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PREFACE

The present book differs widely in content, methods, and point of
view from traditional presentations of the subject. To a great extent,
this departure is due to the changed attitude of contemporary, in partic-
ular American, mathematicians toward geometry. Although reluctantly,
geometers must admit that the beauty of synthetic geometry has lost
its appeal for the new generation. The reasons are clear: not so long ago
synthetic geometry was the only field in which the reasoning proceeded
strictly from axioms, whereas this appeal—so fundamental to many
mathematically interested people—is now made by many other fields.
Moreover, much research is taking place in the new fields, but very little
in synthetic geometry. There is an additional reason, more peculiar to
the United States: individually attractive results, in which projective
geometry abounds, are not appreciated, with very few exceptions as in
number theory, because there is a tendency to use generality as the only
criterion.

Nevertheless, the basic results, and even more the methods, of projec-
tive and non-Euclidean geometry are as indispensable for the geometer
as calculus is for the analyst. The present book represents an effort to
emphasize this fact. Many special terms, like ‘“‘complete quadrilateral,”
and ““trilinear polarity,” will not he found; often a whole chain of beau-
tiful theorems is represented by a single example. Special results are
discussed in greater number only when they are needed to develop a
feeling for the subject, as in the section on synthetic hyperbolic geom-
etry, or when they illustrate a general method, as in the section on linear
line loci.

On the other hand, more space than usual is devoted to the discussion
of the basic concepts of distance, motion, arca and perpendicularity. In
fact, the non-Euclidean geometries are reached via general metric spaces
and the Hilbert problem of finding those geometries in which straight
lines are the shortest connections. Of course, the general problem is only
formulated here; but this leads naturally to the consideration of geome-
tries other than the Euclidean and two non-Euclidean ones, and thus to
the modern view in which the three classical geomelries are seen as very
special, and closely related, cases of general geometric structures. Expe-
rience with students has shown that, at that point, some facts which
are obvious to the expert, such as the uniqueness of Euclidean geometry,
require detailed discussion.

Since the time allotted to geometry is now shorter than formerly, much
material had to be omitted. The previous remarks explain why many
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special results and the whole synthelic approach were sacrificed.! By
using coordinates from the beginning and alternating between geometric
and algebraic or analytic arguments we hoped to produce the often sadly
lacking ability to pass from the algebraic to the geometric language and
conversely. Rather than avoiding any admixture of fields, methods from
other branches were used whenever they seemed more effective or pro-
vided a natural approach. In the same spirit, variety in proofs was delib-
erate. The overall aim was to counteract the impression of geometry
as an isolated and static subject, and to present its methods and essential
content as part of modern mathematics.

The first five chapters of the book were planned as a year course. From
the outset, a knowledge of the theory of equations is presupposed along
with elementary matrix theory. In Chapters IV and V, intended for the
second semester, it is assumed that the student has had some work in
rigorous analysis and is familiar with ¢, 8 methods. The group concept,
though used extensively, is not assumed to be known, but is developed
as far as needed. In line with most mathematical programs, the course
would seem to be most effective for the senior year, though modifications
are possible.

In order to emphasize the connectedness of the development, and
to de-emphasize the role of problem work, the exercises are collected
at the end of the chapter. They were designed to increase familiarity
with concepts and methods and are rarely of the routine kind.

The last chapter is in a different spirit since it was written for the
more mature student who has mastered the earlier material. Instead of
explicit exercises, the proofs of many theorems, and most of the gene-
ralizations from two to three dimensions, are left to his initiative. Simi-
larly, there are far fewer figures in this chapter since we feel that the
student gains considerably in understanding from the creation of his
own sketches. Both. the material and the treatment in Chapter VI make
it well adapted for a seminar.

We believe that the present book will give the reader new insight into
his geometric past and prepare him well for his geometric future in classical
differential, as well as Riemannian, and some other branches of modern
geometry. He will then be aware of the intrinsic value of projective
methods and may feel the urge to acquaint himself with the axiomatic
approach, for instance Veblen and Young’s work, or even to enjoy some
old-fashioned books like Reye's “Geometrie der Jage” or Darboux’s
“Principes de géométrie analytique.”

HERBERT BUSEMANN
December 1952 Paur J. KeLLY

'Any serious student should, at some time, become familiar with the great dis-
covery, made at the end of the last century, that large parts of geometry do not
depend upon continuity. The most outstanding results in this direction, however, are
now to be found in modern algebraic geometry, and it is there, the authors believe,
that continuity in geometry can he most effectively discussed.
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CHAPTER I

The Projective Plane

1. Ideal Points

Historically, the concept of the projective plane was created to elimin-
ate certain case distinctions in plane geometry arising from the possi-
bility of lines being either parallel or intersecting. Later, the geometry of this
plane developed into an important, independent discipline, and this will
be the subject of our first two chapters.

In this introductory section, the heuristic ideas which led to the project-
ive plane will be discussed. The exact definition is given in the next section.

Since a pair of non-intersecting, or parallel, lines may be obtained as the
limit of two lines whose intersection point moves farther and farther away,
parallels may be considered to intersect in “infinite” or “ideal” points
adjoined to the ordinary plane. However, if this addition of points is not
to create more exceptions than it removes, it must be done in such a way
that two distinct ““points” determine one line and two distinct lines inter-
sect in one “point.” Thus two parallel lines must intersect in the same
ideal point for either direction that the lines are traversed. Suppose that
L, and L, are two such parallel lines through the ideal point i, and let a
be any ordinary point which is not on L, or L,. Since a and i must deter-
mine a line Ly, and since L, cannot intersect L, or L, a second time, L,
must be the parallel to L, and L, which passes through a. The adjoined
point i lies then on all three parallels, and, by the same argument, must
lie on all the lines parallel to L.

That a different ideal point must be added for a different family of
parallels is easily seen. For let M, be a line which cuts L, in an ordinary
point and take M, parallel to M,. Then M, and M, pass through an ideal
point j which must be distinct from { if M, is to have but one intersection
with L.

Next consider two distinct ideal points, i and j. The line L which they
determine cannot pass through any ordinary point a. For the line L,
determined by a and i, and the line L,, determined by a and j, would be
distinct, ordinary lines both of which would be contained in L from the

collinearity of a, i, and j. Therefore the line through i and j must be an
“jdeal line.”
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Finally, there can only be one such ideal line. For if L, and L, were
distinct ideal lines they would have to intersect in an ideal point i. A line
through an ordinary point a and not through i would have to intersect
L, and L, in distinct ideal points, j and k respectively. The line through j
and k would then contain an ordinary point, which has been seen to be
contradictory.

These considerations lead to the convention of adding one ideal point for
each family of parallels (independent of the two directions along any member
of the family ) with the totality of new points regarded as an ideal line which
contains no ordinary point. In this extended plane it appears that two
distinct points determine one line and two distinct lines always intersect
in one point.

It is conceivable, however, that this way of extending the plane implies
some inherent contradiction.! Frequently, when such a question arises in
geometry, the number system is taken as a basis for comparison. By
introducing numbers, or coordinates, for points, lines, etc., the geometric
system is arithmetized. The geometric relations then become relations
between numbers, and by checking these the geometric structure may be
seen to be either inconsistent or else as consistent as the number system.

In the present case, the simplest way to obtain an arithmetic model
of the extended plane is to begin with the representation of the ordinary
plane in rectangular coordinates, Z,j. A line in this plane is given by a
linear equation, u¥ + vj + w =0, where u and v are not both zero. The
three numbers, u,»,w determine the line in the sense that as coefficients
they specify the equation of the line. But there are other triples which
determine the same line, namely any triple proportional to u,»,w. Thus
one definite line is represented by all triples u,\v,\w, where X = 0 and
one of the numbers u,v is not zero.2 If the lines corresponding to the
triples (u,v,w) and (u',p’,w") are distinct, and non-parallel, Cramer’s rule
gives their intersection point (Z,):

{ v ow w u

vow w u u v

1.1 = ———-— Jj=—=— =0

(1.1) ‘u v " u v/ T
ul U’ ul U/

'For example, it is impossible to extend the concept of quotient to include fractions
with a zero denominator without contradicting some of the usual properties of fractions.
*One might be tempted to divide uz + vy + w = 0 by w, obtaining

(u/w)x + w)y + 1 = 0,

and then take (u/w,v/w,1) or just (1/w,v/w) for the line. But this excludes lines through
the origin.
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Therefore,

. L w u u v
(1.2 m.y.l_‘v, w wow| v'l'
If the lines are parallel, but distinct, the triples (u,v,w) and (u',»',w’) are
not proportional, but the pairs u,v and u',»" are. The third determinant on
the right of (1.2) is zero, but at least one of the other two is not. This is the
case where the intersection is to be an ideal point. To let (1.1) give the
ideal point involves an inadmissable operation with zero. However, the
fact that lines are represented by three coefficients, which might be called
coordinates, and the form of (1.2), suggest a way around the difficulty,
namely that points be represented by three coordinates (x,y,z), with the
understanding that proportional triples (z,y,z) and (\r,\y,)z), X 5= O repre-
sent the same point. We can change from our previous representation of a
point (Z,7) to a triple, by adopting for (z,y,2) the triple (Z,7,1) or (AZ,Aj,»)
where % == 0. We can then change back from an ordinary point given by
x,y,2) to (%,§) by taking T=1=x/z and § ==y/z, when z3<0. Ordinary
points then correspond with triples where z 4 0. If (w,0,w) and (u',v',w")
represent distinct lines, the form of relation (1.2) suggests, then, that the
triple

’

’v wlw u u v
! 7

v ow | |w oo
be taken as the coordinates of the point of intersection whether or not the
lines are parallel. For non-parallels this gives the ordinary intersection
point, written as a triple. For parallels it is a triple of the form (z,y,z)
where z = 0, and where 2 and y are not both zero since the lines are dis-
tinct.

The enlarged plane thus contains as points all triples (z,y,z), excluding
(0,0,0), with proportional triples representing the same point. The points
on the ideal line, and only these, satisfy the linear equation z = 0. Since
this may be written as 0-x 4 0-y + 1.z2=0, a triple (u,v,w) representing
the ideal line is (0,0,1).

v

2. The Projective Plane

It is well known that the foregoing numerical representation of the ex-
tended Cartesian plane does represent a consistent system. As stated at the
beginning, however, we are not primarily interested in this system but in
the generalization of it which yields the projective plane. For this purpose,
and for other reasons, it will be advantageous to change to a subscript
notation in representing coordinates. Thus, instead of (z,y,z) for a poiat,
we will use (2,,2,,2,). The point y will mean the point (y,,y,,y;). For lines,
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Greek letters will be used, with the same subscript conventions, so that the
line £ means the line with coordinates (%;,£5,%5).2

An immediate advantage of this change is that it enables us to make
formal use of the concise notation of the vector calculus. For any two real
numbers, » and p, and two triples, (d;;a,,as), (by, by, bg), 7a 4 b is defined by
2.1) a4+ pb = (a + by, My + by, Mg 4 wby).

As in the scalar product, a-b or simply ab means:

.
2.2) a-b=ab + by + a5by= Y aibs
i=1

Clearly a-b=b-qa, and
(Oa + ub)- (Va4 w'b') =W(a-a') + rp'(a-b') + Vp(b-a') + pp'(b-b').

As in a vector product, we put

. ] % aa’as (11’01 (12‘:_
(2.3) axb—(bz b bz,) O x a).

For any numbers, ag, by € dy @§ Do Cy dpy the properties of deter-
minants give

Mg + p-by Mg + 1'bo
Ay + pdy "Co‘f"r"d'

a7
+ ph d

e
bo

ay byl
¢ do

— ao Uy

C

It follows that

2.4 (ha + pb) X (Md' + p'b) =W(a x a) + W'(a x V)
’ + pN(b X @) + pp'(b X D).
Finally, we introduce the abbreviation:

a ay as
(2.5) la, byc|=1|b by bs|.
€ € C3
Then,
(2.6) a-(b x ¢)=(a x b).-c=]abyc|.

If 2, that is (2,,,,23), is any triple of real numbers, [z] is taken to denote
the class of all triples Xz, where A 5 0. Clearly two classes are identical if

3Greek letters, usually 7 and u, will also be used for proportionality constants.
Though uniformity has been sought, where possible, reserving a type of letter for a
single use would have required more alphabets. Distinctions in the use of a letter,
however, are apparent in the context.
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they have one triple in common. Therefore the class is determined by any one
of its triples, which justifies the notation. The fact that x and y belong to
the same class is denoted by y ~ x and the negation of this by y 4 x. All
classes contain infinitely many different triples except the zero class
which contains only the triple 0 = (0,0,0). Therefore x ~ 0 means that
r =20, thatis, x; = 0, i =1,2,3.

The projective plane is defined to be the set of all classes [x] with the excep-
tion of the zero class. A class [z] is called a point x of the projective plane.
It is important to observe that this definition is independent of Section 1
which merely provided a background for it. Thus, familiar concepts in
the Cartesian plane, such as distance between points, area of figures,
parallelism of lines, etc., are undefined in the projective plane.

A line in the projective plane is defined as the locus (i.e., the totality)
of points x satisfying a linear equation of the form §x; + &, + &x3 =0,
where the coefficients £; are not all zero, that is,

@.7) 2 E=0, E5£0.

That this equation truly represents points can be seen from the fact that
if the triple z satisfies it, the triple y =)z, 2 £ 0, also satisfies it, for
z-£ =0 implies y-{ = 0 and conversely. Not all equations in x; have this
property. For instance,

22 + 23 - 8xy, =0
is satisfied by (2,2,1) but not by (-2,-2,~1) or (4,4,2) though these
triples belong to the same class. For an equation

f(@) = f(zy%a5) = 0

to hold for the class [x], whenever it holds for any member of the class,
it is sufficient that an integer k exists such that for any number i 4 0,

9.8 fOx) = fOx, x5 x5) = Wf(x), or that a real number k exisis
2:8) such that fQx) = | X |¥f(x).

An example of the first type, with k=1, is given by (2.7) where
f(x) = &2, + &y + 575, The second type, with k =14, is exemplified by
@)=z % + |2 % 4 | 22 [%

In the first case f(x) is called homogeneous of degree k, and in the second
is called positive homogeneous of degree k. We will not encounter the
latter type in projective geometry, but we will meet it in the discussion

of projective metrics (compare (25.7)).
The two equations
z-t=0andz-m=0
where £ and « are specified, and 33=0, 1 5= 0, represent the same locus
of points x if £ ~ v. When &, 22 0 and £ 4~ n then the algebra of Section 1
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shows that the only point, or class, common to the two loci is [E x 7].
Thus, there is a one-to-one correspondence between the classes [£] and
the lines x-£ = 0. Consequently, the line z-£ =0 may be referred to as
the line £, which, as in Section 1, amounts to taking the coefficients of the
equation as coordinates of the line. Then x-£ = 0 becomes, for fixed z,
the equation of the point [x] in the line coordinates &;.

Through two distinct points, y and z, there is exactly one line, namely
£ =y X z, since, by (2.6),

y-i=y-@ x 9 =|pyz|=0and 2. =] zy,z| =0.

Thus the projective plane has the uniformity which we sought to obtain
for the ordinary plane by adding ideal points.

Through two distinct points, x and y, there is exvactly one line,
(2.9) = X y. Two distinct lines, & and =, intersect at exactly one point,
€ X .
Here, however, there are no “ideal” points, and the line 23=0, or (0,0,1),
is in no way distinguished from the line 2, = 0 nor from any other line,
as will be seen presently.

In Section 1, a representation of the extended Cartesian plane C was
obtained with points given by classes [«]. Since in this plane lines have
linear equations, the points and lines of C may be taken for the elements
of a projective plane P . But nothing in the definition of a general pro-
jective plane P indicates from what source the classes [z] are obtained nor
what geometrical meaning is to be assigned to point and line. Thus P, is
only an example of a two-dimensional projective space (see Exercise
[2.2]). However, it is an extremely useful one. For a theorem about a
general projective plane P is, of course, valid in P, and through P, may
have an interesting interpretation in C involving non-projective concepts.
This is what will be meant by the “Euclidean™ interpretation of a projective
theorem.

3. Projective Coordinates

Points which lie on a line are said to be collinear, and lines which pass
through a common point are called concurrent. From (2.9), any two points
are collinear and any two lines are concurrent. If z, Y, and z are distinct
collinear points,  must lie on the line y X z, hence z-(y x z)=|=,y,2| =0
and conversely. The relation | 2,9,z | = 0 is also true when two or more of
the points coincide. A similar argument for line triples yields:

3.1) The three points z,y,z are collinear if and only if | x,y,z | = O.
(3 The three lines, &1, are concurrent if and only if | Emn,t | = 0.
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If y 4 z, then | t,y,z | = 0 is the condition for x to lie on the line y X z
and so is the equation of y x z. On the other hand, | z,y,z | = 0 implies
the existence of two real numbers %, such that

(3.2) L= N\ + pz.

An important point arises here. The points |y] and [z] determine the
representative members y and z only to within a factor. If y and z are
replaced by y' ==y and z' = p'z, V,p’ £ 0, then 2’ =Ny’ 4+ w2z’ will in
general be a different point from x, though still a point of y x z. To
obtain uniqueness, fixed representations must he taken for y and z. An
asterisk will be used for this purpose. Thus where [y] represents the class,
and y a representative member which could be changed at will within
[y], the symbol y* denotes the same triple throughout a discussion. The
foregoing facts may therefore be formulated:

If y 4z, and x*,y*,z*¥ are given representations of x, y, and z,
(3.3) where x is ony X z, then uniquely determined numbers’. and
exist such that
* = Ay* + pz¥.

A general member of [v] is sx*, where 5 is arbitrary but not zero. Since
ox* = a\y* + spz*, the ratio of the coefficients remains /i, hence this
ratio determines [x], and may be used as an “abscissa” on £ =y X z.

More explicitly, if y* and z* are fixed representations of two distinct
points, y and z, then for all choices of » and w, other than (0,0), dy* + pz*
is a point x of y X z. When 7 and 1 vary, with the ratio A/ held constant,
the representation runs through the class [v]. The point [x] therefore
determines the ratio A/, and a definite representation x* of [x| determines
not only the ratio but the numbers X and 1. themselves. The pairs (3,12),
excepting always (0,0), are called projective coordinates on £ =y X z.
Clearly the pairs (sh,op), o =£ 0, and only these represent the same point
as (). Analogous to the projective plane, a projective line consists of all
classes of number pairs, excepting the zero class, where a class [(a,b)] is
called a point. Thus we may say that Z with the coordinates A and p is a
one-dimensional projective space.

The selection of y and z as the generating, or base, points of the coordi-
nate system is equivalent to specifying that they correspond to [(1,0)] and
[(0,1)] respectively. The coordinate system is then fixed by the choice of
representations y* and z* (or by a common multiple of these, sy* and
sz¥, 5 2 0). An indirect way of specifying the representations y* and z*,
and so determining the system, is to select a third distinct point u on the
line to correspond to [(1,1)], the ‘“unit” point. For, representations u*,y*
and z* exist such that w* = y* 4 z* If o1, s,y*, 5,2* are other represen-
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tations of the same points, such that (o,u*) = (sy*) + (542*), then
y* + z* = (g,/a)y* + (o5/o)z* implies, since y A z, that oy/s; = o3/0; = 1.
Thus sy* and sgz* are the same multiple of y* and z* respectively and
yield the same coordinate system. This establishes:

Given three distinct poinis y, z, and u, on a line &, there is exactly
one system of projective coordinates in which y, z, and u are

(3.4)  represenfed by (1,0), (0,1), and (1,1) respectively. The points
(1,0), 0,1), and (1,1) (in this order) are called the reference
poinis of the coordinate syslem.

Comsider, now, two projective coordinate systems on &, say (Au) deter-
mined by y* and z* and (A1) determined by r* and s*, so that:
(3.5) =y 4 pz¥, T = k¥ + usk,
Then, for suitable numbers, ai,
3.6) Y¥ = ayr* + ays*, 2 =aqr* + a,s*

where ay, [ty 7 a15/a,, since y -~ z. The substitution of (3.6) into (3.5)
yields:

T=N* 4 ps* = N(ayy I’ + @y s*) + p(@ar* + a9,5%).
Therefore,

Q3 Gy

(3.7) z: Gk + agps

Q.
M= Gy + Aol =

Gy Ay
These are the formulas for the change, on a line, from one system of pro-
jective coordinates to a second. Conversely, if A and . are projective coordi-
nates, then % and y, as defined by (3.7), are also projective coordinates.
The proof of this is left 4s an exercise since the entirely analogous, two-
dimensional case is demonstrated in (3.17).

The lines of a projective plane which pass through a common point are
said to form a pencil. If z is the common point, we speak of the pencil z.
In the preceding discussion, if the fixed line ¢ is replaced by the fixed
point z, the fixed points y and z on £ by the fixed lines n and ¢ through =z,
and the variable points 2 on £ by the variable line ¢ through x, then the
same argument gives the following facts. If n and ¢ are distinct lines
through z, then

L= * 4 ¥, (1) = (0,0)

is a general line of the pencil z. The numbers X and  are projective coor-
dinates of ¢ in the pencil z. Different values of the ratio \/u produce
different lines, while if  and p vary, with A/y constant, & runs through
the class [f]. There is exactly one coordinate system in the pencil z for
which three given distinct lines have the coordinates (1,0), (0,1), and
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(1,1) respectively and these are called the reference lines of the coordinate
system.

The same type of projective coordinates can be introduced in the pro-
jective plane. Let pl,p%p3 be any three non-collinear points, with repre-
sentations p*,p?",p3" so that | pt*,p2*,p®* |520. From elementary algebra,
the non-vanishing of this determinant implies that for any triple of
numbers, A,A), Dot (0,0,0), 3,pt* 4 Wp?* + p®" is not the zero triple
and hence represents a point [z]. If it yields [x] in the representation z,
changing % to o clearly yields the point [z] in the representation sox.
Conversely, if [z] is any point and z* is one of its representations, the
equations

3.9) = 7‘1P1* + 7‘2P2* + 7‘3P3',
that is

3
5 = Inpf,  i=1,23
k=1
have a unique, non-zero solution in the variables %, i = 1,2,3. This
again follows from standard algebra, since the coefficient determinant
| pr*,p2",p®" | is not zero. 1f [x] is represented by ox”, instead of z", the solu-
tion of the simultaneous equations changes to oh;, i=1,2,3. Therefore the
ratios A, : ), : A, determine [x] and conversely. The numbers %; are called
projective coordinates of [x]. Putting
(3.9) d, = (1,0,0), d, = (0,1,0), dy = (0,0,1), e = (1,1,1),%
if d;,d,,d, are taken for pt*,p?*,p3* (the triangle of reference), then
x = x,d; + X,dy + 2,ds,
which shows that the numbers (x,,%,,x,) in any representation of [x] are
special projective coordinates.

The construction given for the projective coordinates, A, depended on
the representations pi’k chosen for the points pi, i= 1,2,3. If ¢ is any
fourth point, not collinear with any pair of the points p?,p?,p?, these four
points, as points, will completely determine the projective coordinate
system if it is required that g have projective coordinates (\,\,}), X 5% 0
(that is, if ¢ is required to be the ‘‘unit point” [(1,1,1)]). Forlet pl*,pz*,p"*
be respectively representations of p?, p?, and p? such that, referred to them,
g has projective coordinates (\,2,%), A % 0. Then for some representa-
tion g¢* of [g],

g* — plt + pzm + pst
4In consistency, this should be d} = (1,0,0), etc. However, because these four points

appear so frequently the asterisk will not be used, it being understood that exactly
these numerical coordinates are meant.
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If p*,p*",p*" are different representations of p!, p% and p3, with respect to
which ¢ is the unit point, then for some representation of [g], say g*,

:q* — ﬁl* + ﬁ2* + 53*
The representations with bars are multiples of the corresponding ones

without bars, hence numbers, 5,4;,M,%, none of which is zero, exist such
that

ag” = 0pt" + Wgp? + hyp¥"-

3
From (s ~ )p’* = 0 it follows that ), = s, i = 1,2,3, hence pi* = ap’;
=1
i = 1,2,3. Thus, the second set of representations for p!,p2,p? only differ
from the first by a common factor, and this difference does not affect the
projective coordinate system. Therefore:
Given four points, no three of which are collinear, there is exactly
one projeclive coordinate system for which these poinits in a
(3.10)  given order have the coordinates (1,0,0), (0,1,0), (0,0,1), and
(1,1,1) respectively. These are called the reference points of the
coordinate system.

Sets of four points, no three of which are collinear, appear frequently
and will be referred to as “quadrangular” sets.

If two projective coordinate systems are given, by:
@1y TP @ e, p 20
= wi'ql* + x;’q”* + xg’q‘**, lql*’ qz*, qs* | =0,
then for suitable numbers, ai,

(3.12) P = ayq" + @ + a8, i=1,23.
Moreover,

iy Gyp Ay,
Qg1 Ay Oy
Q3 O3y dgg
for otherwise one of the columns, say the last, would be a linear combina-
tion of the other two, hence p3' would be a linear combination of pl* and
p¥" and so collinear with them.5 From (3.12) and (3.11) it follows that

(3.13) A=|ay | = #=0,

3 3 3
r= 2 gt = 2 Zp = E T + " + ayg®").
=1

i=1 =1

The properties of determinants and matrices up to order 3 are here taken for granted.
The reader may refresh his mind on this subject by turning to the beginning of the last
chapter, where the corresponding facts for matrices of general order are formulated.
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Comparing the coefficients of ¢ in the second and fourth members yields:
3
(3.14) o = Yagwl, i=123, [ax|=0.
k=1

These are equations for the transformation from the zi to the system
of coordinates xi. Conversely, if the numbers x; are projective coordi-
nates, then the z;, as defined by (3.14), are also projective coordinates.
To see this, let A denote the quotient when the co-factor of the element
ai; in the matrix (ai) is divided by the determinant A. By standard
algebra, then, the inverse of the transformation (3.14) isgiven by:

3
(3.15) o= Awf, (=123, [da|=0.
k=1
Since the x; are projective coordinates, a general point x is given by the
first equation (3.11),
3
T = ngpi*
Q=1

Substituting in this from (3.15),

3 /3
= 2( Z Am};)pi*
i=1

k=1

\

3 3 3
= x’l'(zAJ_ipi*) -+ 1?;’(2442"1)’:‘) + QE:I;I(EASL'PE*)
\i=1 i==1 =1

3
Setting ¢* = 3, Aup”, k = 1,2,3, then
=1
(3.16) r =g + a5 + ayg
The determinant | g%, ", ¢%" | 520, because | Au |z 0. Hence (3.16)
shows that the numbers i are projective coordinates. Thus, we obtain:

If x; and x} are two systems of projective coordinates, they are
related by equations of the form

3
(3.17) o= Y aurt, (=123  |a|z=0.
=1

If the numbers x; are projective coordinates, and equations of the
given form define the numbers x{, then they are also projeclive coor-
dinates.
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The projective plane was defined in terms of classes [z], and the numbers
(x,,%5,%,) in a representation of x were shown to be projective coordinates.
The distinction between these projective coordinates and any other system
of projective coordinates will disappear if it can be shown that straight
lines are given by linear equations in any coordinate system. This is easily
done. For let &2 =0, %" 5£0, be any linear equation in the coordi-

natesxi,and let zi be any other projective system. By (3.17), the two are
related by

3
=Nt (=128 |l =0
k=1

Substituting from this into &'.2'' = 0, the line is given in x; by:

3 3 3
Ei'( E au:ci) + Eé’(Z azm’;) -+ E;’( Z as,,x,’,) =0.

k=1 k=1 k=1
Rearranging terms,

3 3 3

x] (Z aklEl’;') -+ ’I‘é(z aszr’:') + ag’ (Z ak3£]{:1) =0.
k=1 k=1 \k=1 /
If we define,
3
(3.18) =Y awdl, (=123,
k=1

the line has the equation 2’-£’ = 0. The numbers &; cannot all vanish, for

if they did, the system (3.18) would be homogeneous, with | aiz |20,
which would then imply &'’ = 0. Thus:

319 In any projective coordinate system, xi, siraight lines are given by
(3.19) linear equations of the formz'-£' =0, £ 0.

The numbers z;, introduced in defining the projective plane, will now be
used for arbitrary projective coordinates.

Since the original z; coordinates have lost their special character, (3.10)
shows that any quadrangular set may be taken for the reference points. This
freedom will be frequently used to simplify calculations, just as in ordin-
ary analytic geometry the coordinate system is often chosen in a con-
venient manner.

In the proof of (3.19) it was shown that the correspondence of points,
z' X z' given by (3.17) implied the correspondence of lines & % ¢ in

(3.18). Ong correspondence is said to be induced by the other. More
completely:
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The coordinate transformation

3
x, = Z Qix Ly, = 1,2,3, ‘ aul == 0
k=1
induces the transformation of the line coordinates

3
G=YAak, (=123, |da|=|al?,
(3.20) k=1
where Aj; is the co-factor of ai, divided by | aw|.®
The inverse transformations are :

3
zi= 3 Auth =123, |Au|=]|Aul

k=1

3
= Yawhh, =123, |a|=a|
k=1

4. The Content of Projective Greometry
The Duality Principle

With the exceptional character of the original coordinates removed,
we are in a position to describe the content of projective geometry. The point
2 and the line ¢ are said to be incident if x-£=0, and plane projective
geomelry is the totality of facts which can be expressed solely in terms of this
incidence relation between points and lines of the projective plane. The
term ‘‘projective”, for describing this geometry, comes from the fact
that if a plane P is projected on a second plane P’ from a point w (see
Figure 2), a point and a line incident with it in P are sent into a point and
a line in P’ which are incident. Hence a theorem, which is projective in
the sense just defined, remains true after a projection (Poncelet, 1788-1867).

Pythagoras’ theorem, for example, is not a projective theorem because
it involves the concepts of length and angle. Similarly, the statement that
the medians of a triangle are concurrent does not belong to projective geo-
metry because distance enters into the definition of a median. Considering
how much is ruled out for a theorem to be projective, one might wonder if
there are any interesting theorems dealing only with incidence. To show

Since projective coordinates are determined only up to a factor, the division by
| @i | could, of course, have been omitted. However, all calculations simplity if the
Ajp are normalized in this way.
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that there are, we discuss two examples before developing the theory
systematically. Since the methods so far have been analytic, we choose
two theorems which play a basic role when the subject is developed syn-
thetically. The first of these is the Theorem of Desargues (1593-1662).

If two triangles are such that the lines connecting corresponding
(4.1)  vertices are concurrent, then the intersections of corresponding sides
are collinear.

More explicitly this means the following (Figure 1). Let z,y,z and x',y’,z' be
two triangles (the term triangle implies that the three vertices are

x

Fig. 1

non-collinear), such that joins of corresponding vertices, « ~ 2 x 2,
P~y XY, y~z X2z are three distinct, well defined lines. Then
corresponding sides are £~y Xz and ¥~y Xz, 1~z Xz and
n~z Xa,{r~ve X yandl ~ 2’ X g, and the intersections of corre-
sponding sidesarea ~ & X &, b~n X 7',¢c ~ { X {’. Desargues’ theorem
states that the concurrence of «,f,y implies the collinearity of a,b,c or
that | «,8,y | =0 implies | a,b,c | = 0. By substituting for the quantities
in these determinants, the theorem becomes equivalent to the statement:

49 |z X ', yxy, zxz|=0Iimplies
A2 x) x @ x2) ExDXE XL, @XyXE@ xy)|=0.

Though (4.2) can be established directly from the algebra of determin-
ants, a simpler proof results from using the fact that any member of its
class may be chosen to represent a point. Let w denote the common
point of «,B,y. If w coincides with a vertex, say z, then the proof is imme-
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diate. For then y' is on both ¥ x y and ' X y’ and hence y’' ~ ¢. Simi-
larly 2z’ is on * X z and 2’ X 2/, so z' ~ b. But «, by definition, lies on
8~y X z'~ b X ¢ hence is collinear with b and c.

We may therefore suppose that w is different from all vertices.
Then the line « cannot contain other vertices than x and z', etc. Since
A,y 4y 24z (e,8,y are well defined), then, for a given repre-
sentation w* of w, representations of the vertices may be chosen so that

(4.3) w=a"-a" =y -y =2 -2

The relation " — 2" =y* - y* implies 2" - y* =2 —y’*. But "~ y" is
a point of {, and "~y isa point of {’, so the last given equality implies

w
Y‘
(23
B8
v
z' f’ ,
2
) Y
f/
/'
- —Yo———=
/ // c
.
P Y [
¢ L
z
" z b
a
Fig. 2

- y ~ C X ¢~ Bya51mllarargument(4 3) yxelds 11 -z NE X E’ ~a,
and z" = 2" ~ % X 9’ ~ b. Sincel- @ -y + 1" -2+ 1. -2 =0,
it follows that @, b and ¢ are collinear.

An intuitively simple way of seeing Desargues’ theorem, though not yet
rigorously justified, is to first consider the triangles z,y,z and 2',y',2' as lying
in two different planes P and P’, which intersect in a line ¢ (Figure 2). If, as
before, w denotes the common intersection point of «, £ and vy, then since
« and v intersect at w they determine a plane. The lines 4 and »' lie in
this plane and so intersect at a point 4. Because it is on 1 and =’, b is on
both P and P’, hence is on . By the same argument, a and ¢ are on g,
s0 a, b and ¢ are collinear. The plane theorem is now seen to be a limiting
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case as the plane P approaches P’. Tacitly, it is assumed, of course, that
all the intersections exist, in other words that we have a three-dimensional
analogue to the projective plane. In a later chapter it will be shown how
such a space may be rigorously defined.

If, in (4.2), the algebraic form of Desargues’ theorem, the Greek letters
£, and £,n',{’ are substitued respectively for z,y,z and x',y’,2/, it is
still true that

pgy  |EXE X, Ox U =0 implies
9 [(a X x (' xE), ExE X xE),EXn)XE x0)]=0.

Interpreting these letters as lines and putting 7 X { ~ x, v/ X {' ~ 2, etc,,
establishes the converse of Desargues’ theorem:

If two triangles have the property that the intersections of correspond-
(4.5)  ing pairs of sides are collinear then the lines connecting correspond-
ing pairs of vertices are concurrent.

Ina synthetic, or purely geometric, development of projective geometry,
the essential axioms are (a) the existence axioms, which guarantee points
and lines to work with, (b) the existence and uniqueness of a line through
two distinct points and of a point on two distinct lines, and (c) Desargues’
theorem.? Examples exist to show that (a) and (b) alone do not imply (c).
But though non-Desarguean systems are possible, without (c) no interest-
ing geometric theory can be developed. For this reason it is added as
a basic axiom in the studies referred to.

Our second exampleis a consequence of Desargues’ theorem and concerns
the uniqueness of a point v, called the fourth harmonic point, corresponding
to three given, distinct points 2, y and u on a line ¢ (Figure 3). The con-
struction of v is as follows. Takeany point w, not on £, and any point z on
x X w, distinct from z and w.Lety X zand u X wintersectat f, and let
x X tand y X w intersect at s. Then v is defined as the intersection of &
and z X s. Though v would seem to depend on z and w, this is not the case.

The construction, for any choice of w and z, yields the same point v on the
linet. For let the construction be repeated with w' and z' as initial choices de-
termining #', s' and v'. By construction, the corresponding sides of the tri-
angles w,s,t and w',s',t’ intersect in the points z, y and u. By (4.5), the con-
verse of Desargues’ theorem, the linesw X w',s X ', and f X t' are therefore
concurrent at a point ¢. Considering the triangles w,z,t and w’,z,t', we
find, in the same way, that the lines w X w', { X t', and z X 2z’ are con-
current at a point, which must be g, since g is determined by w x w’ and
t X t'. Now the triangles z,w,s and z',w's’ satisfy the hypothesis of De-

See, for instance, Coxeter’s The Real Projective Plane.
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sargues’ theorem, (4.1). Points z and y are the intersections of two pairs
of corresponding sides, hence the last pair of corresponding sides, z X §
and z' X &', must intersect on x X y ~ £. Since z X s already cuts § at v,
it follows thatv' ~ & X (2 X §') ~ 0.

Fig. 3

An analytic proof of this fact is instructive, for a comparison of methods,
and will also establish some facts for later use. We first state some conven-
tions that will frequently occur. In any coordinate system the points

d,,dy,d,, and e, defined in (3.9), were called the reference points. Similarly
the lines

(4.6) 8 = (1,0,0), % =(0,1,0), &= (0,0,1), ¢=(11,1),°

denote the reference lines of the system. The two reference sets are con-
nected by the relations:

(4 7) dl X d2=88' d2 X d3=81’ da X dl—._:&z
: by X By =dgy 8y X 8 =dy, B8 X b = d,

8As with the points in (3.9), asterisks are not used for these lines and §&,, for example,
means always (1,0,0).
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Clearly, from its coordinates:

4.8) The equation of the line 8; is x; =0, i=1,2,3.
) The equation of the point d; (or the pencil d;) is & =0, i = 1,2,3.

If  is any point distinct from d,, thelined, X xis
(1,0,0) X (24,25%5) = (0, T3 ),

and the intersection point of this line with 8, is

(d; X ) X 8; = (0,%5,%3) = Toldy + Zad,.

di 8 (1,-1,0)\ dx (1,1,0)
h

Fig. 4

(Figure 4 illustrates this for x ==e¢.) From the definition of projective
coordinates on a line, then:

If £ A d,, then d, X x intersects 8, at (0,%y,%;) and L%y are pro-
4.9 . .. . .
jective coordinates on the line 8,.

Similarly :

If £ 4 8,, then the line connecting 8, X & and d; is (0,82%s) and
(4.10) . - , . ;
£,,t4 are projective coordinates in the pencil d;.

To prove analytically that the harmonic construction yields the fourth
harmonic point uniquely, let the coordinate system be chosen so that
w=d, z=d, y=d, and {=-e=(1,1,1). From (4.9), u= (O,1,1),
z = (1,1,0), s = (1,0,1), hence the line z X s = (1,-1,-1) intersects
E=23§, in v = (1,0,0) x (1,-1,-1) = (0,1,-1). Now z,,z; are projective
coordinates on & = 3,, with z, y and u as reference points. Since this uni-
quely determines the projective coordinate system on &, the point v, with
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coordinates (1,-1), is uniquely determined by z,y and u. Itis therefore
independent of zand w. As a corollary of this proof:

If x,y and u are three distinct points on a line &, then in the projec-
(4.11)  tive coordinate system on & having x, y and u as reference points,
the fourth harmonic point to x, y and u has the coordinates (1,-1).

In purely algebraic terms the uniqueness of the fourth harmonic point
v to z, y'and u, that is the independence of v from z and w, may be stated
as follows. Let z, y and u be distinct points for which | z,y,u | =0. Take
wi, i =1,2, so that|wix,y|£ 0, and 2, i = 1,2, so that z¢is distinct from w
and from z but satisfies | wi,zi,x | =0, i=1,2. Put fi = (w* X u) X (& X p)
andsi = (! X ) X (W' X y),i =1,2. Then|z X y, 28 X s, 22 X s?|=0.

Fig. 5

The truth of this algebraic formulation is not affected if x,y,uwt,ziti
and si are replaced respectively by &4,%,444%,< and <. Interpreting the
new symbols as lines, the geomelric meaning of the algebra is this
(Figure 5): let, , { be distinct lines of a pencil z. Take ¢ as any line not
in the pencil z, and ¢ a line concurrent with, and distinct from, ¢ and ¢.
The points n X ¢ and ¢ X ¢ determine a line 7, and the points { X = and
U X m determine a line 5. Then the line v joining z and ¢ X ¢ is independ-
ent of § and ¢. It is called the fourth harmonic line to &,n,L.

In two instances, now, the purely formal interchange of Greek and
Roman letters has yielded a new geometric theorem. In view of the common
algebraic formalism for point and line, it is not difficult to see that a gen-
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eral principle underlies this phenomenon. The classes [x] and [£] for point
and line both range over the classes of real number triples, with (0,0,0)
excluded. On the other hand, projective theorems can be expressed solely
in terms of incidence relations of the form z-£ = 0 and this form is symme-
tric in z and £. That is, z-§ = 0 is equivalent to {-x = 0. Therefore inter-
changing the concepts of point and line throughout a projective theorem
does not impair its validity, but, in general, changes the geometric con-
tent and thus gives rise to the so called “dual theorem.”

DuaLrty PrINCIPLE: A projective theorem remains valid if the
concepts of point and line are interchanged.

This fact is only surprising because our intuition and geometric termin-
ology are not conditioned to it since it does not hold in Euclidean, that is
ordinary geometry.® Instead of automatically seeing the dual of a theorem
we have therefore to think through analogues, for instance:

collinear points (points incident concurrent lines (lines incident
with a line) with a point)

the line z X y connecting z and y the point, £ X 4, of intersection
(i. e., the line incident with of the lines ¢ and v (i.e., the
z and y) point incident with & and n)

straight line as the locus of its pencil of lines through a point.
points.

It should be observed here that although the duality principle does
not hold in Euclidean geometry, the dual of a Euclidean theorem is fre-
quently correct, in which case it must, of course, be proved independently.
Thus even outside of projective geometry the duality concept is a strong
exploratory tool. Often too, where a theorem is difficult to grasp, its dual
may be readily accessible to the intuition. The construction of the fourth
harmonic line, for instance, is much harder to visualize than that for the
fourth harmonic point.

5. Groups of Transformations. Projectivities

A mapping'® ¢ of a set S on a set §’ is a correspondence which associates
with every element x of S one element ' = x® of S’, and which covers
§', that is, every element of S’ has at least one corresponding element in S.
The association is denoted by x — z'. When each element of S’ has exactly

°Ordinary geometry is called Euclidean because it was first represented systematically
in Euclid’s Elements (3rd century B. C.), which served as the textbook for over 2000 years.
10The word ‘“transformation” is often used instead of “mapping”.
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one corresponding point in S the mapping or transformation is said to be
one-to-one. In that case the association ' — z is a mapping of S’ on §
which is called the inverse transformation, denoted by ®-1,

To have some examples, let S be the real x-axis and S’ the real x'-axis.
Then z' ==sin « is not a mapping of S on S’ because only the interval
-1 2" < 1on S is covered. If S’ is taken as this interval, instead of
the whole line, 2’ = sin x is a mapping of S on ', but is clearly not one-
to-one. An example that is one-to-one, where S’ is again the line, is
2z’ = ax + b, a2 0. The inverse transformation is clearly =z = (z' - b)/a.

If 2’ = x® is a mapping of the set S on §' and z" = z'¢' is a
mapping of S’ on S§*, then '’ = (x$)¢' is a mapping of S on S§”. It is
denoted by @4’ and is called the product of ¢ and ®'. Formally,
then:

®.1) ¢’ = ¢3¢’ means that x¢'"' = 2(¢®') = (xP)9’.

From its definition there is no reason for ®®' to be the same as '¢. In
fact, when S and S'’ are different sets, ¢'® is not even defined. If S and
S’ are the same set (S = S'") then ¢'® is a mapping of $' on itself while
¢’ is a mapping of S on itself. Even if $=§'=_S§", ¢¢' need not be
the same transformation as ®'®. For instance, if §, S’ and S’ are all
three the real axis, and ¢ and ¢’ are given by

¢:x' =—ax+ b azx£0, b20; &' = a8,
then ®&' and ®'¢ are the mappings
¢’ : 2 = (ax + D)}, ¢'P:2"=ar®+ b,

which are clearly different.

The mapping of a set on itself in which each point is associated with
itself is called the identity mapping, or simply the identify, and is denoted
by 1 without indicating the set. It is obviously its own inverse. When a
transformation @, of S on S’, has an inverse, then both &~ and ®7®
are the identity, but the first is the identity on S and the second on §'.
For § = §' it is always true that ¢¢1=<o7 ¢ =1.

A non-empty aggregate I', whose elements, ®, are one-to-one mappings
of a set S on itself, is said to form a group if ¢ being in ' implies that
®1is also in I, and ® and ¢’ being in T implies that @@’ isin I.

A group T always contains the identity mapping on S. For being non-
empty T has at least one mapping . It therefore contains = and hence
@®-1, which is the identity. The elements of T also satisfy the associative
law, namely:

(5.2) D(DIP') = ($D')D".
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By hypothesis, ¢'®’' and @&’ are in T, since #, &’ and &'’ are. Thc?refore
B(P'®'") and (¢P')d' are in I’ also. That they are equal follows directly
from the definition, (5.1), of a product, since

x[(])((]x’({)”)] — (1:(]'))((]:'(1)”) — [(x(]))q;’]([)”’

and Z(@0)0"] = [2(PD)]P" = [(xD)d' |0,

A simple example of a group, T, is given by the collection of mappings,
' = ax + b, of the real axis on itself, where a and b are real numbers
and a£0. If ® is 2’ = ax + b then &' is x = a1z’ — q"'b which is also
in [. If ' is the element ' = cx + d, ¢ 320, dd’ is the mapping

' = (ca)xr + (cb + d)

and so is in I. The reverse product, ®'®, is ' = (ac)z + (ad + b). Thus,
$P' = ¢'® only if ¢cb - d=ad - b.

Two mappings ¢ and ¢’ are said to commute if &®' = &’'®, When all
pairs in a group I' commute, T is said to he a commutative or an A belian
group.

We apply these general ideas to some special cases whose im])()rtanf:t*
will soon be evident. Let ¢ and €’ be lines in the same plane, or even in
different planes.’* A mapping of the points of £ on the points of & is called
projectivity of £ on ¢’ if projective coordinates }, 7, on £ and X/, i} on
exist so that in terms of them the mapping takes the form
(5.3) =7, =T,

2 2

-~

Clearly a projectivity is one-fo-one, and its inverse is also a projectivity
(of &' on £). Because any three points of a line may be taken for the refer-
ence points of a coordinate system on the line, it follows that if y,zand u
are three arbitrary, distinct points of £, and y',z',u' are three arbitrary,
distinct points of ¢, then a projectivity ® exists such that y' = yo,
Z' =1z®, and u' = ud.

Suppose now that (5.3) is a projectivity between £ and £’ in the indi-
cated coordinates and that %\, and Aj,\, denote arbitrary projective

1A <«different” projective plane is simply again the collection of all classes of number
triples except 0. The only logical difference is that we do not consider the triples as
representing the same point set. The distinction is important in space, where many
different planes exist, just as there are many different lines in the plane.

¥This definition may seem strange at first sight. However, it simply is the projective
analogue to the idea of defining an ordinary distance preserving mapping of a line &
on a line £ as a mapping of the form 2’ = z,where x and 2 are properly chosen abscissas
on ¢ and &'. Similarly a distance preserving transformation of an ordinary plane P

on a plane P’ may be written as «’ = r, Y =y, where z,y and z’,’ are properly chosen
rectangular coordinates on P and P’.
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4

coordinates on ¢ and &' respectively. It has been shown that for two sys-
tems on & and two on ¢ relations of the following form exist:

A= ay) + Uy
Ty = ag) + gphy
AN = bn)—‘i + b127‘;
Ay = bmﬂ + bzzi{z

| @i | = 0,
(5.4)

| b | 5= 0.
Using (5.3) yields

A== by + @gadg) + byp(ag)y + dgaly)
Ay == gy (3y )y + dypda) + Dan(@ardy + Gpohs),

or,
N=cyh + ¢
5 1 11 "1oh )
(5.0) )\2 — ('01 + cg‘))\ B \ Czk‘ £ 0’
where
(5.6) (‘311612) — (bllan + biellyy  byyayp + bmazz)
L1 boalyy + Dogllyy  Dayap ~+ Doty

Thus the projectivity (5.3) has the same form, in arbitrary coordinates,
as the transformation between two arbitrary coordinate systems on ¢ or
&'. That | cix | 52 0 follows from the fact that (5.3), and hence (5.5), is a
one-to-one mapping of £ on ¢. The fact can also be referred to matrix
theory, since, from (5.6),

(¢ir) = (bir)- (@) which implies | cir | =] an | - | bix | 52 0.

The converse is also true, namely that every one-to-one transformation
of { on &' of the form (5.5) is a projectivity. For new coordinates on & need
only be defined by k==c;;h + Ciohe )\2 == CyyM + Caohs and the trans-
formation takes the form i{ =), \p=1,.

This also shows that there is only one projectivity, &, which carries
three given, distinct points of ¢ into a specified, distinct triple on ¢ in
a given order. For let y,zu and y',z’,u’ be given, distinct triples on £
and ¢’ respectively. Then % = %, 1, =1, is a projectivity of ¢ on &’ map-
ping the first triple on the second where (A,,%,) and (A(,3) are coordinates
in ¢ and & referred to the respective triples as base points. By definition,
coordinates (3;,%,) and (71,k2) exist on ¢ and ¢ such that a second project-
ivity is expressed by % =)y, X3 == %,. The two coordinate systems on &,
and the two on £, are related by (5. 4) hence the second projectivity is
expressed by (5.5) with (1,0), (0,1) and (1,1) going into points with
the same, or proportional, coordinates. This implies ¢y =0, ¢;, =0
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and ¢;; = ¢y, 0. But then (5.5) reduces to )\ ==13%;, A} ==12%,, which is
the original projectivity. Thus we have the theorem:

The general form for a projectivity between two lines, & and &', with
respective coordinates \,,\, and A}, is

M = ay); + aph
5.7 1 1M 12h2 & 0.
®-7) M= Ul + Gyl || 7
There is exactly one projectivity mapping three given, distinct
points of & on three given, distinct points of ¢ in a specified order.

It is now easily shown that:

5.8 If ® is a projectivity of § ont and @' is a projectivity of & on &
(-8 then ®®' is a projectivity of & on §'.

For, because of (5.7), ® and ¢’ may be written in the forms of (5.4) so that
®®' is given by (5.5) whose determinant was shown not to be zero. Because
of (5.7), then, ®®' is a projectivity.

In particular, if { ~ ¢’ in (5.8) then ®®' is a projectivity of § on itself,
Since we have already observed that the inverse of a projectivity is a
projectivity, it follows:

(5.9)  The projectivities of a line on itself form a (non-Abelian) group.

That the group is non-Abelian follows from the previous example of the
mapping *' = axr + b if it is written in homogeneous form (see also Exer-
cise [5.2]).

With the duality principle established, the facts for projectivities of
lines immediately yield dual facts for projectivities of pencils. Since it is
cumbersome to always state the dual of a situation under discussion this
will, in general, be left to the reader. This is not to underestimate the
importance of dualizing theorems, both verbally and pictorially, for added
insight.

Two-dimensional projectivities may be treated in the same manner as
those for lines. If P and P’ are two planes (which may coincide), a map-
ping of the points of P on the points of P’ is called a collineation (or project-
ivity) of P on P' if coordinates x; and z; exist in P and P’ respectively
such that the mapping is expressed by

Ti=1; i =1,2,3, or symbolically by &' = =.
Clearly the inverse of a collineation is also a collineation. Since any quadrang-
ular set may be selected for the reference points of a coordinate system,
there is always a collineation of P on P’ taking a given, quadrangular set
of P into a second, given, quadrangular set of P’ in a definite order. The '
points in P which satisfy - £ = 0 go into points which satisfy 2’ - ¥ =0,
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hence the line £ in P goes into the line & in P’ for which ¥’ = . Thus a
projectivity preserves incidence.

Consider, now, arbitrary coordinate systems, x; and i, i == 1,2,3 on
P and P’ respectively. If Z' =  denotes a collineation of P on P’, then,
from (3.20), in each plane the two coordinate systems satisfy relations of
the form

W

T = ik, i=1:293) Ialk‘¢0

k

1

(5.10)

b«

xi= Y, buTi, i=1,2,3, |bu|5=0.

k:

i

From the collineation, then

x.—Zbi;<Eakak) ZC@jxj, =123,
(5.11) f=1
where ¢y = 2 bz and | cij | 32 0.

k=1

That | ¢;j | 52 0 again follows either from the fact that the mappings in
(5.10) are one-to-one, or from the matrix relation

(o) = ( Y b.-kau) = (bu) (ar})

k=1

which implies | cij | = | bix | - | a4 52 0. Conversely, a mapping of P on
P’ in the form (5.11) always represents a projectivity. For, new coor-
3

dinates on P need only be defined by iizzcz-;xf. and the mapping

=1
takes the form xi=17;, i = 1,2,3.

Again, this shows that for two quadrangular sets in P and P’ respect-
ively there is only one projectivity ® which maps the first set on the
second in a given order. For if x and x' are coordinates in P
and P’ respectively, with the given sets as reference points, then 2’ ==z
is one projectivity with the desired property. For a second projectivity,
coordinates T in P and I’ in P’ exist such that the mapping is expressed
by 2’ ==x. Since (5.10) relates x with & and 2’ with &', this second pro-
jectivity is expressed by (5.11). Since it sends (1,0,0) into (1,0,0) it follows
that ¢p; == ¢;; = 0. In the same way, (0,1,0) - (0,1,0) implies ¢, = ¢3,=0
and (0,0,1) — (0,0,1) gives ¢;3 = co3 = 0. The collineation is therefore
reduced to xi = cyay, i = 1,2,3, and (1,1,1) - (1,1,1) implies that the cx
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are equal. Since the z; are determined only up to a factor, the transfor-

mation may be expressed by x' = z, which is the original projectivity.
Thus we have proved:

The general form for a projectivity vetween the planes P and P,
with respective coordinate systems x; and xi, is

3

(5.12) ’t'; = 2 QikTry i= 1,2,3, |a1'kl ;ﬁ 0.13

k=1

There is exactly one projectivity which maps in a specified order
a given, quadrangular set of P on a given, quadrangular set in
P

As in (5.8):

513 1 s aprojectivity of Pon P and @' is a projectivity of P on P',

O13)  then va’ is a projectivity of P on P'.

For ® and &' may be taken in the forms (5.10) whence ®¢’ is given by

(5.11) which is a projectivity.

If, in (5.13), P = P =P’ then @ and ¢', and hence $«¢’, are project-

ivities of P on itself. Since the inverse of a collineation has been already
seen to be a collineation, this establishes:

(5.14 The projectivities (or collineations) of a plane on itself form a (non-
14) Abelian) group.

Since the algebraic expression for a projectivity is exactly the same as
for a coordinate transformation, (3.20) may be reinterpreted as:

The projectivity

3
i =Y taze, i =123, |az|=0

k=1
induces the line transformation
3
5.15 .
( ) & :"ZAikEk’ i=1,2,3, I Aikl = 0.
k=1

The inverse projectivity is
3

= E A]nx]lg, 1= 132’3’ IAk"' I ;é 0’

k=1

13]f P = P’ the same coordinate system may be used both times. Then this relation
gives the coordinates of the image 2’ of z in the same coordinate system. For P = P’ this
interpretation will always be adopted without explicit statement.
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which, in line coordinates, is

3
5.15 "
(6.19) gy = Zakiilé, =123, |am|z=0.

k=1

A projectivity @ of a plane P on P’ sets up a correspondence between
the points of a line £ and those of its image &' which is called the mapping

of & on £’ induced by ¢.One and two-dimensional projectivities are related
by the following facts.

If a projectivity @ of P on P'.maps the line & (pencil x) on the line

(5.16) ¢’ (pencil x'), this induced transformation is a one-dimensional

o projectivity. Any projectivity of & and ¢' (x and ') may be induced
. by a projectivity of P on P' (which is not unique).

Proor: Let y, z and u be three distinct points of ¢ with the (neccessarily
distinct) images y’, 2’ and u’ on £’. Let v be any point of P not on { and w
any point of u X v which is distinct from u and ». Then v’ = v¢¥ and
w’ = w® are distinct points of P’ which are collinear with u’ but are not
on &'. If, now, v,y,z,w and v',y’,2’,w' are taken for the reference points in
P and P’ respectively, then the form of ¢ becomes x' = x. In particular
the point (0,x,,z,) on & goes into (0,x4,x3) on ¢'. By (4.9), x,x; and x5,x4
are projective coordinates on £ and &’ respectively, hence, by definition,
the induced mapping of £ on ¢’ is a projectivity.

Conversely let ¥ be a projectivity between £in P and £ in P’. Let y, z
and u be any three distinct points on £ with y’, z' and u’ their images under
W. Choose v and w as before and let »' be any point of P’, not on &/, and
w’ any point collinear with u’ and v’ but distinct from them. There is
then, by (5.12), a projectivity ¢ of P on P’ which mapsv,y,z,w on v',y’,z",w’
in that order. By the first part of the proof, the mapping of & on &
induced by « is a projectivity ¥’. Since a projectivity of two lines is
determined by three points, and y',z’,u’ are the images of y,z,u under
both ¥ and W, it follows that W' = W,

This purely analytical approach to projectivities does not reveal their
geometric significance. A geometric construction was given for the fourth
harmonic point to three given points: the one-dimensional projectivities
are the only one-to-one mappings of one line on another in which every
harmonic quadruple goes into a harmonic quadruple (in the same order).
The projectivities between planes are the only one-to-one mappings which
preserve incidence. A proof for the first of these two important facts

will be given in the next section, and the second will be proved in
Section 9.
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6. Cross Ratio. Intervals

Since any distinct triple of points on a linef can be sent by a projectivity
into any assigned, distinct triple on a line£’, there is no inherent, projec-
tive property to distinguish one collinear triple from another. (In Eucli-
dean geometry, for example, distance distinguishes pairs and hence
triples of points from other pairs or triples.) However, sets of four collinear
points have a special property to which we are led by the following con-
siderations. .

In the ordinary (z,,x.)-plane, the point (¥,,,), which divides the seg-
ment from (1;,%,) to (y5.y,) in the ratio X/p, has the coordinates

e it} S T '3

At op T %+
Setting A = M/( + @) and p = /(X + p), it follows that the same point
written as (pz; -+ Ny, #Z, + AY,) divides the segment in the ratio A/u. If,
now, [y], [z] and [u] are three distinct points on a line £ in the projective
plane with y, z and u as representations, then X and . exist, neither zero,
such that

%

u=>x + pz.
However, the ratio )\/x has no geometric meaning here. For, if F=oy
and z = 3z are new representations of [y] and [z] then
u=73y + pz, where > = 3o and p = p/3,
and )/u is not, in general, the same as /p. If [], represented by v, is a
fourth point on §, then ¥,y exist such that
v=2y + w'z=Ny 4+ p'z, where \' = /s and ' = p'/3.

Though the ratio »'/u’ is also (in general) not }'/i’, the change in repre-
sentations for [y] and [z] affects the ratio %'/u’ in the same way as it af-
fected theratio A/p. The ratio of ratios ('/w')/(\/i) is therefore independent

of the representations of [y] and [z], that is,
(M) () = (ot w83 0t /pd ) = /) (0w
For this ratio of ratios, associated with the points
9,2, Ay + pz, Ny 4 w'z,
to have a geometric meaning it only remains to be shown that it is inde-

pendent of the coordinate system. This follows immediately from the
fact that if new coordinates are introduced by

3
x‘ll = Z AixTry i= 1,2,3, | aikl #= 0,
k=1
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and yi,z;,u;,0; indicate the new coordinates of [y], [z], [u] and [v], then

3 3
yi= E Ak, Zi = E AirZy

k=1 k=1

3 3 3 3
1) u= Z ity = Z (Mg + pze) =) E g+ 2 A= NJi + 12

k=1 =1 Je==1 k=1

3 3
vi= 3 auve = 3, aa(Vys + 12 = Vi + iz
k=1 k=1
Thus the points are
y.2 0y + 2 Ny 7
which have the same associated ratio of ratios. This quotient of ratios
is called the cross ratio of the four points, and is denoted by R(y,z; u,v).

If y, z, u and v are four distinct collinear points, with u=">.y + iz
(6.2)  and v=yy + p,z, then the cross ratio of the four points in the
given order is R(y,z; u,0) == gty /At

Dually :

If 4,50,% are four distinct, concurrent lines, where ¢ =y + 5%
(6.3) and &=y + 0, the cross ratio of the four lines in the given
order is R(n,5,9,9) == Jgpty it
Since the equations for a projectivity have algebraically the same struct-
ure in point and line coordinates and are formally identical with those
for coordinate transformations,and because one-dimensional projectivities
areinduced by two-dimensional ones, it follows from (6.1) that:

6.4) The cross ratio of four collinear poinis, or four concurrent lines, is
) invariant under one and two-dimensional projectivities.

The cross ratios of points and lines are connected by the fact (Figure 7
in the next section):

If n8,9,0 are four distinct lines which are concurrent at a, and the
(6.5)  line & intersects them respectively in the four distinct points y, z, u
and v, then R(y,z; u,v) = R(n,{; 9,9).
Proor: Let u =7y + Az and v = p,y + u,2. Since R(v,%,5,4) is inde-
pendent of the choice of the representation of v and 7, we may put=a xy,
{=a x z Then

p~a X u=ax M + 22 =%@xy) + Ma X 2) =7y + %%,
Yrvaxv=ax(my + r2) =@ xy) + pa X 2) = p + b
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hence
R(y,z; 4,0) = Jgpy /My = R(n,8 4,4).

For the distinct points y,z,u =,y + %2, v = 1y + w,z, the definition
(6.2) gives R(y,z; v,u) = pyhy /it %, hence:

(6.6) R(y,z; v,u) = 1/R(y,z; u,v).
N

Also, since u and v are distinct, 5 = I’-] o |7 0, s0 u ==,y + hyz and
1 2

U ==y + poz imply that y = (wy/8)t1 — (hy/8)v and z == (— p,/B)u + (4y/3)0.
Therefore:
6.7 RWp;y,2) = (- 1/) (= p1/3)/(k/3) (4/3) = R(y,z; u,0).
From (6.6) and (6.7):
The cross ratio R (y,z; u,v) is not altered by the interchange of the

(6.8) pairs y,z and u,v in that order, or by the interchange of the order in

both pairs. Interchange of the order in only one pair produces the
reciprocal.

If y,z and u are the reference points on a line £ and v is a fourth point
with coordinates (A;,),), then u =y + zand » =}y - X,z, hence:
(6.9) R(y,z; w,0) = 3 /%,
Therefore, the value of R(y,z; u,v) determines v. A consequence of this is:

(6.10) A one-lo-one mapping of « line % on a line &' which preserves cross
’ ratio is a projectivity.

The proof, which is simple, is left as an exercise since a much stronger
theorem will be established in (6.15). The theorem (6.10) was stated

explicitly because projectivities are often defined as one-to-one mappings
which preserve cross ratio.

Because of (6.9), the cross ratio for four points is extended in the

following way to the case where two of the points coincide. Since u has
coordinate (1,1), we define

R(y,z; u,u) = R(y,y; u,p) = 1.
Because z has coordinates (0,1), we set

R(y,z; u,2) = R(z,y; z,u) = 0,
and since y is (1,0) we take

R(yz uy) = R(u,y; y,2) = .
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The relation (6.9) expresses the cross ratio in special coordinates. To
obtain an expression for general coordinates, let the transformation from
the special 3}, coordinates to general ), coordinates be given by

M= ay +
Ao == yrhy + day)y A=law|=0
If r and s are an arbitrary pair of points on 2, with coordinates (ry,r,),(s1,5s)
in the special system and (r},r,),(57,55) in the second, then:

|1 | = ry Ty|  |dply b el UgTy T+ Ugely
’ - g 9 - 3 >
6.1 $1 Sp 1381 + AaSe  AgpSy 1 UasSy
(6.11)
T T ap (112\ _
_ =dA-|rs].
S1 Sy Ay Uy |
In the special coordinates, with (v,,0,) for the former (A;,},)
10 0 1 U Ul 12 2
1 1] v, v u, u,| (v, v
R(®y.2z; u,0) == vy/v, == L2 1 2 L2
.7 u,v) 102 ‘0 1 1 O. z 22\ U Y.
1 11 jvy vy U Uy ! (D Uy
_lyul-lzv]
lzul-[yv]
From (6.11), then, in the general coordinales
R - -
. fup uh ) vy vyl ylu]-] 20 s
6.12 R(y,z; u,v) == — =
(12 Rz wo) ESCINE SR
w, uhl vl vy

If the ratio Jj==y;/ys which determines a poinl y, is taken as a non-
homogeneous coordinate, (6.12) simplifies to:
(-§)®-2),
-3)@-7

The particular character of the fourth harmonic point is also indicated
by cross ratio, since from (4.11) and (6.9) we obtain:

(6.13) R(y,z; u,v) ==

The point v is the fourth harmonic point to y, z and u if and only if

(6.14) R(y,z u,v) = - 1.

When v is the fourth harmonic point to y, z and u, the four points are said
to form a harmonic set or quadruple (in the order y,z,u,v). The pairu and v
is also said to divide the pair y and z harmonically, and, finally, u and v are

UThe proof for this relation may seem artificial, but is was chosen because it is a
simple example for a method frequently used to derive an expression in general coor-
dinates from an expression in special coordinates.
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said to be harmonic conjugates with respect to y and z. These different termin-
ologies stem, in part, from the many forms for the basic cross ratio.
For if R(y,z; u,v) = - 1, then (6.8) yields

R(y,z; v,u) = R(z,y; u,v) = R(z,y; v,u) = R(u,v; y,2) = R(1,v; 2,)
= R(v,u; z,j) = - 1.

Since (6.4) shows that cross ratio is invariant under a projectivity, and
(6.14) relates the harmonic property to cross ratio, we are now in a posi-

tion to prove the first of the two fundamental facts stated at the end of
the last section.

A one-fo-one mapping, ¥, of the line on the line &', which sends
(6.15)  harmonic quadruples into harmonic quadruples, is a project-
ivity.
Proor: (Due to Darboux, 1842-1917). Let the images under ¥ of the
reference points, y, z and u on £ be indicated by y’, z’ and u'. The points
y’', 2’ and u’ are distinct, since ¥ is one-to-one, therefore a projectivity ¥,
between £ and &' exists which also maps y,z,u into y’,z’,u’. Because Wi’
is a projectivity, and hence preserves the harmonicrelationship, ® =%
is a one-to-one mapping of ¢ on itself in which the image of a harmonic
set is again harmonie. Also @ leaves y, z and u fixed. If it can be shown
that @ is the identity the theorem will follow since 1= ¥W;! implies
V=,
To see that ¢ is the identity, since a general point = of § and the cross

ratio » = R(y,z u,x) uniquely determine each other, the transformation
is determined by the function

®(\) = R(y,z; u,x®) where A = R(y,z; u,x).
Since y, z and u are fixed, #(0) =0, ®(1)=1 and ¢(c0) =1o0. It must
be shown that ®()) = for all other .

If 3,2, are arbitrary (finite) values of A, corresponding to the points
z',2?, and if 2® is the point corresponding to \; = (A; + \2)/2, then
from (6.12) rearranging terms

il A ,1(xl+x2>/z %
0 1 1 1
3. 2yl 22} — —_—
1/R(y’x’“’“)—i1 N R T
0 1 1 1
Therefore y,23¢,21®,2?$ must also be a harmonic quadruple, or
1 20y _’ms) 20)
g0 1 1 1 ®(lg) — B()

=ll ml)!_‘ma) ¢oz)|=4>os)-mz)'
0 1 1 1
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Hence,

o o(352%) = gy = 200§ 40D,

Applying (1), when ), == 2\, %, = 0, yields

) 20(0) = ©(22).

Applying (1), when X, = 2), A, = 2, and using (2), gives

®) D00 + 1) = () + B(y).

This implies ®(m)) = ®[(m - 1)A] + ®(}), hence induction shows that

“) &(m)) = m®(}) for all positive, integral m.

