 2 and A, consists
of rolling 2 or 3. It is easy to see that for the number of occurrences m, ,
my , and m of two mutually exclusive events 4, and 4, and their union
A = A, v A,, we have the equation m = m, + m,, or for the corre-
sponding frequencies v = v, + v, .

This leads naturally to the following axiom for the addition of probabili-
ties:

P(4, Y 4,) = P(4,) + P(4,), ()

if the events 4, and A, are mutually exclusive and 4, U A, denotes their
union.
Further, for an event U which is certain, we naturally take

P(U) = 1. 3)

The whole mathematical theory of probability is constructed on the
basis of simple axioms of the type (1), (2), and (3). From the point of
view of pure mathematics, probability is a numerical function of “events,”
with 2 number of properties determined by axioms. The properties of
probability, expressed by formulas (1), (2), and (3), serve as a sufficient
basis for the construction of what is called the elementary theory of prob-
ability, if we do not insist on including in the axiomatization the concepts
of an event itself, the union of events, and their intersection, as defined
later. For the beginner it is more useful to confine himself to an intuitive
understanding of the terms “event” and “probability,” but to realize
that although the meaning of these terms in practical life cannot be
completely formalized, still this fact does not affect the complete formal
precision of an axiomatized, purely mathematical presentation of the
theory of probability.

The union of any given number of events A4, , A, , -, A, is defined as
the event A4 consisting of the occurrence of at least one of these events.

* For brevity we now change P(4/S) to P(4).
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From the axiom of addition, we easily obtain for any number of pairwise
mutually exclusive events 4, , 4, , --, 4, and their union 4,

P(4) = P(4,) + P(4,) + -+ + P(4,)

(the so-called theorem of the addition of probabilities).
If the union of these events is an event that is certain (i.e., under the
complex of conditions S one of the events 4; must occur), then

P(4,) + P(4y) + - + P(4,) = L.

In this case the system of events 4, , -+, 4, is called a complete system of
events.

We now consider two events 4, and B, which, generally speaking, are
not mutually exclusive. The event C is the intersection of the events 4 and
B, written C = AB, if the event C consists of the occurrence of both
Aand B.*

For example, if the event A consists of obtaining an even number in the
throw of a die and B consists of obtaining a multiple of three, then the
event C consists of obtaining a six.

In a large number » of repeated trials, let the event 4 occur m times and
the event B occur / times, in k of which B occurs together with the event 4.
The quotient k/m is called the conditional frequency of the event B under
the condition A. The frequencies k/m, m/n, and k/n are connected by the
formula

k _k

=%. M
m n'n
which naturally gives rise to the following definition:

The conditional probability P(B/A) of the event B under the condition

A is the quotient
_ P(4B)
BA)= P(A

Here it is assumed, of course, that P(4) # 0.

If the events 4 and B are in no way essentially connected with each
other, then it is natural to assume that event B will not appear more often,
or less often, when A4 has occurred than when 4 has not occurred, i.e.,
that approximately k/m ~ Ifn or

k

k_ k.
n m

2|~
2|3

m
n

o

* Similarly, the intersection C of any number of events A4,, A4;, ", A, consists
of the occurrence of all the given events.
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In this last approximate equation m/n = v, is the frequency of the event A,
and I/n = vy is the frequency of the event B and finally k/n = v, is the
frequency of the intersection of the events 4 and B.

We see that these frequencies are connected by the relation

Vap ™ Vya¥Vp .

For the probabilities of the events 4, B and AB, it is therefore natural to
accept the corresponding exact equation

P(4B) = P(4) - P(B). 4

Equation (4) serves to define the independence of two events 4 and B.

Similarly, we may define the independence of any number of events.
Also, we may give a definition of the independence of any number of
experiments, which means, roughly speaking, that the outcome of any
part of the experiments do not depend on the outcome of the rest.*

We now compute the probability P; of precisely & occurrences of a
certain event A4 in n independent tests, in each one of which the probability
p of the occurrence of this event is the same. We denote by 4 the event
that event 4 does not occur. It is obvious that

PA)=1—-PUA) =1-—p.

From the definition of the independence of experiments it is easy to
see that the probability of any specific sequence consisting of k occurrences
of 4 and n — k nonoccurrences of A is equal to

P —py. )

Thus, for example, for n = 5 and k = 2 the probability of getting the
sequence A4AAA will be p(1 — p) p(1 — p) (1 — p) = p¥(1 — p)%,

By the theorem on the addition of probabilities, P, will be equal to the
sum of the probabilities of all sequences with k occurrences and n — k
nonoccurrences of the event A4, i.e., P; will be equal from (5) to the product
of the number of such sequences by p¥(I — p)*~*. The number of such

* A more exact meaning of independent experiments is the following. We divide the
n experiments in any way into two groups and let the event 4 consist of the result that
all the experiments of the first group have certain preassigned outcomes, and the event
B that the experiments of the second group have preassigned outcomes. The experiments
are called independent (as a collection) if for arbitrary decomposition into two groups
and arbitrarily preassigned outcomes the events A and B are independent in the sense
of (4).

We will return in §4 to a consideration of the objective meaning in the actual world
of the independence of events.
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sequences is obviously equal to the number of combinations of n things
taken k at a time, since the k positive outcomes may occupy any k places
in the sequence of n trials.

Finally we get

Py = Copi(1 —p)* (k=0,1,2, -, n) (6

(which is called a binomial distribution).

In order to see how the definitions and formulas are applied, we consider
an example that arises in the theory of gunfire.

Let five hits be sufficient for the destruction of the target. What interests
us is the question whether we have the right to assume that 40 shots will
insure the necessary five hits. A purely empirical solution of the problem
would proceed as follows. For given dimensions of the target and for a
given range, we carry out a large number (say 200) of firings, each con-
sisting of 40 shots, and we determine how many of these firings produce
at least five hits. If this result is achieved, for example, by 195 firings out
of the 200, then the probability P is approximately equal to

195
P = 200 — 0.975.

If we proceed in this purely empirical way, we will use up 8,000 shells
to solve a simple special problem. In practice, of course, no one proceeds
in such a way. Instead, we begin the investigation by assuming that the
scattering of the shells for a given range is independent of the size of the
target. It turns out that the longitudinal and lateral deviations, from the
mean point of landing of the shells, follow a law with respect to the
frequency of deviations of various sizes that is illustrated in figure 2.

2% 7% 16% 25%] 25% 16% 7% 2%
+ +- + +- T + -+ + t
-48 -38 -28B8 -8 o B 28 38 48

FiG. 2.

The letter B here denotes what is called the probable deviation. The
probable deviation, generally speaking, is different for longitudinal and
for lateral deviations and increases with increasing range. The probable
deviations for different ranges for each type of gun and of shell are found
empirically in firing practice on an artillery range. But the subsequent
solution of all possible special problems of the kind described is carried
out by calculations only.

For simplicity, we assume that the target has the form of a rectangle,
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one side of which is directed along the line of fire and has a length of two
probable longitudinal deviations, while the other side is perpendicular to
the line of fire and is equal in length to two probable lateral deviations.
We assume further that the range has already been well established, so
that the mean trajectory of the shells passes through its center (figure 3).

_—
‘(/’

FiG. 3.

We also assume that the lateral and longitudinal deviations are inde-
pendent.* Then for a given shell to fall on the target, it is necessary and
sufficient that its longitudinal and lateral deviations do not exceed the
corresponding probable deviations. From figure 2 each of these events
will be observed for about 509, of the shells fired, i.e., with probability 3.
The intersection of the two events will occur for about 25%, of the shells
fired; i.e., the probability that a specific shell will hit the target will be
equal to

Assuming that hits by the individual shells represent independent
events, and applying the binomial formula (6), we find that the probability
for getting exactly k hits in 40 shots will be

P, = C:opkqm—k — 40 - 319-';99’{— k) G)* G)n—k '

What concerns us is the probability of getting no less than five hits, and
this is now expressed by the formula

40
P=2P,¢.

k=5

* This assumption of independence is borne out by experience.
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But itis simpler to compute this probability from the formula P = 1 — Q,
where

Q=3 P

h=0

is the probability of getting less than five hits.
We may calculate that

Py = (2)” ~ 0.00001,

P, = 40 (%)”‘1‘ ~ 0.00013,

P 0207 ()~ oom

B0 '23 _93' 38 (‘—i)” (‘1‘)3 ~ 0.0037,

_ 40 -39 - 38 - 37 3\ (1|4
so that
Q = 0.016, P = 0.984.

The probability P so obtained is somewhat closer to certainty than is
usually taken to be sufficient in the theory of gunfire. Most often it is
considered permissible to determine the number of shells needed to
guarantee the result with probability 0.95.

The previous example is somewhat schematized, but it shows in sufficient
detail the practical importance of probabilitycalculations. Afterestablishing
by experiment the dependence of the probable deviations on the range
(for which we did not need to fire a large number of shells), we were then
able to obtain, by simple calculation, the answers to questions of the most
diverse kind. The situation is the same in all other domains where the
collective influence of a large number of random factors leads to a statistical
law. Direct examination of the mass of observations makes clear only the
the very simplest statistical laws; it uncovers only a few of the basic prob-
abilities involved. But then, by means of the laws of the theory of probabil-
ity, we use these simplest probabilities to compute the probabilities of
more complicated occurrences and deduce the statistical laws that govern
them.

Sometimes we succeed in completely avoiding massive statistical
material, since the probabilities may be defined by sufficiently convincing
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considerations of symmetry. For example, the traditional conclusion that
a die, i.e., a cube made of a homogeneous material will fall, when thrown
to a sufficient height, with equal probability on each of its faces was
reached long before there was any systematic accumulation of data to
verify it by observation. Systematic experiments of this kind have been
carried out in the last three centuries, chiefly by authors of textbooks in
the theory of probability, at a time when the theory of probability was
already a well-developed science. The results of these experiments were
satisfactory, but the question of extending them to analogous cases
scarcely arouses interest. For example, as far as we know, no one has
carried out sufficiently extensive experiments in tossing homogeneous dice
with twelve sides. But there is no doubt that if we were to make
12,000 such tosses, the twelve-sided die would show each of its faces
approximately a thousand times.

The basic probabilities derived from arguments of symmetry or homo-
geneity also play a large role in many serious scientific problems, for
example in all problems of collision or near approach of molecules in
random motion in a gas; another case where the successes have been
equally great is the motion of stars in a galaxy. Of course, in these more
delicate cases we prefer to check our theoretical assumptionsby comparison
with observation or experiment.

§3. The Law of Large Numbers and Limit Theorems

It is completely natural to wish for greater quantitative precision in the
proposition that in a “long” series of tests the frequency of an occurrence
comes “close” to its probability. But here we must form a clear notion
of the delicate nature of the problem. In the most typical cases in the
theory of probability, the situation is such that in an arbitrarily long series
of tests it remains theoretically possible that we may obtain either of the
two extremes for the value of the frequency

X IF
|

n

=R
2O

Thus, whatever may be the number of tests n, it is impossible to assert
with complete certainty that we will have, say, the inequality

B 1
|n p|<10'

For example, if the event A is the rolling of a six with a die, then in n
trials, the probability that we will turn up a six on all » trials is (1) > 0,
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in other words, with probability ()" we will obtain a frequency of rolling
a six which is equal to one; and with probability (I — 4)* > 0 a six will
not come up at all, i.e., the frequency of rolling a six will be equal to zero.

In all similar problems any nontrivial estimate of the closeness of the
frequency to the probability cannot be made with complete certainty,
but only with some probability less than one. For example, it may be
shown that in independent tests,* with constant probability p of the
occurrence of an event in each test the inequality

|";:—p|<0.02 o)

for the frequency u/n will be satisfied, for n = 10,000 (and any p), with
probability

P > 0.9999. ®)

Here we wish first of all to emphasize that in this formulation the quanti-
tative estimate of the closeness of the frequency u/n to the probability p
involves the introduction of a new probability P.

The practical meaning of the estimate (8) is this: If we carry out N sets
of n tests each, and count the M sets in which inequality (7) is satisfied,
then for sufficiently large N we will have approximately

M

But if we wish to define the relation (9) more precisely, either with
respect to the degree of closeness of M/N to P, or with respect to the
confidence with which we may assert that (9) will be verified, then we must
have recourse to general considerations of the kind introduced previously
in discussing what is meant by the closeness of u/n and p. Such considera-
tions may be repeated as often as we like, but it is clear that this procedure
will never allow us to be free of the necessity, at the last stage, of referring
to probabilities in the primitive imprecise sense of this term.

It would be quite wrong to think that difficulties of this kind are peculiar
in some way to the theory of probability. In a mathematical investigation
of actual events, we always make a model of them. The discrepancies
between the actual course of events and the theoretical model can, in its
turn, be made the subject of mathematical investigation. But for these
discrepancies we must construct a model that we will use without formal
mathematical analysis of the discrepancies which again would arise in it
in actual experiment.

* The proof of the estimate (8) is discussed later in this section.
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We note, moreover, that in an actual application of the estimate*
Pi|—p| <o.02{ > 0.9999 (10)

to one series of n tests we are already depending on certain considerations
of symmetry: inequality (10) shows that for a very large number N of
series of tests, relation (7) will be satisfied in no less than 99.99% of the
cases; now it is natural to expect with great confidence that inequality
(7) will apply in particular to that one of the sequence of n tests which is
of interest to us, but we may expect this only if we have some reason for
assuming that the position of this sequence among the others is a regular
one, that is, that it has no special features.

The probabilities that we may decide to neglect are different in different
practical situations. We noted earlier that our preliminary calculations for
the expenditure of shells necessary to produce a given result meet the
standard that the problem is to be solved with probability 0.95, i.e., that
the neglected probabilities do not exceed 0.05. This standard is explained
by the fact that if we were to make calculations neglecting a probability
of only 0.01, let us say, we would necessarily require a much greater
expenditure of shells, so that in practice we would conclude that the
task could not be carried out in the time at our disposal, or with the
given supply of shells.

In scientific investigations also, we are sometimes restricted to statistical
methods calculated on the basis of neglecting probabilities of 0.05,
although this practice should be adopted only in cases where the accumul-
ation of more extensive data is very difficult. As an example of such a
method let us consider the following problem. We assume that under
specific conditions the customary medicine for treating a certain illness
gives positive results 50% of the time, i.e., with probability 0.5. A new
preparation is proposed, and to test its advantages we plan to use it in
ten cases, chosen without bias from among the patients suffering from
the illness. Here we agree that the advantage of the new preparation will
be considered as proved if it gives a positive result in no less than eight
cases out of the ten. It is easy to calculate that such a procedure involves
the neglect of probabilities of the order of 0.05 of getting a wrong result,
i.e., of indicating an advantage for the new preparation when in fact it is
only equally effective or even worse than the old. For if in each of the ten
experiments, the probability of a positive outcome is equal to p, then the

* This is the accepted notation for estimate (8) of the probability of inequality (7).
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probability of obtaining in ten experiments 10, 9, or 8 positive outcomes,
is equal respectively to

Py = p'% Py = 10p°(1 —p), Py =45p%1 — p)>
For the case p = 4 the sum of these is

56

m ~ 0.05‘

P=Py+ Py + Py =

In this way, under the assumption that in fact the new preparation is
exactly as effective as the old, we risk with probability of order 0.05 the
error of finding that the new preparation is better than the old. To reduce
this probability to about 0 0l, without increasing the number of experi-
ments n = 10, we will need to agree that the advantage of the new prepara-
tion is proved if it gives a positive result in no less than nine cases out of
the ten. If this requirement seems to severe to the advocates of the new
preparation, it will be necessary to make the number of experiments
considerably larger than 10. For example, for n = 100, if we agree that
the advantage of the new preparation is proved for p > 65, then the
probability of error will only be P ~ 0.0015.

For serious scientific investigations a standard of 0.05 is clearly
insufficient; but even in such academic and circumstantial matters as the
treatment of astronomical observations, it is customary to neglect prob-
abilities of error of 0.001 or 0.003. On the other hand, some of the scientific
results based on the laws of probability are considerably more reliable
even than that; i.e., they involve the neglect of smaller probabilities. We
will return to this question later.

In the previous examples, we have made use of particular cases of the
binomial formula (6)

Pw = CPp™(1 — pym

for the probability of getting exactly m positive results in n independent
trials, in each one of which a positive outcome has probability p. Let us
consider, by means of this formula, the question raised at the beginning
of this section concerning the probability

= e
P—P”” p|<e£, an
where y is the actual number of positive results.* Obviously, this prob-

* Here u takes the values m = 0, 1, -, n, with probability P,,; i.e.,
Plu=m=P,.
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ability may be written as the sum of those P,, for which m satisfies the
inequality

2 —p | <e (12)
i.e., in the form
My
m—m,

where m, is the smallest of the values of m satisfying inequality (12), and
m, is the largest.

Formula (13) for fairly large n is hardly convenient for immediate
calculation, a fact which explains the great importance of the asymptotic
formula discovered by de Moivre for p = 4 and by Laplace for general p.
This formula allows us to find P, very simply and to study its behavior
for large n. The formula in question is

__.___..__!__.___ —(m—np)2np(1-p) 14
v 2mnp(1 ——-ﬁe ()

If p is not too close to zero or one, it is sufficiently exact even for n of the

order of 100. If we set
m — nd

t e ] Fy ]
Vnp(1 — p) %)
then formula (14) becomes
1 2
Pm ~ e e @0 16
2l —p) (16)

From (13) and (16) one may derive an approximate representation of the
probability (11)

P r e~ d KT 17
N‘-\-/Er'[ t = F(T), (17

_ n
R (8

The difference between the left and right sides of (17) for fixed p, different
from zero or one, approaches zero uniformly with respect to €, as n — 0.
For the function F(T) detailed tables have been constructed. Here is a
small excerpt from them

T| 1 21 3| 4
F | 0.68269 | 0.95450 0.99730 | 0.99993"

where
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For T — oo the values of the function F(T) converge to one.
From formula (17) we derive an estimate of the probability

Fif2 | <on

for n = 10,000. Since

2
T=ﬂ,
V(1 —p)
we have 5
Pa F|—m————]).
(\/p(l—p))

Since the function F(T) is monotonic increasing with increasing T, it
follows for an estimate of P from the following which is independent of
P, we must take the smallest possible (for the various p) value of T. Such
a smallest value occurs for p = % and is equal to 4. Thus, approximately

P = F(4) = 0.99993. (19)

In equality (19) no account is taken of the error arising from the
approximate character of formula (17). By estimating the error involved
here, we may show that in any case P > 0.9999.

In connection with this example of the application of formula (17),
one should note that the estimates of the remainder term in formula (17)
given in theoretical works on the theory of probability were for a long time
unsatisfactory. Thus the applications of (17) and similar formulas to
calculations based on small values of n, or with probabilities p very close
to 0 or 1 (such probabilities are frequently of particular importance) were
often based on experimental verification only of results of this kind for a
restricted number of examples, and not on any valid estimates of the
possible error. Also, it was shown by more detailed investigation that in
many important practical cases the asymptotic formulas introduced
previously require not only an estimate of the remainder term but also
certain further refinements (without which the remainder term would be
too large). In both directions the most complete results are due to S. N.
Bernstein.

Relations (11), (17), and (18) may be rewritten in the form

S TEEINE =P

For sufficiently large ¢ the right side of formula (20), which does not
contain n, is arbitrarily close to one, i.e., to the value of the probability
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which gives complete certainty. We see, in this way, that, as a rule, the
deviation of the frequency u/n from the probability p is of order 1/+/n.
Such a proportionality between the exactness of a law of probability and
the square root of the number of observations is typical for many other
questions. Sometimes it is even said in popular simplifications that “the
law of the square root of n” is the basic law of the theory of probability.
Complete precision concerning this idea was attained through the intro-
duction and systematic use by the great Russian mathematician P. L.
Cebysev of the concepts of “mathematical expectation” and “variance”
for sums and arithmetic means of “random variables.”

A random variable is the name given to a quantity which under given
conditions S may take various values with specific probabilities. For us it
is sufficient to consider random variables that may take on only a finite
number of different values. To give the probability distribution, as it is
called, of such a random variable &, it is sufficient to state its possible
values x, , X, , ", x,, and the probabilities

P{ = P{{ = x,}.
The sum of these probabilities for all possible values of the variable ¢ is
always equal to one:
dP=1
r=1
The number investigated above of positive outcomes in n experiments

may serve as an example of a random variable.
The mathematical expectation of the variable ¢ is the expression.

M(§) = Z Px,,
r=1
and the variance of £ is the mathematical expectation of the square of the
deviation ¢ — M($), i.e., the expression

D() = 3, Plx, — M(HT.

The square root of the variance
o = VD(§)

is called the standard deviation (of the variable from its mathematical
expectation M(£)).
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At the basis of the simplest applications of variance and standard
deviation lies the famous inequality of CebySev

PE—MOEI <tod >1——. @1

r2
It shows that deviations of ¢ from M({) significantly greater than o, are
rare.
As for the sum of random variables
§ _ ful + §(21 4o 4 flnl,

their mathematical expectations always satisfy the equation

wf} i wfm} s M(f(?l) T M(f"")- (22)
But the analogous equation for the variance
D(§) = D(EW) + D(ED) + - + D(E™) 23)

is true only under certain restrictions. For the validity of equation (23) it is
sufficient, for example, that the variables £4) and £ with different indices
not be “correlated” with one another, i.e., that for / 3£ j the equation*

M{[£) — M(§9)] [€9 — M(E9)]} = 0 29

be satisfied.

In particular, equation (24) holds if the variables £¥) and ¢9) are
independent of each other.t Consequently, for mutually independent terms
equation (23) always holds. For the arithmetic mean

{ — %(flll _l_ ft!l 4+ o f{n])

it follows from (23) that
D() = —5 [D(E™) +D(ER) + - + D(E™)], 25)

* The correlation coefficient between the variables £9 and ¢ is the expression
_ M{[£% — M) — M(£9)]}
o;lnaglil
If o9 > 0 and o,(9) > 0, then condition (24) is equivalent to saying that R = 0.

The correlation coefficient R characterizes the degree of dependence between random
variables. | R| < 1 always, and R = +1 only for a linear relationship

9=at+b (@a0).
For independent variables R = 0.

1 The independence of two random variables £ and », which may assume, respectively,
the values x,, x;, -, X, and »,, ya, **, Va , is defined to mean that for any / and j
the events A: = (£ = x;} and B; = {3 = y;} are independent in the sense of the
definition given in §2.

R
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We now assume that for each of these terms the variance does not
exceed a certain constant

D(§") < C2
Then from (25)
C!
D(C} Q o
n
and from Ceby3ev’s inequality for any ¢
\ 1C 1
P}Ii—M(C)I~<\%‘>1—?- (26)

Inequality (26) expresses what is called the law of large numbers, in the
form established by Cebysev: If the variables £ are mutually independent
and have bounded variance, then for increasing n the arithmetic mean
{ will deviate more and more rarely from the mathematical expectation
M()).

More precisely, the sequence of variables

6111’ fl!)’ oy f(n)’

is said to obey the law of large numbers if for the corresponding arithmetic
means { and for any constant € >0

P{I LM <e—1 27
forn— co.
In order to pass from inequality (26) to the limiting relation (27) it is
sufficient to put

t=c¢€ ol

A large number of investigations of A. A. Markov, S. N. Beritein,
A. Ja. Hindin, and others were devoted to the question of widening as
far as possible the conditions under which the limit relation (27) is valid,
i.e., the conditions for the validity of the law of large numbers. These
investigations are of basic theoretical significance, but still more important
is an exact study of the probability distribution for the variable { — M({).

One of the greatest services rendered by the classical Russian school of
mathematicians to the theory of probability is the establishment of the
fact that under very wide conditions the equation

is asymptotically valid (i.e., with greater and greater exactness as n
increases beyond all bounds).
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Cebysev gave an almost complete proof of this formula for the case of
independent and bounded terms. Markov closed a gap in Cebyiev's
argument and widened the conditions of applicability of formula (28).
Still more general conditions were given by Ljapunov. The applicability
of formula (28). Still more general conditions were given by Ljapunov.
The applicability of formula (28) to the sum of mutually dependent
terms was studied with particular completeness by S. N. BernStein.

Formula (28) embraces such a large number of particular cases that
it has long been called the central limit theorem in the theory of probability.
Even though it has been shown lately to be included in a series of more
general laws its value can scarcely be overrated even at the present time.

If the terms are independent and their variances are all the same, and
are equal to

D(f(!‘)) = 02’

then it is convenient, using relation (25), to put formula (28) into the form

.-{Lo_ = fi M-—-—l— s _“B
P2z <{—-MQ < =~ jt.e dr. (29)

Let us show that relation (29) contains the solution of the problem,
considered earlier, of evaluating the deviation of the frequency p/n from
the probability p. For this we introduce the random variables £, defined
as follows:
g0 — 0, if the jth test has a negative outcome,
1, if the ith test has a positive outcome.

It is easy to verify that then
— & @ g ... (n) K _
p= 0B g, m=

M) = p, D(EM) = p(1 —p), M() =p,
and formula (29) gives

l—p) _p (1 —p) L (% _a
P’q\/—--’-!—-——<;—p<rg\/——n——-£~\/—2_ﬂj e~ df,

h
which for 1, = — ¢, t; = t leads again to formula (20).

§4. Further Remarks on the Basic Concepts of the Theory of Probability

In speaking of random events, which have the property that their
frequencies tend to become stable, i.e., in a long sequence of experiments
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repeated under fixed conditions, their frequencies are grouped around
some standard level, called their probability P(A4/S), we were guilty, in §l,
of a certain vagueness in our formulations, in two respects. In the first
place, we did not indicate how long the sequence of experiments n, must
be in order to exhibit beyond all doubt the existence of the suppose
stability; in other words, we did not say what deviations of the frequencies
ue/n, from one another or from their standard level p were allowable for
sequences of trials n,, ng, -+, n, of given length. This inexactness in the
first stage of formulating the concepts of a new science is unavoidable.
It is no greater than the well-known vagueness surrounding the simplest
geometric concepts of point and straight line and their physical meaning.
This aspect of the matter was made clear in §3.

More fundamental, however, is the second lack of clearness concealed in
our formulations; it concerns the manner of forming the sequences of
trials in which we are to examine the stability of the frequency of occur-
rence of the event A.

As stated earlier, we are led to statistical and probabilistic methods of
investigation in those cases in which an exact specific prediction of the
course of events is impossible. But if we wish to create in some artificial
way a sequence of events that will be, as far as possible, purely random,
then we must take special care that there shall be no methods available
for determining in advance those cases in which A is likely to occur with
more than normal frequency.

Such precautions are taken, for example, in the ‘organization of
government lotteries. If in a given lottery there are to be M winning tickets
in a drawing of N tickets, then the probability of winning for an individual
ticket is equal to p = M/N. This means that in whatever manner we
select, in advance of the drawing, a sufficiently large set of » tickets, we
can be practically certain that the ratio u/n of the number p of winning
tickets in the chosen set to the whole number n of tickets in this set will be
close to p. For example, people who prefer tickets labeled with an even
number will not have any systematic advantage over those who prefer
tickets labeled with odd numbers, and in exactly the same way there
will be no advantage in proceeding on the principle, say, that it is always
better to buy tickets with numbers having exactly three prime factors, or
tickets whose numbers are close to those that were winners in the
preceding lottery, etc.

Similarly, when we are firing a well-constructed gun of a given type,
with a well-trained crew and with shells that have been subjected to a
standard quality control, the deviation from the mean position of the
points of impact of the shells will be less than the previously determined
probable deviation B in approximately half the cases. This fraction remains
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the same in a series of successive trials, and also in case we count separately
the number of deviations that are less than B for even-numbered shots
(in the order of firing) or for odd-numbered. But it is completely possible
that if we were to make a selection of particularly homogeneous shells
(with respect to weight, etc.), the scattering would be considerably
decreased, i.e., we would have a sequence of firings for which the fraction
of the deviations which are greater than the standard B would be consider-
ably less than a half.

Thus, to say that an event 4 is “random” or “stochastic™ and to assign
it a definite probability

p = P(A]S)

is possible only when we have already determined the class of allowable
ways of setting up the series of experiments. The nature of this class will
be assumed to be included in the conditions S.

For given conditions S the properties of the event 4 of being random
and of having the probability p = P(A/S) express the objective character
of the connection between the condition S and the event A. In other words,
there exists no event which is absolutely random, an event is random or is
predetermined depending on the connection in which it is considered, but
under specific conditions an event may be random in a completely non-
subjective sense, i.e.,, independently of the state of knowledge of any
observer. If we imagine an observer who can master all the detailed
distinctive properties and particular circumstances of the flight of shells,
and can thus predict for each one of them the deviation from the mean
trajectory, his presence would still not prevent the shells from scattering
in accordance with the laws of the theory of probability, provided, of
course, that the shooting was done in the usual manner, and not according
to instructions from our imaginary observer.

In this connection we note that the formation of a series of the kind
discussed earlier, in which there is a tendency for the frequencies to become
constant in the sense of being grouped around a normal value, namely
the probability, proceeds in the actual world in a manner completely
independent of our intervention. For example, it is precisely by virtue of
the random character of the motion of the molecules in a gas that the
number of molecules which, even in a very small interval of time, strike
an arbitrarily preassigned small section of the wall of the container (or of
the surface of bodies situated in the gas) proves to be proportional with
very great exactness to the area of this small piece of the wall and to the
length of the interval of time. Deviations from this proportionality in
cases where the number of hits is not large also follow the laws of the
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theory of probability and produce phenomena of the type of Brownian
motion, of which more will be said later.