Since (1) = 1, for integral m,n this gives ®(m) = m, and (1) = n®(1/n),

or ®(1/n) = 1/n, and q>(’§) —me G) = 7. Finally, (1) yields
[2() + 2(-1)]/2=*(0)=0,

or

®) () = — ®Q), hence q»(— %) = ¢(§> =-=.

Thus,

6) ®()) = A for all rational X\

Next, the points whose abscissas are 23, 1, X and — A form a harmonic set
because
-2 14%
A 1T-3— "
The images of these points then form a harmonic set, so
209 - o) 1-8(C) _
) -1 1-20) —
Using (5) this reduces to ®(32) = [®()]2. If now h is any positive number
it can be written in the form )2, therefore
@ ®(h) = (2 = [¢(W)[2 > O, for h > 0.
" (Because x — ¢()) is one-to-one and ®(0) = 0, X % 0 prevents ¢(}) =0
. in (7).) Next, (3) and (7) imply
® @A 4+ h) - () = @(h) >0, for h > 0.
That is, #(}) is an increasing function of ).
For any real number A there exists an increasing sequence of rationals
g % | and a decreasing sequence of rationals bV % both of which con-
verge to A. From (6) and (8), X, << % < ) implies
=) < ) < N) =N,

1.
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for all i, hence lim & = lim X} = % = ®()). Thus #(}) = 1, for all A, which

7> ® {—> o
establishes the theorem.

As previously indicated, the importance of this theorem lies in two impli-
cations: first, it shows that the concept of a projectivity between lines be-
longs inherently to projective geometry. Second, since the harmonic rela-
tionship can be defined entirely in terms of incidence, it follows from (6.15)
that in projective geometry the only important one-fo-one transformations of
a line on a line (or a pencil on a pencil) are the projectivities. There
are, however, projectively significant mappings of lines on lines which
are not one-to-one. These play an important role in algebraic geometry.

s ]
D,
. a(
D,
£ (] Y v u P v
Iz l/ / / Il \ \ \\ Iz
R(y,2,u0)<0 R(y,2,u0)>0 R(yzu0)<0
Fig. 6

Cross ratio may also be used in another problem. Up.to now, nothing
has been said about the arrangement of points on a projective line. In the
model of Section 1 a projective line was obtained by adding to an ordinary
line a “point at infinity.” Intuitively, this amounts to “closing’ the line,
and it is natural therefore to expect the projective line to have some of
the characteristics of a closed curve such as a circle. In particular, two
points on a circle decompose it into arcs, and we seek some analogue of this
on the projective line.

If a is an ordinary point in the model plane (Section 1), the pencil of
ordinary lines does not change its appearance if points at infinity are
added to the lines of the pencil. If v and ¢ are two lines through a they
divide the lines of the pencil into two classes according as they liein the an-
gular domain D, or D, (Figure 6). If v and ¢ are excluded from the two
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domains, and £ is a line not through a, the line £ is composed of n X g,
¢ x & and two sets of points I, and I,, the first being the intersections
of £ with lines in D, and the second the intersections of { with the lines
in D,. Though the sets I, and I, are intervals, and connected from the
projective point of view, the Euclidean intuition on which this construction
is based makes it unsatisfactory. A truly projective definition may be based
on the following observation.

If y,z,u,v,w are five, distinct, collinear points, then

(6.16) R(y,z; u,v)R(y,z; v,w) = R(y,z u,w).

This is an immediate consequence of (6.13), since
@-§e-2 G-N@W-2 _ @-@-32)

@-pn@-y @G-d@-9 @-2@-7
= R(y,z; u,w).

R(®y,z; u,p)R(y.z; v,w) =

Two distinct points, y and z, on a projective line ¢ determine intervals
defined in the following way. If u and v are points of £, neither of which
is y or z, they helong to different intervals if R(y,z u,v) << 0 and to the
same interval if R(y,z; u,v) >> 0. Because neither u nor v can be y or z,
R(y,z,u,v) cannot be zero or infinity and so has a definite sign, while
R(y,z,u,u) = 1 > 0 shows that u and u always belong to the same interval.
This relationship of two points being on the same interval is symmetric
since R(y,z,u,p) > 0 implies R(y,z,0,u) = R(y,z,u,p)~* > 0. Itis also transi-
tive, for if u and v are on the same interval, and so are » and w, then,
because of (6.16), u and w are on the same interval.

In applying this definition it is convenient to take u, distinct from y
and z, as a third fixed point. Then one interval determined by y and zis
that containing u, and consisting of all points » for which R(y,z w,v) > 0.
The other is composed of points » for which R(y,z 1,p) <Z 0.

7. Perspectivities

Projectivities between lines (or pencils) in the same plane may be ex-
pressed in terms of very simple projectivities called perspectivities. If£ and&’
are distinct lines in the plane P and a is a point on neither £ or &', each
line of the pencil through a cuts ¢ and &' respectively in a pair of points y
and y’. The association of y and y’ is called the perspectivity of & and &'
from the center a (Figure 7). Dually, if p and p’ are distinct pencilsin the
plane and « is a line in neither pencil, each point of x determines with p
and p’ respectively a pair of lines 4 and 4'. The association of n and +' is
called a perspectivity of the pencils p and p’ from the axis o (Figure 8).
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If n,¢,9,¢ are four lines concurrent at @ and if £ and &’ are lines not
through a which respectively cut the given four lines in the points y,z,u,v
and y’,2',u’,v’ (see figure), then by (6.5),

R(y,z; up) = R(n,&; ¢,¢) = R(y',2"; u',v').

a

Fig. 7

Fig. 8

Therefore a perspectivity preserves cross ratio. Since it isalsoa one-to-one
transformation, (6.15) shows that it is a projectivity. Clearly the perspect-
ivity maps £ x &' on itself. The converse of this is also true, thatis:

A perspectivity of & on & is a projectivity which maps & x ' on
itself. Any projectivity of & on ¥ which maps & X & on itself is a
perspectivity.

(7.1)
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To see the latter part, suppose b ~ £ X &' to be self-corresponding under a
projectivity ® (Figure 7). Let y and z be any other two points of £ with
images y' and z' on ¥, and define a ~ (y X y') X (z X z'). The perspect-
ivity of £ on §’ from a is also a projectivity ®’. In both { and &' the images
of b, y and z are respectively b, y’, and z'. Since, by (5.7), three points uni-
quely determine a projectivity, ® = @', hence & is a perspectivity.

As mentioned at the beginning of this section, projectivities may be
broken up into perspectivities. More precisely:

A projectivity between two distinct lines, which is not a perspectivity,

7.2) is the product of two perspectivities.

&

Fig. 9

For let ¢ be such a projectivity between the lines £ and &' (Figure 9).
On ¢ select a distinct triple of points, b,c,d, none of which is { x &, and
let b',¢’,d’ denote their images under ®. Take &, as the line b x d' and let
u indicate (¢ X ¢) X (d x d’). The perspectivity, ¢,, of ¢ on &, from u
sends b — b, d - d’, and sends ¢ into a point ¢, on . If v denotes
(¢ X ¢') X (b X b'), then the perspectivity, ®,, of § on &' from v maps
b >V, ¢y — ¢, d — d’'. Under ®,®,, then, b, c and d go into b, c'andd'.
Because ¢, and @, are projectivities, ®,®, is a projectivity and since it
coincides with @ on three points it is identical with @.
The counterpart of (7.2) for a single line is:

A projectivity of a line on itself is always expressible as the product

73) of three (or fewer) perspectivities.
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For if ® is a projectivity of £ on itself, let £’ be any line distinct from £ and
let a be any point whichis not on £ or ¢'. If ®, denotes the perspectivity
of £ on &’ from a, then ®7!is also a perspectivity. The product ¢@, is a
projectivity of £ on &, hence, by (7.2), it is the product of two perspect-
ivities ¢,,®,. But ¢®; = ¢,d, implies & = ¢,»,¥71, q.e.d.

Both (7.2) and (7.3) exhibit again the projective character of project-
ivities. These ideas may also be used to obtain a classic theorem due to
Pappus (3rd century A. D.).

If x,y,z are distinct points of a line¢, and z',y',z’ are distinct
(7.4)  points of another linel’, then the pointsa ~ (y X z') X (y' X 2),
b (z x 2y X (2 X ), and ¢ ~ (z X y') X (¥ X y)are collinear.

z

Fig. 10

Proor: (Figure 10). It may be supposed that none of the six given points
is w~ ¢ X ¢, since in that case the theorem is trivial. Let ¢, indicate
the perspectivity, from center z, of 2’ X y on . Under this mapping,
>z, c>y,y->wandun~ (' X Yy) X (& X z') goes into z’. The
perspectivity, ®,, of {’ on y x z' from the center z maps y' — a, w — Y,
z — 7 and sends 2’ into v~ (z' X z) X (y X 2’). The product ¢,®,
is a projectivity of (z' X y) on (y X 2') in which ' - v, ¢ > a, u - 2|
and y — y. Sincey is self-corresponding, ®,®, is a perspectivity (see (7.1)).
Its center is then at b ~ (z' X V) X (' X u). Since c and a are an asso-
ciated pair in the perspectivity, they are collinear with its center b.
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8. The Projectivities of a Line on Itself

If I, is a subset of a group of transformations I, and I', is also a group, it
is called a sub-group of I'. A trivial sub-group of any group is formed by
the identity element 1 by itself. If I'; is any other sub-group of I, it must
contain at least one element ¢ === 1. By repeated application of the product
property, I'; must also contain all powers of &, that is d& = @2, P2.d = I3,
etc. For I'; to consist of just two distinct elements it is necessary that ¢2 be
either ¢ or 1. It cannot be @ since 2 = ® leads to ¥2¢1 = ¢blor & =1,
contrary to assumption. If #2 == 1, the two elements form a group.

A transformation, which is not the identity, but whose square is the
identity, is called an involution. The reflection of the Euclidean plane
about a line is an example. The condition #2 =1 is equivalent to & = ®~1
hence an involution is its own inverse.

In (5.9) it was shown Lhat the projectivilies of a line £ on itself form a
group I;, and we wish to determine whether any elements in this group
are involutions. If u,,u, are coordinates on , then by (5.7) a general pro-
jectivity ¢ of £ on itself has the form:

I
(8.1) P e P + Gyl { Uy Oy
. T3
Uy == AUy + Glly,

=0,

gy Qg

where the same coordinate system is used for u and u’. Since the coeffi-
cients determine the mapping, ¢ can be referred to by its matrix (aa),
I,k = 1,2. Because of (5.6), 12 corresponds to the matrix

( @y + a3 a0y, + amazz)
Aoy yy + Ugolly;  OgyQys + G3o

. . . e g b O .
which will represent the identity if it reduces to 0 b)’ b 5= 0, the matrix

for the identity. By inspection, this will be the case if a;; = — ap,. Since
this also implies © 54 1, it is a sufficient condition for © to be aninvolution.
Conversely, if 2 == 1, then

_ 2
@Gy + Apply = Aty + G,
and

Apyllyy + Uoplyy == G338y + Gyallyy = 0.
These may also be written as:
(a3 = Q99) (ty; + @) == 0 and ayy(ay; + @) = tyo(ay; + az) = 0.

If ¢ is not the identity, the case a;, + @y 5= 0 is ruled out, since with it
the foregoing equations imply a;; = @y, and a,, = a5, = 0, the conditions
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for ® = 1. Hence a;; + a5, = 0 is also a necessary condition for @ to be
an involution.

(8.2)  The projectivity (8.1) is an involution if and only if a;; + a,, =0.
If ¢ is an involution, it is its own inverse hence u’ = u® implies u = u’®.

Moreover, if this relation holds for a single pair of distinct points, a pro-
jectivity ® must be an involution. That is:

8.3 If @ is a projectivity of ¢ on itself and if two distinct points u and v
(8.3) on & exist such that u = v® and v = u®, then ¥ is an involution.

For the fact that ¢ interchanges u and v shows it is not the identity.
On the other hand, if w is any point of ¢, and w' = w®, the points u,v,w,w’
go into the points v,u,w’,w'd. Since ¢ preserves cross ratio, this with (6.8)
implies

R(u,v; w,w') = R(v,u; w',w'®) = R(u,v; w'e,w’),
hence w = w'® = wd?, or ¥2 = 1. This result, in turn, implies:

8.4 If 2,y,u and v are four distinct points of & there is exactly one
8.4) involution ®, of & on itself, such that v = u® and y = x®.

There is exactly one projectivity &, of ¢ on itself, which maps u, » and
into v, u and y. By (8.3) it is an involution.
The involutions in T'; have a basic character in the following sense.

8.5) A projectivity ® of & on itself, which is not an involution, is express-
) ible as the product of two involutions.

First, if ® =1, then for any involution &, in Ty, ¢=*of=1. If ¢ is
neither the identity nor an involution, there exists at least one point u
which is not left fixed or interchanged with its image, thatis, v = u® 4~ u
and w = v® A u,w. There exists then a projectivity ¢, which maps v,u,w
into v,w,u, and (8.3) shows that ¢, is an involution. Because ®, = ¢,
interchanges u and v it is also an involution. Therefore

?=0.1=00{=(P0))d, = b0,
which is the product of two involutions.
We now consider the problem of determining the fixed points, that is

the points mapped on themselves, in a projectivity of a line on itself. If ¢

in (8.1) represents a general projectivity of £ on itself, its fixed points are
clearly determined by the simultaneous equations:

My = ayuy 4+ appu
8.6 1 uly 19Us 2 _
®.5 iy = Ayl + Ayl =0

Substituting from these in the relation u,u, — u,u, = 0 yields

Uy (A Uy + Agelly) = Up(Ayylly + ayoly) =0,
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which may be written

(8.7 At} + (dgs — ay)Uylly — ayouf = 0.
This is a quadratic equation for the quantity (u,/u,) with the discriminant
(8.8 A = (a3 — Gg)® + 405505,

When @ is the identity, a;; = ay, and a;, = a5, =0, so (8.7) is iden-
tically zero, confirming the fact that every point is fixed. If ® 5 1, then
it is called:

elliptic  if A < 0; there are no (real) fixed points,
(8.9) parabolic if A = 0; there is one fixed point,
hyperbolic if A > 0; there are two fixed points.

As an example, consider the distance preserving translation =’ = ¢ + a
of the real axis on itself. The mapping has no fixed elements at a finite dis-
tance, but if the axis is interpreted as a projective line the point at oo
remains fixed. It is thus a parabolic projectivity. For the mapping

2’ = -x + a, the point = = % remains fixed, as well as the point at oo, so

the projectivity is hyperbolic. It is also an involution. There are no examples
for the remaining case quite so elementary and familiar since elliptic map-
pings are not distance preserving. In the translations, £’ = x 4 a, we have
also the instance of a sub-group, I/, of the projective group I'. Though no
element of the sub-group 1" is an involution, any member of it, 2’ = z 4+ a,
is the product of the involutions ' = —z and "’ = -z + a.

In a hyperbolic projectivity, ®, there are two fixed points, v,w. For
any pair of non-fixed points, u,z with images u',z’, the invariance of
cross ratio under @ implies R(v,w; u,z) = R(v,w; u’,z"). Expressing this,
for simplicity, in non-hemogeneous coordinates by means of (6.13) gives
it the form: B

@-nw-2 (@-u)w-z)

G-D@-u) " (-2)@-u)
Merely rearranging the terms in this equality yields:
O-0@-T)_ (-2 @-7)
-w)y=-1) " @-2)@-%)
Since u aund z were arbitrary, this implies:
8.10 If v,w are the fixed points of a hyperbolic projectivity, the cross
(8.10) ratio R(v,w; u,ud) is constant for all u distinct from v and w.

If ® is an involution, it was shownin (8.2) that a;, = — a,,. It follows then
fI'OIIl (8-8) that A= 4(&%1 "'l" alzazl) e 4("‘ a11a22 + 012(121) _ "4:l Aik l # 0.
This shows:

R(v,w; u,u’) = = R(v,w; z,2).

(8.11)  There are no parabolic involutions.
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When ® is hyperbolic it has two fixed elements, v,w. Using the fact that
u=u®?, and applying (8.10), gives R(v,w; u,u®) = R(v,w; ud,u). By (6.8),
the second of these is the reciprocal of the first, so [R(v,w; u,u®)]? =1.
Hence, for u = vw, R(vw; u,ud)===1. But the value 4+ 1 would
imply u = u® (compare Section 6) making u a fixed point and hence not
distinct from v and w. Therefore the cross ratio is — 1 and the set v,w,u,ud
is harmonic. That is:

8.12 A hyperbolic involution maps each point into ils harmonic con-
(8.12) jugate with respect to the two fixed points.

It follows that such an involution is completely determined by the two
fixed points.

IFig. 11

More generally, since a projectivity is determined by the images of
any three points, a hyperbolic projectivity will be known if the two fixed
points v,w and one pair of corresponding points, x and x', are given. For
the same reason, both a hyperbolic and a parabolic projectivity are deter-
mined if one fixed point v, and two pairs of corresponding points,  and
2', y and y’', are given. To better illustrate the geometric side of these
results, we give a construction for the last two cases (Figure 11).

The fixed point v, and the corresponding points, x,x’ and y,y’, of the
projectivity @ are given on the line & Through v draw any line & + &,
and select on £, any distinct pair of points z4,y, different fromv. Let g be the
intersection of x X x,and y X y,and let ¢’ be the intersection of x' X z,
and y' X y,. Consider the perspectivily ®, of £ on £, from the center g,
and @, the perspectivity of ¢, on Z{rom the center ¢’. The product ®,d,
sends v,x,y, into v,x’,y’, via v,x4,y,, and is therefore the desired project-
ivity @, The image z' = z®, of any point z, can be obtained in the following
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way. First z, is found as the intersection of &, with g X z, and z’ is then
the intersection of £ with ¢’ X z,.

In this construction, a point w of &, w 4 v, will be mapped on itself if
and only if ¢ X w and ¢’ X w intersect &, in the same point w,. Therefore,
the second fixed point is w = (g X ¢’) X &. The projectivity is parabolic
if g X ¢’ passes through v, otherwise it is hyperbolic. A consequence of
this construction is the following addition to (7.3).

A hyperbolic or a parabolic projectivity of a line on itself is express-

(8.13) ible as the product of two perspectivities.
However,
(8.14) An elliptic projectivity of a line & on itself is never the product of

“Jewer than three perspectivities.

For suppose ¢ to be expressible as & — ¢, #,, where ¢, and ¢, are per-
spectivities of £ on ¢, and &, on & respectively. By the definition of a per-
spectivity, the point ¢ X &;is fixed under hoth ¢, and @,. It is thus a fixed
point for ¢, ®,, hence < is not elliptic.

9. Gollineations

A projective theorem was defined to be a fact expressible solely in
terms of the incidence relation of point and line. Consequently, a one-to-
one mapping of a plane I’ on a plane P’ which preserves incidence will
preserve all projective properties. It is therefore important to know the
class of all one-to-one incidence preserving transformations of one planc
on a second. This problem was mentioned at the end of Section 5 and is
answered in the theorem:

9.1)

Proor: Let x — x' == 2 be such a mapping. Choose p,,p,,psp4 to be any
quadrangular set in P. Then the image set pj, i = 1,2,3,4 must also be
quadrangular. For suppose that pi,p;,ps lie on a line I'. Let y be any
point of P, other than p,, which is not on p, X p, and let = denote
the intersection of y X p, with p; X p,. Since x is on p; X p,, the point
a2’ ison pj X ps hencex' X ps~ {'. Because pg and all points on p; X p,
also map onto ¢, it follows that ¢ carries all of P’ into I and hence does
not cover P'. The set p4, as stated, is therefore quadrangular.

Now from (5.12) there is a projectivity ¢, of I> on P’, which maps p;
into p},i=1,2,3,4. Therefore ®®;! is a one-to-one incidence preserving
transformation of P on itself which leaves p; fixed, i =1,2,3,4. If it can
be shown that #®7! is the identity then ® = @, establishes the theorem.

A one-lo-one incidence preserving mapping of the projective plane
P on the projective plane P' is a collineation (and conversely).
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As in the proof of (6. 15), the problem can thus be transposed to showing
that if x — x®' is a one-to-one incidence preserving mapping of P on
itself, under which the points of a quadrangular set, p;,p,,ps.ps, are left
fixed, then @' is the identity. Since the harmonic relationship, as shown
by the construction for the fourth harmonic point, is defined entirely in
terms of incidence, it follows that it is invariant under ®’. Now consider
g~ (py X pa) X (pg X py) (Figure 12). Because &' preserves incidence,
and leaves p; fixed, i = 1,2,3,4, it leaves ¢ fixed. The induced mapping
of p; X p, on itself is one-to-one, with the harmonic relationship inva-
riant, and so, by (6.15), is a projectivity. Having three fixed points, the
projectivity is the identity (see (5.7)), hence every point of p, X p, is
fixed under ¢'. By the same reasoning all of the points on the lines pi X pj,

Fig. 12

i £7j, 1,j =1,2,3,4, are fixed points of ®'. If z is a point not on any of these
six lines, an arbitrary line £ through x cuts the six lines in at least three
distinct points. The induced mapping of £ on itself is therefore the iden-
tity, hence « is a fixed point of ®'. Every point of P is therefore a fixed
point of &' and ®'=1.

In (5.14) it was shown that the projectivities of a plane on itself form a
group I'. In many respects the elements of I’ differ from the one-dimen-
sional projectivities in the group I'. For instance, one important differ-
ence is that, whereas I'; contains elliptic elements [that is, projectivities
without (real) fixed points], there are no such mappings in T.

9.2) A collineation of the plane P on itself has at least one fixed poini
©. and one fived linels

Let @ be the collineation

3
=Y aati, 1=123, |aa| 0,

k=1

15To say that a line is fixed is not to say that the individual points on the line are
fixed. If this also is the case the line is said to be pointwise invariant. The same distinc-
tion exists between a pencil being invariant and linewise invariant.
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It must be shown that there is at least one point x for which z' ~ z, or,
algebraically, that the equations

(9.3) )‘xi =Eaikxk; i= 1,233
k

have, for a suitable % 5= 0, a solution (%;,%,%5) 7 (0,0,0). If the equations
are written in the usual homogeneous form

9.4) N g - =0, i=123,
x
the determinant of the system is
Uy =2 Gy Q3
AQ) = | an Qoo — ) Qg3
dgy Qg Qgg = 1

For fixed }, (9.4) will have a non-trivial solution if and only if A() =0.
But A(A) =0 is a cubic equation with real coefficients, and hence has at
least one real root, which is not 0 since A(0) = | aix | 72 0. Corres). onding to
this root, then, there is at least one fixed point.*® The existence of a fixed
line follows, of course, irom the same argument applied to the collineation

in the form & = ¥ Aufi, i = 1,2,3.
k

A consequence of (9.2) is that there is only one type of involutary
collineation of a plane on itself. It belongs to the special collineations,
called homologies, described as follows. A homology © is a collineation of
the plane on itself, other than the identity, which leaves fixed every
point of a line « and every line through a point a not on o. The line « and
the point a are called respectively the azis and the center of the homology.
From the preservation of incidence, a is fixed under ® and a general
point z goes into z’ on the line a X z.

Given a line « and a collinear triple of distinct points, a, z and z’,
(9.5)  none of which is on o, there is exacily one homology ©, with center
a and axis «, which maps z on z'.

Proor: If b and ¢ are any two points of o, not on{~a X z~va X z',
then neither of the quadruples a,b,c,z or a,b,¢,2’ contains a collinear triple,
hence there is exactly one collineation ® carrying a,b,c,z into a,b,c,z in
that order. The projectivity, which ¢ induces in the pencil at a, leaves

18Although A(M) = 0 cannot have more than 3 roots, (9.3) may have infinitely many
roots z, because for certain values of a;; and X the three equations may reduce to only
one essential condition (or even none in case of the identity).
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a X b, a X ¢, and ¢{ fixed and is therefore the identity. Because every line
through a is invariant, every point on « is fixed, so ® is a homology.

It is now easy to construct the image x’ = x of any point x (Figure 13).
If x is not on ¢, let z X x cut « in y. Then ' must lie on both the lines
a X z and z’ X y and hence is their intersection. For x on ¢, let b X x
cutc X zinr.Thenr'isgivenby (a X r) X (¢ X z')andx’ byl X (b x ).
This construction implies, of course, the uniqueness of ®.

A

Fig. 13

A homology is called harmonic if it has the property that a general pair
of correspondent points, z and z', are separated harmonically by the
center a and the point in which z x z’ intersects the axis «. An immediate
consequence of the construction just given is the lemma:

If & is a homology with center a and axis «, and if for one
(9.6)  pair of correspondent points, z and z', the quadruple z, z', a and
Z=a X (z X 2') is harmonic, then ¢ is a harmonic homology.

For ¢ induces on « x z a projectivity with « and z as fixed points, hence
the projectivity is hyperbolic. Since z, z’, a and z form a harmonic set then,
by (8.10), a and z separate harmonically every corresponding pair on
a X z. If, now, x is any point not on @ X z or ¢, and 2 =10 X (a X ),
then the construction shows that a,z,z,z' and a,%,r,xd = x' are perspect-
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ive from a point y. Hence the latter quadruple is also harmonie, proving
(9.6).

Clearly a harmonic homology is an involution of the plane. What is
more:

Harmonic homologies are the only collineations which are involu-

9.7) tions.

For let ¢ be an involutary collineation, and choose two pairs, a,a’
and b,b’, of corresponding points such that no three of the four are
collinear (Figure 14). Then, by (5.12), ¢ is the only collineation which maps
a,a',b,b" into a’,a,b’,b. On the other hand, if ¢ ==(a x b’) x (a’ X b),
d=(a X by X (@ X b)), f=(a x a) x(xDb)g=(@xa)x(dxc)
and h=(b x b) X (d X c), then, by the harmonic construction, a,a’,f,g
and b,b',f,h are harmonic sets. The harmonic homology with center f and

o

¢ g d h
Vig. 14

axis d X ¢ must, then, send a — a’ and b -» b’, and so coincides with &.

If the definition used for a homology is changed only in requiring that
the center be on, rather than off, the axis, the resulting transformation is
called an elation.

©9.8) Given a line o and «a pair of points z,2' not on «, there is exactly one
) elation P, having o as an axis and z,z' as corresponding points.

For let { ==z x 2z’ (Figure 15). If the desired elation ® exists, it is clear
that its center must be ¢ =={ X «. But in the manner argued for homo-
logies, the image of any point x not on « or { is now determined. For if
y=a X (z X ), then x' must be the intersection point of y x 2z’ and
a x x. This shows there could not be two elations &, and also indicates
how to construct . For if b is any point of « distinct from y and a, then
® has to be the unique collineation sending a,b,z,2 into a,b,z’,x’ in that
order. If @ is taken as this collineation, then, since a, b and y are fixed
under @, the entire line « is pointwise invariant. Similarly, since ¢ leaves
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fixed the lines o, z X 2z’ and z X z' in the pencil on a it carries every
line of the pencil into itself, hence is an elation.

A collineation ®, not the identity, which leaves all points of a line «
(9.9) invariant, is an elation if there are no other fixed points, and is a
homology otherwise.

Let @ have a fixed point a not on «. Since every line = of the pencil on a
has two fixed points, a and v X «, the pencil is linewise invariant and ¢
is a homology. If for every z not on «, z’ 4+ z, set { =z X z’ for some
pair z,z' and a =« X { (Figure 15). Since {’ = {® contains a and z’, which

Fig. 15

are on ¢, ¢ carries { into itself. For any point x not on ¢ or «, the same
argument shows that @ takes  x ' into itself. The point £ x (x X z'),

being fixed, is then by assumption on « and hence is a. Therefore ¢ is an
elation with a as its center.

The product of two harmonic homologies ®,,®,, with the same axis
9.10) a, is an elation (which may be the identity). Conversely, every elation

can be expressed as the product of two harmonic homologies having
the same azis as the elation.

To show this, we need the following fact.

If a line «, and two points z and z', not on «, are given, there is
(9.11)  exactly one harmonic homology with axis « and z,z' as correspond-
ing points.

Take a' =« X (z X z') and define a to be the fourth harmonic point to
z,z' and a'. The harmonic homology, with center a and axis «, pairs z
and z' and is clearly the only harmonic homology with this property.
Returning to (9.10), let ¢, and ¢, be two harmonic homologies with
the same line o as axis. If a point z, not on «, is fixed under @, ®,, then
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z=20,®, implies zd, = zP;* =z, b3} = zb,. If z is fixed under ¢,
it is also fixed under ¢, and must then be the center of both homo-
logies, so ®, = ®,. For z+ z&;, z and z¥, determine the center of @,.
Since z A zd,,z and z¢, determine the same center for ¢,, and again
@, = ®,. Thus in either case ®;=®,, and ¢,®,= ¢} is the identity,
since ¢, is an involution. Should there be no fixed points of ®,®, which
are not on «, then (9.9) shows the mapping to be an elation.

To see the converse, suppose ¢ to be an elation, not the identity, with
« as its axis. Take any point z which is not on « and let 2z’ = z®. There is,
by (9.11), a harmonic homology ®;, with axis «, such that z' = z®;. Take
¢, a second harmonic homology with the same axis and with center 2.
Then z' = z'd, = zd, P, which shows that ©,?, is not the identity. By
the preceding argument, this implies that points of =, and only these,
are fixed under ®,®,, which is thus an elation. Since <+ and ¢,®, have o
and zz' in common, they are the same elation.

To obtain algebraic expressions for homologies and elations in forms
that will be needed later, use can be made of the fact that in both types
the points of the axis are fixed. Take the axis as 8;. If the collineation
x =2au<x;., lai| 0, i=1,2,3 leaves 35 pointwise invariant, it leaves

k
(1,0,0) and (0,1,0) fixed which implies ay = ag; = 0 and a;5 == a3, =0.
To insure | aix | 2 0, the term «y, cannot vanish, hence can be taken as unity.
Finally, because (1,1,0) goes into itself, ayy = a,,. We conclude, then, that:

A collineation © which leaves every point of x,==0 fized has a
representation of the form

9.12) X == by, + 4y
Ty == DTy -+ Ay
N
Ty == Ny

This mapping ¢ will be a homology or an elation according as there is
orisnot a fixed point off the axis 4,. In the former case a point y = (y1,J,,1)
exists satisfying y, == by, + a, and y, == by, - a,. For b == 1, these equa-
tions have a solution only if @, == @, = 0, and the mapping is the identity.
If either a, or a, is not zero, there will be a solution y, = /(1 - b) and
Ys=a,/(1 = ) if and only if b £ 1. When (ap,a,) % (0,0) and b=1, ¢
has no fixed points ofl the axis and it is an elation. Its center is the inter-
section of the axis 8, with the line joining any pair of corresponding
points. One such pair is (0,0,1) and (a;,@,1), whose join cuts 8, in
(a;,a5,0). Summing up these results:

When the collineation (9.12) is not the identily, it represents a
(9.13)  homology with center (ay,a,1 -b), if b1, and an elation with
center (a,,a,,0), if b =="1. The axis in both cases is 3.
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The homology @ of (9.12) will be harmonic if it is not the identity but
its square is the identity. Since 2 is given by
%' = b, + bayx, + ayx,
Ty = b, 4+ ba,x; + a,x,
T3’ = @,
$?=1 implies ®=1 and a;(b + 1)=ay(b + 1) =0. If b=1, then
a; = a, =0 and ¢ is the identity. Hence ¢ £ 1 implies b = — 1, that is:

The collineation (9.12) is a harmonic homology if and only if
(9.14) h— 1.

An application of (9.13) is the result:

The elations with a common azxis « form an Abelian (or commu-
(9.15) ) 7
lative) group.!

For if 8, is chosen as o, then any two elations, ¢, and ®,, with this axis
can be represented as:

by Ty =0 + aXy, =12, Oy xi=x; + bixy, =12,
Ty = &y Xy = ,.
Then ®,9, is given by
PaPo: 4 = Ti + (@ + b)g, Ty =15, { = 1,2,

and the symmetry in ¢; and b; shows @&, = ®,®,. That ;! and &,
are elations, with axis «, follows by inspection.

Exercises!®

[2.1]  Verify in detail the relation following (2.2). Do the same for (2.4)
and (2.6).

[2.2] In Cartesian three-space, the direction numbers of a line through
the origin form a class of triples. The coefficients in the equation of
a plane through the origin also form a class of triples. Show that
if these classes are taken for “point” and ‘“line’” respectively, they
define a projective two-space.

[3.1] Show that the points

a* = (2,3,-2), b* = (1,2,—4) and ¢* = (0,1,- 6)
are collinear. Find )\ and # such that a* = Ab* 4 pc*. Also find
representations b'* and ¢'* of b and ¢ such that a* = b'* — ¢'*,

In such statements, it is understood that the identity is included as an element.
®The notation [2.4], for example, means the fourth exercise concerning material

in Section 2. It is not necessarily related to theorem (2.4). An asterisk on a problem
number indicates a more difficult exercise.
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If &, 7, {, © are respectively the lines z; -2, = 0, 2, + x5 = 0,
2, + r,-x3 =0, x, + =, + 2x; = 0, use the triple notation to
find the line (! X v) x (% X ¢), and write its equation.

If (1,- 1,2), (3,2,1) and (0,-1,1) are taken for the reference points
on a line, find the projective coordinates of (5,2,3). If (1,1,0),
(- 1,2, 3) and (1, 3,4) are the reference points of a second system,
find the equations relating the two systems of coordinates.

Show that if » and ¢ are projective coordinates on a line, and X,
are defined by (3.7), then A,z are projective coordinates.

Show that if d,x a, d. X b and d; X ¢ are concurrent at e, then
(dy x dy) X (@ x B), (de X dg) X (b X ¢) and (ds X dy) X (¢ X @)
are collinear (Theorem of Desargues).

Show: if a,,a;,a5,b is a quadrangular set and ¢; = (b X a;) X (aj X ar),
where i,j,k take the values (1,2,3), (2,3,1) and (3,1,2), then the
three points (¢: X ¢j) X (a; X @j) are collinear. (Hint: choose a; =d;
and b =e.)

If (1,2,1), (1,1,0), (2,1,1) and (0,1,7) are taken for the reference
points of a coordinate system, find the coordinates of (1,1,1) in
this system.

Find the transformation in point coordinates induced by

Ei = 2&1 - 352 + Ea’ EQ = 4&1 + 2&2“653: E; = El + Ez + 358-
Find the inverse transformations.

State Desargues’ theorem entirely in terms of the basic incidence
relation z-{ = 0 and dualize it mechanically.

Prove the uniqueness of the fourth harmonic line without making
explicit use of the duality principle.

State the dual to (7.4), the theorem of Pappus.

Give a proof of (4.5) which uses Desargues’ theorem, but which
is not the dual of the proof given for (4.1).

Obtain the result of problem [3.5] from the theorem of Desargues.
Verify the values of the coordinates in Figure 4.

If, in the pencil z, ¢ is the fourth harmonic line to §,v,%, and a line o,
not in the pencil, cuts these four lines in the points a,b,¢,d, show that
d is the fourth harmonic point to a, b and c.

Show that if ® is a one-to-one transformation of a set S on itself,
and ¥ = 1, then the mappings 1,%,$2,... 471 form an Abelian
group.

Find two definite projectivities of a line on itself which do not
commute (compare (5.9)).
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Find the transformations @ : ' = ax + b, a2 0, for which 2 = 1.
Do the same for ®* = 1.

Find the collineation which sends the points (1,0,1), (2,0,1), (0,1,1)
and (0,2,1) into d,, d,, d; and e respectively.

For a given integer n > 1, find a collineation ® 5= 1 of the plane
P on itself for which &7 = 1.

The transformation & : &) = & - &, & = 25 — &, & =t + &

sends the line (1,1,1) into the line (2,1,2). Obtain this fact from the
equations of the lines and the point transformation form of ¢.

Show that the points z = (1,4,1), y == (0,1,1) and z = (2,3,- 3)
lie on a line { and find w on £ such that R(x,y,z,w) = — 4.

Let z,y, u and v be four distinct points of the Euclidean plane on¢
and let p be a point of this plane not on & If (x,y) denotes the
smaller of the two angles between p X = and p X y show that
| R(z,y,u,v) | = sin (z,u) sin (y,v) csc (z,v) csc (y,u).

Let z,y,u,v be four distinct, collinear points, with A = R(x,y,u,).
Show that under the 24 permutations of z,y,u and o, the cross
ratio assumes four times each of the values A, A%, 1 =X, (1 —R)7,
(= 1AL, AL = 1)L,

‘With the same assumptions and notation as in [6.3], show that
there are less than 6 distinct values for the cross ratio, if and only
if in some order the points form a harmonic set.

Let py,p.,p; be the vertices of a triangle, and g¢i,9; be points on the
side opposite p;, i = 1,2,3. Let ki = R(g:,9%,pj,pr) where I,j,k take
the respective values (1,2,3), (2,3,1), (3,1,2). Show that g;, g; and
g are collinear if and only if k/J,k, = 1.

In the proof of (7.2) where is the hypothesis used that < is not a
perspectivity?

Carry through the details of (7.2) analytically for the projectivity
in problem [5.6].

Dualize the construction in Lhe proof of (7.2).
Dualize the Theorem of Pappus and its proof.

Let p and g be two different pencils and ¢ be a projectivity which is
not a perspectivity of pon g. If a = [(p x ¢)P] X [(p X ¢gP71,
show that the pairs of points in which a line through a intersects

corresponding lines in p and ¢ arc the pairs of corresponding points
in an involution.

Prove that there is a projectivity of % on itself carrying the distinct

points a,b,¢,d into b,a,c,d respectively if and only if the points
form a harmonic quadruple.
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Find the involutions of a line on itself which have (1,1) and (2,0)
as fixed points.

If ® is a mapping of the set S on itself and ¢ == 1, but ¢ = 1,
where n is the smallest number with these two properties (n > 1,
$n = 1), then n is called the period of @.

Show that a parabolic projectivity is never periodic. Prove there is
always a projectivity with a given period.

If at least one of two distinct involutions on a line is clliptic show
that there is exactly one pair of points which are corresponding
in both involutions.

Give an example of two hyperbolic involutions of a line on itself
which have no pair of corresponding points in common.

Show that the value of R(v,w,u,u®) in (8.10) is az/ay,.

Find the parabolic projectivities of ¢ on itself which have (2,1) as
its fixed point and sends (2,3) into (1,0).

Dualize the construction referring to Figure 11.

The two fixed points, » and w, of a hyperbolic projectivity are given,
as well as onc pair, x and x', of corresponding points. Give a con-
struction for the image, y’, of an arbitrary point y.

Find the fixed points and lines of x; = x, + x,, x; = 8x, + 3m,,
Ty =X + T, + 2%,

Prove: An elation induces a parabolic projectivity on every line
through the center distinct from the axis. Dualize.

If a and a are respectively the center and axis of a homology ¥,
show that for y, distinct from a and not on =z, the cross ratio
R(yyd,a,x X (a X y)) is constant.

Show that a homology induces a hyperbolic projectivity on every
line through its center. Dualize.

Let a,b,c and «',b',¢’ be two triangles such that a x o', b x b’
and ¢ X ¢’ are concurrent. Show that a homology exists which
maps a,b,¢ into a',b',¢’ respectively.
Find the values of a for which

T = X; C0S a - X, Sin @, T3 = — 2, Sin a - x, COS a, T} = x,
is a homology.
Show that a harmonic homology with d;: as center and &; as axis

carries the locus |z, |k + P |2, |# = |z, |¥ into itself. Give a Euclid-
ean interpretation.

Find the clation with axis 3, which carries (2,1,1) into (3,2,0).
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[9.9] Find the collineations which leave the line (1,1,1) = ¢ pointwise
invariant.

[9.10] Show that two distinct, harmonic homologies commute if and only
if the center of each lies on the axis of the other.

[9.11] Use the collineation (9.12) to verify the footnote statement concern-
ing the roots in (9.3).

[9.12] Dualize the statements and proofs of (9.8) and (9.9).



CHAPTER II

Polarities and Conic Sections

10. Polarities
3
. . . . . . , O .
From an algebraic point of view, the collineation x{ =Laik:ck is a
k=1
linear, homogeneous transformation of number triplesinto other number
triples. If the original triples are interpreted as points and the image
triples as lines, the mapping may be written as

3
(10.) g= Y aum, lax|0, i=123.
k=1

Such a transformation of P on P’, which associates points with lines, is
called a correlation. While mappings of this type are less important, in
general, than collineations, certain special correlations are of the greatest
importance and are intimately related to conic sections.

The transformation (10.1) induces a correlation of the lines of P into
the points of P’. From (5.15) this mapping is

3
(10.2) o= ¥ Auk, |Aa|#0, =123,
k=1

while the respective inverses of (10.1) and (10.2) are

3
(10.3) m= 3 Auth,  |Aw|0, 1=123,
k=1
and
3
(10.4) b= Y auxh, |aw|0, i=123.
k=1

That the corrclation (10.1) preserves incidence follows exactly as in the
proof of (3.19), save that formally z-£ =0 now implies &'-x' =0 and
conversely. Collinear points, then, map into concurrent lines and con-
versely. Making use of this fact, (5.12) and (9.1) yield:
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If a,b,c,d are points of P, no three of which are collinear, and
a',p',y",8" are lines of P', no three of which are concurrent, then

(10.5)  there is exactly one correlation of P on P' in which a — o', b — B/,
¢ — ', d - 3'. Every one-to-one mapping x — &' of the points
of P on the lines of P’ which preserves incidence is a correlation.

If a correlation of P on P’is denoted by y and a correlation of P’
on P’ is denoted by y', then y.y' is a collineation of P on P'. More
particularly, when P,P’,P" are all the same plane, then y and y-y' are
respectively a correlation and a collineation of P on itself. The import-
ant special class of correlations, y, referred to at the beginning of this

section, are those for which y? is the identity collineation of the plane
on itself.

DeFiNiTION @ A correlation of the plane P on itself, whose square is the
identity, is called a polarity of P. The line which is the
image of the point x is called the polar of x and the point
which is the image of line & is called the pole of &.

Since, for a polarity, y2 =1 it follows at once that:
(10.6)  If £ is the polar of z, then x is the pole of .
Because collinear points go into concurrent lines,

- If x iraverses a line v, then &, the polar of x, traverses the pencil
(10.7) .
whose center z is the pole of .

To require that y> =1 is the same as requiring that y = y~1. Therefore
(10.4) must be the same transformation as (10.1). Consequently the set
of coefficients ¢;; and the set a;; must be proportional, or a; = ‘au, A5 0,
for all i and k. Repeating the equality gives ay = \ap == *(Aai), $O
A== 1. The case A= -1 would imply ay = — ay and hence a;=0.
Then | a;;, | would equal

0 A, a
12 13
-, d - a 0
- a]Z 0 a23 = - a12 _ a12 28 + am a12 -a - 0-
~Qy —@y O 13 13 23

Since this contradicts | ay | 52 0, it follows that A = 1, hence that y>=1
implies @iz = ais. Conversely, if a; = a4, (10.1) and (10.4) are identical.
Therefore:
3
(10.8)  The correlation &} =2 agxy I a polarity if and only if ay = Q.
k=1

Because for a polarity (10.1) and (10.4) are identical, as are (10.2) and
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(10.3), the distinction between z and z’ and that between Z and & may be
dropped. Henceforth, we will write a polarity in the simpler form

b= 2 QAigXr, |aw| 50, it = Qs
(10.9) "

= 2 Auks, [Ai|520, Ay=An,

where Ay is the co-factor of i divided by | ai |.

The point z is said to be conjugate to the point y if it lies on the line v
which is the polar of y. The polar line = is thus the locus of all points
conjugate to y. Since n; = zaikyk, the condition for x to be conjugate to y,

k
namely that z.n = mei =0, can be written as
i
(1010) Zaikxiy,, = 0.
ik
The symmetry, ai = aw, shows that y is also conjugate to z, as could
be seen, too, from the condition v2 == 1.

According to (10.10) a point x is conjugate to itself, or more briefly is
self-conjugate, if and only if it satisfies

(10.11) Zaikxm = 0.
i,k
Since self-conjugate points satisfy a quadratic equation, it is not sur-

prising that they represent a conic section, which explains the importance
of polarities.

It will prove useful to have the following explicit dualizations of some
of the foregoing concepts. The line § is conjugate to the line = if it contains
the pole y of n. The pencil y is thus the locus of lines conjugate to «. For
conjugacy of £ and =, the condition is

(10.12) X Aukin = 0,
ik

so £ is a self-conjugate line if and only if

(10.13) Y Ak = 0.
ik

Consider now a polarity, y, which associates the point z and the line £
as pole and polar. Then, point by point, £ maps into the pencil z. If
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yi 1 = 1,2,3,4, are any four points of ¢, and =, { =1,2,3,4, are their re-
spective polars, then the same argument as in (6.4) shows that

R@uys Ys¥a) = R(azn25 mama)-
If £ is not self-conjugate, it does not pass through z, hence it intersects »;
at yi, i = 1,2,3,4. Then, from the preceding result and (6.5) it follows
that
R@yu¥Ysye) = RY1Y2Y2Ya)-

The mapping y — y', where yis on £ and g’ is the intersection of Z and the
polar of g, is thus a projectivity of £ on itself. Each point of £ goes intoits
conjugate point on £, hence the mapping interchanges conjugates in pairs,
and is an invelution y(§). Similarly, y induces an involution v(x) in the
pencil whose center z is the pole of £. Lines through x, which correspond
under y(z), pass through points which correspond under y(£). Hence ()
has fixed lines, or is hyperbolic, if and only if v(%) is hyperbolic. Summed
up:

A polarity y induces on any non-self-conjugate line (pencil x) an
involution y(§) of & (y(x) of z) which inferchanges the conjugate
pairs of £ (of x). If £ is the polar to x, then y(5) and (x) are both
hyperbolic or both are elliptic.

(10.14)

If a line £ contains no self-conjugate points it is clearly not a self-
con]:ugate line. On the other hand, if £ is not self-conjugate then its self-
conjugate points are the fixed points of y(£). Because there are no parabolic
involutions, it follows that £ has either two self-conjugate points or none
at all. The former case also implies & is not self-conjugate, that is:

A line &, which contains at least two self-conjugate points, is
(10.15)  not a self-conjugate line (and therefore contains exactly two self-
conjugate points).

Proor: ‘Suppose ¢ to be self-conjugate. Then its pole z lies on £ and is a
self-con]ugate point. By assumption £ contains another self-conjugate
point . The line =, polar to y, therefore passes through y. But = also
passes through x since the polar line to z contains y. Hence n.N T Xyl
But x_—{u y, which contradicts the fact that the correlation visa one-to-one
mapping.

Combining these results yields:

A self-w{ljugate line contains exactly one self-conjugate point
(namely its pole). A line which is not self-conjugate contains two
self-conjugate points or none at all.

(10.16)

if x 1;fmd yarea distingt pair of conjugate points, and the line x X y is
go ze -c’:];)n]ug.ate, then its pole z is the intersection of the polar lines of
and y. The triangle z,y,z, which is then called self-polar, has the property
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that each vertex is the pole of the opposite side. As might be expected,
a polarity takes its simplest form when the triangle of reference is self-
polar. To follow up this idea in greater generality, suppose first that a
correlation, Eizgmkxk, carries d; into 8;, i==1,2,3. That d; goes into
k

§, implies

0=ay 1+ ag-0 + a,-0

0 - (131-1 "I" a32‘0 + (133-0,

or that ay = a5, = 0. Similarly, from 3, and §; being the images of d,
and dy, we obtain a,, = a4, = 0 and a;3 = a53 = 0. The condition ai, = a,
which characterizes polarities, is trivially satisfied, so the correlation isa
polarity. Since d;,d,,d; may be chosen arbitrarily this shows that:

A correlation of P on itself which maps the vertices of any one

(10.17) triangle into the opposite sides of the triangle is a polarity.

A polarity in which the coordinate triangle is self-polar has the

form
(10.18) & = bix;

o = &if b;
This follows from setting b;= as in the above computation, whence
| @i | == bybyby 2 0 yields bi 52 0, i =1,2,3.
For a polarity in the form (10.18), the conditions (10.10) and (10.11) for
conjugacy of points x,y and lines &4 become

(10.19) Y by = 0 and Y kne/bi =0,

=0 i=123.

while the loci of self-conjugate points and self-conjugate lines are given by

(10.20) }] ba? = 0 and ZE%/bi =0.

1 1

In standard terminology these simplifications may be described by saying
that choosing the coordinate triangle to be self-polar transforms the
equation of the self-conjugate loci into a sum of squares. As a theorem
this becomes:

If Eaimxk, where a;; = ai, (s a non-degenerate quadratic form
1,k
(i. e, |ax| 52 0), then a transformation xj = Ecﬂcyk, [ ¢je | 5= 0,
(10.21) &
] =1,2,3, exists which reduces the quadratic form lo the type

Vbt b0, j=1,2,3.

Aad
1
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The coefficients, J;, in the reduced form are either all of the same sign,
or else two are alike and the third different. However, replacing b: by - b
in & = byx; does not change the polarity, so we may suppose all the b
to be positive, or else two to be positive and one negative. In the first of
these cases, since (10.20) has no real solutions there are no self-conjugate
points or lines and the polarity is called elliptic. In the second case, the
polarity is said to be hyperbolic, and in this type there are infinitely many
self-conjugate points and lines.

Returning to the involutions induced on lines and pencils by a polarity
v, these must be elliptic if vy is, since under v no self-conjugate points
or lines exist. But much less information than this suffices to tell that a
polarity is elliptic.

10.99 If v-a =0 and the involutions v(v) and y(a), induced by a polar-
(10.22) ity y, are both elliptic, then v is elliptic.

Proor: Let a be the point d,. Its conjugate point on « is different from q,
since y(v) is elliptic, and so may be chosen as d,. The polar lines to d, and
d, intersect at the pole of n and this point may be taken as d;. By con-
struction, the triangle d,,d,,d, is self-polar hence the locus of self-conjugate

points takes the form Ebizi = 0. Because the coefficients b; are not zero,

there is no loss of generality in supposing b, > 0. Since y(n) is elliptic,
n ~ 8, contains no self-conjugate points, hence bz} + byx3 =0 has no
(real) non-zero solution. Because b, >0 it follows that b, > 0. The fact
that y(d,) is elliptic implies that v(3,) is elliptic, hence 3,, that is 2, =0,
contains no self-conjugate points. Therefore b,2} + byxi = 0 has no
non-zero solutions, and b, >0 implies b, > 0. Since b; >0, i = 1,2,3,
Zbﬂ% = 0 contains no real points, q.e.d.

This theorem provides a simple analytical criterion for deciding whether

the general polarity v, & =Zauxi, ai, = ai, is hyperbolic or elliptic.

k
For, from (10.22), y will be elliptic if and only if y(3,) and y(d,) are elliptic.

The pair (x,,2,,0) and (y,,,,0), associated under y(3,), are conjugates and
so are related by

Yy + a(TyYs + oY) + deoys = 0.
The fixed points of y(3,) are then those for which
03 2F + 20337, %y + Gy} = 0.

This equation will have no real solutions, or y(35) will be elliptic, when
31052 — 03, >0, that is, when A;; | ay | > 0. Dually, there will be no real
fixed elements in y(d,), or y(d,) will be elliptic, when A, Ags— A2 > 0.
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Since the inverse of the matrix (A4) is (ai) and for a polarity these
matrices are symmetric,
Q= (ApA gy — A)/| Air| = (ApeAgy — Ads) | ir|.
Therefore:

The polarity & :Eai,,:n is elliptic if and only if
k

(10.23) Uy ey — a3 > 0 and ay; - | as | > 0.

11. Conic Sections

In a hyperbolic polarity, & = Zamx,,, the locus of self-conjugate points
k
satisfies the non-degenerate, quadratic equation

(11.1) Yawar=0, ax=ai, |au|50.

ik
This locus, which may also be written in the form
(11.2) a2} + agof + @5s23 + 20115225 + 201521 T3 + 205523 =0, | a,x |20, i

is satisfied by infinitely many points. It is natural, then, to define with
von Staudt (1798-1867), the creator of pure projective geometry:

A point conic is the locus of self-conjugate points in a hyperbolic polar-
iyt
A line conic is the locus of self-conjugate lines in a hyperbolic polarity.

If C is a point conic, determined by a hyperbolic polarity v, the self-conju-
gate lines of y are defined to be the fangents of C. This is justified by
(10.16), which shows that the self-conjugate lines are those which have
exactly one point in common with C. It follows, then, that the locus of the
lines tangent to a point conic C is a line conic. If C is given by (11.1), the
corresponding line conic, that is C in line coordinates, is

3
(11.3) Y Aukit =0, Aw==Au, |Au|=0.
k=1
The distinction between point and line conic has therefore more of a logical
than a practical significance. But it is important to be aware of the distinc-

*Whereas the projective treatment of conics as developed here is a product of the
last century, the theory of conics itself is almost as old as Euclid’s Elements. The
most famous ancient treatise on conics is due to Apollonius who died about 200 B.C.
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tion because curves of higher order are in general not self-dual. For simpli-
city, we will use the word conic, by itself, for point conic.

With reference to a conic C lines fall into three classes: the fangents,
the secants which cut C twice, and lines which do not intersect C. Dually,
a line conic C provides three catagories for points: those on C, those on
two tangents, and those on no tangent. We have no name in our vocabu-
lary for points of the last two classes because we are not accustomed to
thinking of a curve as a line locus. We will use, for them, the terms fwo-
tangent point and no-tangent point.

A point x, not on a conic, is a no-langent or fwo-tangent point
according as y(x), the involution induced on the pencil z, is elliptic

(11.4)  or hyperbolic. Dually, if % is not tangent to a conic, it is non-inter-
secting or a secant according as y(£), the involution on &, is elliptic
or hyperbolic.

Proor: If v(z) is elliptic (hyperbolic), it has no (two) fixed elements,
hence there are no (two) self-conjugate lines through x, hence no (two)
tangents through z. Conversely, if z is a no-tangent (two-tangent) point,
there are no (two) self-conjugate lines through x, hence no (two) fixed lines
under y(z), so y(z) is elliptic (hyperbolic).

(11.5) Every line through a no-tangent point is a secant. Every point
on a non-intersecting line is a two-fangent point.

It has alre.?dy been shown that the induced involution, y(z), on a mno-
tangent pomt.x is elliptic. If the induced involution on any line v through
z were also elliptic, then, contrary to assumption, the polarity y would be

elliptic (see (10.22)). Therefore y(n) is hyperbolic for all n through z, and
each of these lines has two self-conjugate points.

(11.6)  The polar to a no-tangent point x is a non-intersecting line &.
For if y(z) is elliptic, then y(¥) is elliptic, hence  is non-intersecting.

(11.7) If z and 2’ are conjugate points, not on C, and x x z' intersects C
tn u and v, then the points u, v, x and z' form a harmonic set.

This follows from the fact (see (8.12)) that in a hyperbolic involution a

point and its image are harmonic conjugates with respect to the fixed
points. Asa corollary of this and (11.6):

;,}]: a P‘I’int Z is not on C, and a line  through = cuts C in u and v,
(11.8) en &', the fourth harmonic point to u, v and x, is on & the polar

line to x. When z is q no-tangent point, x' traverses all of % as =
traverses the pencil af .
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The polar line to a point z, not on C, may be constructed in the following
way (Figure 16). Draw two secants 4,{ through z, cutting C in b,b' and
c,¢' respectively. Put u = (b x ¢) X (b’ X ¢)andv=(b" X ¢) X (b x ¢'),
and let b= X (u X v) and ¢’ ={ X (u X v). By the construction
of Section 4, b,b',x,b" and c,¢',z,¢'" are harmonic quadruples. Then, from
(11.8), u x v is the polar of x. Clearly u is also the pole of v X z, and v is
the pole of u x z, hence u, v and z in pairs are conjugates.

The polar of a two-tangent point x is the line connecting the contact

(11.9) points of the two tangents through x.

Fig. 16

Let ¢ and ¢ be the tangents with contact points p and g. Since x is on the
polar of p and the polar of ¢, the polar of = passes through p and q.

If a conic is given by Eaikxixk =0, then the locus of points conju-

ik
gate to a given point y, namely the polar of y, is expressed by
(11.10) Y auzige = 0.
i,k

In particular, if y is on C, (11.10) gives the equation of the tangent
through y. )

It was shown that the conic in (11.1) takes the simple form }: bat =0

i

if the coordinate triangle is self-polar, and we will have occasion to mgke
use of this. Frequently, however, another form is convenient which
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corresponds to the representation xy = k of a rectangular hyperbola in
ordinary analytic geometry. This form of the hyperbola arises from select-
ing the axes, =0 and y =0, for the asymptotes, that is, the lines
contacting C at infinity. To derive an analogue, suppose for the general
case, (11.2), that the points d; and d, are on the conic and that the lines
85 and 3, are tangent to C at d, and d, respectively (Figure 17). The fact
that C contains d, == (1,0,0) yields directly that a,; = 0. Similarly d,
on C implies azy = 0. Using (11.10), the tangent at d, has then the form
2(a;9y + ag7;) = 0 and since this must be §,, that is z; = 0, it follows

a;

Fig. 17

that a;, = 0. In the same way, the fact that 3, is a tangent at d; implies
that a3 = 0. Therefore (11.2) takes the form a3 + 2a,,x,2, = 0. Since
N0W | Qi | = ~ a,,a%;, neither a,, or az, vanishes. Thus:

If the coordinate triangle is such that 5, and 8, are tangent to the
(11.11)  conic at d; and dj respectively, then the equation of C has the form
x3 — kx,xy = 0, where k £ 0.
Here k will be 1 if C contains one of the points (1,1,1) or (- 1,1,- 1), in
which case it will contain both.
The following is an application of (11.11):

If the line ¢ intersects the conic C at a and «, then one of the
(11.12)  intervals determined by a and a' consists of no-tangent points, and
the other of two-tangent points.2

2For the definition of interval compare the end of Section 6.
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For let a=d,, a = d,, and take d, to be the intersection point of the
tangents at ¢ and «'. Finally, assume that (1,1.1) is on C so that the equa-
tion of the conic is 2§ — 2,03 = 0. For this form it is easily verified that
ai = A, so the corresponding line conic has the form £} - &£, =0.
Since ¢ joins d;,ds, it is the line &;, and any point y on it has coordinates of
the form (y,,0,y5). A generalline through y satisfies -y =mn,y, + 13Y3=0,
$0 ', = — Az and n = Wy, for a suitable 2. To be a tangent, =« must
satisfy m2 -y =0, that is =3 + »*yy; = 0. This is possible when
yy; < 0 and impossible when y,y; > 0. Since y = y,d; + ysd;, this
means there are no tangents through y if R(dy,dy; dy -+ day) = yy/ys >0
and there is a tangent through y when R(d,dy d; + dgy) = y1/ys < 0.

192. The Theorems of Steiner and Pascal

With the results of the last section a famous theorem due to Steiner
(1796-1863) may be verified.

THEOREM OF STEINER: If a and a’ aretwo distinct points of a conic C,
and z is a variable point on C, then the mapping of the pencil a on
the pencil a’ given by a X z — a' X z is a projectivity, but not a
perspectivity.

(12.1)

For let a be chosen as d; and @' as dg and take é; and 9, as the tangents to
C at a and a’ respectively (Figure 17). In addition, let e = (1,1,1) beon C
so that the equation of the conic is x}-2,z;=0. Then the lines
2, — pr, =0 and px, — My =0 intersect in a point z of C. The first of
these is the line @’ X z ~ (- ud; 4+ %3,) in the pencil at a, and the second
is @ X z ~ (8, - 35) in the pencil at a. Then

(12.2)  R(3y, g, 85 + 35, n3y — A3g) = — [k = R(3y, 85, 8y 4 3g — pdy 4 23y)
shows the transformation to be a projectivity. It is not a perspectivity
since 3,, common to both pencils, is not its own image. It is also clear that

a perspectivity would require the conic to be degenerate.
The Steiner construction also defines a conic, that is:

The locus C of intersections of corresponding lines in two, distinct,

(12.3) L . o .
. projective, non-perspective, pencils is a conic.

To see this, the steps above need only be retraced. Let @ be the given
projectivity of the pencils a and a'. Put d, = a and d;==a'. Since ® is
not a perspectivity, the common element 3, ~ d, X dg is not mapped on
itself. Therefore 3;and 3, may be chosen so that ¢; = 3,51 and §, = 8,®.
Finally, take ¢ = (- 1,1,- 1) to be on C. Then ¢ maps
dy X g~ (0,1,1) =3, + 33 into dy X g ~ (1,1,0) = 3; -+ 8.
5
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Because it preserves cross ratio, ® must map 18g — M35 ON — wd; - ASy.
The intersection of these lines satisfies 23 — z,23 = 0 and is therefore a
conic.

An interesting illustration of Steiner’s theorem in the Euclidean plane
appears in connection with the inscribed angles of a circle which have a
common chord. Let a and a' on a circle C define a chord, and take
T, %2, %, o beany four distinct points of C. Setting gi=—a X x, fi—=a’ X Xi,
i=1,2,3,4, it follows that the angle between &; and &; is either equal to
that between & and & or is its supplement. In any case the sine of the
two angles is the same. The exercise, given in [6.2], then shows that

IS

R(ipiz,ia’aq;) = R(E{,gz, ;3’;3 ?
so the mapping £ — %' is a projectivity. This can also be interpreted as
showing that the cross ratio of the lines joining four given points on a
circle to a variable fifth point of the circle is constant.
We now consider some applications of Steiner’s theorem:

(12.4)  Five points, no three of which are collinear, lie on exactly one con tc.
. For if a,a',b,,b,,b, are the given points, then the association
a X bi —-a X bi; i= 132:3’

uniquely determines a projectivity ¢ of the pencil a on the pencil a’.
It is not a perspectivity because b,,b,, by are not collinear. The locus of

the intersection of corresponding lines is thus a conic through the five
points. It is unique since & is.

(12.5) Four points and the tangent through one of them, or three points
and the tangents at two of them, determine a conic uniquely.

Th-e first part means, more precisely, that given a quadrangular set of
points a,a’,b,,b,, and also a specified line « through a, but not through
a, ?71 or b, then there is one and only one conic through the four points
?vhlch has « as its tangent at a. To see this, put «’ ~ a x @’. Then the pro-
]e'ctivity determined by « — o/, a X b; > a' X b, and a X by, — @' X by
yleld§ the desired, unique conic. To show the second part, let a,a’,b be
the given pon-collinear triple, and « and «' be the given lines through a and
a’ r.espx?.c?wely, where neither line intersects the triple again. The unique
projectivity, fixed by the correspondence x > a X a', a x a’ — ', and
axb- @' X b, determines the only conic through the triple which hes
xand o as its tangents at ¢ and «'.

Another consequence of Steiner’s theorem i i
th 5 >
Paseal (1625 1060, is the classic result due to

(12.6) Tnf-:om-:.M OF P:ASFAL: Pairs of opposite sides of a hexagon in-
scribed in a conic intersect on a strai ght line.
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Explicitly, if z,y,z,2',y',z’ lie on a conic C, then the points
armo (@ x2)X @ X2,b~vzXT)X(E XT),ande~ (T X ¥') X (T X Y)

are collinear (Figure 18). (Note: the theorem of Pappus is the theorem
of Pascal for the case when C degenerates into two distinct straight
lines (compare (7.4)).)

By Steiner’s theorem, the projectivity which the conic determines,
between the pencils at  and z, gives the association x X 2’ —z X x/,
TXY >zXYy, t X2 >zx2z, and x X y—>z X y. In the order
given, these four lines of the pencil x intersect the line ' X y in the points
T',¢,p~(x X 2z) X (z' X y)and y. The corresponding lines of the pencil
z cut the line z' X y in the points ¢~ (z X ') X (' X y), a,z' and y.
The projectivity between the pencils at z and z thus induces a project-
ivity between the lines 2’ X y and 2’ X y in which z’,¢, p and y are

sent into ¢, a, z’ and y, respectively. Since y, the intersection of the
lines, is self-corresponding, the mapping is a perspectivity. Its center is
b~ (p X 2) X (@ X q). The join of the corresponding points a and c,
then, must pass through b.

The dual of Pascal’s theorem is that of Brianchon (1785-1864):

12.7) TueoreM oF BuriancHon: The lines joining opposite vertices of
’ a hexagon circumscribed about a conic are concurrent.®

Pascal’s theorem gives a very simple construction for the second pointz'in
which a conic through five given points x,y,z,2',y’ again cuts a given secant ¢
through x. Determine points ¢, b and a by means of ¢ ~ (x X y') X (&' X ¥),
bE X (zXxa), and ar~ (b X ¢) X (y' X z). The desired intersection
is 2’ ~ & X (y X ). This construction by means of incidence exhibits
clearly the projective character of a conic.

3This was one of the first important theorems to be actually discovered by the
duality principle.
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13. Collineations of Conics

Our next aim is to study the mapping of one conic on a second, or on
itself, which are induced by collineations. In particular, the collineations
which take a conic into itself will prove to be fundamental in the study
of non-Euclidean geometry. In that connection, it is unfortunate that
the case where the conic is “imaginary”, that is, where it is defined by
an elliptic polarity, is just as important as the real case. For the imaginary
case it is meaningless to speak of the collineations carrying the conic into
itself unless we admit imaginary points. However, the polarity, whether
elliptic or hyperbolic, is defined in terms of real points and real lines.
Therefore many properties of imaginary conics may be obtained without
using imaginary elements, and some of the following results are so phrased
as to apply to both the real and imaginary case.

Let @ be a collineation of the plane P on the plane P’ (the two planes may
coincide). If v is a polarity of P on itself which maps the point x into
the line &, we write, as before, { =xy. The mappings y and ¢ together define
a correlation of P’ on itself under the association (&y)» =zx' — &' = Ed.
That is, under y the line £ maps into a point z of P which is sent by ¢
into 2’ on P’, while the image of ¢ under @ is a line &’ in P’. More concisely,
z' = xd = (&P = {(yP) = £'&(yd) = &'(d1y®), which shows that
the correlation £’ — x’ is the mapping ®~1y®.

This is again a polarity. For, by the definition of polarity, v2 is the
identity, and from this and the associative property it follows that

(D)2 = (7}y®) (271yd) = (@-1y) (227 (yP)
= ‘b"l(yl‘f)‘b = 01y2p = $-11¢ = P-1d =1,

If y is hyperbolic then self-conjugate points exist, that is, points z
which are incident with their images £ = zy. Since y, ® and ®! preserve
incidence, such points and lines go into pairs of the same type. The induced
polarity, ®-'y®, then contains seli-conjugate elements and is therefore
hyperbolic. Using the same argument for the elliptic case, it follows that:

A collineation @ of a plane P on a plane P’ induces, for any polarity
(13.1)  yof P, the polarity y = ®-1y® of P'. Both polarities are hyperbolic
or else both are elliptic.

The following theorem gives exact information about the totality of
collineations which send a given conic into itself.