We turn now to the objective meaning of the concept of independence.
We recall that the conditional probability of an event 4 under the condition
B is defined by the formula
P(4/B) = P(AB)

P(B)
We also recall that events 4 and B are called independent if, as in (4),
P(4B) = P(A) P(B).

From the independence of the events 4 and B and the fact that P(B) > 0
it follows that

(30)

P(A/B) = P(A).

All the theorems of the mathematical theory of probability that deal
with independent events apply to any events satisfying the condition (4),
or to its generalization to the case of the mutual independence of several
events. These theorems will be of little interest, however, if this definition
bears no relation to the properties of objective events which are indepen-
dent in the causal sense.

It is known, for example, that the probability of giving birth to a boy is,
with sufficient stability, P(4) = 22/43. If B denotes the condition that the
birth occur on a day of the conjunction of Jupiter with Mars, then under
the assumption that the position of the planets does not influence the fate
of individuals, the conditional probability P(4/B) has the same value:
P(A4/B) = 22/43; i.e, the actual calculation of the frequency of births
of boys under such special astrological conditions would give just the same
frequency 22/43. Although such a calculation has probably never been
carried out on a sufficiently large scale, still there is no reason to doubt
what the result would be,

We give this example, from a somewhat outmoded subject, in order to
show that the development of human knowledge consists not only in
establishing valid relations among phenomena, but also in refuting
imagined relations, i.e., in establishing in relevant cases the thesis of the
independence of any two sets of events. This unmasking of the meaningless
attempts of the astrologers to connect two sets of events that are not in
fact connected is one of the classic examples.

Naturally, in dealing with the concept of independence, we must not
proceed in too absolute a fashion. For example, from the law of universal
graviation, it is an undoubted fact that the motions of the moons of Jupiter
have a certain effect, say, on the flight of an artillery shell. But it is also
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obvious that in practice this influence may be ignored. From the philo-
sophical point of view, we may perhaps, in a given concrete situation,
speak more properly not of the independence but of the insignificance of
the dependence of certain events. However that may be, the independence
of events in the cited concrete and relative sense of this term in no way
contradicts the principle of the universal interconnection of all phenomena;
it serves only as a necessary supplement to this principle.

The computation of probabilities from formulas derived by assuming
the independence of certain events is still of practical interest in cases
where the events were originally independent but became interdependent
as a result of the events themselves. For example, one may compute
probabilities for the collision of particles of cosmic radiation with particles
of the medium penetrated by the radiation, on the assumption that the
motion of the particles of the medium, up to the time of the appearance
near them of a radpidly moving particle of cosmic radiation, proceeds
independently of the motion of the cosmic particle. One may compute
the probability that a hostile bullet will strike the blade of a rotating
propeller, on the assumption that the position of the blade with respect
to the axis of rotation does not depend on the trajectory of the bullet, a
supposition that will of course be wrong with respect to the bullets of the
aviator himself, since they are fired between the blades of the rotating
propeller. The number of such examples may be extended without limit.

It may even be said that wherever probabilistic laws turn up in any
clear-cut way we are dealing with the influence of a large number of
factors that, if not entirely independent of one another, are interconnected
only in some weak sense.

This does not at all mean that we should uncritically introduce assump-
tions of independence. On the contrary, it leads us, in the first place, to
be particularly careful in the choice of criteria for testing hypotheses of
independence, and second, to be very careful in investigating the borderline
cases where dependence between the facts must be assumed but is of such
a kind as to introduce complications into the relevant laws of probability.
We noted earlier that the classical Russian school of the theory of prob-
ability has carried out far-reaching investigations in this direction.

To bring to an end our discussion of the concept of independence, we
note that, just as with the definition of independence of two events given
in formula (4), the formal definition of the independence of several random
variables is considerably broader than the concept of independence in
the practical world, i.e., the absence of causal connection.

Let us assume, for example, that the point ¢ falls in the interval [0, 1] in
such a manner for

0<a<gbhb<l
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the probability that it belongs to the segment [a, b] is equal to the length
of this segment b — a. It is easy to prove that in the expansion

o g oy
$=70 T1o0 * 1000
of the abscissa of the point £ in a decimal fraction, the digits o will be
mutually independent, although they are interconnected by the way they
are produced.* (From this fact follow many theoretical results, some of
which are of practical interest.)

Such flexibility in the formal definition of independence should not be
considered as a blemish. On the contrary it merely extends the domain of
applicability of theorems established for one or another assumption of
independence. These theorems are equally applicable in cases where the
independence is postulated on the basis of practical considerations and in
cases where the independence is proved by computation proceeding from
previous assumptions concerning the probability distributions of the
events and the random variables under study.

In general, investigation of the formal structure of the mathematical
apparatus of the theory of probability has led to interesting results. It turns
out that this apparatus occupies a very definite and clear-cut place in the
classification, which nowadays is gradually becoming clear in outline, of
the basic objects of study in contemporary mathematics.

We have already spoken of the concepts of intersection A8 and union
A U B of the events 4 and B. We recall that events are called mutually
exclusive if their intersection is empty, i.e., if AB = N, where N is the
symbol for an impossible event.

The basic axiom of the elementary theory of probability consists of the
requirement (cf. §2) that under the condition AB = N we have the equation

P(4 v B) = P(4) + P(B).

The basic concepts of the theory of probability, namely random events
and their probabilities, are completely analogous in their properties to
plane figures and their areas. It is sufficient to understand by AB the
intersection (common part) of two figures, by 4 v B their union, by N
the conventional “empty” figure, and by P(A) the area of the figure 4,
whereupon the analogy is complete.

* This is also valid, for any n, for the digits a, in the expansion of the number ¢
in the fraction
a oy o
E=—+—!+—3+“‘-
n n n
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The same remarks apply to the volumes of three-dimensional figures.

The most general theory of entities of such a type, which contains as
special cases the theory of volume and area, is now usually called measure
theory, discussed in Chapter XV in connection with the theory of functions
of a real variable.

It remains only to note that in the theory of probability, in comparison
with the general theory of measure or in particular with the theory of area
and volume, there is a certain special feature: A probability is never greater
than one. This maximal probability holds for a necessary event U.

P(U) = I.

The analogy is by no means superficial. It turns out that the whole
mathematical theory of probability from the formal point of view may be
constructed as a theory of measure, making the special assumption that
the measure of “the entire space” U is equal to one.*

Such an approach to the matter has produced complete clarity in the
formal construction of the mathematical theory of probability and has also
led to concrete progress not only in this theory itself but in other theories
closely related to it in their formal structure. In the theory of probability
success has been achieved by refined methods developed in the metric
theory of functions of a real variable and at the same time probabilistic
methods have proved to be applicable to questions in neighboring domains
of mathematics not “by analogy,” but by a formal and strict transfer of
them to the new domain. Wherever we can show that the axioms of the
theory of probability are satisfied, the results of these axioms are appli-
cable, even though the given domain has nothing to do with randomness
in the actual world.

The existence of an axiomatized theory of probability preserves us from
the temptation “to define” probability by methods that claim to construct
a strict, purely formal mathematical theory on the basis of features of
probability that are immediately suggested by the natural sciences. Such
definitions roughly correspond to the “definition™ in geometry of a point
as the result of trimming down a physical body an infinite number of
times, each time decreasing its diameter by a factor of 2.

With definitions of this sort, probability is taken to be the limit of the
frequency as the number of experiments increases beyond all bounds.
The very assumption that the experiments are probabilistic, i.e., that the
frequencies tend to cluster around a constant value, will remain valid (and

x Nevertheless, because of the nature of its problems, the theory of probability
remains an independent mathematical discipline; its basic results (presented in detail
in §3) appear artificial and unnecessary from the point of view of pure measure theory.
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the same is true for the “randomness” of any particular event) only
if certain conditions are kept fixed for an unlimited time and with absolute
exactness. Thus the exact passage to the limit

K

n P
cannot have any objective meaning. Formulation of the principle of
stability of the frequencies in such a limit process demands that we define
the allowable methods of setting up an infinite sequence of experiments,
and this can only be done by a mathematical fiction. This whole conglom-
eration of concepts might deserve serious consideration if the final result
were a theory of such distinctive nature that no other means existed of
putting it on a rigorous basis. But, as was stated earlier, the mathematical
theory of probability may be based on the theory of measure, in its present-
day form, by simply adding the condition

P(U) = I.

In general, for any practical analysis of the concept of probability, there
is no need to refer to its formal definition. It is obvious that concerning
the purely formal side of probability, we can only say the following: The
probability P(4/S) is a number around which, under conditions S deter-
ming the allowable manner of setting up the experiments, the frequencies
have a tendency to be grouped, and that this tendency will occur with
greater and greater exactness as the experiments, always conducted in
such a way as to preserve the original conditions, become more numerous,
and finally that the tendency will reach a satisfactory degree of reliability
and exactness during the course of a practicable number of experiments,

In fact, the problem of importance, in practice, is not to give a formally
precise definition of randomness but to clarify as widely as possible the
conditions under which randomness of the cited type will occur. One must
clearly understand that, in reality, hypotheses concerning the probabilistic
character of any phenomenon are very rarely based on immediate
statistical verification. Only in the first stage of the penetration of prob-
abilistic methods into a new domain of science has the work consisted of
purely empirical observation of the constancy of frequencies. From §3,
we see that statistical verification of the constancy of frequencies with an
exactness of € requires a series of experiments, each consisting of
n = 1/ trials. For example, in order to establish that in a given concrete
problem the probability is defined with an exactness of 0.0001, it is neces-
sary to carry out a series of experiments containing approximately
100,000,000 trials in each.
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The hypothesis of probabilistic randomness is much more often intro-
duced from considerations of symmetry or of successive series of events,
with subsequent verification of the hypothesis in some indirect way. For
example, since the number of molecules in a finite volume of gas is of the
order of 10® or more, the number 1/n, corresponding to the probabilistic
deductions made in the kinetic theory of gases, is very large, so that many
of these deductions are verified with great exactness. Thus, the pressures
on the opposite sides of a plate suspended in still air, even if the plate is
of microscopic dimensions, turn out exactly the same, although an excess
of pressure on one side of the order of a thousandth of one per cent can
be detected in a properly arranged experiment.

§5. Deterministic and Random Processes

The principle of causal relation among phenomena finds its simplest’
mathematical expression in the study of physical processes by means of
differential equations as demonstrated in a series of examples in §1 of
Chapter V.

Let the state of the system under study be defined at the instant of time ¢
by n parameters

X1 X2y "y Xy s

The rates of change of these parameters are expressed by their derivatives
with respect to time
_dx;

Codrt

If it is assumed that these rates are functions of the values of the para-
meters, then we get a system of differential equations

"’él =j.l(xl El xg y 7Ty xn)g

‘i'z =f2(xl s Xg o "t Xp),

oooooooooooooooooooooooooooo

The greater part of the laws of nature discovered at the time of the birth
of mathematical physics, beginning with Galileo’s law for falling bodies,
are expressed in just such a manner. Galileo could not express his discovery
in this standard form, since in his time the corresponding mathematical
concepts had not yet been developed, and this was first done by Newton.

In mechanics and in any other fields of physics, it is customary to express
these laws by differential equations of the second order. But no new
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principles are involved here; for if we denote the rates x; by the new
symbols
vy = &y,

we get for the second derivative of the quantities x, the expressions

dix, d
W = %k
and the equations of the second order for the n quantities x, , Xz, =, X,
become equations of the first order for the 2n quantities x,, -, x,,
Uy, Vg, " Uy

As an example, let us consider the fall of a heavy body in the atmosphere
of the earth. If we consider only short distances above the surface, we may
assume that the resistance of the medium depends only on the velocity
and not on the height. The state of the system under study is characterized
by two parameters: the distance z of the body from the surface of the earth,
and its velocity v. The change of these two quantities with time is defined
by the two differential equations

= —yp,
=5 _f(v)’

where g is the acceleration of gravity and f(v) is some “law of resistance”
for the given body.

If the velocity is not great and the body is sufficiently massive, say a
stone of moderate size falling from a height of several meters, the resistance
of the air may be neglected and equations (31) are transformed into the
equations

€2))

2= —u,
32
P (32
If it is assumed that at the initial instant of time ¢, the quantities z and v
have values z, and v, , then it is easy to solve equations (32) to obtain the
formula
ot — 1) — g [T TeY
z=z -t —1) —g(52) .
which describes the whole process of falling. For example, if ¢, = 0,
7= s
found by Galileo.
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In the general case, the integration of equations (31) is more difficult,
although the basic result, with very general restrictions on the function
f(v), remains the same: Given the values z, and v, at the initial instant 7, ,
the values of z and v for all further instants ¢ are computed uniquely, up
to the time that the falling body hits the surface of the earth. Theoretically,
this last restriction may also be removed, if we assume that the fall is
extended to negative values of z. For problems set up in this manner,
the following may be established: If the function f(v) is monotone
for increasing v and tends to infinity for v — co, then if the fall continues
unchecked, i.e., for unbounded growth of the variable ¢, the velocity v
tends to a constant limiting value ¢, which is the solution of the equation

g = f(o).

From the intuitive point of view, this result of the mathematical analysis
of the problem is quite understandable: The velocity of fall increases up
to the time that the accelerative force of gravity is balanced by the resist-
ance of the air. For a jump with an open parachute, the stationary velocity
v of about five meters per second is attained rather quickly.* For a long
jump with unopened parachute the resistance of the air is less, so that
the stationary velocity is greater and is attained only after the parachutist
has fallen a very long way.

For the falling of light bodies like a feather tossed into the air or a bit
of fluff, the initial period of acceleration is very short, often quite
unobservable. The stationary rate of falling is established very quickly,
and to a standard approximation we may consider that throughout the
fall v = c. In this case we have only one differential equation

-
which is integrated very simply:

Z=Zo—(‘(l—lo).

This is how a bit of fluff will fall in perfectly still air.

This deterministic conception is treated in a completely general way in
the contemporary theory of dynamical systems, to which is dedicated a
series of important works by Soviet mathematicians, N. N. Bogoljubov,
V. V. Stepanov, and many others. This general theory also includes as
special cases the mathematical formulation of physical phenomena in
which the state of a system is not defined by a finite number of parameters

* This statement is to be taken in the sense that in practice v soon gets quite close
to c.
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as in the earlier case, but by one or more functions, for example, in the
mechanics of continuous media. In such cases the elementary laws for
change of state in “infinitely small” intervals of time are given not by
ordinary but by partial differential equations or by some other means.
But the features common to all deterministic mathematical formulations
of actual processes are: first, that the state of the system under study is
considered to be completely defined by some mathematical entity w (a
set of n real numbers, one or more functions, and so forth); and second,
that the later values for instants of time ¢ > 7, are uniquely determined by
the value w, at the initial instant ¢,

w = Fty, wgy, ).

For phenomena described by differential equations the process of finding
the function ¢ consists, as we have seen, in integrating these differential
equations with the initial conditions w = w, for t = ¢,.

The proponents of mechanistic materialism assumed that such a
formulation is an exact and direct expression of the deterministic character
of the actual phenomena, of the physical principle of causation. According
to Laplace, the state of the world at a given instant is defined by an infinite
number of parameters, subject to an infinite number of differential
equations. If some “universal mind” could write down all these equations
and integrate them, it could then predict with complete exactness,
according to Laplace, the entire evolution of the world in the infinite
future.

But in fact this quantitative mathematical infinity is extremely coarse
in comparison with the qualitatively inexhaustible character of the real
world. Neither the introduction of an infinite number of parameters nor
the description of the state of continuous media by functions of a point
in space is adequate to represent the infinite complexity of actual events.

As was emphasized in §3 of Chapter V, the study of actual events does
not always proceed in the direction of increasing the number of parameters
introduced into the problem; in general, it is far from expedient to complic-
ate the w which describes the separate ‘‘states of the system” in our
mathematical scheme. The art of the investigation consists rather in
finding a very simple space {2 (i.e., a set of values of w or in other words,
of different possible states of the system),* such that if we replace the
actual process by varying the point « in a determinate way over this
space, we can include all the essential aspects of the actual process.

* In the example given earlier of a falling body, the phase space is the system of

pairs of numbers (z, v), i.e., a plane. For phase spaces in general, see Chapters XVII
and XVIII.



§5. DETERMINISTIC AND RANDOM PROCESSES 259

But if from an actual process we abstract its essential aspects, we are
left with a certain residue which we must consider to be random. The
neglected random factors always exercise a certain influence on the course
of the process. Very few of the phenomena that admit mathematical
investigation fail, when theory is compared with observation, to show the
influence of ignored random factors. This is more or less the state of
affairs in the theory of planetary motion under the force of gravity: The
distance between planets is so large in comparison with their size that the
idealized representation of them as material points is almost perfectly
satisfactory; the space in which they are moving is filled with such dispersed
material that its resistance to their motion is vanishingly small; the masses
of the planets are so large that the pressure of light plays almost no
role in their motions. These exceptional circumstances explain the fact
that the mathematical solution for the motion of a system of » material
points, whose “states’” are described by 6n parameters* which take into
account only the force of gravity, agrees so astonishingly well with
observation of the motion of the planets,

Somewhat similar to the case of planetary motion is the flight of an
artillery shell under gravity and resistance of the air. This is also one of
the classical regions in which mathematical methods of investigation were
comparatively easy and quickly produced great success. But here the role
of the perturbing random factors is significantly larger and the scattering
of the shells, i.e., their deviation from the theoretical trajectory reaches
tens of meters, or for long ranges even hundreds of meters. These
deviations are caused partly by random deviations in the initial direction
and velocity, partly by random deviations in the mass and the coefficient
of resistance of the shell, and partly by gusts and other irregularities in
the wind and the other random factors governing the extraordinarily
complicated and changing conditions in the actual atmosphere of the earth.

The scattering of shells is studied in detail by the methods of the theory
of probability, and the results of this study are essential for the practice
of gunnery.

But what does it mean, properly speaking, to study random events?
It would seem that, when the random “residue” for a given formulation
of a phenomenon proves to be so large that it can not be neglected, then
the only possible way to proceed is to describe the phenomenon more
accurately by introducing new parameters and to make a more detailed
study by the same method as before.

But in many cases such a procedure is not realizable in practice. For
example, in studying the fall of a material body in the atmosphere, with

* The three coordinates and the three components of the velocity of each point.
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account taken of an irregular and gusty (or, as one usually says, turbulent)
wind flow, we would be required to introduce, in place of the two para-
meters z and v, an altogether unwieldy mathematical apparatus to describe
this structure completely.

But in fact this complicated procedure is necessary only in those cases
where for some reason we must determine the influence of these residual
“random” factors in all detail and separately for each individual factor.
Fortunately, our practical requirements are usually quite different; we
need only estimate the total effect exerted by the random factors for a
long interval of time or for a large number of repetitions of the process
under study.

As an example, let us consider the shifting of sand in the bed of a river,
or in a hydroelectric construction. Usually this shifting occurs in such a
way that the greater part of the sand remains undisturbed, while only
now and then a particularly strong turbulence near the bottom picks up
individual grains and carries them to a considerable distance, where they
are suddenly deposited in a new position. The purely theoretical motion
of each grain may be computed individually by the laws of hydrodynamics,
but for this it would be necessary to determine the initial state of the
bottom and of the flow in every detail and to compute the flow step by
step, noting those instants when the pressure on any particular grain of
sand becomes sufficient to set it in motion, and tracing this motion until
it suddenly comes to an end. The absurdity of setting up such a problem
for actual scientific study is obvious. Nevertheless the average laws or, as
they are usually called, the statistical laws of shifting of sand over river
bottoms are completely amenable to investigation.

Examples of this sort, where the effect of a large number of random
factors leads to a completely clear-cut statistical law, could easily be
multiplied. One of the best known and at the same time most fascinating
of these, in view of the breadth of its applications, is the kinetic theory of
gases, which shows how the joint influence of random collisions of
molecules gives rise to exact laws governing the pressure of a gas on the
wall, the diffusion of one gas through another, and so forth.

§6. Random Processes of Markov Type

To A. A. Markov is due the construction of a probabilistic scheme which
is an immediate generalization of the deterministic scheme of §5 described
by the equation

w = F(ty, wgy, 1).

It is true that Markov considered only the case where the phase space of
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the system consists of a finite number of states 2 = (w, , w,, -, w,) and
studied the change of state of the system only for changes of time ¢ in
discrete steps. But in this extremely schematic model he succeeded in
establishing a series of fundamental laws.

Instead of a function F, uniquely defining the state w at time ¢ > ¢,
corresponding to the state w, at time ¢, , Markov introduced the probabili-
ties

(tlh @ 1, w.i)

of obtaining the state w; at time ¢ under the condition that at time 1, we
had the state w, . These probabilities are connected for any three instants
of time

<<l

by a relation, introduced by Markov, which may be called the basic
equation for a Markov process

Plo, w3 ty,w)) = 2, Plly, w5 b, )Py, e 1, ). (33)

k=1

When the phase space is a continuous manifold, the most typical case
is that a probability density p(t,, w, ; 1, w) exists for passing from the
state w, to the state w in the interval of time (7, #). In this case the
probability of passing from the state w, to any of the states w belonging
to a domain G in the phase space £ is written in the form

Pl w05 1,6) = [ pltar w0 1, w) dw, (34)

where dw is an element of volume in the phase space.* For the probability
density p(t, , w,; #, w), the basic equation (33) takes the form

p(tﬂ y Wy 3 fs ] w?) = J;) P(to y Wy s l“l y w)p(rl s W5 fz L] wz) dw' (35)

Equation (35) is usually difficult to solve, but under known restrictions
we may deduce from it certain partial differential equations that are easy
to investigate. Some of these equations were derived from nonrigorous
physical considerations by the physicists Fokker and Planck. In its
complete form this theory of so-called stochastic differential equations

* Properly speaking, equation (34) serves to define the probability density. The
quantity p dw is equal (up to an infinitesimal of higher order) to the probability of
passing in the time from #, to ¢ from the state w, to the element of volume dw.
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was constructed by Soviet authors, S. N. Bernstein, A. N. Kolmogorov,
I. G. Petrovskii, A. Ja. Hind&in, and others.

We will not give these equations here.

The method of stochastic differential equations allows us, for example,
to solve without difficulty the problem of the motion in still air of a very
small body, for which the mean velocity ¢ of its fall is significantly less
than the velocity of the “Brownian motion” arising from the fact, because
of the smallness of the particle, its collisions with the molecules of the
air are not in perfect balance on its various sides.

Let ¢ be the mean velocity of fall, and D be the so-called coefficient of
diffusion. If we assume that a particle does not remain on the surface of
the earth (z = 0) but is “reflected”, i.e.,, under the influence of the
Brownian forces it is again sent up into the atmosphere, and if we also
assume that at the instant 7, the particle is at height z,, then the probability
density p(z, , z,; t, z) of its being at height z at the instant 7 is expressed
by the formula

1
IVaDa =1

(2—25)2 (2424)3 (e2—2) B t—1ty)
x [e_ Dty 4 ¢ um—m] e @D ab

Py, 255 1,2) =

c
~0z/D —z%
+ D+V3 ¢ "'J:-zn—e(t—t.] e dz.

2VDli—tg)

In figure 4 we illustrate how the curves p(z, , z,; ¢, z) may change for a
sequence of instants .

We see that in the mean the height of the particle increases, and its
position is more and more indefinite, more “random.” The most interesting
aspect of the situation is that for any ¢, and z, and for t — o0

P("o » Zo ; f, Z} - % e—ez}D ’ (36)

i.e., there exists a limit distribution for the height of the particle, and the
mathematical expectation for this height with increasing ¢ tends to a
positive limit

c D
Zd —cz /D =
* =5 |o ze dz = (37

So in spite of the fact that as long as our particle is above the surface of
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the earth, it will always tend to fall because of the force of gravity,
nevertheless, as this process (wandering in the atmosphere) continues,
the particle will be found on the average at a definite positive height. If we
take the initial z, smaller than z*, it will turn out that in a sufficiently great
interval of time the mean position of the particle will be higher than its
initial position, as is shown in figure 5, where z, = 0.

Pk

\

SN

FiG. 4. FiG. 5.

For individual particles the mean values z* under discussion here are
only mathematical expectations, but from the law of large numbers it
follows that for a large number of particles they will actually be realized:
The density of the distribution in height of such particles will follow from
the indicated laws, and, in particular, after a sufficient interval of time
this density will become stable in accordance with formula (36).

What has been said so far is immediately applicable only to gases, to
smoke the like, which occur in the air in small concentrations, since the
quantities ¢ and D were assumed to be defined by a preassigned state of
the atmosphere. However with certain complications, the theory is
applicable to the mutual diffusion of the gases that compose the atmos-
phere, and to the distribution in height of their densities arising from this
mutual diffusion.

The quotient ¢/D increases with the size of the particles, so that the
character of the motion changes from diffusion to regular fall in accordance
with the laws considered in §5. The theory allows us to trace all transitions
between purely diffusive motion and such laws of fall.
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The problem of motion of particles suspended in a turbulent atmosphere
is more difficult, but in principle it may be handled by similar probabilistic
methods.
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APPROXIMATIONS
OF FUNCTIONS

§1. Introduction

In practical life we are constantly faced with the problem of approxi-
mating certain numbers by means of others. For example, our measure-
ments of various concrete magnitudes, length, area, temperature, and so
forth, lead us to numbers that are only approximations. In practice we
use only rational numbers, i.e., numbers of the form p/g, where p and
g(q 5~ 0) are integers. But, in addition to the rational numbers, the
irrational numbers also exist, and although we do not use them in
measuring, still our theoretical arguments often lead to them. We know,
for example, that the length of the circumference of a circle of radius
r = %is equal to the irrational number =, and the length of the hypotenuse
of a right triangle with unit sides is equal to /2. In actual computations
with irrational numbers, one first of all approximates them by rational
numbers with a required degree of exactness, usually by means of a
terminating decimal fraction.

The same situation also occurs for functions. The quantitative laws of
nature are expressed in mathematics by means of functions, not with
absolute exactness, but approximately, with various degrees of precision.
Further, in a vast number of cases we find it necessary, even for functions
defined by completely mathematical rules, to approximate them by
other functions with specified exactness so as to be able to compute
them in practice.

However, these remarks do not refer to computations only. The problem
of defining a function by means of other functions has great theoretical
importance. Let us illustrate in a few words. The development of mathe-
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matical analysis has led to the discovery and study of very important
classes of approximating functions that under known conditions have
proved to be the natural means of approximating other more or less
arbitrary functions. These classes turned out to be, above all, the algebraic
and trigonometric polynomials, and also their various generalizations.
It was shown that from the properties of the function to be approximated
we may estimate, under certain conditions, the character of its deviation
from a specific sequence of functions approximating it. Conversely, if
we know how it deviates from its approximation by a sequence of
functions, we can establish certain properties of the function. In this
direction a theory of functions has been constructed that is based on
their approximate representation by various classes of approximating
functions. There is a similar theory in the theory of numbers. In it the
properties of irrational numbers are studied on the basis of their ap-
proximations by rational numbers.

In Chapter II the reader has already met one very important method
of approximation, namely Taylor’s formula. With its help a function
satisfying certain conditions is approximated by another function of the
form P(x) = a, + a;x + -+ + a,x", which is called an algebraic poly-
nomial. Here the a, are constants, independent of x.

An algebraic polynomial has a very simple structure; in order to
compute it for given coefficients a, and given values of x we need to
apply only the three arithmetic operations, addition, subtraction, and
multiplication. The simplicity of this computation is extremely important
in practice and is one of the reasons why algebraic polynomials are the
most widespread means of approximating functions (another important
reason is discussed later). It is sufficient to point out that especially at
the present time technical computations must be carried out on computing
machines on a massive scale. In their present state of perfection computing
machines work very rapidly and tirelessly. However, machines can
perform only relatively simple operations. They may be set to perform
arithmetic operations on very large numbers, but never, for example,
the infinite process of passage to the limit. A machine cannot compute
log x exactly, but we can approximate log x by a polynomial P(x) with
any required degree of accuracy, and then compute the polynomial by a
machine.

In addition to Taylor’s formula, there are others of great practical
importance in the approximation of functions by algebraic polynomials.
Among them are the various interpolation formulas, which are widely
used, in particular, in approximate computation of integrals, and also
in approximate integration of differential equations. Well known also is
the method of approximation in the sense of the mean square, which is
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very widely used with other functions as well as algebraic polynomials.
For certain practical questions great importance is attached to the method
of best uniform (or CebySev) approximation, originated by the great
Russian mathematician CebySev, 2 method which arose, as we will see,
from the. solution of a problem connected with the construction of
mechanisms.

Our present purpose is to give the reader some idea of these methods
and, as far as possible, to state the conditions under which one method
is preferable to another. No one of them is absolutely the best. Every
method can be seen to be better than the others under certain conditions.
For example, if we have a physical problem to solve, then some one
method of approximating the functions that occur in the problem is
particularly indicated by the character of the problem itself or, as one
says, by physical considerations. Also we will see later that under well-
known conditions one method of approximation may be applicable, and
another not.

Each of the methods of computation arose in its own time and has
its own characteristic theory and history. Newton was already familiar
with a formula for interpolation and gave it a very convenient form for
practical computation with what are called difference quotients. The
method of approximation in the sense of the mean square is at least
150 years old. But, for a long time these methods did not give rise to a
connected theory. They were only various practical methods of approxi-
mating functions, and furthermore, the restrictions on their applicability
were not clear.