If a,a,b are three distinct points of P on a conic C, and a',a’,b’ are
13.2) three distinct points of P' on a conic C', then there exists exactly

one collineation of P — P' in which C -~ C' and a —~ a',a — @
and b — b,
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Let « and @ be the tangents to C at a and @, and take «’ and @' to denote
the tangents to C' at ¢’ and @'. Put ¢=a X @ and ¢’ = «' X @'. Since
no three points in either the quadruple a,a,b,c, or a’,a’,b’,¢’ are collinear,
there is just one collineation ¢ which maps the first set on the second in
the order given. Under @, C goes into a conic C'' through a',a@',b’ with
«/,&' as its tangents at a’ and a'. But the conic through three given points,
with tangents specified at two of them, is unique (see (12.5)), so C'' = C'.
On the other hand, any collineation which sends C into C’ in the manner
specified has to send ¢ into ¢’ to preserve incidence, hence it pairs the
indicated quadruples and so coincides with ¢,

This theorem implies that from the projective point of view we can-
not distinguish conics as being ellipses, hyperbolas or parabolas. For
there exists a collineation carrying one conic into a second whatever
their types. This was already apparent in (11.11) and is not surprising in
view of the fact that the distinct cases in ordinary geometry correspond
to the different types of intersection between a plane and a cone. There
is then an actual perspectivity of an ellipse, for example, into a para-
bola. However, the degree of freedom we have in transforming one conic
into a second is remarkable.

Our interest will center later on collineations carrying a conic into itself.
To obtain a formulation, which may also serve for imaginary conics, we
show:

If the conic C on P is defined by the hyperbolic polarity v, then the
(13.3)  collineation ® of P on itself carries C into itself if and only if ®
and y commute, that is oy = .

By (13.1), the polarity induced by ¢ with respect to yis ®-1yb. Ifey = vy,
then y = &-y®, hence the induced polarity also defines C, so C¢=C.
Or, to follow the argument through for a point x on C, let y = x®. Take
£ =uxy and 1 = yy. Then n = 2Py = xyP = Ey2® = E&®. Under ¢, x -y,
& — . Since x is on &, y is on 7, so y, being self-conjugate, is on C.

For the converse theorem, assume & carries C into itself. If x is not on
C, the geometric construction of Section 11 for the polar £ to x shows that
x® is the pole of £b. That is, (x®)y=Ed.But{ =@y, so x(dy) = x(y®) for non-
self-conjugate points. If xlies on C, then ¢ carries the tangent at x into the
tangent at the image of x. The image tangent is thus &, and is also (z®)y,
being the polar of the image contact point. Again x(¥y) = E® = x(yP).
Hence ¢y =~v¢ for all .

The collineations of a plane on itself form a group I', and those elements
of I' which leave a conic C invariant obviously form a sub-group of I'. For
if C is its own image under % and W', it goes into itself under #¥" and W1,
The following proof is valid for the imaginary case also.
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For a fived polarity y (elliptic or hyperbolic), ull the collineations
(13.4) o ; ) - . ,

b in I' which commute with v form a sub-group 1y of I".
For if both ® and W commute with y, then (PU)y = (W) == y(PW),
hence ¥ commutes with v and therefore belongs to I'y. Also if &y =v®,
then &y®-1==ydd1 =1+, hence y®1 = d-ly, so &7 belongs to I'y.

(13.5) If & commutes with the polarity vy, and leaves x fixed, then ¥ leaves &,
: the polar of x, fixed also.

Using x ==&y and z¢ = z yields & = ayd == xdby = 1y = &,

Combining this with the fact, (9.2), that all collineations have at least
a fixed point and a fixed line, we see that every collineation in I'y leaves
fixed at least one point and line which are pole and polar.

Because any point and its conjugate on a secant of a conic are separated
harmonically by the intersection points of the secant and the conic, it
follows that a conic goes into itself under a harmonic homology whose
center a is the pole of the axis «. More generally, and including imaginary
conics:

The harmonic homology & with center a and axis = commules
(13.6) . . .
with the polarity v if « = ay.

For suppose = = ay. By choosing d, as «, and taking any two distinct

conjugate points on « as d, and d,, the coordinate triangle is self-polar.

Hence, by (10.18), y has the form vy : & = bix;, bi 2 0, i = 1,2,3. Using

(9.14) and the fact that d, goes into itself, it follows that @ is expressed by
by = -1, Ty = -2y  Tyg= Tg.

The calculation of v and y® gives both in the form

L=-bm, £y = - boay, £y == by,
hence 4~ =y,

If ¢ is a collineation of P on itself which leaves a conic C invariant, the
induced mapping x — x' of C on itself is called a projectivity of C on itself.
By theorem (13.2), there is exactly one projectivity of C on itself which
carries thrée given points of C into three other given points of C.

If £ —2' is a projectivity of C and p,q are arbitrary points of C,

then the mapping (p X ©) > (¢ X ') is a projectivity of the
pencil p on the pencil gq.*

(13.7)

Suppose the projectivity x — 2’ to be induced by @, and take p’ == p®.
Then ¢ induces a projectivity of the pencil p on the pencil p’ by means of
p X £ —>p' X z'. By Steiner's theorem, p’ X ' ->¢ X 2’ maps the
pencil p’ projectively on the pencil ¢. The product of these two project-

‘For x = p, the symbol p X zis to be interpreted as the tangent to C at p.
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ivities is again a projectivity and is, on the other hand, the given mapping
pXTorqgXI.

If @ is a projectivity x — x' of C, and b is any point of C not fixed
(13.8)  under ®, then the points (b x x') X (b X x) lie on a straight
line «. This line, called the axis of ®, is the same for all choices of b.

By the previous theorem, b’ X x—b x ' is a projectivity of b on b.
It maps b’ X b, the common element of the two pencils, into itself and
so is a perspectivity (Figure 19). Hence, the intersections of corresponding
lines lie on a line a. To see that « is independent of b, let ¢ be any other
initial choice and «’ the corresponding line. Let x be any point of C, dis-
tinct from b,b’,c,c’, and not fixed under ®. Applying Pascal’s theorem to

Fig. 19

the inscribed hexagon b,x',c,b',x,¢’, the points ¢y == (b X ¢') X (b % ¢),
ag=(b x ') x (b' x ¥) and ag=(c X z') X (¢' X x) are collinear.
But, by the first part of the theorem, 2 ~ a, X @y and o' ~ a; X a3, $0
@~ o, If « intersects C at r and s, these are the fixed points of . For
(b' x 1) X (b X r') on x implies 1’ ~ r. In this case it is obvious that = is
independent of b.

The dual to a projectivity of a point conic is the mapping of the lines
of a line conic on themselves induced by a collineation of the plane which
carries the line conic into itself. If the collineation carries the point x
(tangent ) into the point z' (tangent £') of C, then @ carries the tangent
£ at x (contact point z of %) into the tangent £ at x' (contact point x' on
£"). Therefore any projectivity of C as a point conic may also be regarded
as a projectivity of C as a line conic. [{ence the dual of (13.8) is:

If @ is the projectivity & — &' of C, and B A B’ is any line of C,

(13.9) then the lines (b x &) % (' X E) dll pass through a common

) point a. This point, called the center of ©, is independent of the
choice of £.
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If the axis « of the projectivity ¢ of C on itself intersects C at r and s,
then, as already observed, these are fixed under ®. The tangents { and 1 at
r and s respectively are then fixed under . Since

EXXE XY~ EXYXE XYL
is through qa, and similary = is through a, it follows that a ~ { xv. Because
of (11.9), the center a is thus the pole of the axis a. As will be seen in
(13.15), this is true whether or not the axis cuts the conic.

There is a close connection between projectivities on a conic and project-
ivities on a line or pencil. To see this, we first define the projecti¢n = of a
conic C on any line % from a point p which is on the conic but not on &. The
image of a point. a4 p on Cis a' =axr=¢£ X (a X p). The point p itself
is mapped into p’, the intersection point of £ with the tangent through
p. If & is any mapping of C on itself, then, for any x on the conic, xm — xdn

Fig. 20

defines a mapping of £ on itself. This mappihg is called the projection on §

from p of the mapping ¢. The connection mentioned above is given by the
theorem:

(13.10) The projection on a line &, of a mapping ® of C on itself, is a pro-
’ jectivity of & if and only if @ is a projectivity of C.

Proor: (Figure 20). Let a — @ be a projectivity ¢ on C. The mapping of
lines, p X a— p X @ is then, by (13.7), a projectivity of the pencil p
on itself. Since a line cuts a pencil in sets of points with the same cross
ratios as the intercepted lines, it follows that the projection of ® on £
is a projectivity of £ on itself.

For the converse, suppose that the mapping @' on £ given by
ar=4q' — @' = q®, that is, the projection a - @ of @, is a project-
ivity on &. Let a/, b’ and ¢’ be any three distinct point on £ and let
a',b',c' be their images under ¢'. Denote by a, b, ¢, a, b and ¢ the re-
spective images of the six points under =1 There is a unique projectivity
®* of C on itself which carries a, b and ¢ into a, b and ¢ in that order. As
has just been shown, the projection ®'" of ®* on £ is a projectivity on &.
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But a’ — @', b — b' and ¢’ — ¢ under both ¢’ and @/, hence &' = &',
Therefore ¢ and ®* are the same mapping of C on itself.

This connection between the projectivities on a conic and those on a line
yields a great variety of theorems, of which we can give only a few examples.

If two triangles a,b,c and a',b’,¢’ are inscribed in a conic C, then

(13.11) they are circumscribed about a second conic C'.

Projecting the line « from &’ on C (see Figure 21) carries the points
b,c,a;,a, into b,c,b’,¢’, and projection from a onto «’ carries b,c,b’,¢’ into
ag, a5 b',c’. By (13.10), the association b — af, ¢ — aj, a; — b’, a5 — ¢’
is part of a projectivity of « on «' which is clearly not a perspectivity.
By the dual to Steiner’s theorem, the connections of corresponding points
of the projectivity « — o' define a line conic C' containing « and o' as ele-
ments. For the above quadruples, this gives v, £, v and ' as lines of C’.

Therefore «,f,y and «/,f',y" are lines of C' and hence are tangents of the
corresponding point conic.

Using a familiar notion, a projectivity ¢ of C, which is not the identity,
is called an involution if its square is the identity. Clearly ¢ is an involu-
tion if and only if its projections on lines are involutions of the lines.

If the collineation % induces an involution A" on C then ¢ is a

(13.12) harmonic homology.

For if a,a’ and b,b’ are two pairs of C interchanged by W, then the proof
of (9.7) shows that the collineation which carries a,a’,b,b’ into a’,a,b',b
is a harmonic homology and must also be ®.

The projectivity ® : x — x' on C is an involution if and only if

(13.13) allthe lines x X x' are concurrent,

Proor: If the lines x x x' are concurrent at a point a, then ¢ interchanges
the intersection points on all secants through a and hence is an involution.
On the other hand, if x —» x’ is an involution, then, by the previous
theorem, the collineation ¢ inducing it is a harmonic homology. The
joins of all pairs which correspond under ¢ pass through a the center of the
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homology, hence the lines # X ' are concurrent at a (Figure 22). It can
also be seen that the center and axis of © are respectively the center
and axis, defined in (13.8) and (13.9), of the projectivity ®, inducing ®
on C. For, by definition, the axis « of ¢4 is the locus of fourth harmonic
points to z,x',a and is thus the polar of a. If b,b’ and c,c¢’ are corresponding
points under ¢, then using these points in the construction for the
polar of a (Section 11) shows that (¢ x b") X (¢’ x b) lies on «. By the
definition of «', the axis of @, it follows that o« = «'.

The theorem that the center of a projectivity @, is pole to the axis has

been shown for all involutions. It is now easy to extend this to general
projectivities. We show first:

If a projectivity ® of C, not the identity, is expressible as & = ©,®,,
(13.14)  where ®, and P, are involutions with axes a2y and centers a,,a,,
then ay X a, is the cenler of & and a; X «a, is its axis.

Fig, 22

For any point « on C we use the notation x¢, = x, and x¥, = x,. Also
we write z,0, =1x,, and x,b, =1x,. Then under &,®, (Figure 23),
T > 3PPy =1, Py = Tyy, T - 2,0, = (TP,)D; P, = xP, = T, and
Tgy = Ty &Py, = (T,8,)P, P, = 2,0, = (xb,)¥, —=x. That is, ¢,¢, sends
T, z; and xy into x,, x, and x. But (x X x,) X (xr; X ;) ~ a, and
(r; X 2) X (Ty X Z,) ~ ay, therefore q; x a, is the axis of ®,P,. The
axis o; of ®; is the pole of a;, i =1,2, 50 «; X 7, is the pole a of a; X a,.
Considering @, and @, as projectivities of C as a line conic then, by the
dual of the proof just given, «; X «, is the center of ®,®,, which completes
the proof,

Since, by (8.5), every projectivity on a line is either an involution, or
the product of two involutions, (13,10) implies that the same fact holds for
projectivities on a conic. This, with the theorem just shown, establishes:

A projectivity ® on a conic is either an involution or the product
(13.15)  of two involutions. The center and axis of ¢ are always pole and
polar.
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If ® is not an involution, the collineations inducing the two involutions
expressing @ are, by (13.12), harmonic homologies. Thus we have:

(13.16 A collineation which leaves a conic fired is a harmonic homology
3.16) or else the product of two harmonic homologies which leave C fized.

Finally we conclude from (13.13):

An elliptic involution and an arbitrary involution on the same line,

(13.17)  or on the same conic, have a pair of corresponding points in
common.

Qs

Fig. 23

For if ¢, and ¢, are involutions on the conic C, with centers a;,a, and @,
is elliptic, then a, is a no-tangent point. Theline a; X @, is then a secant,
(11.5), and cuts C in two points 1 and u’. From (13.13), u and u’ corre-
spond to each other in both ®; and ®,. This implies the same result for pro-
jectivities on a line (compare (13.10)).

14. Pencils of Conics

From two lines £ and v, a pencil of lines is obtained in the form M -+ pn.
This notion can be extended to conics. If La,-m:xkrzo, i = (g and
ik

. . . .
)‘b,;mxk::(), bix == by are two conics, which we may abbreviate as

i,k

ga(x,2) and g,(x,x), then the form hga(r) +- wge(x) == 0 is taken to define
a pencil of conics. Since ga(x,x) and gy(z,x) are obtained from polarities
the discriminants of these conics, | @y | and | b |, are not zero. The dis-
criminant of a general conic in the pencil, however, is | 2y + wbix |, which
may vanish for particular values of A and p.
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To provide for this case, a ‘““degenerate conic” is defined to be the locus
satisfying a quadratic equation of the form:

(14.1) Zaikxm =0, @i =, |ai]=0, where not all a;x are zero.
ik

The nature of this locus can be found by observing that | a; | = 0 implies
that the equations

3
(14.2) Yawn =0, =123
k=1

have a solution (u,,uyus) =2 (0,0,0). If new coordinates are chosen in such
a way that u = d,, it follows from (14.2), that a;3 = ay3 = a33, =0 and,
from as = ag, that ag; = ag, = 0. Then (14.1) takes the form

(14.3) ap®d + 2a,5%3%5 + @y} = 0.

Let A = a,,a,, — @3,. If A >0 then the only real values satisfying (14.3)
are z; = r, = 0, hence the point d; = (0,0,1) is the entire locus. If A =0,
the ratio x,/x, in (14.3) has the value )\/u = — a,,/a,;, and the locus is the
line px; —ry =0, where (u) 5= (0,0). If A <0, the ratio z,/x, in (14.3)
has the two values A, /p = — a5, + \/— Afayy and dpfpy, = — a3y —\/ ~ A/ay,.
The locus then represents the two lines p,z; ~ 3,2, = 0 and pyx, — 2,2, ==0.
Corresponding to these cases, then:

(14.4) A degenerate conic represents a point, or a line (sometimes called
) a double line), or a pair of distinct lines.

In order to have a comprehensive term we will call the locus given by
Za;mxk= 0, ai = az, where not all a; =0, a quadratic curve,
i,k
whether or not it is degenerate, and if non-degenerate, whether or not

it contains points. For reference we formulate the obvious facts that
if go(z,2) and gy(x,x) represent distinct conics C, and Cy :

The pencil of conics hgy(x,%) + pgs(x,x) = E(laa- + phigyxizy =0

ik
(14.5) yields a quadratic curve for each pair of values (1) 52 (0,0). Pro-
portional pairs give the same curve, and every member of the family

can be obtained from a pair 1,p, excepting Cy, or from a pair 7,1,
excepting C,.

The condition for degeneracy of the curve corresponding to 1,u in the
pencil is that A(w)=|aix + wbi| ==0. This is always a cubic, for the

SThe remainder of this section is not used later in the book.
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degree of A(i) is no greater than three, and the coelficient of u? in A(p)
does not vanish since it is given by

lim A()/pd = lim | @y + wby |/p3 = lim | ptaix + bu| == | bix | 3£ 0.
P> B>

The equation A(i) = 0, being a real cubic, has always one real root and
may have three. Correspondingly,

(14.6 A pencil of conics contains at least one degenerate conic, and at
-6) most three.

The intersection points of C, and C, clearly belong to every curve of the
pencil. They are the only points with this property and are called the
base points of the pencil.

If p is not a base point, there is one and only one curve of the pencil
(14.7) .
passing through p.

For at least one of the numbers gu(p,p), ¢s(p,p)is not zero since p is not a
hase point. Therefore the equation Aga(p,p) -+ 1gs(p,p) = O determines the
ratio %/ uniquely, which selects one curve through p. A consequence of
this is that two curves of the pencil intersect each other in the base points
and only these.

If there are any base points, then all the non-degenerate conics of a
pencil are real since they contain points. This is not necessarily the case
when no base points exist. For example, if g, =42} -2} + a3, and
gp == -} + a2} -+ x3, then g, + 2g, = 2% + x§ + 3a% = 0 is imaginary.

If v, and v, are the polarities which define C, and Cy, then yays is a colli-
neation which is not the identity since C, = C;. A point x is fixed under
this collineation if and only if it has the same polar line under y, and ;.
For xy, = xy, implies Tyeys == Ty} == . And if xy,5p = x, then
Tya = Ty;! = zy,. Dually, the fixed lines of vy, are those having the
same pole in v, and y,. If C, and €, have { as a common tangent at a hase
point z, thenis the image of z under hoth y, and y, 5o that zand § are fixed
under y,y,. Moreover, { is tangent to every non-degenerate conic of the pencil.
For let a general conic C of the system be given hy *ga(2,2) + wgu(x,x) =0.
Its tangent at z is the line kga(x,2) + rgu(x,2) == 0.7 Since both ga(z,2) =0
and gy(x,2) = 0 represent the tangent {, a constant p exists such that

6In a polynomial [(X) == upa™ - UpyyB** 4+ + -+ 4 0@ + do, the coeflicient for the
. . . . / a Up. Uy
leading term is lim f(x)/x? = lim (un o SRR 4 ;‘;’1) = lUp.
T—>cc XL--> 00 4 * '
N
7Um(x,z) = Lai,‘;ri:,...
T4k
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95(%,2) = pgu(®,2), p 5% 0. The tangent to C is then (% + e ga(,z) = 0,
which is .

We illustrate these ideas with some simple types of pencils. We will do
so in detail to exemplify the methods that have been developed. Since
five points determine a conic, (12.4), there cannot be more than four base
points. If there are four, z,,25,25,2, (Figure 24), then C, and C; cannot have
a common tangent at any one of these, since a conic is also completely
specified by four points and the tangent at one of them. Such pencils,
with four base points, are called quadrangular. Putting iz = zi X 2z, i =k,
the degenerate conics of the pencil are the pairs of lines (8;5,854), (B13:£24)s
(P14sBas), Which are opposite sides in the quadrangle of base points. For
if p is any point on B,,, say, but not a base point, there is a unique curve
of the system through p. It is degenerate since it contains the collinear

Fig. 24

triple p,z,z,. Because it also passes through z, and z, it must be the pair
(B13,B2q)- Setting u =5 X By, D=1P;3 X Ppy, and W= fy4 X Ppg, the
construction for the polar of a point shows the triangle u,v,w to be self-
polar with respect to both y, and y,. Under y,ys, then, u,v,w are the fixed
points and u X », ¥ X w and w X u are the fixed lines. In particular,
if u, v and w are taken for the vertices of the coordinate triangle, C, and C;
reduce to the simple form of (10.21) and the pencil becomes

‘}\Za,.x,? + prix% =0.

The next simplest case (Figure 25) is that of three base points, z;,25,23.
For the choice z; =d;, i = 1,2,3, C, and C, take the forms

Ja == Q19T4%y + ApgToTy + Uy Zaky =0

and gy == byy®,Ty + Dyy¥aTs + byaty = 0.
At least one pair of sides in the coordinate triangle is a curve of the
pencil. For let p be a point of §, distinct from d, and d,. Then the curve
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of the pencil through p is degenerate and consists of ¢, and a line ¢, through
d,. If Z, is not 4, or 3,, consider a point p’ on ¢, distinct from d; and d,.
Again, the curve of the pencil through p' must consist of ¢, and a line Z,
through d,. Since the intersection of two curves of the system consists
exactly of the hase points, ; x I, must be dy, d, or dy. The only point of
this set on I, is d;, so , contains d,. Passing also through d,, it is the line
%,. The degenerate conic consisting of 4,4, that is xyx, =0, is thus an
element of the pencil. This implies that two non-zero numbers, %,u, exist
such that %g.(z,x) + 1gs(T,2) = T,%,. Setting ajy = ay and bjy = — wbi,
then g, and g, in the new coefficients satisfy g.(r,r) — ¢i(x,x) = 2425 By
inspection of this equation, aj, == b}, and a3, == b3,. The tangents to
C, and C; at z,, expressed in the new coefficients, are aj,x, - a5,0, =0
and bj,x, + by == 0, respectively, and hence coincide. This tangent,
together with 4, forms a degenerate conic of the pencil hecause

bisga(,x) — ahags(T,t) = (Dis — Aa)Ts(Aha¥%e + AiyTs) = O and by 5= azs, since
C. and C, are dinstinct conics. Therefore this tangent must be the line &,
introduced in the beginning of the discussion.

" Altogether it has been shown that if C, and Cy intersect in three points
Z1,Z5,2, then they have a common tangent at one of these poinls, say &, at z;.
The degenerate loci in the pencil are the pair z, X z; and &, and the
pair z; X z, and z; X zy. If zy,2,,2; are the vertices dy,dy ds of the coordi-
nate triangle, the pencil takes the form

0O+ 1)(Cays + CaTaTy) -+ ey - uer )Tty = 0.

Since z, has the polar , under y, and ys, z, and ¢, are fixed under yays.
It is easily verified that the other fixed elements of ysy, are the points
s=10; X (2, X z) and, dually, the line s connecting z, to the intersection
point r of the two other common tangents of C, and C,.

Finally, we consider the case where C, and C; have two common points,
z, and z,, with a common tangent at each (Figure 26). If z, and z, are
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chosen as d; and d,, and the tangents at these points are ¢, and 3§, re-
spectively, then all conics of the pencil have 8, and &, as tangents atz,
and z,. By (11.11) the pencil of conics is given by x,r; + pai =0. This
equation differs from previous pencils in the fact that the pairs (0,1) and
(1,0) yield degenerate elements of the pencil. This fact is immaterial, for
if C, is given by zz, + k2:3=0 and C, by z,%, + kyx3 =0, then
MExy + k2d) + w(@®y + kot = (0 + wgs + Ak, + pk)ai =0
represents a general curve in the pencil expressed in terms of C, and C,,
or else in terms of degenerate loci. For this case, clearly, the fixed points
and lines of y,y; are the vertices and sides of the coordinate triangle.

C(l
Fig. 26

We conclude this section with some general remarks on pencils. If C, and
C;: define the pencil Agy(z,z) + pgs(x,x) =0, then the polar of a pointy
W.lth respect to a general conic C of the pencil is Aga(,y) + 1gs(x,y) = 0.
Since gu(x,y) =0 and g,(x,y) = 0 are the polars of y with respect to C,
and G, the polar of y with respect to C is a line of the pencil on
zZry [(yya) X (Uys)]. If yis a fixed element of YaYs, then yy, = yys;, so the
pgncﬂ Is undefined, and conversely. When y is not fixed, z is a conjugate of y
with respect to every conic of the pencil. The situation is not dual for the
locus_ of poles of a fixed line with respect to varying conics of the pencil.
For if z, anq Zy are two points of the fixed line £, the polar loci of z,and z,
are respectively Ago(z,21) + pgs(z,21) =0 and ha(X,22) + 1gs(x,22) == 0.
Eliminating )i from these two equations, gives

9a(%,21) §5(%,22) ~ gu(T,22) g5(%,71) = O

as the locus in x for the poles of £

: - This is quadratic in x and in general
represents a conic.
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EXERCISES 81

If \guo(z,x) + w.gs(x,x) = 0 is a pencil of conics, where C, and C,
are non-degenerate, the locus of polar lines to a fixed general point
y is the pencil on the infersection of the polars of y with respect to
C, and C,. The locus of poles to a fixed general line & is a conic.

With respect to degenerate conics, all of the points of a double line conic,
the intersection point of a two line conic, and the point of a point conic,
are sometimes called its singular points. It can be shown, more particu-
larly, that when the pencil has real base points, the exceptions in (14.8)
occur for y when it is a singular point of a degenerate conic in the pencil,
and for £ when it is through such a singular point.

[10.1]

[10.2]

[11.1]

[11.2]

[11.3]

[11.4]
[11.5)

[11.6]
[11.7]

[12.1]

Exercises

Given the polarity %, = 2%, — 23, & = T3 + Ty, &3 = —x; + Xy,
find the self-conjugate locus. Find the pole of the line ¢ = (1,1,1),
and the involution induced on e. Is the polarity elliptic or hyper-
bolic?

Prove: A polarity is determined when a self-polar triangle and one
additional pole and polar are known.

Find the polarity which defines the conic x3 - 2% — x3 = 0. Separ-
ate the line { = (1,0,2) into no-tangent points and two-tangent
points. Find the tangents through a two-tangent point. Check
that its polar cuts £ in a no-tangent point.

Find the projectivity between the pencils a : (1,0,1) and b : (1,1,0)
defined by the conic in problem [11.1]. Check that it is non-perspect-
ive and that the tangent at a corresponds to a X b in the pencil
at b. (This exercise properly belongs to Section 12.)
Put w(z,y) = ¥, auiys, aix = axi, and verify that

w(hr + py, 2+ py) = Mo(x,x) 4 2 Apw(,y) + pio(y,y).
Use [11.3] to show: if w(x,x) = O represents a conic C, then
x X y is a secant, tangent, or non-intersector of C according as
w(r,2)u(y,y) — wi(x,y) < 0, = 0,>0.
Use [11.4] to show: if y is a two-tangent point of the conic

w(z,x) = 0, then the degenerate conic consistingof the two tangents
from y to the conic has the equation w(z,x)w(y,y) — w(x,y) = 0.

Use [11.5] to find the tangents from (4,3,0) to 2a? + 4x% — a2 = 0.

If a quadruple lies on a conic C, then the three intersections of
pairs of opposite sides form a self-polar triangle.

Find the conic through (1,0,1), (0,1,1), (0,—1,1) with =, —x3 =0
and z, — x; = 0 as tangent lines.
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[12.2]

[12.3]
[12.4]

[12.5]

[12.6]

[12.7]

[12.8]

[13.1]

[13.2]

[13.3]

[14.1]

(14.2]
[14.3]

POLARITIES AND CONIC SECTIONS [II]

Show that, if four fixed points on a conic are joined to a variable
point on C, the cross ratio of the four lines is constant. Dualize
this.

Prove the converse of Pascal’s theorem.

Given four points on a conic and the tangent at one of them con-
struct the tangents at the three other points.

Find the general form in line and point coordinates of a conic tan-
gent to 8,, &, and &,.

Pappus’ theorem is Pascal’s theorem for a degenerate point conic.
Find the analogue to Brianchon’s theorem for a degenerate line
conic.

Using Figure 1 for Desargues’ theorem show that if x,y,2,2',1y',2" lie
on a conic, then the linea x bisthe polar to the point w.

If a hexagon H, is inscribed in a conic C and H, is the hexagon cir-
cumscribed about C, and tangent to C at the vertices of the first
hexagon, then the “Pascal line” of H, is the polar line to the
“Brianchon point”’ of H,.

Take a specific conic C and select a point a and a line « which are
pole and polar. Determine the harmonic homology ¢ with center a
and axis « and show that it carries C into itself. Determine a polar-
ity ysuch that @ = oy and check that ® and y commute.

For the conic C of [13.1] select a projectivity =of C into itself and
determine the center and axis.

The product of two involutions on a conic C is parabolic (that is,
has exactly one fixed point) if and only if theline joining the centers
of the involutions is tangent to C.

Show that for a correlation of a plane on itself the points which lie
on their image lines satisfy a quadratic equation. Give conditions
under which this equation represents a real non-degenerate conic.

Find the degenerate forms of a line conic.
Check (14.8) with an example.
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Affine Geometry

15. The Content of Affine Geometry. The Affine Group

From the Euclidean point of view, the extended plane of Section 1 is
a plane in which distances exist, except along the line at infinity, and in
which parallels also exist as lines intersecting at infinity. On the other
hand, from the projective viewpoint neither parallelism or distances exist
in the plane and the special character of the line at infinity is entirely
lost. Between these extremes, it is natural to inquire what results may be
obtained by specializing a line in the projective plane, analogous to the
line at infinity, but without introducing the distance concept. Under this
convention, the resulting plane, neither Euclidean nor projective, is called
the offine plane, and its properties, namely affine geometry, form the
subject of this chapter.

As just stated, the affine plane P, may be obtained by distinguishing
a line ¢ in the projective plane P. Equally well, P, results when a line ¢ is
deleted from P. There is no need to decide in favor of one of these plans and
against the other since they are equivalent and both geometric interpretations
are helpful. In the first light, parallel lines in P, are lines which intersect
on{, and, in the second, are lines which do not intersect at all.

Corresponding to the two interpretations, an affine transformation,
or an affinity, is a collineation of P on itself which, from the first point
of view, leaves { invariant, and, from the second, carries P, into itself.
In either case, it is clear that the inverse of an affinity, or the product of
two aflinities, is again an affine transformation. Hence, the affinities
form a sub-group, I';, of the collineation group I'. Just as projective geo-
metry consists of the concepts and properties invariant under collinea-
tions, the theorems of affine geomelry are those which remain true under
affinities.

Since the line ¢ is specialized in P it is natural to distinguish it by the
chojce of coordinates, and this will be done by always taking it to be
85, that is, £, = 0. Using the first point of view, then, every point of P,

The idea of defining the content of a geometry as the properties invariant under a
certain group was first formulated by F. Klein (1849-1925) in the Erlanger program
(1872) which has had a profound influence on geometry.
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has a non-zero third coordinate and so may be represented as (z;,x,,1).
The numbers x; and z, are called affine coordinates and we will refer to
the point (r,,x,) meaning the point (r,%,,1).2 _

The elements in I';, namely the affinities, consist of the collineations
of P,

(15.1) Ti= Y e, |aa|=0, =123,
k

which carry the line x; = 0 into itself. They are thus the line transforma-
tions,

=Y Ak A0, i=123,
k

which have (0,0,1) as a fixed element. The result of substitution shows
that for this line to be fixed A,3and 4,; must vanish, while 4 5; must not.
Hence, necessary conditions for (15.1) to carry 3, into itself are

3105 — Uyplg = 0
Qg1 0gy — Upplly = 0

Qy Qe
Ay Ay

and

= Asa # 0.

Regarding these as equations in ag,and aj, the only solutions possible, since
A3 520, are ag = a3 = 0. Thus, the last equation in the collineation
(15.1) becomes x; = agx5, With agy 22 0. Conversely, if the last equation
is of this form, then 8, is obviously invariant. Putting a;; = 1, and using
affine coordinates, where x, = 1, we then have:

(15.2) Tueorem: The affinities of P, have the form
(15.3) T = Oty + Gt + 4 @, Ao
Ty = Uu®y + ApT; + a, @y Ay
Of particular interest among affinities are those which not only leave {
invariant but pointwise invariant, and so carry every line into a parallel

line. Clearly these affinities form a sub-group of I, and by (9.12), this
sub-group has a representation in affine coordinates of the form

= 0.

T = bx; + a,
(15.4) 2y = bz, + a b=0.

For b = 1, and only then, (15.4) is an elation, given by
15.5 .’L‘i = + a
(15.5) Ty =12, + a,

This special type of affine elation is called a franslation. It carries every
yne € into a parallel line &', and has no fixed points in P, except when it
is the identity. The center of the translation is (ay,a,,0) on 3.

*If x and y are in affine coordinates, z x y means (,,2,,1) X (y;,7,,1).
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Since (15.4) was obtained as a collineation leaving 3; pointwise inva-
riant, it is a homology when not an elation. These homologies, correspond-
ing to b 3= 1, are called dilations. The center is at (a,/(1 - ), a,/(1 -'b)), and
when this is chosen to be the origin, the reason for the name becomes
apparent from the form of the mapping,

(15.6) xy = bx,, xh = bx,, b=£0.

More particularly still, for b =- 1 the homology is harmonic (see (9.14)),
and is said to be a central reflection, or a reflection about a point, in counter
distinction to reflection about a line. Again, if the origin is taken as the
center, the reason for this terminology is at once suggested by the form
which the reflection takes, namely x; = — T, Ty =— Zs.

In (9.10) it was shown that the product of two harmonic homologies,
with the same axis, is an elation. An affine form of this fact is:

The product of two central reflections is a translation, and every

(15.7) translation is the product of two central reflections.

The theorem is illustrated in the figure: the translation taking a,b into

Fig. 27

a',b' is the product of two reflections, that with center ¢ sending @, into
a'’,b"", and that with center ¢’ carrying a'’,b" into a’,b".

In the foregoing transformations, we have a hierarchy of groups. The
affinities (15.3) form the group I, in which 3; is merely invariant in P.
The additional requirement that 3, be pointwise invariant yields I';, the
sub-group of T, given in (15.4), sometimes called the group of similitudes.
The elements of T, which are elations then form the sub-group of trans-
lations T, Since translations are elations with a common axis, the group
I, is Abelian (see (9.15)).

The translations have another interesting property in the fact that
they form an invariant sub-group of the group I, In general, a group Iy
is called an invariant, or normal, sub-group of the group T if, corresponding
to any two elements ¢, and ¢ in I'; and I respectively, an element ®;
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in I'; exists such that ®,® = ®®/. Of course, if I'is Abelian, ¢, will serve
for ¢/, so every sub-group of an Abelian group is invariant. With respect
to I', this invariance means that if two figures A and A’ are images under
a translation, they are carried by every affinity into figures which are
again images under a translation, though in general a different one. For
if A’ = A®,, where @, is in I, the images under a general affinity ¢ are
A% and A'®. Because I; is invariant, it contains a translation ¢; such
that A'® = A®,® = (A®) ®;, which shows that A’® originates from AP
by a translation.

To see that I, is invariant, let an arbitrary translation and affinity,
®, and P respectively, be given by

=2+ q L& = Ayt A%y + s
by : ot
Ty =12+ @ Xy == Uy %) + dpoly + Gy
Then ®,9 is the transformation,

T = ay3(2y + a) + Q¥ + @) + ayg
(15.8) = Uy + A%y + (A + A0, + ),
Xy = Uy (X; + A1) + (T + @) + Ay
= gy + GgeTp + (Agy0y + dpally + ).
If ®{ denotes the translation,

Ay Qe
Ay Qg

#=0.

2y =2 + (0134 + G00,), Tp =T, + (A + 0xnds),
then ¢@; is the affinity,

Ty = (A% + A%, + G) + (A + A120)
Ty = (an®; + ATy + ) + (00,0 + Ap20)
which coincides with (15.8). Thus:

The translations form an invariant, Abelian sub-group of the
(15.9) "
group of affinities.
If the affine plane is thought of as containing an ideal line , then every
ordinary line £ of the plane contains one ideal point py, or p,,, on .2 Three
distinct ordinary points, a,b,c of £ then determine an affine ratio A(a,b,c),

defined by
(15.10) A(a,b,c) = R(p,,a,b,c).

This ratio is invariant under all affinities, for if £ is the image of ¢ under

an affinity, and a’, b’ and ¢’ are the points corresponding to a, b and ¢,
then

A(a,b,c) = R(p,,,a,b,c) = R(pL,,a',b',¢') = A(a',b',C").

3The use of peu instead of pr, helps in suggesting the Euclidean interpretation. For
the same reason 7 is often called the line at infinity.
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To evaluate A(a,b,c) we make use of the fact that every ordinary affine
point z has a “normalized”’ projective reprensentation (z,,2,,1). Taking
a and b as (a;,a5,1), (0y,05,1), where a 4+ b, every point 2 of a X b, other
than p,, is given in the normalized form by

r=2x+ pb, A4 p=1

(15.11) or xz=(1-p)a+ pbd.

In this representation each point of the line corresponds to a unique
value of . For x — a = p(b — a) yields

Ty—0 Ty =0y

*L“bl—al—bg—az

Affine coordinates of a point are unique, so the terms xa;,bi, [ = 1,2,
are fixed. Both denominators cannot vanish, because a 4 b, so one of
the equalities determines p. Should one denominator vanish, of course,
the corresponding numerator does too. Since a - b is on a X b and on
xy =0, it is the point p,. Then
==-p,+ r=ua-pa+ pb=a-uwla-b)=a-wp,, and

A(a,b,8) = R(p,..a,b,x) = R(p,.,a&, - p, + &, —pwp,, + @) =—p/ -1 =p.
Therefore,

The affine ratio of three distinct collinear points, a,b,x, where
(15.12) T = (1 - P-)a - [-Lb, is
A(a,b,x) = p = 7—F = 7—=.

If x; and z, are interpreted as rectangular coordhﬁtfﬁin a Euclidean
plane, then A(a,b,x) is the ratio of signed distances ax/ab. In agreement
with Euclidean usage, we say that the point 2 = (1 — p)a + b, “divides
the segment, «,b” in the ratio p/(1 — ), and call x the affine center of a
and b when this ratio is 1, that is when p. == 1/2. The relation

R(a,b,(a + b)/2,p,) = R(a,b,(a 4 b)/2,a-b) = (1/2)/(-1/2) =-1
implies:

(15.13) The affine cenler of a,b is the harmonic conjugate of p, with

respect to a,b.

A harmonic homology with ¢ as axis, and with the afline center of a,b as
its center, will therefore interchange a and b. Since central reflections
have the same axis, and are harmonic, it follows that:

(15.14)  The affine center of «,b is ¢ if the reflection about ¢ carries a inlo b.
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In Euclidean geometry it is a familiar fact that parallel lines intercept
proportional segments on transversals. The invariance of cross ratio under
projection yields the affine analogue :

If the distinct lines £ and ¥/, Intersecting at u, are cut by three
(15.15)  parallel lines in the points x,y,z and z',y',z' respectively, then
A(zy) = A(ux',y') and A(z,y,7) = A(z',y',2").

16. The Affine Theory of Conics

In affine geometry non-degenerate conics may be classified by their
relationship to the ideal line {. According as this line is a non-intersector,

Center

Ellipse

Parabola

Hyperbola
Fig. 28

a tangent, or a secant, the conic is called an ellipse, a parabola, or a hyper-
bola (Figure 28). A general conic has the form

(16.1) Uy} + 20153175 + 0973 + 20357, + 20557, + ay =0
) Gy = g, | aq|20.

To determine its type becomes, analytically, the problem of finding how
the line 2, = 0 intersects the conic in the projective form

3
(16.2) Y tarmi =0, ap=au |a|s=0.

i, k=1
Putting 2,=0 in (16.2) yields
02 + 2a35%,%, + a4y} =0,
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and this equation has two, one, or no solutions, distinct {rom (0,0), depend-
ing on whether the discriminant, A = ay,a,, - a3,, is negative, zero, or
positive. For the first two cases, the conic has points, and is a hyperbola
in the first instance and a parabola in the second. When A > 0, thereare
two possibilities to consider. The conic may have points, but simply none
on &, in which case it is an ellipse, or it may have no real trace at all, in
which case we take it to be an imaginary ellipse. The imaginary case

occurs when the polarity which defines the conic, & = Zaikxk, Api = i,

k
is elliptic, that is (see (10.23)), when | ai; | and a;; have the same sign.
Thus, we have:

The equation (16.1) represents: a hyperbolawhen A = a;,ag,— a3, <<0;
(16.3) @ parabola when A =0; an ellipse if A>0and | a;|-a;,<<0;
and no trace (or an imaginary ellipse) ifA>0and | ax |- a; >0.

< ¢

n

Fig. 29

For the remainder of this section let z be used to denote the pole of ¢
with respect to a conic C. If p is any point of £, but distinct from z if zis
on ¢, consider the pencil through p (Figure 29). This pencil cuts Cin a
family of parallel chords, and by (15.13), the affine center of each of these
chords is the harmonic conjugate of p with respect to the end points of
the chord. Since this also implies that the centers are conjugate to p, the
centers lie on v, the polar of p, which is a line through z. This shows:

The. parallel chords of a conic, which lie on lines of a pencil p,
(16.4)  distinct from z, have their cenlers on the polar of p, which passes
through z.

When z is on Z, the conic is tangent to { at z and is therefore a parabola.
The lines through z in this case are parallel secants.

To obtain a standard form for the equation of a parabola, we choose dg
as a finite point of C and take 3, to be the tangent at d;. The line g, that is
84, is tangent to all parabolas, and here we take d; as the point of tangency.
As shown in (11.11) the projective form of C is then 3 — kx,%3 = 0, k=0.
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By choosing (1,1,1) on C this reduces to x3 ~ 2,2, = 0, which, in affine
form, is % — x; = 0. Therefore:

(16.5) In suitable affine coordinates a given parabola has the equation
) }=ux,.

As in projective geometry, the equations for an aflinity and those for a
transformation of affine coordinates are formally identical. Thus (16.5)
implies that there is always an affinity mapping one parabola on a second,
hence different kinds of parabolas cannot be distinguished in the affine
plane.

When C is not a parabola, £ does not contain its pole z. The harmonic
homology with center z and axis { leaves C invariant. In afline termin-

Fig. 30

ology, the conic goes into itself under reflection in z. Because zis the affine
center of every chord containing it, it is called the cenfer of the conic, and,
correspondingly, every line through z is called a diameter (Figure 29).
Since the pencil of lines conjugate to a diameter & contains one line 7
which is also a diameter, it is natural to call £ and = conjugate diameters.

Clearly every pair of conjugate diameters forms with ¢ a self-polar triangle.
Thus (16.4) may be restated:

(16.6) A diameter of an ellipse or a hyperbola is the affine bisector of all
) chords parallel to the conjugate diameler.

The construction for the polar of a point shows that if the given diameter
cuts C at g and ¢/, then the tangents at these points are parallel to the
conjugate diameter and the family of bisected chords.

From the many appealing theorems about conjugate diameters we
select the following example (Figures 30 and 33).
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If the vertices a,a’,b,b’ of a parallelogram lie on a conic, then the
conic is an ellipse or a hyperbola whose affine center is

c={(a X b) x (a' x b"),
the intersection point of the diagonals. The lines & and v, through c

and parallel respectively to the sides a X a' and a X b’, are conju-
gate diameters.

(16.7)

Proor: By hypothesis, the points
u=(a X a)x (bx?d) and v=(a X d') X (a x b)

lie on ¢ The point ¢, from its definition, is a finite point, so t=1¢ X u
and 7 =c¢ X v are ordinary lines. The construction given in Section 11
for the polar of a point shows that £ is the polar of v and that « is the
polar of u. Therefore ¢ = £ < 4 is the pole of { and the center of the conic.
Since it has a center, C is an ellipse or a hyperbola. The diameters £ and
contain each other’s poles and so are conjugate.

To obtain standard representations for an ellipse and hyperbola, let
the center of a conic C be d; = (0,0,1) and take 3, and 3, to be conjugate
diameters. Because the reference triangle 38,,3,,8,=2¢ is self-polar, the

equation of C has then the projective form Zbi:cé" =0, b; 20, i=1,2,3.

-
Setting bs == -1, the affine equation of C is

(16.8) bt + bt =1, b, %0, by, £ 0.4

Because the conic is real, b; and b, cannot both be negative. If both are
positive, the projective locus of C, b,x} + bz} ~ 25 =0 does not inter-
sect z;=0, and C is an ellipse. Applying the aflinity z; = \/ byxy,
Ty= \/ b,x, yields:

In suitable affine coordinates a given ecllipse has the equation
3+ xi=1.4

When b, and b, are of opposite sign, the affinity z; =x, and z;=ux;
interchanges them, so there is no loss of generality in supposing b, > 0
and b, < 0. In the projective plane C cuts d4in the points_(\/ —Dg, =V by, 0),
so the conic is a hyperbola. Using the affinity z; = V by, 2 = \/— byxs
yields:

(16.10)  Every hyperbola has a representation 12 - 13 = 1.4

As was the case with parabolas, special ellipses such as circles and parti-
cular hyperbolas, like those which are cquilateral, cannot be distinguished
in the affine plane.

(16.9)

It is important to remember that the coordinate axes are an arbitrary pair of conju-
gate diameters.
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We note some further affine characteristics. If C is an ellipse, { is a non-
intersector. The pole of ¢ is then a no-tangent point, so every line through
the center of C is a secant. When C is a hyperbola, the center of C is a
two-tangent point, and the tangents through the center are called asym-
ptotes of the conic. If v is the polarity defining C, then y(z), the induced invo-
lution on the pencil at the center, has the asymptotes for fixed elements
and hence is hyperbolic. By definition, y(z) assiociates conjugate diameters
and so is an involution. This, with (8.12), implies:

16.11 The asymptotes of a hyperbola, together with any two conjugate
(16.11) diameters, form a harmonic set.

Fig. 31

Again, we can present only one example to indicate the many affine
theorems concerning hyperbolas (Figure 31).

(16.12) A tangent to a hyperbola cuts the asymplotes in a pair of poinis
’ whose affine center is the contact point of the tangent.

Let the tangent 4, touching C at g, cut the asymptotes a,,x, at @, and a,
respectively, and take p =17 X {. The diameter £ ==¢ x z has for its
conjugate the diameter &, which is parallel to the tangents at the inter-
section points of £ and C (see the comments following (16.6)). Hence %’
is parallel to v and so contains p. By the previous theorem, o,,2,,5,E" form
a harmonic set, and hence intersect n in the harmonic quadruple p,g,a;,d;.
Because p is on g, g is then the affine center of a;,a, (see (15.13)).

In (11.11) a form for a conic was derived, analogous to that of an equi-
lateral hyperbola 2y = k. If for a hyperbola the coordinate triangle is
taken so that §; and §, are asymptotes, the conic is tangent to these lines
at d, and d,; on 8; ={. As shown in (11.11), then, the projective form of
the conic becomes 23— kx,x, = 0, k£ 0. Choosing (1,1,1) as a point of
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C gives k the value 1, and the hyperbola, referred to its asymptotes, has
the affine representation

(16.13) T4y = 1.
The analytic expression for a tangent to a conic in P, is easily obtained.
If C is expressed in projective coordinates, it has the form Zaimxkz 0,

i = dys, and the polar of any point y is the line Eaikxiyk= 0. When y
is on C this line is the tangent at y. Putting x; = 1, the fangent af the
point (y.,y,) on C is therefore given by

(16.14) (¥ + oYy + A1)y + (@2aYy + doYe + ATy
+ (anyy + a3¥2 + az3) = 0.

17. Gonvex Sets

If aand bare two points in the affine plane, the set of points (1 — 8)a 4 6b,
where 0 << 0 < 1, is called theopen segment S*(a,b). With the same defini-
tion but with 0 < 8 < 1, the points form the closed segment S(a,b). These
sets correspond to the Euclidean idea of the points between a and b, with
the end points belonging to the closed interval, but not the open one. We
also speak, in a familiar way, of the segment S(a,b) from a to .

A set p in the affine plane is said to be convex if for each pair of points
a,b belonging to 1, the entire segment S(a,b) also belongs to . Simple
examples of such sets are: the whole plane, a segment, an open segment,
a point.

(17.1) The no-tangent points of an ellipse or a parabola form a convex

’ set.

For if « and b are no-tangent points, the line a x b is a secant (see (11.5)).
Because of (11.12), if S(a, b) did not consist entirely of no-tangent points,
then on a X b, as a projective line, the no-tangent points would include
¢ X (a X b). Theline { would then be a secant, and the conic a hyperbola.
Because of (17.1), the no-tangent points of an ellipse or parabola are
called interior points of the conic.

The no-tangent points of an ellipse or parabola C, fogether with

(17.2) the points of C, form a convex sel.

Because of (17.1) it is only necessary to establish the property that if a is
on C and b is on or interior to C, then S*(a,b) consists of no-tangent points.
Since a tangent contains only one point of C, and fails to contain no-tan-
gent points, the line a X b is a secant when b is on or interior to C, and
b A a. If the desired property did not hold, then the argument of (17.1)
shows that the conic would have to be a hyperbola.
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If L(z) is defined by L(z) = a,; + asT, + ds, then the line, given by
L(z) =0, determines four convex sets: its two sides, L(x) > 0and L(z) < O,
and the fwo half-planes, L(z) > 0 and L(z) < 0. The formal proof of this
obvious fact is the same in all four cases and is based on the following
relation, which holds for all é:

L[(1 - 0)y + 7]
= q)[(1 - 0)y; + 6z,] + a[(1 - O)y, + bz5] + a4
= (1-0) [y + ay + a3] + 6[ayz; + @22y + @]
= (1-60)L(y) + L(2).

If, for instance, y and z belong to the set L(z) < 0, so L(y) <<0and L(z) < O,
then for 0 <C 6 <C 1 itisclear that (1 —6)L(y) + 6 L(z) <C 0. From (17.3) it
follows that every point p = (1 - 8)y + 6z, 0 << 8 <C 1, satisfies L(p) <2 0,
so the set L(x) <C0 is convex. The other cases are similar.

Two points y and z on different sides of £ are said to be separated by 3.

17.3)

(17.4)  If the line & separates y and z, then S(y,z) intersects &.

For suppose L(y) << 0 and L(z) > 0. The line joining y and z, namely
u=(1-0)y 4 bz, cuts ¢ in the point for which L(u) = 0. I‘rom (17.3),
this corresponds to l__e_‘? = :I—L%),—) Hence f—l) =1- -IIf((;; > 1, because
L(z)/L(y) < 0. Therefore 0 < 6 << 1, so theintersection belongs to S(y,2).

Given two or more sets of points, convex or not, the set formed by those
points which are common to all the sets is called the infersection of the
sets (which may be empty).

7.5) The intersection, D, of any aggregate of convex sels is either convex
’ or empty.

If a and b are points of D they belong to each set of the aggregale. Each
set, being convex, contains S(a,b), which, being in each se{, is then in ).

As an application of (17.5), consider a non-collinear triple of points,
a3,03,03. Let & denote the side of the triangle a;,a,,a; opposite @, and
take L} and Lirespectively as the side and the half-plane of %; which con-
tain a;, i=1,2,3. Then the intersection of L¥,L¥,L¥ is a convex set
T*(ay,a,a3), and the intersection of Ly, Ly, Ly is a convex set 7(ay,ay,ay).
The “triangular” set T(a,,a,a;) consists of its “interior”, T*(ay,q,.a3),
and the three segments S(a,,a,), S(a,,a5) and S(ag,ay). If aj,a,,a; belong to
a convex set K, then T(a;,a,a5) is contained in K. . » |

Triangular sets may be used to define a more general notion. A point of
a convex set u is called an interior point of the set if il belongs Lo the
mt.erlor of a triangular set whose vertices belong to . The non-interior
points of . are called its boundary points. In these terms, the whole plane,



[I11.17] CONVEX SETS 95

which is convex, consists only of interior points. The no-tangent points
of parabolas and ellipses are also interior in this sense, the curves them-
selves consisting of boundary points. To see that p is interior to a convex
set it suffices to show that it belongs to two non-collinear open segments
S*(a,b) and S*(c,d) which lie in the set.

The following simple fact, too, is often useful.

17.6 If a is an interior point of the convex set 1. and b is any point of
(17.6) i, then every point of the open segment S*(a,b) is interior fo .

For, by definition, there exists a triangular set T'(c,d,e) with a belonging
to T*(c,d,e). Choose one of the vertices, say d, not collinear with a and b,
and let a X d cut S*(e,c) in d’. Since b,d,d’ are non-collinear, and a is a
point of $*(d,d’), S*(a,b) belongs to T*#(b,d,d’) and hence is interior to y.
As a corollary of this:

(17.7)  If a convex set has interior points, these points form a convex set.

Another basic notion associated with convex sets is Lhat of a supporting
line. The line n is a supporting line of the convex set 1 if the line and the
set have at least one point in common and p. lies entirely in one of the
half planes defined by . This last requirement is equivalent to saying
that n does not separate any pair of points in p.. From its definition, a
supporting line can contain no interior point of w and must contain at
least one boundary point. If i contains no boundary points it has no
supporting lines.

The no-tangent points of an ellipse C, for example, form a set with no
supporting lines. The points of C and p. together, however, have every
tangent of C as a supporting line since, excepting its contact point, a tan-
gent consists of two-tangent points. In Lhis example Lhere is a unique
supporting line at each boundary point, but this need not always be the
case. The set T'(a;,a,,a;) has not only the two sides through a vertex a;
as supporting lines, but also all lines of the pencil at a; which do not cut
the opposite segment.

Though there may be many supporting lines at a boundary point, itis
an important fact that there must always be at least one.

17.8 If b is a boundary point of the convex set v, there cxists a supporting
(A78)  tine of u through b.

Proor: When 1= has no interior points, the entire sct lies on a line, which
is then a supporting line of the set. We suppose, therefore, that p. contains
an interior point a (Figure 32). Then 1 contains interior points, p; and
Py, not collinear with b, such that a is on S*(p,,p,). Let ¢ be any point of
a X b such that b lies on S*(q, ¢), and define ¢, = (p; X ¢) X (pg X b),
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and q,=(p; X ¢) X (p, X b). For any two distinct points, y,z, we now
introduce the notation R*(y,z) to denote the open ray emanating from y
and containing z but not y.

1) R*(b,c), R*(b,q,), R*(b,q,) contain no poinls of .

If z, on R*(b,c), belonged to g, then, by (17.6), all points of S*(a,z), and
hence b, would be interior to w. A similar argument holds for R*(b,q;)
and R*(b,q,).

Fig. 32

Let the points z of S(p,,c), for which R*(b,x) intersects ., form the set
L, and those for which R*(b,x) contains no points of w form the set R.
Then p, belongs to L, while ¢, and ¢ are in R.

) If x belongs to L, every point of S(p,,z) belon gs fo L.

F_or let 2’ be any point of S(p,,2), and denote by z a point of w on R*(b,x).
Since S(b,2) belongs to ., there exists a point 2’ of u. which belongs to both
the sets S*(b,z) and §*(b,z). Then all points of S(py»,2') belong Lo p, and, by
construction, R*(b,2') must intersect S(pyp2'). Hence 2 is in L, and (2)
follows from the arbitrariness of 2’ on S(py,x). Formal logic now yields:

3) If x belongs to R, all points of S(x,c) belong to R.

Since all points of' S(p1,¢) belong to L or R, which are mutually exclusive,
non-empty sets, it follows from (2) and (3) that there exists a unique
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point Z; on S(p,,c) which divides L from R. That is, all x on $*(p,.z,)
belong to L and all z on S*(Z,,c) belong to R.

4) Z, is on S(p,,q,) and is notf p,.

The first part follows from (3) and the fact that ¢, belongs to R. The second
part is evident from the fact that p, is interior to . By a completely sym-
metrical argument, there exists Z, on S(p,,qs), T, + ps, such that, for allz on
S*(p,,Ty), R*(b,x) intersects p, while, for all x on S*(Z,,c), R*(b,x) contains
no point of w.

Let x; be any point of S*(p;,%:), { = 1,2. By the same argument as that
which established (2), R*(b,x:) contains an interior point y; of p.. Hence
S*(b,y:) consists entirely of points interior to « and, in particular, contains
a point 7J; of p which lies in T'(a,c,pi), i = 1,2. The segment S(7,,J,) also
consists of interior points, so 7, the intersection of S(7,,7,) with S(a,c),
is an interior point. Thus the set comprised of b and the rays R*(b,r:),
i=1,2, bounds a convex set which contains a. Since this is true for x;
arbitrarily close to Z;, { = 1,2, it is also true for b and the rays R*(),%:),
i=1,2.5 This convex set H, bounded by b and R*(b,%;), contains . For
if v is any point not in H, then, by construction, R*(b,v) passes through ¢
or else intersects one of the sets S*(c,%;), i = 1,2. Hence R*(b,v) contains
no point of w and v is not in w. The two lines n;, =b X Z,, i = 1,2, are
therefore supporting lines of .

In this construction there are two possibilities for the relationship of
Z, and Z,. If they are collinear with b, n; ~ n, and there is only one support-
ing line of 1 through b. When Z,,%,,b are not collinear, n; 4 n,, and all the
lines b X z, for © on S(Tt), t = (py X q) X (b X Tp), are supporting
lines of ., with v,,m, distinguished as ‘‘exfreme” supporting lines.

The present definition admits rather artificial convex sets, for example,
the interior of an ellipse plus one boundary point. To avoid such irregular-
ity, and also trivial cases, we introduce the notion of a domain.

DerFINITION: A convex domain is a convex set with interior points,
which is not the entire plane, and which contains S(a,b) if it contains
S*(a,b).

When a convex domain K is not a strip bounded by two parallel lines, its

boundary points are said to form a convex curve C. The terminology is
purely associative for in general C is not a convex set. The supporting
lines of K are also called supporting lines of C. In these terms (17.8) states
that at each of its points a convex curve C has at least one supporting
line. When there is only one supporting line at a point p of C, it is called

8Since x; = Op; + (1 - 0)%;, 0 < 0 < 1, “x; arbitrarily close to z;”” means “0 suffi-
ciently near zero.”
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the tangent of C at p. At a point of C where no tangent exists, the extreme
supporting lines are often referred to as the one-sided, or right and left,
tangents at the point.

It is also convenient to have various classifications for convex curves.
Thus, C is called strictly convex if it contains no segment or, what is equi-
valent, if each of its supporting lines intersects it in only one point. C is
said to be differentiable if it has a unique supporting line, that is, a tangent,
at each of its points. Either an ellipse or a parabola affords an instance of
a convex curve which is both strictly convex and differentiable, while the
convex curve bounding a triangular set is neither strictly convex nor
differentiable.

If, for a given convex set p., an ellipse exists which contains g in its
interior, then p is said to be bounded; otherwise it is said to be unbounded.
A convex curve is defined to be closed or open according as its associated
convex domain is bounded or unbounded. Thus an ellipse and a triangle
are closed convex curves, while a line and a parabola are open.

18. The Equiaffine Group. Area

In elementary geometry area is defined in terms of distance. Itis remark-
able, however, that area may be definable in situations which are too
general to permit a definition of distance (see next chapter).

Such a situation arises in connection with affine geometry. A subgroup
of I';, which has only one parameter less than T, and is therefore too gen-
eral to leave a reasonable distance invariant, does leave a reasonable area
invariant. We are led to it by the following considerations. Let z,,z, be an
arbitrary, but fixed, system of affine coordinates, and let
Ay Gy
Ay Qg =0
be an affinity of P, on itself. By definition ¢ is a one-to-one mapping, and
the jacobian of the transformation does not vanish since it is A. Suppose
then that D is a region in P, and D’ is the region into which D is carried
by ®. If the area of D, namely A(D), is defined by

b1 = anty + apr: + as, =12, A=

(18.1) A(D) =

dr, |,

the customary rules for transforming a double integral gives the area of
D’ in the form

b . L

o) 1 g, | [ [y an|.

b

(18.2 D(va T,)

dry dx,
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Though (18.2) shows that area, as defined in (18.1), is not preserved by
a general affinity, it also shows that it is preserved for A === 1. If the
determinants of the affinities «; and ¢, are 4; and A,, then the determinant
of #7* = 1/A, while that ®,®, is 4,A,. Thus the affinities with determin-
ants == 1 form a sub-group Uy, of the group I,. The elements of Iy, are
called equiaffinities (also unimodular affinities) and the theorems which
remain valid under such transformations form the content of equiaffine
geometry. Area, as defined in (18.1), is thus an equiaffine invariant.

It should be observed that the exact definition of j J.F(x,y) dxdy is

purely analytical and does not depend on = and y being rectangular coor-
dinates. If it should seem that we are begging the question of area by using
the integral, this is only due to the fact that in elementary calculus the
integral is frequently introduced as area. The same remarks will apply later
when we discuss angles. It is true that functions like sin x were originally
derived from the concept of an angular measure x. However, sin = can be
defined, independently of the angle concept, for instance as the solution
of the differential equation y’’ + y = 0 which satisfies the conditions
y(0) = 0 and y'(0) = 1. This approach has the advantage that it also
yields cos x as the solution for which y(0) = 1 and y’(0) = 0. The relation
sin*  + cos® x = 1 and the general addition theorems follow immediately.

The area defined in (18.1) is not invariant under general affinities. If
area is to retain certain natural properties, so that a parallelogram, for
example, has positive area and a proper sub-parallelogram has smaller
area, then evidently no area can exist which is invariant under all affinities.
For z; ==z/2, x;==x, will transform the parallelogram 0z, <1,
0L, <1 into the sub-parallelogram 0 <z <1/2, 0 ay < 1.

Since A(D) is defined by the same integral used in ordinary geometry,
the results are the same. For example, the area of a triangle with vertices

(T1,Z2), (Y1,Y2)s (21522) Is given by

Ty x, 1
(18.3) ATy ==+ 12|y, y, 1|
z; zp 1

Care must be exercised, however, in determining when the geometric
inferpretation has an affine sense. For instance, there is no affine meaning
in the statement that two triangles with equal base and altitude have the
same area, since length and perpendicularity are undefined in the affine
plane. A correct statement for equiaffine geometry is that two triangles
T(ay,b,c) and T(ayb,c) have the same area when a, X a, is parallel to

“The choice of a fixed system of affine coordinates amounts to selecting a unit of area,
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* b % c. As another illustration of a theorem in this geometry, if z is any
point of the open segment S*(b,c), and a is not collinear with b and ¢, the
affine ratio | A(b,c,2) |, defined in (15.10), is equal to the ratio of areas
A[T(a,b,2)]/A[T(a,b,0)].

In equiaffine geometry it is possible to distinguish different ellipses by
the area they bound. For an ellipse in a general affine representation,
(16.1), can always be transformed to the form 2} 4 2§ =1, (16.9), by
the affinity ® whose determinant A 72 0. The aflinity y, given by

1
@i = 4| %, i = 1,2, has determinant |A|, so @y is in Iy, Under &y
the ellipse then takes the form
(18.4) af + a3 = &,
U
/‘\A/_\
£
a E ar
n »
Cc
v b
[
52
Fig. 33

1
where a=|A| 2 It is clear that integration yields =a* for the area
bounded by this ellipse E, but an affine interpretation of a® must be given
if this statement is to have an affine sense.

The form (18.4) refers E to 3, and 8, as conjugate diameters (Figure 33).
Since the tangents at the intersection points of a diameter are parallel
to the conjugate diameter, (16.6), the four tangents at the intersection
points of 3, and 3, form a parallelogram circumscribed about E. With
8,3, interpreted as a rectangular system this is a square of area 4a? as
are all the parallelograms of E defined this way. But tangency and paral-
lellsr.n.are preserved by every affinity, while area is preserved by all equi-
affinities. Hence we can state as a theorem of equiaffine geometry:

The parallelograms circumscribed about a given ellipse, such that
the affine centers of the sides are points of contact, all have the
same area B, and the area of the ellipse ifself is =B/4.

(18.5)
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A familiar property of hyperbolas also holds in equiaffine geometry.

The triangle formed by the asymptotes and any tangent to a hyper-
bola has constant area.

(18.6)

If the hyperbola is referred to 8, and 38, as asymptotes, its representation
takes the form x,x, = k/2, k > 0 (see (16.3)). At the point ¢ = (g;,¢,) on
C the equation of the tangent = is .9, + 2,9, =k, s0 q; = (k/¢,,0)
and a, = (0,k/g,) are the intersection points of v with z,=0 and x;, =0
respectively. Because of (18.3) the area of the triangle 7'(ds,a;,a5) is
(1/2)(k/g2)(k/g,), which has the constant value k because g¢,9, = k/2.

A more interesting fact concerning area in equiaffine geometry, and one
which will be of great importance later, is the following theorem of
C. Loewner (born 1893) and F. Behrend (born 1911):

If K is a closed, convex curve, then among the ellipses which have
(18.7)  a given center z and contain K there is exactly one ellipse E with
minimum area.

Proor: We have to show that any two ellipses, E and E’, with the
given property coincide. The involutions of conjugate diameters of E and
of E' are both elliptic and so, by (13.17), have a common pair of elements.
If such a pair be taken for the z; and z, axes, then they, together with
the ideal line ¢, form a triangle which is self-polar with respect to both
E and E'. The equations of the conics then become:

E:aqx} + a23=1, E':adx? 4+ ajxl =1,

where a; >0 and ai > 0, i = 1,2. The fact that K is contained in both
E and E’ means, algebraically, that

(18.8) a1} + a3 < 1 and ajz? + aja2 < 1, whenever z lies in K.

Now (ay ‘|‘2‘1i)x% + (ay 'gaé)x‘i

=1 is also an ellipse, E,, with center

AT Y >
z, and (18.8) implies that (@ tal)xl + (2 —i—2a2)x2 <1, for z in K,

so E, contains K. The areas of E, E' and E, are, respectively,

7 T and 2n
(@)% (ajay)*’ [(ay + a)) (a5 + ap)]*”
The first two areas must be equal, since E and E’ were assumed to be
minimal. For the same reason the area of E, must be at least as large as
that of E and E’. Algebraically then,
(@ + @) (@ + &) < daya, = dajay, 5o

(4, + a)) (@, + a3) < 4y 4,a,,0;.

(18.9)
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On the other hand, from elementary algebra we have the fact that
(a; + af) > 2V aidi, i =1,2, where the equality holds only if a; = a;,
i==1,2. This, with (18.9), forces a;=aj, i = 1,2, and E=E'.

Any affinity which carries K and z into itself will also take E into
itself. For if K goes into itself, the area it bounds is preserved hence
the affinity automatically has determinant = 1. The image E' of E,
which is also an ellipse, has the same area as E and contains K. Hence,
from (18.7), E = E'.

Exercises

[15.1] If a,b,¢c and a’,b’,¢’ are non-collinear triples of points in the affine
plane, there is exactly one affinity carrying a, b and ¢ into a’, b’
and ¢’ respectively.

[15.2] I, in two projectively related pencils, three pairs of corresponding
lines are parallel, then all corresponding pairs are parallel.

[15.3]  If corresponding sides of two triangles are parallel, then the lines
joining corresponding vertices are concurrent or parallel. Construct
examples for both cases.

(15.4]  The diagonals of a parallelogram intersect at the affine center of
each diagonal.

[15.5] State and prove the affine form of the theorem that the medians
of a triangle are concurrent at a point which divides each median
in the ratio 1 : 2.

[15.6] Prove the theorem of Menelaus (1st century): If a,b,c are
not collinear and no one of them is on L,and d =t X (b x ¢),
e=txX(Xa),f=tx(ax b), then

A(f,a,b)- A(d,b,c)- A(e,c,a) = 1.
Hint: draw the parallel to & through ¢ and use (15.15).

[16.1] No two tangents to a parabola are parallel.

[16.2] If a parallelogram is circumscribed about a central conic, the
diagonals are conjugate diameters of the conic.

(16.3] If a hexagon inscribed in a conic has two pairs of opposite sides
parallel, then the third pair of opposite sides are parallel.

[16.4) .If ¢ is the center of the ellipse C, defined by the polarity ¥, and <
Is the reflection in ¢, show that = — z¥d is an elliptic polarity.
Formulate this projectively.

[16.5]  Use theorem (27.3) to show that if a tangent to a hyperbola cuts
the asymptotes at a and ', then any pair of parallel lines, through
aand a’ respectively, are conjugate.
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If the chord S(a,b) of a hyperbola meets the asymptotes in p
and ¢, then A(p,g,0) = A(g,p,q).

Show that x} + 3x,x, — 42§ + 2z, — 10x, = 0 is a hyperbola. Find
an affinity which transforms it to the form x? — x3 = 1.

Let C be a parabola and a and b be points such that a x b does not
pass through the point at infinity on C. Show that there is exactly
one translation (possibly the identity) which carries C into a
parabola through a and b.

A parallelogram bounds a convex set.

Let K, and K,; be convex sets, and let the point z¢ range
over Ki, i == 1,2. Prove that the set of all points Ky consisting of
(1 - 6)x, -+ Bx,, where 0 << 6 << 1, § fixed, is a convex set.

In [17.2],if K, and K, are parallel segments, then K, is a segment

parallel to K,. If K, and K, are non-parallel segments, then Kj is
a parallelogram.

Each branch of a hyperbola is a strictly convex, open, differentiable
curve.

If the intersection of an aggregate of convex domains contains
interior points, then it is a convex domain.

If p lies on S*(a,b) and S*(¢,d), two non-collinear segments in the
convex set K, then p is an interior point of K.

Construct an example of a closed, differentiable, convex curve
which is not strictly convex.

A convex domain which contains a straight line is either a half
plane or a strip bounded by two parallel lines.

In a fixed ellipse, a triangle, whose vertices consist of the center
of the ellipse and the end points of two conjugate diameters, has
constant area.

If «, v, and m; are the tangents at the three consecutive points
a,, a, and a; on a parabola, and b,, b, and b, are the intersection
points of the tangents in pairs, with b; not on v, i = 1,2,3, then

A[T(,a5,0)]" + A[T(a5,05,b1)]"h = A[T(a1,05,b4)]"
(where A indicates area, and T a triangular set).

Theorem of Ceva: Let a, b, c and p be aquadrangular set and put
d=(a X p) X(bxec),e=(bxXp)X(Xxa)

and f=( X p) X (axb).

Then A(f,a,b)A(d,b,c)A(e,c,a) = - 1.

(Hint: Apply the relation | A(bd,c,2) | == A[T(a,z,b)]/A[T(a,b,c)] of

the text to the triangles T'(p,a,b), T(p,b,c) and T(p,c,a).) Show

that Ceva’s theorem is an affine and not only an equiaffine theorem.



104
[18.4]

[18.5]

[18.6]

[18.7]

AFFINE GEOMETRY [I11}

For the parallelogram with vertices (= 1, = 1) find the Loewner
ellipse (see (18.7)) with the center of the parallelogram as center.
(Hint: Show first that because of the uniqueness of the ellipse, it
2 2

must have the form % -+ ;—2 = 1))

Among the ellipses circumscribed about a given parallelogram, the
ellipse, for which the diagonals are conjugate diameters, has the
smallest area. (Hint: use [18.4].)

Derive from [18.5]: If the ellipse E with center z contains the
convex curve C, also having center z, and if E touches C in the
endpoints of two conjugate diameters, then E is the Loewner
ellipse for C.

Can different types of parabolas be distinguished in equiaffine
geometry?



CHAPTER 1V

Projective Metrics

19. Metric Spaces

The specialization of a line in the projective plane produced the affine
pilane and reintroduced the notion of parallelism. It is logical to consider
next by what steps distance can be recovered, that is, how a distance, or
metric, can be obtained from the affine plane. However, we wish to study
this problem in a much more general framework. To that end, some general
concepts associated with ““distance” will be developed.

By whatever rule the number ab is to be chosen for the distance corre-

sponding to the points a and b, the usual intuition of distance demands
the following properties.

I.  The distance ab is a real, non-negative number, and ab =0 if and
only if a and b coincide.
II. The distance from a lo b is the same as from b to a, that is, ab = ba.
I1I.  Distance means shortest distance. All triples, a,b,c satisfy the “‘triangle
inequality” ab -+ bec = ac.

These postulates are still much too general to provide a basis for an
interesting geometry. For instance, if R; is any collection of objects
a,b,c,- - -, called points, and if we define ab =1 for a % b and ab =0 for
a==>) then I, Il and III are satisfied, though in a trivial way. Despite
the possibility of a case such as R,, we introduce some notions solely in
terms of the basic postulates.

A set R of points, in which distance is defined for each pair of points so
that I, IT and III are satisfied, is called a metric space.

In a metric space R the sequence of points z,,%,,- - -,2n,- - is said to
converge to the point x, or to tend to , if the lim x,x = 0.

7=y 0
In R, the only sequences which are convergent are of the type a,a,a,-- - -
For a less trivial space, let R, consist of all possible n-tuples, (x,,2,, - - ,Tn),
of real numbers, with the distance between the n-tuples, or points, x and y
defined by '
dy(z,y) = max |- yil .

T==1,2,++4,n
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With the same set of n-tuples another metric space, Ry, is obtained with
distance given by

dywy) =X, |- vil-
i=1
That properties I and 11 hold for d, and d, is clear, also that dj satisfies I11.
To see that 111 holds for d,, let ,y,z be any three points in R,, and choose
i such that
dy(z,7) = max |z — 2| {=|%i— 2.
i==1,2,--, 7

Then dy(x,2) = | i, = Zp | < |iy = Yio | + [Yio ~ 23|
< nax Vi - gl | + max 19— 2] { = da(z,y) + d2(y,2)-

= bl l’ il

The same space of points, but with distance given by

dy(ry) = e(ry) = [Zm - yi)zJ

i=1

defines R,, the so-called n-dimensional Euclidean space, often denoted
by En. Properties I and 11 are easily verified for d,. The triangle inequality,
however, is more recondite. To obtain it we make use of the so-called
Cauchy-Schwarz inequality:

If ay,a5,- « - ,an and by,by, - - -,by are real numbers then

(19.1) (};aibi> <(};a?) (Z bz)

1

the equality holding when, and only when, all a; are zero, or all b;
are zero, or b; = p.g; for all 1.

Proor: Since the equality holds when all ¢ are zero, or when all b; are
zero, suppose the a; are not all zero and consider the quadratic expression,

Z(Mi + by = 7‘220% -+ 27\2%1); —l—ébf.
1 1 1 1

Because of its form, the expression is never negative hence its discriminant
is not positive,

n 2 n ! n
or 4(Zaibi) - 4(20@)(2 bg)g 0.
1 1 1
n \ 2 ‘o n
that is (Eaibi) g(Zag) (Zbg).
1 1 1
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The discriminant is actually negative unless the quadratic in X has a real
root, which occurs only when Xa; + b; =0, for all i, or b; = - \a; = pa;.
All b; are zero when . is zero and conversely.

Returning to the triangle inequality for E», it must be shown that any
three points, x,y,z, satisfy the relation,

ma % n T " "
M- zi)2J < [Z(Jﬂi - yc)zJ + [Z(yi - zi)z] .

With (x: — y:) and (y: — z:) playing the roles of a; and b, (19.1) implies

3 -y (i - zf)] <( pICE yf)”) (E(yi - zi)z),

n

or E(Wi -9 (Y — z:) < e(x,y)e(y,2).

1

The equality holds only when, for all i, z: ==y, or ys == z;, or T — yi = w(ys —2s),
with u > 0. Then

exw,g) + 22 (i — i) (B - ) + €X(y,2) < eXAnY) + 2e@P)e®,d) + €2(y,2).

The left side of this inequality is just );(xi"--i)2, as can be seen by
1

writing

X (- ap =X [~ y) + (e~ 2P,
therefore ] '
N (- 2 < [e(@y) + e@.2)] or e(2,2) < e(xy) + e(y.2).

The equality sign in this last expression holds when, for all i,

b= i”f‘ = (1 -t + 1z,

1+ and 0 L L.

The situations where x;==y; or y; =12z correspond to t=0 and {=1
respectively. It follows from this that in E» the equality

oY) + e(y,2) = e(x,2)

holds only when y lies on the ‘‘segment S(z,z).”

For n = 1 the distances d,, d; and d, coincide. For n >> 1, however, they
differ and so present three different metrizations, or distances, imposed
on the same set of points. Two distances d' and d'’, for the same set R, are
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called equivalent when convergence of a sequence {x{ to a point x under
d’ implies convergence of the sequence to the point x under d'’, and con-
versely. That is, the lim d'(z,2?) = 0 if and only if the lim d''(z,z?) = 0.
1> x T

That d,, dy and d, are equivalent metrics can be deduced from the fact
that d;(z,2¥) >0 if and only if 2} — x; for k= 1,2, --.,n. The equiv-
alence also follows directly from the following inequalities which hold for
any two n-tuples, a and b, and for any fixed, positive, integraln :

(1/n) max §|as - bil} < (/)| D a - 2] n) Dl - bl
< max {|as— b} <‘[2(a,- - b,-)z]%gz‘lai - bil.

In general, if zy has the properties I, Il and III, then V' zy does also.
By inspection, I and II can be seen to hold for \/ a2y, and III follows from

the fact that (\/:;:g—; + \/yz)2= xy + yz + 2\/xy\/yz P (\/xz)z. Here the
equality sign occurs only when x = y or z = y. Moreover, the distances
xy and \/;CTI] are always equivalent. In particular, d; and \/ d; are equivalent
metrizations of R;, i = 2,3,4.

If R’ is a subset of the metric space R, then in terms of the distance
already assigned to its points R’ is also a metric space. For instance,
suppose R’ to be the set K(a,3) consisting of the points in R at a distance 3
from the point a. In any space, K(a,0) = a. In a trivial space the locus
K(a,5) may be uninteresting. In R,, for example, the sphere contains no
points when & is greater than zero and different from 1, while ford =1
it contains all points but a.

In the n-dimensional Euclidean space, K(a,r) is the locus

Z(xi—agz—-——rz, r>o,

=1

which for n = 2 and n = 3 yields the ordinary circle and sphere respect-
ively. For points 2,5 on a circle a second distance may be defined as the
shorter of the two circular arcs joining x and y. If a is the origin then
x? + 2} = r? is the equation of the circle. The points z and y determine
radii r, and r, which make angles 0; and 8, with the initial radius to
(r,0). Since x,/r and z,/r are the cosine and sine of 8,, the formula for the
cosine of the difference of two angles gives [(x,y, + %;Y,)/r?] as the cosine
of 6 the angle between r; and r,. Hence

rf = r Arc cos [(2,y; + Zals)/r?]

is the length of the shorter arc from z to y, where the Arc cos denotes
(here, and in the future) the principal value, that is 0 < Arc cos < 7.
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Similarly the points of the ordinary sphere may be remetrized by
taking the distance from x to y as the shorter of the two great circle arcs
joining them. If a is again the origin, the direction cosines of r; and ry, are

respectively xi/r and yi/r, i = 1,2,3. The cosine of the angle 6 is Emiyi/rﬁ
and the length of the shorter great circle arc is

rf =r Arc cos [iny,-/rz].

More generally, the (n — 1)-dimensional, spherical space S,;»-V, centered
at the origin in E=, is the locus satisfying the equation

n
N 2 2
‘_‘xizr.

=1

On S;»-1 the spherical distance is given by

s(x,y) = r Arc cos [2 xiyi/rz].
1

The fact that this distance is always defined, even in the general case,
namely that | Efliyi | < 12, follows from (19.1) which gives

(Tww) < (Ta2)(Xw) =
However, the proof that s(z,y) satisfies the triangle inequality is compli-
cated and will be omitted here.

In many branches of modern mathematics the distance concept enters
in the following way. A certain type of convergence is defined for the ele-
ments of a space. The question then arises: does a suitable metric exist
such that convergence in the metric sense is equivalent to convergence in the
previous sense? FFor instance, let R be the space whose elements are the
real functions f(f), which are defined and continuous on the interval
a1 b, and let convergence in this space mean uniform convergence.
If f(Z) and ¢(t) are elements, or “points”, of R, the function |f(t) - g(f) | is
also a continuous function and so assumes a maximum value on the
closed interval from a to b. This value may be taken to define the distance

from f to g, that is,
d(f.g) = max [ /() - g(1) .

Clearly d(f,g) has properties I and II, and the triangle inequality is
established in exactly the same way as for d,. Convergence in the sense
of d and uniform convergence are now equivalent. For if { fi(f) { converges
uniformly to f(f), then d(fi,f) > 0 and conversely. In the language of



110 PROJECTIVE METRICS [IV.19]

modern topology this result would be expressed by saying that with con-
vergence defined as uniform convergence the space R is metrizable.

This same problem arises in connection with the projective plane, or,
more generally, in connection with the n-dimensional projective space Pr.
The definition of the latter is analogous to that for P2 the points of P
are the classes [z] of (n + 1)-tuples, (£,%5,- - -,Zns1), Of real numbers; the
zero class is excluded as before; and z and y belong to the same class, or
x ~ y, if and only if %520 exists such that z =\y;, i = 1,2,---,n 4 1.
In P~ there is a natural concept of convergence, namely that the points
pi = (PLp4 -+ -sPhir)y L = 1,2;- .-, tend to p if representations pi* and p*

exist such that the lim p; ==pz, k=12,-.-,n + 1. The question is
i—>© -
whether or not this convergence is expressible in terms of a suitable
metric.
That such a metric does exist may be seen in the following way. For
n+1 1/2
any point z, let |z | denote [2 x%} . Recause the zero class is excluded,
. -
|x| is never zero. For any two representations,  and x, of the same
z e
x|’

point it follows that z] = =+

is positive or negative. Now if a sequence p* converges to p in the sense

defined above, so that for certain representations pi* — p*, then clearly

the sequence of numbers | p} | = | p* |. Therefore the sequence of points
*

where the sign depends on whether A

in the representation ITl:LTl converges to I—S;—l But for general represen-
i i
tations, T%'—l and i—gzrl differ at most in sign and the same is true of l_g_l

&
and T%.——I . Therefore, with the proper choice of sign,

Pi Ps
19.2 + o ’
492 Fiary
where the sign depends on i but not on k. Another way of saying this is
that if a; is the smaller of the two numbers,

k= 132:""n + 11

n-+1 pi p n+1 Pl P
2 |1p1 " Tpl 2 & [1p T 1]

then pi — p implies a; — 0. Conversely, let a; —0. Because of (19.2), if p*

. U
is taken as l——g—| and pi* as == Tl—;i—\, then for these representations pi* -~ p*,
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which is the definition of pi-> p. It follows that if the distance between
x and y is defined by

n+1 nt+1

“(?C,y)zmin;i;]“%_'-%i‘ -

i=1

)
Izl T Tyl

?

then convergence in the metric sense and in the sense first defined are

equivalent. That =(z,y) is actually a metric is easily verified (exercise

[19.5]).

The conventions for P? carry over in a natural way to P». Thus if

a+1

and b are (n -+ 1)-tuples, then a-b means Zaibi. The locus of points x
=1

satisfying x-% == 0, where £ 3£ 0, is called a hyperplane, and it is point

and hyperplane which play @lual roles in P».

Analogous to the affine plane, P, or A? the n-dimensional affine
space A» is derived from Pr by specializing one hyperplane in the
projective space. If this is chosen as Zy1 =0, and we regard it as
deleted from P», then every point of A» has a non-zero last coor-
dinate. As before, this coordinate may be taken to be 1. Then =,
in the normalized form Z == (T, Tz, - -,Zn,1), has a unique representation,
and Ty, - - -, %, are called affine coordinates. That a# is a sequence in A™ con-
verging to x in A» means that x' and x have representations, z* and 2*, in Pr
for which x}': —> x,:, k=1,2,..-,n + 1. In particular, :vj;l — :c:H-

Since xi" , 7 0 and 2, | 5= 0 it follows that

hence that Zi—» %, k==1,2,---,n. Obviously &} —>T; k= 1,2,.--,n
implies that af as a sequence in P converges to @ in P», since ¢ and T
are simply particular representations. It follows from the preceding
discussion that & — % in A» is equivalent to =(x,x) — 0.

Though =(x,y) shows that P» is metrizable, the metric geometry to
which it leads is not fruitful. From this point of view, the most interesting
distance for P2 (or ») is that of elliptic geometry, which is discussed in
the next chapter.
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20. Segments, Straight Lines, Great Circles.
Projective-Metric Spaces

In a metric space, if the point (%), « ¢ P, depends continuously
on the parameter {, that is if & — #, implies z(&) — 2({), then the set z(f)
is called a curve from z(«) to z(f). In the space R, no two distinct points
can be connected by a curve. In the spaces R,,R;,R,, and in the space R,
n 1/4
of n-tuples, with dy(x,y) = [E (zi - yi)2] = \/ e(x,y), any two points y

=1
and z can be connected by a continuous curve. This may be done, for
instance, by

() =010~y + tz
= ((1-0y, + 12, (1-0)Yy + Lz, A =Yg + 23, - - -, (1 =)y + 1z,)
where 0 1 1.
The length of a curve x(t), o < t < B, in a metric space is defined in the
ordinary way : Let A: fp=a <h <o << --- <l = be a finite decom-
position of the interval « < ¢ < §, and put

n
L(b) = 2 2(t)z(ti-).
=1
Then the length Lix(f){ of z(f) is defined as the least upper bound
(which may be ) of the set of numbers L(4) corresponding to all possible
divisions A. It can be deduced from the triangle inequality that if 4; is
any sequence of decompositions, 4;:lf=o<f; <t < ... < {{:=5,
in which max (ti.+: - {3) tends to zero as i — oo, then

lim L) =L ja(t) |,

We will not prove this here since it will not be used. For any A, repeated
use of the triangle inequality justifies the relation:

(20.1) Liz®! > L) = Y 2(t)atig) > (@) ().
i=1
When the equality holds, that is when L} z(f) ! = x(x)x(f), then x(f) is
called a segment from x(«) to x(8). From (20.1) it follows thal a segment
is always a shortest connection of its endpoints.
In the trivial case where z(f) = () for « < (- ¢ the condition
L} 2(l) { = x(«)x(B) =0 is always satisfied. As the examples R, and Ry
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show, there may be no other segments in a space than these trivial ones.
This is obvious for R;. In R; if x(«) 5= 2(f) and £, is such that z(¢,) is not
z(e) or 2(£), then

Liz() | > a()x(t) + x(t)z(B) > w(=)().

In the spaces R,, R; and R,, the curve z(f) = (1 - f)y + fz, 0 Lt <1,
is a segment joining y and z, and in the case of R, = E» if was shown to be
the only segment connecting these points. In R, and R, there will, in general,
be infinitely many segments connecting y and z. In R,, for example, any
curve x(f) = (xy(f), Z5(£), - - - ,xa(f)) from y to z will be a segment if the function
x;(t) varies monotonely from y; to z;, that is if:

K ziand 4 << & imply xi(h) < 2i(te),
Yi > ziand 4 < ty lmply .’.'C,;(tl) > .‘,'C,;(tz).

(See exercise [20.2].)
If 2(f), « <t B, is a segment and « < f <1, <ty < £, then (20.1)
implies :

(20.2) r(t)a(ty) + 2(la)(ts) = x(t)x(ts).

Therefore if x(t), < (3 and a < a<(3 £, denotes a subarc of
z(f), and Bily=a< 151 <l <- < f, = p is a decomposition of
« < £ B, then repeated apphcatlon of (20.2) yields :

(20.3) LE) = Y #(B)a(l-1) = q@)2(F) = 2@2().

i=1
Hence Z(t) is also a segment.
(20.4) A subarc of a segment is a segment.

The relation (20.3) shows that the length s of the arc x(f) between z(«)

and x(f) equals z(x)x(f). Introducing this variable in place of { as a para-

_meter changes the representation from x({) to y(s) defined by the condition
that y(s) = x(f) if s = x(x)x(). In the new representation,

Ye)yGse) =81 -5l 0T s < 2(@)(P).

Thus the association s % y(s) sets up a one-to-one correspondence
between the segment and the interval 0 < s < (2)z() on the real s-axis,
and this association preserves distance. Such a distance preserving associa-
tion is called an isometry, and the segment is said to be isometric to the inter-
val. This is a basic concept in metric spaces and is more fully developed
in a later section on motions.

The converse of the above situation is also true, namely that in a metric
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space a set isometric to an interval, o < s < ¢, of the real azis is a segment.
For if z(s) denotes the image of s under the isometry, then

2(sp)2(sz) = | 81— S2 l

and it follows immediately that L fa(s) | = p — « = z()x().

These results suggest the definition of a (metric) straight line in a melric
space as a set isometric to the real s-azxis. If 2(s) denotes the image of s under
such an isometry, then

(20.5) 2(s,.)2(sp) = |81 — Sa| for any pair sy,8,.

Any subare, « < s < b, of 2 straight line x(s) is then a segment. In Ry, Ry
and R, the locus

) = (1 -0y + tz yFz —0 < t<{ oo

is a straight line. The mapping ¢ — z(f) is not an isometry of the t-axis
on the set 2(f), but the parameter transformation

s = 1di(y,2)

yields a representation x(s) of the locus such that s — x(s) is an isometry
of the set and the real s-axis. This can be checked, using

[di(y,2) — sly + sz .
di(y ,Z)

Again, for R, = E», these loci are the only straight lines, whereas in R,
and R, there are many others.
Besides the straight lines, the sets isometric fo a circle S* for some r >0
are important. With the sphere in mind, such sels will be called great
circles. If 2(s), 0 L s < 2nrisa representation of 8} in terms of arc length,
then

x(s) ==

(20.6) 2(s,)2(sy) = min } [ 8y — Sy |, 271 — |5y = sa |4

The existence of a representation in which distance has this form is Lypical
of great circles. For any pair of distinct points on it, a greal circle contains
two arcs joining them and at least one of these is a segment. They are both
segments if and only if the points have the distance =r (corresponding to
diametrically opposite points).

We are now in a position to connect the topics of the first chapters with
metric notions and to define the type of metric space in which we will
henceforth be interested. As already noted, a hyperplane in Pr is a locus
of the form z-£ =0, £ £ 0. The line £ X y, x Ay, in P* is now defined to
be the locus of points Az + wy, where (%,p) 5 (0,0). The spaces R, with
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which we will be concerned, belong to a class defined by the following
properties:

1). R is asubset of P* which does not lie in a hyperplane.

2). R is ametric space (with distance xy ).

3). The strict triangle inequality, xy + yz>> xz, holds whenever x, y
and z are distinct and non-collinear (z is noton x X y).

4). If x and y are distinct points of R the intersection, M(x.y), of x X y

with R is a metric straight line or a great circle.

Because of 1) and 2) such spaces will be called n-dimensional projective-
melric spaces. The distance zy is also called a projective metric.

Merely requiring that R be a metric space seems inadequate, and that
to be interesting the extra condition should be imposed that xy is equiv-
alent to n(z,y), that is, that iz — 0 if and only if =(zf,x) — 0. Actually,
this condition need not be assumed, since it is a consequence of 3) and 4).
Due to the peculiar structure of the projective space, the proof is simple
only when R is a subset of the affine plane. For that case a proof, for n= 2,
is given in the next section, and for n = 3 in Section 47.

The condition 1) above is necessary to justify the term n-dimensional.
If it is omitted R may lie in a hyperplane of P», in which case it would be
at most (n — 1)-dimensional. The second and third conditions are natural
ones that need no justification. Since both a great circle and a straight
line contain a segment joining a given pair of their points, condition 4)
implies that two points y,z, of R can be connected by at least one segment,
and at most two, lying on y X z. Property 3) insures the fact that no other
segments fromy to z exist.

When at least one point is removed from a projective line there can be
at most one arc on the line joining two of the remaining points. Therefore
X(z,y) must be a straight line when it is a proper subset of z X y. When
M(z,y) coincides with x X y it contains two arcs from z to y and is a great
circle.

(20.7)  Max,y) coincides with x X y if and only if it is a great circle.

When Mz,y) is a proper subset of X y it is a subarc of x x y without
endpoints. That it is an arc follows from the fact that X(z,y) is a straight
line, x(s), of the form (20.5) and therefore contains, with any two points,
a segment connecting them which is an arc on z X y. It cannot have
endpoints since 2(0)z(n) = x(0)x(- n) = n tends to co with n which means
that the sequences | z(n) { and | (- n) { have no limit points.

(20.8 If Mz,y) is a proper subset of x X y it originates from x X y by
$) the removal of a closed interval which may be a point.
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Among the metric spaces discussed in the preceding section, only E»
is a projective-metric space (R, and R, are eliminated by condition 3)).
To see that the class is still very general, we give another example.
The space R, which is the strip ~ #/2 <<z, < =/2 in E?, with the ordinary
metric e(x,y), is not a projective-metric space. For if x and y are points
of Ry for which z,5<y, then they are not contained in a metric
line. However, under the metrization d(zr.,y) = e(x,y) - e(x,y), where
o(x,y) = |tan z, — tan y, |, Rg is a projective-metric space. The function
tan z, increases monotonically with x, so that if x, y and z lie on z x y,
with z, <y, <z, then p(x,y) + p(y,2) = s(x,z). Since e(z,y) is also ad-
ditive on such a line, d(zx,y) is. For horizontal lines o(x,y) =0 and d(z,y)
is addititive since e(z,y) is. On these lines e(x,y) becomes infinite with
|2, -y, |- On others e(z,y) is bounded, but p(z,y) > + o for fixed x
and y — == =/2.

In these examples all (x,y) are straight lines. The original definition
of a projective-metric space admits a priori the possibility that the space
contains both straight lines and great circles. According to a theorem of
Hamel (born 1877), however, both types cannot coexist in the same projective-
melric space: either all metric lines are straight lines or they are all great
circles of the same length.! In the second case R is the whole projective
space. In the first case there is a hyperplane in P» which has no common
point with R. In the case of P2, where a hyperplane is a straight line, if a
non-intersector of R is chosen for the line at infinity, R may be regarded
as a subset of the affine plane.

Hamel’s theorem will not be proved here since it will not be used and
because its true character becomes clear only when non-projective metrics
are also considered.? It explains, however, why R will appear in all
examples as either the whole projective space or else as a subset of the
affine space. To have short terms, spaces of the former type will be called
closed and those of the latter type will be called open.

For a better understanding of the meaning of Hamel’s theorem, consider
the projective plane P? from which a closed interval of one projective
line has been removed and let R denote the resulting subset of P2 If «
and y are any two distinct points of R, and X(z,y) is the intersection of
R with z X y, then (z,y) either coincides with x X y or has the property
(20.8). Hamel’s theorem implies that in spite of this there is no metric
d(x,y) in terms of which R is a projective-metric space.

The problem of determining all projective metrics is one of a famous set

1G. Hamel, “Uber die Geometrienin denen die Geraden die Kiirzesten sind’’. Math.
Ann., vol. 57 (1903), pp. 231 264. The above result is in § 4 of this paper.

#H. Busemann, “On Spaces in which Two Points Determine a Geodesic”. Trans.
Am. Math. Soc., vol. 54, No. 2, pp. 171-184, 1943.
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of problems which Hilbert (1862-1943) proposed in 1900. A first solution,
in the sense that it provided a general, analytic procedure for constructing
all projective metrics, was given by Hamel. Later, other answers were
found which were geometrically more satisfying. We cannot treat the
problem here since it requires the methods of the calculus of variations and
advanced differential geometry. We will, however, discuss some parti-
cularly interesting examples of projective metrics.

21. Perpendiculars in Open Two-Spaces

In the remainder of this chapter, and in the next, only projective metric
spaces of two dimensions will be considered. Three-dimensional spaces will
be discussed in the last chapter of the book.

Fig. 34

Let R be an open, two-dimensional, projective-metric space. Then R
may be considered as a subset of the affine plane A2. Our previous remarks
show that any two points,  and y in R, can be connected by exactly one
segment and that this coincides with S(z,y), the segment in the sense of
affine geometry. Hence R is a (proper or improper) convex subset of the
affine plane.

In addition, R consists entirely of interior points. For if z is any point
of R, points = and y exist in R such that z, y and z are not collinear (con-
. dition 1)), hence Mz,z) and %(y,7) contain segments S(z,x’) and S(y,y')
* respectively, where z is neither 2’ nor y'. Since S(x,z") and S(y,y’) belong
to R this is sufficient, as was noted prior to (17.6), to imply that z is interior
to R. Therefore R is either the entire affine plane, or a strip between parallel
lines (excluding the lines themselves), or else its boundary is a convex
curve Cp. The space E? and the example given in the last section show
that the first two types of domains can be given a projective metrization.

It will appear that in the last case, also, a projective metric always
exists.
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We now show that convergence in the sense of R is equivalent to con-
vergence in the sense of P2

If R is a projective-metric space in a convex subset of the affine
(21.1)  plane, and if a and the sequence { a'{ lie in R, then aa’—0 i} and
only if =(a,a?) — 0.

a) Let n(a,a’) — O (Figure 34). It must be shown that aa® < e 10ri > N(E).
Choose any line A through a, and on X take b' and % so that a is between
them and abi << ¢/5, i = 1,2. Let X’ be any line through * which is distinct
from ) and take ¢! and ¢? on A’ with 5% between them and with bct <C¢/5.
Because n(ai,a) — 0, for all i greater than a suitable N the points & will
be in T(b%,c%,¢?). Let the line determined by 5! and any such a¢ intersect
S(c*,c®) in a?'. Then for { > N it follows that

aa < da’ + a'b? + ba < Vat’ 4 at'b? 4 b2
L a'b? + b2 + ai'b? + bPa < 2aP'D% + 2ab? 4+ ab' < Bef5 =«

b) Let @ia 0. Assume =(@,a) does not converge to zero. Then there is
a8 > 0 and a subsequence of { @}, say | a'}, such that forall i, =(ai,«a) > 3.
There is then a triangle T'(b%,b% 6°) which has a as an interior point butis so
small that all « lie outside it. Let ¢¢ denote the point in which S(a,a)
intersects the boundary of T(b,8%0%). Since @'a — O, it follows that
aia — 0. This, with aa® > aci, implies that aci — 0. On the other hand,
there is a subsequence | ¢ { of } ¢¢| and a point ¢ on the boundary of T
such that n(c’,c) — 0. Part a) of this proof shows then that c¢’c — 0.
Since also c’a — 0 and ac < ac’ + cc it follows that ac== 0. Because
a % ¢ this contradicts axiom I for a metric. Hence =(@,a) -> 0.

A two-dimensional, projective-metric space R is part of the projective
plane, and theorems on R can and will be derived by using theorems of
projective geometry or other properties of the larger space. Thus no
attempt is made to think in terms of R alone. For a deeper geometric
understanding, however, it is important that the ability fo think infrinsically
in an unfamiliar space be developed since not all spaces can be con-
veniently imbedded in some familiar space. One aim in this, and in Section 23,
is to convey an idea of how such general investigations can be carried out.
Although a projective metric may be kept in mind, most theorems of these
sections are of such a nature that they hold for any subset R of the affine
plane, whose metric is equivalent to =(z,y) and is such that any two of
its points are contained in exactly one straight line in the metric sense,
that is, a line representable in the form (20.5). It is not necessary that this
line be part of a projective line. The theorems which hold under these
general conditions are marked with an asterisk.
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Let p(f) represent a metric line L in R, and let ¢ be any point of R.® Then
(21.2)* gp(t) — © as I —> oo,

The triangle inequality gives

gp(®) + gp(0) > p()p(0) = |t],
implying (21.2). The function gp(f) is also continuous, since

gp(t) + p(t)p(ts) = gp(tz) and gp(ts) + p(t)p(ts) > gp(ty)

imply | gp(ty) - gp(ta) | < p(t)p(ts) = | &, — L5 |. This continuity of the
(real) function gp(f), together with (21.2), implies that gp(f) reaches a
minimum at some point f = p(fy). In any metric space R the point f
is called a foot of the point x on the set g, if fis in p and xy > xf for all y
in p. The result just obtained states that a point ¢ has a foot on a given line

L. A point ¢, not on L, may have several feet on L. However: '

91.3)* If fis a foot of g on the set w, and g is not in p, then f is the unique
(21.3) foot in w. of any point z, distinct from g, on S(g.f)-

For z = f the theorem is obvious. For z 3 f let f, be any point of w distinct
from f. Then zf, > gf; — gz > gf — gz = zf shows that f is unique.

If the points ¢ and ¢', on different sides of the line L, have a

(21.4)*  common foot f on L, then g, f and ¢’ are collinear. (Clearly f is
unique.)

For otherwise S(g,¢') would intersect L in a point y such that
9y +y9' = 99" < g/ + 19"
which is impossible in view of gf < gy and fg9' < yg' (Figure 35).

015 If f, the foot of ¢ on L, is unique when g belongs to the set ., then
(21.5) | depends continuously on g (in p).

For any point and sequence, ¢ and } ¢i !, in 1 it is to be shown that
g9i — O implies ffi — 0, where [ is the foot on L of g and f; is the
foot of g;. Since ¢; — ¢, the distances g¢g: are bounded (Figure 35).
Then gg: + gf > ¢if = ¢:fi shows that the distances gifs are bounded.
This, with gg: + ¢ifi = ¢fi, implies a bound for { gf; {, hence, from
(21.2), the sequence | f; { must lie on a bounded interval of L. There
exists, then, a convergent subsequence of \fi{, say fi—f, and it
suffices to show that for all such sequences f' = f. For an indirect proof,
suppose f' % f. Let } gi | indicate the subsequence of } g; {, correspond-

3Capital Roman letters will be used to distinguish metric lines from the projective
linesz X y.
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ing to { fi {, and define § by means of 0 < gf' — gf = 48. From the
triangle law,

gift > of' - gig - fif = of + 48 - gig - fif > g¢if + 43 - 2gig - fif'.

Fig. 35

Since ¢ — ¢ and f; — f, it follows that g;g << and fif’ << s for suffi-
ciently large i, hence, for such i, gif; = ¢if + 3 and f{ is not the foot on
L of gi.
If the points of R have unique feet on L, and the poini ¢, not on
(21.6)* L, has f as foot on L, then the locus of points having f as foot on
L is the line L' through f and g.

g

LI

I

r
Fig. 36

Proor: Let r be a point of L' on the side of L opposite to that containing
g (Figure 36). Then f’, the foot of r on L, is also f. For suppose f' £ f.
Take point a on L so that f lies between a and ['. As a variable point z
traverses the segment S(r,a) from r to a, then, by (21.5), its foot varies
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continuously from /' to a. Hence for some position  on S(r,a), other
than r, the foot of 7 is f, and since z, f and g are not collinear this contra-
dicts (21.4). It follows that f' = f and that every point of L', on the side
of L opposite to g, has f as foot. By the same token, every point of L/, on
~ the side of L opposite to r, has f as foot so all points of L' have this pro-
perty. A point off L’ cannot have f as foot in virtue of (21.4).

If the line L' inlersects L at f and every pointof L' has f as foot on L, then
L' is said to be perpendicular to L, and this is indicated by L'. L. It will
be seen from examples that L'+ L need not imply L+ L'. In these terms
(21.6) can be reformulated:

Through every point ¢ of R there exists a line perpendicular to
(21.7)*  a given line L if and only if every point of R, not on L, has a
unique foot on L.

IJ,

Fig. 37

For if every point of R has a unique foot on L, and ¢ is any point not on
L, then g and its foot fon L determine a line which, by (21.6), is perpen-
dicular to L (Figure 37). If gis on L, choose aand b on L so that g is between
a and b and take a point ¢ not on L. As a variable point x traverses S(a,c)
from a to ¢ and then traverses S(c,b) from c to b, its foot moves contin-
uously from a to b and hence through ¢. There is thus on S(a,c) or S(c,b)
a point x, whose foot is ¢, and the line through z, and g is perpendicular
to L.

Conversely, if through every point g, not on L, there passes a line
L’ perpendicular to L, then f, the intersection of L and L’, is the unique
foot of g on L. For take ¢’ on L’ so that ¢ is between f and ¢'. By the
definition of a perpendicular, f is a foot on L of ¢/, hence, by (21.3), is the
unique foot on L of g.

We show next that the existence of perpendiculars in R is equivalent
lo the convexity of its circles. The latter are defined in the usual way, the
circle K(p,%) being the locus of points x for which pxr =23 > 0. If Lis any
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line through p, then, because of (20.3), K(p,5) intersects L in exactly two
points so K(p,3) is always a simple, closed curve. The interior, U(p,3),
of K(p,8) is defined to be the set of points x for which pz << 3. The union
of the interior and the circle itself, that is, the points x for which pzx < 3,
is called the disc U(p,3). Convex curve was defined in Section 17, and it
follows from that definition that K(p,3) is convex if, and only if, U(p,3)
and U(p,3) are convex sets.t

21.8)*  If all circles in R are convex, then they are all strictly convex.
)

For assume K(p,3) is convex, but not strictly convex (Figure 38). Then it
contains a proper segment S(a,b). Let ¢ be a point of this segment, distinct
from a and b, and choose g on L(p,c) so that p lies between ¢ and c. Then,
ga << gp + pa==gp + pc=gcand similarly gb < gc. Ife=max } ga, ¢b |,
then U(g,5) contains a and b but not ¢ and hence not S(a,b). Because

g K(p,9)
p
AN

a ¢ b

Fig. 38

U(g,0) is not convex it follows that K(g,s) is not convex, contradicting
the given conditions.

(21.9)* The circles of R are convex if and only if any given point has a
’ unique foot on any given line.

Proor: Suppose the circles are convex. If a point g has two feet, f, and f,,
on a line L, then for all x on S(f,,f,) this implies gx > g¢f, = gf, = 5. The
convexity of U(g,s), however, implies that S(f1»f2) belongs to U(g,s),
hence that gxr <. Combined with the last inequality this gives gx=¢
s0 S(f,,f2) belongs to K(g,s), which is then weakly convex in contradiction
to (21.8).

Conversely, suppose every point has a unique foot on every line.
If a non-convex circle K(g,5) exists, then U(g,3) contains a pair of points,
@ and ¢, such that some point b on S(a,¢) does not belong to U(g,s) (Figure
39). The distance gx varies continuously with z on the line L through @
and ¢. Since ga <3 and gb > it follows that a point a exists on S(@,b)

“For the more general theory, treated in the theorems with asterisks, convexity of
g(p,B) is defined to mean that U(p,8) contains, with any pair a,b, the metric segment
(a,b).
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such that ga =23. Similarly a point ¢ exists on S(b,¢) such that gc =3.
By assumption ¢ has a unique foot f on L, hence f == a and f 3£ ¢, while
gb > & shows f = b. It may be supposed that f lies on the same side of b
as a. As a point z traverses S(g,c) from g to ¢, its foot on L moves contin-
uously from f to ¢ and hence through b. Let x, be a point whose foot is b.
Then z,b < zc, but also xeb > gb - gxe > gc - gry=x,c. From this
contradiction it follows that K(g,0) is convex.

If perpendiculars do exist, and a is any point on a line L, then a line L'
through a is easily constructed such that L is perpendicular to L’. For
if b is any point of L distinct from q, then Lis perpendicular to any support-
ing line of K(b,ab) at a. If L' is such a supporting line then for all x on
L' distinct from a the relation bx > ba shows that a is the foot of b on L',
hence that L + L’. This corresponds to the fact in ordinary geometry that
the radius of a circle, drawn to the contact point of a tangent, is perpen-
dicular to the tangent.

Fig. 39

We conclude this discussion with an example which shows that circles,
in general, are not convex. Let R, be the entire affine plane and define dis-
tance, in terms of affine coordinates, by

L
d(z,y) = [(@ = y0)* + (@~ y)* + [ f@) ~ f@) | + | [(22) - [(Ya) |

where f is the following function :

ft)y =0 fort<<O

f)y=3tfor 0 <t K1

f) =3 fort>1.
This is easily shown to be a projective metric (exercise [21.9]). If g, a, b
and ¢ denote respectively the points (0,0), (0,2), (1,1) and (2,0), then
K(g,5) passes through a and c, since

d(g,a) = d(g,c) =2 + [ f2) - f(0) | = 5.

But b, which lies on S(a,c), is not in U(g,5), since

dg.b) =V/2 + 2 |f(1) - fO) | =V/2 + 6 > 5.
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22. Motions

As mentioned briefly in Section 20, the notion of an isometry is one of
the most important and basic concepts in distance geometries. The
mapping ® of the subset p. of the metric space R on the subset ' of the metric
space R’ is isometric, or is an isomelry, if it preserves distance, that is
if xy = xdyd. An isometry is always a one-to-one mapping since x == y
implies xdy® = xy ¢ 0, hence x® >~ y®. Therefore the inverse of an
isometry is always defined and is clearly also an isometry. Moreover, if ¢
is an isometry of y.on p’ and ¢’ is an isometry of ¢’ on '/, then ®®'is an
isometry of 1 on p'’. It follows at once:

(22.1)  The isometric mappings of a metric set . on iiself form a group.

An isometry of a melric space R on (all of )° itself is called a motion of R.
Hence (22.1) implies :

(22.2)  The motions of a metric space form a group.

For the trivial space R,, every one-to-one mapping of R, on itself is a
motion. For the spaces R,, R; and R,, the translations, == + a,
are motions since xj—y;=—1x:- Y, and the reflection in p,x; = 2p; -
is also a motion because y; —x; = x; — yi. Not every metric space, however,
has a motion (other than the identity). For instance, in E2? with the metric
e(z,y) the hyperbola 22 — 22 = 1 is a metric space which has the reflection
in either axis, and in the origin, as a motion. If the point (2,0) is added to
the space then the only motion (not the identity) is the reflection in the
x,-axis. Adding (2,1) instead of (2,0) yields a space with only the identity
motion.

Obvious, but important, is the following remark.

The motions of a metric space R which leave a set u in R invariant,
(22.3)  form a subgroup of the group of all motions of R. The same is true
for the motions of R which leave u pointwise invariant.

Two sets ¢ and p/, in R and R’ respectively, are called isometric or
congruent if an isometry of i on ' exists. If R and R’ are themselves
isometric then all their geometric properties are the same. A familiar
example, expressed in the present terms, will show the meaning of this
statement. Consider the set of all pairs (r,8), r >0, 0 0 << 2x, and
(0,6,) = (0,8,) for any two values 6, and 6,. Let a metric be defined by

@24)  d[(rb), (rub] = (1} + 13 - 21,7, cos (6, — )]

5The mapping ¢’ = ¢ + 1 of the positive f axis with | ¢ -1, | as distance is isometric,
but is not a motion since it maps { > 0 on the proper subset { > 1.,
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Let E? have its usual meaning, with distance given by
(22.5) d[(22:%0), (X1,2)] = 1@ — 21)* + (1, — 25)*]* 2
Then the mapping of the (r,0)-plane on the (z,,x,)-plane defined by
Ty ==r cos §, T, = r sin 0,

is an isometry. In fact, if r and 8 are considered as polar coordinates in the
(x;,z5)~-plane, then (22.4) is the distance (22.5) expressed in the new coor-
dinates. Therefore it is trivial that the geometric properties of the two
planes are the same.

Since they have the same geometry, two isometric spaces should, in
some sense, have the same group of motions. The concept, from algebra,
of isomorphism of groups makes this sense explicit. A one-to-one mapping,
a - a', of the elements of the group I" on the group 1" is called an isomor-
phism if it maps the product ab on the product a'b’. If e and & are the unit
elements of the groups I' and 1", then, by definition, ae — a’e’. But also
ae==a— a’, hence a'e’ = a’, so ¢’ =¢, and the unit elements are corre-
sponding. Similarly aa™! = e, so aa™ — a'(a~?)’ = ¢’, and the isomorphism
maps the inverse of a onto the inverse of the image of a. From the point
of view of algebraic structure, two isomorphic® groups are indistinguish-
able just as two congruent spaces are metrically identical.

As one might expect, if two metric spaces R and R’ are isometric then
their groups of motions are isomorphic. For suppose W is the corre-
spondence of the congruence, that is x — ' = zW¥. with d(x,y) =d'(z',y’).
If x — z® is a motion of R on itself, then ¢’ defined by 2’ = 2¥ — (x®)¥
is a motion of R' on itself. First, since ¥ is one-to-one, ®’ is defined at
every point of R’, and is a motion of R’ because

d'(x1,%5) = d(Zy,25) = d(z, &, 2,®) = d' (2, W, 2,®0) = d' (2, ', 2, D).

In the same way, every motion of R’ induces a motionin Rso ® — &' isa
one-to-one correspondence of the groups. It will be an isomorphism if
(Py0y) - Dfbs, that is, if [2(,0,)]W == x'(P;P)) for all x in R. This is so,
since /(P[0 = (&' [ bs== (TP, W)Dj==[(xD) L, ]I == [(D,,]W. We have,
thus, established:

If =% ! and I" =)} &' | denote respectively the group of
(22.6)  motions in the metric spaces R and R', then a congruence of the

spaces, t — W == x', induces the isomorphism x® — xdY of I'on 1.
The structures of the groups of motions in congruent spaces are therefore
the same.

Another connection between isometry and isomorphism is given by:

%That is, groups for which an isomorphism of one group on the other exists.
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If a motion ¥ of R exists which carries the set p. info the set p'
and if T and T denote the subgroups of the motions of R which

(22.7) respectively leave p. and u.' invariant (or which leave them pointwise
invariant), then T and T are isomorphic.

Proor: Let ® be any motion of R which leaves fixed each point of p.
Then ¥-1%¥ leaves every point z’ in p' fixed. For ¥ carries ' into a
point z in w which is left-fixed by ® and carried back to z’ by ¥. Therefore
W-1o¥ is an element of I['. Moreover, every element ¢’ of I'" may be

expressed in this form. For the argument just given implies that
®, = Wo'¥1is an element of I' and

Wl W = WL/ W-I) = (F-1F)"(Y-1¥) = &',
The mapping ® — ¥1¢W =&’ of I on I'" is one-to-one, since
U1, W = ¥-19,¥
implies ¥7= ®,. Finally, the product ,®, goes into
¥L(P, D )Y = (¥ 10,W) (¥ 1,0) = d;d,.

The non-parenthetical assertion in (22.7) is established in the same way.
If & carries . into itself, then W1@W carries w' into itself. The proof that
® — W10V is an isomorphism of I on I'" goes through as before.

Since a motion leaves distance invariant, it preserves any concept
expressible solely in terms of distance. As an instance of this:

A motion ® of a metric space carries a segment S(x,y) info a segment

S(z®,y®); a metric line goes into a melric line, and a great circle
into a great circle.

(22.8)

For if p(f), « < t < B, represents the segment S(x,y), then p’'(f) = p(OP
is again a segment, since p'(L)p'(ty) = p(t)®p(t)® = p(t)p(ts) = |, ~ Ly »
a <t B, ete. Similarly ¢ transforms a foot of g on the line L into the
foot of g on L.

Now let R be a two-dimensional projective-metric space. Since the
metric line L throughxz and y in R lies on z X y, a motion ® of R will trans-
form L into L’ through x® and y®. Hence L’ is a subset of (z®) x (y®). If
the space R is closed, then L coincides with z x y and (9.1) yields:

A motion of a closed, two-dimensional, projective-metric space is
(22.9) L
a collineation.

If R is open, a motion of R cannot, of course, be a collineation. However:

A motion of an open, two-dimensional, projective-metric space R
-(22.10) . L
is induced by one and only one collineation.
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Since @ preserves collinearity it carries a quadrangular set a,b,c,d in R
into a quadrangular set a’,b',¢’,d' in R. There is one, and only one, collin-
eation ¥ of the projective plane into itself determined also by these
quadrangular sets. That x® = 2¥ for all x in R follows from the same kind
of argument as in (9.1) making use of the fact that metric lines are con-

tained in projective lines, and that both ® and ¥ are one-to-one trans-
~ formations. We note, incidentally, that if R is not the entire affine plane
then W need not be an affinity.

23. Motions of Open Two-Spaces

Although the developments corresponding to open and closed spaces
present many analogies, they are different enough to make a separate
treatment preferable. In the present section, therefore, the space is re-
stricted to being open and two-dimensional. Again, most of the results do
not depend on the assumption that metric lines lie on projective lines.
Those, with this greater generality, are marked, as before, with an asterisk.

An obvious fact that is constantly useful is:

03 1)* A motion which leaves two points of a straight line fixed leaves
(23.1) every point of the line fixed.

As a consequence:

3.9 A motion which leaves three, non-collinear points a, b and c fixed
(23.2) is the identity.

For if d is any point of S(a,c), distinct from a and ¢, then every point z
of R lies on a line L through d and x where = belongs to S(a,b) or S(b,c).
Since all points on the sides of T(a,b,c) are fixed, both d and z are fixed,
hence all points of L, including z, are invariant.

93.3)% Three non-collinear points and their images defermine a motion
(23.3) uniquely.

For if the motions & and ¥ both carry the non-collinear triple a,b,c into
a',b',c', the mapping ®W-1, which leaves ¢, b and ¢ fixed is the identity,
hence ® = V.

A consequence of (23.1) and (23.2) is that a motion ® has either no
fixed points, one fixed point, a line of fixed points, or is the identity.
When it is involutory @ always has fixed points. For if a’ = a® differs
from a,then a'® = a®? = a implies that the center of S(a,a’) is fixed. It
follows that there is just one fixed point x or else a line of fixed points, L.
In the first case @ is called the reflection in x and in the second the reflec-
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tion in L. The use of the definite article is justified by the fact that a
reflection in a point or in a line is unique. For reflection in a point x this
is obvious since the image a' of any point a is uniquely determined by
the condition that x be the center of @ and «’. That there are not two
reflections in a line follows from:

23 4)* If a reflection ¢ in L exists then every point a not on L has exactly
(23. one foot f on L and f is the center of a and a' = a®.
For the center of @ and a’ remains fixed under ® and hence is on L. If this
center is denoted by f, and x is any point of L distinct from f, then

2ar = ax + 2(a®) > ad’ = 2af
implies ax > af, hence f is the foot of a.

K(b,a)

Fig. 40

!n a general metric space let B(a,a’), where a 5= a’, denote the locus of
points i such that ax = a'z. Clearly (from (23.4)):

(23.5)% If the reflection @ in a line L exists, then L = B(a,a®) for every
’ point a not on L.

From (21.7) and (23.4) we obtain:

(23.6)* I} the reflection, ®, in L exists, then perpendiculars to L exist and
® maps each perpendicular to L on itself.

In the further discussion we need the following lemma, which is inter-
esting in itself.

Given two distinct points a,b and two numbers @, satisfying
@7 T B> aband |« ~ £| < ab, then there exists on each side of the

line L through a and b one and only one point ¢ such that ac = §
and bc = a.

Proor: Let ab = y. The circle K(b,a) intersects L in two points d and e
so.named that ad =|y-a| <f and ae=« + y> P (Figure 40). As a
point x travels from d to e, along either of the semi-circles on opposite
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sides of L, the distance ux changes continuously from ad << f Lo ae >§
and so for some point ¢ assumes the value #, thatis, ac = p. There cannot
be two points ¢ and ¢’ on the same side of L such that ac=ac¢’ =2 and
be = bc' == 2. For with this property, ¢’ clearly cannot lie on either the
line through a and c or that through b and c. If it lies in the interior of the

triangle T(a,b,c), let s denote the intersection of the line through a and ¢’
with that through 4 and c¢. Then

B+a=ac +c'b<<ac + c's + sb=as + sb<ac +c¢s + sb=a + B.

By a symmetrical argument, ¢ cannot be on or interior to the triangle
T(a,b,c’).

The only other possibility is that two sides of the triangles, for instance
S(b,c) and S(a,c'), intersect in a point r. As the figure shows, this
implies « — ¢r + r¢’ = br + r¢’ > be’ =4, or r¢’ > rc. But, in contradic-
tion, § —-r¢’ + re=ar 4+ rc > ac= 25, or rc > rc’. Hence ¢, on a given
side of L, is unique.

A first consequence of this lemma is:

(23.8)* A mot'ion jll 52 1 which leaves every point of a line L ,Mxed is the
reflection in L.

For if a and b are distinct points of L, and c¢ is any point not on L, then,
from (23.2), ¢/ = ¢® is not ¢ since ¢ is not the identity. Because ¢'a = ca
and ¢'b = cb and, by (23.7), there is only one such point distinct from c’,
it follows that ¢’® = ¢ = ¢, hence P2 is the identity.

93.9)% If the circles are convex and the reflection in L exists, then L'LL
239*  implies Lo L.

For if f is the intersection of L and L’, let x be any point of L distinct

from f and let ¢ be its foot on L'. By (23.6), ® carries g into g’ on L’ with

xg = xg¢'. The uniqueness of ¢ then implies ¢’ = ¢, hence ¢ =f.
Combining (9.7), (23.8) and (23.6) yields:

If R is an open, two-dimensional, projective-metric space, the
reflection of R in the point x is induced by a harmonic homology
(23.10) whose axis £ does not intersect IR. The reflection of R in the line
e L is induced by a harmonic homology whose axis carries L and
whose center x is not in R. The lines through x carry the perpen-
diculars to L.

If a motion of R carries a, b and ¢ into a’, b’ and ¢, these triples must,
of course, be congruent, that is, ab = a'l’, bc = b'c’ and ac = a’c’. When
a,b,c are non-collinear, the motion, if it exists, is unique. The space R will
therefore have its greatest possible degree of mobility when for any pair
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of nor-collinear, congruent triples a motion exists carrying one into the
other.
There will be a motion, for every pair of congruent triples, which
93.11)* carries one info the other if, and only if, the reflections in all lines
(23.11) exist. If all reflections do exist, every motion is expressible as the
product of three, or fewer, reflections.”

Proor: Suppose motions exist for pairs of congruent triples, and let L
be any line of R. Take a and b as distinct points of L and ¢ any point not
on L. If e=c¢b, p=ca, and y=ab, then o« + 6 >vyand [« -p| <¥.
From (23.7) there is then a unique point ¢, on the side of L opposite c,

Bles,e') B(®,,b) B(aa’)
Fig. 41

such that ac’ = § and b¢’ = «. Since the triples a,b,c and a,b,c’ are con-
gruent there exists, by assumption, a motion ¢ for which a® == a,b® = b
and ¢® = c¢'. Because ¢’ 3£ ¢, ¢ is not the idertity. But it leaves all points
of L fixed because it leaves aand b fixed. By (23.8)*, then, ® is the reflection
about L.

"To prove the converse, we first observe that for a distinct pair, a,a’,
lemma (23.7) permits the construction of infinitely many points of the
equidistant locus B(a,a’). If p and ¢ are any two points of B(a,a’) and
if the reflection in L', through p and ¢, exists, then, from (23.5),
L’ = B(a,a'). Therefore if all line-reflections exist, any point a can be
moved to any point a’ by the reflection in B(a,a’). If, now, a,b,c and a’,b’,¢’
are given congruent triples, define @, to be the identity if a = a’, and the
reflection in B(a,a’) if a = a’ (Figure 41). Since ®, is a motion, the images

7A§ tpe asi}erisk indicates, the proof of this theorem does not use the fact that the
mejcrxchls pro;ectiye. On‘ the other hand, the assumptions are so strong, that any space
satisfying them is projective-metric, namely is either Euclidean or hyperbolic (see

Section 29). The proof of this fact, however, does not fall within the framework of
this book.
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of a, b and ¢ form a triple a,, b; and ¢, also congruent to a',b',¢’, and
a,=a'. If by =1>', let @, be the identity, otherwise take it as the re-
flection in B(by,d’). Under ¢, the point b, goes to b, = b’. Because
a,b; = a'b; = a'b’, the point a, = a’ lies on B(b,,b’), hence a, goes
into itself, and ay=a, = a’. The triples a;,b;,¢; and a,,b,,c, are con-
gruent because ¢, is a motion. Finally, if ¢, = ¢’ let ®, be the identity,
otherwise the reflection in B(c,c¢’). Repeating the argument shows the
image triple a;,bg,¢4 is the triple a',b',¢'.

This theorem shows that any motion can be generated from reflections
in lines if these exist. The section on Minkowskian geometry will de-
monstrate that they need not exist, even if the reflection in every point
exists.

As a consequence of the last theorem:

If reflections in every line of R exist, and if ¥ is an isometric
(23.12)*  mapping of the set i in R on the sef y' in R, then a motion ¥ of
R exists which coincides with W on ., that is x¥W =—=x® for x in p..

For if a,b,c is a non-collinear triple in p., then a¥, b¥ and cW¥ is a congruent,
non-collinear triple in p'. From (23.11) there is a motion ¢ carrying the
first triple into the second, and, from (23.3), ¢ is unique. For z in p, and
on any side of the triangle T'(a,d,c), it is clear that 2 = x®. When x is
not on a side of the triangle, then, fromlemma (23.7), if x4 were not xW, it
would be the image of " under reflection in the line through a'I' and b¥,
and by the same token it would also be the image of x'¥ under reflection
about the line through a¥" and c¥, which is impossible since these images
differ. Hence z® = zW for all z in . Should the points of p all be
collinear, a similar argument shows the existence of ¢, but not as a
unique motion.

A motion ¥ which has only one fixed point p is called a rofation about p.
This includes the reflection in p.

93 13)% A rotation I is determined by its center p and by one disfinct
(23.13) pair a and a'V'.

We distinguish two cases, according as p is, or is not, collinear with a
and a¥ = a'. When the three are collinear, pW = p and a¥ = a' imply
a=a'V. Thus I is involutary on the line L through a and p, and all
points of L are fixed under W2. For any point ¢, not on L, the distance
relations ag = a(9¥?) and «a’g = a'(¢¥?) imply, by (23.7), that ¢gW? is
either ¢ or its image under reflection about L. But ¥ leaves L invariant
hence either maintains the sides of L or else interchanges them. In either
case, W2 maintains the sides, hence g¥? = ¢, and " is the identity. Thus ¥
isinvolutary and, hence, is the reflection in p. For the case where p, a and a’
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are not collinear, let b indicate the center of S(a,a’) (Figure 42). From
(23.7) there is only one point ¢, distinct from b, such that pc = pb and
a'c=a'b. But since ¥ is a motion, with p'=p and a¥ = «’, it follows,
with b’ = b¥, that pb' = pb and a'b’ = ab=a’'b. Therefore b’, which
cannot be b since only p is fixed, must be ¢. Thus p, a and a’ determine b
and b’ uniquely. The non-collinear triples, p,a,b and p,a’,b’ then deter-
" mine ¥ uniquely.

The inverse of a rotation is clearly also a rotation with the same center.
Moreover:

(23.14)* The product of two rotations, ¥,, W,, with the same center p is
’ either the identity or else a rotation about p.

The point p is fixed under ¥ = W¥,¥,, so U is either a rotation about p
or else there is a second point ¢, fixed under W. In the latter event,

c=V

Fig. 42

g%, = g¥3'. By (23.13), then, ¥, = W}, since they are determined by
the same pair, g and g¥,. Hence ¥ = W,¥, = W,Wj! = 1.

If Wy and V', are respectively the reflections in the lines L, and
(23.15)* Ly, which are distinct and which intersect at the point p, then
W, W, is a rotation about p.

The mapping ¥ = ¥, ¥, is a motion and leaves p fixed. For ¥ to leave a
second point ¢ fixed, would imply ¢g¥, = g¥;! = gW¥,. The center of
5(9,9%,) would then be on both L, and L,, hence would be p, which is
impossible. Hence W leaves only p fixed and is a rotation.

If the reflections in all lines of a pencil through p exist, and if
a and a' are a pair of points distinct from p such that pa = pa’,
then a rotation about p exists which carries a into a'. The rotation
is expressible as the product of the reflection in two lines of the
pencil where one of the two lines is arbitrary.

(23.16)*

For if ¥, is the reflection in the arbitrary line L, of the pencil, let b be the
center of S(a¥,,a’). In the general case, then, the reflection ¥ . in the line
through p and b takes a¥, into a’, so a¥,¥, = a'. That ¥, W, is a rota-
tion is a consequence of (23.15).
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24. Minkowskian Geometry

Having discussed some general aspects of projective metrics, we will now
consider some specific cases. In Section 15 it was shown that the affine
ratio A(z,y,z) of three collinear points with affine coordinates satisfies

the relation

| A@.y,2) | = dy(x,2)/dy(x,).
It is easily seen that d, could be replaced in this equality by d, or d,.
We now pose the problem of finding all projective metrics, m(x,y), defined
in the whole affine plane, and such that
(24.1) | A@y,2) | = m(x,2)/m(z,y).

These metrics are called Minkowskian,after their discoverer, H. Minkowski
(1864-1909). The Euclidean metric, d,, is Minkowskian, but, as was
previously observed, neither d, nor d, is a projective metric.

Y

b Nb’
[2] a’
Fig. 43

Unless otherwise stated, all lengths referred to in this section will be
understood to be Minkowskian. We show first that :

(24.2)  Opposite sides of a parallelogram have equal lengtns.

Proor: As in Figure 43, let a,b and a’,b’ define the opposite sides of a
parallelogram. Choose y on the extension of S(a,b) through b, and let z
indicate the intersection of S(b,b') and S(y,a’). Then (24.1) and (15.15)
imply that

m(a,b)/m(a,y) = | A(a,y,b) | = | A(a',y,2) | = m(a’,z)/m(a’,y),
or,

(24.3) m(a,y)/m(a’,y) = m(a,b)/m(d’,z).
Applied to a,&',y the triangle law justifies
m(a,y) - m(a,a’) < m(a',y) < m(a,y) + m(a,a’).
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Dividing through by m(a,y), and taking the limit as m(a,y) increases,
yields :

(24.9) m(a',y)/m(a,y) — 1 as m(a,y) — oo .
A similar application to the triangle a',z,b’ shows that
m(a’,b') - m(z,b")  m(a’,z) < m(a',b’) + m(z,b").

If this is divided through by m(a’,b’), then since (21.1) implies that
m(z,b’) > 0 as m(a/y) - o0, it follows that m(a’,z)/m(a’,b') > 1
as m(a,y) - . This relation together with (24.3) and (24.4) gives
m(a,b) = m(a’,b’) and establishes (24.2).

The translation x, = a; + ¢;, i = 1,2, carries two points a,b into
points a',b’ such that a,b and a’,b’ define the opposite sides of a, possibly
degenerate, parallelogram.

bl

Fig. 44

This is also true of @ =~ 2; + 2y, i=1,2, the reflection in the point
(Y1,Y,). In virtue of (24.2), this shows:

@45 The translations and central reflections are motions of ang Min-
) kewski space.

As another consequence of (24.2):

24.6) If a lies on S(p,a’), b on S(p,b"), and if a X bis parallel to a' x b’
) then m(p,a)/m(p,a’) = m(p,b)/m(p,b') = m(a,b)/m(a’,b’).

For let the line through b parallel to P X a'cut a’ X b' at d (Figure 44).

Because of (15.15), A(p,a’,a)=A(p,b’,b)=A(a',b’,d). Substituting in

these equalities from (24.1), and replacing m(a’,d) by m(a,b) gives the

stated result.

With a,a’,b,b" and p situated as in (24.6), the similitude, with p as center
and defined by

(24.7) zxi=)ia; + pi(l =2, i=12 A= m(p,a’)/m(p,a),

carries ¢ into a’ and b into ¥'. For if g indicates the image of a, then
a'’ = (1-7p + ra. Hence, from (15.12), A(p,a,a’’) = h =m(p,a')/m(p,a),
and a" coincides with a'. Similarly the image of b coincides with b'.
For any pair of points a,b with images ',b", (24.6) shows then that
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m(a',b")/m(a,b) = ». Admitting negative values for , we may state this in
a more general form.

Under a similitude, xf =hx; + a;, i =1,2, A3£0, all Min-

(248)  kowskian distances are multiplied by | X|.

We consider Minkowskian circles next, using as before the notation
K(p,?) for the circle with center p and radius 8, with § > 0 understood.
We prove first:

(24.9)  The circles are strictly convex.

For a direct proof,® let K(g,8) be an arbitrary circle and let a and b be

any two distinct points such that m(a,¢) <C 3 and m(b,g) < 3. The strict

convexity of K(g,3) will follow if every point ¢ on $*(a, b) satisfies m(g,c) <.

This is obviously true when ¢, a and b are collinear and a % b. Assume,
1

b
%\d
©

4

Fig. 45

therefore, that they are not collinear, and suppose that m(g,b) > m(g,a)
(Figure 45). Let d be the intersection point of ¢ X ¢ and the line through b
parallel to ¢ X a. Then (24.2) and (24.8) imply that

m(b,d)/m(g,a) = m(c,d)/m(g,c),
and this with m(g,b) 2> m(g,a) shows that
m(b,d)/m(g,) < m(c,d)/m(g,c).
Adding 1 to both sides of this last relation gives
m(g,d)/m(g,b) < [m(g,b) + m(b,d)}/m(g,b) < [m(gc) + m(c,d)l/m(g,c)
= m(g,d)/m(g,c), or m(g,c) < m(g,b) <3, q-e.d.

From (24.5) it follows that a translation or a central reflection which
carries ¢ into ¢’ takes K(g,3) into K(g',5). Similarly, the similitude of
(24.8) transforms K(g,5) to K(g',|*|-8). Two figures, such that one is

8Because of (21.8) it would suffice to show that all circles are convex.
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the image of the other in a similitude, arc called homothetic. We may
therefore say:

Any two Minkowskian circles are homothetic, so that if the “unit”
(24.10)  circle K(z,1), where z = (0,0), is known, then all circles are known
and m(a,b) is defermined for any pair a,b.

An actual method for calculating m(a,b) is the following. The known
translation x{ =x; + @, i =1,2, carries K(z1) into a curve cutting
the ray from a through b in a point ¢ such that m(a,b) = A(a,c,b).

The previous construction can also be used to define a metric. That is,
suppose K is a closed, strictly convex curve in the affine plane, and that
K has an affine center z. This means that K goes into itself under a
reflection in z. For any pair of points, a,b, we locate ¢ by the given con-
struction, with K replacing K(z,1), and define a function d(a,b) by
d(a,b) = | A(a,c,b)|. Denote by K(g,3) the locus of points x satisfying
d(g,x) = 8, where 8 > 0. Then the definition of d(a, b) implies that the
similitude ; = 3x; + ¢;, i = 1,2, carries K(z,1), into K(g,3), hence that
any two loci K(g,3,) and K(g,3,) are homothetic. The fact that K has z as
an affine center shows also that d(a,b) is invariant under reflections in a
point. In particular, it is invariant under the reflection in (a + b)/2, so
that d(a,b) = d(b,a). These remarks indicate that, under the similitude
of (24.8), d(a,b) is multiplied by |%]| and so is invariant for [ 2] =1.
Two given points ¢ and b lie on the metric straight line

p(&) = [(d(a,b) ~ ha + tb]/d(a,b)

which coincides with a X . The triangle inequality holds trivially
for any three points on a x b. In order to show that d(z,y) is actually a
projective metric it suffices to verify that d(g,b) + d(b,d) > d(g,d) for
any point b not on g X d. This may be done by the same method as that
in the proof of (24.9). On the ray from g (Figure 45) which is parallel to
the ray from b through d, take a so that 6 =d(g,b) = d(g,a), and put

¢=(g9 X d) X (a x b). Then, because of the behavior of d(z,y) under
similitudes and reflections in a point,

(24.11) d(b,d)/d(g,b) = d(b,d)/d(g,a) = d(c,d)/d(g,c).