The present theory of approximations to functions arose from the work
of CebySev, who introduced the important concept of best approximation,
in particular best uniform approximation, made systematic use of it in
practical applications and developed its theoretical basis. Best approxi-
mation is the fundamental concept in the contemporary theory of
approximation. After CebySev, his ideas were developed further by his
students E. 1. Zolotarev, A. N. Korkin, and the brothers A. A. and
V. A. Markov. In the CebySev period of the theory of approximation
of functions, not only were the fundamental concepts introduced, but
basic methods were found for obtaining the best approximations to
arbitrary individual functions, methods which are in wide use at the
present time; also, there were basic investigations of the properties of
the approximating classes, particularly of algebraic and trigonometric
polynomials, from the point of view of the requirements arising from
practical problems.

The further development of the theory of approximation of functions
was influenced by an important mathematical discovery, made at the
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end of the last century by the German mathematician Weierstrass. With
complete rigor he proved the theoretical possibility of approximating
an arbitrary continuous function by an algebraic polynomial with any
given degree of accuracy. This is the second reason why algebraic poly-
nomials are a universal means of approximating functions. The mere
simplicity of construction of algebraic polynomials is not sufficient; we
also require the possibility of approximating any continuous function by
a polynomial with arbitrary prescribed error. This possibility was proved
by Weierstrass.

The profound ideas of Cebysev on best approximation and the theorem
of Weierstrass served as a basis, at the beginning of the present century,
of the present-day development in the theory of approximation. In this
connection let us mention the names of S. N. Bern3tein, Borel, Jackson,
Lebesgue, and de la Vallée-Poussin. Briefly, this development may be
described as follows. Up to the time of CebySev (the beginning of the
present century), the problems usually consisted of approximation of
individual functions, but the characteristic problem of the present-day
period is the approximation, by polynomials or otherwise, of entire
classes of functions, analytic, differentiable, and the like.

The Russian school, and now the Soviet school, of the theory of
approximation has played a leading role in this theory. Important
contributions have been made by S. N. Bernstein, A. N. Kolmogorov,
M. A. Lavrent’ev, and their students. At the present time the theory
has developed into an essentially distinct branch of the theory of functions.

In addition to algebraic polynomials, another very important means of
approximation consists of the trigonometric polynomials. A trigonometric
polynomial of order n is a function of the form

u,(x) = oy + o, cos x + B, sin x + o cos 2x + B, sin 2x +
4+ a, cos nx + f, sin nx,
or more concisely

Uy (x) = oy + 2 (o cos kx + By sin kx),
k=1
where «;, and B, are constants.

There are various particular methods of approximation by trigonometric
polynomials, which are usually connected in a rather simple way with
the corresponding methods of approximation by algebraic polynomials.
Among these methods an especially important role is played by the
expansion of functions in a Fourier series (see §7). These series are known
by the name of the French mathematician Fourier, who at the beginning
of the last century made several theoretical discoveries concerning them,
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in his study of the conduction of heat. However, it should be noted that
trigonometric series were investigated as early as the middle of the
18th century by the great mathematicians Leonhard Euler and Daniel
Bernoulli. In Euler’s work they were related to his researches in as-
tronomy, and in Bernoulli’s to his study of the oscillating string. We may
remark that Euler and Bernouilli raised the fundamentally significant
question of the possibility of representing a more or less arbitrary function
by a trigonometric series, a question which was finally answered only in
the middle of the last century. Its affirmative answer, discussed later,
was anticipated by Bernoulli.

Fourier series are of great importance in physics, but we will give
little attention to this aspect of them, since it has been considered in
Chapter VI. In that chapter also the reader will find examples of physical
problems that naturally lead to the expansion of a given function in
series other than the trigonometric series but with great similarly to them.
We refer to the so-called series of orthogonal functions.

Fourier series have had a history of two hundred years. So it is not
surprising that by now their theory is extraordinarily broad, subtle, and
profound and constitutes an independent discipline in mathematics. An
especially remarkable role in this theory has been played by the Moscow
school of the theory of functions of a real variable, N. N. Luzin, A. N.
Kolmogorov, D. E. Men’$ov, and others.

We note also that the significance of trigonometric polynomials in
contemporary mathematics is hardly exhausted by their role as methods
of approximation. For example, in Chapter X the reader became ac-
quainted with the fundamental results of I. M. Vinogradov in the theory
of numbers, which were derived on the basis of a suitably devised apparatus
of trigonometric sums (polynomials).

§2. Interpolation Polynomials

A special case of the construction of interpolating polynomials. In
practical computations the interpolation method of approximating a
function is widely used. To introduce the reader to a range of questions
of this type, we consider the following elementary problem.

Let the function y = f(x) be given on the interval [x, , x,], with graph
as illustrated in figure 1. The appearance of this graph is reminiscent of
an arc of a parabola. So if we wish to approximate our function by a
simple function, it is natural to choose a polynomial of the second degree

P(x) = a5 + ayx + apx?, H
the graph of which is a parabola.
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The interpolation method consists of the following. In the interval
[xo , x2] we choose an interior point x, . The points x,, x,, x, give cor-
responding values of our function

Yo = f(x0), 11 = f(x1), y2 = f(x2).

We construct a polynomial (1) such that at the points x,, x,, x; it

agrees with the function in question (its graph is shown by the dashed

curve in figure 1). In other

y words, we must choose the

coefficients a,, a,, a, in the

polynomial (1) so that they
7z satisfy the equations

Y P(xg) = yo, P(x)) = »,
Yo Y P(xy) = y*. ¢3)

We note that our function

o *o * 2 f(x) may be defined otherwise

FiG. 1. than by a formula; for example,

its values may be given em-

pirically as shown by the graph in figure 1. To solve the interpolation

problem, we choose an approximating function in the form of an analytic

expression, namely the polynomial P(x). If the exactness of the approxi-

mation is satisfactory, the polynomial so chosen has the advantage over
the original function that we can compute its intermediate values.

This interpolation problem could be solved as follows: We could set up

the three equations

Yo = dy + ayXy + aaxﬁ’
2

= a + ayx; + axxy,
2

V2 = @y + ayx; + ayx,,

solve them for a,, a,, a, and substitute the values of these coefficients
in equation (1). But let us solve it in a somewhat different way, We begin
by constructing the polynomial Q,(x) of the second degree such that it
satisfies the three conditions: Qy(x,) = I, Qo(x;) = 0, Qy(x;) = 0. From
the last two conditions it follows that this polynomial must have the form
A(x — x,)(x — x,), and from the first condition that

1
(xo — X, 0(Xp — Xo)

A=
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So, the desired polynomial has the form

(x = x)(x — xy)

ety = (%o — X)(Xo — Xg)
Similarly the polynomials
_ x = Xo)l(X — X;) - (x — x)(x — xy)
i A e e h MLl oy
satisfy the conditions

Oi(xp) = Qi(x)) = 0, Qy(xy) = 1,
Qs(x0) = Qa(xy)) = 0, Qy(xy) = L.
Further, it is obvious that the polynomial y,Q(x) has the value y, for
x = x, and vanishes for x = x, and x = x,, and corresponding proper-
ties hold for the polynomials y,0,(x) and y,0Q,(x).
Hence it readily follows that the desired interpolating polynomial is
given by the formula

P(x) = yoQu(X) + 11Q1(x) + y2Q2(x)

o (= x)(x — xy) (x — x)(x — x5)
=J (0 — Xx1)(xo — x2) th (x1 — X)(x7 — X9)
+ yz (I s xﬂ)(x T xl) (3)

(xg + xp)(x2 — Xy) )

We note that the polynomial so obtained is the unique polynomial of
the second degree which solves our interpolation problem. For if we
assume that some other polynomial P,(x) of the second degree is also
a solution of the problem, then the difference P,(x) — P(x), which is also
a polynomial of the second degree, vanishes at the three points x = x,,
X; , X;. But we know from algebra that if a polynomial of the second
degree vanishes for three values of x, then it is identically zero. So the
polynomials P(x) and P,(x) agree identically.

It is clear that in general the polynomial so obtained agrees with the
given function only at the points x,, x; , x, and differs from it for other
values of x.

If we take x, at the center of the interval [x,, x,] and put x, — x,
= x; — X, = h, then formula (3) is somewhat simplified:

P(x) = s [lx = )0k = x2) = 2940x = x)x = x3) + Yalx — xx - )
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As an example let us interpolate the sine curve y = sin x (figure 2)
by a polynomial of degree two, agreeing with it at the points x = 0, #/2, m.
Obviously, the desired polynomial has the form

P(x) = —7;'2—.16(1'? — x) & sin x.
i 4
L5} 4
s = = i 4
7 S -,r—gx(:r x)
LOF ’ A ¥ sinx
7 a
/ >
o5t \
ol z =z =z 27 B 7 x 5
€ 3 2 3 [
FiG. 2. Fic. 3.

Let us compare sin x and P(x) at two intermediate points:

P( ? ~ 071,

m

4

)=0.75, while sin:l

0

-2

8

ki

P(—

6

, while s.in"GI TR

In this way we have approximated sin x on the interval [0, =] with an
accuracy* of about 0.05. On the other hand, the expansion of sin x in a
Taylor series around the point /2 gives

+ ki
smx=cos(§—x)=l— )
If we stop at the second term of the expansion, we have at the point
x = 0, the approximation sin 0 = | — #?%8 a 0.234, i.e., an error greater
than 0.2

We see that our interpolation method has produced an approximation
to sin x on the whole interval [0, 7] by a polynomial of degree two that

* However, for a complete justification of this statement, we need to prove that the
difference (4x/=®)(m — x) — sin x does not exceed in value 0.05, not only for x = »/4
and x = /6, but also for all x on the interval [0, »]; we will not do this.
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is more satisfactory than the Taylor-expansion of second degree. However,
we must not forget that Taylor’s formula gives a very exact approximation
close to the point x = #/2 around which it is taken, more exact in this
neighborhood than the approximation obtained by interpolating.

The general solution of the problem. It is clear that a more com-
plicated function y = f(x), as illustrated in figure 3, is hardly suitable
for approximation by a polynomial of degree two, since no parabola
of degree two could follow all the bends of the curve y = f(x). In this
case it is natural to try an interpolation of the function with a polynomial
of higher degree (not less than the fourth).

The general problem of interpolation consists of constructing a poly-
nomial P(x) = a, + a,x + a,x* 4+ --- + a,x" of degree n which agrees
with a given function at n 4+ | equations:

P(xo) = f(xo), P(x1) = flxy), -, Pxa) = flxa)-

The points at which it is required that the function agree with its approxi-
mating polynomial are called the points of interpolation.

Reasoning in the same way as for a second-degree polynomial, we can
easily prove that the desired polynomial may be written in the form

B 2 = (¢ = B —xe)  (e — %) o

X)X — X1) (6 — X)) (X — Xppn)' (6 — Xp)

4)

and further that this polynomial (of degree n) is unique. The formula
so written is known as Lagrange’s formula, It may also be put in various
other forms; for example, it is widely used in practice in the form involving
Newton’s difference quotients.

The deviation of the interpolation polynomial from the generating function.
The method of interpolation is a universal means of approximating
functions. In principle, the function is not required to have any particular
properties for interpolation to be possible; for example, it is not required
to have derivatives over the whole interval of approximation. In this
respect the method of interpolation has an advantage over Taylor’s
formula. It is interesting to note that there are cases when the function
is even analytic at every point on an interval but cannot be approximated
by its Taylor’s formula over the interval. Suppose, for example, that we
require a good approximation of the function 1/(1 + x?) on the interval
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[—2, 2] by means of an algebraic polynomial. At first glance it is natural
to try its expansion in a Taylor series about the point x = 0

TIl'x—z= 1 —x“+x‘—x°+ S
But it is easy to see that this series is convergent only in the interval
—I1 < x < L. Outside the interval [—I, 1], it diverges and consequently
cannot approximate I /(1 + x?) onthe whole interval [—2, 2]. Nevertheless,
the interpolation method is completely applicable here.

Of course, the question arises in each case of choosing the number
and distribution of the points of interpolation in such a way that the
error will satisfy certain requirements. For functions with derivatives of
sufficiently high order, the answer to this question of the possible
magnitude of error is given by the following classical result, which we
introduce without proof.

If on the interval [x,, x,] the function f(x) has a continuous derivative
of order n + 1, then for any intermediate value of x the deviation of
f(x) from the Lagrange interpolation polynomial P(x) with points of
interpolation x, < x, < -+ < x, is given by the formula

SO — ) = (x — x)x — x)  (x — x")f‘“'“(c),

n!

where ¢ is an intermediate point between x, and x, . This formula is
reminiscent of the corresponding formula for the remainder term in the
Taylor expansion and is essentially a generalization of it. So, if it is known
that the derivative /" +!(x) of order n + | on the interval [x, , x,] nowhere
exceeds the number M in absolute value, then the error of the approxi-
mation for any value of x on this interval is bounded by the following
estimate:

Ix = Xl | % —Xal

1100 — P < ;
n:

The contemporary theory of approximation provides many other
methods of estimating the error in interpolation. This question has been
carefully studied and some interesting, completely unexpected facts have
been discovered. .

Consider, for example, a smooth function y = f(x), defined on the
interval [—1, 1], i.e., one whose graph is a continuous curve with a
continuously varying tangent. Our choice of the interval with specific
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end points —1 and | is unimportant; the facts described here remain
valid for an arbitrary interval [a, b] with inconsequential changes.

We assume now that on the interval [—1, 1] we have chosen a system
of n 4+ 1 points

—I<xy<x; < <x, =<1 (5)

and have then constructed the polynomial P(x) = a, + a;x + -+ + a,x"
of degree n that agrees with f(x) at these points. We will assume tempo-
rarily that the points of the system (5) are equally spaced along the
interval. If n increases indefinitely, then the corresponding interpolating
polynomial P,(x) will agree with f(x) at a greater and greater number
of points, and we might think that at an intermediate point x, not belonging
to the system (5), the difference f(x) — P,(x) would converge to zero as
n — 0. This opinion was held even at the end of the last century, but
it was afterwards discovered that the facts are far otherwise. It has been
shown that for many smooth (even analytic) functions f(x), in the case
of evenly spaced points of division x,, the interpolating polynomials
P,(x) do not at all converge to f(x) as n — co. The graph of the inter-
polating polynomial certainly agrees with f(x) at the given points of
interpolation, but in spite of this it deviates strongly for large n from
the graph of f(x) at intermediate values of x and the deviation increases
with increasing n. As further investigation showed, this situation may be
avoided, at least for smooth functions, if the points of interpolation are
distributed more sparsely near the center of the interval and more
densely near the ends. Indeed, it has been shown that in 2 well-known
sense the best distribution of the points of interpolation is the one in
which the points x; occur at the zeros* of the CebySev polynomials
cos [(n + 1) arc cos x] defined by the formula

2k + 1

T RIS

Xp = COS

The polynomials (called Ceby3ev polynomials) which correspond to
these points of interpolation have the property that they are uniformly
convergent to the function which generated them, provided the latter is
smooth, i.e., is itself continuous and has a continuous first derivative.
The graph of such a function is a continuous curve with a continuously
varying tangent. Figure 4 shows the distribution of the zeros of the
Cebysev polynomial for the case n = 5.

* A zero of the function f(x) is a value x, for which f(x,) = 0. For details on
Cebysev polynomials see §5.
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As for arbitrary nonsmooth continuous functions, the situation is
worse; it can be shown that
in general there is no se-
quence of points of inter-
polation such that the inter-
polating process will con-
verge for any continuous
function (Faber’s theorem).
In other words, however,
we may divide the interval
[—1, 1] into parts, with the
number of points of inter-

Txs x5 xe 0| 13 x2 %/ x polation approaching infin-

ity, we can always find a

FiG. 4. function f(x), continuous in

the interval, such that the

successive polynomials with these points of interpolation will not converge
to the function. Even for the mathematicians of the middle of the last
century, this fact, had it been known, would have sounded paradoxical.
Of course, the explanation is that among the continuous nonsmooth
functions there are some extraordinarily “bad” ones, for example those
which do not have a derivative at any point of the interval on which
they are defined, and these supply examples for which a given interpolation
process will not converge. Effective methods of approximation to these
functions by polynomials can be suggested by making some changes in
the previous interpolation process, but we will not take the time to do
this here.

In conclusion we note that algebraic polynomials are not the only
means available for interpolation. There are methods for interpolation by
trigonometric polynomials, for example, which are well developed from
the practical and also from the theoretical point of view.

§3. Approximation of Definite Integrals

Interpolation of functions has wide application in questions related to
the approximate computation of integrals. As an example, we introduce
an approximate formula for a definite integral, namely Simpson’s rule,
which is widely used in applied analysis.

Let it be required to compute an approximation to the definite integral
on the interval [a, b] of the function f(x), whose graph is illustrated in
figure 5. The exact value is given by the area of the curvilinear trapezoid
aABb. Let C be the point of the graph with abscissa ¢ = (a + b)/2.
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Through the points 4, B, and C, we pass a parabola of degree two. As
we know from the preceding

section, this ‘parabola is the 4
graph of a polynomial of the
second degree, defined by the p 8
equation s -

1 o
P(x) = ﬁ;l(x — c)x — b)y,

—2(x — a)(x — by,

X

+ @ —ax — oyl 5 . L L

where FiG. 5.
b—a
h = 7 Yo = fl@), »n =0, v.=fb).

In the terminology of the preceding section, we may say that the
second-degree polynomial P(x) interpolates f(x) at the points with
abscissas a, ¢, b. If the graph of the function f(x) on the interval [a, 5]
does not change too violently and the interval is not large, then the
polynomial P(x) will everywhere differ little from f(x); this, in turn,
implies that their integrals taken over [a, b] will also differ little from
each other. On this basis we may assume these integrals are approximately
equal,

b
J’: ey dx ~ [ Peo)d,

or, as it is customarily stated, the second integral is an approximation
to the first. Simple computations, which we leave to the reader, show that

f:(x— A(x — b)dx =%h‘, — J‘:(x —a)(x —b)dx = %h’,
J‘b(x —a)(x —c)dx = Zh’.

3
Hence

[ Peyax = 21f0@ + a¢s0) + s

Thus the definite integral may be computed by the following approxi-
mation formula:

[ fwdx ~ 5 1@ + 40 + 7))

This is Simpson’s formula.



278 XII. APPROXIMATIONS OF FUNCTIONS

As an example, let us use this formula to compute the integral of sin x
on the interval [0, ). In this case

h=1;, fla) = sin0 = 0, f(c)=sing=1, f(b) = sinm = 0,

and consequently (h/3)[f(a) + 4f(c) + f(b)] = §= = 2.09 --- . On the other
hand the integral can be found exactly

Ve,

kg
J‘ sinxdx = — cosx
0 0

The error does not exceed 0.1.
If the interval [0, 7] is decomposed into two equal parts and on each
of these our formula is applied separately, then we get

J_:nsinxdx A~ 112 [sinO +4sing+ sin ;—r] = r—2(4l-§z_+ l) ~ 1.001,

J‘” sin x dx ~ 1.001.
E78 ]

In this manner
r sin x dx ~ 2.002 ;
L}

and now the error is considerably less than 0.002.

In practice, in order to compute approximately the definite integral
of a function f(x) on [a, b] we divide the interval into an even number n
of parts by the points a = x, < x, < - < x, = b and successively
apply Simpson’s rule to the segment [x,, x,], and then to the segment
[x2,x,] and so forth. As a result we have the following general formula of
Simpson:

b b—a
[ fe dx ~ 232 1fx0) + 4f(x) + 2 + 4 + - + S
* (6)
Let us now give without proof the classical estimate for the error. If on

the interval [a, 5] the function f{x) has a fourth derivative which satisfies
the inequality | f(x) | < M, then the following estimate holds

| [ s ax — | < MO )

Here by L(f) we denote the right side of formula (6). In this case the
error will be of order n—4.*

*If a certain quantity «,, depending on n = |, 2,--, satisfies the inequality
| @ | < Cfn*, where C is constant independent of n, then we say that it is of order n+*,
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We could have decomposed the interval [a, b] into n equal parts and
taken as our approximation to the integral the sum of the areas of the
rectangles drawn in figure 6. Then we would get an approximation formula
from the rectangles*

| Zf(x) ax ~ 2 —2fx) + 1)+ +fexa]. ®)
Yy
N s
7
o Yo 1 X Yoot Mot x

FiG. 6.

It may be shown that the order of error here is n~2%, provided the function
has a second derivative that is bounded on the interval [a, b]. We may
also take as an approximation the sum of the areas of the trapezoids
drawn in figure 7 and get the trapezoidal formula

b—a

[ Sy ~ 02 ) + 2w + - + Y +fe] - )

with order of error n~2%, provided the function has a bounded second
derivative.

It is usually said that Simpson’s formula is more exact than the
trapezoidal and rectangular formulas. This statement requires amplifi-

1 Y

Y

[

S
§

\

FiG. 7.

* In this case x, , x; , ***, Xq—; are the centers of the equal parts of the interval [a, b],
and not points of division as in formulas (6) and (9).
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cation, without which it will not be true. If we know only that a function
has a first derivative, then the guaranteed order of approximation for
each of the three methods is alike equal to »~*; in this case Simpson’s
formula has no essential advantage over the rectangular and trapezoidal
formulas. For functions that have a second derivative, it is guaranteed
that the approximations by the trapezoidal formula and by Simpson
formulas are each of order n~2. But if the function has a third and fourth
derivative, then the order of the error is still equal to »n~2 for the rectan-
gular and trapezoidal formulas, but for Simpson’s formula it is equal to
n~3 and n~* respectively. But the order n~* for Simpson’s formula proves
in its turn to be the best possible result; in other words, for functions
that have derivatives of higher order than the fourth, the order of error
remains equal to n~%. Thus, if we are given a function that has a derivative
of fifth order and wish to make use of this fact to obtain an approximation
of order n~% we need a new method of approximation to the definite
integral, different from Simpson’s formula. To explain how it must be
constructed, we note the following.

The trapezoidal and rectangular formulas, as is easily shown, are
exact for polynomials of the first degree; this means that substitution in (9)
of the function 4 + Bx, where 4 and B are constants, leads to exact
equality. In the same way Simpson’s formula proves to be exact for
polynomials of the third degree 4 + Bx + Cx?® + Dx3. The gist of the
matter lies in this fact. Let us suppose that we have divided the interval
[a, b] into n equal parts and on each part have used a method of ap-
proximation, the same on each part, which is exact for polynomials
A + Bx + ++- + Fx™! of degree m — 1. Then the error of the approxi-
mation for every function which has a bounded mth derivative will be
of order n~™, and if this function is not a polynomial of degree m — |,
then this order cannot be increased even for functions which have
derivatives of much higher order.

Our present remarks emphasize the importance of finding the simplest
possible approximate methods of integration that are exact for poly-
nomials of a given degree. This question, on which the present-day
literature is quite large, has interested mathematicians for a long time.
Here we can only refer to certain classical results.

Let the function p(x) be given. We are asked how to distribute on the
interval [—1, 1] the points of division x, , *-*, x,, and how to choose the
number K, so as to satisfy the equation

J[ 79 p0 dx = K3,

for every polynomial f(x) of degree m.
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It can be shown that for p(x) = (1 — x®)~* the problem is solved if
K = =/m, and x, are the zeros of the Ceby%ev polynomial cos m arc cos x
(cf. §5).

For p(x) = 1, Cebysev gave a solution of the problem for m = 1,2, -+, 7.
For m = 8 the problem has no solution: the points of division may be
found but they are complex. For m = 9 it again has a solution. However,
as S. N. Bernstein showed, for any m > 9 the problem has no solution
(the points of division lie outside the interval [—1, +1]).

A quadrature formula that is exact for polynomials of degree n can be
constructed very simply by means of Lagrange’s formula (4). If we
integrate its left and right sides on the interval [, b], we obtain

[ Py = 3 pusion), (1)

k=0

where
Pr = G (x—xo) “'(x_xk__.l)(x—xk_'_l) “‘(x—xﬂ) dx
a (xk — xn) (xk — xk_,)(xk —_ xIH-l) “es (xk — n)
k=0,1,-,n).

Consequently, equation (10) is valid for all polynomials of degree n, and
thus the quadrature formula

b n
[ fodx =~ 3, pufixe)
L 0
is exact for all polynomials of degree n.
When 5
X, = a, x1=a-2‘- ,  Xg=0b,

this formula reduces, as we have seen earlier, to Simpson’s formula.

The distribution of the points of interpolation x, (k = 0, I, *-, #) in
the interval [a, b] may be changed. For every distribution of the points
there will be a corresponding quadrature formula.

Gauss, the famous German mathematician of the last century, showed
that the interpolation points x; may be distributed in such a manner
that the formula will be exact for all polynomials not only of degree n,
but also of degree 2n 4 1.

The polynomial

Apa(X) = (6 — X)X — X1) =+ (¥ — Xp)
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of degree n + 1, arising from Gauss’s points of division x;, has a
remarkable property: For any polynomial P(x) of degree less than n + 1,
we have the equation

J.b Anpa(x) P(x)dx = 0.

In other words, the polynomial A4, ,,(x) is orthogonal on the interval
[a, ] to all polynomials of degree not greater than n. The polynomials
A,.1(x) we called the Legendre polynomials (corresponding to the interval

[a, B]).

§4. The CebySev Concept of Best Uniform Approximation

Statement of the question. Cebysev came to the idea of best uniform
approximation from a purely practical problem, since he was not only
one of the greatest mathematicians of the last century, creating the basis
for a number of mathematical disciplines that are widely developed at
present, but was also a leading engineer of his time. In particular,
Cebysev was very much interested in questions of the construction of
mechanisms producing a given trajectory of motion. We will now explain
this idea.

Let the curve y = f(x) be given on the interval a < x < b. We wish
to construct, subject to specific technical requirements, a mechanism such
that a certain one of its points will describe this curve as exactly as
possible when the mechanism is in operation. Ceby3ev solved the problem
as follows. First of all, looking for the solution as an engineer, he
constructed the required mechanism in such a manner as to get a rough
approximation to the required trajectory. Thus, a certain point 4 of the
mechanism, admittedly not yet in its final form, would describe the curve

y = $(x), (1D

resembling the required curve y = f(x) only in its general features. The
mechanism so constructed consists of separate parts, gears, levers of
various kinds, and the like. All of these have specific measurements

%,Cll,ag,“‘,am, (]2)
which completely describe the mechanism, and consequently the curve (11).
They are the parameters of the mechanism and of the curve (11).* Thus

* Details of the calculations for mechanisms of this sort may be found in the pub-
lication “The Scientific Heritage of P. L. Ceby3ev,” Volume II, Academy of Sciences
of the USSR, 1945,
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the curve (11) depends not only on the argument x, but also on the
parameters (12). To any assigned system of values of the parameters will
correspond a specific curve, whose equation may be conveniently written
in the form

y=o¢(x;x9,00,+, ctm). (13)

It is customary to say in such cases that we have obtained a family of
functions (13), defined on the interval @ < x < b and depending on the
m + 1 parameters (12).

_For the further solution of his problem CebySev worked as a pure
mathematician. He proposed, in a perfectly natural way, to take as the
measure of the deviation of the function f(x) from the approximating
function ¢(x; oy, o, , =, o) the magnitude

"f_ é" = ﬂglféb lf(x) b ﬂx; Mgy Oy 4 "7y ), (14)
equal to the maximum of the absolute value of the difference f(x)
—d(x; 09,04, ', ay) on the interval @ < x < b (figure 8). This quantity
is obviously a certain function

"f_¢"= F(O‘nsa1$ '"’am) (]5)

of the parameters o,y , ***,a, . The problem is now to find those
values of the parameters for which the function (15) is 2 minimum.
These values define a function
¢, which it is customary to
describe as the best uniform AB=If-#ll
approximation of the given 8 y-P(x)
function y = f(x) among all
possible functions of the given
family (11). The magnitude
Flog, oy , ***, ) for these val- : A,
ues of the parameters is called
the best uniform approximation
of the function f(x) on the
interval [a, b] by means of the
functions of the family (13). It FiG. 8.

is usually denoted by the sym-

bol E,(f). The term “‘uniform” is often replaced, especially in non-Soviet
literature, by the term “CebySev.” They both emphasize the specific
character of the approximation, since other types of approximation are
of course possible; for example, one may speak of the best approximation
to f(x) by functions from a given family in the sense of the mean square.
This subject will be discussed in §8.
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CebySev first discovered the various laws which hold for the type of
approximation we are discussing here and found that in many cases the
function ¢ which is the best uniform approximation to f(x) on the interval
[a, b] has the remarkable property that for it the maximum (15) of the
absolute value of the difference

f(x)_ﬂx; Xg, 0y, °°" )am)

is attained for at least m + 2 points of the interval [a, b] with successively
alternating signs (figure 9).

We have no space here for an exact formulation of the conditions
under which this proposition is valid and refer our better prepared readers
to the article of V. L. Gon&arov “The theory of the best approximation
of functions” (“The Scientific Heritage of Ceby3ev,” Volume I).

The case of approximation of fnnctions by polynomials. The cited in-
vestigations of CebySev are especially important for the general theory
of approximation when ap-
plied to the question of
approximating an arbitrary
function f(x) on a given in-
terval [a, b] by polynomials
P (X) = a;, + ax + ayx*
+ -+ 4+ a,x"of given degree
n. The polynomials P,(x) of
degree n constitute a family
of functions depending on

FiG. 9. the n + | coefficients as pa-

rameters. As may be shown,

the theory of Ceby3ev is fully applicable to polynomials, so that if we

wish to make the best uniform approximation to the function f(x) on

the segment [a, b] by a polynomial P,(x) chosen from all possible poly-

nomials of the given degree n, then we need only find all those values

of x on this interval for which the function | f{x) — P,(x) | assumes its

maximum L on [a, b]. If among them we can find n 4 2 values

Xy, X3,y Xope, Such that the difference f{x) — P,(x) successively
changes sign

L)
i
1
]
[}
1
o O X X X3 Xg X5 Xg

JOa) — Po(xy) = + L,
S(xg) — Pu(xy) = + L,

f(xa+2) — Pﬂ(xn+%) = £ (_])M-l L,
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then P,(x) is the best polynomial, and otherwise not. For example, the
solution of the problem of best
uniform approximation by poly- y
nomials Py(x) = p + gx of the
first degree to the function f(x)
illustrated in figure 10 consists of
the polynomial p, + g,x whose
graph is a straight line parallel to
the chord AB and dividing into
equal parts the parallelogram
enclosed between the chord and Fig. 10.

the tangent CD to the curve

¥ = f(x) which is parallel to that chord, since the absolute value of the
difference f(x) —(po + gox) obviously assumes its maximum for the
values x, = a, x,, and x, = b, where x, is the abscissa of the point of
tangency F, and for these values the difference itself successively changes
sign. To avoid misunderstanding, we note that we are speaking of a
curve that is convex downward and has a tangent at every point. In this
example E,(f) is equal to half the length of any one of the (equal) segments
AC, BD, or GF.

§5. The Ceby3ev Polynomials Deviating Least from Zero

Let us consider the following problem. It is required to find a polynomial
P, _,(x) of degree n — | which is the best uniform approximation on the
interval [—1, 1] to the function x",

It turns out that the desired polynomial satisfies the equation

x? — P,_i(x) = 2“;_1 COS 1 &IC COS X. (16)
This fact follows directly from Ceby3ev’s theorem, if we prove, first that
the right side ot (16) is an algebraic polynomial of degree n with the
coefficient of x" equal to one; second, that its absolute value on the
interval [—I, +1] assumes its maximum, equal to L = 1/2*, at the
n + | points x;, = cos knjn (k = 0, 1, -+, n); and third, that it changes
sign successively at these points.

The fact that the right side of (16) is a polynomial of degree n with
coefficient of x" equal to one may be proved as follows.

Let us assume that for a given natural number n we have already

proved that
cosnarccos x = 2% 1[x* — Q,_,(x)]:

— V'l — x%sin narc cos x = 2" x"+1 — Q,(x)],
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where Q,_, and Q, are algebraic polynomials of degree n—1 and n,
respectively. Then similar equations will also be valid for n + 1, as is
easily established by consideration of the following formulas:

cos (n + 1) arc cos x = x cos n arc cos x — VI — x*sinnarccos x;
— V1 — x%sin (n 4+ 1) arccos x
= —x V1 — x*sinnarccos x + (x* — 1) cos narccos x,

But our equations for n = 1 are true, since
COS arc cos x = X,
— V1 = x®sinarccos x = x* — 1.

Consequently, they are true for any n.

The right side of (16) is called the Cebysev polynomial of degree n
deviating least from zero, since Ceby3ev was the first to state and solve
this problem. The first few of these polynomials are

Ty(x) = |,
Ty(x) = x,

Ty(x) = 32> — 1),

Ty(x) = §(4x* — 3x),

Ty(x) = $(8x* —8x* + 1),
Ty(x) = 5(16x® — 20x® + 5x).

We have already seen the important role of the Cebysev polynomials
in questions of interpolation and of approximate methods of integration.
Let us make some further remarks on interpolation.

From the fact that the difference f(x) — P,(x) between an arbitrary
function f(x) and its best approximating polynomial P,(x) changes sign
at n 4 2 points, it follows from the properties of continuous functions
that P,(x) agrees with f(x) at n + 1 specific points of the interval [a, b];
i.e., P,(x) is an interpolating polynomial of degree n for f(x) with a certain
choice of points of interpolation.

In this way the problem of the best uniform approximation of a con-
tinuous function f(x) becomes one of choosing, on the interval [—I, 1],
a system x,, x;, ', X, of points of interpolation such that the cor-
responding interpolating polynomial of degree n will have a deviation
| f— @ || = max, f(x) — Q(x) of least possible value. Unfortunately, the
required points of division are often difficult to find in practice. Usually
it is necessary to solve the problem in some approximate way, and here



§5. CEBYSEV POLYNOMIALS DEVIATING FROM ZERO 287

the Cebysev polynomials play a special role. It turns out that if, in par-
ticular, the points of interpolation are taken to be zeros of the polynomial
cos (n + 1) arc cos x (i.e., the points where this polynomial is equal to
zero), then the corresponding interpolating polynomial, at least for large n,
will give a uniform deviation from the function (if it is sufficiently smooth)
which differs little from the corresponding deviation of the best uniform
approximation to the function by a polynomial. The somewhat vague
expression “differs little” can be replaced, in a number of important
characteristic cases, by very exact quantitative estimates, which we will
not establish here.

Returning to the Ceby3ev polynomial, let us consider it in the form
T (x) = Mcosnarccos x (—] < x < 1), where M is some positive
number. Obviously, on the interval [—I1, 1] its absolute value does not
exceed the number M. Its derivative is

nM sin n arc cos x

VI —x* ’

Tix) = —

which on the interval [—I, 1] satisfies the inequality

nM
T € ———.
| Tl < =5

It turns out that this inequality is true for all polynomials P,(x) of degree n
which do not exceed the number M in absolute value on the interval
[—1, 1]; i.e., for the derivative of any such polynomial on the interval
[—1, 1] we have the inequality

nM
PG e,

This inequality is to be credited to A. A. Markov, since it follows
directly from results of his which even go somewhat further. Markov
himself obtained it in connection with a question suggested to him by
D. I. Mendeleev.

In 1912, S. N. Berniteln obtained a similar inequality, which bears
his name, for trigonometric polynomials and by using these inequalities
first showed how to establish the differentiability properties of a function
if one knows how fast it is approached by its sequence of best approxi-
mations. Results of this kind concerning differentiable functions are given
in §§6 and 7.
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§6. The Theorem of Weierstrass; the Best Approximation to a
Fonction as Related to Its Properties of Differentiability

The Weierstrass theorem. If we apply the general definition, given in
§4, of best approximation to a function to the case of approximating
polynomials, we are led to the following definition. The best uniform
approximation to the function f(x) on the interval [a, b] by polynomials
of degree n occurs when the (nonnegative) number E,(f), is equal to the
minimum of the expression

J2ax | f(x) — Pa(Ol = I1f = Pall,

taken over all possible polynomials P,(x) of degree n.

Independently of whether or not we are able to find the exact poly-
nomial that best approximates the given function f(x), it is of great
practical and theoretical interest to estimate the quantity E,(f) as closely
as possible. In fact, if we wish to approximate the function f by a poly-
nomial with accuracy 8, in other words, in such a way that

| f(x) — Pa(x)| < & (17

for all x in the given interval, then there is no sense in choosing it from
the polynomials of degree n for which E,(f) > 8, since for this n there
will certainly not be any polynomial P, for which (17) holds. On the
other hand, if it is known that E,(f) < &, then it makes sense for such
n to look for a polynomial P, (x) which will approximate f(x) with
accuracy 8, since such polynomials evidently exist.

The properties of the best approximating functions of various classes
have been the subject of deep and careful study. First of all we note the
following important fact.

If a function f(x) is continuous on the interval [a, b], then its best
approximation E,(f) tends to zero as n increases to infinity.

This is the theorem proved by Weierstrass at the end of the last century.
It has great significance, since it guarantees the possibility of approximating
an arbitrary continuous function by a polynomial with any desired
accuracy. As a result, the set of all polynomials of any degree bears to
the set of all continuous functions defined on the interval exactly the
same relation as the collection R of rational numbers bears to the collection
H of all real (rational and irrational) numbers. In fact, for every irrational
number « and arbitrarily small positive number ¢, one can always find
a rational number r satisfying the inequality |« — r| < e. On the other
hand, if f(x) is a function continuous on [a, b] and € is an arbitrarily
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small positive number, then by Weierstrass’s theorem there will exist an
algebraic polynomial P,(x) such that for all x from the interval [a, b]
we have |f(x) — P.(x)| < e. Consequently, the best approximation
E.(f) to a continuous function tends to zero for n — oo.

Let us illustrate the theorem of Weierstrass in the following way.
Given the graph of an arbitrary continuous function (figure 9) defined
on the interval [a, b], and an arbitrarily small positive number ¢, let us
surround our graph with a strip of height 2¢ in such a way that the graph
passes through the center of the strip. Then it is always possible to choose
an algebraic polynomial

Pu(x) = ay + ayx + -+ + a,x",

of sufficiently high degree such that its graph lies entirely inside the strip.

We make the following remark. As before, let f(x) be an arbitrary
function continuous on [a, b], and let P (x) (n = 1, 2, --*) be the poly-
nomials which are the best uniform approximation to it. It is easy to see
that the function f(x) may be represented in the form of a series
f(x) = Py(x) + [Py(x) — Py(x)] + [Ps(x) — Py(x)] + -+, which is uni-
formly convergent to f(x) on [a, b]. This follows from the fact that the
sum of the first n terms of the series is equal to P,(x), and

Jas [ f(x) — Po(x)| = Eu(f),

while E.(f)— 0as n— c0.

As a result we have a new formulation of Weierstrass’s theorem:

Every function continuous on the interval [a, b) may be represented by
a series of algebraic polynomials converging uniformly to the function.

This result has great theoretical significance. It guarantees the possibility
of representing an arbitrary continuous function, however originally
given (for example, by means of a graph), in the form of an analytic
expression. (By an analytic expression we mean an elementary function
or else a function derived from a sequence of elementary functions by
means of a limit process.) Historically this result finally destroyed the
notion of analytic expression that had existed in mathematics almost up
to the middle of the last century. We say “finally,” since Weierstrass’s
theorem had been preceded by a series of general results of similar type,
relating chiefly to Fourier series. Until these results were obtained, it had
been assumed that analytic expressions were the means of representing
the especially desirable properties that were characteristic of analytic
functions. For example, it was usually taken for granted that analytic
expressions were infinitely differentiable and could even be expanded in
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power series. But these ideas all proved to be without foundation. A
function may have no derivative anywhere in its interval of definition
and yet be representable by an analytic expression.

Fom a methodological point of view, the value of this discovery lies
in the fact that it enables us to realize with complete clarity that at least
in principle the methods of mathematics are applicable to an immeasurably
wider class of laws than had been realized before.

At the present time many different proofs of Weierstrass’s theorem are
known. For the most part they reduce to the construction of a sequence
of polynomials for a given continuous function f, which approximate f
uniformly as their degree increases. The simply constructed polynomial

B, = 3, Cixi(l — xrty (X,

k=1

will approximate a continuous function f(x) on the interval [0, 1]. It is
called the Bernstein polynomial. With increasing n this polynomial
converges uniformly on the interval [0, 1] to the function which generated
it.* Here C} is the number of combinations of n elements taken & at a time.

We note that a theorem similar to Weierstrass’s holds in the complex
domain. Exhaustive results in this direction are due to M. A. Lavrent’ey,
M. V. Keldy§, and S. N. Mergeljan.

The connection between the order of the best nniform approximation of
a fonction and its differentiability properties. We note further the fol-
lowing results. If a function f(x) on the interval [a, b] has a derivative
J"(x) of order r which does not exceed the number K in absolute value,
then its best approximation E,(f) satisfies the inequality

¢ K
n’

E(f) < (18)

where ¢, is a constant, depending only on r (Jackson’s theorem). From
inequality (18) it can be seen that with increasing n the quantity E.(f)
converges to zero more rapidly for functions with derivatives of higher
order. In other words, the better (smoother) the function, the faster the
convergence to zero of its best approximation. Bernstein proved that in
a certain sense the converse to this proposition is also true.

Still better in this respect than the differentiable functions are the

* It must be remarked that, in spite of their simplicity, the Bernstein polynomials
are little used in practice. The explanation is that they converge very slowly, even for
functions with good differentiability properties.
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analytic functions. Bernsteln proved that for such functions, E,( f) satisfies
the inequality

E(f) < ¢cq™, (19)

where ¢ and g are constants depending on the function f, and 0 < g < |;
i.e., E(f) converges to zero more rapidly than a certain decreasing
progression. He also proved that conversely the inequality (19) implies
that the function f is analytic on [a, b].

We have given certain very important results that were discovered at
the beginning of this century and have been characteristic of the direction
taken by contemporary research in the theory of approximation of
functions. The practical value of these results may be seen from the
following example.

If Q,(x) is a polynomial of degree n, which interpolates the function
f(x) on the interval [—I1, |] at the n 4+ | points of interpolation which
are the zeros of the Ceby3ev polynomial cos (n + 1) arc cos x, then on
this interval one has the inequality | f(x) — Q.(X)| < ¢ Inn E ( f), where
¢ is a constant independent of n, and E,(f) is the best approximation
to the function f on [—I, l]. In this inequality we may replace E,(f)
by the larger expressions, occurring in (18) or (19), provided f is suf-
ficiently smooth, and obtain a good estimate of the approximation of our
interpolating polynomial. Since In n increases very slowly with increasing
n, the order of the estimate in the given case differs little from the order
of convergence to zero of E,(f). The advantage of interpolation by the
Ceby3ev points consists of the fact that for other points of interpolation
the factor ¢ In n in the corresponding inequality is replaced by a more
rapidly increasing factor; this is particularly true in the case of equally
spaced points of interpolation.

§7. Fourier Series

The origin of Fonrier series. Fourier series arose in connection with
the study of certain physical phenomena, in particular, small oscillations
of elastic media. A characteristic example is the oscillation of a musical
string. Indeed, the investigation of oscillating strings was the origin
historically of Fourier series and determined the direction in which
their theory developed.

Let us consider (figure 11) a tautly stretched string, the ends of which
are fixed at the points x = 0 and x = / of the axis Ox. If we displace
the string from its position of equilibrium, it will oscillate.

We will follow the motion of a specific point of the string, with abscissa
X, . Its deviation vertically from the position of equilibrium is a function
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¢(#) of time. It can be shown that one can always give the string an initial
position and velocity at ¢ = 0 such that as a result the point which we
have agreed to follow will perform harmonic oscillations in the vertical
direction, defined by the function

¢ = ¢(f) = A cos akt + B sin akt. (20)

Y

FiG. 11.

Here « is a constant depending only on the physical properties of the
string (on the density, tension, and length), k is an arbitrary number,
and 4 and B are constants.

We note that our discussion relates only to small oscillations of the
string. This gives us the right to assume approximately that every point
x, is oscillating only in the vertical direction, displacements in the
horizontal direction being ignored.* We also assume that the friction
arising from the oscillation of the string is so small that we may ignore it.
As a result of these approximate assumptions, the oscillations will not
die out.

The possibilities of oscillation for the point x, are of course, not
exhausted by the periodic motions defined by the harmonic functions (20),
but these functions do have the following remarkable property. Experi-
ments and their accompanying theory show that every possible oscillation
of the point x, is the result of combining certain harmonic oscillations
of the form (20). Relatively simple oscillations are obtained by combining
a finite number of such oscillations; i.e., they are described by functions
of the form

$(r) = Ay + 2, (A cos akt + By sin ak?),
k=1

* This question is directly connected with the differential equation of the oscillating
string
&u , & !
E (" - 50‘)‘
which was discussed in Chapter VI.
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where A, and B, are corresponding constants. These functions are called
trigonometric polynomials. In more complicated cases, the oscillation will
be the result of combining an infinite number of oscillations of the form
(20), corresponding to k = 1, 2, 3, --- and with suitably chosen constants
Ay and B, , depending on the number k. Consequently, we arrive at the
necessity of representing a given function ¢(f) of period 2m/x, which
describes an arbitrary oscillation of the point x, in the form of a series

) = Ay + kf: (Ax cos akt + By sin ake). (1)
=1

There are many other situations in physics where it is natural to
consider a given function, even though it does not necessarily describe
an oscillation, as the sum of an infinite trigonometric series of the form
(21). Such a case arises, for example, in connection with the vibrating
string itself. The exact law for the subsequent oscillation of a string,
to which at the beginning of the experiment we have given a specific
initial displacement (for example, as illustrated in figure 12) is easy to
calculate, provided we know the expansion in a trigonometric series
f(x) = IV agsin (kn/Dx, (a par-
ticular case of the series (21)), of
the function f(x) describing the
initial position.

&
f

o|

ary
—~

Expansion of fonctions in a trigo-
nometric series. On the basis of Fig. 12.
what has been said there arises the
fundamental question: Which functions of period 27/x can be represented
as the sum of a trigonometric series of the form (21)? This question was
raised in the 18th century by Euler and Bernoulli in connection with
Bernoulli’s study of the vibrating string. Here Bernoulli took the point
of view suggested by physical considerations that a very wide class of
continuous functions, including in particular all graphs drawn by hand,
can be expanded in a trigonometric series. This opinion received harsh
treatment from many of Bernoulli’s contemporaries. They held tenaciously
to the idea prevalent at the time that if a function is represented as an
analytic expression (such as a trigonometric series) then it must have
good differentiability properties. But the function illustrated in figure 12
does not even have a derivative at the point £; in such a case, how can it
be defined by one and the same analytic expression on the whole interval
[0,71?

We know now that the physical point of view of Bernoulli was quite
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right. But to put an end to the controversy it was necessary to wait an
entire century, since a full answer to these questions required first of all
that the concepts of a limit and of the sum of a series be put on an exact
basis.

The fundamental mathematical investigations confirming the physical
point of view but based on the older ideas concerning the foundations
of analysis were completed in 1807-1822 by the French mathematician
Fourier.

Finally, in 1829, the German mathematician Dirichlet showed, with
all the rigor with which it would be done in present-day mathematics,.
that every continuous function of period 2=/a,* which for any one period
has a finite number of maxima and minima, can be expanded in a unique

trigonometric Fourier series,
uniformly convergentt to
v function.

Figure 13 illustrates a
function satisfying Dirich-
\ ? /\ let’s conditions. Its graph
Ul is continuous and periodic,
"'\/l \f \ with period 2w, and has one
maximum and one minimum

Fig. 13. in the period 0 < x < 2.

Fourier coefficients. In what follows we will consider functions of
period 27, which will simplify the formulas. We consider any continuous
function f(x) of period 2= satisfying Dirichlet’s condition. By Dirichlet’s
theorem it may be expanded into a trigonometric series

) = "T" 4 i (ax cos kx + by sin kx), 22)

which is uniformly convergent to it. The fact that the first term is written
as a,/2 rather than a, has no real significance but is purely a matter of
convenience, as we shall see later.

We pose the problem: to compute the coefficients a, and b, of the
series for a given function f(x).

* The function f(x) has period w if it satisfies the equation f(x + w) = f(x).

t In fact, Dirichlet’s theorem also applies to a certain class of discontinuous functions,
the so-called functions of bounded variation. For discontinuous functions, of course,
the corresponding series is nonuniformly convergent.
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To this end we note the following equation:
j coskxcoslxdx =0 (k#1 k,1=0,1,),

j"sinkxsinxxdx=0 ek by, T 0,15,

f' sinkxcoslxdx =0 (k1=0,1,2,), (23)
Jm costkxdx == k=129,
j" S k =1,2,),

which the reader may verify. These integrals are easy to compute by
reducing the products of the various trigonometric functions to their
sums and differences and their squares to expressions containing the
corresponding trigonometric functions of double the angle. The first
equation states that the integral, over a period of the function, of the
product of two different functions from the sequence 1, cos x, sin x,
cos 2x, sin 2x, -+ is equal to zero (the so-called orthogonality property
of the trigonometric functions). On the other hand, the integral of the
square of each of the functions of this sequence is equal to =. The first
function, identically equal to one, forms an exception, since the integral
of its square over the period is equal to 2. It is this fact which makes
it convenient to write the first term of the series (22) in the form a,/2.

Now we can easily solve our problem. To compute the coefficient a,, ,
we multiply the left side and each term on the right side of the series (22)
by cos mx and integrate term by term over a period 2m, as is permissible
since the series obtained after multiplication by cosmx is uniformly
convergent. By (23) all integrals on the right side, with the exception
of the integral corresponding to cos mx, will be zero, so that obviously

r f(x) cos mx dx = a,m,
hence

a, = }T J‘“ J(x) cos mx dx (m=0,1,2, ). (24)

Similarly, multiplying the left and right sides of (22) by -sin mx and
integrating over the period, we get an expression for the coefficients

b= }r J‘; fix)ysinmxdx  (m=1,2,), 25
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and we have solved our problem. The numbers a,, and b,, computed by
formulas (24) and (25) are called the Fourier coefficients of the function
J(x).

Let us take an example the function f(x) of period 2 illustrated in
figure 13. Obviously this function is continuous and satisfies Dirichlet’s
condition, so that its Fourier series converges uniformly to it.

It is easy to see that this function also satisfies the condition f(—x)
= — f(x). The same condition also clearly holds for the function F;(x)
= f(x) cos mx, which means that the graph of Fi(x) is symmetric with
respect to the origin. From geometric arguments it is clear that
j:F,(x) dx =0, so that a, = 0(m =0, 1,2, ---). Further, it is not
difficult to see that the functions Fy(x) = f(x) sin mx has a graph which
is symmetric with respect to the axis Oy so that

b, = :;J‘:Fg(x)d =§J.:Fg(x)dx.

But for even m this graph is symmetric with respect to the center =/2 of
the segment [0, 7], so that b, = 0 for even m. For odd m = 2/ = 1
(I =0, 1, 2, --) the graph of Fy(x) is symmetric with respect to the straight
line x = /2, so that

S
by =:-: | " i d.

But, as can be seen from the sketch, on the segment [0, w/2] we have
simply f(x) = x, so that by integration by parts, we get

4 _ 4(=1y
by = w.[o xsin (2! 4+ Dxdx = p TR o
and consequently

_ 4 (=I)sin(2 + Dx
ﬂ")_«g @+

Thus we have found the expansion of our function in a Fourier series.
Convergence of the Fonrier partial snms to the generating fonction.

In applications it is customary to take as an approximation to the function
J(x) of period 27 the sum

1
S = -+, (aycos kx + by sin kx)
1
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of the first n terms of its Fourier series, and then there arises the question
of the error of the approximation. If the function f(x) of period 2= has
a derivative f'"(x) of order r which for all x satisfies the inequality
| f"(x)| < K, then the error of the approximation may be estimated as
follows:

¢, Klnn

[f(x) — Sa(x) | < -

3

where ¢, is a constant depending only on r. We see that the error converges
to zero with increasing n, the convergence being the more rapid the more
derivatives the function has.

For a function which is analytic on the whole real axis there is an even
better estimate, as follows:

| f(x) — Su(x) | < cq", (26)

where ¢ and g are positive constants depending on fand ¢ < I. It is
remarkable that the converse is also true, namely that if the inequality
(26) holds for a given function, then the function is necessarily analytic.
This fact, which was discovered at the beginning of the present century,
in a certain sense reconciles the controversy between D. Bernoulli and
his contemporaries. We can now state: If a function is expandable in a
Fourier series which converges to it, this fact in itself is far from implying
that the function is analytic; however, it will be analytic, if its deviation
from the sum of the first n terms of the Fourier series decreases more
rapidly than the terms of some decreasing geometric progression.

A comparison of the estimates of the approximations provided by the
Fourier sums with the corresponding estimates for the best approximations
of the same functions by trigonometric polynomials shows that for
smooth functions the Fourier sums give very good approximations,
which are in fact, close to the best approximations. But for nonsmooth
continuous functions the situation is worse: Among these, for example,
occur some functions whose Fourier series diverges on the set of all
rational points.

It remains to note that in the theory of Fourier series there is a question
which was raised long ago and has not yet been answered: Does there
exist a continuous periodic function f{x) whose Fourier series fails for
all x to converge to the function asn = oo ? The best result in this direction
is due to A. N. Kolmogorov, who proved in 1926 that there exists a
periodic Lebesgue-integrable function whose Fourier series does not
converge to it at any point. But a Lebesgue-integrable function may be
discontinuous, as is the case with the function constructed by Kolmogorov.
The problem still awaits its final solution.
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To provide approximations by trigonometric polynomials to arbitrary
continuous periodic functions, the methods of the so-called summation
of Fourier series are in use at the present time. In place of the Fourier
sums as an approximation to a given function we consider certain
modifications of them. A very simple method of this sort was proposed
by the Hungarian mathematician Fejér. For a continuous periodic
function we first, in a purely formal way, construct its Fourier series,
which may be divergent, and then form the arithmetic means of the
first n partial sums

So(x) + Si(x) + -+ + Su(%)
n+1 '

ou(x) = (27)
This is called the Fejér sum of order n corresponding to the given function
f(x). Fejér proved that as n = co this sum converges uniformly to f(x).

§8. Approximation in the Sense of the Mean Sqnare

Let us return to the problem of the oscillating string. We assume that
at a certain moment f, the string has the form y = f(x). We can prove
that its potential energy W, i.e., the work made available as it moves
from the given position to its position of equilibrium, is equal (for small
deviations of the string) to the integral W = ['f"(x) dx, at least up to
a constant factor. Suppose now that we wish to approximate the function
f(x) by another function ¢(x). Together with the given string, we will
consider a string whose shape is defined by ¢(x), and still a third string,
defined by the function f(x) —¢(x): It may be proved that if the energy

[ 1760 - #0or dx @)

of the third string is small, then the difference between the energy of the
first two strings will also be small.* Thus, if it is important that the
second string have an energy which differs little from the first, we must

*In fact, if ; ‘
J‘ frdx < M* and j #rdx < M,
then ’ ’

ﬁpu—£w¢|

T Tl e a] <o T e
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try to find a function ¢'(x) for which the integral (28) will be as small
as possible. We are thus led to the problem of approximation to a function
(in this case f’(x)) in the sense of the mean square.

Here is how this problem is to be stated in the general case. On the
interval [a, b] we are given the function F(x), and also the function

Q(x;ao:al!”‘)aw)) (29)

depending not only on x but also on the parameters o, oy, ", o, . It is
required to choose these parameters in such a way as to minimize the
integral

[ 1F) — @x; o, 20, @) di. (30)

This problem is very similar in idea to Ceby%ev’s problem. Here also
the idea is to find the best approximation of the function F(x) by functions
of the family (29), but only in the sense of the mean square. It is now
unimportant for us whether or not the difference F— @ is small for all
values of x on the interval [a, b]; on a small part of the interval the
difference F— & may even be large provided only that the integral (30)
is small, as is the case,

for example, for the y

two graphs illustrated in
figure 14. The smallness

of the quantity (30) shows

that the functions F and

& are close to each other

on by far the greater part

on the interval.* As to ©
the choice in practice of

one method of approxi-
mation or another, everything depends on the purpose in view. In the
earlier example of the string, it is natural to approximate the function
f/(x) in the sense of the mean square. On the other hand, the method
of mean squares was unsatisfactory for CebySev in solving his problems
in the construction of mechanisms, since a machine component projecting
beyond the limits of tolerance, even if only over a very small part of the
machine, would be quite intolerable: One such projection would spoil
the whole machine. Thus Ceby3ev had to develop a new mathematical
method corresponding to the problem which confronted him.

Y]
[ I
»

FiGc. 14.

*In C.hapt;zr XIX we will see that there is a profound analogy between the close-
ness of the functions in the sense of the mean square and the distance between points
in ordinary space.
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We should state that from the computational point of view the method
of the mean square is more convenient, since it can be reduced to the
application of well-developed methods of general analysis.

As an example let us consider the following characteristic problem.

We wish to make the best approximation in the sense of the mean
square to a given continuous function f(x) on the interval [a, b] by sums
of the form

L0

2 aﬂbl‘(x)’

1

where the «, are constants and the functions ¢,(x) are continuous and
form an orthogonal and normal system.
This last means that we have the following equations:

j'¢,,¢,dx=o k—1 (k1=1,2,..n),
b
j Bdx=1 (k=1,2,..,n).

Let us introduce the numbers

a = J:f(x) d(x)dx (k= 1,..,n).

These numbers ay are called the Fourier coefficients of f with respect to
the g, .

For arbitrary coefficients o, , on the basis of the properties of orthogo-
nality and normality of ¢, , we have the equation

J‘: (f—z’:a‘#’k)“dx = J‘Zf%dx +$af—22: 0y

— (J‘if‘dx — Zj;af) + Zt: (e — @)’

The first term on the right side of the derived equation does not depend
on the numbers «; . Thus the right side will be smallest for those oy
which make the second term itself small, and obviously this can happen
only if the numbers o, are equal to the corresponding Fourier coefficients
a .

Thus we have reached the following important result. If the functions
¢, form an orthogonal and normal system on the interval [a, b], then the
sum X7 axdi(x) will be the best approximation, in the sense of the mean
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square, to the function f(x) on this interval if and only if the numbers «,
are the Fourier coefficients of the function f with respect to ¢.(x).
On the basis of equation (23) it is easily established that the functions

Il  cosx sinx cos2x
V2r ' Am ' Am T AE

form an orthogonal and normal system on the interval [0, 27]). Thus the
stated proposition, as applied to the trigonometric functions, will have
the following form.