Sincci K(g,3) is lhomothetic to K it is strictly convex, hence ¢ lies inside
K(g,3), (the points a and b lie on K(g.3)), so d(g,c) << 8 = d(g,b). From
(24.11) it then follows that d(c,d) << d(b,d). Therefore

d(g.d) = d(g.c) + d(c.d) < d(9,b) + d(b,d).
The function d(z,y) is thus a Minkowskian distance. Eliminating the special
role of the origin, we can formulate the following important result.
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In the affine plane A? let K be a closed, strictly convex curve with
affine center c¢. For any two points, ab, in A2 define
(24.12) m(a,b) = A(a,y,b), where y is the infersection point of the ray
’ from a through b with the image of K under the translation
ri=xi + (@ —¢), i = 1,2. Then m(a,b) is a Minkowskian

metric for which K = K(c,1).?

Because the Minkowskian circles are strictly convex, the results of
Section 21 on perpendiculars can be applied. For instance, perpendiculars
to the same line L cannot intersect, hence they are parallel. If L' through
g and f is perpendicular to L at f, then K(g,gf) = K(g,8) has L as a support-
ing line at f (Figure 46). Because circles are homothetic, L’ is also per-
pendicular to any line parallel to L. If K(g,%) has a tangent at f, then L
must be the tangent and there is no other line through f to which L' is

I'ig. 46

perpendicular. When a second supporting line L also exists at f, at most
one of the lines L and L can be perpendicular to L’, showing that in general
perpendicularity is not symmetric. Actually the symmetry will not hold,
in general, even when the circles are differentiable. To construct the line
perpendicular to L' at g, draw L, and L,, the two supporting lines of
K(g,%) which are parallel to L’. The line L,, which connects p, and p,, the
respective contact points of L, and L, with K(g,3), passes through g
and is perpendicular to L, and to L, and hence to L’. It is clear that,
in general, L, will not be parallel to L, so L will not be perpendicular to L'.
For obviously the shape of K(g,8) can be altered in the neighborhood of f
so as to change the direction of L without affecting L, and L, at all. The
inference, then, is that:

9The preceding discussion also contains the result: If the whole affine plane is so me-
trized that (24.1) holds and the locus m(c,x) = 1 is strictly convex for some ¢, then
the metric is Minkowskian.
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In Minkowskian geometry perpendicularity is always symmetric if
and only if any parallelogram circumscribed about a circle is such
that when the midpoints of two opposite sides are contact points,
then the midpoints of the other two sides are also contact points.

(24.13)

Because symmetry of perpendicularity assures unique supporting lines to
circles, it implies that circles are differentiable. Theorem (16.9) shows
that (24.13) holds if the circles are ellipses. However, these are not the
only curves which yield symmetric perpendicuarity.1

We turn next to the definition of area in Minkowskian geometry. Because
perpendicularity is not as simple as in Euclidean geometry, it is natural
4o use the unit circle (instead of some analogue to the square) for the
normalization of area. We choose affine coordinates, x; and %,, so that

f f dx, dz, = =, and define the area A(D) of a general domain D by

Tl(z1)
A(D) = ff dxl dx2-
D

A reasonable area in any metric space must be invariant under all
motions of the space. The area just defined has this property. For a motion
@ of the Minkowski plane, since it maps A2 on itself and carries lines into
lines, is an affinity, and so has the form:

Ay Gy

iz =aur o, +q, i=12 A= g g

2 0.

Therefore ® can be expressed as the product of
Py 2= 4%y + 4%, =12
and
@, 2l =} + aj i=1,2.
Since ®, is a translation, it is a motion, so ¢, = ®d;! is also a motion.

Because @, leaves z fixed it carries U(z,1) into itself and is therefore an
equiaffinity. Because @, is an equiaffinity, @ is too, which shows:

The motions of a Minkowski plane form a (proper) subgroup of
(24.14)  the equiaffine group. Hence Minkowski area is invariant under
motions.

That the subgroup is proper, that is that not every equiaffinity is a motion,
is obvious from the example z]=2x; z},— (1/2)x,, which sends the
segment S(z,(0,1)) into S(z,(0,1/2)) and therefore does not preserve distance.

The groups of motions belonging to two different Minkowski spaces

1See J. Radon, “Uber eine besondere Art ebener konvexer Kurven’. Ber. Verh.
Sdehs. Akad., Leipzig, vol. 68 (1916), pp. 123-128.
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are in general not isomorphic. This follows from the discussion in the
next section where it is shown that reflections in lines exist under some
Minkowski metrizations and not under others.

‘We mention the following form of Loewner’s theorem (18.7):

Among the ellipses with center z, and containing U(z,1), there
(24.15)  is one and only one ellipse E of minimal area. All Minkowski
motions which leave z fixed carry E into itself.

25. Reflections in Minkowskian Geometry.
Euclidean Geometry.

A Minkowskian geometry, in general, admits only the translations and
central reflections as motions. In Section 23 we saw that the existence of
reflections about lines was the decisive factor for the mobility properties
of the space. For a Minkowskian geometry, we ask first what the existence
of a reflection ¢ in one line L implies.

Fig. 17

Let L' be any line parallel to L. If a and @' are arbitrary points on L
and L' respectively, then the translation Y which carries a into @', takes
L into L'. Then the motion ¢’ = I'"1®Y is a reflection about L'. First, it is
clearly not the identity, and secondly it leaves the points of L' fixed
since Y takes L' into L, which is then fixed under ® and carried back to
L’ by Y. Hence,

925.1 In a Minkowskian geomelry, if the reflection in aline L exists, then
(25.1) the reftections in .all lines parallel to L exist.

But, in general, the reflection in a line not parallel to L will not exist. If
g is any point of L, then since @ leaves g fixed it carries any circle K(g,8)
into itself. It also, by (23.6), maps any perpendicular to L onto itself.
Hence, if a line P (Figure 47), perpendicular to L, cuts K(g,3) at p on one
side of L, it must have a second intersection at p’ = ®p. The midpoint
of S(p,p’) therefore lies on L. In other words, if a reflection about L exists,
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then every circle with center on L has a family of parallel chords, the
locus of whose affine (or Minkowskian) centers is L. (Note: Two of the
family of perpendiculars, P, and P, are supporting lines of K(g,3).
Clearly, L must pass through their contact points p,,p,, hence L 1 P;, i=1,2.
Compare (23.9)*.)

Conversely, suppose that a circle K(g,8) has a family F of parallel chords
whose centers lie on a line L. Because circles are homothetic, in any
concentric circle K(g,o) the chords parallel to those in F will also be
bisected by L. Choose L as the z, — axis, and the element of F through
¢ as the x,-axis, Then the affinity @ : ] = x,, 2§ = - 2, maps any circle
with center ¢ onto itself. Since @ leaves every point of L fixed, and is not
the identity, it will be the reflection in L if it is a motion. This will clearly
be so if @ carries every circle into another with equal radius. To obtain
this property of @ let Y’ denote the translation which carries z into a point
g of L, where x is the center of any circle K(x,s). Because Y is a motion
K(z,5)Y = K(g,0). This with the invariance under ¢ of circles centered
on L gives K(z,0)Y¢ = K(g,6)® = K(g,5). Since the translations form
an invariant subgroup of the group of all affinities (see (15.9)), there is a
translation T, such that Y& = &Y}, or ® = Y®Y;!. Hence

K(x,0)® = K(z,5)Y®Y7* = K(g,0)Y7.

But Y is a motion, being a translation, so K(¢,0)r! = K(x,7)?d is
again a circle of radius «. This establishes :

In Minkowskian geometry the reflection in a line L exists if and

25.2) only if in every circle with center on L there is a family of parallel

) chords bisected by L. (If one circle with center on L has this property
then all do.)

The last theorem, together with (25.1) and (16.6), shows that a reflection
exists in every line if K(g,8) is an ellipse. This condition is also necessary,
that is:

(25.3) A Minkowskian geometry admits a reflection in every line if and
: only if the circles are ellipses.

First, if one circle is an ellipse, then all are, since circles are homothetic.
It will suffice, therefore, to prove that if all reflections in lines exist, then the
circle K(z,1) is the ellipse E with center z (established in (24.15)), which
contains U(z,1) and has minimal area. Common to both E and K(z,1)
there is at least one point a, otherwise E could be shrunk and still contain
K(z,1) (Figure 48). Because E and K(z,1) both have z as center, the point
a' of K(z,1) diametrically opposite to a also lies on E. Now let b be any
point of K(z,1) distinct from a and a’, and let ¢ be the midpoint of S(a,b).
Since m(c,a) = m(c,b) and m(z,a) = m(z,b), the lemma (23.7) implies that
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the reflection ® in the line L, through z and ¢, carries a into b. But this
reflection is a motion which leaves z fixed, and so, by (24.15), carries E
into itself. Therefore b = a® lies on E, hence all points of K(z,1) do, and the
circle is an ellipse.

The argument just given also shows that K(z,1) is an ellipse if, and
only if, for any pair a,a’ on K(z,1) there exists a rotation about z carrying
ainto a'.

A Minkowskian geometry in which reflections about every line exist is
called Euclidean. We may put this last result, then, in the form:

The Minkowskian geomelries whose circles are ellipses, and only

(254 {hese, are Euclidean.

This seems to indicate that there are many Euclidean geometries varying
with the choice of the ellipse which serves as a unit circle. However, any
two Euclidean geometries are isometric (which, according to definition,

E=K(z1)
Fig. 48

means that a distance preserving mapping of one on the other exists).
This is a consequence of the sufficiency part of the theorem:

Two Minkowskian geometries m and m' in the affine plane A2,
with respective unit circles K(z,1) and K'(z',1), are congruent if
and only if an affinity of A? exists which carries K(z,1) into
K'(z,1).

Proor : If m and m' are congruent then, by assumption, there exists a
one-to-one mapping ¢ : x — Z, of A% on itself such that m(z,y) = m'(,j).
Since ¢ carries straight lines into straight lines, it is an affinity. Distance
is preserved, hence K(z,1) - K'(z®,1). If z® 2% z/, then a translation Y
exists such that K'(z®,1)Y = K'(z',1) and T is the affinity of the theorem.

Conversely, suppose an affinity ® : £ — Z exists which carries K(z,1)
into K'(z',1). Because ¢ preserves affine ratio, and zand z’ are the respective
affine centers of K(z,1) and K'(z',1), it follows that Z == z == z'. Both the
metrics m and m’' are invariant under translation, hence to show that &
preserves distance it will suffice to show that for any «, m(z,x) = m'(z,%),

(25.5)
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where T = x®. If e is the intersection of K(z,1) with the ray from z through

-x, and ¢’ the intersection of K'(Z,1) with the ray from 7 through Z, then
because ¢ carries the first ray into the second, e’ — ed — & From the
invariance of affine ratio, we then have

m(z,2) = m(z,2)/m(z,€) = A(z,e,) = A(z,63) = m'(z,x)/m'(z,€) = m'(2,3).
It is now easily shown that:
(25.6)  All Euclidean geometries are congruent.

For if K(z,1) and K'(z',1) are ellipses with centers at z and z', then, by
(16.9), an affinity exists which carries K(z,1) into K'(z',1). From the
previous theorem it follows that the Euclidean geometries, corresponding
to the ellipses, are congruent.

Henceforth we will speak, therefore, of the Euclidean geometry and the
Euclidean metric.1t

We next consider how to obtain an analytic expression for the Euclidean
metric or, more generally, for a Minkowskian metric, when the unit circle
K(z,1), z=(0,0), is given in a definite affine coordinate system z,,x,. The
Minkowskian distance m(z,x) is a function F(zy,7,) such that

(25.7)  F(xy,a) > 0 for z £ x, and FQwy,\x,) = | \| F(x,,x,) for all A

The first part comes from the definition of a metric, and the second from
A = (1 -Wz 4+ dx which gives m(z \z)/m(z,x) = | A(z,z)\x) | = |%|.
Clearly m(z,z) = F(x,,2,) = 1 is the unit circle, hence is a strictly convex
curve. Since m(q,b) is invariant under translations, in particular under
T=2ai-¢, (=12, then m(a,b) =m(z,b - a) = F(b, — ay, by — a,).

Conversely, if a function F(x,,x,) is given which has the property
(25.7), and if F(z,2,) =1 represents a strictly convex curve, then
(25.8)  m(zy)=F(y, -z, Y2 —p) is a Minkowski metric.
Using F(y - 2) for F(y, - Zy, Yo~ xp), if = (1 -N)a + b, then
m(a,x)[m(a,b) = F(x-a)/F(b-a) =F((b-0a))/F(b~-a)=|| =] A(a,b,x)|.
Thus (24.1) is satisfied by m(a,b). The unit circle

m(z,x) = F(x —z) = F(x,z,) =1

is given as a strictly convex curve, and that z is its affine center follows
from (25.7) when 2 is taken as — 1. With the unit circle chosen for K, then,

Actually the Euclidean metric was already defined in Section 19. It will be seen
presently that the two definitions agree.
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the conditions of (24.12) aresatisfied by m(a,b) which is thus a Minkowski
metric. To sum up:

If F(z,,2) > 0 when (x,,%,) 5 (0,0), and F(xy,3ac,) = | } |- F(z,,%,),
and if F(zy,x,) =1 is a strictly convex curve, then

(25.9) m(z,y) == F(y, ~ &y, Yy ~ )
is a Minkowski metric. Every Minkowski meiric m(x,y) can be
writlen in this form by defining F(x,,x;) = m(z,x), z=(0,0).

This theorem permits us to write down the general expression for a
Euclidean metric. The general form for the equation of an ellipse in the
affine plane is

ap ¥} + 2015%%y + Uppt3 + 205575 - 20557, + a3 =0,

(25.10) Ay - Qgy — @3 > 0 and | ag | - a;; < 0.

If the origin is the center, that is the pole of the line at infinity, then, as
previously observed, a,; = a,; = 0. Hence ay3 32 0 and (25.10) can be put
in the form

(25.11) Ex? + 2Fxa, + Gai=1, E>0, G>0, EG- F2>0.

The conditions on E, F and G are more simply expressed by saying that
the quadratic form (25.11) is positive definite, that is, it is positive except
for x; == x, == 0. The letters E, F and G have been chosen in agreement
with their usage in differential geometry where the form (25.11) is of
great importance. The left side of (25.11) does not satisfy the condition
(25.7) for a function F(z,,x,), but its positive square root does. Hence if
() is defined by

(25.12) O(z) = Ex} + 2Fx,x, + Guj,

then, because of (25.9), the Euclidean distance corresponding to (25.10),
as the unit circle is expressed by

(25.13) e(a;,y) s l(b(x — y)]1/2_
If a Minkowski metric is given by a function F(z,,z,), then x,,z, in

general, will not be affine coordinates in terms of which ¢ = 0 dzx, dx,
‘ %(z,l)
is =, s0 U dx, dz, will not, in general, give the arca of a domain D. How-
“p

. . . . .
ever, Ty = X, Ty = - T, are coordinates in terms of which the integral
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over U(z,1), that is the region F(z,,x,) < 1, is equal to =. Therefore the
area of a domain D is given by

(25.14) ﬂ dj doy == j f dz, dz,.
D

D

When F(x,,x,) is given explicitly, ¢ can be evaluated as follows. Introduce
polar coordinates r,» by setting x; =r cos  and x, =r sin «.2> The unit
circle then becomes F(r cos w, r sin w) = rF(cos w, sin w) =1, or, alter-
nately r = [F(cos w, sin )], so,

27T /2
(25.15) o=(1/2) f [F(cos w, sin w)]2dw = f [F(cos , sin w)]-2dw.
0 ~T/2

In the case of the Euclidean distance (25.13),

[F(cos w, sin w)]2 = E cos? w 4+ 2F cos w sin w + G sin® w,
Then

/2
6= f / [F(cos w, sin )] *dw
—-T/2

T2
= [E cos? o 4+ 2F sin v cos o + G sin? o] 'dw
- /2
/2
=) [E + 2F tan v + G tan? o] 'd(tan o)
—-T/2
— [tan ‘“—aLf)__..—t.f)]ﬂ” -
EG - F VEG-F )l \VEG-F

Using this in (25.14) gives the formula for the Euclidean area of the domain
D as:

(25.16) VEG - F f f dz, dz,.

Because of the frequent occurence of \/ E G — F?2, we introduce the symbol
W= +VEG-F

26. Angles and Motions in Euélidean Geometry

All the known Euclidean formulas must be expressible in terms of
E, F and G since these determine the metric. In obtaining such forms it
will prove useful to change the notation of (25.12) by introducing

(26.1) O(x,y) = P(x, 7 Yy,Y) = Ex,y, + F- (29, + 234y) + Gy,

12See comments on angles preceding (18.3).
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so that &(x,x) = ¢(x,,%y T1,%;) has the same meaning as the previous
¢(x). Then ¢ has the property:

(26.2) N POT 4 vy, Na 4 1Y)
= WO(z,x) + 1 P(2Y) + v OBT) + pi' (YY)
If a, b and c are the sides of a triangle and « is the angle opposite q, then
a? = b? + ¢ - 2bc cos « is the ordinary cosine law giving a in terms of
b, ¢ and «. Since the metric is invariant under translations, it may be
assumed that the vertex opposite a is the origin, and the other two vertices
may be denoted by x and y. A special case of (26.2) is

(26.3) P(x -y, z-y)= ¢xx) + Py - 20(x,y).

Since ®(z -y, - ), ¢(x,x), and $(y,y) are the squares of the lengths of
the sides in the triangle, (26.3) must essentially be the law of cosines. The
exact analogue is obtained by re-expressing (26.3) in the form

e(ry) =@ -y, T-Y)

N Do 2(xy)
= ¢(T,x) + P(y,y) -2 \/ d(x,T) \/ Py.y) ——= .
V(o) Vo)
It follows that the rays from the origin tox and y define an angle whose
cosine must be

(26.4)

!
(26.5) Ccos (x,y) == ________’éil’é__~__y).__~ .
V@) Vew.y)
The sin (x,y) is obtained in a similar way. From (25.16), the area of the
triangle is (W/2) | ¥y, — x5y, |- On the other hand, it is also given by

(1/2)be | sin (2,y) |, or (1/2) /@(x,2) /0(y.y) - | sin (x.y) |. With the usual
agreement regarding the sign of the sine function, the two results imply
that

(26.6) sin (z,y) = \%% .

This may also be derived from the relation sin?(z,y) + cos*(z,y) =1,
which is equivalent to the identity
(26.7) W2 (g, - 2a4)? -+ PHRY) = P(22) - P(Y.Y)-

These conclusions amount to a reformulation, in terms of the general
Euclidean distance \/ ¢(x — y, x - y), of certain known facts from element-
ary geometry. As such they do not throw any new light into the nature
of angle itself. From a more basic beginning, the angle between two rays
S1,Sg, with the same origin, is a measure of the deviation of the rays. Like

every metric concept it must be invariunt under motions. Another natural
requirement is that it must be additive in the sense that if the rays S;, S,
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and S have the same origin and S is between S; and S,, then the angle
(S,S,) is the sum of the angles (S;,S) and (S,S,). Finally, a normalization
of angle is needed. For instance, to obtain radian measure it is necessary
that a straight angle have measure =.

If a space fails to possess sufficiently many rotations, the requirements
stated may not be adequate to determine the angle measure. But if for a
fixed point p and any distinct pair ¢,¢’ such that pc = pc¢’ the rotation
about p exists which carries ¢ into ¢’, then it can be shown that there is
one and only one angle measure satisfying the above conditions.

In Euclidean geometry this measure is easily determined. If S; and S,
are rays issuing from p, they cut out a sector G(S,,S,) from the disc U(p,1).
A ray S from p, between S, and S,, subdivides this sector, and be-
cause area is additive, A[G(S:,S)] + A[G(S,Sy)] = A[G(S,S,)], (where
A[G(S;,S,)] means the area of G(S,,S,)). Moreover, when S; and S, are
opposite, that is distinct but on a common line, then the sector is semi-
circular and A[G(S,S,)] = =/2. Since area is invariant under motions,
which include rotations, the number 24[G(S,,S,)] fits all the above
requirements for a measure of (S;,S,). In view of the previous remarks, it
is unique and hence is the angle measure.

Taking p as the origin z, and (ry,»,) and (r,w,) as the polar coordinates
of x and y, the intersection points of S;,S, with K(z,1), then, as in the
derivation of (25.16), the area of G(S,,S,) can be obtained in the form

A2W [ [E + 2F tan » + G tan? o]-'d(tan o)

o Wy

= (1/2) [arc tan (g—ta—%(;————M) - arc tan (G_mnv“"l__l_'tf)]

Twice this area is the measure of the angle (S;,5,). By the usual formula
for the tangent of a difference, then,

tan (z,) = GW-(tan w, — tan w,)
V=T WG tan o, + F) (G tan v, - F)

Putting tan w; = x,/x,, tan w, = y,/y,, this becomes

— W- (@Y, — Z5Y1) _ W@y, - zy)
B0 O = Fay + F g T o) T OBl T @y
which leads back to (26.5) and (26.6).

If a line L, through the origin z and a point q, is perpendicular to a line
L’ through z and b, then the properties of perpendiculars, together
with (16.6), imply that L and L’ are conjugate diameters of the ellipse
Exi + 2Fzxy, + Gx} = 1. The condition that (a,,a,,0) and (b,,b,,0) be
conjugate points is that Ea,b; + F(a;b, + ayb,) + Gayb, = 0,
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and hence that
(26.8) ®(a,b) =0, where a # z, b=z

The expression (26.5) for the cosine of the angle (a,b) shows that this
amounts to taking =/2, (or 3«/2), as the measure of the angle.
Introducing rectangular coordinates in the usual sense means, from our

present point of view, applying an affinity which transforms the ellipse
d(x,x) =1, to

(26.9) dxa)=at +ai=1 or Eg= G,=1 = F,=0.

Distance then takes the ordinary form

Voo -y, 2 - 9) =V (@ - y)* + @ - 1),
and (25.6) proves that the space with this distance is congruent to the
space with \/®(x—y, x~y) as metric. When Ej=F,=1 and G,=0
then Wy=1 and previous formulas reduce to standard form.
The motions of the Euclidean plane, with distance

, dz.y) =@ -y, z-y),
are the affinities

. a
(26.10) x; = ;@ + ;5% + g i=1,2, A= Z: d:: # 0,
for which
(26.11) d(z,y) = d(z".y")-

Since translations preserve distance, and since the general affinity (26.10)
can be expressed as the product of

(26.12) T = Ay %, + Aty i=12, A0,

and a translation, it suffices to investigate when (26.12) is a motion. By the
same reasoning, we can further simplify the problem by taking y in (26.11)
to be the origin. Hence (26.12) will be a motion when ®(x,z) = ®(z',z'),
that is, when

Ex} 4 2Fxz,x, + Ga§ = Ex? 4 2Frix; + Gy
=E(ty,%; + a3,%)% + 2F (03,21 + 192:) (0171 + Q) + G Ty + go,)*
=x}(Ea}, + 2Fa;;ay + Gay) + QxlleEa11a12 + F(a3,55 + a350z1) + Gty
+ 23(Ea}, + 2Fa,,a5 + Gajy)-

Comparing coefficients, the condition for (26.12), and hence for (26.10),
to be a motion is that

(26.13) (@, Q515 Oy1502y) = E, D(Ayy,00y; Ayaslleg) = F,
| and P (ayp, 03 A15,a30) = G-
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For general E, F and G it would, of course, be highly unpleasant to
solve the equations (26.13) for the coefficients a;;. However, the groups of
motions corresponding to ® and ®, are isomorphic. Hence the same
information about the motions can be obtained by using @,. For this
case, where Ey = G, =1 and F, =0, the system (26.13) reduces to

(26.14) o} + a3, =1, gy + g8y, =0, af, + a3, = 1.

From the first and third of these equations, there exist numbers o and
% such that

a,, = COS «, gy == sin «, @y, = cos B, and @y, = sin f.
The second equation of (26.14) is then

cos « cos b 4 sin o sin § = cos (a ~ 8) =0,

hence a—ﬁ:% + 2nm, or else a — :—27—: +2nt, n=0,=4+1, == 2,...
For the second of these two cases, sin @ = — cos B and cos « = sin g, while
for the first, sin « = cos p and cos « = - sin B. A motion of the Euclidean
plane, therefore, has one of the following forms:

Ty ==X COS & — X, Sin o - a,
{26.15) Ty =1, sin « + x, cos « + b,
or,

2] ==, COS « + X, sin « + g,
(26.16) 2y =1, sin « — x, cos a 4 b.
The determinant A== % ™2/ is 1 for (26.15) and is—1 for (26.16).

21 22

Setting xi =1, i=1,2, the fixed points of (26.15) are given by the
system of equations:
xy(cos @ — 1) — x, sin a = - q,
Ty sin @ + 2y(cos a — 1) = - b,

The determinant of this system has the value 2(1 - cos «). When this is
not zero, there is a unique solution to the system and the motion is a
rotation. When 2(1 - cos «) =0, then cos « =1, sin « = 0 and the motion
is a translation, which is the identity when a and b are both zero.

The fixed points of (26.16) are determined by the system:

z;(cos @ — 1) + x, sin a = — @,
x; sin @ — 25(1 + cos a) =~ b.
Since the determinant of the system has the value - cos® 2 4+ 1 - sin? « = 0,

the equations represent the same line L, or else they are incompatible.
In the former case, all points of L are fixed. Because A = — 1 the motion
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is not the identity, hence it is the reflection in L. For the incompatible

system, we may write (26.16) as the product of two motions. The first,
] = X, COS @ + T, sin «, Ty = I, sin @ — x, €OS a,

1-cosa

sma T OF Ty=1 tan «/2, and
the second is the translation z;' =z + a, ¥} =z} + b.

This last case can be more simply described by observing that the
reflection in a line L followed by a translation can also be represented as
the reflection in a line parallel to L followed by a translation in the direc-
tion of L. For let x — z’ represent the reflection in L and &' — z'’ represent
the translation. Take any point x, not on L (Figure 49) and draw L,

is the reflection in the line z, =

1"
Ji 1
= L*
N an'\
50-1 xl,, 141
M,
Fig. 49

through z;' parallel to L. Then L, cuts the line M, through x, and
in a point %,. Designate the intersection of L and Ml by f,, and at f,, the
midpoint of S(x,,%,;), construct L* perpendicular to M,. Then it can
easily be shown that the distance e(z;,,) is the same for all choices of ;.
The length e(f,,f,) = e(x},%,)/2 is therefore constant. It follows that L*,
parallel to L, is independent of the initial choice x;. The original product
motion © — z’' is therefore the same as the product of the reflection in
L* with the translation taking %, into z;'.
Thus the discussion of (26.15) and (26.16) yields:

A motion of the Euclidean plane, which is nol the identily,
is a rotalion, a translation, a reflection in « line, or the pro-
duct of a reflection in a line with a lranslation in the direction
of the line.

(26.17)

The congruence theorems of elementary plane geomeltry can be obtained,
in the present approach, from the fact of (23.12) that two sets . and p’
are congruent if and only if a motion exists which maps ¢ on p'. Theorem
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(23.11) also shows that the triple a,b,c can be moved into the congruent
triple a’,b',¢’ by a motion. Since angle measure is invariant under this
mapping, corresponding angles have the same measure, and we express
this in the usual way as

X abc= & d'b'c, X ach = < a'c'd, X bac = & b'a'c'.

That the corresponding equalities of ‘“two sides and the included
angle” implies congruence also follows. For suppose e(c,a) = e(c',a’),
e(b,a) = e(b',a’), and & cab = < c'a’d'. The angle equality guarantees the
existence of a motion ¥ which carries 8 and y, the rays from a through ¢
and b respectively, into B’ and v/, the rays from a' through ¢’ and?’
respectively. Hence b on y must go into b’ on y’ because e(a,b) = e(a’,’).
Similarly ¢ on y must go into ¢’ on y' because e(a,c) = e(a’,c’). Since ¥ is

w
O A

d /L4

Ly

ic \L

3

L, M
Fig. 50

a motion the remaining parts are equal. Euclid’s proof of this theorem,
or at least the proof attributed to him, is meaningless since it employs
superposition without ever defining motions. The present approach
corrects this in a natural way.

Since we have the triangle-congruence theorems, we may, and will,
use all the standard theorems and concepts of Euclidean geometry. Also,
some of the results of projective geometry, properly interpreted, yield
new Euclidean theorems. The following is an example that will have later
application.

If the lines L,, Ly, Ly and L, are concurrent, and if two of them,
(26.18) say I‘,l and L,, are perpendicular, then the four lines form a har-
’ monic set if and only if L, and L, bisect the two angles formed

by Ly and L,.
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Proor: (Figure 50). Let p be the center of the pencil and suppose that L,
bisects one of the angles between Lg and L,. Ata point g, distinct from p,
on L, construct M perpendicular to L, and let c and d denote the respective
intersections of M with Lg and L,. It is clear that g is the midpoint of
S(c.d), hence its harmonic conjugate with respect to ¢ and d is w, the
point at infinity on M. But since L, is parallel to M it passes through w.
Thus the transversal M cuts the set of lines in a harmonic set of points
which implies the lines are harmonic. The argument is reversible. If the
lines are harmonic, then ¢, the harmonic conjugate of w with respect to ¢ and
d, is the midpoint of S(c,d). Because the triangles c,p,g and d,p,¢ are then
congruent, L, is a bisector of one angle formed by L; and L,. The other
bisector must be perpendicular to L,, hence is L,.

27. The Euclidean Theory of Conics'?

Since the reader is familiar with the ordinary theory of conics, our
interest will not lie in the development of that theory, but rather in
how it appears from our present point of view.

An azis of a conic C is a line L such that the reflection in L carries C
into itself. If = is on C then its image x’, under reflection, is also on C and
the line x x z' is perpendicular to L. Hence L is the locus of the cen-
ters of a family of parallel chords in C which are perpendicular to L.
Conversely, if L is the locus of the centers of a family of parallel chords
perpendicular to L, then the reflection in L will carry C into itself.

The argument leading to (16.4) shows that an axis L of a conic C must
pass through z, the pole with respect to C of the line { at infinity. When
C is a parabola, z is on { and L belongs to the family of parallels through z.
If p is a general point on C, a line M, perpendicular to any line through z,
cuts C again at ¢, and it is easily seen that the line through z and the
midpoint of p and ¢ is an axis L, and is unique. Hence:

(27.1) A parabola has one axis.

For an ellipse or hyperbola, the diameter conjugate to a line L through
the center z is always a member of the family of parallel chords bisected
by L. Hence L is an axis if and only if it is perpendicular to its conjugate
diameter. All pairs of conjugate diameters in a circle are perpendicular so
for this special type of ellipse all diameters are axes.! Since the center of
a circleis a no-tangent point the involution of conjugate (or perpendicular)

13In this section § is the line at infinity. Except for § there is no confusion in using
either § or L to designate a line.
UThis fact and (16.7) imply that an angle inscribed in a semi-circle is a right angle.
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diameters is elliptic (see (11.4)). When C is a hyperbola or an ellipse (but
not a circle), with center z, then by (13.17) the involution of conjugate
diameters and the involution of perpendiculars at z have exactly one pair
of elements in common. This yields:

27.2) An ellipse (not a circle) or a hyperbola has two axes characterized
"*/ as the pair of conjugate diameters which are perpendicular.

The intersection of a conic with an axis is called a vertex of the conic. The
tangent at a vertex is perpendicular to the axis through the vertex since
the tangent is parallel to the conjugate diameter of the axis. For a para-
bola there is only one axis and one vertex (at a finite distance). If the
axis of the parabola and the tangent at the vertex are taken for the x,;
and x, coordinate axes respectively, then, as in (16.5),

3 = 2px,

is a standard form of the parabola. Similarly, when the axes of an ellipse

or a hyperbola are taken for coordinate axes, with the same choice

of units, the representations of these conics have the familiar forms
r2 2 2

Z—z -+ %: =1 and % - % =1 respectively. We use, in the usual sense, the

terms “major’” and “minor”’ axis for an ellipse and ““transverse’” and

‘“conjugate’’ axis for hyperbola.

The projective approach to the foci of a conic is not quite as direct.!s
A focal point, or focus, of a conic is defined to be a point | such that conju-
gate lines through f are perpendicular. In other words, in the pencil through
a focus the involution of conjugate lines in the pencil coincides with the
involution of perpendicular lines. Since the latter involution is elliptic,
the former is also, and a focus must be a no-tangent point, provided it
exists. This existence is not obvious, except for a circle where clearly the
center is a focus.

Suppose, however, that C (not a circle) has a focus f and let ¢ indi-
cate the line f X z, where z is the pole of {. Since fs£z, ¢ is defined.
Its pole is on ¢, and the parallel chords, which lie on lines conjugate
to &, are bisected by £. By assumption the conjugate of %, which con-
tains f, is perpendicular to %, hence ¥ is perpendicular to all its conju-
gates and is therefore an axis of C. In the case of a parabola, then, a focus
would have to lie on the unique axis, and for a hyperbola it would have
to be on the transverse axis since the conjugate axis consists of two-tangent
points. It is also clear that if f is a point on an axis  and if one pair of

15The treatment of foci which follows is taken from Coxeter, “The Real Projective
Plane”, Section 9.7.
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conjugate lines through f are perpendicular, and both are distinct from &,
then all conjugate pairs in the pencil f are perpendicular, so f is a focus.

The actual existence of foci may be shown from the following lemma
concerning conics in the projective plane.

97.3 If the triangle b,a,a’' is circumscribed to the conic C and if © is
(27.3) conjugate fo b, then x X a is conjugate to © X a'.

A proof is immediately obtained by dualizing the construction for a polar

following (11.8) (Figure 51). Choose a two-tangent point yonn=a x a,

distinct from a and a', and let 4’ be the second tangent through y. Put

§=a X b and & =a’ x b. The previous polar construction amounted

to this: four points on a conic determine six lines and the intersections of

these, in pairs, determine three new points defining a self-polar triangle.
b

Fig. 51

Dually, four tangents, namely =, ', 8 and 8’ determine six points whose
joins, in pairs, produce three new lines forming a self-polar triangle. The
sides of this triangle are A== (1 X 8) X (1’ X 8'), p==(n X &) X (¢' X 9)
and £= 1) X y. Setx ="~ X p. Since z is the poleof &, and b is on¢, x is
conjugate to b. Being sides of a self-polar triangle, \=a X z and p=a’' X =
are conjugates. The construction is reversible, starting from z conjugate
to b, rather than from y, hence the theorem is established.

In the proof just given, let the contact points of 6 and 8’ be ¢ and ¢’
respectively and set f = ¢ x ¢'. For the case where C is a parabola, let
3 be taken as ¢, the line at infinily, p as the axis, and » any tangent distinct
from 6 (Figure 52). For any z on §, ¢ X z and a' X z are conjugates, and
since a’ is on { the lines 7 and @’ X x are parallel. Let the perpendicular
tonatacut p at x,. Thenxz, X a’is perpendicular to a X z,. Since one pair
of conjugate lines through a,, both distinct from p, are perpendicular,
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all pairs of conjugate lines through x, are perpendicular, hence x, is a
focus. There can be no other since the perpendicular to » at a is unique.

o7 4 A parabola has one focus. Any tangent w and the line through the
(7.4) focus perpendicular to = infersect on the tangent through the vertex.

¢

cf =z

/‘"
F)

Fig. 52

When C is an ellipse, (27.3) can be applied with 8 chosen as one axis
and =« taken to be parallel to § (Figure 53). As before the lines x X a and

a L a
Uy (7] -
’ M ‘ -
8 b4
£ £a
Fig. 53

z X a' are conjugate for z on P. They will be perpendicular when, and
only when, z lies on the circle K having S(a,a’) as a diameter. When the
ellipse is not a circle, K intersects § only if § is the major axis, in which
case it cuts it in two points. An ellipse therefore has two foci, which lie on
the major axis. We see also that a circle has only one focus since for that
case B is tangent to K at the center of C.
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Finally, for the hyperbola P may be chosen as the transverse axis,
so that 3 and 3’ are tangents at the vertices, and 4 may be taken to be
one of the asymptotes (Figure 54). When x is an intersection point of §
and the circle K, which has S(a,a’) as a diameter, thenz X aandz X a' are
perpendicular conjugates and x is a focus. Since K and § have two inter-
sections there are two foci. Moreover,

The circle, which has a common center with a hyperbola, and
(27.5)  which passes through the foci, also passes through the inlersection
points of the asymptlotes with the tangents at the vertices.

5 8 Y

™

Fig. 54

The constructions for the foci make it possible to verify by direct calcu-
lation that the foci, as defined here, coincide with the foci as usually
defined. However, more insight is gained through a geometric approach.
If a directriz of a conic is defined to be the polar of a focus, it has the
following well known property.

As a point varies on a conic its distance from a focus is in constani
(27.6)  ratio lo its distance from the direcirix corresponding to the focus.
The constant ratio < is called the eccentricity of the conic.

Proor: Let f be a focus of the conic C, ¢ the polar of f, x an arbitrary
point of C, and ¢ the tangent at z. Since f is a no-tangent point, ¢is a non-
intersector, hence between f and ¢ there is a vertex b. Let £ indicate the
tangent at b. Because § and ¢ are tangents, y==£& X B is the pole of
n=>b x 2. Then a==7 X yisthepole of a =f X y. The liney=a X f
is therefore conjugate to a, and so, by the definition of a focus, « and y are
perpendicular. Since a and « are pole and polar, the points a, « X 1, b
and z form a harmonic set, hence the linesy, @, f X b==0, and f X z are
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also harmonic. The perpendicularity of « and Y, together with (26.18),
implies, then, that y is one bisector of the angles formed by s and f x .
Let 8 be the line through z parallel to ¢ andsetw =3 x vyandu =3 X q.
Take g any point of s so that fis between b and g-Because yis an angle bi-
sector, & zfw=< wfg, while the parallelism of § and s implies x wfg =< fwz.
Hence < zfw = < fwz, which gives e(f,z) = e(w,r). On the other hand, for
V=16 X ¢, the parallels § and ¢ as transversals of Y, n and ¢ intercept pro-
portional segments, hence e(w,x)/e(z,u) =e¢(f,b) Je(b,v). Taking ¢ as the value
of the last ratio, then e(f,x)/e(x,u) =« for an arbitrary point x of the conic.

The definitions usually given for an ellipse and a hyperbola, namely
that the distances from a point on the conic to the foci have a constant

ﬁ o
w N"’ 1}
u
v
Y
a b
g f

N
N

Fig. 55

sum and difference respectively, now follow as properties. Suppose, for
instance, that f, and f, on s are the foci of an ellipse C (Figure 53). Let £,
and £, be the corresponding directrices, and for an arbitrary point x of C
let u; denote the foot of z on &, i==1,2. Set py=15 x &, { — 1,2. Then
e(x.fy) + e(x,f2) = ¢ [e(x,u,) + e(x,u,)] =« -€(vy,0,), S0 the sum is constant.
This relation, when z is a vertex, also shows that = < 1in the case of an
ellipse.

28. Hilbert's Geometry

We now turn to projective metrics which are defined in a convex domain
of the affine plane A2. As a preparation, some facts are first established
concerning metrics on a straight line.
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Let £ be a line in the plane, and let I be one of the intervals on § with
(distinct) end points x and y. We consider a metrization of I under which
it becomes a metric straight line. First, if a and b are points of I, different
from z and y, with b between x and q, then

(28.1) R(a,b,x,y) >1 and R(a,azy)=1.
For if d is any fifth point of &, it was shown in (6.16) that
(28.2) R(a,d,z,y)R(d,b,z,y) = R(a,b,z,y).

In particular, if d is the point at e on £, then (15.10) and (24.1) show that
for any Euclidean metric in A2, this reduces to

(83 R@bay) = R@p..chRE, bay) = go - X8 > 1

For a = b, (28.3) reduces to the equality in (28.1). Next, if x' is betwecen
b and z, then

(28.4) R(a,b,x",y) > R(a,b,x,y)-

For
, e(a,x’) e(b.y) e(a,x’) + e(x.x) e(bx)
REDTD=30)  eay) M FOOEY) =26,0) Te@a) e(ay)
Substituting e(a,x’) = A, e(b,x') = p. and e(x’,x) =3 in these relations gives

A e(b, x4+ 8 eb,
R(abx’y)"u'%—; a"‘i R(C:b,m,y)—— P ega gg
_{

A > >0 it follows that — + < A, which, with the above expressions

for R(a,b,x',y) and R(a,b,x y), lmplles (28.4). Similarly, if y’ lies between
a and y, then

(28.5)

Since § >0 and

R(a,b,x,y") > R(a,b,x,y) and
R(a,b,2',y") > R(a,b,x,y).

For the same disposition of a, b, z and y, let the metric h(a,b) on I be
defined by,

(28.6)  h(a,b) = g log R(a,b,x,y), h(b,a) = ;—‘ log R(b,a,y,z), k> 0.6

From (28.1), h(a,b) > O for a4 b and h(a,b) = 0 if and only if a ~ b. Also,
h(a,b) = h(b,a) because of (6.8). Since, from (28.2), h(a,d) + h(d,b)==h(a,b),
when d is between ¢ and b, the triangle inequality holds for a,b,d in any
order. All the properties of a metric are thus satisfied by h(a,b). That

Because R(a,b,x,y) == 1/R(b,a,x,y), the relations in (28.6) are equivalent to
h(a,b) = 5 !log R(a,b,x,y)| for any pair a and b on S(z,y). The convenience of the

k
choice 3 will appear later.
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I is a metric straight line in terms of h(a,b) follows from the additivity of
distances along I together with the fact that

(28.7) R(abxy)—>% as b—>x oras a—y, oras b—x and a—y.

Now let D be the interior of a bounded, convex domain in the affine
plane with the convex curve K as its boundary. In D a distance h(a,b)
is defined as follows (Figure 56). Let  be the intersection of K with the
ray R(a,b) and y be the intersection of K with R(),a).” The distance h(a,b)

is then defined to be {2{ log R(a,b,z,y). The discussion of the previous para-

graph shows that the first two properties of a metric are satisfied in D

Fig. 56

by h(a,b), and also that the triangle inequality holds for triples on S(z,y).
In D let ¢ be a point not on S*(z,y). Take u, v, z and w for the respective
intersections of K with the rays R(ac), R(c,a), R(b,c) and R(c,b).
Setp=(@ X 2) x @ X ), y'=@EX2) X (@ Xy),2 =W X u) X (x X y),
andd =(p X ¢) X (z X y). The perspectivity of u X vand z X y from p,
together with (28.4), yields

R(a,c,u,p) = R(a,d,x',y") > R(a,d,x,y).
Similarly, (28.4) and the perspectivity of w X z and x x y from p, gives
R(e,bw,z) = R(d,bx',y") > R(d,b,x,y).
Multiplying the last two inequalities, and using (28.2) gives
R(a,c,u,v) - R(c,b,w,z) > R(a,d,r,y) - R(d,b,x,y) = R(a,b,x,y).

17R(a,b) denotes the ray through b emanating from a.
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Taking the logarithm of both sides, then,
h(a,c) + h(c,b) = h(a,b).

Throughout the derivation, the equality holds only if 2’ = r and y’ =y.
This can occur only if K is not strictly convex, but contains, in fact, two
non-collinear segments. Thus we have :

If K does not contain two non-collinear seqments, then h(a,b) is a

(28.8) projective metric in D.

The metric h(a,b) was discovered by Hilbert.

When K does contain two non-collinear segments, h(a,b) is not a pro-
jective metric. However, the metric d(a,b) = h(a,d) + e(a,d) is projective
in D. It will still be so, in fact, if e(a,b) is replaced by any Minkowski
metric m(a,b).

If K is an open, instead of closed, convex curve, and if D does not
contain a straight line, Hilbert’s definition may still be used in the follow-
ing way. For a and b in D, the line a X b intersects K in at least
one point y, which lies, say on R(b,a). If R(a,b) also intersects K at x, then
h(a,b) is defined as before. When R(a,b) fails to cut K, then x is taken as
the intersection of a x b and the line { at infinity, and h(a,d) is again
defined by (28.6). This method amounts to closing K by adding to it the
interval on { bounding D which is cut off by K. The interval may consist
only of a point, as when K is a parabola, or may be an actual segment, as
when K is a branch of a hyperbola. In the generalized case, if K is strictly
convex then h(a,b) is a projective metric, as before, otherwise h(a,b) + e(a,b)
may be taken for a projective distance.

It is easily seen that if the convex domain D contains a straight line, D
is either a half-plane or else a strip between parallel lines (Ex. [17.8]).
That the latter type of domain can be given a projective metric was shown
in the examples following (20.6). On the other hand, if D is the interior
of a half-plane, rectangular coordinates can be chosen so that D is the locus
given by x, > 0. For any two points a and b in D, the second coordinates
1 1

x, and z,, arc then positive and the distance d(a,b) = e(a,b) + it
2 2

provides D with a projective metric.
Therefore,

The interior of any convex domain in the affine plane can be given a

(28.9) projective mefric.

The most interesting case is that where K is a strictly convex, closed
curve, and D is its interior. To have a short term, we will refer to this
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type of domain, with the metric h(a,b), as a Hilbert geometry. We consider
some of its properties.

(28.10)  Thecircles of a Hilbert geometry are strictly convex.

According to the theory developed in Section 21 this is equivalent to
the existence of perpendiculars. Hence (28.10) can be established simul-
taneously with the following construction for perpendiculars.

In a Hilbert geometry the line P is perpendicular to the line L if
(28.11)  and only if K has, at its inlersections with P, supporting lines
concurrent with L.

Proor: (Figure 57). Let x and y denote the intersection points of K
with P and take £ and v as the supporting lines at  and y. Assume that &,

P
Fig. 57

7 and L are concurrent at w. If { is the intersection of P and L, then for
g+/fon Pand u+4f on L, it must be shown that h(g,u) > h(g.f).
SupPose z to be on R(g.f) and y to be on R(f,g) and denote by z' and y’
the intersections of K with R(g,u) and R(u,9) respectively. Finally, set
Zy=E& X (u X g) and y, =1 X (u X g). Then (28.4) and the perspectivity
from w of (g x f) with (g x u) yields R(g,f,z,y) = R(g,u,20,40) < R(g,u,2",y"),
i implying h(g,f) > h(g,u). Hence P is perpendicular to L.

The proof of the converse is less direct. Suppose ¢ and L, non-incident,
!:o be a point and line in D. As u traverses L let x and y be the variable
intersections of K with R(g,u) and R(u,g) respectively. From continuity
cpnsiderations it is apparent that u will assume one and only one posi-
tion f for which L is concurrent with supporting lines at = and y. Hence
pq'arpendiculats exist, which implies (28.10), and P can only be perpen-
dicular to L under the conditions of (28.11). In this construction we

notice that if K is an ellipse, the points f and w are conjugate. It follows
directly that:
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If K is an ellipse, perpendicularity is symmetric, and two inter-
(28.12)  secting lines in D are perpendicular when, and only when, they
are conjugate with respect to K.

If K has unique supporting lines at its points of intersection with the
line P, then the lines to which P is perpendicular form a pencil. However,
in general the lines perpendicular to P do not form a pencil.

If the point p and the line L in D are non-incident, then through p
there are infinitely many lines which do not intersect L in D. The parallel
axiom, therefore, fails in Hilbert geometry. Among the non-intersectors
through p there are two extreme ones, A,,A,, namely the lines determined
by p and the intersections of L with K. They are called the asymplotes

v

U

Fig. 58

through p to L. If x refers to a point in D on L and L, is the line joining p
and z, then as x traverses L, in a given direction from a fixed point z,,
the lines L. tend to one of the asymptotes, A, or A,. From the original
definition, it follows that asymptoticness is symmetric, that is, L is
asymptotic to A, and to A,.

The following property gives a useful criterion, in terms of distance, for
two lines to be asymptotic.

If x is a variable point on the line L, and f is its foot on the distinct
(28.13) line L,, then L, and L, are asymptotes if and only if there i$ a

sub-ray of L, such that for x on this ray the distances { h(z,f)}
are bounded.

Proor: (Figure 58). Let L., and L, intersect at the pointy of K, and takeany
point z; on L; in D, i = 1,2. Let R(z,z,) and R(z,,,) intersect K in uand »
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respectively. Let the parallel to x; X x, through the point x of S*(x,y)
intersect Ly, S(y,u) and S(y,v) in z,u',v’. Because K is convex, u' and v’
lie in D. By (28.5) and the definition of “foot”,

h(zx,f) < h(z,2) << g log R(z,z,u’' ") = h(z,,x,),

which proves that h(z,f) is bounded. For the converse (Figure 59), suppose
L, is not asymptotic to L, and that a and b are the intersections of K
with L,. Using the same convention as before,

h(z.f) = ]f"; log [M e(f,v)].

e(z,v) " e(f,u)

Fig. 59

As z approaches a or b, it is clear that e(z,u) is bounded away from zero

while e(z,v) approaches zero. Because e(f,v)/e(f,u) > 1 > o it follows that
h(z,f) — « asx — a or x — b.

Let L, be an asymptote to Ly and let x on L have f as foot on Lj.
(28.14)  Then h(z,f) > 0 for x - g=L}{ x L}if and only if K is differen-
tiable at g.

If K is not differentiable at g then K has two extreme supporting lines,
M and N, at g (Figure 59). Let x x f cut K at u and v, with x between v
and f, and cut M and N in m and n respectively, with v between m and z.
For a fixed position, then, R(zyfyus) > R(xgfystg,m,). For x variable
between z,and g it follows that R(z,f,u,0) > R(x,f,n,m) = R(Zyfos110M0) > 1.
Hence wling h(z,f) 2% log R(x,fyogmg) > 0. When K is differentiable

at g, the lines ¢ X u and g X v converge to the tangent at ¢ as z — ¢,
and h(z,f) is easily shown to approach zero.
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29. Motions and Area in Hilbert Geometry
Definition of Hyperbolic Geometry

Since Hilbert distance is defined in terms of cross ratio, which is inva-
riant under a collineation, any collineation ¢ which maps D on itself will
be a motion in the Hilbert geometry. Conversely, since a collineation is
determined by a quadrangular set of points and their images, every
motion ' determines a collincation ©, which coincides with W on D.

99.1 The motions in a Hilbert geometry are the collineations of the pro-
(29.1) jective (not the affine) planc which map D on itself.

It was shown that the reflection in a line L, when it exists, is induced
by a harmonic homology © whose axis carries the line L. The perpendicu-
lars to L lie on the projective lines of the pencil defined by the center
of @, and this center is outside D. The circles of D are convex, hence by
(23.9), if P is perpendicular to L, then L is perpendicular to P. The bound-
ary K goes into itself under @ since D does. If K isan ellipse and L is
a line of I) carried by the projective line g, then, by (13.3) and (13.6), K
goes into itself under the harmonic homology whose axis is ¢ and whose
center is the pole of ¢ with respect to K. Hence when X is an ellipse, re-
flections in all lines exist. As in the case of Minkowskian geometry, an
ellipse is the only curve for which this is true.

The Hilbert geometry in the domain bounded by the convex curve
(29.2) K admils reflections in every line if K is an ellipse, and K is an
ellipse if the reflections in dll lines of one pencil (within D ) exist.

Since only the last part is not established, assume that reflections in all
lines of a pencil p exist, and let L, and L, to be two lines of the pencil
such that L;1L, Through a point wi on Li pass two supporting
lines of K which cut L; in the same points that X does, where is£],
i,j =1,2. The line w, X w, does not intersect K or D and may be taken
to be the line at infinity. Choosing L, and L, for the x; and x, axes of an
affine coordinate system, the reflections in L, and L, have the respective
forms:
Ay ==x, up=—T, and Xy =-3 Ty = T

Each reflection carries K intoitself, hence the product of the two, z; = - i,
i=1,2, also carries K into itself. Therefore K has the origin p as affine
center. If L is any line through p, then there are supporting lines £q at
the end points of L such that { and n are parallel. The construction in
(28.11) shows that the line through p parallel to & is perpendicular to L.
The reflection ® in L is therefore the harmonic homology with & X m as
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center and with the projective line carrying L as axis. Because § X 7 is
on the line at infinity, ® is an affinity. If E denotes the ellipse of minimum
area and center p containing K, defined in (24.15), then E goes into itself
under ¢, The fact that K also goes into itself and has a common point
with E shows, as in the argument of (25.3), that E and K coincide.

A Hilbert geometry in which the reflections about all lines exist is called
hyperbolic. We may therefore say :

29.3 A Hilbert geometry is hyperbolic if and only if the domain D is the
(29.3) interior of an ellipse.

Since the reflections in every line exist, we have in hyperbolic geometry
the same mobility, and therefore at least the same congruence theorems,
as in Euclidean geometry (actually there are more). The discovery of hyper-
bolic geometry, shortly after 1800, by Gauss (1777-1855), Bolyai (1802-1860),
and Lobachevsky (1793-1856) was one of the great events in the history of
mathematics. 1t showed the futility of the attempts, extending over
2000 years, to prove that the parallel axiom is a consequence of the
congruence axioms. Hyperbolic geometry and elliptic geometry (the latter
resulting from a projective metrization of the entire projective plane)
are the so called non-Euclidean geometries, and are considered in detail
in the next chapter.

However, the answer to the question of how many hyperbolic geometries

there are lies immediately to hand in the following fact concerning Hilbert
geometries.

Two Hilbert geometries defined in the strictly convexr domains D, and
D,, with the metrics hy(a,b) and hy(a,b) respectively, satisfy the relation
hy(a,b) = chy(a,b), for some constant ¢, if and only if a collineation of
P2 exists which carries D, into D,.

Proor : Let @ be the collineation carrying D, into D,. If a and b are points

in Dy, and x and y are the intersections of a x b with K,, then the line
ad x b® must intersect K, in the points 2 and y®. Therefore

‘ R(a,b,x,y) = R(a®,b®,z0,y?),

If k; is the distance constant belonging to h;, then clearly
hy(a®,bd) == %hl(a, b).
1

Conversely, let a; — a, be a mapping of D, on D, under which
hy(ay,b,) = chy(as, by). Inspite of the factor , it is clear that a metric straight
line in D, goes into a metric straight line in D,. Hence the intersection of
D, with a projective line goes into the intersection of D, with a projective
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line. The mapping a, — a, is therefore induced by a collineation, and the
proof is complete.

Since any ellipse can be carried into any other ellipse by a projectivity
(which is an affinity if the centers are corresponding), it follows that for
any two hyperbolic metrics hy(z,y) and hy(z,y) a constant ¢ exists such
that hy(z,y) = chy(z,y). It will appear later that for ¢ 52 1 the corresponding
spaces are not congruent.

We conclude the present chapter with a discussion of area in Hilbert
geometry. Let x;,%,,2; be projective coordinates such that neither K nor
D intersects the line 2, =— 0. In D points may then be represented in the
form (z,,%,,1) with x; and x, regarded as affine coordinates. They may even
be taken to be rectangular Euclidean coordinates with the corresponding
Euclidean distance given by e(x,y) = [(x, — y1)?* + (x5 - ¥)*]''2. Suppose
now that p is a point of a line L in D and that a and b are variable points
which tend to p in such a way that the variable line a X b tends to L.
We wish to evaluate, in this situation, the lim h(a,b)/e(a,b). Let

z= K n R(a,b), y = KnR(ba), u= ?—E—%’&—; and v = zg .3; 17

- 2 e(a,x) e(b, ,
Then, —I—ch(a,b) == log [eﬁa y; eEb Z;J = log (1 + u) + log (1 4 v). The Mac-
Laurin expansions for the last two terms give

2 2 v
Ph@b) = (- + )+ -5+ )

or
2h(ab) _ 1 le(ab) R 1 leab T
ke(a,b) | ebz) 2e(bx)? e(ay) 2e(ay)? '
With z, and y, as the end point:s of L, the last relation shows that

 h(ab) 1 1 ‘
. = d&(p,L).
(29.4) Jm @b = 3 iy T gy ) = PPD)

We show nexl:

If p is a point of D, and if on each line L of the pencil p the distinct
points z, and z, are chosen so thal e(p,z)=1/(p,L), i=1,2,
the locus of the points z, and z, is a strictly convex curve K, with
cenler p.

(29.5)

Proor: Without restriction we may assume that k= 1. Let L, and L,
be any two lines through p, with K cutting L, at u,,u; and L, at u,,u;

M AN means the intersection of the sets M and N.
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(Figure 60). Take the numbers a,b,c,d to represent e(p,u,), e(p,u;), e(p,u,)
and e(p,uy) respectively. The locus point z, on R(p,u,) and the locus point
z, on R(p,u,) determine a segment. Choose y any point on the open segment
S*(z4,25), and let L=p x y cut K at u and u’, with e =e(p,u) and
f=e(p,u’). To show the strict convexity of the locus, it suffices to
prove that e(p,y) < e(p,z) where z is the locus point on R(p,y). If
is the intersection point of L with S(u,,u,) and ¢ = e(p,J), convexity
in the Euclidean plane of the curve K implies e . If xis the angle between
L and L, and @ is the angle between L and L,, then the Euclidean area
of the triangle p,u,,u1, expressed in two ways yields

aeé sin « + ¢ sin p = ac sin (x + B).

Fig. 60

Therefore,

sina  sinf  sin(x 4+ ) _ sin (x + B)
c + a e > e )

By the same argument,

sina  sin B sin (« 4 )
T T

Adding the two inequalities gives

sin « sin £ sin (« 4 B)

AR P R e a
Bpt the area of triangle p,z,,z, expressed as the sum of two triangles
gives

sin « n sin f  sin (x + f)

ep.z) T oepz) T e(py)
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Comparing this with the previous inequality shows that e(p,y) < e(p,2).
Since K, is strictly convex and has a center, when taken as a unit
circle it defines a Minkowski metric m(z,y) in the affine z,,z, plane. If x

and y are distinct, there is a line L,, through p which is parallel to x x y,
and

(29.6) m(x,y) = e(x,y)2(p,Lzy)

is the Minkowski metric. Clearly m(p,x) =1 is the given curve K,, and
for any collinear triple z, y and z, (29.6) implies

m(z,z)/m(z,y) = e(x,2)/e(x,y) = | A(x,y,z) | (see footnote, page 137).
From (29.4) and (29.6) we obtain:

29.7) Ifasb, lim @D _

) ’ a,b—>»p m(a’b) o
On the other hand, the relation (29.7) determines the metric m(a,b)
uniquely: that is, for a given choice of the line at infinity x; = 0 there
is only one K, for which (29.7) holds.

The metric m(x,y) of (29.6) is called the local Minkowski metric belong-
ing fo the point p. The limit (29.7) shows that m(a,b) is a good approxim-
ation of h(a,b) in the vicinity of p. Since the Hilbert geometry is locally
Minkowskian, the Hilbert area can be defined by integration in the following
way. If B is a region in D which is bounded (in the Hilbert sense) it may be
subdivided into regions B;. If a point p; is selected in B;, then associated

with p; is a local Minkowski metric. By (25.14) and (25.15), the area of
B; in the local geometry is

(20.9) 4,(B) = 5(p) [ | do,az,
where - .
(29.9) a(pi) == l'[ //2 <l"“2(p¢,L)dm] .

Then EAW(B‘) is an approximate expression for the Hilbert area. As
i

the number of subdivisions is increased, in such a way that the maximum
diameter of all the subregions tends to zero, then, by the definition of
a double integral, the sums }:A l’i(Bi) tend to the limit

k2

(29.10) A(B) = [ j (160, 2)dt, 4,

B
which is the Hilbert area of B.
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The crux of this definition is the principle that area in a geometry is
determined from the area in the local geometry by the above integration pro-
cess. A priori, there is the possibility that this principle might be incon-
sistent with the requirement that area in a metric space be invariant under

motions. But the relation (29.7), and the fact that it determines m(a,b)
" uniquely, implies that a motion of D taking p into p’ must also take the
local Minkowski metric associated with p into the local Minkowski metric
belonging to p'. Therefore A(B) = A(B') whenever a motion of the Hilbert
geometry exists which carries B into B’. This may be confirmed by
calculation.

Exercises

[19.1] If 8,(x,y) and 8,(x,y) are distances defined in the same set, show
that 8, = ¢, + 8, and &, = max {8,,5,} satisfy the distance axioms.

[19.2] If &, and 3§, in [19.1], are equivalent, then any pair of the four
metrics &; are equivalent.

[19.3] Construct an example to show that in [19.1] min {§,,8,} will
not in general be a metric.

[19.4] If px <, py < p and xz 4 zy = xy, then pz < 2p.
[19.5] Show that =(x,y) satisfies the axioms for a metric.

[19.6] Give an example to show that, if xy is a metric, then in general

(xy)* and (xy)* are not metrics. Also give an example where all
three are metrics.

[20.1] If xy is a metric, then, for any fixed A > 0, A-(xzy) is also a metric,

and the segments, straight lines and great circles of the space are
the same under both metrizations.

[20.2] Show that in R, every curve z(f), for which wi(f) varies monoton-
ically, is a segment.

[20.3] If z(f) is a segment, and x(f,) = x(t,), for ¢, <t,, then x(f) = x(t,)
for t, <t <ty

[20.4] If x(f), -0 <t<oc, is a straight line for the metrics &,(x,y) and
8(x,y), then it is a straight line for 8(x,y) = S,(x,y) + Sy(x,y). Is
the corresponding statement for a great circle also correct?

[20.5] Let p be the subset obtained by removing a conic and its no-tan-
gent points from the projective plane. Assuming Hamel’s theorem,
show that p cannot be provided with a projective metric.

[20.6] Is P2, under the metrization =(x,y), a projective-metric space?

[20.7] Show that the side x, > 0 of Lhe real x,-axis in E2? can be provided
with a projective metric. (Hint: modify the metric of R,.)
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In an open, projective-metric two-space, P, and P, are two dis-
tinct, convex polygons which have a side in common. If all points of
P, are cither on or interior to P,, show that the length of P, is
greater than that of P, Derive from this the fact that a closed,
convex curve has finite length.

In an open, projective-metric space, if x lies on $*(a,b), then, except
for a, K(x,ax) lies in the interior of K(b,ab). (The interior of K(p,?)
consists of all points y such that py < 3.)

In the problems given for Section 21, all the spaces are open and two-dimen-
sional and the metrics are projective.

[21.1]

[21.2)

(21.3]

[21.4]*

[21.5]

[21.6]*

[21.7]
[21.8]
[21.9]

[22.1]

[22.2]

For a + b, let B(a,b) denote the locus of points x such that ax = bx.
Show that if B(a,b) is always a straight line the circles are convex.

If for every distinct pair, a and b, the locus of points z, for which
|ax —xb| = 2a <  ab, consists of two convex curves, ihen the
circles are convex (this reduces to [21.1]).

If the circles are convex, and x(f) represents a straight line, then
for any point p the function f(f) = px(f) reaches its minimum for
exactly one value {, and is decreasing for ¢ << {, and increasing for
> 1.

If the locus of points at a given distance from a given straight line
consists of two straight lines, then the circles are convex.

In the Euclidean x,,x, plane find two continuous curves x, = fi(x,),
—00 « & < o0, [ ==1,2, such that all points of the first curve have
the same distance from the second curve, but not conversely.
Show that this cannot happen if each point of the first curve
has a unique foot on the second.

Let C(r,k) denote the locus of points, on one side of 7, at a distance
k from v. If, whenever n and a side of « are arbitrarily chosen, the
points of 4 have a constant distance from C(m,k), for any k>0,
then the circles are convex.

Are the circles in R, convex?
Every point except p has exactly one foot on the circle K(p,3).
Show that the metric in the example at the end of section 21 is
projective.
Find the motions of R, Remetrize R, with the distance

d(@,y) == dy(x,y) -+ [ e - et |
and find the motions under the new metric.

Show that x] == x, €OS x -} 2, $in @, 5= —x, $in a + Ty €OS « is
a motion of E?.
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[22.3]

[22.4]

[22.5]

[23.1]
[23.2]

[23.3]
[23.4]

[23.5]

[23.6]

[23.7]

PROJECTIVE METRICS [IV]

Show that there is no projective metric for the whole affine
plane under which every affinity is a motion.

Let I' be an Abelian group of motions for the metric space R with
the property that for any two points, x and y in R, a motion in I
exists which carries x into y. Prove that for any two points, x and
y in R, and any motion ¢ in I, the distance xz(x®) equals the
distance y(y®).

Under the assumptions of [22.4] show that for a given pair of
points, z and y, exactly one motion in I' exists which carries z into y.
Prove (23.1).

Use (23.7)* to show that in an open two-space three distinct points
lie on at most one circle.

In E? find the reflection in the line 3z, + 42, — 5 = 0 and the reflec-
tion in the point (2,9).

Find all the motions of E! (i. e., the real x,-axis) with the distance
|2~y |

In E? show that the product of the reflections in two distinct
lines is either a rotation or a translation (of E2, considered as an
affine plane).

In an open, projective-metric two-space, the rotations (including
the identity) about a point p form an Abelian group.

Find two rotations in E? which do not commute.

Except for [25.1], the underlying space in all problems for Sections 24 and
25 is assumed to be a Minkowski plane.

[24.1]

[24.2]

[24.3]

(24.4]

[24.5]

[24.6]

In a parallelogram of maximum area, for a given (Minkowski)

perimeter, the adjacent sides have equal lengths and are mutually
perpendicular.

Let a be a fixed point on a line £. As a point x traverses £ in a defi-
nite direction, the circles K(x,ar) tend to a straight line if and only
if each (or one) of the circles K(x,ar) has a tangent at a.

Using the preceding result, construct a Minkowski plane in which
three non-collinear points exist which do not lie on a circle.

If my(x,y) and my(x,y) are two Minkowski metrics in the same affine

plane, then my(x,y) = Amy(x,y) + Aamy(x,y) is a Minkowski metric
for any fixed, positive values of A\, and },.

Proceeding in a definite direction on the circle K(p,p), from an
arbitrary point g, of the circle, construct the sequence g,,9s,9s" "
such that m(g;,9i,1) = p. Show that g, = ¢,.

Let a,, a; and a; be the vertices of an equilateral triangle with sides
of length k. Each of the circles K(a;,k) has an arc subtending a side
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[25.1]

[25.2]*
[25.3]

[25.4]

[25.5]*

[25.6]

[25.7]

[25.8]

[25.9]*
[25.10]

[26.1]
[26.2]

[26.3]

[26.4]
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of the triangle as chord, i = 1,2,3. Call C the convex curve formed
by these three arcs. Show that the distance between any two parallel
supporting lines to C is k.

Use the argument in the proof of (25.3) and (28.2) to prove the
following affine theorem. If the affine centers of every family of
parallel chords of a closed, convex curve lie on a straight line,
then the curve is an ellipse.

If the bisector B(a,b), a 4 b, is a straight line, then the reflection
in B(a,b) exists.

Deduce from [25.2]*: if all bisectors B(a,b) are straight lines, then
the geometry is Euclidean.

If m(x,y) is the metric for the Minkowski plane M, then M and My,
are congruent, where the latter Minkowski plane is metrized by
rm(z,y), » > 0.

Let E be the locus of points x for which
m(a,x) + m(x,b) = 22 > m(a,b),
where a + b. Show that E is a convex curve.
Show that in a general Minkowski geometry the locus of points z,

such that | m(a,x) - m(x,b) | = 2z < ab, a4 b, cannot always consist
of two convex curves. (Hint: reduce to [25.3].)

The group of rotations about a point is isomorphic to the group
of rotations about any other point.

If the group of rotations about a point is finite, it consists of an
even number of elements. For a given even number 2n, construct
a Minkowski metric such that each rotation group consists of 2n
elements.

If the group of rotations about a point has infinitely many elements,
the geometry is Euclidean.