The Fourier sum S,(x), computed for a given continuous function f(x)
of period 2, is the best approximation, in the sense of the mean square,
to the function f(x) on the interval [0, 2x], among all trigonometric
polynomials

L3
(X)) = o + 2 (o cos kx + By sin kx)
1

of order n.

From this result and from Fejér’s theorem, formulated in §7, we are
led to another remarkable fact.

Let f(x) be a continuous function of period 2= and o,(x) be its Fejér
sum of order n, defined in §7 by equation (27).

We introduce the notation

max | f(x) — on(x) | = 7a -

Since the Fourier sums Si(x) (k = 0, I, ..., n) are trigonometric poly-
nomials of order k < n, it is obvious that o,(x) is a trigonometric poly-
nomial of order n. Thus from the minimal property of the sum S,(x)
shown previously, we have the inequality

[ 10— s,@pdx < [ 1) — ouoidx < [ n2dx = 2m2.

Since, by Fejér’s theorem, the quantity n, converges to zero for n — o
we obtain the following important result.
For any continuous function of period 2» we have the equation

lim [ (%) — Su(9P dx = 0.
In this case we say that the Fourier sum of order n of a continuous function

J(x) converges to f(x) in the sense of the mean square, as n increases
beyond all bounds.
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In fact, this statement is true for a wider class of functions, namely
those which are integrable, together with their square, in the sense of
Lebesgue.

We will stop here and will not present other interesting facts-from the
theory of Fourier series and orthogonal functions, based on approximation
in the sense of the mean square. Important physical applications of
orthogonal systems of functions have already been introduced in Chapter
V1. Finally, we note that these questions are also discussed from a some-
what different point of view in Chapter XIX.

Snggested Reading

N. I. Ahiezer, Theory of approximation, Frederick Ungar, New York, 1956.

D. Jackson, The theory of approximation, American Mathematical Society,
Providence, R. 1., 1930.

J. L. Walsh, Interpolation and approximation by rational functions in the complex
domain, 2nd ed., American Mathematical Society, Providence, R. I., 1956.
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APPROXIMATION METHODS
AND COMPUTING TECHNIQUES

§1. Approximation and Nnmerical Methods

Characteristic pecnliarities of approximation methods. In many cases
the application of mathematics to the study of events in the outside world
is based on the fact that the laws governing these events have a quantitative
character and can be described by certain formulas, equations, or in-
equaltities. This allows us to investigate the events numerically and to
make the calculations which are so necessary in practical life.

As soon as a quantitative law has been found, purely mathematical
methods may be used to investigate it. For definiteness, let us take some
law which is described by an equation. This may be the law of motion
of a body in Newtonian mechanics, the law of heat conduction or the
propagation of electromagnetic oscillations, and so forth. Such equations
are discussed in detail in Chapters V and VI. Usually the equation has
adjoined to it certain conditions which its solution must satisfy (in
Chapters V and VI these are the boundary and initial conditions) and
which define a unique solution.

The first and most important mathematical tasks here will be the
following:

I. To establish the existence of a solution. Even if it seems obvious
from the physical point of view that the problem has a solution, a
mathematical proof of the solvability of a rigorously formulated problem
is usually considered as the necessary evidence that the mathematical
formulation ot the problem is a satisfactory one. In a wide class of prob-
lems it is possible to establish mathematically the existence of a solution.

2. To attempt to find an explicit expression or formula for the quantity

303
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which characterizes the event under consideration. Usually such an
expression can be found only in the simplest cases. It often happens
that the explicit expression obtained is so complicated that to make use
of it for the desired numerical results is very difficult or even impossible.

3. To find a procedure for constructing an approximation formula,
which gives a solution with any desired degree of accuracy. This can be
done in many cases.

4. But very often it will be possible to find one or more methods for
direct numerical calculation of the solution,

The development of such numerical methods (many of which are
approximate) of solving problems of science and technology has produced
a particular branch of mathematics that at the present time is usually
called mathematics of computation.

The methods of computational mathematics are naturally approxi-
mative, since every quantity is computed only to a certain number of
significant figures; for example, to five, six, etc., decimal places.

For applications this is sufficient, since knowing the exact value of
any quantity is often unnecessary. In technical questions, for example,
the desired quantity usually serves to define the dimensions or other
parameters of a manufactured article. Every manufacturing process is
only approximate, so that technical computations with an exactness
which goes beyond the allowed “tolerances” are obviously valueless.

So for computational purposes there is no need of exact formulas or
of exact solutions of equations. Exact formulas and equations may be
replaced by others that are admittedly inexact, provided they are close
enough to the original ones that the error produced by such a change
does not exceed given bounds.

Later we shall return to this question of replacing one problem by
another. At the moment, however, we merely wish to emphasize the first
characteristic feature of computational methods, namely that by their
very nature they can, as a rule, produce only approximate results; but
then only such results are needed in practice.

We now turn our attention to a second aspect of computational
methods in mathematics. In any computation we can operate with only
a finite number of digits and obtain all the results after a finite number
of arithmetic operations. If we perform the computations according to
some formula, then the latter must first have been transformed in such
a way that it involves only a finite number of terms with a finite number
of parameters. It is known, for example, that many functions may be
represented as the sum of a power series

f) = o+ ex + cx + oo )
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Thus, the function sin x, where x is the radian measure of an angle, may
be expanded in the power series
x3 x8

i X
i TR T

To find the exact value of f(x), we would need to sum up “all” the
terms of the series (1), but generally speaking, this is impossible. To find
f(x) approximately, it is sufficient to take only a certain finite number
of terms of the series. For example, it may be proved that to compute
sin x with an accuracy of 10~® for an angle from zero to half a right angle
it is sufficient to take the terms through x%, so that sin x is replaced by
the polynomial

For the numerical solution of a problem of mathematical analysis that
consists of determining some function, we must by one means or another
replace this problem by the problem of finding certain numerical para-
meters, the knowledge of which enables us to make an approximate
computation of the unknown function. We will illustrate this by an
example.

Let it be required to solve, on the interval a < x < b, the boundary-
value problem for the differential equation

Ly)—fx) =y " +p(0)y +qx)y—flx) =0 2

with boundary conditions y(a) = 0, y(b) = 0. In one of the possible
methods of solution, namely Galerkin’s method, we start with a system
of linearly independent functions w,(x), w(x), -=-, which satisfy the
boundary conditions (Chapter VI, §5). This system is so chosen as to be
“complete” in the sense that a function which is integrable on [a, b] and
is orthogonal to all the w; (k = 1, 2, -++) will be equal to zero at all (more
exactly, at “almost all’’) points of the interval. The condition that y(x)
satisfies the differential equation (2) may be described in the form of an
orthogonality requirement

[ 1) = flavdx =0 (e =1,2,-). o)

Let us assume that the solution of the problem may be expanded in
a series in the w,

YX) = qyon(x) + Gpo(x) + . )
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We now seek to determine the conditions that must be satisfied by the
coefficients a, . For arbitrary a, the sum of the series (4) will satisfy the
boundary conditions. It remains to choose the a, in such a way that
equations (3) are satisfied. The coefficients a, form an infinite set, and
to compute all of them is generally speaking impossible. For simplification
we retain only a finite number of terms on the right side of (4) and so
obtain the expression

y(x) ~ alml(x) + o + aﬂwn(x)' (5)

We cannot hope to satisfy equation (3) for all w, (kK = 1, 2, -+-) since
we have only n arbitrary parameters a, (k = 1,2, ---, n). Thus we are
forced to give up an exact solution of the differential equation (2). But
it is natural to expect that the sum (5) will satisfy this differential equation
with a small error if n is taken sufficiently large and condition (3) is
satisfied for the first » of the functions w, . This leads to the equations
of Galerkin’s method

_[: [L(gaw») —f] widx =0 (i= 1,2, n).

After finding the a, from these equations, we construct an approximate
expression for the function (3).

A similar simplified formula holds for the solution of variational
problems by the Ritz method, in approximate harmonic analysis of
functions and in many other questions.

We give another example of simplification of an equation. Let it be
required to find a function y of one or several arguments by solving
some functional equation, for example, a differential or an integral
equation. As parameters defining the function y let us choose its values
Yis Va2 ', ya at some system of points (on a net).

The functional equation must then be changed to a system of numerical
equations containing » unknown quantities y, (k = I, -+, n). Such a
replacement may, as a rule, be made in many ways. Here it is always
necessary to take pains that the solution of the numerical system differs
sufficiently little from the solution of the functional equation.

We give several examples of this sort of replacement. When we solve a
differential equation of the first order ' = f(x, y) by Euler's method,
we replace this equation by a recursive numerical scheme which enables
us to make an approximate calculation of each succeeding value of the
unknown function from the previous value (Chapter V, §5):

Ya+1 = Yn = (xnﬂ - xﬂ)ﬂxn ] yﬂ)-
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For an approximate solution of the Laplace equation

oty &u
A = — —_—
“ ox? L oy? 9

by the net method, we replace this equation by a linear algebraic system
(Chapter VI, §5)

“(x+h,}‘) + "(I,y'l‘h) + u(x—h,y} + "(I,J’—h)—““(xyy) =0.

Let us consider one more example of such a kind. Let it be required to
solve numerically the integral equation

H) = 10) + [ Kex,5) ) ds. ©)

The points at which we wish to find the values of the unknown function
¥(x) will be denoted by x,, x,, -, x, . In order to set up the system of
numerical equations replacing (6), we require that equation (6) be
satisfied not for all the x on the interval @ < x < b but only at the
points x; (f = 1,2, -, n)

Wxs) = flx) + r K(x;, 5) ¥(s) ds.

Then we replace the integral by any approximate quadrature (by the
trapezoidal rule, Simpson’s rule, or some other)* with the points of
division x, , =, x,

b n
[ Ko, ) () ds ~ Y, AKCxe, x) y(x).

i=1

To determine the desired values of y(x,), we have the system of linear
algebraic equations

Hxs) = flx) + i AiiK(x;, y;) v(xy) (i=12,,n). )

i=1

We note that all the methods considered of seeking an unknown
function have involved determining certain parameters which define it

* Cf. Chapter XII, §3.
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approximately. Thus the exactness of these methods depends on how
well the function is defined by this system of parameters; for example,
how well it may be approximated by an expression of the form (7) or
represented by its values at a certain system of points. Questions of this
kind constitute a particular branch of mathematics, called the theory of
approximation of functions (Chapter XII). From this it can be seen that
the theory of approximation has very great value for applied mathematics.

Convergence of approximate methods and an estimate of error. Let us
examine in more detail the requirements for a computational method,
The simplest and most basic of these requirements is the possibility of
finding the desired quantity with any chosen degree of accuracy.

The required exactness of a computation may change greatly from
one problem to another. For certain rough technical computations, two
or three decimal places will be sufficiently exact. Most engineering
computations are carried out to three or four decimal places. But con-
siderably greater exactness is often required in scientific calculations.
Generally speaking, the need for greater accuracy has increased with
the passage of time.

Particularly important, therefore, are the approximation methods and
processes that allow one to get results with as great a degree of accuracy
as desired. Such methods are called convergent. Since they are encountered
most often in practice and since the requirements they must satisfy are
typical, we will keep them in mind in what follows.

Let x be the exact value of a desired quantity. For every such method
we may construct a sequence of approximations, x; , x5, ***, X, , =~ to the
solution x.

After showing how the approximations are constructed, the first
problem in the theory of the method is to establish the convergence of
the approximations to the solution x, — x, and if the method is not
always convergent, to set out the conditions under which it will converge.

After the convergence is established there arises the more difficult and
subtle problem of an estimate of the rapidity of convergence, i.e., an
estimate of how rapidly x, converges to the solution x for n — 0. Every
convergent method theoretically guarantees the possibility of finding the
solution with any desired degree of accuracy, if we take an approximation
x, with sufficiently large index n. But, as a rule, the larger the n, the
greater the labor required to calculate x, . Thus, if x, converges slowly
to x, then to get the needed accuracy it may be necessary to make
enormous computations.

In mathematics itself, and especially in its applications, many cases
are known of a convergent process for finding the solution x, which would
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require more computational work than can be carried out even on present-
day high-speed computers. *

Insufficiently fast convergence is one of the criteria by which the
disadvantages of a given method are judged. But this criterion is, of
course, not the only one and in comparing methods one must consider
many other sides of the question, in particular the convenience of making
the computations on machines. Of two methods we sometimes prefer
to use the one with somewhat slower convergence, if the computations
by this method are easier to carry out on a computing machine.

The error produced by replacing x with its approximate value x, is
equal to the difference x — x,, . Its exact value is unknown, and in order
to estimate the rapidity of convergence, we must find an upper bound
for the absolute value of this difference, i.e., a quantity A4, , such that

|x_xﬂ| ‘~<-An)

which we call an error estimate. Later we give examples of estimates A,, .
Consequently, the usual method of judging the rapidity of convergence
of a method is to examine how fast the estimate A, decreases with
increasing n. In order that the estimate reflects the actual degree of
nearness of x, to x, it is necessary that A4, differ little from | x — x,, |. Also
the estimate A4, must be effective, i.e., be such that it can itself be found,
otherwise it cannot be used.

Let x be a numerical variable whose value we wish to determine from
some equation. We assume that our equation reduces to the form

x = ¢(x). (8)

* et us mention some simple examples of slowly converging computational processes.
It is known that the series

1 2t37at"

converges to the natural logarithm of the number 2, We can find In 2 approximately
by means of this series, by computing the sum
(| 1

ST TR,
of the first n terms for sufficiently large n. But it may be shown that to compute In 2
with an error less than half of the fifth significant figure, we must take more than
100,000 terms of the series. To find the sum of such a number of terms, if we are using,
for example, only a desk computer, would be very laborious. Another familiar example
is the series

i1 | +I-3 135 1+3+5-7
Vi 29 232! 2¢ - 3! 24+ 4t

Its convergence is so slow that to compute 1/ V'2 with accuracy of 10-%, we would need
to take about 10" terms, which is difficult even with high-speed machines.
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To this equation we apply the method of iteration, which is also often
called the method of successive approximations. To explain the method
itself and the estimates connected with it, we will examine the case of one
numerical equation, although the method also applies to systems of
numerical equations, to differential equations, integral equations, and
many other cases. The application of the method to ordinary differential
equations has already been illustrated in Chapter V, §5.

We will assume that we have somehow found an approximate value
x, for a root of the equation. If x, were an exact solution of equation (8),
then after substituting it in the right side ¢(x) of the equation we would
get a result equal to x, . But since x,, generally speaking, is not an exact
solution, the result of the substitution will differ from x,. Let us denote
it by x, = d(x,).

In order to establish in which cases x; will be nearer to the exact
solution than x,, we turn to a geometric interpretation of our problem.
Let us consider the function

y =¢(x). ©)

We choose a numerical axis and represent the numbers x and y by points
of this axis. Equation (9) assigns to every point x a corresponding point y
on the same axis. It may be regarded as a rule that produces a point
transformation of the numerical axis into itself.

Consider the segment [x;, x,] on the numerical axis. By the trans-
formation (9) the points x, and x; will be transformed into the points

» =¢(x;) and y, = ¢(x,).

The segment [x, , x,] is transformed into the segment [y, , y,]. The ratio

k = |J’3_J’1|
[ Xg — xq |

is called the *“‘coefficient of dilation” of the segment under the trans-
formation. If k < 1, we will have a contraction of the segment.

We return to equation (8). It says that the desired point x must be
transformed into itself under the transformation (9). Thus solving equation
(8) is equivalent to finding a point on the numerical axis which is trans-
formed into itself under the transformation (9), i.e., remains fixed.

We now consider the segment [x, x,], one end of which lies at the
fixed point x and the other at the point x, . Under the given transformation
X, goes into x, and the segment [x, x,] into the segment [x, x,]. If the
function ¢ has the property that under transformation (9) every segment
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is contracted, then x; will certainly be closer than x, to the root of
equation (8).

Since we wish to obtain approximations which converge to the exact
solution of (8), we make the same transformation many times in succession
on the right side of (8) and construct the sequence of numbers

Xy = #xo)' Xy = ¢(I1), Uy Xptr T ‘ﬁ(xﬂ)ﬁ hee (10)

Here we will prove that the sequence of approximations (10) converges.*

Let us assume that the function ¢(x) is defined on a certain segment
[a, b] and that equation (9) gives a transformation of [a, b] into itself,
i.e., for every x belonging to [a, b], ¥y = ¢(x) will also belong to [a, b].
We will also assume that the initial approximation x, is in [a, b]; all the
successive approximations (10) will then also lie in [a, b]. Under these
conditions the following theorem is true. If ¢(x) has a derivative ¢’
satisfying the condition

¢l <gq <1

on [a, b], then the following proposition holds. Equation (8) has a root x*

in the segment [q, b]. The sequence (10) converges to this root, and the
rapidity of convergence is characterized by the estimate

m

x*—x,| <
| I'll""~--.l_qI

9%

where m = | xo —d(x,)| = | x,— x; |. Equation (8) has a unique root
in [a, b).

To prove these statements, we estimate the difference x, — x,. If
Taylor’s formula is applicable (Chapter II, §9, (26)), we obtain, forn = 0

Xg— Xy = ‘ib(xl) —d(x,) = ‘f”(fo)(xl — Xo)-

Then £, lies between x; and x, and so belongs to the segment [a, b].
Thus |$'(€)] < ¢ and

[Xg— x| < q|x,— Xy | = mg.
Similarly

| X3 — Xa | = [$(xe) —dlxp)| = [ (E)(xe — x)| < g | X — Xp | < mg®.
Continuing these estimates, we have, for every value of n, the inequality

| Xpi1— Xn | < mg". (an

* Because of the geometric interpretation, this theorem and others like it are often
called contraction theorems.
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We now establish the convergence of the sequence x, . To this end we
consider the auxiliary series

Xo+ (% —x0) + (xa— X)) + o= + (X, — X)) + - (12)
The partial sum of the first n + | of its terms is equal to
Spp1 = Xo 4+ (ty— Xp) + 4+ (X — Xpy) = Xn©

Thus lim,,_,q S+ = lim,_, x, and the existence of a finite limit for x, is
equivalent to the convergence of the series (12). We compare the series
(12) with the series

| Xo| + m + mg + - 4 mg=t + -

From the estimate (11) the terms of the series (12) are not greater in
absolute value than the corresponding terms in the latter series. But this
series, except for its first term | x,|, is a geometric progression with
common ratio ¢, and since g < |, the series converges. Series (12) is
thus also convergent, and the sequence (10) is convergent to some finite
limit x*

lim x, = x*.

n-—reo

Obviously x* belongs to the segment [a, b], since all the x, belong to it.

If in the equation x,.; = ¢(x,) we pass to the limit as » — co, then in
the limit we get the equation x* = ¢(x*), which shows that x* actually
satisfies equation (8). We now estimate how close x,, is to x*. We choose
x, and any following approximation x,,,

| Xnip = Xn | = | Knsp — Xnipa1) + (Xnip-1 — Xnip2) + "+ Onpg — Xa) |
_~<‘_- mqn+9—l + mqﬂ+ﬂ—3 4 mqﬂ

mq’i — mq"f"‘
l—gq

Hence, for p — oo, from x,,, — x* and ¢"*? — 0 it follows that

m
] B
¥ =%l S g

It remains to prove the statement on uniqueness. Let x’ be any solution
of the equation on [a, b]. We estimate the difference x' — x*

| x'— x*| = |$(x") —p(x¥)| = [$'(E)x' — x®)| < q|x —x*|,
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from which
(I—glx"—x*| <0.

Since 1 —g > 0, this inequality is possible only for |x' —x*| = 0,
which means that x’ is identical with x*,

The theorem not only exhibits sufficient conditions for the convergence
of the method of iteration but also allows us to estimate the necessary
number of steps in the computation, i.e., how large n must be taken to
obtain the required accuracy when the exact solution x* is replaced by x,, .
Such an estimate is effective, since the quantities m and ¢ appearing in
the inequality | x* — x,, | < (m/l — ¢g)q™ may in fact be found by in-
vestigating the function ¢.

As an example let us consider the equation x = k tan x, which has
many practical applications. For definiteness, we consider the case k = 0.5.
Let it be required to find the smallest positive root of the equation
x = }tan x. It must lie near the point | and be somewhat larger than I,
as can be easily established from any table or graph of the function tan x.

To secure the condition |¢’ | < ¢ < 1, which enters into the theorem
on the convergence of the method of iteration, we invert the function tan x
and consider the equation x = arc tan 2x, which is equivalent to the
given one.

We give here the results of the computation. For the original approxi-
mation we have taken the value x, = |. The following approximations
are computed from a table of the function arc tan x, from which one
finds the following numerical values

x; = arctan2 = L.10715,
X, = arc tan 2.21430 = 1.14660,
x; = arc tan 2.29320 = 1.15959,
x, = arctan2.31918 = 1.16370,
x5 = arc tan 2.32740 = 1.16498,
Xxg = arctan 2.32996 = 1.16538,
x, = arctan 2.33076 = 1.16550,
xg = arctan 2.33100 = 1.16554,
x, = arctan 2.33108 = 1.16555,
Xy = arc tan 2.33110 = 1.16556,
Xy = arctan 2.33112 = 1.16556.

The computation may be stopped here, since further iterations will
repeat the value of the root

x* = 1.16556.
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A geometric illustration of the approximations to the root is given in
figure 1. Here x, tends to x*
so rapidly that x, is already
indistinguishable from x* in
the diagram.

Let us give one more
example of the method of
iteration. We solve numeri-
cally the integral equation

YA
yex
y=arc tan2x

] 1
w0 =g L e*)(1) dt + e
1o

6x+1

FiG. 1. Its exact solution is y = &=,

First we replace the inte-

gral equation by a system of linear algebraic equations. To this end

the interval of integration [0, 1] is divided into four equal parts at

the points r =0, 4, 4, §, |. The values of the unknown function

y at these points will be denoted by y,, 3y, ¥z, ¥3, s, Tespectively, If

we require that the equation be satisfied for x, = 0, 1, 3, 2, 1, when the

integral is replaced by Simpson’s sum for four partial intervals (Chapter
XII, §3, (6)), we have the following system of equations for y, :

N

5 T (e=1-1). (13)

¥o = 1(0.083333y, + 0.333333p, + 0.166667y,
+ 0.333333p, + 0.083333y,) + 0.713619,

y1 = 4(0.083333y, + 0.354831, -+ 0.188858),
+ 0.402077y, + 0.107002y,) + 0.951980,

¥, = £(0.083333y, + 0.377716y, + 0.214004y,
+ 0.484997y, + 0.137393y,) + 1.261867,

1(0.083333y, + 0.402077p, + 0.242499y,
+ 0.585018y; + 0.176417y,) + 1.664181,

ys = (0.083333y, + 0.428008y, + 0.274787y,
+ 0.705667y, + 0.226523y,) + 2.185861.

Vs

This system is solved by the method of iteration. As our initial approxi-
mation to y, (k = 0, 1, 2, 3, 4) we will take the constant terms of the
corresponding equations: p® = 0.713619, 3 = 0.951980, . The
values found for the successive approximations are given in Table I:
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Table 1.
Nurnl?er O_f Yo » Ya Vs Ya

Approximation
1 0.93428 | 1.20841 | 1.56129 | 2.01542 | 2.59972
2 0.98517 | 1.26699 | 1.62905 | 2.09419 | 2.69173
3 0.99667 | 1.28021 | 1.64433 | 2.11194 | 2.71245
4 0.99926 | 1.28319 | 1.64778 | 2.11595 | 2.71713
5 0.99985 | 1.28386 | 1.64856 | 2.11685 | 2.71818
6 0.99998 | 1.28402 | 1.64873 | 2.11705 | 2.71842
7 1.00001 | 1.28405 | 1.64877 | 2.11710 | 2.71847

Value of the exact
solution 1.00000 | 1.28403 | 1.64872 | 2.11700 | 2.71828

At the end of Table | the value of the exact solution is given for
comparison. Further approximations would not improve the values of y, .
The divergence in the last digits in the y, comes from the error introduced
by replacing the integral by Simpson’s sum,

Stability of approximate methods. The needs of practical computation
impose on approximative methods another general requirement that must
be kept in mind because of its great importance. This is the requirement
of the stability of the computational process. The essence of the matter
is as follows: Every approximative method leads to some computational
scheme, and it often turns out that to produce all the required numbers,
we must carry out a long series of computational steps in accordance
with the scheme. At each step the computation is not carried out exactly
but only to some specific number of significant figures, and thus at each
step we introduce a small error. All such errors will have their influence
on the final results.

The computational scheme adopted may sometimes turn out to be so
unsatisfactory that small errors made at the beginning may have a greater
and greater influence as the calculations are carried further and may
produce in the final stages a wide deviation from the exact values.

Let us consider the numerical solution of a differential equation

V' = fx,y)

with the initial condition y(x,) = y,, where we are required to find the
values of p(x) for equally spaced values x; = x, + kh (k = 0, I, *+*).

We assume that the computation has begun and has been carried out
to step n with the results shown in Table 2.
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Table 2.
x y y=f
Xo Yo Y
Xy y1 yl
Xp-1 yn—l y;‘—l
Xn Fn Vn

We must now find y,,,, . By the Euler method of broken lines we make the
approximation

Vni1 = Yu + hyn. (14)

Here y,,, is calculated only from the numbers y, and y, which occur
in the last line of Table 2. Suppose we wish to increase the accuracy
and for this purpose make use of all the quantities appearing in the last
two lines. Then we may construct the computational formula

Va1 = =40 + Syuq + h(4y; 4+ 2yn_9). (15

We note that if the computation is absolutely exact, i.e., with an infinite
number of significant digits, then formula (14) will give the exact result
whenever y is a linear polynomial, and formula (15) will be exact for
every polynomial of degree through the third. It would seem at first
glance that the results produced by applying formula (15) must be more
exact than those found by the method of broken lines. However, it can
easily be seen that formula (15) is inappropriate for computation, since
its application may produce a rapid increase in the error.

The values of the derivative y, and y,_, contain a small multiplier 4,
so that the errors in these values have less influence than the errors in y,
and y,_, . For simplicity we will assume that the values of y’ are found
exactly so that we do not need to take them into account in the following
attempt to estimate the error in general in the above two cases. Let us
suppose that in finding y,_, , we make an error of + ¢, and in finding y,
an error of — e. Then, as equation (15) shows, in y,,; we will make an
error of the magnitude of + 9e. In y,,, the error will be — 4le and will
grow rapidly as we continue. Formula (15) leads to a computational
process that is unstable with respect to errors and must be discarded.

The example given shows how badly the results may be distorted by
an unstable computational scheme. Here we have solved the differential
equation y' = y with the initial condition y, = 1. The exact solution is
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y + € For the numerical solution we took equally spaced values of the
independent variable x with steps & = 0,01, i.e., x, = 0.0l k. An approxi-
mate solution was computed in two ways: by the method of broken lines
(14) and by formula (15). For comparison, Table 3 gives the value of
the exact solution to seven decimal places.

The approximate values of the solution found by formula (15) are more
exact for the first few steps than the results given by the method of broken
lines. But after a small number of steps the instability of formula (15)
begins to distort the approximate values of y, quite strongly and leads
to numbers which are very different from the true values of y, .

Table 3.
Values of the
| Values Approximation Solutions Computed
x of the
Exact Solution by Formula (14) by Formula (15)
0.00 1.0000000 1.0000000 1.0000000
0.01 1.0100502 1.0100000 1.0100502
0.02 1.0202013 i 1.0201000 1.0202012
0.03 1.0304545 1.0303010 1.0304553
0.04 1.0408108 1.0406040 1.0408070
0.05 : 1.0512711 1.0510100 1.0512899
0.06 : 1.0618365 1.0615201 1.0617431
0.07 1.0725082 1.0721353 1.0729726
0.08 1.0832871 1.0828567 1.0809789
0.09 1.0941743 ) 1.0936853 1.1056460
0.10 1.1051709 : 1.1046222 1.0481559
0.11 1.1162781 i 1.1156684 1.3996456
0.12 1.1274969 i 1.1268250 —0.2808540

Choice of computational methods. Every computation may in the
final analysis be reduced to the four arithmetic operations of addition,
subtraction, multiplication, and division. Describing a method of computa-
tion consists of stating the initial data with which one begins and then
prescribing which arithmetical operations, and in which order, are to be
performed in order to get the desired results. Let us show by a very
simple example how much depends in the organization of the calculations
on the experience and knowledge of the mathematician responsible for
setting up the computational scheme and what excellent results can be
obtained by a suitable choice of methods especially adapted to the
situation.
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Let it be required to solve the system of n equations in n unknowns
X5 Xy "t Xp
apXy + QX + 0+ QX = by,
AgiXy + GgeXy + ** + GgnXy = by,
Xy + AuoXy + *** + AupXn = bn .

From the theory of algebraic systems (Chapter XVI, §3) we have an explicit
expression for the values of the unknowns by means of determinants

Y| ;
Xy = j (f =12, n). (16)

Here 4 is the determinant of the system
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and 4; is the determinant obtained from 4 by replacing its jth column
by the column of constant terms in the system.

Let us assume that we wish to make use of formula (16) to solve the
system and that we have begun to compute the determinants on the basis
of their usual definition, without recourse to any simplifications. How
many multiplications and divisions will be necessary? (Addition and
subtraction will not be taken into account, since they are relatively simple
operations.) We face the prospect of computing n + | determinants of
order n. Each of them consists of n! terms, each term being the product
of n factors and consequently requiring » — | multiplications. For the
computation of all the determinants, we must carry out (n + 1) n!
X (n— 1) multiplications. The total number of multiplications and
divisions will be equal to (n* — 1) n! + n.

We now choose another method of solving the system, namely successive
elimination of the unknowns. The scheme of computation corresponding
to this method is associated with the name of Gauss. We find x, from
the first equation of the system

b Gy Qin

xl = _—_'X2_ e ——x,,.
ay ay ay

For this we need » divisions. Substituting x, in each of the following n — 1
equations requires n multiplications. The elimination of x, and the setting
up of n— 1 equations in the unknowns x,, -*-, x, will then require n?
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multiplications and divisions. Continuing in this way, we find that to
compute all the values of x; (j = 1, -*-, n) the elimination method requires
n/6 (2n* + 9n — 5) multiplications and divisions. Let us compare these
two results. For the solution of a system of five equations in the first
case we would need 2,885 multiplications and divisions, and in the second
case 75.

For a system of ten equations the number of operations will be
(10*— 1) 10! + 10 ~ 360,000,000 and 10/6 (2 - 10* + 9 - 10 — 5) = 475,
respectively, So we see that the amount of computational labor depends
very strongly on the choice of the method of computing. In organizing
the scheme of computation, it is often possible by a rational choice of
the method to reduce the necessary amount of work very greatly.

§2. The Simplest Auxiliary Means of Computation*

Tables. The oldest auxiliary means of computation consists of tables.
The simplest tables, e.g. the multiplication table and tables of logarithms
or of the trigonometric functions, are certainly well known to the reader.
The range of problems that are solvable in practical affairs is being
continuously extended. New problems are often solved by the application
of new formulas or may lead to new functions, so that the number of
tables required is constantly increasing.

Every table, regardless of how it is constructed, contains the results of
earlier computations and therefore represents a sort of mathematical
memory. Printed or written tables are intended to be read by human
beings. But we might also consider tables formed in some special manner,
for example by holes punched in some special manner in cards, which
are intended to be read by computing machines. But such tables are
considerably rare and we will not discuss them here.

The tables in widest use are those of the values of functions. If a function
y depends on only one argument x, then the simplest table corresponding
to it has the form

x Y
Xy M1
Xa Y {an
Xn Ya

* In this section we give a description only of the simplest auxiliary equipment and
machines. The description of contemporary rapid computing machines is given in
Chapter XIV. For lack of space we have also omitted graphical methods.
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This is called a single-entry table.* From it we may take without further
effort only the values corresponding to tabulated values of x. Values
corresponding to x not in the table must be found by interpolation of
various kinds, as described in Chapter XIL.t Consequently the tables
often contain, in addition to the values of the functions, certain auxiliary
quantities which make the interpolation easier. Usually these are values
of the first or second differences. More specialized tables require specially
devised interpolation formulas for which they include the corresponding
data.

In a table of a function of two arguments u = f(x, y) the values of the
function are distributed in 2 double-entry table of the following form

y
b2 Ya Ym
X
X Uy, Uy e Uim
Xg Ugy Uge “an Ugm (17')
X Uy Upg I b Uy

Each column of such a table is itself a single-entry table, so that (17"
is a collection of many tables of the form (17). The size of a table for a
function of two arguments is, as a rule, much greater than for a function
of one argument with the same interval for the independent variables.
In view of this, functions of two arguments are much less often tabulated
than functions of one argument.

How quickly the size of a table can grow with an increase in the number
of arguments is shown by the following simple example. Let it be required
to tabulate a function of four arguments f(x, y, z, £) for 100 values of each
of the arguments. Let us assume that the function does not need to be
computed very exactly, only to three significant figures. If under such
conditions we tabulate a function of one argument, the whole table of
values will consist of a hundred three-digit numbers and may easily be
put on one page.

* Such a column may be very long and may therefore be broken up into many smaller
columns for convenience of printing. But of course it is still called a single-entry table.

t Interpolation, as a rule, is more complicated if the tabulated values x; are farther
apart and simpler if they are closer together. Moreover, the requirement concerning
rapidity of interpolation may vary widely. In tables designed for artillery use, inter-
polation must be done almost instantly, ““at sight.” But in tables of higher accuracy,
designed for use in the sciences, we may allow interpolations which require a whole
series of operations.
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But in a four-entry table for the function f(x, y, z, 1), we will have
100* combinations of the values of x, y, z, r and as many values of f,
from which it is easy to calculate that the table would fill more than 300
volumes.

Because such tables are so unwieldy, functions of many arguments are
seldom tabulated and then only in particularly simple cases. In the last
few years there has begun a systematic study of classes of functions of
many variables for which tables may be formed with a number of entries
less than the number of arguments. At the same time studies have been
begun on the simplest possible construction of such tables.

We give a simple example of such a function.

Let it be required to tabulate the function « of three arguments x, y, z
with the following structure

u = fl$(x, y), z].

It is perfectly clear that here one may restrict oneself to two double-
entry tables if we introduce the auxiliary variable ¢t = ¢(x, y) and consider
u as the composite function

u = f(, 2),
t= ¢(x: J")‘

For convenience in the use of these tables, we may combine them in
the following manner. We consider the function ¢ = ¢(x, y) and solve
this equation with respect to y

y = (b(x, !‘).

In theory it makes no difference which of the functions 1 = ¢(x, y) or
y = D(x, 1) is tabulated, but it will be more convenient for us to tabulate
the second of them. We construct two double-entry tables for the functions
y = @D(x, 1) and u = f{(t, z) and combine them in the manner shown in
Table 4.

Table 4.

I
fy
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The value of u which corresponds to given values x;, y;, z, is
found as follows: We find the column headed by x;, and running
down it, pick out the value y, (or one near it). In the horizontal
row through it will be the corresponding value of r. Moving further
along this horizontal row we find in column z, the required value
u = flx;, ¥, 2e)

In this example we see that, rather than make a triple-entry table, we
may restrict ourselves to two double-entry tables with a simple rule for
operating with them.

The use of various possible methods of shortening tables allows us in
certain cases to decrease the size of the tables by a factor of ten, a hundred,
or even a thousand in comparison with tables in which the number of
entries is equal to the number of independent arguments.

Desk computers. Almost as old as tables as an aid to computation
are various computing devices. Some of them were used even in ancient
Greece.

The first models of calculating machines were constructed in the 17th
century by Pascal, Moreland, and Leibnitz. From that time on the
machines were repeatedly changed and improved and were in wide use
by the end of the last century and especially at the beginning of the
present one.

We will only look at certain forms of machines and will consider the
possibility of speeding up the computations which they perform. We begin
with the small, so-called universal desk computers. Each of these, in-
dependently of its construction, is designed to perform the four arithmetic
operations, with multiplication and division being done by repeated
series of additions and subtractions.

A typical early model of such a machine is the wheeled arithmometer
of Odner. Entering a2 number into the adjustable mechanism is accom-
plished by moving a lever the necessary number of notches corresponding
to each digit of the number. In the process of addition each summand
is entered into the adjustable mechanism and then, by one rotation of
the handle, is transferred to the accumulator, where it is automatically
added to the number already there. Subtraction corresponds to a rotation
of the handle in the opposite direction. Multiplication is carried out by
entering the multiplicand into the adjustable mechanism and then repeated-
ly adding it to itself for each digit of the multiplier. For example, to
multiply by 45 corresponds to five repeated additions of the multiplicand
and then four repeated additions of the same number moved over one
place.

For division the dividend is placed in the accumulator and the quotient
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is found by repeated subtraction of the divisor, digit by digit. The result
is determined by the number of rotations of the handle needed in each
digit place to remove the number from the accumulator.

We have given this brief description of the computations here only in
order to make clear the direction of further improvements in desk
calculators. Some of these improvements have merely made the machines
more convenient without changing the basic scheme of their construction.
An improvement of this kind is the introduction of electricity, which
accelerates the action of the machine and frees the operator from having
to turn the handle.

To accelerate and simplify the entering of numbers into the adjusting
mechanism, keys for receiving instructions were introduced. The entering
of given digits is carried out, not by rotating a lever for the specific number
of notches, but simply by punching the corresponding key. Calculators
were invented on which it is sufficient for the operator to enter the number
on which it is desired to perform a given operation and then to punch
the key which tells which of the four operations is to be performed.
The machine will carry on from there without further human intervention.
The improvement of desk computers also brought about a remarkable
increase in their rapidity, so that in the latest models the result of a mul-
tiplication is obtained within one second after punching the keys. Further
acceleration in the action of such machines is obviously superfluous,
since it takes considerably longer than that for the operator merely to
punch the keys and record the results.

Digital (punched card) machines and relay machines. Digital machines
were invented for statistical computations and for financial and industrial
use. They are designed to carry out a large number of uncomplicated
computations of the same kind. They are less convenient for technical
and scientific calculations because of their very small operating “memory”
and the restricted possibility of establishing computational programs for
them. In spite of these deficiencies, digital machines, up to the appearance
of fast-acting electronic machines, were quite widely used in complicated
and large-scale calculations when the whole process could be reduced to
a fairly short sequence of operations to be carried out on a massive scale
(for example, in preparing tables).

The numbers with which the digital machine operates are entered on
punched cards (figure 2). The digits and symbols are entered on the card
by means of a punch in specific places. The card is introduced into the
machine through a system of brushes. A brush under which a hole is
passing closes an electrical circuit and sets in operation a given phase
of the machine.
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The different types of digital machines are designed to work in sets,
each set containing at least the following machines:

A card-punch serves to punch the holes in the cards. The machine has
a keyboard operated by hand and works at the speed of a typewriter.

A sorter is designed to arrange the cards in the order in which they are
to be introduced into the calculating machines. The speed of the work is
450-650 cards per minute.

A reproducing punch or reproducer transfers punches from one card to
another, compares two sets of cards, and selects from them cards with
specific perforations. The speed of working is around 100 cards per
minute.

A tabulator performs the operations of addition and subtraction and
also prints out the results. It may handle 6,000 to 9,000 cards an hour.

A multiplying punch (multiplier) adds, subtracts, and multiplies numbers.
The results are given in the form of punches on the cards. In working
with numbers of 6 or 7 digits it may perform 700-1,000 multiplications
an hour.

Digital machines work rather slowly. As a rough estimate of the amount
of work they can perform, we may say that the above set of machines
can replace 12 to 18 desk computers. The first attempts to create faster
machines led to the construction of relay machines based on the application
of electromechanical relays. The rate of work of such machines turned
out to be about ten times as great as the speed of the simple digital
machines. But the gains in other respects were remarkable: Relay machines
carry out complicated computational programs and have a flexible control
system that greatly extended the range of technical and scientific problems
solvable on machines. However, the appearance of these machines almost
coincided in time with the creation of the first models of electronic
machines with programmed control, and these led to a further sharp
increase in the working speed. As an indication of the great increases
in speed which have been made possible by the invention of electronic
machines, we may point out that the time required for a change of state
in an electronic tube is measured in millionths of a second.

Mathematical machines with continuous action (analogue machines).
Mathematical machines with continuous action are made up of physical
systems (mechanical apparatus, electrical circuits, and so forth), con-
structed in such a manper that the same numerical interrelations occur
among the continuously changing parameters of the system (displacements,
.angles of rotation, currents, voltages, and so forth) as among the cor-
responding magnitudes in the mathematical problem to be solved. Such
machines are often called simulating (or analogue) machines.
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Every machine with continuous action is especially designed for the
solution of some narrow class of problems.

The accuracy with which the machine gives the solution depends on
the quality of manufacture of the component parts, the assembling and
calibration of the machine, the inertial errors in its operation, and so
forth. On the basis of lengthy experience in using the machines, it has
been established that as a rule they are capable of an accuracy of two
or three significant digits. In this respect simulating machines are notably
inferior to digital machines, whose accuracy is theoretically unlimited.

An important characteristic of machines with continuous action is that
they are suitable for the solution of a large number of problems of one
type. In addition, they often produce the solution with considerably
greater rapidity than a digital machine. Their principal advantage consists
of the fact that in many cases it is more convenient to introduce the initial
data of the problem into them, and also the results are often obtained
in a more convenient form.

There are many different types of simulating machines. It is possible
to create machines, or parts of machines, that are models of various
mathematical operations: addition, multiplication, integration, differentia-
tion, and so forth. We may also simulate various formulas used in
computation; for example, we can construct machines to compute the
values of polynomials or the Fourier coefficients in harmonic analysis
of functions. We may also simulate numerical or functional equations.
The many analogies that exist between problems from completely different
branches of science lead to the same differential equations. Identity of
the equations involved allows us for example, to simulate heat phenomena
by electrical means and to solve problems in heat engineering by means
of electrical measurements, a procedure that is certainly convenient, since
electrical measurements are more exact than measurements of heat and
are much easier to make.

In view of the large number of simulating machines, it is impossible
to describe in a few words the machines themselves or even the principles
of their construction. To give the reader at least some idea of how
mathematical problems may be simulated, let us give a short description
of two simple mathematical machines, one of which is designed for
integration of functions and the other for approximate solution of the
Laplace equation.

The friction integrator (figure 3) is designed, as the name indicates, to
integrate functions. It works by friction. The basic idea of its construction
is shown in figure 4, where the component 1 is the base of the integrator,
2 is a horizontal friction disc with a vertical shaft, 3 is a friction roller,
i.e., a roller with a smooth rim which can not only roll along the disc
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but also move in the plane perpendicular to the plane of rolling. Compo-
nents 4 and 5 constitute a screw mechanism in which the screw 4 is
connected with the carriage bearing the roller. If the pitch of the screw
is denoted by 4, then rotation of the screw through angle y will transfer
the roller over a distance p = hy in the plane of the drawing.

FIG. 4.

Let the shaft of the disc be rotated through angle dx. The point of
contact of the roller will then move through an arc of length p dx. If the
roller moves over the disc without slipping, the angle of rotation of the
roller will be equal to

h
= Tda = T}'dﬂ.

We assume that the rotation of the shaft of the disc began with angle o,
and the initial angle of rotation of the roller was ¢, . From this equation
we obtain by integration

b=bo=g [

By suitable choice of the relation between the angles y and «, we can
use the friction integrator to compute a desired integral in a wide variety
of cases. By means of integrating mechanisms it is possible to obtain
a mechanical solution of many differential equations.

We turn to the second example. Let a domain £2 be given in the plane,
bounded by a curve /. It is required to find a function u which inside
the domain satisfies the Laplace equation

ou 2%u
de=gm T ="
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and on the contour / takes given values
ulp =f
We introduce a square net of points
Xe=Xo+ kh, y, = yo + kh, k=0, 1,4 2, -,

and replace the domain Q itself by a polygon composed of squares.
Corresponding to the contour / we have a broken line. We transfer the
boundary values of f on [ to this broken line. The value of the unknown
function u at a node (x;, y;) is denoted by u;; . To secure an approximate
solution of the Laplace equation in {2, we replace it by an algebraic
system, which must be satisfied for all interior points of the domain:

U = ‘l(um.k + Uy a1 + Uk + Ujp—y)-

For a solution of this algebraic system, we may construct the following
electrical model. We introduce in
the plane a two-dimensional con-
duction net, the scheme of which
is illustrated in figure 5. The
resistance between two nodes is
assumed to be everywhere the
same. At the boundary nodes of
the net, we now apply voltages
equal to the boundary values of u
at these nodes. These voltages
will determine the voltage at all
interior points of the net. We
denote by U, , the voltage at
T T the node (x;,y,). If we apply
FiG. 5. Kirchhoff’s law to the node
(x5, y), it is clear that at this

node the following equation will be satisfied

1
x Uik — Usw) + (Ujka — Us)

+WUime — U + (U — U )] =0,

which differs only in notation from the previous equation for our algebraic
system. At the nodes of the net the values u;; of the solution of the algebraic
system must agree with the voltages U, , which can be obtained from
the model by the usual electrical measurements.
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ELECTRONIC
COMPUTING MACHINES

§1. Purposes and Basic Principles of the Operation of Electronic Computers

Mathematical methods are widely used in science and technology, but
the solution of many important problems involves such a large amount
of computation that with an ordinary desk calculator they are practically
unsolvable. The advent of electronic computing machines, which perform
computations with a rapidity previously unknown has completely
revolutionized the application of mathematics to the most important
problems of physics, mechanics, astronomy, chemistry, and so
forth.

A contemporary universal electronic computing machine performs
thousands and even tens of thousands of arithmetic and logical operations
in one second and takes the place of several hundred thousand human
computers. Such rapidity of computation allows us, for example, to
compute the trajectory of a flying missile more rapidly than the missile
itself flies.

In addition to their great rapidity in performing arithmetic and logical
operations, universal electronic computing machines enable us to solve
the most diverse problems on one and the same machine. These machines
represent a qualitatively new method which, besides an enormously
increased production of standard results, makes it possible to solve
problems previously considered quite inaccessible.

In many cases the computations must be carried out with great rapidity
if the results are to have any value. This is particularly obvious in the
example of predicting the weather for the following day. With hand
calculators the computations involved in a reliable weather forecast for

33
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the next day may themselves require several days, in which case they
naturally lose all practical value. The use of electronic computing
machines for this purpose makes it possible to secure the complete results
in plenty of time.

The high-speed electronic computing machine. The high-speed elec-
tronic computing machine (BESM) which was constructed in the Institute
for Exact Mechanics and Computing Technology of the Academy of
Sciences of the USSR is an example of such a machine. In one second
the machine performs between 8,000 and 10,000 arithmetic operations.
We scarcely need to remind the reader that on a desk calculator an ex-
perienced operator can carry out only about 2,000 such operations in
one working day. Consequently, the electronic computer can perform in
a few hours computations that the experienced operator could not perform
in his whole lifetime. One such machine would replace a colossal army
of tens of thousands of such operators. Merely to give them a place to
stand would take up several hundred thousand square yards.

These electronic machines have been used to solve a large number of
problems from various domains of science and technology. As a result
economies have been achieved amounting to hundreds of millions of
dollars. We give several examples.

For the international astronomical calendar the orbits of approximately
seven hundred asteriods were computed in the course of a few days,
account being taken of the influence on them of Jupiter and Saturn.
Their coordinates were determined for ten years ahead and their exact
positions were given for every forty days. Up till now such computations
would have required many months of labor by a large computing
office.

In making maps from the data provided by a geodetic survey of a
given locality, it is necessary to solve a system of algebraic equations
with a large number of unknowns. Problems with 800 equations, requiring
up to 250 million arithmetic operations, were solved on the electronic
machine in less than twenty hours.

On the same machine tables were calculated to determine the steepest
possible slope for which the banks of a canal would not crumble, and
in this way large savings of time and material were effected in the con-
struction of hydroelectric power stations. In previous attempts fifteen
human computers had worked without success for several months
in an effort to solve this problem for only one special case. On the
electronic machine the computations for ten cases took less than three
hours.

On the machine one may rapidly test many different solutions for given
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problems and choose the most appropriate. Thus one may determine,
for example, the most appropriate mechanical construction of a bridge,
the best shape for the wing of an airplane, or for the nozzle of a jet motor,
the blade of a turbine, and so forth.

The practically infinite accuracy of the computations makes it possible
to construct very rapidly all kinds of tables for the needs of science and
technology. On the BESM the construction of a table containing 50,000
values of the Fresnel integral required only one hour.

Applications of electronic computing machines to problems of logic.
In addition to handling mathematical problems, we may also solve
logical problems on an electronic computing machine; for example, we
may translate given texts from one language into another. In this case,
instead of storing numbers in the machine, we store the words and numbers
that take the place of a dictionary.

Comparing the words in the text with the words in the “dictionary,”
the machine finds the necessary words in the desired language. Then by
means of grammatical and syntactical rules, which are described in the
form of a program, the machine *“‘processes” these words, changing them
in case, number or tense, and setting them in the right order in a sentence.
The translated text is printed on paper. For a successful translation a very
large amount of painstaking work on the part of philologists and mathe-
maticians is needed to set up the programs.

Experimental dictionaries and programs for the translation of a
scientific-technical text from English into Russian were set up at the
Academy of Sciences of the USSR, and at the end of 1955 the first ex-
perimental translation was produced on the BESM machine, even though
this machine is not especially adapted for translation.

By way of experiment complicated logical problems were successfully
solved on the BESM; for example, chess problems. A complete analysis
of chess is not possible on present-day electronic machines in view of
the enormous number of possible combinations. As an approximate
method the relative values of the various pieces are estimated ; for example,
ten thousand points for the king, one hundred for the queen, fifty for a
rook. Various positional advantages are also estimated to be worth a
certain number of points; i.e.,, open files, passed pawns, and so forth.
By a series of trials the machine chooses the course of action that after
a specified number of moves produces the greatest number of points
for all possible answers on the part of the opponent. However, in view
of the enormous number of possible combinations the solution is neces-
sarily restricted to trying a comparatively small number of moves, which
excludes the study of strategic plans of play.
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Basic principles of the operation of electronic computing machines.
A present-day electronic computing machine consists of a complicated
complex of elements of elec-
tronic automation: electron
tubes, germanium crystal el-

Control Units

ements, magnetic elements,
{—T,,;,;"i photoelements,  resistors,
1 Units T 1 Atith- condensers, and other ele-
b 4 Memory| T | metic | ments of radio technology.
| Output | Unit | == | Unit Arithmetic operations are
| Units r_ T performed with colossal ra-
T [ pidity by electronic com-

puting devices, which are
Control Units assembled in the arithmetic
unit (figure 1).

But to guarantee high

Fic. 1. Diagram of the basic units of an speed for computations it is
electronic digital computer. not enough just to perform

rapid arithmetic operations

on numbers. In the machine the whole computational process must be
completely automatic. Access to the required numbers and establishment
of a specific sequence of operations on them are set up automatically.

The numbers on which the operations are to be performed and also
the results of intermediate calculations must be stored in the machine.
An entire mechanism, the so-called “memory unit” is designed for this
purpose; it allows access to any required number and also stores the
result of the computation. The capacity of the memory unit, i.e., the
number of numbers that may be stored in it, to a great extent determines
the flexibility of the machine for the solution of various problems.

In present-day electronic machines the capacity of the memory unit
is from 1,000 to 4,000 numbers.

The extraction of the required numbers from the memory unit, the
operation that must be performed on these numbers, the storing of the
result in the memory unit and the passage to the next operation are all
guided in the electronic computing machine by a control unit. After
the computing program and the initial data are introduced into the
machine the control unit guarantees the fully automatic character of the
computational process.

To introduce the initial data and the computational program into the
machine, and also to print the results on paper, is the purpose of special
input and output units.

When we are using the machine for making computations, we must




§1. PURPOSES AND BASIC PRINCIPLES OF OPERATION 335

have confidence in the correctness of the results produced; i.e., we must
have some means of checking them. Verification of the correctness of
the computations is effected either by means of special verification
mechanisms or by the usual methods of logical or mathematical verification
embodied in a special program. The simplest example of such a verification
is the “duplication check” (the so-called *‘calculation on both hands™),
which consists of computing twice and collating the results.

Before proceeding to the solution of a particular problem, we must
first of all, on the basis of the physical process under investigation, state
the problem in terms of algebraic formulas, or of differential or integral
equations, or other mathematical relations. Then by applying well-
developed methods of numerical analysis, we can almost always reduce
the solution of such a problem to a specific sequence of arithmetic
operations. In this way the most complicated problems are solved by
means of the four operations of arithmetic.

To perform any arithmetic operation by hand computation it is neces-
sary to take two numbers, perform the given arithmetic operation on
them, and write down the result produced. This result may be necessary
for further computations or may itself be the desired answer.

The same operations are also carried out in electronic computing
machines. The memory unit of the machine consists of a series of locations
or cells. The locations are all enumerated in order, and to select a number
for calculation, we must give the location in which it “is stored.”

To perform any one arithmetic operation on two numbers, we must
give the locations in the memory unit from which the two numbers are
to be taken, the operation to be performed on them, and the location
in which the result is to be placed in the memory. Such information,
presented in a specific code, is called an “instruction.”

The solution of a problem consists of performing a sequence of
instructions. These instructions constitute the program for the computation
and usually they are also stored in the memory unit.

A computing program, i.e., a set of instructions effecting the sequence
of arithmetic operations necessary for the solution of the problem, is
prepared by mathematicians in advance.

Many problems require for their solution several hundred million
arithmetic operations. So in electronic machines we use methods which
allow a comparatively small number of initial instructions to govern a
large number of arithmetic operations.

Together with the instructions governing arithmetic operations, elec-
tronic computers also provide for instructions governing logical opera-
tions; such a logical operation may consist, for example, of the comparison
of two numbers with the purpose of choosing one of two possible further
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courses for the computation, depending on which of the two numbers
is the larger.

The instructions of a program and also the initial data are written in
terms of a prearranged code. Usually the description of the instruction
is recorded on perforated cards or tape in the form of punched holes or
else on magnetic tape in the form of pulses. Then these codes are in-
troduced into the machine and placed in the memory unit, after which
the machine automatically carries out the given program.

The results of the computation are again recorded, for example in the
form of pulses on a magnetic tape. Special decoding and printing units
translate the magnetic tape code into ordinary digits and print them in
the form of a table.

The speed with which computers perform the most complicated
calculations has produced a saving of mental labor which can only be
compared with the saving in physical labor made possible by modern
machinery. Of course, an electronic machine only carries out a program
set up by its operator; it does not itself have any creative possibilities
and cannot be expected to replace a human being.

The wide use of electronic computing machines in institutes of science
and technology, in construction offices, and in planning organizations
has opened up limitless possibilities in the solution of problems in the
national economy. Engineers and mathematicians have before them
rewarding prospects for further development in the operation and con-
struction of computing machines and also in their application and
exploitation.

Electronic computing machines are powerful tools in human hands.
The significance of these machines for the national economy can hardly be
overestimated.

§2. Programming and Coding for High-Speed Electronic Machines

The basic principles of programming; 1. Euler’s method for differential
equations. For computations on electronic machines the mathematical
method selected for approximating the solution of a problem necessarily
consists of a sequence of arithmetic operations. The execution of these
operations by the machine is guaranteed by the program, which as we
have said, consists of a sequence of instructions. Of course, if we were
required to give a separate instruction for each one of the arithmetical
operations, the program would be very lengthy and even to describe it
would take about as much time as performing the operations themselves
by hand. Thus in programming we must try to make a small number of
instructions suffice for a large number of arithmetic operations.
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To clarify the structure of a sequence of instructions and the methods
of setting up a program, let us first examine the operations that must be
performed when a very simple problem is solved by hand.

We will take as an example the solution by Euler’s method of the
following differential equation of the first order with the given initial
conditions

Lay o= M
In this method the range of values of x is divided up into a sequence
of intervals of equal length 4x = h, and within each interval the derivative
dy/dx is regarded as a constant, equal to its value at the beginning of the
interval.* With these assumptions the computation for the kth interval
is given by the formulas

(%)k = Yy,
4y, = (%)x h = (ah)y:,

Vi = Vi + 4y,
Xpgr = X + h.

After carrying out the calculation for the kth interval, we go on to the
(k + Dth interval. The computation begins with the given initial values
x, and y, . The sequence of operations is shown in Table 1.

In hand computations only the first three operations are performed,
the others being understood but not written down  this is true, for example,
of the instruction to begin over again for the following interval, to end
the computation, and so forth. In machine computation all these
operations must be exactly formulated (operations 4-7). Consequently,
in the machine, in addition to the arithmetic operations, we must also
arrange in advance for the control operations (operations 4-7). The control
operations have either a completely definite character (for example,
operations 4 and 5) or a conditional character, which depends on the
result just produced (for example, operations 6 and 7). Since the last two
operations are mutually exclusive (we must perform either one or the
other of them), these two operations are combined in the machine into
one (a comparison operation), which is formulated in the following way:
“If x is less than x, , repeat the operations beginning with number I;
but if x is equal to or greater than x,, stop the computation.” In this

* In practice the solution of an ordinary differential equation is usually calculated
by a more complicated and exact formula.
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Table 1. Operations Necessary for the Solution of Equation (1) by

Euler’s Method
Number of | Quantity | Formula Computations *
the Operation | Defined

1 Ay (ah)yy (ah)(2)i-,

2 FYi-1 Ye + A)’t -1 + (1)

3 X1 Xe+ h ey + A

4 Print the value found for x,,, .

5 Print the value found for y., .

6 Repeat the computation, beginning
with operation no. 1 for the new
values of x and y.

7 When x reaches the value x,, stop
the computation.

way, the sequence of further computations depends on the magnitude of
the x already produced in the process of computing.

2. The three-address system. A glance at Table | shows that to
perform any arithmetic operation it is necessary to indicate: First, which
operation (addition, multiplication, etc.) is to be performed; second,
which numbers is it to be performed on; and third, where to put the
result, since it is to be used in further computation.

The code expressions for the numbers are stored in the memory unit
of the machine; consequently the indexes of the corresponding locations
in the memory must be given: namely, where the numbers are to be
taken from and where the result is to be placed. This leads to the most
natural “three-address system of instructions.”