Find the area of the ellipse 2x? - 2x,x, -} 322 — 10x;, + 62, +3 =0
in the Euclidean space with ®(x) = 3a% - 2z,x, + 7z}

Find the vertices of some square in the Euclidean metric of [25.10].

Find the equation of B(a,b), for a = (0,0) and b = (2,2), using
the metric of [25.10].

With the LZuclidean distance in standard form, find the rotations
about the point (1,2). (Hint: in (26.15) find a and b as functions
of «, or use the proof of (22.7).)

Use motions to show that the base angles of an isosceles triangle
are equal.
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[26.5]

[27.1]

[27.2]

127.3]

[27.4]

(27.5]

[27.6]

[27.7]
[27.8]

[27.9]

[28.1]
[28.2]

[28.3]

[28.4]

[28.5]

[28.6)

PROJECTIVE METRICS [1V]

If the line ¢ passes through the center z of the circle K, and x + z
is any point of &£ which is not on K, then any circle orthogonal to
K and through z intersects £in the conjugate point to x.

2 2
An ellipse in the standard formg—2 + % = 1 may be represented

parametrically by « = a cos ¢, y = b sin {. Show that for a fixed ¢,
(—asin {, b cos f) and (a cos f, — b sin f) are points of the ellipse
which lie on conjugate diameters.

Use [27.1] to show that if the chord lengths on two conjugate dia-
meters of an ellipse are squared and added, the sum is constant
for all pairs of such diameters.

Find analogues to [27.1] and [27.2] for hyperbolas using hyperbolic
functions.

If the tangents at ¢, and g, on the ellipse E intersect in the exterior
point p, then the line f x p, where f is a focal point, bisects the angle
X ¢:f¢,. (Hint: use the present definition of focus and (26.18).)

Use [27.4] to show: the segment cut off on a variable tangent by

two fixed tangents of an ellipse is seen from a focus under a con-
stant angle.

Show that the eccentricity of a conic is less than 1 for an ellipse,
equal to 1 for a parabola, and greater than 1 for a hyperbola.

The locus of points equidistant from a circle and a line is a parabola.

The locus of the points equidistant from a circle and a point p is

a branch of a hyperbola or an ellipse according as p is outside or
inside the circle.

Extend [27.8] to the locus of points equidistant from two given
circles.

Complete the proof of (28.14).

Show that (28.13) is false for the metric h(a,b) inside a closed,
convex curve which contains a segment.

In Hilbert geometry the locus of points at a constant distance from
a fixed line does not consist of two straight lines. (Hint: use (28.13).)

If the domain D of a Hilbert geometry is bounded by
atx} + b2y =1,
find the equation of the circle K(z,0), where z = (0,0).

In the geometry of [28.4] find the equation of the line perpendicular
at z to the line x; = px,.

Construct a projective metric for the domain | x,| <1, || <1, in
the affine plane.
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[28.7]

[28.8]
[29.1]*
[29.2)

129.3]

[29.4]

[29.5]*
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In a Hilbert geometry with differentiable K, two lines whose
intersection is neither in D nor on K have exactly one common
perpendicular. If the intersection is in D or on K the lines have
no comrnon perpendicular.

Show by an example that, in general, perpendicularity of lines is
not symmetric in a Hilbert geometry.

Give a necessary and sufficient condition for a Hilbert geometry
to possess the reflection in a given point (line).

Construct a Hilbert geometry which does not possess any rotation
about one of its points.

Construct a Hilbert geometry in which the group of rotations about
one of its points consists of exactly n elements, where n is a given
positive integer greater than 1.

In the Hilbert space of [28.4], find the equation of K. defined
in (29.5).

Let the lines L, and L, interscct at the point p in the domain D of a
Hilbert geometry. Then L, is perpendicular to L,if and only if it is
perpendicular to L, in the sense of the Minkowski geometry defined
by K.



CHAPTER V

Non-Euclidean Geometry

30. Hyperbolic Trigonometry

Hyperbolic geometry was defined as a Hilbert geometry possessing all
reflections, and in (29.3) it was shown that a Hilbert geometry is hyperbolic
if and only if the domain D is the interior of an ellipse E. With a suitable
choice of affine coordinates x,,z,, E can be represented in the form

(30.1) x4 ai=1.

If E is considered as the unit circle of the Euclidean metric

1
ez.y) = [( - ¥)® + (& - 1%
then many facts of hyperbolic geometry can be deduced immediately
from our knowledge of Euclidean geometry.

The hyperbolic motions are the projectivities which carry E into itself.!
Among such projectivities are the Euclidean rotations about the origin,
z==1(0,0). These are also rotations in the hyperbolic metric, hence a circle
with center z and a Euclidean radius 7 < 1 is also a hyperbolic circle with
center z and some radius r. The definition, (28.6), of distance in the
hyperbolic space yields

Kk 1 147 k 147
(30.2) r-—glog[l——_—i~ 1 ]=§log[_1_i‘-
Hence
_ etk _
(30.3) r= e tanh (r/k).

A hyperbolic motion which carries z into p takes the hyperbolic circle
K(z,r) into the circle K(p,r). Since the motion is a projectivity, the image
locus K(p,r) is again a conic, and being a closed curve it appears in the
Euclidean metric e(z,y) as an ellipse.

(30.4) The circles of the hyperbolic metric are ellipses with respect to the
’ Euclidean metric.

. 1 a'collipeation carries E into itself, it automatically takes the interior of E into
itself since it maps no-tangent points into no-tangent points.



[V.30] HYPERBOLIC TRIGONOMETRY 175

Let = be a line through z. The Euclidean reflection in + is a projectivity
which takes E into itself, hence it is a hyperbolic motion and, being in-
volutary, is a hyperbolic reflection. Consequently:

30.5) The hyperbolic perpendiculars to a line + through z coincide with
(30. the Euclidean perpendiculars to «.

To see how facts of this type can be employed, we show:

30.6 If two altitudes ap,2, of the triangle p,q,r intersect at a point s, then
(30.6) the third dltitude «, also passes through s.

For, a motion ¢, taking s into z, and p, ¢ and r into p’, ¢’ and r’, carries o,
and «, into the lines « . and « . which are radii of E. Because of (30.5), «,,
and «, are also perpendicular to ¢’ X r’ and p’ X r’ respectively in the
Euclidean sense. It follows that r' X z is a Euclidean perpendicular to
q' X p' and hence, by (30.5), is the hyperbolic perpendicular «,.. Under
@71, then, o, goes into «_ through s. The existence of s must be assumed
in (30.6) since it will soon appear that the altitudes of a hyperbolic triangle
need not intersect.

As stated in Section 26, there is only one continuous measure of angle
which is invariant (under the hyperbolic motions), has the value = for
straight angles, and is additive for angles at a common vertex. Again we
obtain one such measure, and therefore the only one, by taking it to be
the area of the corresponding circular sector multiplied by a suitable
factor of proportionality. The measure may be evaluated in the following
way. For angles with center z, the Euclidean measure is also the hyperbolic
measure, since Euclidean rotations about z are also hyperbolic rotations.
The measure of an angle «, with arbitrary vertex p, is determined by
moving p to z and {inding the Euclidean measure of the image angle. It
follows, in particular, that perpendicular lines form angles of measure =/2.

Now let  and 2 be two lines through z forming an angle A < /2 (Figure
61). On 7 let ¢ be a variable point with h(z,c) = % and denote by &, the line
perpendicular to « at ¢. As ¢ starts with 8 =0 and moves away from z
the line %, will intersect % until %, falls on the line £ which is perpendicular
to n and asymptotic to Z. Let 3 denote the value of 2 corresponding to
Z.=2E. For % > ¢, & will neither intersect ¢ nor be asymptotic to it. The
asymptote position occurs when e(z,¢) = cos A, so from (30.2),

s k. /14 cosA\ _k 1 +cos A\ A
=008 (T o) =508 (Fima ) = Klogeot ()

The angle A is called the parallel-angle, =(3), belonging to . It may be
described as follows. At p, on a line £ erect a perpendicular 1, and through
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any point p on v let{ be an asymptote to £. If 8 = i(p,p,), and =(8) denotes
the angle between { and « which is less than =/2, then

(30.7) 2 = k log cot (

/ﬁg)), or tan <ﬂ(P)> e k.

With the same conventions as before (Figure 61), consider now a po-
sition of ¢ for which § <C 4. Let & cut{ at b, and let h(b,c) =o and h(z,
In the triangle z,b,¢ let B. denote the hyperbolic measure of the angle at b
and B its Euclidean measure. Similarly set «=— e(b,c), B=e(z,c) and

IYig. 61

Yy=¢(z,b). To develop the trigonometry of the hyperbolic right triangle,
it is sufficient to study the triangle z,b,c, since any right triangle can be
put in this position by a motion which leaves unchanged the lengths of
sides and the measures of angles.

Consider first, the relation expressing:

1) A in terms of £ and v.
This is obtained at once from (30.3), since

(30.8) cos A = cos A == B/y = tanh (8/k)/tanh (v/k).
) Similarly cos B = tanh (a/k)/tanh (y/k).

The formula for cos B follows by analogy from that for cos A since the
triangle can be re-oriented by a motion which interchanges the roles of
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A and B. As it is placed in the figure B differs from B. To see this we
evaluate @ in terms «.? By definition,

o = = 1 M.M ___1 [\/1"‘32 \/1‘_[5—2“";].
2 g[ ] 8 Vi-B2-2 V1-p

e(b,u) e(c,v)
sech ' + a

-
sech ' — «

Since \/1 - F2=\/1 - tanh? §’ = sech {, we have € =

or a = (sech p)- < :: T 1) hence
(30.9) o == tanh («/k) sech (§/k).

Returning to the relation between B and B, from (30.3), (30.8) and (30.9)
it follows that

— - - t ’ .’ . -
cos B=uajy = %@_@_ = cos B sech £’ = cos B\/l - p2,

Therefore, cos B > cos B, and since the cosine is a decreasing function on
the interval (0,r),

(30.10) B<B.
Moreover, from cos B = —»f—giﬁ_ it is clear that lim B =B and that
V1-g2 g0

as f increases from zero to 3, B decreases monotomcally from B to zero.
For a given value B,, where 0 << B, << B = ,, — A, there is then exactly

one position of ¢ for which B = B,. This indicates that the angles of a
hyperbolic triangle determine the sides, a conjecture that will soon be
confirmed.

Next we seek

2) A in terms of « and £.
tanh o' sech p’

From the previous results, tan A = -% = ——W , hence,

tanh (a/k)
sinh (£/k)’
A useful application of (30.11) is that:
(30.12)  For fized ¢, as « — oo the angle B tends to 0.

tanh (B/k)

(30.11) tan A = sinh («/k)

tan B =

1For the remainder of this section, unless otherwise stated a prime will indicate
division by k so that x’, for instance, means x/k.
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The expression for

3) A in terms of « and v
follows from the relation between o, § and y. The Pythagorean theorem,
v =2 + B2, together with (30.3) and (30.9) yields

tanh? y/ = tanh? o' sech? §’ 4 tanh? §’,
or

1 - sech? y' = sech? #’ [1 — sech? &'] + 1 — sech? ',
which reduces to
sech? Y/ = sech? o sech? §’.
Since the sech and cosh are positive functions, the last relation implies
(30.12)  cosh (y/k) = cosh («/k) cosh (8/k) (Theorem of Pythagoras).
Using this with (30.3) and (30.9) gives

a  tanh o' sech 8’  tanh «' sech y’ cosh '

= y  tamhy” T tanh '
From which it follows that:
(3013) ~  sinA—S2h@RH o p_sh(ER

sinh (y/k)’ ~ sinh (y/k)
The foregoing relations are analogous to the trigonometric formu-
las for a Euclidean right triangle. However, in hyperbolic geometry

there are additional relations expressing the sides in terms of the angles. For
instance, the previous formulas combine to give

cos A  tanh P’ sinhy’ coshy

sin B~ tanh y'"sinh B’ ~ cosh B

hence

cos A os B
(30.14) cosh (afk) = 5, cosh (BK) = oy -
Then,

(30.15)  cosh (y/k) = cosh (a/k) cosh (8/k) = cot A cot B.

In the last chapter it was shown that if h,(a,b) and hy(a,b) are
any two given hyperbolic metrics, then a constant ¢ exists such that
hy(a,b) = chy(a,b). For Minkowski metrics such a relation would imply that
the corresponding Minkowski planes were congruent (compare exercise
[25.4], Ch. IV). For hyperbolic metrics (and therefore in general for
Hilbert metrics) this is not the case. Formulas (30.8), (30.11) and (30.13)

show that in the right triangle z,b,c the measures of the angles A, B and
C depend on k. Therefore:

(30.16) Hyperbolic geometries corresponding to different values of k are
) not congruent.
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As the proportionality constant k approaches infinity, hyperbolic
formulas go over into Euclidean formulas. For instance, (30.13) becomes
sin A = «/p and (30.14) becomes cos A =sin B. This last equality expresses
the fact that in Euclidean geometry A + B = x/2, whereas (30.10)
shows that in hyperbolic geometry the sum is smaller.

The choice of a specific value for k in hyperbolic geometry is equivalent
to selecting a unit of length. Thus a standard, or absolute unit, can be
determined by intrinsic conditions, as for instance, taking unity to be
the length of the hypotenuse of an isosceles right triangle with base angles
=/5.3 This is not the case in Euclidean geometry which requires some
non-mathematical object, such as the standard meter at Paris, for an
absolute unit.

Fig. 62

The extension of hyperbolic trigonometry to general triangles is
accomplished as in the Euclidean case. Let a,b,¢c with angles A,B,C and
sides a,p,y be an arbitrary triangle and let the altitude through b cut
a X ¢ at dwith h(b,d) = ). There are, then (see Figure 62), two cases to
distinguish according as d does, or does not, lie between a and ¢. We will
consider the former case only, leaving the latter to the reader. From

sinh &' . sinh % .
m =sin C and m = Sln A,
the hyperbolic form of the law of sines is:
sin A sin B sin C

(30.17) sinh («/K) = sinh (g/k) — sinh (y/k)

To obtain the law of cosines, we observe that if ad =3,

cosh o' = cosh X' cosh (¢’ — ') = cosh ¥’ [cosh P’ cosh &' — sinh £’ sinh &'],
and cosh y' = cosh X cosh ¥'.

3In this case (30.15) yields 1/k = area cosh (cot? n/5). More natural ways of normal-
izing k will be discussed later.
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Substituting from the second relation in the first, and using

cosh A == cosh v'/cosh &
yields
cosh «’ = cosh ' cosh y' - sinh B’ tanh &',

By (30.8), tanh ' = cos A tanh y'. This, with the last equality, gives the
law of cosines:

(30.18)  cosh (x/k) = cosh (B/k) cosh (y/k) — sinh (8/k) sinh (y/k) cos A.
31. Length and Area

Let C be a continuously differentiable curve given parametrically by
T =,(f), T, = z,(t), a 1< b. The hyperbolic differential of arc length,

Fig. 63

dSp, along C is determined by the function ®(p,L) defined in (29.4). For
if L is the tangent to C at p, = [z,(1), z,(1)], and if Sa(f) and S(f) represent
the hyperbolic and Euclidean lengths of arc respectively from p, to p;
on C, then (29.4) implies that at p

(31.1) 3—2 =e(p,L), or  dS=¥(p,L)\/dzz + dad.

For p =z, (29.4) shows that @(p,L) = k. For p + z, let L form the angle
w With p x z and put ¢ =¢(p,2) = \/ x} + x3. Finally, as in Section 29,
denote the intersection of L with E by z, and y, (see Figure 63). From
elementary geometry it follows that

Pt epyye) = (1 + ) (1 -8 =1 -2,
12[e(pxg) + e(pyo)] = e(xoye)/2 = /1 - 22 sin? o,

and
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hence

_k(ep,z) + epyy)) V11— ®sin o

If « and § are respectively the angles of inclination of z X p and L, then

€08 « = I,/8, sin « == X,/8, cos P = x;/\/ 1;® + x;2 and sin p = x}/\/ 2 -+ x2,
where the primes indicate differentiation with respect to ¢. Then from

[P NPNAY )
Sin? o = sin? (¢ — a) — %(f;—:l% together with (31.1) and (31.2), we
O

obtain,

/2 12 ! 211 /2
(31 .3) dSh — k[xl + xi (le% 5 xle) ]
—Ii-T;

dt
which is usually written as

_ o423+ dig — (5ydz, - 3duy?
(31.4) dSt = k? 1 -2l - a2 :
This expression is called the hyperbolic line element in terms of x, and x,.
The hyperbolic length of an arbitrary, continuously differentiable curve
may be obtained from (31.3) by integration. Frequently, however, explicit
integration can be circumvented. For instance, to determine the circum-
ference of a hyperbolic circle of radius r, it suffices, in view of (30.3), to
find the hyperbolic circumference of the circle with center zand Euclid-
ean radius 3 = tanh (r/k). For every point p on this circle, w in (31.2)
is ©/2, hence ®(p,L) = k/\/l — 82 = k/sech (r/k) = k cosh (r/k). Since the
ratio dSs/dS. has the constant value k cosh (r/k), this value times 2w3
gives the circumference, that is:

The length of the circumference of a hyperbolic circle of radius r is
2=k sinh (r[k).

The locus K, defined in (29.5) is obtained by laying off the Euclidean
distance 1/®(p,L) in both directions from p on every line L through p.
Therefore K, is the circle with Euclidean radius 1/k. Since K, can be
obtained from K, by a hyperbolic motion taking z into p, Kp must be an
ellipse (which could be calculated from (31.2)). This expresses the fact
that hyperbolic geometry is locally Euclidean.

For a fixed point p, thz function ®(p,L) obtains its maximum value
k/(1 - 8% at w = 0 and its minimum value k/\/l - 82 at o = =/2. There-
fore the semi-major and the semi-minor axes of K, have respectively the
Euclidean lengths \/ 1 - 82/k and (1 — 8%)/k. The minor axis, correspond-
ing to » = 0, must lie on p X z, and the Euclidean area of K, is given by

(1 — 62)%/2/k? = l% sech®(r/k), where r = h(p,z).
The function «(p) introduced in (29.9) was the quotient of = divided by

(31.5)
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the area of K, (compare with =/s in (25.14)). From (29.10), then, the
hyperbolic element of area is

k2
V(1 -x3 238

This same result is obtained much more quickly from the fact that the
area element coincides with that of the local geometry, which in this case
is Euclidean. In general form, the Euclidean area element is

VEG - Fdx, dx,,
where E, F and G are respectively the coefficients of dxz}, 2 dz, dz,, and

dz} in the expression for dS}. Setting &=ua} + x% E, F and G are
obtained from (31.4) as

k(1 - x3) P Kz, G — k(1 - xz)’
a-a CTa-or a-o
and \/ EG - F? dx,dx, is exactly the left side of (31.6). In the future, this
method will always be used to determine the area element in a geometry which
is locally Euclidean.

The hyperbolic area of any domain is determined from (31.6) by in-
tegration. To find the area of the circle with hyperbolic radiusr, let the
center be at z. If 5 denotes the Euclidean radius, and polar coordinates

p,» are introduced so that z,=g¢ cos w, Z,=¢ sin o, then by (31.6)
the area is
2% §

ko dp d
f ag__—f;)—s/(’%,:%kﬂ[—_l_——: . 1] — 27k [cosh (r/k) — 1] = 4=k? sinh? (r/2K).
(BL.7)  The area of a hyperbolic circle of radius r is 4nk? sinh? (r/2k).

The area of the right triangle z,b,c of Section 30 is similarly obtained.

With the same convention as before the area expressed in polar coor-
dinates is

(31.6) dx, dx, = k2 cosh? (r/k)dzx, dx,.

617) E=

4 Bsecw

4
f f odp dw e ~ 1 114
-2 = j [(1 —Bsectw)li2 } “

e cos © . , C
B kz;/ 3 [(1-P?) —sinzw]t2 jde =4 [arc s \/1 - @2) ]

Using £ = tanh (8/k), and (30.14), this reduces to
k?*[arc sin (sin A cosh B) — A] = K*[arc sin (cos B) - A] = k2(

ko
Q—B—A).
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Therefore, the area of the triangle is

(31.8) kﬁ[g—A—szkZ[n~(g+A+B)].

The excess, =(a,b,c), of a general triangle, with vertices a,b,c and angles
A,B,C, is defined by

(31.9) «(a,b,) == —-[A + B + CJ.

Thus (31.8) states that the area of a right triangle is k2 times the excess.
This can be generalized by observing that excess is additive in the sense that
if a transversal through b (see Figure 64) cuts S*(a,c) in d forming the
triangles a,b,d and d,b,c, then

«(a,b,c) == =(a,b,d) + «(d,b,c).

D
a d c

1I-(A+B+C) =Xl — (A+ B'+ D) +1-(C+ B"+ D")
Fig. 64

Since area is also additive, if a general triangle is reprensented as the
sum or difference of two right triangles, the application of (31.8) to the
parts shows that:

(31.10)  The area of a triangle a,b,c is k*(a,b,c).
Since area is positive this relation also shows:
(31.11)  The sum of the angles of a hyperbolic triangle is less than =.

"This could also have been deduced {from (30.10).

A rather surprising implication of (31.10) is that the area of any triangle,
no matter how large its sides, is less than k*z. Also, the sum of the angles
tends to = when the sides of the triangle tend to zero. Using again the
right triangle z,b,¢, since it was shown that B tends to zero when y tends
to infinity, the limit of the area of this triangle as y— oo is finite,

namely is kz(f—; - A). 1f a and b are finite points and cis on E (see Figure 65)

then the ‘“triangle” a,b,¢ with two sides asymptotic can be written as the
sum or difference of two of the above limit right “triangles”, hence has the
area k(= — A - B). When a is finite and b and ¢ are on E, a transversal
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from a will decompose the triangle into two triangles of the preceding
type. Hence, k2(r — A) is the area. Finally, if a,b,c are all on E, that is if
each pair of sides are asymptotes, the ¢triangle” can be subdivided into
two ““triangles” of the last type and the addition of their areas yields
k%= for the area of an ‘““asymptote triangle.”

Because of this last result, specifying that an asymptote triangle have
area m is equivalent to the normalization k= 1. In that case (31.10)
shows the area of any triangle is given by its excess.

Fig. 65

It should be observed that a domain D bounded by a segment S(a,b)
and by two rays R, and R;, on the same side of @ x b, has infinite area if
R, and Ry do not intersect and are not asymptotes. For as x traverses
R;, away from b, the distance h(x,b) and the distance from x to R, become
infinite (see Section 28). For any given N, however large, it follows thatby
taking h(x,b) sufficiently large a semi-circle with radius N and center
lies in D. The area bounded by D is then, from (31.7), greater than
2rk? sinh? (IN/2k). Since the last expression tends to © with N, the area
of D is infinite.

The area of any polygonal region can be determined from (31.10) after
decomposing the region into triangles. Thus for a four-sided regionm,
convex or not, with vertices a,b,c,d (see Figure 66), the area is

k[r - (A+B,+ D) + = - (C+ B,+ D)] = k2[2= - (A + B + C + D)],
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provided all angles are measured inside the region even when they exceed
=. By induction the area bounded by a simple, closed n-gon, with interior
angles A, As,---,Ay is
kl(n—2)m — (A; + A, + -+ + An)].
Q
A

[0

A

WA DN, B D [a
B, :
C c
Fig. 66

The hyperbolic angle between two directions at a point can be found
by the method of Section 26. For let w be the angle with vertex (z,,x,)
determined by the directions dx,,dxz, and 8z,,3z,. Since the angles of the

e

Z

Fig. 67

local Euclidean geometry at (x,,z,) coincide with the hyperbolic angles
at the origin, the same will be the case everywhere.* Hence (26.5) can be
used to obtain w. With E, F and G given by (31.7) this yields

Edx,tx, + F(dx,8x, - dr,bz,) + Gdx,0x,
\/Edx} + 2Fdx,dx, + Gdx}\/Ebx} 4+ 2Fsx,8z, + Gér}
To see how (31.12) is applied, let us determine the fourth angle » in a

(31.12) COS w ==

“When considering area we used this principle to determine area. It would have been
reasonable to do the same for angles.
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quadrilateral, whose other three angles are right angles, and where the hyper-
bolic lengths ) and . of the sides not adjacent to » are known. We take the
vertex opposite w at z and place the sides issuing from z along the z, and z,
axes respectively (see Figure-67). The coordinates x; and x, of the vertex
at @ can be expressed in the form z, = tanh (3/k) and z, = tanh (&/k),
and we can take dr, =1, dz,=0, iz, =0, éx, =1 to evaluate w. Then
(31.12) gives

COS w == F__ Lty
(31.13) VEVG Vi-z\/1-13
__tanh (3/k) tanh (u/k)
" sech ()/k) sech (v/k)

In direct developments of hyperbolic geometry, where no auxiliary
Euclidean metric is used, quadrilaterals with three right angles play a
fundamental role. They were first used systematically by Lambert (1728-
1777).

= sinh (3/k) sinh (w/k).

32. Equidistant Curves and Limit Circles

The locus of a point which moves so that its hyperbolic distance « from
a line  is constant is called the equidistant curve C;‘. If  is taken as the
z,-axis, and (z,,x,) is on C7, then |x,| and |z, | play the roles of « and %
in (30.9), and so are related to « by

| 22| = tanh (a/k) sech (B/k) = \/1 - 2% tanh («/K).
Hence (see Figure 68), C7 is the ellipse
(32.1) a2 + a3 coth? (a/k) = 1.
From the hyperbolic point of view C} consists of two disconnected curves.
These are not, as in Euclidean geometry, a pair of lines parallel to 1, but
are convex curves each of which has its concave side toward 7. Both
intersect 4 on E and are frequently referred to as the two equidistant
curves at a distance « from 4. Any hyperbolic motion ¢ which carries the
upper half-plane x, > 0 (and therefore the lower half-plane z, << 0) into
itself also carries each of the curves Cj into itself. For such a motion
takes 7 into itself. Hence if « is at a distance « from «, z® is also at distance
a from « and so is on C.

The z,-axis clearly cuts C; at right angles. If now ¢ is any perpendicular
to v, a motion ¢ exists such that £ is the z,-axis and such that ¥ = 1.
Because Cj® = C and ® preserves angles, it follows that & cuts C) at
right angles. Hence all lines perpendicular to n are orthogonal to C.
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The length ,(p,.p,) of the arc on C_. whose end points p, and p, have hh
and f, as feet on n, may be found from the formula for the line element
dSs. Since dx,/dx, = 0 at z, =0, the relations (31.7) show that

1| _pkvVi-d_ k = k cosh (a/k
L=o“‘\/E_ (1 -28) " \/1- tam? (a/k)_kcos /K,

where S, on C is supposed increasing with z,. The corresponding hyper-
bolic length 64 on 7 (also supposed increasing with z,) is related to z; by
z; = tanh (ss/k). Therefore

doa
dx,

= k.

Ty=0

£

p=_(5k

£ al @

£

x

m
(s

Fig. 68

With the previous relation, then,

dSy
ds

hiry=0

= cosh («/k).
But S, and s, are invariant under the motions ¢ cénsidered above, hence

ds,
7137’.' =cosh (¢/k), -1<z, <1,

which implies
(32.2) %o (P1> P2) = h(f1, fo) cosh (a/k).

Substituting x, from (32.1) in (31.4) and integrating would, of course,
also yield this result.
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The curves C appear in a natural way when geodesic parallel coordi-
nates £,,%, are introduced in the space. These are defined as follows. On an
arbitrary, oriented line v, a point z is chosen as origin. The point p, W'lth
foot f on =, is then given the coordinates £,,%, where £, = == h(f,2) a.ccordmg
as f follows or precedes z on 7, and &, = == h(p,f) according as p lies above
or below «. The coordinate curves &, = constant and &;= copstant
are then respectively the lines perpendicular to 4 and the equidistant
curves CJ.

The definition of &, and &, is intrinsic in the sense that it does not depend
on an auxiliary Euclidean metric. Such an intrinsic definition can also
easily be given for z, and z,. We need only take two oriented lines 4 and o,

r-C
o (A%)
b g
e ; ) T
£ £
@5 &
Fig. 69

which are perpendicular at z, and define the coordinates (z;,z,) of a general
point p, by

= = tanh [a(p,fy)/k],  x, = == tanh [h(p.f5)/k],
where f,.f, are respectively the feet of p on n and o.

One reason for employing the coordinates £,,t, is that in terms of them
the line and area elements take simpler forms. Let C : (&,(D),54(8)) be a con-
tinuously differentiable curve (see Figure 69), and consider the points
p=Cld), () 9= (&a(t + A0, 5,(0), and r = (&l + Ab), Ext + AD).
Setting A%, = h(r,g) = &,(t + Al) - &,(f), and A%, = §,(f + Af) - &(D),
(32.2) implies that

%, (p,g) = 8% cosh Ey(f)/k.
Then if AS represents the arc length of C from p to r, the fact that the
geometry is locally Euclidean justifies the relation

1 = lim ___(M — lim (ASH)?
a0 23(D:9) + h¥(g.1) T 5,5, (AE)E cosh? (E,/k) + (A%,

therefore

(32.3) dS? = cosh? (&,/k)dez + dz2.
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The standard form Ed&} + 2Fdt,di, + GdE3 for dS? yields
E = cosh? §,/k), F=0, and G = 1.
The hyperbolic area element is therefore,

(32.4) VEG - F2di, d2, = cosh (5,/K)d%, di,.
Let the points p, and p, on an equidistant curve C} have f, and f, as feet
on 1. We apply (32.4) to compute the area A (p,p,) bounded by the

segments S(f,,f,), S(Pyfr)s S(Pyf,) and by the arc of CJ from p, to p,. For
simplicity take the figure placed so that 4 is the £-axis, p, is the point
(0,), and p, is the point (§,«), with £ > 0. Then,

x §
(32.5)  Au(pypy) = [ 4z, f cosh (§,/k)dZ, = &k sinh (a/k)
JO []

= Kh(f,.f2) sinh (+/K).

A second type of curve which isa straight line in Euclidean geometry, but
not in hyperbolic, is the limit form assumed by a circle whose radius tends
to infinity. These so called “limif circles” are defined more precisely in the
following manner. Let z be a fixed point on an oriented line 1, and take x;
a variable point following z with t= h(z,x;). With C; denoting the circle

K(x,,t), the limit circle A(z,1) is defined to be lim C,. The existence of this
t—> o
limit can even be shown in more general spaces, where two points are

merely assumed to lie on a metric line, hence is a fact which belongs with
those marked by an asterisk in Section 21. In the present case the existence
of the limit follows immediately from the model. If v is the x,-axis and z
is the origin, then C, is an ellipse lying in E and with 7 as one axis (since
it must go into itself in a reflection about ). For ¢ > {,, C:, is entirely
inside G, with the exception of the point z. As { -0, or e(z,f) — 1, the
Euclidean curves C; tend monotonically to an ellipse (see Figure 70), one
of whose axes is the segment S(z,(1,0)).5 Since (1,0) is not a point of the
hyperbolic plane, A(z,m) appears in hyperbolic geometry as an open curve,
but it is obviously not a straight line.

The properties of an isosceles triangle imply that a chord of a circle
makes equal angles with the radii to the end points. By generalizing this
notion we can obtain a characterization of limit circles independent of the
limit definition. Let two non-intersecting, oriented lines ¢ and 4 be called
equally oriented if for any line ¢, intersecting both ¢ and v, the positive
orientations of £ and n point to the same side of {. Also, if z is any point of

51t is not hard to find the equation of this ellipse (Exercise [32.8]), and to derive the
properties of A(z,n) from the equation. This would be shorter than the following dis-
cussion, but less interesting geometrically.
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an oriented line £ and y is a point not on £, let the angle between S(z,y)
and §, denoted by < [S(z,y),], mean the angle & yzx' where 2’ is a point

of & following x. The generalization referred to is given, in these terms, by
the lemma:

If € and = are equally oriented, non-intersecting lines, then for any
point xy on § exactly one point y, exists on v such that

* [S(0yo)E] = X [S@o-yo),n]-
¢

(32.6)

0 Y2

Yo

Fig. 71

Proor: As a variable point y traverses 4 in the positive direction (see
Figure 71) the angle < [S(zyy),1] increases. For if i, follows y, onn and
)= & Zy,y,, then 0 + & [S(xy,y,),1] = =, from the normalization of angle
measure, while 8 + < [S(2o,y,),] << = since the angle sum of Az,y,y, is
less than =. Because of (30.12), the angle < [S(z,,y),n] increases con-
tinuously from the limit zero to the limit =. At the same time it is clear
that the angle & [S(x,,y).£] decreases continuously but stays between 0
and =. Hence, there is exactly one position g, on + for which

< [S(xo’yo)s"l]_= ¥ [S(@.0¥0)sE]-
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The point y, on 7 is sometimes called the ‘“corresponding pointon n to x,.”

Referring again to Figure 70, let the asymptotes » and +’ be equally
oriented toward their common end point . As hefore, let x; follow z on =,
with { == h(z,z) and C,= K(x,f). For sufficiently large ¢ the circle C,
intersects ' in two points ¢ and ¢'. As { increases, one of these points, g/,
tends toward v and the other, by the definition of A(z,n), tends toward z’
the intersection point of A(z,n) and «’. Therefore,

X [SGE2)n] =< 220 = X z2'v = X [S(z.2'),7'],
hence z’ is the corresponding point to z on «'. Thus A(z,) is characterized
by:
39.7 If z is a point of the oriented line «, then A(z,n) is the locus of points,
(32.7) corresponding to z, on the equally oriented asymptotes io -,

These asymptotes to « are zalled radii of A(z,7), and it is easily seen that:
(32.8) A reflection in any radius carries A(z,n) into itself.

For, with the previous conventions, let z’ be the point on v' n A(zm),

where 1 and ' are asymptotes, and as before let g be the point of n' n C;

nearest z'. Designate the reflection in o’ by ®' and the reflectionin g X x;

by ®,. Since C:®; = C;, A(zn) = hm C:b. But as x, -, ¢->z, hence

g X &;—7' and &, — D', Hence \(z,q).— lim C® = A(z,n)®’. The
t > o

notation ¢, —> ¢’ means, precisely, that for any point p, the lim pd

| —>
exists and equals pd’.

We can now show:
(32.9)  If 2 is the peint of A(z,n) on the radius «', then A(z,n) = A(z';n’).

Proor: Let ¢ be the midpoint of S(z,z') and let 7y be the line perpendicular
toz x z' at ¢. Because S(z,z') makes equal angles with  and 7', the reflec-
tion in 7, which takes z into z‘, takes » into «’. Then =, cannot intersect
either + or 7', since the intersection would have to be on both » and 1’
Therefore 7, is an asymptote to both n# and «'. Because of (32.8) the
reflection @, in 7, takes A(z,1) into itself. On the other hand, since itis a
motion it takes A(z) into A(z',n’), hence A(zn) = A(z',n'). Because
A(z,n) depends only on z and the common point v of all the asymptotes to
1, the point v is often called the center of A(z,n).

Now let y (Figure 70) be any point of « distinct from z and let y' be
defined by v’ n A(y,n). The argument of the preceding proof shows that
@, maps A(y,n) into itself. Since «n'®y =1, then h(z,y) = h(z',y’), or:

A(z,n) and A(y,q) inlercept a segment of length h(z,y) on every
(32.10) radius.

This can be seen also from the original definitions of A(z,m) and A(y,m).
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We now establish some metric properties of limit circles. With the
previous convention, let ¢, provided it exists, be the point in which the
perpendicular to 4 at z cuts the radius o' of A(z,n). (See Tigure 72.) To
obtain % = h(g,z) in terms of u = h(g,z'), let p, be the point in which G
cuts S(¢q,z;), and set h(q,p) = . Then the hyperbolic Pythagorean
theorem gives

cosh (JK) = %ﬂ‘
__cosh (k) cosh (t/k) + sinh (/k) sinh (t/k)
- cosh (t/k)
= cosh (w/k) + sinh (w/k) tanh ({/k).

Fig. 72

Ast > o, i — p, tanh ({/k) > 1, and the limit expression gives
cosh (A/k) = cosh (p/k) + sinh (p/k) = e*%. Therefore,
(32.11) cosh (\/k) = e*/¥,

If 1 and ¢ X z are taken for the ¢; and ¢, axes respectively, (32.11)
yields at once the equation of A(z,n) in these geodesic parallel coordinates.
Forif p: (¢,,E,) is an arbitrary point of A(z,1), let f be its foot on = (Figure
73) and let ¢ be the point in which A(f,n) cuts the radius through p. From
(32.10), &, = h(z,f) = h(p,g). Hence, with respect to A(f,r), ¢, plays the
role of 1 in (32.11) and &, = h(p,f) plays the role of A. Therefore,

(32.12)  cosh (§,/k) = e%/* is the equation A(z,m).
Since this implies d&; = tanh (§,/k)d%, the arc length S of A(z,n) from z
to p can be obtained from (32.3) in the form

Z
S= VI ¥ st Gl di = k sinh (y/b).
0
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Therefore,

(32.13) The arc of a limit circle subtending a chord of length y has length
) 2k sinh (y/2k).

Now let y be a point following z on v, with h(z,y) = ¢ (Figure 72). We
wish to find the ratio of the arcs intercepted on A(z,m) and A(y,n) by two
radii. Let z' and y’ denote respectively the point of A(z,n) and that of
A(y,n) on the radius n'. As before, let the perpendicular to n at z cut «’
in ¢, and take x; as a variable point on n tending in the positive direction
to 0. Let G, and C/ indicate the circles with center x; and with radii

22

Fig. 73

t = h(x,,z) and h(x,y) = t - s respectively. The points at which Ctﬁand
Ci cut S(g,x;) are denoted by p, and p;. Since the ratio of the arc _7?p[ to zp, is
the same as the ratio of the length of C/ to that of C, (31.5) gives the ratio
of the arc lengths as

sinh (t - s)/k __ sinh (t/k) cosh (s/k) - cosh ({/k) sinh (s/k)
sinh (k) sinh (1/k)
= cosh (s/k) — sinh (o/k) coth ({/k).

Since coth (t/k) — 1 as t — oo this ratio approaches the limit

cosh (s/k) — sinh (s/k) = ™%,
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But as t —+ 0, p, -y’ and p; — 2z’ and the limit ratio is the value of arc

length ZJ\y' divided by the arc length 228 Since the limit depends only on «,
we have the theorem:

(32.14 When y follows z on n, the arcs of A(y,n) and A(z,q), intercepted
14) by any pair of radii, are in the ratio e~ 2/,

Choosing k=1, therefore, amounts to defining the unit of length in
such a way that for h(y,z) = 1 the ratio of the larger to the smaller arc in
(32.14) becomes e. Many books use this to define unit length.

Since the reflection ®; in the radius v;, i = 1,2, carries A(z,1) into itself,
the product ¢ =@, %, also maps A(x,z) into itself and preserves the orient-
atien. The motion @ is called a rotation about the end point of =. It can
be obtained as a limit of rotations as follows. Let  be any radius, and z
be the point of the limit circle on this radius. Take any point g of ' = .
As in the previous notation let z; on 4 tend to » with C;, the defining
circles of A(n,z). The ray R(x,g) cuts C;in a point p;. If ¢, is defined to be
the rotation about z; which takes z into p,, then as x; tends to v, ®, tends
to ® in the sense previously defined.

The rotations about the endpoint of r form an Abelian subgroup of

the group of all motions. This can be seen from the fact that ¢ is the limit
of the rotations ®,.

33. Some Synthetic Properties of Hyperbolic Geometry

The free mobility of the hyperbolic plane implies the triangle congruence
theorems just as in the Euclidean case. In addition, fwo hyperbolic triangles
are congruent if their corresponding angles are equal. In the following,
brief discussion of some synthetic constructions, these theorems will be
used without further proof.

Two lines £ and & which do not intersect (in D) and which are not
asymptotes will be called hyperparallels. In the model, they intersect
outside E in a point through which there are exactly two tangents to E.
From the discussion of general Hilbert geometries, the line joining the
points of tangency is perpendicular to both £ and &’ (see (28.11)), and it

is the only line with this property (as is also evident from angle consider-
ations).

®This assumes 1mplicitly that the length of the arc ?p, tends to the length of the arc

zz’. In general t.he limit of length does not equal the length of the limit because the
analytic expression for length depends also on the first derivitive. In the present case

the tangent at a point of z/\p; tends uniformly to the tangent of A(z,n) at the limit of
the point, which justifies the above procedure.
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Two hyperparallels have a unique common perpendicular. Two
(33.1)  lines 4 and «' which have a common perpendicular s are hyper-
parallels.

I: o establish the second part, 4 and 4’ cannot intersect in D, for the triangle
with sides », 4’ and ¢ would have an angle sum exceeding =, and, because
of (30.7), 1 and «' cannot be asymptotes.

As in Euclidean geometry:

If a,b,c are any three distinct points, and «,. ¢ and v are perpen-
(33.2)  dicular bisectors of the segments S(b,c), S(c,a) and S(a,b) respect-
 ively, then o, f and vy are concurrent at a point p.

¢

=

/s

Fig. 74

However, the following pessibilities occur:

If p lies in D, then a, b and c lie on a circle with center p and with o, §
and vy as radii.

If p lies on E, then a, b and c lie on a limit circle with cenler p and with
«, p and y as radii.

If p lies outside E, then a, b and c lie on an equidistant curve to a line =,
and «, B and y are perpendicular to «. This includes the special case
where a, b and ¢ are collinear.

Proor: Since in both hyperbolic and Euclidean geometry the perpen-
dicular bisector of S(x,y) is the locus of points equidistant from z and y,
the first case follows as in Euclidean geometry. Next, suppose « and §
are asymptotes (see Figure 74). Let mgmpm. denote the asymptotes
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through a, b and ¢ respectively which belong to the pencil defined by =
and . Since a reflection about « interchanges 7, and ., S(b,c) makes
equal angles with these lines, so b is on A(c,n.). Because the reflection about
2 interchanges 1. and 7,, the same argument shows that a lies on A(c,nc).
Hence a, b and ¢ are on A(c,nc) and y is a radius of this limit circle.
Finally, let «and § be hyperparallels. Then they have a common perpen-
dicular « (Figure 75). Let f,, f» and f; denote the feet of a, b and c on . The
reflection in « carries b into ¢ and = into itself, hence it takes b X f,
into ¢ X f.. Therefore h(b,fs) = h(c,fs). A similar argument shows that
h(a,fa) = h(c,f.), hence a, b and c lie on an equidistant curve to v at dis-
tance h(a,fs). Moreover, because h(a,fs) = h(b,fs), the reflection in y’, the
perpendicular bisector of S(fsf5), carries a into b. Hence ' coincides with v.

4

T

a T b
1 ln I
n
fu g fc o fb
v="
Fig. 75

Because of their many common properties, circles, limit circles and
equidistant curves (including lines as the case CY), are often given the
common name ‘““cycles”. Cycle, itself, may be defined by:

(33.3) A cycle is the orthogonal trajectory (in the hyperbolic sense) of a
’ pencil of straight lines.

According as the center of the pencil is inside, on, or outside the boundary
E, the cycle is a circle, limit circle, or equidistant curve.

Since the altitudes of a triangle are concurrent, as are the bisectors of
the angles and the perpendicular bisectors of the sides, it is natural to
inquire about the medians. In the triangle a,b,c, let a x b be taken as the
T, —axis with the origin z at the midpoint (in both the Euclidean and
yyperbolic sense) of S(a,b). (See Figure 76.) Let a line parallel to a % b
mt.ersect S(a,c) in b and S(b,c) in a'. Then a' x b’ passes through the
point at o of @ X b which is the harmonic conjugate of z with respect to a
and b. The construction for the fourth harmonic then implies that a X a’,
bx b ande X z~ ¢ X ¢ are concurrent at a point u.



[V.33] SOME SYNTHETIC PROPERTIES 197

In order to express this last result in hyperbolic terms we observe that
the z,-axis, s, is the perpendicular bisector of S(a,b), and is also perpen-

b// 4\ a

w { < i\

a z b |

Fig. 76

dicular to a’ x b’ (in both the hyperbolic and Euclidean sense). Thus we
have the hyperbolic (and Euclidean) theorem:

In the triangle a,b,c if s is the perpendicular bisector at z of the
side S(a,b), then any perpendicular to s which cuts S(a,c) in a
point b' will also cut S(b,c) in a point a' such that a X a’, b X b’
and ¢ X z are concurrent.

(33.4)

aqg
fa bl/ a fb "7,
L= fu =)
a L b
n
Fig. 77

Since ¢ X z is a median, the concurrency of the medians will follow if it
can be shown that whenever b’ in (33.4) is the midpoint of S(a,c), then a’
is the midpoint of S(b,c). But this is a consequence of:

The perpendicular bisector of a side of a friangle is perpendicular
to the line joining the midpoints of the other two sides.

Proor: Let v' be the join of a’ and b’, the midpoints of S(b,c) and S(a,c)
in triangle a,b,c (Figure 77). Designate by fa, f» and f; the feet of a,b,c on
%', The congruence of triangles b,fy,a’ and c,f,a’ gives h(c,fc) = h(b,fs),
and the congruence of triangles a,fs, b’ and c,f., b’ yields h(c,f) = h(a,fa).

(33.5)
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Then since h(a,f,) = h(b,f;), the reflection ® about s, the perpendicular
bisector of S(faf»), interchanges a and b. Thus ¢ carries a X b into itself
and s is also the perpendicular bisector of S(a,b).

The more elementary constructions of hyperbolic geometry, such as
bisecting a segment (with ruler and compass) or erecting a perpendicular
at a given point on a line, etc., are exactly the same as in Euclidean geo-
metry. There are, however, some constructions which are new and essen-
tially hyperbolic. One of these is the construction of a line {' through a
given point p and asymptotic, in a specified sense, to a given line &.

For simplicity, take p to be the origin z. Let u and v be the intersections
of { with E, and take p X u, cutting E again atv’, as the line {’ whose con-
struction is to be determined (Figure 78). If f is the foot of p on ¢, then

Fig. 78

o~ p X [is perpendicular to { in both the hyperbolic and the Euclidean
sense. Similarly, if % is the perpendicular to s at p, and ¢ is any point of
{' (other than z), with foot r on =, then s, ~ ¢ x ris perpendicular to = in
both senses. Take f ~ { X q,. Because, in the Euclidean sense, the lines
6,0, and v X v’ are parallel, R(p,g,u,0’) = R(f,t,u,v), hence h(p,g9) = h(},t).
Therefore g lies on K(p,h(f,t)). Reversing the argument gives the following
construction. From p drop a perpendicular s to £, cutting { at f. At p
construct o perpendicular to s, and through any point t on ¢ (other than f)
take s, perpendicular to n. The circle with center p and radius h(f,t) culs o,
in a point g such that p x g is the desired asymptote %',

If 3= h(f,p) in the above figure, then & fpu=r(?), the parallel-angle
corresponding to 3. For a given value of 3, then, =(3) may be found by
erecting a perpendicular < at a point f on a line ¢, taking p on s so that
h(p,f) =3, and continuing the foregoing construction.

The converse problem of constructing 3, given =(3), is more involved.
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To solve it, we first prove a theorem of Hjelmslev (1873-1950), which is
rather surprising in hyperbolic geometry.

If x — &' is a congruent mapping of the line & on the line 3’ + %,
(33.6)  then the cenlers of the segments S(z,x') are distinct and collinear
or else they all coincide.

Suppose first (Figure 79) that x — " is a congruent mapping of ¢ on the
line £ in which S(z,x'') and S(y.y'’) have a common center p. Then
Axyp is congruent to Az''y"p. If now z is any other point of £, the con-
gruence of Axzp to Az''z"p follows from h(x,z) =h(z'",2'"), h(x,p) =h(z'’,p)
and < zxp=< z''2"'p.But because of this congruence, z, p and z'’ are collin-
ear, and p is the center of S(z,z'"). It has thus been shown that if two
centers coincide then all do.

Now consider the congruent mapping x — z' of % on &’ in which two
segments S(z,2') and S(y,y') have distinct centers p and ¢. Letr (necessar-
ily distinct from p and ¢) be the center of a third pair z and z'. Extend
the segments S(y,p) and S(z,p) through p to points y'* and z'’ so that p
is the center of S(y,y'") and S(z,z'’). The correspondence y — y'' and
z—> z'" determines a congruence between £ and £ =y’ X z'’ in which,
from the first part of the proof, all centers fall on p. Because x'’ must be
on & X p, with p the center of S(z,a"’), it follows that x'' = «', that is,
£/ passes through x'. Now let ¢ be the bisector of < y"/z'y’. It is then the
perpendicular bisector of the base S(y',y’’) in the isosceles Ay''z'y’ and
of the base S(z',z'") in the isosceles Az"’z'z'. From (33.5), then, o is perpen-
dicular to the line p X ¢ which joins the midpoints of sides in yy'y". It
is also perpendicular to p x r which joins the midpoints of the sides in
Azz'z". If p X ¢ and p x r were distinct, they would form with ¢ a triangle
whose angle sum exceeds =, hence they are identical and p, ¢ and r are
collinear. The line p x ¢ is called the Hjelmslev line for the mapping x — .

If % is oriented then a congruent mapping of £ on %’ induces an orient-
ation on £'. When £ and &’ are non-intersecting and equally oriented, as
defined in Section 32, the mapping is called equally directed. For an
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equally directed congruence between & and &', the Hjelmslev line certainly
exists, that is the centers of S(z,z’) cannot coincide.
If the common perpendicular s to two hyperparallels £ and &' intersects

them at f and ¢’ respectively, then the midpoint ¢ of S(f,¢’) is called the
symmetry point of £ and £'.

If x - ' is an equally-directed congruence between the hyper-
(33.7)  parallels £ and &', then the Hjelmslev line passes through the
symmetry point c of £ and &'.

The theorem is trivial if the image /' of f coincides with ¢’. Assume there-
fore that f' 4 ¢’, and let p and ¢ denote the centers of S(f,f) and S(g,9')
(Figure 80). The reflection @ in ¢ (equivalent to the rotation through =) is
a motion which interchanges f and ¢’ and preserves perpendicularity,
hence it interchanges £ and &'. From h(f,g9) = h(f',¢’) it follows that ¢ and

a
g
f : £
D [4
p* ?
0 E/
I* f g
Fig. 80

f' are also interchanged. Therefore ¢ interchanges S(f,f’) and S(g,9'), 80
P =q®, ¢ = p®, and the Hjelmslev line p x ¢ passes through c.

If £ — 2’ and x — x* are different, equally-directed congruences

between the hyperparallels £ and £, then the corresponding Hjelmslev
lines are distinct.

The given conditions imply that f* 4 f'. (See Figure 80.) If p*, the
midpoint of S(f,f*), were on ¢ x p then, by (33.5), the perpendicular
bisector of S(f,f*) would also be perpendicular to ¢, x p. This bisector
and that of S(f',g') would each be perpendicular to both £’ and p x ¢, which
is impossible. The Hjelmslev lines ¢ X p and ¢ x p* are therefore distinct.

Because the symmetry point of two hyperparallels £ and £ is the
intersection of the Hjelmslev lines corresponding to two equally-directed
congruences, it may be obtained as follows. Let a and b be arbitrary on %
and choose a’ and b’ on &' so that b and b’ are on the same side of a X @'
and h(a,b) = h(a',b") (Figure 81). The correspondence a — a’, b—>b'
determines the Hjelmslev line  ~ p x g, where p and ¢ are the centers

(33.8)
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of S(a,a’) and S(b,b’). Now on &' take another pair a*,b* so that b and b*
are on the same side of a X a* and h(a,d) = h(a*,b*). The midpoints of
S(a,a*) and S(b,b*), namely p* and ¢* determine a Hjelmslev line 4* which
intersects v in the desired point of symmetry c.

Fig. 81

To construct the common perpendicular to two hyperparallels £ and &' we
only have to find the symmetry point ¢ and then construct the perpen-
dicular to £ from c.

Given two distinct lines ¢, and &, it now is easy to find the line { which
is asymplotic both to , in a given sense and to &, in a given sense, where &,
and §, are not themselves asymptotic in either of the given directions.
Take ¢ as any point of £, let £, be the line through ¢ asymptotic t0 &, in

Fig. 82

the sense desired for ¢. Then clearly the common asymptote ¢ of £, and
§; is the same as that to &; and &, (see Figure 82). Let p; follow ¢ on &,
i=1,2, and let {; and £; be the asymptotes to &, and &, from p, and p,
respectively. Since { is also the common asymptote to {; and %, (£; and £})
the perpendicular to { from p, (from p,) will bisect the angle formed by
§ and &, (¢, and &;). Hence these angle bisectors, m, and =,, are hyper-
parallels and ¢ is their common perpendicular. Therefore, to construct ¢
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it is only necessary to find %, and +, by bisecting the appropriate angles
at p, and p, respectively and to then follow the previous construction for
 as the common perpendicular to v, and 7,.

In this figure it is also clear that +, the perpendicular to ; from g,
bisects the angle between %, and %,. If f ~ v X {, then the angle between
n and &, is =(8) for 3 = h(q.f). To find 8, given =(3), the sides of =(3) need
only be taken as = and £;. Laying off the angle =(3) on the other side of 7
yields £, By constructing Z, the common asymptote to Z; and Z, then
f=m x { is obtained, and 3 = h(q,f).

Other construction problems are now readily solved. For instance given
two equally-oriented hyperparallels, ¢ and £/, and a point x on I, we can
easily find the corresponding point x’ to « on %’ (that is, the point z’
such that S(z,z') makes equal angles with £ and £'). For if o is the common
perpendicular to £ and £’, then z' is obviously the point which lies on the
same side of s as = and has the same distance from ¢ x &' as z does from

¢ X & The same problem, where & and &’ are asymptotes, is left as an
exercise.

34. The Group of Hyperbolic Motions

It was shown in (22.6) that the algebraic structure of a geometry’s
group of motions does not depend on the specific representation of the
geometry. To determine I'’, the group of motions in hyperbolic geometry,
we may therefore use the representation of the space interior to the unit

circle E : 2} + 23 =1. By (29.1), I" consists of the collineations which
carry E into itself.”

In homogeneous coordinates E has the form 2? 4 23 -x3=0, and the
hyperbolic polarity y4 which defines E is

i b=, gy = @, 3 = - 3.

The motions @ in 1", by (13.3), are the collineations ® for which vy = yab,
hence I is the group Iy, of (13.4). We wish to find the elements in I,
and, for a later application, we will simultaneously determine Iy, for the
elliptic polarity:
Ye ! 5= x1, = X, &g = Xs.
The two polarities may be written in the common form:
yvih =1, f=umx, fy==cx,, wheres= 1.

The corresponding group will be denoted by ..

"See footnote on page 174,
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The inverse of the general collineation:

3

©izp= Y aumi, |aw|3£0, =123,
k=1

in line coordinates is

Mu

Bl g =

am-E;’c, = 1,2,3.

k

Il
-

The correlation 1y is
€ = ayT + yT; + 0,y 1=1,23,

hence ¢~y is given by
§= a1i<2a1kxk> -+ agi(z akak> + aaai(ZaSkxk), i=123.
k k k

That y® = @y, or that y= ®-ly®, means that, after a suitable normal-
ization of the aix, the following relations hold for all z::

7 = xy(a}, + ady + 2ady) + To(a32 + Andyy + 25 ds)
+ Xy(aydys + Aoy + 231y),

Ty = T,(ap @y + 02 pp + 205,035) + To(af, + afy + cady)
+ X323 + 30055 + £Q3elyy),

2y = (A3 Qg3 + Up 0oy -+ 2031055) + Tofyallyy + Ugelley + cUglz)
+ xy(al; + ad; 4 =af).

These identities imply that:

ah + ah +ea} =1, ahp+a}h+cal=1, alg+ ay+cah=r¢,
(34.1) and
a0y, + G50y, + taya,, =0, k=123, ik

To find the normalization of the coefficients which leads to (34.1), ™1 is
determined by employing (34.1). Substituting from xi = Mz, in the

k
eXpression a;,x{ -+ a,x} + ayxi reduces it, by (34.1), to x,. Similarly x,
results from a;,x] + ety + azxs. In this way, @71 is found to be

- 4
Ty == %) + ATy + iy

(34.2) Pl Ty == ATy dpaly F 2050Ts
Ty = 2tysT) + gy + AgyTae
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Next, T, being a group, contains ®-1. Therefore ¢! commutes with vy
and satisfies the conditions (34.1), that is :

If xi =S‘ agxy satisfies (34.1), then

(34.3) ah +aly +caly=1, @} +adp+cafy=1 a} + a}+ajy=>¢,
and
Auty + Qpa, + a0, =0, k=123, i£ k.

Because :2 = 1, the determinant of ¢ 1satisfies

A Ay edy
Qi Ay tdg
iy =y dg

a; a3 Qag
Az Qyy  Qgy
Q3 Q3 gy

On the other hand the determinant of &' is | @ |™, hence | @i | === 1.
Changing the sign of all the coefficients ai; does not affect the collineation
geometrically, but does change the sign of | aix|, hence | a;x | = 1 may be
stipulated for the elements of I, without affecting the group. Since this
condition determines the algebraic form of a group element uniquely we
have the theorem:

:.Ia,-kl = ]a;“]

If y is the polarity & =1x,, &, =2y, £y=—cx,, where ¢ = =+ 1,
then a collineation ¢ lies in T, if and only if it can be represented
in the form

(34.4) =Y\, =123,
L3

where the coefficients ay satisfy (34.1) and |aw|=1. Formally

different ®, satisfying these conditions, represent different elements
of T.,.
T

Taking « = - 1, the answer to our original problem is given by:

The group of motions of the hyperbolic plane, T yn» 1S represented
in a one-to-one manner by the transformations

x;= Y aui,  where |ay|=1,
(34.5) =X '

ah+a-ah =1 a,+a,-a,=1, ay + a3y — a3y =-1,
and
Ay, + Apily; ~ Gy, =0, k=123, iz=k

Particular motions are obtained by specializing the coefficients. For
instance, the reflection in the x,-axis is given by

o r__
n =1, Ty == = Ty, T3 = — Ty,
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and rotations about the origin have the form
2y = &, cos & -+ 2, sin «, Ty = — &, sin « + x, cos «, T3 = X
To interpret (34.4) for ¢ = 1 (and for other purposes) we observe that:

The transformation x; = Zauﬂxk leaves the form

k
(34.6) Qg(m,x) = x% + 17% + Exa
invariant if and only if the coefficients ay satisfy (34.1).

Here invariance means that Qe(z,z) = Qe(z',2'). “Transformation” is
used, instead of “collineation,” because the value of Q:(z,x) depends on
the representation of the point x and so has no projective meaning. That
the conditions of (34.6) are sufficient can be verified by direct computation
from (34.1) which yields

4 2
T2 4 22 4 exg = (E a1kxk> + <2a2kxk>2 + E(Eaaﬂky
k k k
=a} + 2§ + e
Conversely, the condition that the first and last of these expressions be

equal for all points x leads back to (34.1).
A little more generally, if the coefficients a;; satisfy (34.1), then

Qe(x - y,x - y) is also invariant, where x,——}_‘awx;,, and yi= Laa,y;,

The invariance follows from (34.6) and the fact that

= Zdu(xk - Ui) i=1,23.
k

Putting Q(z,y) = x,y; + Ty, + 2y, @,(x - y,x—y) can be expressed
in the form
Q(x - g — y) = Q(x,2) ~ 2Q,(x,Y) + Q(Y:Y)-

Since all the terms except Q¢(x,y) are known to be invariant, it follows
that Q(z,y) is also invariant.

34.7) The transformations x; = Zaaxk which satisfy (34.1) leave Q«(x,y)
4.7

invariant, and conversely.®

If ¢ is taken as 4+ 1 and z,,%,,x, are interpreted as rectangular coor-
dinates in Euclidean three-space, then [Q,(x—y,x - y)]** is simply the
ordinary Euclidean distance between the points x and y. Since the

8Since the invariance of Q,(x,y) implies that of Q(x,x), the converse follows from
(34.6).
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transformations which satisfy (34.1) leave Q,(z - y,x — y) invariant, they
are motions of the Euclidean space. Indeed, the equations in (34.1)

become the well known conditions for a motion of E3 which leaves the
origin fixed, namely:

(G48) Yay=1,i=123 and Yawwy =0, i,j =123, i=*].
k k

. . . | .
Such a motion carries every Euclidean sphere S? }_,xf =r, r> 0, into

k]
itself. Since xi/r and yi/r, i = 1,2,3, are the direction cosines of the rays
R; and R, from the origin to the points z and y respectively on S2, then

Q(x,y) = r? cos & (Ry,Ry).
Hence the spherical distance on S% mentioned in Section 19, can be

expressed by
d(x,y) = r Arc cos [r2Q,(z,y)].

If attention is restricted to one sphere S? then the ratios of z,,x,,%; deter-
mine a point on S} uniquely. In particular, if the coordinates are normalized

by Yai=1, instead of by Y'2? =12, the spherical distance takes the
form 1

(34.9) d(z,y) = r Arc cos Q,(x,7).

35. Weierstrass Coordinates

The foregoing results make it natural to expect that the form Q_,(z.y)
is related to hyperbolic distance. Since 2% + 3 - z§ << 0 is the domain
of hyperbolic geometry, we introduce

(35.1) B4 r-2=0,(rx)=-1

as a normalization of the projective coordinates. Then every point of D
(the interior of E) has exactly two representations, one with z; > 0 and
a second with x; << 0. With the present representation, (34.5), for the
hyperbolic motions, where |aiz|=1, it is not advisable to stipulate
x; > 0.5 For the great advantage of the normalization Q_j(z,x) = -1
over the previous one with r;=1 is that, by (34.6), it is invariant under
[y». But the condition x; > 0 is not invariant in the present representation

*The normalization z; > 0 leads naturally to the normalization a;; > 0. For odd
dimensions the condition | a;; | = I cannot berequired, whereas a,,, > O still makes sense
(compare Section 52). Therefore as long as only hyperbolic geometry is studied, this
normalization is preferable. In even dimensions close analogy to the elliptic case is
obtained by requiring |a;| = 1.
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of I',,, as can be seen from the reflection in the x,-axis. Since changing z
(or y) to its second normalized representation alters the sign of Q_,(z,y)
it is clear that only | 2_,(z,y)| can have a geometric meaning. To find this
meaning, the invariance of | Q_,(z,y) | under T, implies that there is no loss
of generality in taking x=2z=(0,0,1) and choosing the second point on
the positive z,-axis so that it has the form u== (ul,O, \/ 1+ u%), u, >0.
Then | @_,(z,u) | = +\/1 + ui. From the form (uy/ \/1 —+ u3,0,1) for u, the
Euclidean distance from z to u is given by u,/\/1 + u}. Because of (30.3),
then

u
tanh h(z,u)/k = fH_lll%—P“’

hence
V1 + 1 = | Q_,(z,u) | = cosh h(z,u)/k.

The equation cosh v = w has at most two solutions, differing only in sign.
Denoting the non-negative solution by Area cosh w, the foregoing can be
putin the general form:

h(z,y) = k Area cosh | Q_,(z,y) |, or
| €-1(z.y) | = cosh h(x,y)/k.

The coordinates x,,%,,2,, normalized by Q_,(z,x) = - 1, were invented
by Weierstrass (1815-1897) and are called Weiersirass coordinates. They
are of the greatest importance in all advanced developments of hyper-
bolic geometry. It is important, therefore, to have an intrinsic definition
for them, which may be obtained as follows. If (z,,Z,,1) are the coordinates

of ¢ in the form previously considered, then with r = \/ T+ 73,

(35.2)

) T, 1
= Ty = ———, Ty = ———
\/l—r‘-’ 1-72 1-r?

are Welerstrass coordinates of c.

(35.3) T, =

If f, and f, arc the feet of ¢ on the T, and Z,-axes respectively (see Figure 83),
put w; = h(c,fi), i = 1,2, r = h(c,2), » = h(f5,2), and « = < czf,. Taking
the space constant k as 1 for the remainder of this section, (30.3) gives

-—_—l_:—_—_ =cosh r. From (30.13),
Vi-p

c0s « == sin < fyzc = sinh u,/sinh r. Since cos « = tanh A\/tanh r, by (30.8),
then

the relation 7= tanh r, hence x;=

Lan
tanh r
=7, cosh r = %,/\/1 - tanh? r = %,/\/1 - 2.

. . t A
sinh 1 == cos « sinh r = cosh r tanh r = cosh r tanh
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Therefore:
(35.4) sinh u, = \/l_ﬁ—; — x,. Similarly, sinh u, = .
- I

Thus we have shown:

If 4,0, are oriented lines perpendicular at a point z, and if uy,U,
are the signed hyperbolic distances (in the usual way) of a point

(35.5) ¢ from the m, and n,-axes, and r = h(c,z), then x, = sinh uy,
T, =Ssinh U,, T3 = cosh r are the Weierstrass coordinates of the
point ¢ for which k=1 and 3 > 0.

fi f

Fig. 83

Nearly all the important formulas of hyperbolic geometry assume
much simpler form when expressed in Weierstrass coordinates. Distance in
the space is given by (35.2), and the motions by (34.5). Because of the
invariance of Q_,(x,y) under (34.5) these transformations may also be
regarded as the formulas for changing from one system of Weierstrass
coordinates to a second.

Since the z; coordinates are projective, a line in the space has a repre-
sentation of the form Q_(z.f) ==&, + 2,8, — 2,6, =0, where &, &
and §; are constants. However, not every equation Q_,(x,£) = 0 is a line
of the space. To be so its distance (in the Euclidean sense) from the origin
must be less than 1. This means that & must satisfy | & |/\/E + &3 < 1,

or & +4 & - & > 0. Hence a normalized representation of the line can
be defined in setting £ 4 £2 -8 =1.
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A hyperbolic line in Weierstrass coordinates has the form
Q_y(x,f) =0, with Q_,(5,5) = 1.

In the form (35.6) the coefficients §,,,,6; may be taken for (Weierstrass)
coordinates of the line. For a given line, the condition Q_,(€,£) =1 then
determines the coordinates &;, i = 1,2,3, up to a factor of == 1. Since a
point transformation of (34.5) takes lines into lines, it induces a line
transformation & — &'. To find the transformation formulas for the
Weierstrass line coordinates we observe that & =&, £, =&, £, =¢f,
are ordinary line coordinates, because x-%Z =0 is then the equation of a
line. According to (5.15) the coordinates %; are transformed by

= DA%

Comparing (5.15) and (34.2) shows that a;= Ay for i,k=1,2 and
{ = k=23 while air = — Air_when either ior k is 3 and {5« k. Passing
from the coordinates & and &; to & and & it follows that

(35.6)

Bl = Zaikﬁk, i=1,23,

is the transformation for the Weierstrass line coordinates which is induced
by the point coordinate transformation (34.5). In fact, (34.6) shows
that Q_,(¢" ") = 1.

From (34.7) it follows that Q_,(z,£) is invariant, but again only
| 2_4(x,8)| can have a geometric meaning. To determine what this is, we
can suppose & is the T;-axis, and take x as a point on the postive T,-axis.
The Weierstrass coordinates of the pointand line are then (0,::;2,1/ \/ 1- ig)
and (0,1,0), respectively. Therefore Q_,(x,£) = z, = sinh h(z,z).

35.7 The hyperbolic distance of the point x from the line £ is given by
(357 hat) = Area sinh | 2_, @) |.

The previous transformation also has | Q_,(¢,m)| as an invariant, and
various cases occur. If £ and = are intersecting lines, £ may be taken for
the axis (0,1,0) with z~ % X n. Then if « denotes the smaller angle

between £ and v, (- sin «, &= cos «, 0) are Weierstrass coordinates of «.
Therefore

(35.8) | Q_,(E,n) | = cos a, where o« = X (1) < 7/2.