In the three-address system, a specific set of locations in the code is
assigned to defining the operations; i.e., to stating which operation is
to be performed on the given two numbers (the code of operations).
The remaining locations in the instruction code are divided into three
equal groups, called “instruction addresses” (figure 2). The code in the

* The digits (with subscripts) in parentheses in the column **Computations” indicate
the operation whose result is to be used in the computation. For example, in the first
operation (the first row) we have to multiply the quantity (ah) by the quantity found
as a result of performing the second operation (the second row for the preceding interval
(2)x-1; in the second operation we have to add the quantity resulting from the opera-
tion for the preceding interval (2),-, to the quantity resulting from the first operation
for the present interval (1), . '

At the beginning of the computation the initial data x, and y, are placed in the
column “Quantity Defined” for operations 2 and 3.
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first address shows the index of the location in the memory unit from
which the first number is to be taken, the second address code is the
index of the location from which the second number is to be taken, and

Code of the

Operation 2nd Address

Ist Address 3rd Address

FiG. 2. The structure of a three-address system of instructions.

the third address code is the index of the location of the memory unit
in which the result is to be placed.

Code expressions for instructions referring to the control unit may also
be put into the three-address system. Thus, the instruction “transfer a
number to the print-out unit” must be represented in the code of operations
by the number assigned to this operation; in the first address will appear
the index of the location in the memory unit where the number to be
printed is stored and in the third address the index of the printing unit
(in the second address the code is blank). An instruction that either one
course or another is to be followed is called a “comparison instruction.”
The code of operations of such an instruction states that it is necessary
to compare two numbers, namely the ones indicated in the first and
second addresses of the instruction. If the first number is smaller than
the second, we must pass to the instruction indicated in the third address
of the comparison command. But if the first number is greater than or
equal to the second, then the given instruction consists simply of the
command to pass to the next instruction.

Instruction codes, as well as number codes, are stored in the memory
unit and follow one after the other in the order in which they are num-
bered provided there is no change indicated in the course of the
computations (for example, by a comparison operation).

Let us consider how the program will look in the previous example.
We set up the following distribution of number codes in the locations
of the memory unit:

The quantity ah is in the 11th location
The quantity 4 is in the 12th location
The quantity x, is in the 13th location
The quantity x is in the 14th location
The quantity y is in the 15th location
The operative location* is the 16th.

* A location in which intermediate values found in the course of the computation
are placed is called operative,
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Corresponding to the preceding table we get the following program
(Table 2).

Table 2. Program for the Solution of Eqnation (1) by Euler’s Method

Instruction Code
Number
of the Code of the Ist 2nd ird
Instruction | Operation | Address | Address | Address Remarks
1 M_ultiplica- 11 15 16 Ay, = (ah)y.
tion

3 Addition 14 12 14 Xps1 = Xe + h

4 Print 14 — 1 Print x,,, in the first
printing unit

5 Print 15 — 2 Print y,,, in the second
printing unit

6 Compare 14 13 1 If x < x., return to
instruction ‘no. 1; if
X > X, pass to the
following instruction,
i.e., to instruction
no. 7.

7 Stop —_ — — End of the computa-
tion.

The instruction code is placed in the memory unit (in Table 2, in the
Ist through 7th locations). In the control unit we then place the instruction
found in the first location of the memory unit. In obedience to this
instruction the number in the 1lth location is multiplied by the number
in the 15th; i.e., the quantity 4y, = (ah)y, is computed. The result is
placed in the operative 16th location. With the completion of this operation
the instruction from the next location of the memory unit, i.e., from the
second location, enters the control unit. By this instruction the quantity
Vi1 = Vi + Ay, is found, and is placed in the 15th memory location;
i.e., it replaces the previous value of y. Similarly, by the third instruction
the new value of x is found; the 4th and 5th instructions cause the printing
of the newly found values of x and y; the 6th instruction defines the
further course of the computational process. This instruction produces
a comparison of the number found in the l14th memory location with
the number in the 13th location, i.e., a comparison of the value x,,,
which has been produced with the final value x,. If x,, < x,, the
computation must be repeated for the next interval; i.e., in the given
example we must return to the first instruction. The index of this instruc-
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tion, to which we must pass if the first number is less than the second,
is shown in the third address of the comparison instruction. But if the
computation has produced a value x;,, = x, , the comparison instruction
causes passage to the next instruction, i.e., to the 7th, which stops the
computing process.

Before beginning the computation, we must introduce in the memory
unit the instruction codes (in locations 1-7), the code expressions for the
constants (locations 11-13) and also the initial data, i.e., the values
xo and y, (in locations 14 and 15).

After completion of the computation for the first interval, the l4th
and 15th memory locations will contain, in place of x, and y,, the
quantities x, and y,, i.e., the values of the variables for the beginning
of the next interval. In this manner, the computations for the next interval
will be produced by repetition of the same instruction program.

The example considered shows that, by carrying out a cyclical repetition
of a series of instructions, we may carry out a large amount of computation
with a comparatively small program. The method of cyclical repetition
of separate parts of a program is widely used in programming the solution
of problems.

3. Change of address of instructions. A second widely used method
that allows one to make essential reductions in the size of a program
consists of automatically changing the addresses of certain instructions.
To explain the essence of this method, we take the example of computation
of the values of a polynomial.

Let it be required to compute the value of the polynomial

y=ax® + ax® + ax* + a,x®* + ax* + agx +ag .

For machine computation this polynomial is more conveniently represent-
ed in the form

¥ = (((agx + a))x + a)x + az)x + a)x + ag)x + ag.

Let the values of the coefficients a, , -+ , a5 be placed in memory locations
20-26, and the value of x in the 31st location of the memory unit. The
program is very easy to construct and is given in Table 3.

As can be seen, in this program the operations of multiplication and
addition occur alternately. All the multiplication instructions, with the
exception of the Ist, are completely alike: we have to multiply the number
found in the 27th location by the number found in the 31st and put the
result in the 27th. All the addition instructions have the same 1st and
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3rd address. But the index of the location in the second address, in chang-
ing from one instruction of addition to the next, is increased each time
by one: in the second instruction the number is found in the 21st location,
in the fourth instruction in the 22nd, and so forth.

The computing program may be essentially shortened, if we arrange
for an automatic change in the indexes (giving the memory location) in
the second address of the addition instruction. The instruction codes are
stored in the corresponding locations and they may themselves be con-
sidered as certain numbers. By the addition of suitable numbers to them,
we can make an automatic change in the instruction addresses. In such
a method the program for computing the values of a polynomial will
have the form given in Table 4.

Table 4. Program for Computing a Polynomial

Instruction Code

l
Number of l T
the Instruction Code of the Ist | 2nd : 3rd
‘ Operation | Address Address i Address
1 Addition | 20 ! = 27
2 Multiplication | 27 31 27
3 Addition | 27 21 27
4 | Addition ; 3 28 3
5 Comparison ' 3 29 . 2
6 ‘ Stop : |

The first instruction serves to transfer the number from the 20th location
to the 27th in order to have the multiplication instruction in standard
form. In performing the 2nd and 3rd instructions, we get the values of
agx + a, . For further computation it is necessary as a preliminary to
change by | the second address in the addition instruction (the 3rd
instruction), and this change is made by the 4th instruction. According
to this instruction we take the number found in the 3rd location, i.e.,
the addition instruction in question (the 3rd instruction) and add to it
the quantity found in the 28th location. In order to change by | the
2nd address of the 3rd instruction, the 28th memory location must
contain the following:

Code of the Ist 2nd 3rd
Operation Address Address Address
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After performing the instruction in this way, we have put the 3rd instruc-
tion into the following form:

Code of the Ist 2nd 3rd
Operation Address Address Address
Addition 27 22 27

This new form is stored in the 3rd memory location in place of the previous
form of the addition instruction.

Having obtained this new form by the addition instruction, we may
repeat the computations, beginning with the multiplication instruction,
i.e., with the 2nd instruction. The 5th comparison serves for this purpose.
This instruction compares the newly found instruction in the 3rd location
with the quantity stored in the 29th location. In the 29th location is
stored the following:

Code of the Ist 2nd 3rd
Operation Address Address Address
Addition 27 27 27

This comparison initially tells us that the first quantity (in the third
location) is less than the second (in the 29th location), and so the process
of computation passes to the 2nd instruction, shown in the 3rd address
of the comparison instruction. Thus the multiplication instruction (the
2nd instruction) and the addition instruction (the 3rd instruction) will be
automatically repeated, and each time the number of the location in the
2nd address of the addition instruction will be changed by one (as arranged
for by the 4th instruction).

Repetition of the cycle will continue until the 2nd address of the
addition instruction (the 3rd instruction) reaches the magnitude 27,
which happens after six repetitions of the cycle. Here the 3rd instruction
will have the form:

Code of the Ist 2nd ird
Operation Address Address Address
Addition 27 27 27

i.e., the instruction code will be the same as in the 29th location. The
comparison instruction (the 5th instruction) takes note at this stage of
the equality of the quantities found in the 3rd and 29th location, so that
the process of computation passes to the next instruction, i.e., the 6th,
and herewith the computation of the polynomial is finished.
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The method of automatically changing, as part of the program itself,
the number of the location in the addresses of certain instructions is
widely applied for the solution of many different problems. Together with
the method of cyclic repetitions, it enables us to perform a very large
volume of computations with a small number of instructions.

4. The one-address system. In addition to the three-address system of
instructions that we have considered, in many machines a one-address
system is used. In a one-address system each instruction contains, in
addition to the code of operation, only one address. Performing an
arithmetic operation with two numbers and placing the result in the
memory unit calls for three instructions: The first instruction puts one
of the numbers of the memory unit into the arithmetic unit, the second
puts in the second number and performs the given operation with the
numbers, the third places the result in the memory unit. In the course
of any computation, the result produced is often used only to perform
the next following arithmetic operation. In these cases one does not
need to put the result obtained into the memory unit, and for the per-
formance of the following operation one does not need to recall the first
number. Thus the number of instructions in a program with a one-address
system is found to be roughly only twice as large as for a three-address
system. Since a one-address instruction needs a smaller number of locations
than a three-address system, the amount of space taken up in the memory
unit by the program will be about the same for both systems of instructions
(usually in a one-address system of instructions each location of the
memory unit will contain two instructions). The differences in the two
different systems of instructions must be taken into account in making
a comparison of the rapidity of working of the machines. For the same
rapidity of performing an operation, a one-address machine will perform
computations about twice as slowly as a three-address machine.

In addition to these systems, certain machines have a two-address or a
four-address system of instructions.

5. Subroutines. Usually the solution of a problem is carried out in
several stages. Many of these stages are common to a series of problems.
Examples of such stages are: computing the value of an elementary
function for a given argument, or determining the definite integral of a
function already computed.

Naturally it is desirable for such typical stages to have standard
subroutines worked out once and for all. If in the course of the solution
of a problem we are required to carry out standard computations, we
should transfer the computation at the appropriate moment to one of
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the standard subroutines. Then at the end of the computations involved
in the subroutine, it is necessary to return to the basic program at the
place where it was interrupted.

The existence of standard programs makes the task of the programmer
considerably easier. With a library of such subroutines, recorded either
on punched cards or on magnetic tape, the programming of many
problems consists simply of setting up some short parts of the basic
program linking together a sequence of standard subroutines.

6. Verification of results. On electronic computing machines problems
are solved that require several million arithmetic operations. An error in
even one of the operations may lead to incorrect results. Of course, it is
practically impossible to set up a check system by hand over such a large
number of computations. Thus the checks and verifications must be
carried out by the machine itself. Apparatus exists that will verify the
correctness of the machine’s operations and bring it to an automatic
stop if an error is discovered. However, this apparatus involves a con-
siderable increase in the size and complexity of the machine and usually
does not act on all its parts. More promising are the methods of verification
that are included in advance in the program itself.

One such method of verification consists simply of repetition of the
computation, as is so common in hand computation under the name of
“duplication check.” If an independent repetition of the computation
produces the same results, we may be sure that there are no random
errors but this method will naturally fail to reveal the presence of sys-
tematic errors. To exclude the latter we must carry out in advance some
control computations with previously known answers, and these computa-
tions must involve all parts of the machine. Correctness of the results
produced in the control computations serves to guarantee the absence of
systematic errors.

In addition to this “duplication check,”” we may apply more complicated
methods of verification, depending on the type of problem. For example,
in calculating the trajectory of a projectile, we may first solve the system
of differential equations for the two components of the velocity and then
subsequently solve the single differential equation for the total velocity
and at each step of the integration verify the formula:

I 2
vt =0l ol

For the solution of ordinary differential equations, in addition to the
computation with steps of integration s, we may carry out a second
computation with steps k/2. This will not only guarantee the absence of
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random errors in the computation but also will give an estimate of the
validity of the choice of step size. In computing a table by a recurrence
formula, we may sometimes compute certain key values by other methods.
A correct result for the key values is a sufficient guarantee of the correct-
ness of all intermediate values. In some cases verification may consist
of noting the differences between the results produced.

In constructing a program it is necessary to provide in advance for
some form of logical verification of the results obtained.

Coding of numbers and instructions. Numbers and instructions are
placed in machines in the form of codes. In most cases the binary system
of notation is used instead of the ordinary decimal system.

In the decimal system the number 10 is taken as the base. The digits
in each position may take one of the ten values from 0 through 9. The
unit in each successive position is ten times as large as the unit in the
preceding position. Consequently, an integer in the decimal system may be
written

Nip = kpl0® + k100 + ko102 + -+ + £, 107,
where kg, k,, -+, k, may take the values from O through 9.
In the binary system the number 2 is taken as the base. The digits in
each position may take only the two values 0 and 1. A unit in each

successive position is twice as large as a unit in the preceding position.
Consequently, an integer in the binary system may be written

Ny = kg2° + Kk 20 + -+ + k22,
where kg4, k,, *+*, k, may take the values 0 or 1.

The first few natural numbers in the binary and the decimal system
are written,

Binary system 0 [ 10 11 100 101 110 111 1000 1001 1010 101l etc.

Decimal system0 1 2 3 4 5 6 7 8 9 10 11 etc.

A noninteger is written analogously in terms of negative powers of the
base. For example, 33 is written in the binary system as

11.001.

The transfer of numbers from one system of notation to another
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involves specific arithmetic operations that are usually carried out in the
electronic computing machine itself by special programs.

Arithmetic operations on numbers in the binary system are carried out
in exactly the same way as in the decimal system. Here the addition of
two units in any position produces zero in the given position and carries
one to the following position. For example,

1010 + 111 = 10001.

Multiplication and division in the binary system are simpler than in the
decimal system, since the multiplication table is replaced by the rules
for multiplying by 0 and 1. For example,

1010 (10)
x 101 (5)
1010
0000
1010

110010 (50)

The choice of the binary system of notation in the majority of electronic
computing machines is because the arithmetic unit is thereby greatly
simplified (generally at the expense of brevity in the operations of mul-
tiplication and division) and also the digits in each position are con-
veniently represented, for example, by open or closed relays, the presence
or absence of a signal in a circuit, and so forth (in the binary system
the digits in each position can only have the two values: 0 or 1).

Every digit of a2 binary number may be represented in the form of the
presence or absence of a signal in its circuit, or in the state of a relay.
In this case it is necessary that every digit have its own circuit or relay
(figure 3) and the number of such circuits will be equal to the number
of digits (parallel system). A binary number may also be represented in
the form of a time-pulse code. In this case each digit of a number is
represented at specific intervals of time on one circuit (series system).
The time intervals for each digit are created by synchronizing pulses,
common to the entire machine.

Corresponding to these two principles, the methods of coding a number
for an electronic computing machine fall into two categories: one for a
machine with parallel operation and the other for a machine with series
operation. In a machine with parallel operation all the digits of a number
are transmitted at the same time and each digit requires its own circuit.



§2. PROGRAMMING AND CODING 349

In a machine with series operation the number is transmitted by one
circuit, but the time of the

transmission is proportional to __A_

the number of digits. Thus

machines with parallel opera-
tion are faster than machines  ———————  The number 10010111

with series operation, but they A
also require more apparatus.
Every electronic computing
machine has a specific number _A—
of places for digits. All numbers ﬁ
to be dealt with in a computa- ﬁ
tion must be included in that
number of places, and the posi- (a)

tion of the decimal point,
separating the integer part from

the fractional, must naturally A A A A A

be included. !
In certain machines the posi-

tion of the decimal point is A A A A A A A A 2

rigidly fixed; these are the so- b

called “fixed-point” machines. Fig. 3. Code systems:

Usually the decimal point is (a) parallel; (b) series;

put before the first place; i.e., (1 is the code; 2 is the synchronizing pulse)
all the numbers for the com-

putation must be less than one, which is guaranteed by the choice of a
suitable scale. For complicated computations it is difficult to determine
in advance the range of the results to be expected, and thus we have
to choose the scale so as to have something in reserve, a procedure which
lowers the accuracy, or else we must arrange in the program itself for
an automatic change of scale, which complicates the programming.

In certain machines the position of the decimal point is indicated for
each number; these are machines which keep track of the exponents and
they are usually called “floating-point’” machines. Indicating the position
of the decimal point is equivalent to representing the number in the form
of its sequence of digits and its exponent, i.e.,

N, = 2PN, in the binary system.

Thus the number 97.35 may be represented as 102 - 0.9735. To represent
the number in a machine we must indicate both its exponent (p or k)



350 XIV. ELECTRONIC COMPUTING MACHINES

and its sequence of digits. Thus all the digits in the number are made
use of independently of its size; i.e., every number is represented by its
entire set of significant digits with the same relative error. This increases
the accuracy of the computation, especially for multiplication, so that
in most cases one can dispense with a special choice of scale.

Increased accuracy and simplified programming in the floating-point
machines are attained at the expense of some complication in the arith-
metic unit, particularly in the operations of addition and subtraction.
Since numbers may initially have different exponents, it is necessary to
provide them with the same exponents before adding or subtracting them,
in which process the final digits of the smaller number are discarded, thus:

102 - 0.7587 + 10° - 0.3743 = 10% - 0.7587 + 10? - 0.0037 = 10° - 0.7624.

The code for a number in the binary system for a fixed-point machine
consists simply of its sequences of digits (the number is assumed to be
less than one); for example:

27
.00110110000000 = 128"

In floating-point machines a specific part of the code describes the
exponent, which is also coded in the binary system. An example of the
way in which a number is expressed in such a code is

3 27
t=2-= .11011000000.
64 2 0011.11011

In addition, it is customary to reserve two places for the algebraic sign
(for example, “+” in the form 0 or “—" in the form 1), one for the sign
of the exponent and one for the sign of the number itself.

Instructions are coded the same way as numbers are, a specific part
of the code being allotted to expressing the index (in the binary system)
of the operation and another to the indexes of the memory location of
each address.

§3. Technical Principles of the Various Units of a
High-Speed Computing Machine

The order of performing the operations in electronic computing machines.
The performance of each arithmetic operation in a machine in accordance
with a given list of instructions may be reduced to the following successive
steps (it is understood that we are talking about a three-address system
of instructions).
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|. Transfer of the first number from the memory unit to the arithmetic
unit (the location of this number in the memory unit is given in the first
address of the instruction code).

2. Transfer of the second number from the memory unit to the arith-
metic unit (its location is given in the second address of the instruction
code).

3. Performance by the arithmetic unit of the given operation on these
numbers in accordance with the operation code.

4. Transfer of the result from the arithmetic unit to the corresponding
location in the memory unit (the index of this location is given in the
third address of the instruction code).

5. Selection from the memory unit of the next instruction, whereupon
the machine begins to carry out the next operation.

In the machine the instruction code is accepted in the “instruction
memory block™ (IMB, figure 4). An electronic commutator (EC) trans-
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Fig. 4. Structural diagram of an electronic digital computer.

forms the binary number of the operation code into an activating voltage
in one of its output circuits corresponding to the given arithmetic oper-
ation. This voltage through the control unit (CU) prepares the circuits of
the machine to perform the required operation.

In order to select the first number, the first address code of the instruc-
tion (Al), is transferred via the address code bus bars (ACBB) from the
instruction memory block (IMB) to the control memory block (CMB).
The signal for the transfer of this code is given by the control unit (CU)
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of the machine. From the location the memory unit (MU) which cor-
responds to the code number transmitted the first number is selected and
via the code bus bars (CBB) is placed in the arithmetic unit (AU). The
opening of the input circuits in the arithmetic unit is effected by a cor-
responding signal from the control unit (CU) of the machine.

The second number is selected in a similar manner. A signal from the
control unit (CU) of the machine transfers the code of the second instruc-
tion address (A2) from the instruction memory block (IMB) to the
control memory block (CMB). The second number, taken in this way
from the memory unit (MU), is transferred via the code bus bars (CBB)
into the arithmetic unit (AU).

The arithmetic unit (A U) performs the given operation with the numbers
in accordance with the operation code inserted in it previously.

In order to effect the transfer of the result thus obtained into the
memory unit the third address code of the instruction (A3) is transferred
via the address code bus bars (ACBB) from the instruction memory
block (IMB) to the control memory block (CMB). The signal for the
transfer of this code is given by the control unit (CU) of the machine.
The memory location corresponding to the number thus obtained is then
selected and its input circuits are opened. The rules for the selection or
insertion of numbers are given by signals from the control unit (CU) of
the machine. The signal from the control unit (CU) of the machine
transfers the result obtained from the arithmetic unit (AU) to the code
bus bars (CBB), via which the number is placed in the chosen location
of the memory unit.

The instruction control block (ICB) is provided for the selection of the
instructions. In this block is given the number of the chosen instruction.
Usually the instructions go in numerical order so that, to give the number
of the following instruction, it is necessary that the number found in the
instruction control block (ICB) be increased by one. This is done by the
control unit of the machine (circuit + 1). The instructions are stored in
the memory unit. For selection of the next instruction the newly obtained
number is transferred via the address code bus bars (ACBB) from the
instruction control block (ICB) to the control memory block (CMB).
The signal for this transfer comes from the control unit of the machine
(CU). The new instruction taken from the memory unit (MU) is transferred
via the code bus bars (CBB) into the instruction memory block (IMB),
the output circuits of which are opened by a signal from the control
block of the machine. This concludes one cycle of the operation of the
machine. In the next cycle the machine performs the newly received
instructions. The normal succession of instructions in numerical order
may be altered by performing a control operation; for example, a com-
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parison instruction. This instruction does not call for any arithmetic
operation but specifies the course of the computational process. If the
first number is less than the second, then it is necessary to go over to the
instruction whose number is shown in the third address. But if the first
number is greater than or equal to the second, then we pass on to the
next instruction.

In transferring the comparison instruction code to the instruction
memory block (IMB) an electronic commutator (EC) transforms the
binary number of the operation code to an activating voltage in that one
of its output circuits which corresponds to this operation. This voltage
prepares the circuits of the machine for performing the operation of
comparison.

The selection from the memory unit of the two numbers whose locations
are given in the first and second addresses of the comparison instruction
is carried out in exactly the same way as an arithmetic operation. The
comparison of the numbers in the arithmetic unit (AU) may be carried
out by subtracting the second number from the first. Depending on the
sign of the result the control unit (CU) either transfers the code number
of the next command from the third address (A3) via the address code bus
bar (ACBB) to the instruction control block (ICB), or adds one to the
number which is found in this block (circuit + 1), exactly as in performing
an arithmetic operation. After the number of the next command has been
placed in the instruction control block (ICB), its selection from the
memory unit is effected in the same way as in an arithmetic operation.

The arithmetic unit and the control unit. Electronic computing ma-
chines make use of present-day devices for electronic automatization.
Basically the units of the machine work on the crude principle of *“yes”
or “no”; i.e., essentially there either is a signal or the signal is absent.
Consequently, we may vary the parameters of an electronic circuit rather
widely without affecting the operation of the machine.

One of the most widely used elements applied in electronic machines
is the flip-flop or trigger cell. The simplest flip-flop (figure 5) consists of
two amplifiers with plate resistors R, , connected by the divider resistors
R, and R, . The bias established (Og) is chosen so that one of the tubes
operates and the other does not. Since the two halves of the circuit are
symmetric, either tube may be closed; i.e., the circuit has two stable
positions of equilibrium. In fact, if the left tube is closed, and the right
one is open, then on the plate of the left tube (O,) there will be a high
voltage, and on the plate of the right tube (O,) a low voltage (because
of the voltage drop on the plate resistance R, from the current through
the tube. These voltages are transferred through the divider resistors R,
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and R, to the grids of the opposite tube, and consequently there will be
a small voltage on the grid of the left tube and a high voltage on the gnd
of the right tube. With a proper choice of the parameters of the circuit,
these grid voltages will keep the tubes in the given state.

Fig. 5. The circuit of a flip-flop.

Similarly, if the left tube is open and the right one closed, there will be
low voltages on the plate of the left tube and on the grid of the right
tube and high voltages on the plate of the right tube and on the grid of
the left tube.

The flipping of a flip-flop from one state to the other may be brought
about by negative pulses placed on the grids of the tubes through diodes.
If we place a negative pulse on the grid of the left tube, then the left tube
is closed, and its plate voltage will increase. This produces a higher voltage
on the grid of the right tube, which opens the right tube. In this manner,
the trigger assumes the first position of equilibrium (high voltage on the
plate of the left tube). But if a negative pulse is placed on the grid of the
right tube, the flip-flop assumes the second stable equilibrium position
(a high voltage on the plate of the right tube). If a negative pulse is placed
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FiGg. 6. The operation of a flip-flop.
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simultaneously on the grids of both tubes, then each such pulse will
cause the flip-flop to move from one state of equilibrium to the other.

If we consider the circuits by which pulses are placed on the grids of
the tubes as inputs of the system and the plate voltages as outputs, we
have the diagram in figure 6 for the operation of a flip-flop.

The properties of flip-flops make them convenient for use in the various
units of an electronic computing machine. To one equilibrium state of the
flip-flop we may assign the code value ““0,” for example, to high voltage
on the right output (Op)—and to the other the code value “l,” high
voltage at the left output (0,). Correspondingly, the inputs may be
denoted by I, I}, and I (the counting input).

Flip-flops are used in electronic machines for the temporary storage
of codes (receiving registers) (figure 7). Initially all the flip-flops are set
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Fig. 7. Diagram of a receiving register of flip-flops.

in the code position “0” by means of negative pulses (Ig) on the zero
inputs of all cells. The code of a number or of an instruction is placed
on the unit inputs of the flip-flops in the form of negative pulses. In
those positions in which there are code pulses the flip-flops pass to the
code position “1” and hold this position until they receive an extinguishing
pulse (/g). Receiving registers are used in the arithmetic units for storing
the code of an instruction, for giving the number of a required location
of the memory unit, and so forth.

A second realm of application of flip-flops is in addition circuits. Here
use is made of the property of a flip-flop that it changes its state of
equilibrium every time a negative pulse is applied to the counting input
(simultaneously to both inputs). If the flip-flop starts in the code position
“0,” then the application of a pulse moves it into code position “l1.”
But if the flip-flop starts in code position “1,” then the application of a
pulse moves it to code position “0.” In the absence of a pulse the flip-
flop remains in its previous position. The initial position of the flip-flop
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may be considered as a code for a given digit of the first position of the
second number. Here it is easy to see that the behavior of the flip-flop
exactly corresponds to the rules of addition of binary numbers for one
digit 0 +0=0;0+1=1;14+0=1;1+4+1=10, ie., “0” in the
given position and the carrying of “l” to the next position). In order
that the addition circuit may work for several binary digits, it is necessary
to guarantee the carry from one digital position to the next. A carry in
the original position is caused by the addition of two units, i.e., by the
passage of the flip-flop from the code position “1” to the code position
“0.” In this passage the voltage on the left output of the trigger is changed
from high to low. If this voltage is passed through a circuit containing

a condenser and a resistor,

then in leaving the circuit
it causes a negative pulse.
Through a delay line this

[rea |pf Te3 |p| Te2 | e | carry pulse may be directed

[ into the counting input of

] er Ipet l £ the next position.
Figure 8 represents the
¥ “  simplest addition circuit with
I flip-flops. Initially all the
Fic. 8. Addition circuit flip-flops are set in the code
with flip-flops. position *“0” by a pulse I,

placed on their zero inputs,
On reception of the code of the first number, which appears in the form
of negative pulses on the counting inputs, the flip-flops assume a position
corresponding to the code of the first number. On reception of the code
of the second number, there occurs digit-by-digit addition of the binary
numbers, and in those positions where the addition has produced two
ones, there arise carry pulses that after a time delay ¢4 are applied to the
counting inputs of the flip-flops in the higher positions. These carry pulses
may move the flip-flops from the code position “1” to the code position
“0.” In this case there arises a carry pulse to the next higher position.
In the worst case, when in the addition of the codes all the positions are
set in the code position “1,” and the lowest position passes from code
position “1” to code position “0,” the carry pulse arises successively in
each position after a time delay ¢4 . In this manner, the total time required
for the passage of the carry pulses will be equal to one time delay mul-
tiplied by the number of positions. More complicated electronic circuits
of flip-flops allow the elimination of such step-by-step carries with con-
sequent shortening of the time required for addition.
For multiplication of numbers an arithmetic unit of flip-flops (figure 9)
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has two receiving registers for storage of the multiplicand and the
multiplier (R,, R,;) and with them an adder (Add). Multiplication is
carried out in the follow-

ing manner. The code of’

the multiplier is shifted Sh_r R -
one place to the right. If
in the lowest place the
multiplier has the code g Addl

“l,” then in the right T T 1T T
output of the register of +N
the multiplier there arises L1 1 1 ¢ 1 § 1 =
a pulse that is applied to I
the circuits governing the R1
application of the code in
the multiplicand register
to the adder (the circuit FiG. 9. Multiplication circuit

+ N). After this has been with flip-flops.

done the partial product

in the adder is moved one place to the right and the operations are
repeated. In this manner the sum of the partial products is accumulated
in the adder. These operations are repeated as many times as there are
digit positions in the number codes. In the multiplication of two numbers
each of which takes up “n” positions, the product will take up “2n”
positions. The highest “n” positions of the product are distributed in
the adder, and the lowest *“n™ positions of the product may be entered
one after the other, as the shifts to the right successively set free the
positions in the register of the multiplier. With the completion of the
multiplication, the lowest “»” digits of the product are placed in the
multiplier register. The time required for multiplication is roughly equal
to the time required for addition multiplied by the number of digit
positions in the number code.