The case where £ and n are asymptotes may be considered as a limit
position of the intersecting case since the smaller angle between the lines
tends to zero. It follows that

(35.9) | Q_4(§,m) | =1 when & and n are asymptotes.
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Finally, if £ and v are hyperparallels, let £ be the Z,-axis and take the
I,-axis as the common perpendicular to £ and =, with 4 cutting the
positive half of this axis at p. If § = h(p,z), the Euclidean equation of w,
namely %, = e(p,z) = tanh ¢, yields z, cosh p - x5 sinh p =0, whence
(0, cosh ¢, - sinh £) are Weierstrass coordinates of « satisfying _,(v,n) = 1.
The coordinates of £ are (0,1,0), so | 2_y(¢,n)| = cosh p. That is:

(35.10 If & and « are hyperparallels at a distance ¢ (measured on the
35.10) common perpendicular), then | Q_y(3,%) | = cosh §.

As a corollary of these results we observe that | Q_,(§7)| < 1 is the
condition for lines & and « to intersect, and that |Q_,(,m)|==0 is the
condition for perpendicularity.

As a further illustration, we derive the equations, in Weierstrass coordi-
nates, for the various types of cycles. First we observe that since the
x,1==1,2,3, are homogeneous, it must be possible to express any geometric
locus in homogeneous form, and that, analytically, any representation
can be made homogeneous by multiplying the initial terms by suitable
powers of x§—a} ~ 2§ = 1. For instance (35.2) gives Q%(z,c) = cosh? p as
the equation of a circle with center ¢ and radius g, and we may write this:

(35.11)  (x,¢; + TyCy — T4Cq)% = cosh? p = cosh? p(2} - =} - 3).

This result, in turn, can be applied in finding the equation of a limit circle.
For let Z, which passes through the origin z, be the (oriented) radius of
a limit circle, and designate by o the angle between ¢ and the positive
7,-axis (Figure 83). Let p be the point of the limit circle on ¢, and take
¢ = (¢y,C5Cy) as a variable point on ¢, where the ¢; are Weierstrass coordi-
nates with ¢; > 0. Now let r = h(z,¢) - o, that is, in the model let ¢

approach v, the center of A(p,) on E. If (¢,,¢,) are the Euclidean coordi-
nates of ¢, then:

(35.12) lim 2 = lim ¢ = cos «,
c—>»p “3 c—»rv

and

(35.13) lim 2= lim &= sin .

c—>v "3 c—>v

Setting s = h(z,p), the variable circle with center ¢ and passing through

p has radius % =r == s according as p precedes or follows z on ¢. Using
the fact that ¢; = cosh r, (35.5), and that lim tanh r=1, we then find

r—»
lim cosh i lim cosh r cosh s == sinh r sinh s
(3514) c—>o Cs - c—> v cosh r

= cosh s == sinh § = =*,
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From (35.11), the circle K(¢,%) can be expressed by

c, 2 cosh 1\2
(x1c+'tzcz )=< C3>'
Since, by definition, A(p,{) = hm K(c %), the limits established in (35.12),
(35.13) and (35.14), applied i m the last equation, yield:

The equation of A(p,%) is (T, cOS & + T, Sin o — 2,)2 = e, where
(35.15) s = h(p,z), and the + or - sign is chosen according as p precedes
or follows z on¢.

The equation of the equidistant curve C7 follows directly from (35.7) in
the form:

(35.16) (xyny + Tang — Tgng)? = sinh® «

Thus the equation in Weierstrass coordinates of any type of cycle, in

general position, is readily found and has a rather simple form.

The complete theory of conic sections in hyperbolic geometry is very
involved due to the many types possible. A convenient definition covering
all types (including the straight line) is given by: ““A conic section is the
locus of points having equal distance from two cycles,”” where cycle is
defined as in (33.3).* We cannot discuss the theory here, but simply
remark that the non-degenerate conics are the curves whose homo-
geneous equations in Weierstrass coordinates are non-degenerate and of
the second degree. For details the reader is referred to:

Story, On non-Euclidean Properties of Conics. American Journal of
Mathematlics, vol. 5 (1882), pp. 358-381;

Liebmann, Nichteuklidische Geometrie. Leipzig, 1905, pp. 182-196.
(The later editions of the same book do not discuss conics as thoroughly
as this first one does.)

Killing, Die Mechanik in den nichteuklidischen Raumformen. Journal
fiir Mathematik, vol. 98 (1885), pp. 1-48.

36. Definition of Elliptic Geometry

The preceding discussion suggests how a metric, similar to the hyper-
bolic one, might be defined for the whole projective plane by using
Q,(x,y). Since every point x can be normalized in exactly two ways so
that

(36.1) Qrx) =a} + 23 + 3=1,

10We observe that this definition is a generalization of the Euclidean facts in exer-
cises [27.8] and [27.9].
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we expect full duality and seek to maintain it algebraically. We choose
line coordinates £,,55,E4 so that also

(36.2) QE) =8+ +8=1
The expression | Q(z,y) | is invariant under the collineations of I'y,:

= zaikxk’ lag =1, Za?k =1, k=1,23,
k 1

36.3 ..
(6.3) Eakiaka 0, i,j = 1,2,3, i2].
k
Again, (5.15) and (34.2) imply that
(B64) = Eaﬂ.ik is the line transformation induced by (36.3).
k
The expressions | Qy(x,y) |, | ,(,E) | and | 24(%,7)| are thus all invariants

of (36.3). As (34.9) implies, and as was proved in Section 19, the Cauchy
inequality (19.1) justifies the relation

(36.5) |2:(59) | < OF*a,2)032(y,y) = 1.
‘We may therefore define a metric, called elliptic, by means of
(36.6) €(x,y) = k Arc cos | Q,(xz,y) |.

Any pair of lines &,1 are now intersecting and the smaller angle which they
form, < (§,n), is defined by

(36.7) ¥ () = Arc cos | ,(E,n) |.

Here complete duality with (36.6) prevails only if k= 1. The factor
k cannot be introduced in (36.7) if k == 1 without destroying the normal-
ization giving = for the measure of straight angles.

To see that ¢(z,y) actually is a projective metric we recall (see (19.1))
that the equality sign holds in the inequality (36.5) if and only if the triples
2 and y; are proportional. Therefore ¢(,y) = 0 if and only if x and y are
the same point. That ¢(z,5) = ¢(y,z) follows at once from Q,(x,y) = Q,(y,x).
The remaining facts are most easily obtained by using the invariance of
¢(2.y) under the transformations of I, We show first:

There are collineations in T, which carry a given point x (line &)
(36.8) . . : ,Ye
into a given point x' 4 x (line £’ + £).

Observe that for any point y the polar &, under y has the equation

(36.9) &(xy) =0, or «(2,y) = kn/2.
The polar is therefore the locus o

f points x at a maximum distance from y.
By (13.6), the harmonic homol

0gy ®, with y as center and £, as axis,
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commutes with Y. It belongs therefore to I',, and leaves distance invariant.
Let z, not on &, be any point distinct from y and take z' = z®. Then
forz* ~ &, X (z X z') we have

(36.10) e(z,2%) = (2',2%¥) and <(y,2) = «(y,2).
Because of this, @ is called both a reflection in y and in &,.

Clearly y,z*,zand z’ form a harmonic set. If nowzand =’ are given distinct
points, the hyperbolic involution on £ X x' with x and z' as fixed points
has by (13.17) a corresponding pair y,,jy, in common with the elliptic
involution induced on x x x’ by y.. The reflection in y: or £ g, i=12,
lies in I, and takes x into x'.

To establlsh the triangle inequality,

(36.11) «(a,b) + =(b,¢) = <(ayc),

it may be assumed, because of (36.8), that b is (0,0,1). Also, a, b and ¢
may be supposed distinct (otherwise (36.11) is trivial). If a and ¢ are
normalized so that a; and ¢, are not negative, then

‘ 91((1, b) | = s, ] Ql(b,ll') l == (3, ] Q],((I,C) ] = l Zaici ,
and (36.11) is equivalent to establishing
Arc cos ag + Arc cos ¢g > Arc cos l Emci].

Since between 0 and = the cosine decreases, the last relation is valid if and
only if taking the cosine of both sides reverses the inequality. That is, the
problem is reduced to justifying that

3612 aye-V1-BVI-d=ae-Va + @V +.6 <| Yaal|
But the Cauchy inequality,

(36.13) (@61 + a5¢5)* < (@} + af) (i + )
implies

- \/a% \/Cl + < - |aye + e,
hence

a3 =V} + @ \/cf + < a6 - | a0 + 6| < ‘ Zaicil-

Thus (36.12) is established which implies (36.11). Moreover, the triangle
equality can hold only when (36.12) is an equality, hence only when a, and
a, are proportional to ¢, and c,. But in that case ¢ satisfies the equation
Ly Xy Ty
a aQ Qq
0 0 1

which represents the line a X b, so the three points are collinear.

=0,
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To show that the projective lines are also metric lines it suffices, in virtue
of (36.8), to prove this for the line 2;=10. Any point of 23=0 has a
unique representation in the form

z, = (cos w/k, sin w/k, 0) 0w < kn.
If x, is a second point of the line, then (1/k) | w - « | << = and
Q,(z,x,) = cos (w/k) cos (x/k) + sin (w/k) sin («/k) = cos | w —a|/k.
Therefore,

arc cos |Q(r,,x,) | =min { |w-oa|/k, ® - |w - a|/k},
50

(Tyody) =Mmin } | —af, kv —|w —a| {, 0L o, o < kr.

This shows (compare (20.6)) that ; = 0, and hence that every projective
line, is congruent to the circle S}C/Z, which completes the details of proving
¢(x,y) to be a projective metric.

If % (§,m), as defined in (36.7), is taken for a metric it follows, by
duality, that every pencil of lines with this metric is congruent to the
circles S}/w that is, is congruent to an ordinary pencil of lines with the
angle < =/2 as measure.

We now consider the elliptic motions more closely. If we adopt the former
definition of a rotation about p, namely a motion having only p as a fixed
point, then the reflection in p is not a rotation since it leaves all points
of & invariant. But it is natural to think of this reflection as a rotation
through =. Therefore a rotation about p is defined to be a motion which
has p as a fixed point and which has no other fixed points save possibly
points of &. This definition is self-dual since a rotation about p has &, and
possibly lines through p, as fixed lines. This may be expressed by saying
that a rotation about p is a translation along &,.

Because of theorem (9.2), every motion of the elliptic plane has at least
one fixed point. The motions which leave a point p fixed form a subgroup
Iy of the group I, and since a motion always exists carrying p into a
point g, then by (22.6) the groups I, and I'; are isomorphic. To study T,
therefore, it suffices to take p= (0,0,1).

For the point p=(0,0,1) to be fixed under (36.3), we must have
a3 = @33 = 0. The polar of p, namely z; = 0 must map into itself and,
as was shown in Section 15, this implies a;, = a5, = 0. The condition

Zaf;,: 1, reduces then to a,===1, and the remaining conditions

K3
simplify to:

2 2 —
ah + @, =1, ajy + aj, =1, a0y + 0505 = 0.
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These equations were solved in Section 26 (compare (26.14)) where it was
found that

‘@ @\ (cosa - sin a) o (G Q) _ (COS @ sin «
Ay Q) \sina cosa/ Gy g/ \SiDa —cCOSa
In the latter case all points of the line z, ==, tan (x/2) were shown to

be fixed, hence the motion is the reflection in this line. The former case,
together with | aiz| = 1 yields ass = 1, hence the mapping is given by

Ty = & COS @ + T, sin «
(36.14) Ty = ~— I, sin « 4 X, COS «
J—
Ty = Ty

This is either the identity (« = 0) or a rotation about p. For, by (36.4),
the line £ = (£,,£,,0) through p goes into

£ = (£, cos = — &, sin «, g, sin a 4 &, cos «, 0).

But & ~% only for « =0 and a«==. Hence for a 520 the motion
(36.14) has only p as a fixed point if « 2= and is the reflection in p
(or in zy = 0) when « = =. Since a reflection in a line is also a rotation,
we have the remarkable fact:

(36.15)  Every elliptic motion, which is not the identity, is a rotation.
The smaller angle between ¢ and &' above is

Arc cos | Qy(5%" | = Arc cos | E2 cos x — &%, sin @ 4 §;&, sin « + Ef cos «
= Arc cos | (82 + £3) cos a|= Arc cos | cos « |
=min {a, © —a},

which shows that the number « in (36.14) has the same interpretation as
in the Euclidean case, namely the angle through which the rotation revolves a
line on p. That min { «, = — « } is obtained instead of « is due to the fact
that all definitions were made in terms of the smaller angle. This can be
remedied in an obvious way by defining the measure of the other angle
between two lines to be the supplement of the first. We will use this notion
in the future whenever it is convenient to do so.
The circle about p = (0,0,1), with radius p, has the equation

| 4(p,x) | = cos (¢/k),
hence

23 = cos? (p/k), or x} + af=sin? (p/k), 0 < p < km/2.

The polar of the center, in this case £ =0, is itself a circle about p.
It is the circle of maximum radius. When o < k=/2 any line through the
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center intersects the circle in two, diametrically opposite points g, and
Jryqr For p=(0,0,1) they are expressed by

g, = (cos a sin p/k, sin « sin p/k, cos g/k),
9atr = (= cos a sin p/k, - sin « sin g/k, cos p/k).

As p — ©k/2 the two points g, and g, . tend to the same point
ry =T, .= (c0s e, sin a, 0) on &,.

To better understand this strange phenomenon, orient £, so that in-
creasing « corresponds to the positive direction. For a fixed ¢ between 0
and kr/2 denote by S, the oriented segment from r, to g, (Where ‘‘segment”
between two points means the shorter of the two intervals which they
define on the line they determine). If now r, starts from r, and traverses &,
in the positive direction, then it returns for « = = to r, =r,. The variable
segment S,, however, does not return to its original position S, but to the
segment S, which connects r, =r, and g.(% ¢,). The segments S, and S
are oppositely directed from r, and only after r, traverse £, a second time
does S, return to S,. This means that we cannot distinguish opposite
sides of the line £, A person walking in the elliptic plane along &, in the
positive direction, having in the beginning his head in the direction of S,
returns, after traversing &,, to his original position but with his head in the
opposite direction. (Thus the elliptic plane has, so to speak, only one side.)
This is not true of a general circle K(p,p), p < kr/2. If £, is replaced by a
circle K(p,p'), ¢’ < kr[2, then, with the same conventions, S, returns to
its original position when r, traverses K(p,p') only once.

A second way of understanding this difference is to observe that an
ordinary circle K(p,p) decomposes the plane into two parts, whereas &, does
not. More precisely, all points not on K(p,p) can be expressed as the union
of two disjoint sets w, and p, such that it is impossible to connect any
point of one set to any point of the other by a continuous curve which does
not intersect K(p,0). For &, however, no such sets exist and any two
points not on £, can be connected without crossing £. This is obvious
since p; X p, cuts £, only once and one of the two intervals, defined by
p: and p, on p; X p,, does not contain the intersection point. For the case
of K(p,¢), 1, may be defined as the set of points x for which e(p,x) <<p
and p, as those points for which e(p,x) > p. If z(f) = (2,(t), 25(D), 2s(D)),
0L tK1, is a continuous curve from p, = z(0) ‘to p, = z(1), where
piisin p;, i=1,2, thene(p,z(t)) varies continuously with t. Since :(p,2(0)) <<p¢
and ¢(p,z(1)) > ¢ it follows that for some value 7, 0 < < 1, =(p,2(})) =,
hence z(f) crosses K(p,p).

Unfortunately there is no real model of the projective plane in ordinary
space (one threc-dimensional way of interpreting it will be given later).
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However, there are surfaces in E3 on which the phenomenon of one-sidedness
occurs. The simplest of these is the so called Moebius strip. If a rectangular
strip of paper, having consecutive vertices a,a’,b’,b (see diagram) is folded
so that a falls on a’ and b on b’, a simple loop results, and the former
segments S(a,a’), S(b,b’) become the boundaries of the loop surface, and
these are distinct. The surface clearly has two sides. We can make two
pencil marks which cannot be joined, by any curve drawn on the paper,
which does not cross one of the boundary curves. However, if the original
strip is twisted as it is folded, so that a falls on b’ and b on a’ (Figure 84),
the resulting surface, called a Moebius strip (after Moebius (1790-1868)),
is seen to have a single boundary curve. Two dots placed anywhere on the
paper can be joined by a continuous curve which does not cross the bound-

al

Fig. 84

ary. For this reason the Moebius strip, like the elliptic plane, is said to
be one-sided, and many analogies between the two surfaces are easily
discovered. It should be noted, however, that the existence on a surface
of closed curves which do not decompose the surface is not in general
related to the one or two-sidedness of the surface. A torus, that is a surface
shaped like a doughnut (pictured in Figure 96), is a two-sided surface
though it carries closed curves which do not decompose the surface.

37. Elliptic Trigonometry
Relation of Elliptic and Spherical Geometry

In developing the trigonometry of the right triangle we will leave the
constant k out of the calculations, but add it in the final formulas. Because
motions exist, a general right triangle a,b,c may be placed so that the
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vertex ¢ of the right angle is (0,0,1) with the sides of the angle along
8,(x,=0) and 8,(z, = 0). (See Figure 85.) The other two vertices then
have the form a = (0,a,,a,) and b = (b,,0,b,), and we choose the represen-
tations so that a, and b, are non-negative. If a =¢(b,c), B =c¢(a,)
and y = (a,b), then cos a=]|9Q,(b,c)|= b, and cos § =|Q,(a,c)| =ga,.
Hence with the proper orientation of the axes, a= (0, sin 2, cos £) and
b= (sin «, O, cos «). Thus, cos y = | Q,(a,b) | = cos « cos §. Therefore

37.1) cos y/k=cos a/k cos B[k

is the elliptic form of the Pythagorean theorem.
For the other trigonometric formulas we need the line coordinates of
a X b. In non-normalized form these can be expressed by

(sin B cos «, cos P sin «, —sin « sin ).
bs

b

Fig. 85
Setting

(37.2) Al = [sin? 8 cos? « + c0s? B sin? « + sin? « sin? BJ1/2
' = [sin? § + cos? 8 sin® «J12 = [sin? P cos?a + sin? «]172,

elliptic line coordinates of a x bare (A sin £ cos «, X cos B sin a, — A sin « sin B).

Let A and B denote the angles of the triangle at a and b respectively.
If A==/2 then a X ¢ is the polar of b and « =y = kr/2. Therefore,
« < kn/2 implies A < =/2 and similarly 3 < k=/2 implies B < =/2. In
any case, A < /2 and B  =/2. The relation

(37.3) cos® A = Q%(3,, a X b) = 3%sin? p cos? «

expresses A in terms of o and f. From (37.2), sin? P cos? a == A% — sin%«.
Hence

sin? A =1-cos? A =1-)2sin? B cos? « = 1 - X2(A"2 — sin® «) = A% sin® «.
Combining this with (37.3) gives the equivalent, but simpler, form:

__tan («/k) __tan (B/k) 1
(37.4) tan A = Y ik tan B = sin (/)

1As before, the symmetry of the situation gives simultaneous results for A and B.
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To obtain A in terms of § and vy, we first use (37.2) and (37.3) to pro-
duce
sin? f cos? «
sin? b + cos® P sin? a

cos? A =

Replacing cos « by cos y/cos p, from (37.1), this becomes

cos? A — tan? § cos? y __ tan® B cos?y
A Sin? f + cos? B(1 —cos?y/cos? B) 1 —costy
S0
X __tan (B/k) __tan («/k)
(37.5) cos A = tan (7/0)’ cos B= tan (/R

Other standard relations now follow by simple calculations. For example:
sin (a/k) sin B — S E/k)

(37.6) sin A = sin (7/)’ sin (y/k)
(37.7) cos (a/k) = %%f—%, cos (8/k) = g AB '
37.8) cos (y/k) = cot A cot B.

As in hyperbolic geometry, the angles of the right triangle determine the
sides.

If b and ¢ are distinct, a consequence of the nyhagorean theorem,
cos y/k = cos a/k cos B[k, is that cos y/k << cos B/k, thatisy > §, unless
cos B/k=0. If B < kn[2, then c is the unique foot of a on &,. Moreover,
| Q,(a,8,) | = sin £. Thus the term “perpendicular” can be used in elliptic
geometry with the same sense defined for open spaces (Section 21), except
that “foot’” and ‘‘perpendicular” cease to be unique when « is the pole of
3,. Formally:

If p is not the pole of v, then p has a unique foot f on v, and
37.9) <X (n.p X f)=rmn/2. The distance of p from n is given by

&(p,n) =¢(p,f) = k Arcsin [ Qy(p,n) | < kn/2.

Using the name “circular functions” for the sin, cos, etc., we can
standardize as follows the close analogy between the formulas of hyperbolic
and elliptic trigonometry. 1f, in elliptic formulas for a right triangle, the
circular functions of lengths are replaced by the corresponding hyperbolic
functions (sinh for sin, etc.), and the circular functions of angles are
unaltered, the new formulas are hyperbolic. Conversely, replacing the
hyperbolic functions by the corresponding circular ones changes hyper-
bolic trigonometry to elliptic trigonometry.

The identity of the above elliptic formulas with those of spherical tri-
gonometry has probably been noticed. This phenomenon, of course, is not
surprising in view of the similarity between the spherical distance, (34.9):

d(z,y) = r Arc cos Q,(x.y),
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and the elliptic distance, (36.6):
«(x,5) = k Arc cos | Q,(z,y) |.

Since Q,(x,-y) = Q(-,§) = - Q(x.y) = -Q,(-2,~y), the number
| @,(x,y) | is either Q,(z,y) or Q,(x,~ y). Therefore,
(37.10) ¢(x,y) = kr-* min {d(z,y), d(z,- y) .

We may look on the situation as follows. Associated with the point = on
the sphere S is the point x in the elliptic plane P2, which has the same
coordinates. The points (z,,2,,25) and (- 2,,~ Z,,— T,) on the sphere then
map into the same point on the plane. The correspondence is thus two-to-one.
If W represents the mapping and z,y on S? are such that d(z,y) < =/2
then d(z,§) = ¢(z¥,y¥). When d(z,y) > =/2 then the point —y, antipodal
to y, has distance d(z,—y) < =/2 from z, and

d(z~ y) = e(aW,— y¥) = ¢ (x¥,yW).

To ¥ corresponds also a two-fo-one mapping of the group, Ts,, of spherical

motions on the group, T'y,, of elliptic motions. An element of Ty, has the
form

& =Y, a,,, where Y\al; =1, i=1,23, and
13 k
Napap =0, k=123 ik
i

hence it differs from an elliptic motion by omitting the condition | @i | = 1
(instead |a; |===1in T,, (see Section 34)). The mapping Py, Ty=—1
in Ty, which interchanges antipodal points, corresponds to the identity
in l".ﬂ. Of the two distinct elements in T, ®5 and <I>S<I>So, one has deter-
minant 4+ 1 and is algebraically identical with an element ®. of Iy.
Since the other spherical motion is associated with 1.®,, which is again
®,, there is a two-to-one pairing of the motions in sy with those of I'y,.

We return to the mapping ¥ of S on P2 If x moves on a great circle =
of S2, ¥ moves on a straight line n¥ in P2, but ' traverses W twice as &
circles v once. The smaller angle between two great circles n and ¢ equals
the smaller angle between ' and (W, so the mapping does not alter the
angular metric. If a,b,c are vertices on S2 of a triangle whose sides do not
exceed =/2, then the corresponding sides in the triangle aW,b%,c¥ have
the same lengths. The relations of sides and angles in the two triangles
are thus the same, which explains why the formulas for the elliptic and
spherical right triangle are identical.

There are, however, great differences, as well as similarities, between the
two geomeiries. Two points on a sphere do not always determine a great
circle uniquely, and on the sphere every simple, closed curve has an inside
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and an outside. Beside such obvious differences there are some unexpected
ones. If the sphere is considered imbedded in Euclidean space and r is
taken as unity, the relation between the spherical distance

d(z,y) = Arc cos Q,(z,y)
and the Euclidean distance e(z,y) = Qi/ *(x - y,x - y) is given by
(z,y) = 2 (®,2) - 22(®.Y) + YY) =2 - 2 cos d(z,p).

Therefore e(z,y) is an increasing function of d(x,y), so e(zy,y;) = e(yYs)
implies d(x,,y,) = d(x,,y,) and conversely.

Because of (23.12), two-dimensional Euclidean geometry has the pro-
perty that any isometry between two subsets can be extended to the
entire two-space, that is to a motion. It will be seen later that Euclidean

p

wly
_
{3
s
L]
<

three-space also has this property. If a,b,c and a',b’,c’ are two isometric
triples on S, then, because of these remarks, they are also isometric triples
in E3. The quadruples z = (0,0,0),a,b,c and z,a’,b’,c' are then isometric
in E3. Accepting the stated property of E3, there is then a motion of
Euclidean three-space taking one quadruple into the other, and clearly
this must induce a motion of S2 on itself. It follows that S? also has the
property that an isomelry between two triples (or any two subsets) can be
extended to a motion. One of the less easily anticipated differences between
S% and P? is thal P2 does nol have this property.

To see this, let k=1 and take a,b in P2 so that ¢(a,b) ==/3 (Fig-
ure 86). Let m be the center of S(a,b), so ¢(a,m)= ¢(m,b) ==/6, and
take ¢’ the midpoint of the complementary interval on a X b so that.
¢(c’,a) =¢(c',b) = =/3. If p denotes the pole of a X b, as a variable
point z travels fromm to p on p X m (along either segment S(p,m))
the distance e(a,x) == <(b,x) varies continuously from /6 to /2.
Because of continuity, x passes through a position ¢ for which



222 NON-EUCLIDEAN GEOMETRY [V.37]

e(a,c) =¢(b,c) ==/3. The triples a,b,¢’ and a,b,c are isometric, since
every distance in each is =/3. But clearly there cannot be a motion of p?
carrying a,b,¢’ into a,b,c since every motion which leaves a and b fixed
leaves @ x b pointwise invariant and so leaves ¢’ fixed.

If the same construction is carried out on a sphere (Figure 87),
yelding a triangle a,b,c isometric to the elliptic triangle a,b,c, then

there are fwo points, ¢’ and - ¢’, on the great circle through a,b, such that

d(a,c’) = d(b,~ ¢)=r/3_and d(a,- ') = d(b,c’) = 2x/3. Hence neither

the triple a,b,¢’ or @,b,~ ¢’ is isometric to a,b,c.

Fig. 87

It might be thought that this difference occurred because one triple
in P? was a degenerate triangle. But this is not the case. If  is the perpen-
dicular to a x b at ¢’ and ¢} is chosen close to ¢’ on ¢, then ¢(a,c}), which
equals =(b,c{), will be slightly larger than ¢(a,c’) because ¢’ is the foot of a
on ¢ (Figure 86). In the construction, as x travels from m to ¢ the distance
¢(a,x) increases from /6 to =/3, hence for x at some point c,, close to ¢
but slightly beyond, (a,c;) = ¢(b,c;) = t(a,c;) = ¢(b,c}). The triples
a,b,c; and a,b,c] are then isometric. Both triangles are non-degenerate.
They are not congruent, however, since the angle < ac;b is nearly =
while the angle « ac,b is less than =/2,

Thus we see that the ctongruence theorems do not all hold unrestrictedly in
the elliptic plane (though they are valid in spherical geometry). As a conse-
quence, it is not unreservedly true that one can obtain the trigonometric
formulas for oblique, elliptic triangles purely by analogy with the hyper-
bolic case. For instance, for a triangle with angles A, B and C and with
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opposite sides «,8,y, one might expect the elliptic cosine law, paralleling
the hyperbolic one (30.18), to be

(37.11) cos @ = cos & cos y + sin B sin y cos A.12

This formula is correct, and well known, far spherical trigonometry and is
derived from the right triangle formulas in the same manner as we obtained
the hyperbolic law. Since it implies that the sides determine the angles,
and hence that isometric triples are congruent, it cannot possibly be true
for all elliptic triangles.

Calculation shows the formula is correct for the elliptic triangle a,b,c
in our example. From the right triangle a,m,c, we know that

tan ¢(a,m) __ tan =/6

cos A = tan ¢(a,c)  tan %/3

1/3,
and the above law gives

cos @ — cos § cos y __ cos w/3 — cos? =/3

cos A = : - -
sin £ sin y sin? /3

= 1/3.

The law is clearly not valid for the degenerate triangle a,b,c’ since it again
gives cos A = 1/3, when A is known to be a straight angle. Because of
continuity the law cannot be true for Aabcj either, which differs only
slightly from Aabc’. The reason for this can also be seen from the figure.
The line 7 is a perpendicular from the vertex c; to the base line a x b of
the triangle a,b,ci. But neither the sum nor the difference of the triangles
c,,¢’,a and cj,¢’,b is the triangle a,b,c;, as would be the case in both the
hyperbolic and spherical situations, and which is used in deriving the law
of cosines.

It would not be difficult to establish the precise conditions for the valid-
ity of spherical formulas in the elliptic plane. But the results are not
important enough to warrant the effort.

38. The Elliptic Line Element. Length and Area

To obtain the elliptic line element, we consider, as in previous cases, a
parametrized curve C : x = z(f). The points

(X320,25) and (T, + AZy, Ty + ATy, XT3 + ATy)
on C both satisfy Q,;(y,y) =1, so from
Q(x + Az, z + Az) = Q(x,x) + 2Q,(x, Av) 4+ Q,(Az, Ax) =1
12The plus sign on the right is to be expected rather than the minus sign due to the

difference in the middle signs in the expansions of cosh (x-y) and cos (x-—y) which
enter in the proof of the law of cosines.
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we obtain
(@, Az) = - (1/2)Q,(Ax, Ax)
Then (for k=1)
€08 ¢(z, T + Azr) = Q,(z, = + A7) = Q(z, 7) + Q(z, AT)
=1- (1/2)Q,(Az, Az).
Therefore
sin? e(z, = + Az) =1 - cos® ez, x + Ar)
= (A, Az) - [1 - (1/4)Q, (A, Az)].
Since Q,(Az, Az) — 0 as Af _» 0,
n sin? e(z, z + Ax)

T A T T — 1.
At—>0 Ql(Ax, A:z:)
This, with \
sin® e(x, x + Az) . . 2z, x + Ax
i T =1 gives lim X T __ 4
M—>o (T, T + o) g Amso  (Az, AZ)

A :
If C is continuously differentiable, thenAlim A—g =1, where AS is arc
t—>0
length and AC=«(z, z + Az) is the corresponding chord length. Therefore,
. AS? . AS? . AS?
1 =A}l_],'-)no'A—'C2 = lim ‘_———Ez(x, T F A.’I:) = lim QI(A:E, ASE)

yields the elliptic line element (for general k) in the form:

3
(38.1) dS; = ke (dr, dz) = ke ¥ da,
=1

where the coordinates satisfy Q,(z,2) =1.

As an example, we use (38.1) to find the circumference of a circle with

radius r << kr/2. If the center is taken at (0,0,1), the circle has the para-
metric representation

(38.2) =z = cos w sin (7/K), Tp==sin v sin (1/k),  x, = cos (r/k),
already used in Section 36, Then,

3
I ¥ da} = e sin® (r/kyde?,
i=1

27
hence k f sin (r/k)dw = 2rk sin (r/k) is the circumference of the circle.
o
More generally,

9
(38.3) k {I sin (r/k)dw = k8 sin (r/k) is the length of the circular arc,
. Jo
with central angle § and radius r.
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If both » and r are variable in (38.2), then
dz, = - sin v sin (r/k)dw + (1/k) cos w cos (r/k)dr

dzy = cos v sin (r/k)dw + (1/k) sin w cos (r/k)dr
dzg = — (1/k) sin (r/k)dr.

Therefore,

(38.4) dS? =k ¥ da = dr* + k2 sin? (r/K)do?.

Since this representation of the line element, in terms of the polar coor-
dinates r, w, is a quadratic form in dr and dw, it follows that elliptic geo-

Fig. 88

metry is locally Euclidean. The values of E,F,G in polar coordinates are
E=1, F=0and G=k® sin? (r/k), so:

Wdrdw = \/E‘G ~ F2drdw = k sin (r/k) drdw is the polar coordi-

(38.5) nale form of the elliptic area element.

The area of a circle with radius r is then
2T /T
k / / sin (r/k)dr dw = 27k?*[1 - cos (r/k)] = 4=k? sin? (r/2k).
JO JO

Asr — kx|2, 4=k? sin? (r/2k) — 2=)2, the area of the entire elliptic plane.

Virtually the same calculations as in the hyperbolic case can now be
applied to find the area of an elliptic right triangle. We take the vertex
a of Aabc at the origin and the vertex ¢ of the right angle on w =0 so
that b lies on the line w = A (Figure 88). With ke, kP, ky as the sides
opposite the angles A,B,C, (37.5) gives the equation of b X ¢ in the form

(38.6) tan r/k = tan § sec w.
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With r = k tan™ (tan p sec w), the area of the triangle can thus be expressed
as

4 A
kﬁ ﬁsm {t/Bydtde = kzj; [1 - cos (r/k)]dw

A
—iea i [ = kA Kinioos fsin
e

From (37.7), cos B sin A = cos B, therefore

. ™
[sin- (cos B sin w)]¢ = sin-! (cos P sin A) = sin~? (cos B) = 5~ B.

Substituting this result above yields:
The area of Aabe, with right angle C, is

(38.7) kz(A + B- g) — 1A + B + C ).

For any triangle the quantity (4 + B + C-=), denoted by =(a,b,c), is
called the excess of the triangle. As in the hyperbolic case, the result
in (38.7) extends to any triangle, that is:

(38.8)  The area of any triangle a,b,c is k*(a,b,c).

The triangles of maximal area are the degenerate ones, all of whose

angles are w, which again gives 2rk? as the area of the elliptic plane. An-
other consequence of (38.8) is:

(38.9)  The sum of the angles in an elliptic triangle is greater than =.

We note briefly that &, = ko/2, £, = %‘ ~r are the coordinates which

correspond to the equidistant-curve coordinates in the hyperbolic plane.
The curves &, = constant are equidistant to z; =0 and the lines
£, = constant cut the curves £, = constant orthogonally. The polar coordi-
nates, r,», have (as do all polar coordinates) a singularity at r = 0 in the
sense that all lines © = constant pass through that point. In both the
Euclidean and hyperbolic geometries we encountered regular coordinate
systems. That is, each point of the space was the intersection of a unique
pair of coordinate curves. The standard coordinates

(38.10) D=124/%,  Yy=1,/T,

were regular under either a Euclidean or hyperbolic interpretation since
in both cases the line z; = 0 was outside the space. It is a theorem (which
we will not prove) that no coordinate system in the projective plane (or on
the sphere) is regular everywhere. The coordinates are either singular at
some points, as polar coordinates are at the origin, or else they fail to be
defined for some points, as is the case for 23 =0 in (38.10).
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39. Cayley's Method

Using the forms Q, and Q_, established a close analogy between hyper-
bolic and elliptic geometry. It is natural to ask, however, whether or not
¢(x.y) can be oblained independently in the same way that we originally
defined h(x,y), that is, in ferms of a conic with distance taken as the logarithm
of a cross ratio. We will see that this is possible provided that an imagin-
ary conic, and consequently imaginary numbers, are used.

To obtain this result we will make use of a method due to Cayley (1821-
1895) which employs general polarities instead of the special form §, = x,,
&y =y, &3 === x,. This will also give us the opportunity to see how the
formulas of both geometries appear in this more general approach.
According to (10.9) any polarity may be expressed in the form

&= Zaikxk: | ai| 52 0, Ak = Qi i=123

(39.1) k

Ti= ZAikEk, |Ai| 520, Aau=An =123,
k

where Ay is the quotient of the cofactor of ai and the determinant | ai|.
The locus E of self-conjugate points in the polarity is given analytically
by the equation

Q(x,x) == Eaikxi:rk = 0,
1,k

which represents a real conic if the polarity is hyperbolic. Similarly, the
self-conjugate lines satisfy the equation

Q'8 = Y Akt = 0.
4k
When the conic is real it defines a hyperbolic geometry in the set of
no-tangent points of E. For if x and y are two such points and u and »
are the intersections of x X y with E, then the metric

h@y) = 5 |log Rw.y,u) |
is hyperbolic.
For the arbitrary polarity (39.1), let y and z be two non-self-conjugate
points such that y x z is not a self-conjugate line. Then y X z inter-
sects Q(x,x) = 0 in two points y — Nz, i = 1,2, which may be complex. If

Qx,y) = Zaikxiyk, and Q'(Em) = EAikEmm

i,k ik
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then }; and 2, are the roots of the equations
Qy - rz,y - Z2) = Q.y) - 20Q(y,2) + 32Q(z,2) = 0.
From the theory of equations, then:
(39.2) N+ e = 201,2)/2z2), My = QW,Y)/2(z,2).
We now generalize (6.2) by taking
R@y.zy + 22y + p2) =y

still to be the definition of cross ratio when either 7 or y fails to be real.
In particular, .

R,z — \z,g — 2p2) = W/,
for real or complex values of . By making use of

(39.3) cos (t/i) = cos (i-f) = cosh 1
and
(39.4) cosh (== (1/2) log 1) = == (1/2)(V1 + 1)V/D

in conjunction with (39.2), we obtain
cosh [i (] /2) ]0g R(.l]sZ,y - 112,.1} - )‘22)]

=cos [ (1/20) log R(y.z,y — Mz.y — 142)]
(39.5) ==+ (1/2)[(}1/12)% + (e/i)*]

— Xt Ry — Q(y,z)__—.

2V Vo)
We can now answer the question raised at the beginning of this section.

Taking the special case Q(z,r)=Q,(z,z), with u,» as the (imaginary)
intersections of y X z with Q,(z,x) = 0, we obtain from (36.6) and (39.5):

(39.6) ¢(y,2) = | (k/21) log R(y,z,u,v) | = g] log R(y,z,u,v) |*3

For the general polarity (39.1) we have similarly:

(39.7) h(y,z) = k Area cosh VL))
Ve

or

(39.8) «(y,2) = k Arc cos 20,9 ,

Vy.Y)Q(z2)
according as the polarity is hyperbolic or elliptic.
Analogous results hold for angular measure. 1f = and « are two, non-

13The complex logarithm is a multi-valued function. In the present case we mean the
determination which has the smallest absolute value.
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self-conjugate lines which intersect at a non-self-conjugate point, then
Q') 0 and Q'(m,m) 2 0. Through £ x 4 there are then two self-
conjugate lines, § — %, i = 1,2, which may be complex. Since 2,,%, are
the roots of Q'(£ -, 3 -%n) =0, the same analysis as before leads to
the relations:
cos [ == (1/27) log R, q, £ — hy7y & = Ron)]
= cosh [ == (1/2) log R(E,n, & - Xy, & — kgm)]
e G
VeEHe@,m)

In the hyperbolic case § and « form an angle only if £ X + is a no-tangent
point, hence only if A, and %, are imaginary. We can therefore say, for
either type of polarity, that if { and ¢ are the (imaginary) tangents from
2 X v to Q(z,x) = 0 (or the self-conjugate lines through £ X ), then

(39.9) X (§m) = [(1/20) log R(%,n,%,9) |
and

, Q'(5,m)
39_10 { [ = | et
(3919 c0s % () l\/ﬂ'(E,E)Q'('nm)

The first of these formulas shows that angles, as well as distance, can be
expressed in terms of cross ratio. For Q = Qu,, aiz = A4 hence Q and @'
have the same coefficients and (39.10) coincides with (35.8) and (36.7).

If, in the hyperbolic case, § X = is a two-tangent point, 4, and 7, are
real and Z -1 and § - l,n are real tangents to Q(x,x) = 0. We then have

Q'(E,m)
39.11 cosh [== (1/2) log R E,' 36,0)] = | T
(39.11) [+ (1/2) log RGn.59)] ] e
Comparing this with (35.10) we see that if £ and « are hyperparallels and
{ and s are the tangents to E from the point & X v outside the model,
then the length of the common perpendicular segment between & and =
is | (1/2 log R(£,,5,9) |-

It is worth investigating how these ideas can be used #o obfain Euclidean
geomeltry. Since the geometry on a sphere becomes more nearly Euclidean
as the radius increases, the problem may be approached in the following
way. With x,,x,%, indicating homogeneous rectangular coordinates
(s0 T, = &,/x3, T, = X,/xy are ordinary rectangular coordinates), define

Qp(x,x) = 22 + x% + <R%3, where c¢=—==1.

The corresponding form in line coordinates is

QrGh) =8 + 8 + R
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If ¢ and 1 are two intersecting lines, and if, corresponfiing to Q.p, « p(E,m)
indicates the measure of the smaller angle between & and =, then (39.10)
implies ) 5

d €10y + Eomp -+ eR7%ymg

(B 4 &+ R2P%(n + mf + R

cos o p(¢,m) =

hence:

. Einy + Eoma
39.12 lim cos «g(5,m) = ] .
¢312 B> V& + 8BVni+n3
Since ini,-z.- 0 is the equation of the line %, the numbers &,/\/:2 + &

and 52/\/ £2 + &2 are the sine and cosine respectively of the Euclidean

angle between ¢ and the Z, — axis. A similar interpretation holds for

n,/\/1? + 73 and v,2/\/v1% + 3. The right side of (39,12) is thus the cosine
of the smaller Euclidean angle, «.(%,n), between £ and =. That is:

(3913) }é’hm asR(Es"l) == “e(ia"l)-
—

A similar result can be obtained for distance between points provided
the constant k is chosen appropriately. Let hy(z,y) and ¢,(z,y) be the
distances corresponding to _, and Q +p» With k= R. Then, from (39.7),

sinh? (ha(x,y)) — ~%-R@2)QR(Y,Y) + 2 r(z,y)
R Q-r(2,2)Q-z(y,y)
_ Z[RPGE + 39 - [R2@ + 73 - 1] + [R2E,0; + Zys) — 1]2
(R*@E + 28) - 1][R(y% + 7)) - 1]
_ R2[@ + 2 + 3% + 73 - 23,5, - 2%,05] + R™*f(Z1,%5,01,75) ,
[R@E + ) - 1][R2@E + 73) - 1)
where f is some function whose exact expression is not needed. For
whatever the value of fis, as R — o, R2f 0, hence:

i Rosige (@D _
Rlianz sinh? (-RT> = (@, - J)? + @ — Yo)? = ¢*T,7).

Setting = hy(z,5)/R, as R - w0, u - 0. Making use of lim sm:l 1,

the previous result can be expressed by e

e(z,7) =Rl_i;nw R? sinh? (hy(z,y)/R) =Rlim h}(x,y) (sinh u/u)?
= lim h}(z, y). -
R—>w
Practically the s 1 i
o 62@,y).yThus, ame calculation shows that as R — oo, e2r(z,y) tends also

(39.14) Rl'_lglwhﬂ(x,y) =Rli_1;nwg 2(T,y) = &(Z,7).
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Except that the calculations are more complicated, there is no difference
in applying the same argument, using the general form Q, to obtain the
general forms (25.13) and (26.5) for Euclidean angle and distance.

There remains the question whether Euclidean distance and angle can be
expressed directly as the logarithms of cross ratios instead of as the limit of
such ratios. This is not possible for distance, but the following heuristic
argument shows how it can be done for angles. The line x; = 0 cuts the
locus Q. p(z,x) = 0 in the points (i,1,0) and (-i,1,0), independent of ¢ and
R. These are called the “circular poinis” because not only Q, p(z,2) =0,
but any Euclidean circle

23 4 2§ + doywy + ey, + fo} =

(whether real or imaginary) passes through both of them.* Any point p
(not on x; = 0) determines with the circular points, in turn, two lines
¢ and o, called the isotropic lines through p. Now let & and n be two ordin-
ary lines through p, and let {5 and s, denote the lines through p self-con-
jugate with respect to Q p(r,x) = 0. Since it is easily verified that
{p and o tend to the isotropic lines { and s as R — o0, it is natural to
expect the relation:
(39.15) xe(E,m) = | (1/20) log R(E,n,8,0) |.
It was the discovery of this famous result by Laguerre (1834-1886) which
gave this whole direction of research its impetus.

The equality (39.15) is easily verified by calculation. Since neither £ nor
7 is the linez, = 0 we may take their equations as x, sina - z,cosa + a=0
and 7, sin f -z, cos p + b=0, where the r,-axis makes the angles «
and £ respectively with £ and ». Since £,7,{,s, cut 3 = 0, in the points
(cos a, sin «, 0), (cos B, sin B, 0), (i,1,0) and (- i,1,0), (6.12) gives us

\ cos «  sin a ‘ cos B sin P ’

; . i 1 - 1

R(Q,T‘],C,G) - i cos & Sin « ‘ Ccos p sin ;3 l
—i 1 ’ i 1

__(cosa-isina)(cos p+ isinp) e**.ef 2i(E-2)
T (cosa 4 i sin a)(cos B —isin B) T gix, B T .
Hence |(1/2l) log R(E,'I],C,‘S) I = | B- al = o‘2(‘2»"1)-
This relation shows us how to define Euclidean geometry from affine

P

geometry by singling out a polarity. Thelines & and = are perpen-

14The circular points have no projective meaning: analytically, because they are not
invariant under general collineations; geometrically, because they depend on the
interpretation of x,,%,,2; as homogeneous rectangular coordinates. As the intersection
of all Euclidean circles with the line at infinity they are invariant under all Euclidean
motions. This is easily confirmed by calculation.
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dicular if and only if their intersections with the line at infinity,
namely the points z* = (x},25,0) and z* = (],z},0), satisfy the relation
232d + xix) = 0. That is, the points z* and z" must be paired in the
involution z;2; + x,2; = 0 on the line x, = 0. This involution is elliptic,
since it has the (imaginary) circular points for its fixed elements.
A Euclidean motion is certainly an affinity (see (15.3)),
—fi = ‘1113?1 + ‘112%2 + a3
T, = ay®) + 0T, + o
which preserves area and perpendicularity. It is therefore an equi-affinity
which takes any corresponding pair in the involution z,z; + z,x; =0
on x; = 0 again into a corresponding pair on this line. More briefly, the
affinity must leave the involution invariant. The converse is also true, that
is:
An equi-affinity,
1:"{ = Ay + Ty + a5
Ty = AT + 5Ty + Qg3
(39.16)  is a Euclidean motion, hence satisfies
ah + oy =a + =1, Ay + 1y =0,
if and only if it leaves the involution
7,27 + Tpxy =0 on 2y = 0 invariant.

For the affinity in homogeneous coordinates has the form

x} ::Zamxk, i=12 1x3==x,.
E

A simple calculation shows that
Ay =-clyy, Ap=-iay, Ay=-cly Ap=cta; and Ayxz=r¢,
(where : = == 1) hence the homogeneous line transformation has the form
& = =(ant; — a35y), i == ayfy + ayyby), £y = <k,

By hypothesis, &4, 4+ £,m1,=0 implies £n; + &m; = 0 which is equivalent
to

0 = (@58 — @1abs) (Aaomy — AygMy) + (= Aéy + a1&e) (- Aoy + Ayyna)

= &ny(ady + adp) + Eama(ady + ady) — (Eyna + Exnn) (Analay + pato)-

Particular lines satisfying &1, -+ £y1, = 0 are £ = (1,0,0) and 4 = (0,1,0).
Substituting these in the last relation shows that a;,ay, + a;,a,, =0. If
now a perpendicular pair, &4, is chosen, for which £, 5% 0, then
&pnp=—%;1; 52 0 and substituting this pair in the above relation yields

@, -+ a3y =a3, + a},. Then, as we've seen before, the condition
5,0, — Ay 055 = ¢ shows that a}, + af, = 1.
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Thus Euclidean geometry can be built up by starting with equi-affine
geomelry and distinguishing on the line at infinity an elliptic involution. In
terms of this involution perpendicularity can be defined, and from this
one concept all other Euclidean concepts can be derived. For instance,
angular measure may be obtained as follows. If «' and f' denote the
perpendiculars to « and £ respectively at « x f, and if (v,3) is the notation
to indicate the smaller angle between two lines y and 3, then (compare
exercise [6.2]):

Lo sin (x,2") sin (£,0)
| R(a,f,o',8) | = sin («,f") " sin E({;,q’)
1

— = = == sec? (,f).
. . T
sin IA‘Q - (a,ﬁ)J sin [i - (a,(B)J

If the involution is taken in the general form:

Ezz; + F(xw, + tjx,) + Gryx, =0, EG-F2>0,

the facts of Euclidean geometry are obtained in the general forms discussed
in Section 26. The reader interested in this approach to the subject is
referred to “The Real Projective Plane” by Coxeler.

It is well to be aware of the limitations of the method used in this
section. It cannot be extended to apply in a Hilbert geometry, for example,

since for a general convex curve no adequate analogue to the polar form
Q(z,y) exists,

Exercises

[30.1] Show that the length 5 of the side of a regular n-gon inscribed in a
circle of radius ris given by

sinh Tc = sin — smh Tc

By a limit process find the length of the circle’s circumference.

[30.2] If the radius of a circle is greater than k log cot 2% it is impossible
to circumscribe a regular n-gon about the circle.

[30.3] The radii, R and r, of the circles respectively circumscribed and
inscribed to a regular n-gon satisfy the relation

tanh rk-* = tanh Rk cos 2
{30.4] In the hyperbolic plane a rcgular n-gon exists with a given angle

A< — (n=2r ‘)‘)ﬁ . Determine the length of the side as a function of A.

1A regular n-gon is a convex polygon with equal sides and equal angles.
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[30.5] Let a “regular covering” of the Euclidean or hyperbolic plane
mean the decomposition of the plane into congruent, regular n-gons
such that the intersection of any pair of them is empty, or else is a
vertex or a (whole) side. Then every vertex is common to exactly
the same number, say m, of n-gons. Prove that a regular covering
of the Euclidean plane is only possible with triangles, squares or
hexagons of arbitrary size, and find m for each case.

[30.6] In the hyperbolic plane, a regular covering is possible for every
m >3 if n > 5. Find all n belonging to m = 3,4. Show that m and n
determine the side of the n-gon.

[30.7] The length of the segment joining the midpoints of two sides of a
triangle is less than half the length of the third side.

For the following two exercises, recall the proof of the corresponding Euclid-
ean formulas.

[30.8] If A, B and C are the angles of a triangle and z, § and vy are the
respective opposite sides, then for 26 =a + £ 4+ vy and k =1,
cos? A _ sin}.l 4 sin}T (c - a), sin? A _ sinh (c-r -B) s‘inh (s-7).
2 sinh p sinh vy 2 sinh £ sinh v
[30.9] The radius p of the circle inscribed in a triangle is given (with the
conventions of [30.8]) by
tanh? o = sinh (¢ —a) - sinh (¢ - @) sinh (¢ —7) csch o.
[30.10] Find the equation of a spiral for which two consecutive intersec-
tions with a ray through (0,0) have constant hyperbolic distance 8.
[30.11] The equation of a hyperbolic circle about (0,b) with radius r is

a%(1 - b) + (1 — b2F2) — 2@,b(1 - 72) - 12 - b2 = 0, where T = tanh ;—c
[30.12] Obtain the Euclidean theorem of Pythagoras as the limit of the
corresponding hyperbolic theorem when k — 0.

[3L.1]* In terms of the sides ,8,y and perimeter 24, the area A of a tri-
angle is

Siné _ [(620 — 1) (62’ - 2a _ 1) (62” - 28 _ 1) (62:7 -2y 1)]%
2 (e 4+ 1) (ef+1) (er+ 1)
[31.2] Among all triangles with a given base « and such that  + v = A>a,

show that the isosceles triangle (3 = y = A/2) has the greatest area.

Show that for a given perimeter the triangle of greatest area is
equilateral.

[31.3] Use (31.3) to prove (30.11).
[31.4]

Show that as the vertex a of triangle a,b,c traverses the semi-circle

with S(b,c) as diameter, the angle A is not constant. (Hint: evaluate
the area of the triangle.)
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[31.5]

[32.1]

[32.2]

[32.3]

[32.4]

[32.5]

[32.6]

[32.7]

[32.8]
[32.9]

[33.1]

[33.2]
[33.9]

[33.4]
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In a quadrangle with three right angles, if the sides of the fourth
and acute angle w are equal, the lengths of the other two sides are
equal. Find the sides in terms of w.

Find the transformation of z,,x, into geodesic parallel coordinates
t1, €2, when the origin is the same point in both systems and x,= 0
and ¢, = O coincide.

In terms of &, & (with k = 1), find the equation of a line n such
that the perpendicular to n from the origin has length p and makes
an angle « with §-axis.

In the terminology of [32.2], if «, p and «,, p, are defined for two
distinct lines n and vy, then v and 7, intersect, are asymptotes, or
are hyperparallels according as

tanh? p +tanh 2 p; ~ 2 tanh p tanh p; cos (« - a4) % sin? (2 — a;).

The equation of the circle with radius r and center at £, =&, = 0 is
sinh2 §; 4+ tanh? §, — tanh? r cosh? §; = 0.

Let z be a point on a definite limit circle A and let £ be the radius
of A through z. Assign a positive and a negative direction from z
on both A(z,t) and &. For any point p in the plane define coordi-
nates u,v as follows. If » is the radius of A through p, v is the signed
length of arc on A intercepted by t and v, while u is the signed
distance intercepted on & by A(z,t) and A(p,n). Find the line ele-
ment and area element in terms of u and v.

Two limit circles have a common center. Find the area bounded by
two radii and the arcs which they intercept on the limit circles.

Show that 5 of the 6 domains into which a limit circle and two radii
decompose the plane have infinite area, and that the area of the
6th is finite and proportional to the arc length on the limit circle
intercepted by the radii.

In the z,,x, coordinates, the limit circle through (0,0) with center
at (0,1) has the equation 22 + 2x% —2x, = 0. (Hint: use [30.11].)
Prove the statement at the end of Section 32 that the rotations
about an endpoint of v are limits of rotations about points of =.

If the midpoints of the sides of a triangle are taken for the vertices
of a sccond triangle, the perpendicular bisectors of the sides of the
first are the altitudes of the second.

Give constructions for: the midpoint of two given points, the bisec-
tor of an angle, the perpendicular to a line through a given point.

Given the asymptotes £,m, and the point x on £, construct the point
on n corresponding to x.

Show that the Hjelmslev line of an equally directed congruence
between asymptotes ¢ and £ is an asymptote to both { and ¢’
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[33.5]

[33.6]

[33.7]

[34.1]

[34.2]

[34.3]
[34.4]
(34.5]

[34.6]

[35.1]

[35.2]*

[36.1]

[36.2]
[36.3]

[36.4]
[36.5]
[37.1]
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If A(x,t) and A(y,m) have the same center, and « and { are respect-
ively the perpendicular to v through x and the perpendicular to £
through y, then, if « and P intersect, the radius through « x P is
perpendicular to the line x X y.

Are there triangles with three acute angles which do not have a
circumcircle? Are there triangles whose angle sum is arbitrarily
close to = which do not have a circumcircle?

The angle bisectors of a triangle are concurrent, and an inscribed
circle exists for every triangle.

A translation along v is a motion ¢ without fixed points of the
hyperbolic plane which carries v and each halfplane bounded by 7

into itself. Show that the lim xz®" — zW exists for every x in D or
n—> o

on E. What is the nature of the limit mapping ¥'?

Show that the translations (including 1) along a line » form a

group. Find this group for the line x, = 0 in the representation
(34.5).

Find the reflection in z, = 1/2 and in z; = x,.
In the form (34.5), find the reflection in the point (1/2,0).

Find the motions, in the form (34.5), which carry the pencil of
asymptotes through (0,1) into itself.

In the group of problem [34.5], find the subgroup of motions which
leave invariant the limit circles with center (0,1).

Let f, and f, be two fixed points. Show that in Weierstrass coordi-
nates (with & = 1) the locus of a point z, such that

h(f,,x) + h(z,fs) = 2a> h(fufa),
has the equation

Q2(f1,%) + Q% (fo,2) — 2Q_1(f1,2)2_1(f2,%) cosh 2a - @_s(x,x) sinh? 2a = 0.

Using Weierstrass coordinates show that the altitudes of any
triangle are concurrent (in, on, or outside E).

If pairs of points, z,j and 2’,y’, are given such that e(x,y) = (z',§")
show that a motion of the elliptic plane exists which carries x into
x’ and y into y'.

In the elliptic plane, the locus B(a,b), a A+ b (compare Section 23),
consists of two straight lines.

Use the preceding result to show that in the elliptic plane there
are in general four circles through three given, non-collinear points.

State and prove the elliptic analogue to theorem (33.3).
State and prove the elliptic analogue to problem [35.1].
Prove (36.6), (36.7) and (36.8).
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[37.2]*

[37.3]

[37.4]

[37.5]

[38.1]*
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Find a 6 > 0 such that for any two congruent sets . and p’ con-
tained in a circle of radius 8, a motion of the elliptic plane exists
which carries @ into p’.

Show that the law of cosines holds for triangles with sides smaller
than the & of exercise [37.2].

In a triangle for which o = (a + £ 4 y)/2 is sufficiently small,
show that
cos? A __sing sin (¢ - a)
2 sin { sin y

In spherical geometry the locus B(a,b), a b, consists of one great
circle. Explain the difference between this and the situation in
[36.2] by means of the two-to-one mapping of the sphere on the
elliptic plane.

Show that in the coordinates y,,y, of €38.10) the elliptic line element
has the form
st — eyl + Ay + (1idys - yadyy)?
‘ (1 + y} + yp)?




CHAPTER VI

Spatial Geometry

40. Three-Dimensional Projective Space

Most facts of three-dimensional geometry are simply extensions of the
corresponding facts in plane geometry. However, there are also many
new phenomena. Naturally, it is these which will be stressed, while the
former will be treated very briefly.!

We first list some algebraic facts which will be constantly used. The
rank 8 of the matrix

@ -l
2

a% az...a,?i ——(a’c)

. . : — \Ti/

a; ag---a,

is the largest number j for which a square subarray of w exists, with j
rows and columns, whose determinant does not vanish.

A system of r n-tuples, b* = (b%,8%,. - -, b¥), k=1,2,- - .,r, is said to be lin-
early dependent if numbers X;,%,- - -, ), exist, which are notall zero, such that

T r
Zlkbk = (), that is Elkb{‘ =0, i=1,2,-.-,n. If no such numbers
k=1 k=1
My k=1,2,...,r, exist the system is said to be linearly independent.
Clearly any system containing an all-zero n-tuple is linearly depen-
dent, for if b*=(0,0,---,0), then ), =1, =0, k=2,.--,r satisfy

Zlk,b-sk =0, i=1,2,---,n. In a linearly dependent system if %; =0,
k=1

then b' =~ ¥ (4/ud”, that is b} = - 3 0eP)b, i=1,2,,---n. In this
k=2 k=2

case, b! is said to be expressed as linear combination of b2,b3,- - -,br, or to

be dependent upon 02,83, - -,b".

1Freq_uen:cly the extension of the plane case is merely mentioned. The proofs of such
generahgatmns from two to three dimensions serve as exercises which are indicated
by the sign § appearing behind unproved statements.
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The fundamental relationship between rank of a matrix and linear
dependence is given by:

If w has ranks, then 8 suitable rows a* = (df,d%, - - - a*), k=1,2,- - - 3,
form a linearly independent system, and every system of more

(40.1)  than & rows is linearly dependent. If the rows a*1,q",...a* are
linearly independent, then every other row can be expressed as a
linear combination of them.

Consider now the system of equations:

(40.2) Eafmi=0, k=1,2,-..,r

=1

The matrix p = (af)f:i::_: n1is called the matrix of the system (40.2).

Because the system is homogeneous it has a solution =0,
i=1,2,---,n which is called the trivial solution. Also, if

xj=($i,x;,'--,xi), j=1!2,"'3s

are solutions of the system, then any linear combination of them,
8
y \ixd, is again a solution. The number of linearly independent solutions
=1
is determined as follows.

40.3 If 3 is the rank of ., there are exactly n-8 linearly independent,
(40.3) non-trivial solutions of the system.

It follows from this that if n -8 > 0 and if 21,22, - -,z are linearly
independent solutions, then every other non-trivial solution z can be
TL:—S
expressed in the form x = 21,9;1, where not all the ); are zero since z
=1
is non-trivial. As corollaries of (40.3) we have the following.

(40.4)  If v has rank ni, the system has no non-trivial solution.

The equation Za.-x,-:O, where not all a; are zero and n > 2,
(40.5) i=1
has n -1 (and not more) linearly independent solutions.

n
Two equations Zafxizo, k=12, where n > 3 and neither

40.6 o
(40.6) oy at-nor all @} are zero, have n — 2 (and not more) linearly in-

dependent solutions unless a% and a? are propertional sefs.
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1407 The maximum number of linearly independent n-tuples of real
(40.7) numbers is n.

We now apply these facts to the three-dimensional space P, which was
defined in Section 19. Excluding (0,0,0,0), the points of P3 are represented
by the classes of all quadruples of real numbers & = (I;,%,5,%), Where
two quadruples represent the same point if and only if they are propor-
tional. The points z1,a?,...,2% of P* are called independent if the set of
quadruples representing them are linearly independent. (If this is the
case for one set of representations it is true for all sets of representations.*)
From (40.7), the maximal number of independent points in P? is 4.

If pt*,...,p#* are given representations of four independent points
and x* is a given representation of an arbitrary point, then the equations

4
xz:Exi'p;’:, k:l,...,él,
=1

determine the z; uniquely. If the representation of x is changed, say
x* is replaced by pa*, then the z; are also multiplied by .. Therefore the
class [z] only determines the x; up to afactor, and the z; are called projective
coordinates of x. The numbers x; are special projective coordinates cor-
responding to the choices pi* = di, where

d,=(1,0,0,0), d,=(0,1,0,0), d;= (0,0,1,0), d,=(0,0,0,1), e=(1,1,1,1).
A plane is defined as the locus of the points x satisfying a linear equation

4
z &= Zx, £; = 0, where not all &; are O.

t==1

To say that four points are independent is therefore the same as saying
that they do not lie in a plane. Points which lie in a plane are called co-
planar. The following are the analogues of (3.10) and (3.17).

Given five points no four of which are co-planar, there is exactly
(40.8)  one projective coordinate system for which these points are, in a
given order, the points d,, d,, d,, d, and e.%

If x and z; are two systems of projective coordinales, they are

related by equations of the form
(40.9) ! fihe ]

4
o) =Nauzh, i=1234, |aq|5=0.5

k=1

(40.10) If the numbers x} are projective coordinates and xi’ are defined by
’ (40.9) then the xi’ are also projective coordinates.$
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The point locus z-£=0 is the same as the locus z-1 = 0 if and only
if & and m; are proportional, that is [§] = [4] or £ ~ 7. Therefore the &
are called the coordinates of the plane x-£ =0, if £ % 0. The linear trans-
formation (40.9) carries the linear equation x'-£’ = 0 into another non-
degenerate linear equation z' -2 = 0, hence the definition of plane is
independent of the choice of the projective coordinate system.t Since the
original numbers z; no longer play a distinguished role, they will hence-

forth be used for arbitrary coordinates and the following analogue to
(3.20) holds.

The coordinate transformation

4
x;: - E AixX, = 1,2’334: Ialkl = 0)
k=1

induces the transformation, in plane coordinates,
(40.11) B = ZA‘-,,E,‘, i=1234, |Au|=/|ax|?%

where Ay, is the co-factor of ai, in the matrix (a;s), divided by | aix|.
The inverse transformations are

4 4
N ) NP
z; = ), AT, £ = 2_‘ ik
k=1 k=1

In space a point and plane are dual concepts. The equation z-£ = 0, for
variable z and fixed & represents all points in §, and for variable £ and
fixed x represents all planes through .

The planes [£1],- - -,[¢"] are called independent or dependent according as
the quadruples (&, - k), i=1,2,--.,r, are independent or dependent.
Because of (40.5) a plane & contains three, but not more, independent
points. If a,a%a® are three independent points in &, then

| a2tz | =0
is the equation of &, hence
ay ay a} a} af aj la{ ai ai la} a} a3
(40.12) E~{|a} a} a}| -|a} @&} a ai a} a3| -|a} a} a3 ).
@ & ol |a @ dl & o al, |d a a

Similarly, there are three, and not more than three, independent planes
through a point z. If ol,a?,a® are three such planes, then | al,02,63,8| =0
is the equation of x in plane coordinates, and the coordinates of z are similar
to those of ¢ in (40.12).

The concept of line may be expected to be selfdual since it is both the
connection of two points and the intersection of two planes, and we try
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to express this in the definition of a line. T'o say that two points (or planes)
are distinct is equivalent to saying that they are independent. The set
of points (planes) dependent on two distinct points x,y (planes £,9) is
called a pencil of points (planes) and denoted by L(x.,y) (L(En)). Every
point of L(z,y) is then expressible in the form Xz + py. If ' and y’ are two
distinct points in L(x,y), then L(z,y) = L(z',y’) (see (40.1)). Similar state-
ments hold for pencils of planes. Now let ¢ be incident with two distinct
points, x and y, that is &.x =0 and &.y = 0. If z is any point of L{(z,y),
then E.z=¢%.(kx + py) = XME-2) + p¢-y) = 0, so z is incident with Z.
A point pencil and a plane pencil are said to be incident if each point of the
point pencil is incident with every plane of the plane pencil. A straight line
is now defined to be a point pencil and a plane pencil which are incident. Of
course, any two distinct points x and y (planes £ and 7) of the point (plane)
pencil determine the line. Without ambiguity, therefore, the line may be
denoted by [z,y] or [£,1]. However, at present the notation x x y would
be misleading since no algorithm has been given to determine the “‘coor-
dinates” of the line in terms of x; and yi. This will be done in Section 42.

The line [z,y] = [£,n] is said to be incident with, or to pass through, all

points of the pencil L(z,y), and also to be incident with, or to lie on, every
plane of the pencil L(Z,n).

(40.13) A plane £ and a line L, not incident with ¢ ( considered as a point
’ locus), have exactly one common point.

For if L consists of the points Az + wy, then
Oz + py) E=Ae Y + py-§ =0

determines the ratio )/p. uniquely since z.£ and y-£ do not both vanish.
The dual to (40.13) is:

(40.14) T}{ere is exqctly one p]ane through a given line L and a given
point x not incident with L.

This plane will be denoted by (x A L). If M is any other line in the plane,

(l\/{i /}J L) also denotes the same plane, but regarded as determined by M
and L.

In the following discussion of P*
obtained for P2 to the planes of Ps,
the points and lines of q plane in P?
projective plane. To see this, let z4,22
Plane £ in P3, If A 2t indicate fi
each point zin £, and a re
hsAg kg Such that

(40.15)

we will want to apply the results
To do so, we must first be sure that
are actually the points and lines of a
,2® be three independent points of a
xed representations of z1,22,23, then for
presentation *, there is a unique set of constants

LI 1* ok N *
T =0zt 4 02 g2
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There must be at least one set ) since, as we observed previously, any
point of ¢ is dependent upon any independent triple of points in . There

is only one set of s since x* = p,z1* + wz2* 4 w,z3%, together with
(40.15), implies

3
(40.16) M -2 =0, j=123.