A code shift with flip-flops is produced by the circuit illustrated in
figure 10. Applying the shift pulse (Zn) to the zero inputs of all the flip-
flops places them in code position “0.” From these flip-flops which are
in the code position ““l,”” carry pulses arise which put the adjacent flip-
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Fic. 10. Circuit for shifting a code with flip-flops.
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flops into code position “1” with a time delay fq. In this way, every
application of a carry pulse moves the code one place.

An arithmetic unit with flip-flops which consists of two receiving
registers and an adder also enables us to divide one number by another.

Usually an arithmetic unit with flip-flops is constructed so as to serve
in a universal way for all the arithmetic and logical operations.

Flip-flops are also used in electronic machines for counting pulses,
which is necessary in a number of different control arrangements. The
circuit for an electronic counter (figure 11) differs from the circuit for
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Fig. 11. Circuit of an electronic computer
with flip-flops.

an elementary adder (figure 8) only in the omission of the delay line in
the carry pulse links. A counter of this sort can count up to 2" pulses
(n is the number of places in the counter), after which the position of
the counter is repeated. At the cost of some complication in the system
it is possible to construct an electronic counter for an arbitrary number
of pulses (not equal to 2%).

For the realization of logical operations and control circuits in electronic
computing machines, we make use of coincidence units (the so-called
“AND” elements), of inverters, and of divider diode links (“OR” ele-
ments).

The AND elements work on the logical principle of “both—and”
(“one and also the other™); i.e., at the output of such a unit a signal
will occur only in case there are signals at all inputs. Inverters work on
the logical principle of “yes—no”; i.e., if there is a signal on an input,
then there will be no signal at the output, and conversely, when there
is no signal on the input, then there is an output signal. The OR elements
obey the logical law “either—or”; i.e., at the output there will be a
signal in the case when there is a signal at any one input.

AND elements are widely used for ‘“‘channeling” electric signals in
a machine, i.e., for directing signals to the required circuits. For example,
figure 12 illustrates a code bus bar for one of the digits of a number. This
code bus bar is joined through an AND element to the inputs and outputs
of the locations of the memory unit, to the inputs of two receiving registers
of the arithmetic organ and to the output of an adder. Applyinga control
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signal to the output of an AND element of any location of the memory
unit, we thereby put the code stored in this location onto the code bus
bar. If we simultaneously put a control signal on the input AND elements
of the first receiving register, for example, then the code on the bus bar
is entered into the first register. Similarly, if we
put a control signal on the output AND units of
CMn the adder, then the code which is produced in the
adder is transferred to the code bus bar. If here
we place a control on the AND-circuit inputs of
— any location of the memory unit, then the codes
being transferred by the code bus bars will be
received in this location. Of course, before
receiving codes in locations of the memory unit
or in the receiving registers of the arithmetic

oM2 unit, it is necessary to clear the codes which
= were in them previously.

f % Ea This example does not exhaust all the various
9_5‘_._2_ applications of AND elements for channelling
RM1 @A) electric signals in an electronic computing
o | (A) m machine. They also are widely applied in the
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Fic. 12. Channeling Fic. 13. Circuit of an
of signals by an AND electronic commutator with
element. four output links.

memory unit, in the arithmetic unit, and in the control unit of the
machine.

In addition to solving problems of channelling signals, AND elements
perform more complicated functions. For example, when we are having
access to the location of the memory unit, there often arises the problem
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of converting the number of the location (given in binary form) to a
control voltage placed on this location. This problem is handled by the
electronic commutator, constructed from AND elements. Figure 13
illustrates a circuit for an electronic commutator with four output links.
The number of the location is given in the form of a binary code on
two flip-flops. All four possible combinations of the state of these
locations are given in Table 5.

Table 5.
2nd Trigger Ist Trigger

Code Left Right Left Right

Output Output Output Output
“00” L H L H
“01” L H H L
“10m H L L | H
“rr H L H i L

L = Low voltage at ouput, H = High voltage at output

If in an AND element the high voltage is controlling, then to get a
signal on the zero-output link it is necessary that the inputs of the AND
elements be connected to the right outputs of the first and second flip-
flops. In this case on the output of this AND element, there will be a
signal only when the flip-flops are found in the code position “00.”
Similarly, to get a signal on the first output link (the code “01™), the
inputs of the corresponding AND element must be connected to the left
output of the first flip-flop and to the right output of the second flip-flop.
The connections of the AND elements for the second (code “10”) and
third (code “11"") links will also be made on the same principle.

In a number of cases the AND elements together with inverters and
OR elements are used in the construction of the arithmetic units. For
digit-by-digit addition of numbers with two binary digits, we have the
four possible combinations in Table 6.

Table 6.
1
1 Value of the Addends Value Transfer
No. | of the to the next
l Ist ! 2nd sum Higher Order
1 | 0 0 0 0
2 | 0 ll ! ! 0
3 | 1 0 1 0
4 ) 1 1 0 1
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These relations may be realized, for example, by the circuit shown in
figure 14. Such circuits are called “semiadders.” The carry signal for the
higher of the two positions is
produced by an AND element

(combination 4). To get the Lst sutmmand
signal of the sum (combinations : +——2nd summand
2 and 3), it is sufficient to have D D

a signal on one of the two
outputs with the absence of an
output carry signal, which may
be done by an AND element,
an inverter, and a diode link
unifier. For addition of num-

o . Carry Sum
bers it is necessary to consider
not only the digits in a given FiG. 14. Circuit for a
position but also the carry from one-place semiadder.

the preceding position. The

carry may be taken as repeated addition to the result produced by carrying
from the previous position. In this manner, the union in series of two
semiadders fully guarantees the addition of one position in two binary
numbers.

The circuit of an adder for one position may also be realized directly
by considering the possible combinations and taking account of carrying
from the preceding lower position.

It is most effective to use adder circuits in AND elements in machines
with sequential code distribution. In this case the code of a number is
transferred by one of the code bus bars. The digits of the number follow
one after another at strictly determined intervals of time. In this case
for the addition of numbers, we may use a one-place adder (figure 15).

The codes of both numbers are
placed in advance in the lowest

1st number Sum positions on the two basic inputs of
2nd m,..b; the one-place adder. The carry out-
———=14DD) Cany put is run through a delay line to
s the third input of the adder. The

time of the delay is taken equal to

E the interval between pulses. In this

manner, if in the addition of any

Fic. 15. Circuit for a series digit of the numbers there occurs a
adder with AND elements. carry pulse, it is placed in the input

of the adder at exactly the same time
as the occurrence of the pulses in the next higher position. The time
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required for addition of two numbers is equal to the time required for
the passage of the code of one number.

Multiplication of two numbers in a series code may also be done with
a one-place adder, and here it is necessary to put the numbers through
the adder a number of times equal to the number of positions occupied
by the number code, i.e., the time required for multiplication is “n” times
as long as the time for addition.

Memory units. The possibilities of a machine are to a great extent
determined by the capacity of its memory unit, i.e., by the number of
numbers that can be stored in the machine. For contemporary universal
electronic computing machines this capacity is usually 500-4,000 numbers.

For code storage it is possible to use flip-flops. However, the amount
of apparatus here turns out to be so large that this form of memory unit
is almost never used.

For machines with series operation, widespread application has been
found for memory units consisting of electroacoustic mercury tubes
(figure 16). An electric signal in the form of a pulse is placed on a quartz
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Fig. 16. Basic circuit for dynamic storage of a code
in an electroacoustic tube:
(1) mercury tube; (2) transmitting quartz crystal;
(3) receiving quartz crystal; (4) transmitted form
of the pulse; (5) received form of the pulse,

crystal at the input of the tube. The quartz crystal has the property of
transforming an electrical pulse into a mechanical oscillation, and con-
versely. In this manner the entering electrical signal is transformed into
a mechanical (ultrasonic) vibration, which is propagated along the tube
with a specific velocity. When the signal reaches the end of the tube,
it falls on a receiving quartz crystal and is transformed again into an
electrical pulse. After being amplified and put into its original form, the
signal is again directed toward the input of the tube. In this manner,
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the codes of the numbers introduced in the form of pulses in the mercury
tube are circulated indefinitely in the tube. To introduce the numbers
into the tube, a code from the machine is placed on the input of the tube,
and simultaneously the circuit for the return of pulses from the end of
the tube is broken for the same period of time. For the selection of numbers
in the corresponding instant of time, when the required code reaches the
end of the tube, the output links are opened, thereby transmitting the
code to the other units of the machine. The entry and removal of the
numbers is accomplished automatically by appropriate electronic circuits.
Usually, with the goal of simplifying the apparatus, several numbers are
stored in each mercury tube. Thus for access to a number, it is necessary
to wait while the required code goes to the end of the tube. The more
numbers there are stored in the tube, the greater the time required to
find a required number.

Series machines with memory units composed of electroacoustic
mercury tubes operate at a rate of 1,000-2,000 operations per second.

For memory units one often applies the principle of magnetic recording
of electrical signals, similar to the recording of sound. The record may be
made either on a magnetic tape or on a continuously revolving drum
covered with a ferromagnetic material (figure 17). Along the generator
of the drum there are placed magnetic heads. If at a specific instant of
time current pulses are passed through the windings of the magnetic
heads, then in the corresponding places on the surface of the drum the
signals will be recorded in the form of residual magnetization. With the
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FiG. 17. Basic scheme of a magnetic drum:

(1) current through the coil; (2) residual magnetization;
(3) emf in the coil in read-out.
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rotation of the drum the field resulting from the residual magnetization,
passing under the heads, causes in them electric signals, which are
amplified and transmitted to the other units of the machine.

A magnetic drum may be used both for a series system and for a parallel
system of transmitting codes. However, the drawback of electroacoustic
mercury tubes, namely the delay in access to numbers, is even more
characteristic of the magnetic drum. Thus memory units with magnetic
drums are used for machines of comparatively low speed (of the order
of several hundred operations per second). On the other hand, a magnetic
drum allows a marked increase in the capacity of the memory unit with
only a tolerable increase in the amount of apparatus. Thus the magnetic
drum and the magnetic tape are often used in universal machines as com-
plementary (exterior) memory units in addition to fast-acting (operative)
memory units.

In high-speed electronic computing machines with parallel operation,
cathode-ray tubes are often used for the memory unit (figure 18). If the
electron beam is directed at any point of the screen, then at this point
there is accumulated an electric charge. The charge will be preserved for
a considerable time, so that it is possible to record number codes on the
screen. In the process of making a computation, a beam of electrons is
again directed to the required point. If the given element has not been
charged, it now receives a charge, and through the signal plate and the
output amplifier there emerges a code pulse. But if the element is charged,
the signal does not emerge. In this way we can determine whether a
signal has been recorded at a given point or not. After access to the code
we must re-establish the previous state of the given element, which is
done automatically by a special circuit. In exactly the same way it is
necessary to renew the code recordings periodically, in order to avoid an
essential change in the charge by stray electrons and leakage through the
dielectric.

Fig. 18. Basic scheme of a cathode-ray tube:
(1) source of electrons; (2) deflection plates;
(3) screen; (4) signal plate.
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Usually there are 1,024 (32 x 32) or 2,048 (36 x 64) points distributed
over the screen. The direction of the beam of electrons to the required
point is accomplished by appropriate voltages on two pairs of deflecting
plates.

In machines with parallel operation, every digit of a binary number
requires its own cathode-ray tube and access to number is made simul-
taneously for all tubes. The access time, including the entire operation of
the element, may be reduced to a few microseconds.

Recently use has been made of memory units with magnetic elements
that have rectangular hysteresis loops (figure 19). If we put a positive
signal through the coil, then
the core is positively mag-

netized and for a negative & 7~
signal it will be negatively 1 5
magnetized. I ’ “
With the removal of the E: - o
signal| current

signal, the core remains mag-
netized either positively or
negatively. Thus, the state of 2
the core characterizes the signal
recorded. In the computing
process, there passes through —_—
the coil a signal of specific
polarity, for example, a positive .

one. If in this case_the core was FiG. (lelgém eﬁ?ﬁ&ﬁ“&:ﬁ:u?;fmory
magnetized negatively, then a hysteresis loop:
remagnetization will occur (a (1) input coils; (2) output coils.
change in the magnetic flux),

and in the output coil there will be induced an electromotive force, which is
fed into an amplifier. But if the core was magnetized positively, then a
change inits state will not take place, and no signal will arise in the output
coil. In this way it is possible to distinguish which signal has been placed on
a given element. Of course, after access has been had to the code, it is
necessary to restore the original state of the core, which is done by a
special circuit.

§4. Prospects for the Development and Use of
Electronic Computing Machines

The use of electronic computing machines will inevitably have a great
influence on the development of many fields in contemporary science and
technology, especially in the physical and mathematical sciences. Thus it
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is appropriate for us to indicate the basic prospects for further application
of computing machines and their significance for mathematics.

Further extension of the areas of application of mathematical machines;
1. Improved machines. At the present time there is continuous and
intensive technological progress going on in the production of high-speed
computing machines, in further improvement of their construction, and
in the use of new physical principles and of combinations of new types.
Thus we may expect better technical properties for these machines
(speed, capacity of the memory, regularity, and reliability of operation),
and also a notable simplification in their construction and use which will
guarantee their widespread distribution.

The diversity of the types of the machines will be another factor
ensuring their widespread use. Along with powerful machines of enormous
capacity there will be the small-gauge machines that are simple to use
and are within the purchasing power of any scientific or planning institute
or of a factory; in addition to the universal ones, there are simpler special
machines, intended for some specific range of problems; besides the
purely digital machines other types have been invented, which accept
data from certain devices, perform digital calculations on them, and then
give out the results again continuously in the form of curves or of values
of parameters controlling various units of the machine,

2. Better programming. A second path to new effectiveness in the use
of these machines is further improvement in methods of programming.
The construction of programs in the usual manner, described in §2, is
easy for comparatively simple mathematical problems; in actual problems
of any magnitude, it involves very complicated and detailed labor. This
work may be lightened to a certain extent by the use of a “library” of
standard subroutines, set up permanently for the calculation of basic
functions and for performing certain necessary mathematical operations,
such as inversion of a matrix or numerical integration. In spite of this,
the fitting of subroutines into the basic program, addressing and re-
addressing the results, and testing and rearranging the program is a
quite complicated and detailed task calling for definite skill. This fact
may essentially delay the setting up of new problems for electronic
machines.

There are two possibilities for further development in this direction.
One of them consists of constructing the program automatically by using
the machine itself for this purpose, i.e., by converting the basic formulas
and the logical structure of the problem, placed in the machine in coded
form, into the desired program through the operation of the machine
in accordance with a special “programming program.”
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The second direction consists of having the machine operate on a
certain special universal program, which immediately examines and
performs the operations in accordance with a general plan of computation
introduced into the machine; this general plan would contain a number
of important problems (for example, the solution of a system of equations)
and, without setting up the detailed working of the program, would
guarantee that the correct results were worked out and assigned to each
particular problem.

3. More intellectual tasks. Further progress in the application of
computing machines in mathematics is connected with the use of the
machines for the performance not only of numerical calculations but
also of the standard calculations of analysis.

Basically such a possibility is, in well-known cases, altogether prac-
ticable. For example, if we describe a polynomial by its set of coefficients,
then such operations as multiplication and division of polynomials
consist of arithmetic operations on sequences of coefficients, which are
easily programmed on machines. By the use of specific coding in describing
a function, it is completely possible to construct a program which gives
the derivative of an elementary function (described in the same code),
i.e., which allows one to perform the analytic process of differentiation.
All these facts ensure the possibility in the future of solving problems by
a specific method (for example, of solving a system of differential equations
by means of power series), with complete carrying out of all the analytic
and numerical calculations. In this manner, computing machines may be
used for performing quite subtle and typically intellectual tasks (but only
of a standard character), just as the present machines of the everyday
world have replaced the physical labor not only of the stevedore but
also of the seamstress.

The influence of high-speed machines on numerical and approximative
methods. The means and instruments used in any task naturally influence the
methods of the work itself. For example, trigonometric formulas computed
by using logarithms are unsuitable for use on computing machines, on
which only multiplication and division can be carried out directly. The
use of a desk machine calls for entirely different computational schemes
in approximation methods (for example, nondifference schemes in dif-
ferential equations).

The fundamental changes in computational instruments and the
possibilities that have been opened up by the use of electronic computing
machines have naturally brought about a change of attitude not only
toward the methods of computational analysis but also, to a great extent,



368 XIV. ELECTRONIC COMPUTING MACHINES

toward the problems of mathematics in general and their applications.

Let us consider a few questions where the changes are most evident.

Mathematical tables and other ways of introducing functions into the
computation. First of all, electronic machines made a fundamental
change in our powers of computing tables. In place of a single table
of functions, we witness an annual output of hundreds of tables, including
complete and exact tables for all the basic special functions, not only
for one but for several variables. But at the same time an essential change
must be made in the structure of the tables. For use in high-speed machines,
compact tables are appropriate, containing widely spread basic values
and designed for interpolation of a high order.

In many cases, in place of tables, it is convenient to use other methods
of introducing functions into the machines, namely polynomials of best
approximation over subintervals, expansions in continued fractions,
approximating formulas based on numerical calculation of an integral
which represents the function, and so forth; all of these may profitably
be introduced, in various cases, into the program of computation of a
given function.

Special functions and partial analytic solutions. The special functions
themselves and the solutions of problems in finite analytic form still
retain their significance for qualitative investigation of a problem and for
clearing up the character of its singularities, both of which are important
for a numerical solution. In certain large-scale problems, the use of such
special functions may provide the most economical means of finding the
solution numerically. Nevertheless, the construction in many particular
cases of an exact or approximate solution, by means of complicated
apparatus or of the special functions that were formerly introduced for
greater ease of computation, has turned out to be a mistaken policy.
For machine calculations it is much simpler and shorter to find the
solution by general numerical methods without making use of any of the
analytic representations discussed earlier.

Thus the very considerable efforts that have been made to put into
complicated analytic form the solutions of various particular problems
in technology and mechanics have in many cases turned out to be wasted.

The choice of computational methods. It is incorrect to say that, because
of the high productivity of electronic machines, there is no need to develop
approximating methods further and that we may always use the most
primitive methods. In reality, only for the simplest one-dimensional
problems where, independently of the choice of method, the calculation
will not run to more than a few thousand steps, can the solution be
found on the machine in a few seconds or minutes.

For the systematic solution of newer, more complicated problems the
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number of steps may well amount to several hundred million, so that a
proper choice of methods to decrease this number is quite essential.
Consequently, it is a matter of great practical importance to work out
effective methods of approximation, especially for multidimensional
problems such as interpolation of functions of many variables, computa-
tion of multiple integrals, solution of systems of nonlinear algebraic
or transcendental equations, solution of three-dimensional integral
equations, systems of partial differential equations, and so forth.

At the same time there has been a considerable change in our attitude
of mind in estimating the value of approximative methods; they must be
judged by the ease with which they can be carried out on the machine
or by their universality, that is, by the extent of their applicability to
massive problems. Methods lose a great deal in value if they depend on
special peculiarities of the problem or on the skill of the person who is
directing the computation

The greatest value must be attached to universal methods that apply
to a wide range of problems: difference methods, variational methods,
the gradient method, iterative methods, linearization, and so forth.

Of course, in choosing a computational method and the manner of
carrying it out, one must remember that the method is in fact carried
out on the machine, so that in some cases one ought to take into account
the peculiarities of construction of the given machine. In particular, one
must consider maximal use of the operative memory, minimization of the
data introduced from outside, the possibility of introducing intermediate
checks, and the convenience of programming the problem.

But one must not think that the machine can carry out only the simplest
methods, based on one kind of operation. The wide possibilities in
programming and the latest improvements in its methods allow us to
carry out very complicated computational programs with many different
branches, so that we can change the course of the computation according
to the results obtained, which is hard to do even with hand computations.
The only essential requirement is that all these possibilities be completely
provided for in advance.

Also one must not think that no methods can be carried out which
require algebraic operations. As mentioned -above, it is also completely
possible to carry out some of the operations of analysis.

Significance of the estimates of error. In estimates of error for approxi-
mation methods, greater significance must be attached to those of an
asymptotic character, since large values of n (for example, the number
of equations replacing an integral equation by an algebraic system),
small steps in difference methods, and so forth, are fully realizable on
high-speed machines. In any comparison of the value of various approxi-
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mative methods, primary consideration must be given to asymptotic
estimates describing the rapidity of convergence of the method.

To increase the usefulness of machine methods, greater attention must
be paid to a posteriori estimates of the error; that is, estimates made on
the basis of the solution already computed, Such estimates may be in-
cluded in the program and will then help to determine the future course
of the computation. For example, if it is seen that the error is unacceptably
large, the computation may be automatically repeated with steps decreased
by half. In this connection a posteriori estimates may turn out to be
more convenient and practical than a priori ones, which are inevitably
too high and considerably more complicated.

The possibility of theoretical analysis of the problem. There is still
another possible use for the information obtained in the numerical
solution of a problem. In fact, by applying the methods of functional
analysis to the approximation obtained, we may judge the existence and
uniqueness of the solution, and also establish the range of the solution.
Since the investigation of such questions by purely theoretical methods
is sometimes extremely complicated and lengthy, and in many cases
altogether impracticable, the possibility of making use for this purpose
of numerical calculations produced on the machine is undoubtedly of
interest.

New problems in numerical methods. The sharp increase in compu-
tational possibilities and the accumulation of skill in their use has given
rise to an entirely new range of problems in the investigation of numerical
methods. Instead of being used in isolated cases as in the past, the solution
of systems of linear equations with a large number of unknowns has now
become established as a fixed element in the solution of mathematical
problems. This fact has given great practical importance to the following
question: How important for the accuracy of our determination of the
unknowns is the influence of rounding off, not only of the coefficients but
also of various processes in the course of the solution? This question
has led to a series of interesting investigations.

The possibility of numerical integration on the machine of a system
of differential equations over a large interval with small steps has given
acute importance to the question of stability of the process of numerical
integration. Experimental analysis of this question and subsequent
theoretical investigation have produced a considerable change in our
estimates of the value of various methods of numerical integration of
differential equations.

Questions of stability have primary significance also for the application
of difference methods to partial differential equations.

New methods. The possibility of using machines had led to the
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appearance of completely new types of approximative and numerical
methods or on the other hand has made it quite possible and convenient
to employ the older methods in cases where up to now they had seemed
completely impracticable. A characteristic example is the method of
random sampling or, as it is often called, the “Monte-Carlo method.”
This method consists of finding a probability problem whose solution
(probability, mathematical expectation) is identical with the desired
quantity. In this probability problem the solution is found experimentally,
by random sampling, as the mean value in a series of experiments. For
example, to find the area of a figure defined by the inequality F(x, y) = 0
and contained in the square (0, 1; 0, 1), we make as long sequence as
we like of random choices of pairs of numbers (x, y) contained in this
square and then determine what fraction of these pairs satisfy the given
inequality. Of course, such a method will be very ineffective if the trials
are made by hand, but if they are done on a machine, then it is fully
practicable. The trials themselves may be carried out by means of a
table of random numbers. For certain problems, e.g., for calculating a
multiple integral without great exactness, such a method may even be
more effective than any other.

A similar method may also be used for the problem of inverting a
matrix, if we apply it to samples forming a Markov chain, and also for
the solution of partial differential equations, if we have found a stochastic
(probabilistic) process connected with it.

The significance of high-speed machines for mathematical analysis,
mechanics, and physics. In mathematical analysis great interest and
practical importance is attached to investigations of multidimensional
problems leading to the integral equations and boundary-value problems
of mathematical physics. These investigations and the resulting methods
of solution are no longer impracticable but will now be put into effect
as a result of the new computing techniques, especially since the solution
of such problems is of urgent importance at the present time.

Of course, the value of these newly developed methods must be judged
by the ease with which it is possible to put them into practice.

On the other hand the possibility, thanks to machines, of carrying out
with sufficient exactness a computation involving a large number of
trials has led to an enormous extension in the range of application of
“mathematical experiments” for the preliminary investigation of a
mathematical problem and to a great increase in their effectiveness. This
fact has made it important to work out applications of this Monte-Carlo
method not only in general but also for particular problems; for example,
the qualitative investigation of differential equations.
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It is interesting also to note that the machines may be used in problems
of analysis not only in applications but also for purely theoretical ques-
tions. Thus machine computation may prove necessary to increase the
accuracy of the constants in certain inequalities and estimates in functional
analysis; applications of this sort occur not only in analysis but also in
the theory of numbers.

Finally, machines may be used for testing the correctness of formulas
of mathematical logic, and since many mathematical propositions and
proofs can be written by means of the symbols of mathematical logic,
it becomes theoretically possible to test on high-speed machines the
logical correctness of certain mathematical deductions.

As for mechanics and physics, we must first of all emphasize the vast
increase in the application of mathematics in these sciences. Up to the
present time the application of mathematics to concrete problems of
mathematical physics was restricted by the enormous volume and com-
plicated character of the necessary computations. In the problems arising
in actual practice, this volume was usually such that the computation
for one problem required several months and in some cases even several
years of computational work. Thus, in spite of the fact that general
mathematical formulations of many problems were known in mechanics
and theoretical physics, and methods of their solution had been worked
out in theory, in actual fact mathematical solutions, exact or numerical,
had been obtained only for a few idealized and highly simplified cases,
such as plane or axially symmetric problems, especially simple boundaries,
or an airplane wing of infinite length.

As a result the mathematical solutions were used not so much for
finding the necessary numerical values as for a qualitative and tentative
investigation of the problem, which in practice had to be supplemented
by costly experiments.

On the other hand, the application of new computing methods opens
up the possibility of large-scale solutions of problems of mechanics and
physics with all their actual complications (space problems, problems
with complicated boundary contours, and nonlinear partial differential
equations).

Of course, the actual carrying out of this possibility requires further
development of the methods of numerical analysis and of machine
solution for these problems. However, the practicability of treating such
problems in this way has been strikingly demonstrated by successful
experience with solution on high-speed machines of systems of partial
differential equations in meteorology, in gas dynamics, in the equations
of friable materials, and in other questions.

The application of theoretical mathematical analysis to problems of



§4. PROSPECTS FOR THE DEVELOPMENT AND USE 373

mechanics and physics with a close approximation to the actual physical
problems and the increase in rapidity and flexibility resulting from the
use of high-speed machines has made it possible in many cases to replace
physical experiments by mathematical ones. This possibility will lead to
further improvement in the methods of investigating problems in physics
and mechanics and will increase the role played in them by theoretical
and computational methods.

The significance of electronic machines for technology and industry.
The rapidity and effectiveness of numerical solutions of problems of
mathematical analysis also allow us to make much greater use in the
various branches of technology (structural mechanics, electrical engi-
neering and radiotechnology, the exploitation of water power, and so
forth) of theoretical methods and consequently to produce much more
accurate and practical results. It is now possible to apply mathematical
analysis to many technical problems where it has not been used before.

In addition to the numerical solution of problems of mathematical
analysis encountered in technology, a completely different application of
mathematical machines to technology has been discovered. It will be
possible to apply mathematical machines, for example in technical
planning, to the choice of various possibilities for the construction or
distribution of various objects. In questions of the organization of an
industry many solutions are possible to the problem of distributing the
various tasks and determining their proper sequence. The choice of the
best, the most productive, and the most economical solution presents
great difficulty. Here also one may find applications of machines; if it is
possible to program a systematic examination of various solutions that
takes account of the features of interest to us, then with the help of the
machines we may compare several hundred thousand variants, which
would be impossible by usual methods.

In particular, a series of relay-contact circuits allows us to analyze and
verify these solutions by the methods of mathematical logic, which may be
carried out on high-speed machines. In this way it is possible to select
a set of such variants on the basis of any desired criteria and then to
choose the best one among this selected set.

Of great promise is the use of machines in the automatic control of
industry, if such machines are used in conjuction with servomechanisms
and transmission devices. For example, if geometric data concerning a
manufactured article are introduced into the machine, together with a
specific program for the purpose, it will determine and transmit parameters
that will govern the motion of a power press and make necessary changes
in the article. Because of its high speed, the same electronic machine
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may be used for simultaneous control of the work of several presses.
It is also easy to see the significance of such machines for automatic
guidance of moving objects, for example interplanetary rocket projectiles,
since the guidance program can take into account not only the data
originally introduced but also the changes in position indicated by various
recording devices.

In this way, the construction and analysis of computing machines and
the possibilities of their application present a wide field of activity for
mathematicians. The use of mathematical machines in the coming years
will undoubtedly play a great role in the development of our technology
and culture.
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