=1
Because z!,22,7% are independent, the matrix (z}) has rank 3, hence the
system (40.16) has only the trivial solution p;=12%;, i =1,2,3. If the
representation of x is changed from x* to sx*, 6320, then in (40.15)
the values %; will be changed to o). To each point of £, then, there corre-
sponds a class of proportional number triples (34,%5,)3) 52 (0,0,0) and this
correspondence is one-to-one. By definition, the triples (3;,23,)3) form a

projective plane P2 with %,%,23 as projective coordinates. If y =szi* is
a point of & distinct from z, then the pencil «x + By has the representation

3
(2 + By) = Y0k + fu)2™
=1
Thus to a linear combination of x and y there corresponds the same linear
combination of the real number triples associated with x and y. Therefore
the line [z,y] in P® corresponds to the line X X win P2.

Now in P, every projective concept can be defined in terms of incidence
alone. For example, (6.15) characterizes, in terms of incidence, the cross
ratio preserving transformations of a line on itself, and so contains im-
plicitly a definition of cross ratio in terms of incidence. Thus the fact that
the correspondence between Z and P? is one-to-one and incidence preserv-
ing could be used to show that cross ratio is preserved.

However, if the cross ratio in P? of the points z, y, ax + 2y, o'z + 3y
on [z,y] is defined by
(40.17) R(x,y,0x + By'x + £'y) = pa’[af’,
then the previous remarks show at once that these points have the same
cross ratio as the corresponding set in P2, since the corresponding points
in P2are %, @, ek + By, o'k 4 B'p.

From the duality of point and plane in P? it is natural to define the
cross ratio of four planes in a pencil, &, 1, «& + @, «'f 4 B'q, by (40.17)
also, that is as fa«'/af’. Analogously to (6.5) we show:

If the four distinct planes £1,%,83,5 of a pencil are cut by a line L

in the points x!,22,23,x* and by a plane « inthelines M*,M? M?3,M*,

where the axis of the pencil does not lie on « or intersect L, then
R 51’22"—;3’54 [ R(xl,x2,x3,x4) _— R(MI’M2,M3’M4).

(40.18)
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Proor: Let ! and £ and 2! and 22 be taken for the base elements in the
plane and point pencils respectively so that

Ea == ‘llgl + a'2E2’ E4 == plgl '+' pzazr
28 = Wxt 4 N7, =t T
Because .21 =0, i = 1,2,3,4,

= (8! + agf2) « (T + Rg2?) = o hy(81 - 22) + aphy(E2- 2Y)
0= (B + B2 - (g + 1yt?) = Bua(@ - 78) + Bopa (G2 2.

Because the given elements of the pencils are distinct, none of the linear
combination constants are zero, hence

(B1-22)/(E2-2Y) = - aghyfaydy = — Botty/Byttas

and the last equality implies R(E,£2,53,54) = R(x!,22%,2%2%). Now in thue
plane v, any line N, which is not in the plane pencil of lines determined
by the lines M, cuts the lines M in distinct points yi, i = 1,2,3,4. By
(6.5), R(M*,M2M3M* = R(y*,y%y%y%), and by the proof just given
R(y', 218,54 = R(ELE2,3,E%), hence R(ML, M2 M3, M%) = R(E,5%,83,6%).

The totality of lines and planes which pass through a fixed point z is
called the bundle z. This concept is dual to that of the points and lines in
a projective plane P2. (Compare with Exercise [2.2].) Therefore, every
theorem or concept in P2 yields a dual theorem or concept in the bundle.
The following are a few examples.

The lines through a fixed point of P? and the planes through a fixed
line of z (the bundle) form a pencil. Two plane pencils of z are perspective
from the plane v of the bundle if corresponding planes of the pencils inter-
sect in lines on n. Two line pencils of the bundle (each in a plane of z) are
perspective from a line L of z if the planes determined by corresponding
lines of the pencils all contain L. The former relation between perspectiv-
ities and projectives still holds. That is, if the first pair of three plane
pencils in z are perspective from v, and the second pair are perspective
from 4,, then the first and third pencils are projective.$ As formerly, any
projectivity between two pencils of the bundle is the product of three, or
fewer, perspectivities.

A collineation between two bundles may be defined in the same way as
a projectivity between planes was defined in Section 5. But since theorem
(9.1) has been proved, it is geometrically more satisfactory to use its dual
and to define a collineation between two bundles as a one-to-one corre-
spondence of their planes which preserves incidence. Such a collineation
is induced (though not uniquely) by a collineation of P* on itself (see
next section).

A correlation of z on z' is a one-to-one incidence preserving transforma-

and
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tion of the planes of zon the lines of z/. A correlation of z on itself, whose
square is the identity, is a polarity. If the line L and the plane £ are corre-
sponding elements of a polarity, then L is called the polar line to & and &
is called the polar plane to L. The plarte v is conjugate to & if it contains the
polar line to §, and the line M is conjugate to N if it lies in the polar plane
to M. If the polarity has self-conjugate elements it is called hyperbolic,
otherwise it is called elliptic.

The locus of self-conjugate planes (lines) is called a plane cone (line
cone) with apex z. Each plane of the plane cone contains its polar line and
the locus of these polar lines is the line cone. The distinction between plane
and line cone can therefore be dropped. The lines of the cone are called its
generators and its planes are called tangent planes.

Consider a bundle z and a plane § not through z. A plane n of the
bundle cuts § in a line Ly and a line L of the bundle intersects £ in a point
x,. Conversely L, in £ determines with z a plane through z, and a point
x, of { determines with z a line L through z. Both mappings of the bundle
on the plane, n - L, and L — z,, preserve incidence, hence a collineation
of the bundle n — 1" induces the collineation of &, L,] — Ln" and conversely.
The polarity x, — L, on & induces the polarity L —+ on z, and conversely.
Hence conjugate planes or lines of z correspond to conjugate lines or points
of &. Since self-conjugate elements of z correspond to self-conjugate ele-
ments of &, the inlersection of a cone K of z with £ is a conic C. Conversely
if C is any conic in &, the lines determined by z and the points of C form a
line cone K through z whose tangent planes are the planes determined by
z and the tangent lines to C.

The equation of K as a plane or point locus in P? is easily obtained if the
coordinates are chosen conveniently. If £ has the coordinates (0,0,0,1),
i.e., is the plane §,, or x, = 0, and z is the point d,, then the points d;, d2
and d, lie in €. Since every point x = (x,,2,,%,,0) of £ can be expressed in
the form z = 2,d, 4~ x,d, + x4d;, it follows from the previous discussion
that x,,x,x, are projective coordinates in § of the point x. Hence C will

3
have an equation of the form 2 agxicy = 0, ag = au, where | ;| 52 0.
1,k=1
Considered as a locus in P3 the equation of C is clearly satisfied by z = d,.
Moreover, if y = (y,,¥2Ys.Y4) satisfies the equation, then J=(y3,92Ys.0),
in £, also satisfies it. Every point of the pencil L(7,z) is on the locus,
since by inspection Ay -+ pd, satisfies the equation. Conversely, every
point of L(a,z) satisfies the locus, where a is a point of the conic. Hence
3
the equation of the cone K is also }: agrizy = 0. If d,,d,,dy form a
ik=1
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self-polar triangle with respect to the conic, K takes the simpler form
3

Y bap=0.
i=1

41. Collineations of the Projective Space
A collineation of the projective space P? is defined to be a mapping of
P2 on itself which, in suitable coordinates, has the form
T; = x5, i=12,3,4.2

Under this collineation the plane with coordinates % goes into a plane
with the same coordinates: & = &;. Therefore

41.1 A collineation preserves all incidences (including those of point
(41.1) and line and plane and line).$

The following facts are obtained exactly as in the plane case:

In a fixed coordinate system x; the general projectivity W of P?
(41.2) takes the form

4
o= Y aam, =1234, |a|5=0.
k=1

In a specified order, there is exactly one projectivity which carries five
given points, no four of which are co-planar, into five given points with
the same property. If Ay denotes the co-factor of ai divided by |au |,
then the inverse of ¥ is the collineation:

4
y-1 . X = 2 Am‘xé, i = 1»2’3’4! IAMI ;é 0.

k=1

Induced by ¥ are the plane transformations:

4
Vg =3 Aak, i=1234
k=1

4
Y-l f = Za,,,-ii., i=1,23,4.
k=1

As a consequence of these facts:

(41.3) The cross ratio of four planes, four points in a pencil, or of four
: concurrent lines in a plane, is invariant under a collineation.$

20nly collineations of P® on itself will occur, and none between different spaces.
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Also, from (41.2) it is clear that:

1.4) The mapping of [x,y] = [Em] on [x",y']=[E'/'] induced by ¥,
: regarded as either a point or plane iransformation, is a projectivify.

The collineation ¥ maps all points in a plane £ on points in the image
plane £. Every point ' of &' satisfies 2'-&' = 0, which implies

(WY . GEW ) =zx.£=0,
hence every point of &' is the image of a point in ¢. From (41.1) it follows,
then, that ¥ induces a one-to-one, incidence preserving mapping of £ ont’.
This, with (9.1), implies:
(41.5)  The mapping of the plane & on &', induced by ¥, is a collineation.’
Exactly as in Section 5 it is seen that:
(41.6)  The collineations of P? form a (non-Abelian) group.$
As in the plane case, the theorem that

A one-to-one, incidence preserving transformation of the projective
41.7) 3,0+ . P
space P3 on itself is a collineation

can be reduced to establishing

A one-to-one, incidence preserving transformation, W, of the pro-
(41.8) jective space P3 on itself is the identity if it leaves five points fized,
no four of which are co-planar.

Let a;, i = 1,2,3,4,5, be the fixed points in (41.8). The plane » determined
by a,,a4,a, goes into itself since these points are fixed. Similarly the line
L determined by a, and a; maps on itself. Because no four of the five,
fixed points are co-planar, the point f in which L cuts v is not a,, a3 or a,.
Since f is fixed under W, the mapping of n on itself induced by ¥ has four
fixed points. From the main theorem for the plane, ¥ induces a collineation
on 7, which, having four fixed elements, is the identity. By the same argu-
ment, all ten planes determined by triples from a,,a,,a4,a,,a5 are pointwise
invariant under W. Any line which does not lie in any of these ten planes,
intersects them in at least three different points, hence goes into itself
under U'. Every point, being the vertex of a line bundle, must then go into
itself under .

Analogous to a plane homology, a space homology is defined as a col-
lineation of % on itself which leaves a plane v pointwise invariant and
which maps into itself every plane in a bundle a, where a is not on .
The point a is called the center, and v the axial plane, of the homology.

3An analytic proof of this fact, though longer, has the advantage that it can be
extended to complex, projective space. Since (9.1) does not hold for complex, project-
ive planes, the above proof lacks this extension.
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With the same conditions, but with a on v, the mapping is called an
elation. In either case, it follows that every line through a goes into itself,

hence a point and its image are collinear with a. We have, then, as in the
plane case:

A homology ® is uniquely determined by its axial plane, non-
(41.9)  incident center a, and one corresponding pair z,%’, collinear with a,
neither of which is a or on v.

Proor : Let b,,b, by be three non-collinear points of =, no one of which
is on the line [a,x]. Then no four of the points b,,b,,03a,x are co-planar,
and this is also true of the set b;,b,by,a,x'. Hence, there is exactly one
collineation ® mapping the first set on the second in the order indicated.
Since the points b are fixed, v goes into itself, and the line [a,z] is invariant
because a,  and x’ are collinear. Therefore z,, the intersection point of
and [a,z], is fixed. Having four fixed points, no three collinear, n has every
point as a fixed element. A plane £, through a, has the line [£,1] and the
point a as fixed elements hence £ ~ £ and ® is a homology. 1n particular,
when 2’ ~ z the homology is the identity. Also, it is clear that ¢ induces
on every plane £ of the bundle a plane homology whose center is a and
whose axis is the line [£,7].

A homology is defined to be harmonic if every corresponding pair is

separated harmonically by the center and the point in which their line
cuts the axial plane.

A homology @ is harmonic if one corresponding pair, x,x', is
(41.10)  separated harmonically by the center a and the point in which
the line [x,z'] intersects the axial plane .

For let y and y’ be any other point and image. Then ¢ induces a homology
in the plane determined by [2,2'] and [y,y’]. Since by (9.6) the plane homol-

ogy is harmonic, the points y,y’,a and the intersection point of v and
[a,y] form a harmonic set. Also, as before:

Given a plane v and two distinct points x and x', not on =, there
(41.11)  is exactly one harmonic homology ®, which has = for its axial
plane and which maps x on x'.

Let x, be the intersection point of n and [z,x'], and take a to be the har-
monic conjugate of x, with respect to  and z'. From (41.9), there is exactly

one homology ®, with axial plane n and center a, such that x® — z2'. By
(41.10), @ is harmonic.

The discussion of the plane case suggests that a mapping of the form

(41.12) o= 4 az, =123, zj=2,
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is an elgtion. By inspection, every point of the plane (0,0,0,1), that is
z, =0, is fixed. The mapping is a collineation since its determinant has
the value 1. The induced plane transformation,

E‘Ii = gi, i = 1’233’ E‘,; - algl - aggz - asEs + 549
has for fixed elements the planes 2 whose coordinates satisfy
@51 + @p + 458, =0.
But this is the equation of the point (a;,a,,a,,0). Hence the mapping is
an elation whose axial plane is x, =0 and whose center is the point
(ay,05,03,0). If y = (Y1,Y2Ys1) and z = (2;,25,25,1) are an arbitrary pair of
points not in the axial plane z,=0, then (41.12), with @i =12z -1y,

i=1,2,3, carries y into z. The same argument as in (9.8) shows that there
is only one such elation with x, = 0 as axial plane. Therefore:

(41.13) Given a plane «, and a distinct pair of points z,x', not on -,
' there is exactly one elation ®, with axial plane =, such that x® =x'.

Thus far the situation has paralleled the two-dimensional case. However,
differences now appear. In the plane every involution was shown to be
a harmonic homology (see (9.7)). But in space an involution need not
even possess fixed points.4 For instance,

!
L=y, L=y, L=,  Ty—=-X

is an involution, but to be a fixed point a = (a;,a,,a5,a,) would have to
satisfy

Wy =y =-a/} and A= ag= - @G/}
for some real, non-zero X. Since a 3% 0, a, and a, cannot both vanish. But
if either is not zero then 3 = — 1 and ) is not real. Even when an involution
in P does have fixed points it need not be a harmonic homology. An
example is the collineation

! —
le. = I, Ty == Ty x*,; = — g, Ty = — X4

The planes z; =0 and z, = 0 meet in a line of fixed points, as do the
planes z; = 0 and x, = 0.

An involution ® which leaves all points fixed on two skew (i.e., non-co-
planar) lines, L and M, is called biaxial, the fixed lines being the
axes. Any point z (sec Figure 89), not on L or M, lies on exactly one line
N which intersects both L and M. For the plane (z A L) intersects M in

‘Hence the analogue of (9.2) does not hold. In (9.2) we used the fact thajc the equation
AQM) = 0 (see (9.4)), whose roots determined the fixed points, was a cubic and so had
a real root. The corresponding equation is now a quartic and may have no real roots.
The general fact is that a collineation on itself of an even dimensional prOJectxve_space
must have fixed elements, while for odd dimensional spaces collineations exist without
fixed points (compare with the one-dimensional case in Section 8).
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a point y and the line N, =[z,y] in (x A L) intersects L in a point z.
Also, of course, N.=[(x A L), (x A M)]. The involution cannot have
any fixed point which is not on L or M, for it would then have a fixed
quintuple, no four co-planar, and would be the identity. Because © leaves
y and z fixed, it carries N; into itself in an induced hyperbolic involution
having y and z for fixed points. Hence, x and its image separate y and z
harmonically. Summed up:

For any two skew lines L and M, there is a unique biaxal invo-
lution ® having L and M as axes. A pointx, noton L or M, and its
(41.14)  image x® are harmonic conjugates with respect fo the points z
on L, and y on M, which form with x a collinear triple. Every
plane in the pencil on L and the pencil on M maps on ifself.

Fig. 89

The last remark is a consequence of the fact that any plane through L
cuts M and so has a fixed point and a fixed line which are not incident.

(41.15) An invqlution of prqjective space which has a fixed point is biaxial
or else is a harmonic homology.

Let ¢ be the involution and a be a fixed point. We consider two cases.
1) Every line through a goes into itself.

ljhen every plane through a, being determined by a plane pencil of inva-
riant lines, is also invariant. Hence ¢ induces on every plane through a a
homology, which, by (9.7), is harmonic. If the axes of two of these plane
homologles were skew, then, by (41.14), ® would be biaxial, which is
clearly impossible. Hence the axes of all the plane homologies lie in a plane
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v, and ¢ is a harmonic homology whose center is a and whose axial
planeis .

2) There is at least one point y such that its image y' does not lie on
[a.y].

Since ¢ carries a,y,y’ into a,j’,y it maps the plane 4 of a,y,y’ on itself, and
so induces in 4 a harmonic homology. Because [a,y] is not invariant, a is
not the center of the homology and so must lie on the axis L. If b denotes
the plane homology center and all space lines through b are invariant, then
@ is a harmonic homology by the reasoning of case 1). On the other hand,
if a line through b is not invariant, then since b is a fixed point we are back
to the start of case 2). The same argument shows then that b is on the
axis M of a harmonic homology induced in a plane f (not «) through b.
Beeause L and M cannot be co-planar it follows that ¢ is biaxial.

We consider next the notion of a perspectivity in space. Let  and '
be two distinct planes, with L == [n,n']. If z is a point not onn or«’, then a
line through z cuts  and «' in the points x and x’ respectively and the
mapping x — z' is said to define a perspectivity between the planes
from the center z. Analogous to (7.1) we prove:

A collineation ¥ of the plane « on the plane =’ is a perspectivity

(41.16) if it leaves fixed every point (or three points) of the line L==[x,%'].

Proor: Let x and y be two points of » which are not on L. Then [z,y]
intersects L in a point a. Since ¢ leaves «a fixed and preserves incidence,
the line [2',y’] also contains a. Hence, the lines [z,z'] and [y,y'] are co-
planar and intersect in a point z. If now w is any point of n which is not
on L or [z,y], the same kind of argument shows that [w,w'] must intersect
both [z,x'] and [y,y’] and so must pass through z.

Every projectivity ® of a planer on a plane ' is a product of four

(41.17) or fewer perspectivities.

Proor: Assume first that v and ' are different. If L = [n,n'], then
Ld is a line L’ in v/, and ¢ induces a projectivity ¢’ of L on L’. From
(7.2) or (7.3), ®' may be expressed as the product of line perspectivities
@f,- - -, in 7', where k < 3. Let a' denote the center of the perspect-
ivity ®f of Li_yon Ls, i == 1,2, - -k, where Ly=L and L= L'. Through
L; take any plane «¢ distinct from ', i = 1,2, -,k, and denote by ®; the
perspectivity from aé of 71 on v¢, i =1,2,-- -k, where n®=mv. Then &¢;
induces the mapping @i. Hence ©~1d,d,. ..y is a projectivity of 4’ on
vt which leaves every point of L’ fixed and so, by (41.16), is a perspectivity
®,,, of 7' on ¥ from some center w. Since ©;%, is also a perspectivity,

(blc+1 e (I)*lc[)l. . .(l)k implies that ¢ = ‘1'1(1’2' . .d)k(p;_l*_l & the product of
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k + 1 perspectivities where k + 1 (4. If L= L’ and the in'tersectio.n
a of L and L’ corresponds to itself under &, them k==1. This case is

1

w n "
AX I
T )I_
v L - »*
. AN x
P
P
[ at

Fig. 90

illustrated in Figure 90. When L34 L' and a is not mapped on itself
by @, then k=2 asillustrated in Figure 91, where z! =z ®, and 2?=2®,®,.

Fig. 91

Finally, if 4 ~ 4’ then a suitable perspectivity @, takes n into vy + 7'
such that [n,1'] does not correspond to itself under #&,. By the preceding
part of the proof, &, is then expressible as the product of three (or fewer)
perspectivities. Thus (41.17) is established.5

SThe dual to a perspectivity between the plane 1,1 from a point z is a perspectivity
between bundles y,j" from a plane ¢, The formulation of the definition and the proper-
ties analogous to (41.16) and (41.17) are left as exercises for the reader.$
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42. Line Coordinates. Linear Complexes

Coordinates have been introduced in P® for points and for planes but
not for lines. The notion of fixing, by coordinates, a geometric element
other than a point or plane and then studying the loci of equations in
these coordinates is due to Pluecker (1801-1868). In particular, coordinates
for lines in space, the topic of this section, are due to him.

In developing this idea the following Laplace expansion of a 4th order
determinant will be useful.

a, a, a; a
by by by b

_la a C; €y a, ag Ca €
€ G € cy| | b by’ dy d, | by by| |dy d,
(4__2.1) dl dz da da.
4 a, a, Cy csl n TG d] |6 ¢
b, b, d, d b, by d, d,
a; a, G G ag Q4 G G
Tl b, by d, d, by byl |dy d, )

This special case can easily be verified by computation.

Now, corresponding to the distinct points z and y, consider the numbers
pir defined by
I L A
(42.2) Pix = Ui U
These are not all zero since x A y. If the representations of  and y are
changed, then each of the numbers pi; is multiplied by the same factor.
On [z,y] any point z, distinct from x and y, has a representation of the
form z=1>x + py, where X2 0 and p 2 0. Then

Ty Tk Xy Tk Ti Xi ,
Z oz Ar; 4wy, W 4 Y Ui Yk

hence the ratios of the numbers p: are unchanged if y is replaced by z.
By the same token, the ratios will be the same if 2 and y are replaced by
any two points of [x,y] which are distinct.

We wish to show that with suitable restrictions the numbers pi can be
taken as coordinates of [x,y]. First we observe that these numbers are not

’ ia k= 1,2,3,4.

arbitrary. Obviously pi = 0 and py = — pui, hence only six of the num-
bers can be interesting. We follow tradition in singling out the sextuple
(42.3) P = (P12:P13:P14:P34sPaz:P2s)-

Even these six numbers are not arbitrary, for in (42.1) if weseta=c==2x
and b = d ==y, we see that the numbers in p satisfy the relation

42.4) P12Psa + P1sPez =+ P1aP2s = 0.
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Subject to this restriction however, the numbers piw can be taken for the
coordinates of the line. That is:

Given six numbers Pyo,P13P145PasPazsPagy NOL all zero, which
(42.5)  satisfy (42.4), there is exactly one line [x,y] such that the numbers
(42.2) obtained from x and y form the given sef.

First, to see that there is not more than one line with given pi it
suffices to show that the set obtained from x and y determines the inter-
section points of [r,y] with the planes x; =0, i = 1,2,3,4. For [z,y] can
lie in at most two of these planes, hence at least two of the intersections
determine [z,y] uniquely. Taking the line in the form x + py, the valuc—*:s
A=y, and p=-=, clearly give the point of the line in x, = 0. This
point is (0, - yy%y + 1Y, ~ Ys%s + Ti¥s, ~ Y%y + TYs) = (0,P12.P13:P1a)-
Similar calculations for the remaining planes show :
The line [x,y] infersects the planes z; =0, i=1,2,3,4, in the
“points”  (0,p19,P13:P1a)s (= P12s0sPogs— Pag)s  (~Prgv— P2ss0sPsa)s
(= P1asPazs— P3s0) respectively, at least two of which represent
(42.6)  different points.® Conversely, if the numbers pyu are not all zero,
then at least two of the above quadruples have a non-zero coordi-
nate since each number pi appears in two of them. These two quad-
ruples, then, represent points and hence determine a line.

If now a set of numbers pi is given, not all of whose members are zero, and
which satisfies (42.4), we can select a non-zero element pirand work with
the two points of (42.6) in which it occurs. For example, suppose p,, 5 O.
Then we select the points (0,p;9,p15.p5,) and (= P12:0,pga— Dg) to play
the roles of  and y, and from these determine a new set Pu in the order
of (42.3). By direct calculation, the sextuple p is

(s> P1oP1sy PraPie> — PraPas — P14P2s = P12P34s P12Pa2» P12Pss)-
Because p;, 3£ 0, p is proportional to p hence the line connecting the two
selected points yields the given Pix set of numbers.
Instead of determining a line by two of its points, z and y, it may be de-
termined by two of its planes, % and . Setting

(42.7) p— |4 &

N Mk
then by duality of the previous argument, a set of numbers Py, not all
zero, and satisfying (42.4), also determine a line uniquely. There is thus

a second, and equally justified, set of coordinates for the line. These
systems, however, are not independent, since:

(42.8) p12:p13:p14:p34:p42:p23=P34:P42:P23:P12:P13:P14.

’ i’k = 1921394’

#Quotation marks are used because not all of the quadruples need be 5= 0.
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To indicate how this can be established, we prove, for example, the end
equation, namely that Py3pyy — Pyypss =0. The fact that z and y are
each on both the planes £ and 4 yields the equations:

29 zi=0, xon=0 y-E=0, y.q=0.

Multiplying the first equation by — v, and the second by £;, and adding
the two, produces
2yPyy + 23Py3 + z,Pyy = 0.

The same operation with the last two equations gives

Py + ysPig + yuPry = 0.

Multiplying the first of the new equations by — y, and the second by z,
and adding gives the desired result, P,3pys — Py4p40 = 0.

Since the sets pix and Py are only determined to within a factor, when-
ever it is convenient to do so we will assume that the proportionality
factor in (42.8) is one, that is that p,, = Pg,, p;3 = P,,, etc.

‘We now consider some elementary problems of analytic geometry using
line coordinates. That is, a line M is now fo be thought of as given by a
sextuple myy, or alternately by a sextuple My, where it may be assumed
that m;; = M,,, etc. We seek first a criterion that a given line lies in a
given plane. If x and y are any two points of M, then for suitable repre-
sentations of these points, and any plane g,

Mmaie = (XilYk — Tili)de = (Y - &) — Ya(ee - &),
and hence

~ . 3 .
Z myZ, = (Y - 5) — ga(x - 5).
k=1

v

IfM is in ¢, then x and y are also in £, and y-Z=2-£=0 implies
4

zmzm =0 for i=1,2,3,4. Conversely, the equations meck =0
k=1 k=1

for i =1,2,3,4, express the fact that the points xf = (mu,mig,mis,Mia),
i =1,2,3,4, which are not the zero-quadruple, lic on the plane £. Since
my = 0 and my, = - my;, the argument of (42.6) shows that if the numbers
my;; are coordinates of a line, and hence not all zero, then at least two of
the quadruples «? really represent points of . Therefore:

The line M lies on the plane & if and only if the relations
(42.10) mekikzo hold for i =1,2,3,4. Two of these, for which the

P}
left side is not identically zero, insure that M is on .
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The condition for M to pass through the point z, is, of course, that:

4
(42.11) Y Mam =0, i=1234"
k=1

Next we ask when the lines M and M’ intersect. If the coordinates of
the lines are determined by their respective point pairs z,y and z'.y,
then the lines intersect if and only if z,y,2’ and y' are co-planar, that is, if
and only if |z,y,2',y’|=0. The relation (42.1) expresses this in the
form:
42.12) Two lines M and M’ intersect if and only if

: MyaMy + MygMyy + MygMay + Mgy, + MypMyg + Mgmy = 0.

Since expressions of this form occur frequently, where a and b represent
sextuples of the form (42.3), we introduce the notation:

(4213)  w(a,b) = agbyy + Agebyg + Aagbis + A1obgy + Aigbsy + A1ades.
Then w(a,b) = w(b,a), and

(42.14) 0(@,0) = 2(@yatyy + U333 + A14055)-
Also, as for any bilinear form:
(42.15) w(a + pb, Na' + p'b)

= Wo(@,a)+ \po@b) + Vpo(@,h) + pr'e(b,b).
The condition (42.4) for the six numbers my, not all zero, to be the coordi-

nates of a line M becomes w(im,m) = 0, and the condition for the lines M
and M’ to intersect takes the form w(m,m’) = 0.

The lines M satisfying a linear equation
(42.16)  w(a,m) =0, where not all as; are zero,
are said to form a (linear ) line complex. Two cases are distinguished:
1) w(a,a) =0.
This is the condition that the ay define a line A, since not all ay; are zero,
and o(a,m) = 0 states that A and M intersect. Hence:

If w(a,a) =0 the complex (a,m)=0 consists of all lines M
(42.17)  which intersect the line A, called the axis of the complex, which
has a for its coordinates.
This trivial type of complex is called degenerate.
2) w(a,a) 20.
To picture the distribution of lines in this case we investigate those lines
of the complex which are concurrent at a point z. The condition for the

7If the Mz are considered as variable, then (42.11) are the equations of the lines in
the bundle x. Similarly (42.10) yields the equations for the lines in the plane E.
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line M, passing through z and y 4+ x, to lie in the complex is that
X Xp
ln',.[;-—- y/l_ ykl

asy(T1Ys — Tol) + Aua(Z1Ys — TaYy) + Aa3(T1Y4 — Taly)
+ ayo(T3hq — Tylg) + Wya(TeYs — ToYls) + Ara(TaYs — Tays) = 0.
n
If this is rewritten in the form Z cayixr = 0, then the coefficient

i,k=1

satisfy w(a,m) = 0, hence that:

matrix is
0 — Uy —Qgy — dgg
a4 0 -a a
(42.18) (cw) = o
Ay gy = Oy

Aoy — Qy3 ay2 0

Therefore the lines of the complex, which pass through z, lie in the plane %,
where

4
(42.19) b= cawe. k=123
k=1

From (42.1), the determinant | ¢y | has the value

| e | = (ayaltyy + Qyalyy + Ayu09)* = (1/4)w?(a,a) == 0.

The relation (42.19) suggests some sort of spatial analogue to a plane
polarity (see Section 10). Here, however, ¢ix = — ¢k, Which was impossible
in the plane case since there it implied that the corresponding three-
rowed determinant |ci| was zero. To consider the matter more fully, a
correlation of the projective space is defined as a one-to-one mapping of the
points on the planes in the form:

4
(42.20) =Y buwi, i=1234,  |bu|=0.
k=1

When By is the cofactor of by divided by |bw|, the induced mapping
of the planes on the points is given by :

4
(42.21) 2= Bube, 1=1234.

k=1

The inverse transformations are:

(42.22) z=3BuEl and %= butk
k k
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The square of (42.20) is a collineation of P3 on itself. This collineation is
the identity if and only if (42.20) and the second transformation in (42.22)
coincide, that is, just as in the plane case, when and only when by = by.
As before, biz = \by = 32b;; implies X == 1, but, as observed above,

the case » = — 1 cannot now be excluded. We call a correlation of P3 on
itself of the form
(42.23) G=bute, |ba]|5£0,  bu=- by

k

a null system, and a correlation of the form
(42.24) & =2bikxk, | ba | 520, bix = bis
k

a polarity of P3.8

In both cases, the corresponding point and plane are called respectively
the pole (of the plane) and the polar plane (to the point). In both cases a
pencil of points corresponds to a pencil of planes and conversely. Hence
to a line M, as the carrier of two incident point and plane pencils, there
corresponds the line M’ carrying the incident image plane and point

pencils. The line M’ is called the polar to M. We can formulate this more
intuitively:

If the line M is defermined by the points x and y (the planes &
(42.25)  and «) then its polar line M is determined by the planes polar fo
x and y (the poles of £ and v ).

. The point z is said to be conjugate to the point y if x is on the plane con-
Jugate to y. Similarly, the plane £ is conjugate to w if it contains the polar

point to n, The conditions for conjugacy of z and y, and for § and n, are
respectively:

4 4
(42.26) Y baym=0 and ¥ Bunki=0.

LE=1 i,k=1

This, of course, implies that the respective conditions for  and v to be
self-conjugate are Zbimx;c =0 and ZBummk =0.
ik ik

In a polarity, points which are not self-conjugate always exist. For
not all the numbers by, are zero. Hence for some i, say i =1, there is a
number I?’"‘ # 0. If b;; £ 0, then d, is not self-conjugate. If b,, 3¢ 0, then
(1,2,0,0) is not self-conjugate for any value of ) other than a root of
byy + 2kbyy + 3by, = 0. For a null system, however, cvery point is

#Some authors call (42.23) a null polarity and (42.24) an ordinary polarity.
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self-conjugate since Z by, = z bty = (1/2) E(bik + brs)xive = 0.
Therefore:

A correlation of a projective space on itself, whose square is the
(42.27)  identity, is a null system when every point is self-conjugate,
otherwise it is a polarity.

Polarities are considered in more detail in the next section. In a null
system every point is self-conjugate, hence the line joining two conjugate
points x and y lies in both of their polar planes. Therefore every line
determined by two conjugate points is self-polar.

If now the b of a null system are identified with the elements ¢; in

(42.18), then the condition for conjugacy of x and y becomes Zcikyixk= 0.
Thus we have found :

A non-degenerate (linear) line complex consists of the self-polar
lines in a null system. The lines of the complex through a given

(42.28)  point form a pencil in the plane polar to the point, and the lines
of the complex in a given plane form a pencil through the point
polar to the plane.

The proofs of the following two facts are useful exercises to increase
familiarity with linear complexes.

Let a,a?,- - -,a® be five distinct points such that the five planes through
at, @2, [ = 1,2,3,4,5, are all different, where a®=a!, a’ = a2, etc.
The correlation which associates the plane through «,a*,a®2 with @+ is
a null system.

It is obvious that all degenerate complexes are projectively equivalent.
The same holds for non-degenerate complexes because, in an appropriate
coordinate system, a given non-degenerate complex takes the form
P12 -+ Paa = 0.

Before continuing the investigation of line loci, it will prove helpful,
first, to develop the theory of quadrics.

43. Polarities and Quadrics
A polarity @ had the forms:
(43.1) ii :Z biﬁxkr, i - 112:3:43 bik == b/s’i, I b'ilcl ¢ 0'
k

(432) = Buk, i=1234, Ba=Bw |Bu|=/bal|%
k
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where By is the co-factor of by in (bi) divided by | biz|. In each non-self-
conjugate planef, the mapping ¢ induces a polarity ¢(£), and induces the
polarity ®(z) in the bundle z if z is not self-conjugate. For if x is any point
of &, then &, the polar to z, is not € and hence cuts it in aline M,. Then
x — M, is the plane polarity ®(£). If the line M, in £ is given, the point x
can be determined as follows. The pencil of planes on M, maps under ¢
into a pencil of points carried by the line Mf, polar to M. Because £ is not
self-conjugate, M; does not lie in £ and hence intersects it in the desired
point x. That x — M. is actually a polarity in & follows from ®2 heing the
identity. If z is not self-conjugate then &, = z® is also not self-conjugate.
In this case both polarities ®(z) and ¢(&;) exist. As in the plane case they
are both elliptic, or else both hyperbolic.$

If 2! is any non-self-conjugate point and £, is its polar plane, consider
any triple 22,2%2* in £, forming a self-polar triangle with respect to the
induced polarity ®(¢,,). In the plane polarity, 2® and 2 lie on the line M .
polar to z?% and this line is determined as the intersection of £,, and §,. Since
x?is on &4, &, contains 2%, hence a1,23,2¢ determine the plane polar to x2.
Because of symmetry, a plane through any three of the vertices of the
Letrahedron x%,2%2%2x* is the polar plane of the fourth vertex. Such «a
tetrahedron is called self-polar, and from (42.25) it is clear that in such a
tetrahedron a line through two of the vertices is polar to the line through
the remaining two.

As in the plane case, when the polarity has the points d,,d,,d,,d, as the
vertices of a self-polar tetrahedron, it takes the simple form:

(43.3) & = bz, bi 20, 1=1,234.¢

The conditions for point and plane conjugacy are respectively:

4 4
(43.4) Dby, =0, 3 bink =0
i=1 i=1

and those for self-conjugacy are:

4

4
(43.5) Yoar=0, Y bz=0.

i=1 =1

Consider now a line M with coordinates my; determined by the points x

and y. If * — £ and y — v under the above polarity, then the line M,
polar to M, has coordinates

_ [ bz bk-.’lik

M — & & _
| bay: bey

ik
N Nk

== bibkmik.
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From (42.8) then,
Mgy Myg @ MYy : Mgy & My, & My

= My : My : Mg : Myy 2 My 2 My,

= bybymy, : bybyiygy 1 bybymyg & bybymnyy @ b bymyg : b bymy,.
For M to be self-polar, m}; must be proportional to my, hence the condi-
tion is:
(43.6) bbymy, babymy, _ bybsmyg — bybomy, _ by by, — by bymy,

' My, My My, mgy My, Myg

Not all the numbers ms;. are zero, hence if ) is the common ratio in (43.6),
and say m,, 7% 0, the equality of the first and fourth fractions implies that
22m3, = b3bimi, = b bybgb,m%,. Hence:

(43.7)  bybybsby > 0, if (real) self-polar lines exist.

It follows from (42.25) that all the points on a self-polar line and all the
planes through it are self-conjugate. Conversely, a line consisting of self-
conjugate points is evidently self-polar.

The polarily in (43.3) can be simplified further (by a coordinate trans-
formation of the form x{ == ;) to one of the following forms.

(‘13.8) 2.1 = T, 52 == Ly, £3 = X, E--l = Xy.
(43.9) L= L= = Li=-x,
(43.10) L=, L=, L=-5 L=-2

In the first case the locus of self-conjugate points, which is given
4

by E.rf =10, contains no real points and is called a non-degenerate,
i=1
imaginary quadric.® In the case of (43.9) the self-conjugate locus,
22 +a + 2k—a2;=0,

has real points. Because (43.7) is not satisfied, there are no self-polar
lines. Hence no lines are contained in the locus and it is spoken of as a non-
degenerate, non-ruled quadric. For the third polarity, (43.10), the corre-
sponding locus, 2} + z}— a3 —25=10, which has real points and also
satisfies (43.7) is called a non-degenerate, ruled quadric. In this case
(43.6), with % == == 1, shows that the self-polar lines form two families
F and F'. Respective lines of the families, M and M’, have coordinates of
the form:

M : (myy, My3, My, Myy, — Myg, — Myy)

M’ : (my,, Mis, My, — My, My, Miy).

4
*A quadratic surface Z agxixe = 0, aj. = ap;, is called non-degenerate when
k=1
| agg| = 0.
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The condition (42.4) then becomes:

(43.11) My —miy —miy =0, mif-mg - m=0.

Since not all the numbers my; are zero, (43.11) implies that m,, 20
and my, > 0. Hence each line of F intersects every line of F', and con-

versely, since clearly w(m,m') == 0. However, two different lines, M and
M, of the same family do not intersect. For we have:

(43.12) w(M,) = 2(My,TMy, ~ M3y, — My TM,,).

Because m;; 320 and ;520 we may suppose m,, == M;,. Then
o(m,m) = 0, in conjunction with (43.11), would imply
= (Myy = M) + (Myg ~ M) + (my, — My,)2 = 0,
and this, with my, = ffi;,, would make M = M.
We will continue with this topic in the next section, but before we leave
it, it may be instructive to compare the present procedure with that of

elementary analytic geometry. In homogeneous coordinates, the self-
conjugate locus of (43.10), for instance, would be written as

af- 2§ =af- a3,
and treated in the following way. With % an arbitrary parameter, x is a
point of the locus if it satisfies the simultaneous equations :

%y~ Ty = N(Zy — Ty) or { Ty — Ty = NZy + Tp) (

NZy + 3) =, + @ t My + 23) =24 — T )
The first and second of these equations are planes with coordinates
(1,4=1,~3%) and (b= 1,A— 1). We can now calculate directly the coordi-

nates Mi; of the line M’ in which they intersect, and then use (42.8) to
obtain mi;. The results are:

43.13) Me=my=-1-0% Miy=mj, =2, M}, =mjy =~ 1 +)2

My =mp =1+, My = mjy = 2), My = mj, = - 1.
Comparing this with (43.11), it follows that M’ is an element of F'. Also,
because of (43.11) and m, == 0, every element of F' can be written in the
form (43.13). A similar calculation with the second set of simultaneous
equations shows that these planes intersect in the lines of F.

The dual to a (non-degenerate) point quadric is a (non-degenerate)
plane quadric. Tt consists, by definition, of all self-conjugate planes in a
polarity. The tangent plane at a point x of a point quadric is the plane &,
polar to z. Similarly the point of contact on the plane £ of a plane quadric
is the point xy, polar to &. Clearly, and as one can calculate in (43.9) or
(43.10), the tangent planes of a point quadric form a plane quadric. In
turn its contact points form the point quadric, hence, as formerly, one may
drop the distinction between the two and simply speak of the quadric.
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A tangent line of a quadricis any line lying in a tangent plane and passing
through the contact point of the plane. Thus a quadric may also be con-
sidered as the locus of a (three parameter) family of lines. The equations,
in line coordinates, defining the family could easily be derived from (43.9)
or (43.10).

A tangent plane of a non-ruled quadric C has its contact point
as its only intersection with C. For if C is defined by (43.9), the tangent
plane ¢ at y is given by ryy, + Xays + Xgyz — 2,4, = 0. Since y lies on C,
Y+ y3 + y3-y3=0, hencey,52 0. If zis a point of C, assumed to be on
£, then z, ¢ 0 and we may take z,= y,. From the equation for y to be
on C, together with the equations

B2+ +B-22=0 and zy, + 2, + 2%Ys —2Ys =0,

it follows that (z, - y;)* + (22 — Y2)* + (23 — ¥3)*=0, and hence that y ~ z.

If M is a self-polar line in a ruled quadric C, then the pointsof M are
the poles of the planes through M. Thus if x is the intersection point of
the lines M and M’, from the families F and F' respectively, the pole of
the plane £, which spans M and M’, must lie on both M and M’, hence is
z. This and the previous result can be summed up in the form:

If C is not ruled, then a tangent plane & intersects it in its contact
(43.14)  point only. If C is ruled, then  cuts it in the two linesof F and F'
respectively through the contact point of &.

Next we consider the relation of C to a plane & which is not self-conju-
gate. The pole x of £ is also not self-conjugate, and the induced polarities
®(z) and ®(£) are either both elliptic or both hyperbolic. In the latter
case, the self-conjugate elements of the two polarities form a cone K, and
a conic C, respectively. The construction of ©(%) shows that the points
of C, are also self-conjugate with respect to ®, and therefore lie on C.
Hence C, is the intersection of £ with C. By duality, K, is the intersection
of the plane bundle on z with C as a plane quadric. Hence K, is formed by
the tangent planes of C passing through z, and the contact points of the
planes in K, form C;. We have the theorem, then:

If &, with pole x, is not a tangent plane of the quadric C, defined
by the polarity ®, and if the induced polarity ®(§) (and hence

(43.15)  @(x)) is hyperbolic, then & intersects Cin a conic C, and the tangent
planes to C at the points of Cs coincide with the tangent planes of
C which passes through x.

In the usual way, a non-tangent plane which contains no pointof Cis
called non-intersecting, and is called intersecting if it cuts C. A point z, not
on C, through which there are tangent planes is called a tangent-cone
point, otherwise a no-tangent point. Thus £ is intersecting if and only if its



264 SPATIAL GEOMETRY [VI1.43)

pole is a tangent-cone point, that is, if and only if the polarity ®(§) is
hyperbolic.

Since a line intersects every plane (or lies in it), when Cis aruled quad-
ric every plane is intersecting. As a consequence:

If C is ruled, then for every point x not on C, the polarities ®(x)

43.16) g ®(%), induced at x and its polar-, are hyperbolic.

The form (43.9) for a non-ruled quadric shows that the plane 2, =10 is
not intersecting. Hence:

If C is real and not ruled, then both intersecting and non-inter-
(43.17) secting planes, and cone-tangent and no-tangent points, exist.

Also both types of induced polarities, hyperbolic and elliptic,
exist.

The fact that if two elements are conjugates with respect to a space
polarity they are also conjugates with respect to an induced polarity,
implies the following generalizations of (11.7) and (11.8). If x and z' are
conjugate with respect to the quadric C, and if [z,2'] cuts Cin u and v,
then x, 2, u and v form a harmonic set. If z is a no-tangent point of a (non-
ruled) quadric C, and a variable line through x cuts C in u and v, then the
locus of the 4th harmonic point to z, u and v is a plane.

The question arises, whether there is a three-dimensional analogue to
Steiner’s method of generating conics by intersecting corresponding lines
in two projectively, but not perspectively, related pencils. It will be seen
in the next section (see (44.10) and (44.13)) that a strict analogue exists
for ruled quadrics. If imaginary elements are introduced, this may be
generalized to arbitrary quadrics. For a non-ruled quadric carries two

families of imaginary lines. For instance a2} 4+ 23 + x2 —x3 =0 carries
the lines i '

§ n + ‘il's =Nz + 2) ) and | oz - lry =My + ) |
(Mzy-it) =24 -7, | D@, 4 7)) =24 — 7, }

However, this is very unsatisfactory from the geometric point of view.
{x method of obtaining all quadrics without using imaginary numbers
is the following. Let ¢ be a correlation between two bundles with different
centers, z and z/, so a line L in z corresponds to a plane £ = L& in z'.
L_Tnless all the intersections L n L® lie on a plane, they form a point quad-
ric. A plane quadric is generated by relating projectively the lines L in a
bundle z with the points x = L® in a plane {. The planes (L A L®) tra-

verse a plane quadric unless they all pass through one point. On these
questions see: Th. Reye, Die Geometrie der Lage.
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For the sake of completeness, we consider the locus C given by a degen-
erafe quadratic equation:

4
(43.18) Z apxi®e =0, Qp = s, || =0, notall ay=>~0.

k=1

As in the plane case, the equations

4
(43.19) N =0, i=1234,

k=1

have a non-trivial solution u == (uy,u,,ug,u,). Let u be taken as d,. Sub-
stitution in (43.19) shows, then, that a,=—a, = a3 = a,,==0, and
hence that a,, = a4, = a43 = 0. Thus the quadric reduces to

3

(43.20) > autiwe = 0.

iy k=1

As in the discussion of cones, we may interpret x;,r,xs as projective
coordinates in the plane x, == (. Then (43.20) represents either a degen-
erate or non-degenerate conic C, in this plane. As an equation in four
variables it then represents all points which lie on the lines joining d,
to the points of C,. If the determinant | ai |, i,k =1,2,3, is not zero, C,
is non-degenerate, but may be real or imaginary. When it is imaginary,
d, is the only (real) point of C and we call it an imaginary cone. When C,
is real (and non-degenerate), C is an ordinary cone. On the other hand,
when the determinant of the conic C, vanishes, C, degenerates to a point or
to two lines which may or may not be distinct. Correspondingly C is a
line, two planes, or a single plane.

A quadratic equation in more variables, say ,,%,, - -,¥n, that is,

n1

(43.21) Y awwm =0, a=aw |au|=0,

hk==1

may be thought of as representing a non-degenerate quadric Q in an
n-dimensional projective space P». Without developing the theory of
these quadrics, it is often helpful, in interpreting such an equation, to
use geometric terminology (compare next section). Thus a point
Y= (YpYa- - *»yns1) of the quadric Q_"is one which satisfies (43.21). The
tangent (hyper) plane of Q at y is Laumyk—-—-—o. For any point y, this

ik
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equation represents the plane polar to y. The quadric may contain straight
lines or, more generally, may contain P», where m <'n - 1. It cannot
contain a hyperplane since | ai | 52 0.1

44, Linear Congruences and Reguli

In discussing line loci further we will adopt the point of view just men-
tioned and will develop it in some detail, not so much because the results
are signifiant for our present purpose, but because the method is an
important one.

In the projective space P3, a line M is given by the sextuple
M = (IMy3,/My5,IM 4,M34,My2, Mg3)-

This sextuple may also be inferpreted as a point in a five-dimensional pro-
jective space P5. Conversely, given a point p in P35 with coordinate
pi, t=12,.--,6, we can define p;=p;5 Py = P13, Ps= P1s Ps = Pas
Ps = Daps Pe= Doz and take pi=- pu. However, since the coordi-
nates p; are arbitrary (save that they are not all zero) it is clear that
the numbers py associated with p will not, in general, serve as the coor-
dinates of a line in P%. They will do so, in fact, if and only if they satisfy
the equation
©(P,P) = 2(P1oP3s + P13Paz + P1aP2s) = O.

With p variable and with p,, = p,, ps, = p,, etc., this is a quadratic
equation of the form (43.21). The term 2p, ,p,,, for instance, can be written
as p;py + pgpy S0 that, corrresponding to (43.21), a;,=1and a, = 1.
The equation w(p,p) =0, then, defines a fixed quadric Q in PS5, which is
not degenerafe since its coefficient determinant, | ai |, is

000100

=(-1P¥=-13x0.

SO O = O O
_ o O O
-0 O O O
o O O O
o O O =
S O O = O

0 00

Po::nts of P% on (, and only these, define corresponding lines in P3. If
p lies on Q, then w(p,p) =2 aixpipr = 0. For a fixed p, then, whether or

i,k

not it lies on Q, the equation w(p,q) = Eaikp.,-qk =0 (in variable ¢) repre-
- ik
1°A non-degenerate quadric in P»

cannot contain a P™ with m > f——_—l, see Van der
‘Waerden, 2

“Einfithrung in die algebraische Geometrie,” pp, 31-32.
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sents the hyperplane polar to p with respect to Q. Thus, to the lines of the
complex w(p,m) =0, in P3, correspond points in P® on the polar plane to
p- Since m s a line in P, its corresponding point is also on Q. More exactly,
then, to the lines of the complex correspond the intersection points of Q
with the hyperplane polar to p. When the complex is degenerate, that
is when w(p,p) =0, its lines correspond to the intersection points of Q
with its tangent plane at p.

Lines in P?® (and points in P%) are given by sextuples, and lines in
P3 (points in P%) are called independent or dependent according as the
corresponding sextuples are independent or dependent. By (40.7) the
maximal number of independent points in PS5 is six. On the other hand,
the six points defined by the respective rows in the determinant | ax |
are clearly independent. By inspection, these points lie on Q, hence six
independent lines exist in P3, which is the maximal number.

Since there are not more than five independent points in a hyperplane
of P5 (see (40.5)) there cannot be more than five independent lines of P3
in a complex. On the other hand there always are five. For consider
w(p,q) = 0, where p is fixed. Since not all py. are zero, suppose for instance

P1s = p3 7 0. Then for ¢ of the form (9,,0,0,0,0,9¢), Zaikp.-qk =0 reduces
ik
to pagy + Pags = 0, which certainly has solutions in g;,g¢ for which ¢, == 0.

Whether ¢4 is zero or not, w(g,q) = Eaikqiqk = (491 + ¢39¢ = 0, hence q
ok

is on Q and defines a line in the complex w(p,m) = 0. Call this point

= (¢4,0,0,0,0,q3), where ¢! £ 0. In a similar way we find that

¢ = (0,g30,0.0,48), ¢* = (0,0,0,¢4,0,g8), ¢* = 0,0,0,0,48,43), where ¢; 5= 0,
are points of ( satisfying w(p,q) = 0. For a final point, ¢*> may be taken

" to be any point of () satisfying ¢, 54 0 and w(p,q®) = 0. It is easily seen
that such a point exists and that the five points of Q, ¢, are independent.$
Hence the arbitrary complex «(p,m) =10 has five independent lines.
Conversely, if five independent lines, M¢, i=1,-.-,5, are given, then
| m,mt,m2,m3,m4,m® | == 0 represents a linear complex containing the five
given lines.* Combined with the previous remarks, this implies:

A linear complex consists of the lines dependent on five independenl

(44.1) lines.

As a consequence of (44.1), every hyperplane in P% intersects (). The
corresponding case for ruled quadrics in ’® suggests that Q contains lines

1| m,m,m?,m3,m*,m® | is the determinant whose ith row is the sextuple, m?, namely
the coordinates of Mt
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in P5. The following theorem confirms this and shows, at the same time, to
which set of lines in P2 the points of a line in Q correspond.
If p' and p"' are distinct points of P, and
A(p/’p//) — w(pl,pl)w(pu’plr) - (Uz(pl’pu)’
then the line p ="Xp’ 4- ¥''p"", (W,\"") 3£ (0,0), bears the following
relationship to Q: when A(p',p’’) < 0, the line does not intersect Q;
(44.2)  when A(p',p'") >0, the line cuts Q in two distinct points; when
A(p',p") =0, but at least one of its terms, w(p’,p'), w(p'',p'"),
w(p',p"") is not zero, the intersection is a single point; when all the
terms in A(p’,p"") are zero, the whole line lies on Q (such a line cor-
responds fo a plane pencil of lines in P3).

Proo¥: By direct substitution, the variable point X'p’ + %’’p’’ lies on (
if and only if
(44.3) Ni(pl,p) + 2N(p'p") + Xhu(p',p") = 0.
For A(p’,p") <0 this equation has no real, non-trivial solution in A, A",
while for A(p',p"") > 0 it has two, which are distinct. When the coeflicients
in the equation are not all zero, but A(p’,p"") is zero, there is one real solu-
tion. Finally, if all the coefficients vanish, then all pairs, X',1"’, are solutions,
hence the entire line lies in Q. In the last case, w(p’,p') = w(p’',p'") =0,
hence the sextuples p’ and p' represent lines M’ and M'' in P®. Since
w(p’,p"") is also zero, M’ and M’ intersect in some point, say z. If we
choose y’ and y" respectively on M' and M", both distinct from X, we
may suppose that
_ % T
L
Hence, to the point Xp’ - X"/p’’ on the line [p',p"'] in Q, there corresponds
in P2 the line

Tk

toat Wall X
il + = R R R A
which joins z and the point Ay’ -+ Ay on [y',y'].
The facts of (44.2) may be obtained in terms of P3 alone as follows. The
polar plane to a point p! in P has the equation w(pl,q) =0, or

Pi¢: + Pits + Pigs + Pl + pigs -+ pigs = O.

It is natural, then, to call the hyperplanes of P5, w(pi,q) == 0, or the com-
ple_zxes. of P% w(pr,m)=0, = 1,2,-. .k, independent if the matrix
gpg), J=12-.k i=12,...,6, has rank k. From (40.3), four such
independent hyperplanes, w(phg) =0, j =1,2,3,4, as a simultaneous
system have two (non-trivial) independent solutions, ¢ =p’ and ¢ = p',
and every other solution is expressible in the form }p' + X'p". Thus

[ Xy T
my, = p;. and m:;‘; = p;;; = ‘ I}N l]” N
Ji Jk

1
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the line p=">%p’ 4+ XA’p” in P% is the intersection of the independent
hyperplanes w(p/,q) = 0, and must cut Q in points corresponding to the lines
of intersection of the four complexes, w(pi,m) =20, in P3. Hence (44.2)
can be reformulated as:

The intersection of four independent complexes in P? is empty,

(44.4) consists of two lines, of a single line, or is a pencil of lines.

The intersection in P® of three independent hyperplanes, w(pi,q) = 0,
j = 1,2,3, consists of all points linearly dependent on three independent
points ¢%,¢%,¢% that is, of all points p of the form

P=NG" + Aa® + 2% (yhakg) 7= (0,0,0).

The triple X = (X;,}5,}3), associated with p, may be regarded as a point,
in a projective plane P2. Since Q is a quadric, it is to be expected that
Peither lies in Q or cuts it in a degenerate or non-degenerate conic. Indeed,
the points p on the three hyperplanes which are also on Q, correspond to
the X-triples determined by

(44.5) w(p,p) = w<2hqi 27\14(1") = 2 Aiko(g,q%) = 0.

th=1

The plane P2 will lie in Q if (44.5) holds for all J-triples, which is possible
if and only if w(g,g*)=0 for i,k=1,2,3. In particular, w(¢,¢*) =0
means that ¢ represents a line Mi in P9 i=1,2,3. The equations
w(qi,q¥) =0, { == k, show that the lines M intersect each other and so
either lie in a plane £ or pass through a point x. A pencil of lines (in P?)
corresponds to a line in P5 (on Q). Since in P5 each of the hyperplanes
w(pi,g) = 0 contains the lines determined in pairs by the points ¢, the
pencils in P? corresponding to these lines belong to each of the complexes
w(gi,m) == 0. The pencils are determined by any pair of their lines,
hence each w(¢f,m) contains all the lines of £, or alternately, all the lines
through x. Stated in terms of P3:

The inlersection of three independent complexes consists of all
the lines in a plane % or of all the lines through a point x if and
only if it equals the intersection of three degenerate complexes
w(gi,m) =0, i = 1,2,3, with w(¢',q¥) =0, i,k =1,2,3.
In terms of PS5, a plane on Q corresponds to the lines in a plane or to
the lines in a bundle of P3.

When not all the coefficients in (44.5) are zero, the equation represents
a conic in P2 When | w(¢,q*) | = 0, the conic is degenerate and so repre-
sents a point, a line, or two lines in P2 Correspondingly, the complexes,

(44.6)



270 SPATIAL GEOMETRY [VI.44]

w(gt,m) =0, i = 1,2,3, intersect in a line, in a pencil of lines, or in two
encils of lines with one common line. . .
b If | w(gi,g¥) | 2 0, the conic is imaginary (see the discussion of (10.23))

when

A= 0(g)u(ghe) - oghg) >0 and  w(ghg) - | w(gigt)| > O.
The conic is real if
W7 40, orif 4,>0 and w(ghg) - |u(gigh | < 0.

The latter case is, of course, the most interesting. A family of lines, each
one of which is linearly dependent on three pairwise skew (and therefore
independent) lines, M*, M2 M3 is said to form a requlus F. In the case of

Fig. 92

(44.7), the lines of ps corresponding to the conic form a regulus. For if
rLr3,r® are any three points of P5 on the conic, they are not collinear and
hence are independent, Ip P3 they therefore represent three lines R!, k2, I3,
which are pairwise skew, Because the points ri are dependent on the
independent points ¢ 1=1,23, any point dependent on the triple ri is
also dependent on the triple ¢, Or, geometrically, the plane P2 is also
determined by the points rl, r2 gpd r3, The points of the conic are thus
dependent on the points ri, hence the lines of p3 corresponding to the
conic are dependent on R, R? and R3, and form a regulus.

It MY, M2 and M3 are the generators of 2 regulus F (Figure 92),
then any line M which intersects al] three of them intersects every line
In the regulus. For if N is a line of the regulus, it has a representation
M=0mt 4 0ym? 4 3m? (where i is the Pluecker sextuple for Mfi)
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3 3
Then w(m,n) = w(m, Ehmi) = zhw(m,mi) =0, since w(mm?) =0 is
=1 =1
the condition that M and M:? intersect. The lines M’, which intersect all
lines of the regulus F, form a second regulus F', said to be conjugate fo F.
Clearly F is also conjugate to F".

To see that F' is a regulus, we observe that its general line M’ cuts
Mt i=1,2,3, and hence belongs to the three degenerate complexes
w(mi,m) =0, i = 1,2,3. Conversely, as we just saw, any line in this inter-
section cuts M2, M2 and M3 and so belongs to F’. Since the simultaneous
system w(mf,m) = O has rank three, then by (40.3), it has three independ-
ent solutions, m*',m*,m?®. These are generators for F’, which consists of
all lines dependent on them.

A line which cuts each of two intersecting lines must belong to the
plane they determine or else pass through their intersection point. There-
fore three lines, each of which cuts two intersecting lines, cannot be
pairwise skew. Because each of the lines M¢, i = 1,2,3, cuts both lines in
every pair in F, it follows that no two lines of F’ intersect. By the same
argument, no two lines of F intersect. Therefore:

Any two lines of a regulus F are skew. The lines intersecting all
lines in F form a regulus F' conjugate to F. Either regulus is
formed by all lines which intersect three independent lines in the
other.

(44.8)

To summarize, three independent hyperplanes in P% o(piq) =0,
intersect in a projective plane P? which contains three independent points
¢, i =1,2,3. The plane P? cuts Q in a real conic, with a corresponding
regulus F in P3, if the ¢¢ determining P? satisfy (44.7). In addition to
(44.7), it is natural to ask what conditions the initial coefficients pi must
satisfy for this construction to yield the regulus F in P3. First, suppose the
construction does yield F. Let M*,M2,M? be three independent lines of F
with corrresponding points m!,m?,m3 on the intersection of P? with Q. A
‘general line M of the conjugate regulus F' satisfies w(n’,m) =0, i =1,2,3.
Because ¢¢ is dependent on m!, m? and m? i=1,2,3, it follows that
w(m',q) = 0, i = 1,2,3. Therefore m' lies on Q and the plane P2* in which
the three hyperplanes w(p,¢®) =0 intersect. Since the plane P*" is also
determined as the plane through p?, p? and p?, this shows that the plane
so determined cuts Q in the conic corresponding to the regulus F'. There-
fore (44.7) holds with p¢ substituted for ¢i. The argument is now seen
to be symmetric. That is, if (44.7) holds for pi, i =1,2,3, then the plane
P* cuts Q in a conic which defines the regulus F’ in P3. The conjugate
regulus F, by the previous reasoning, must then be obtainable from the
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original construction starting with p’. This result may be stated in the
form:
The intersection of three independent complexes w(pi,m) = 0,
(44.9) i=1,2,3 is a regulus if and only if A* <0 or if A* >0 and
w(pl,p') - | w(p',p¥) | <O, where A* = w(p*,p)w(pp?) — w*(p*,p?)-
Now consider three lines M*, M? and M3 in a regulus F (Figure 92).
Each point x of M? determines two planes, (x A M) and (x A M?3), and as
x varies on M? the association (xr A M') — (x A\ M3) establishes a pro-
jectivity between the plane pencils on M* and M3. The line in which two
corresponding planes intersect must, by construction, cut all three lines,
M, M? and M?, hence is a line of the conjugate regulus F'. Therefore:

A regulus is the locus of the lines of intersection of corresponding
planes in two projectively related plane pencils, where the axes of

(44.10)  the pencils are skew. An arbitrary line of the regulus cuts an
arbifrary line of the conjugate regulus in a point lying on corre-
sponding planes of the pencils.

The correspondence established between two lines of a requlus by
(44.11)  associating points which lie on the same line of the conjugate
regulus is a projectivity.

Actually, (44.10) and (44.11) are duals of each other. The converse of one
will therefore imply the converse of the other. We state them simultan-
eously.
The intersections (connections) of the corresponding planes
(44.12)  (points) in two projective plane (point) pencils, on skew lines,
form a regulus.

The non-parenthetical statement may be established by showing that the
point set, carried by the intersection locus. is a ruled quadric. By the

results of the previous section, it is then a regulus. Together with (44.10)
this will show:

(44.13)  The carrier of a regulus is a ruled quadric and conversely.

For the proof, let the coordinate system be chosen so that the axes of the
two projective pencils are given by the planes

23=0,2,=0 and x,=0,2,=0

respectively. Take d, and d, on the planes z, = x, = 0, and dy,d, on the
planes x; =1, =0, so that, in the projectivity, z; =10 corresponds to
%, =0, and x,=0 corresponds to x, == 0. Finally, choose e = (1,1,1,1)
on two corresponding elements so that the plane z, —x, =0, through
d,, d; and e, corresponds to the plane x, - €, ==0, through d, d, and e.
The three specific planes 2, = 0, z, = 0, x, - 2, = 0 form with the general
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plane of the pencil dx3 — pr, =0 a set with cross ratio %/w. The corre-
sponding planes of the second pencil are z, =0, 2, =0, 2, —x, =0 and
(from the preservation of cross ratio) hr, — px, =0. Since \xz— pxr,=0
corresponds to dx; — px, =0, for all (3, 1) 3 (0,0), points on the intersection
locus satisfy the equation:

(44.14) 2,24 — Loy = 0.

This is a non-degenerate quadric, since its determinant has the value
(- 1/2)4, which completes the proof.

In the polarity (43.10) the self-conjugate locus was 2} + 23 — 23 — £ =0.
Setting x, =1, in this equation and also in (44.14), yields two normal
forms for ruled quadrics, namely:

22 + 23 - 23 =1, and x; = x,7,.

If 2,252, are interpreted as rectangular coordinates we recognize these
as a hyperboloid of one sheet and a hyperbolic paraboloid. As was the case
with conics, however, these quadrics cannot be distinguished projectively.

We complete this section in considering the intersection of two inde-
pendent complexes w(al,m)=0 and w(a®,m)=0. The corresponding
hyperplanes in PS5 intersect in a three-dimensional projective space P2,
hence we expect P? to cut ( in a degenerate or non-degenerate quadric.
The extreme cases, where P® does not intersect Q or else lies entirely in Q,
cannot occur. Because Q contains infinitely many projective planes
(corresponding to the planes and bundles of lines in P?), and since each
of these must intersect P? in at least one point, Q and P® must intersect.
The following discussion will show that P? cannot lie in Q (compare with
the footnote on page 266).

The intersection of two distinct (linear) line complexes, called a (linear)
line congruence, may also be defined as the locus of lines dependent on
four independent lines. A line common to both w(a!,m) = 0 and «(a?,m)=0
also lies in all the complexes:

(44.15) o(al 4+ Xa2m) = Ww(at,m) + lw(a?m) = 0.
In this set, the degenerate complexes are those for which
(44.16 w(yat + hadat 4 Xa?)

4.16) = Ma(at,at) + 2. )0(d,a?) + Me(a?a?) = 0.

Assume, first, that there are two solutions to this equation, 23,%, and %', %3’
such that 2} : M N Ny Let m' = Ma* + Ma? and m" =2\'a@* + Xy/a?
indicate the axes of the corresponding complexes. There are, then, two
cases.
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1)  The lines m' and m’' infersect.

In this case w(m';m') = 0, which together with w(m’,m’) = 0 and
w(m'’,m'") = 0 implies that (44.16) holds for all pairs %;,%, of the form
M= M + oA, =124 + . This, in turn, implies w(a?,a¥) =0,
i,k =1,2, and hence that all the complexes in (44.16) are degenerate. In
particular, @' and a2 represent lines, which we can take to be m’ and m',
and the line congruence consists of all lines in the plane (a* /\ @?), and all
lines through the intersection of a! and a2

2)  Thelines m’ and m'’ do not intersect.

Then exactly one line of the congruence passes through any point z not
onm'orm'.

3)  If (44.16) has no real roots, then the equations w(ai,m) =0, i = 1,2,
4

together with the equations Zmikxk =0, i=1,2,3,4, determine
k=1
exactly one line m of the congruence through the point x.

4)  Suppose, finally, that (44.16) has a double root X\ : N, and take
m' =\a' 4+ %a* as the axis of the corresponding degenerate complex.

Observing that for any pair %{",\}’ not proportional to X{,%}, the pencil
Iyw(yat + Wa2m) + Jw(h'at + W'a2m) =0

represents exactly the same complexes as (44.15), it follows that »; =1,
)y == 0 yields the only degenerate complex.
Putting m'" =1{'a® + )}'a?, the equation,

Wo(m',m’) + Dhge(m’,m”) + Wu(m”,m'") = 0,

does not vanish identically and has 3, =1, ,,=0 as a double root.
Hence w(m’,m’) =0 and o(m',m'") =0 but w(m'’,m'’) 2 0. This means
that the complex w(m’’,m) =0 contains m’, but is not degenerate. The
congruence, therefore, consists of all lines in the non-degenerate complex
w(m'’,m) = 0 which intersect the line m' of the complez.

Further information on the geometry of lines may be found in K.
Zindler, “Liniengeometrie mit Anwendungen.” A concise treatment of
the representation of an n-dimensional projective space in terms of coor-
dinates of r-dimensional linear subspaces is found in B. L. van der Waerden,
“Einfithrung in die Algebraische Geometrie.”
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45. Affine Geometry in Space

An n-dimensional, affine space originates from an n-dimensional projec-
tive space by singling out or deleting one hyperplane, called the hyper-
plane at infinity. Restricting ourselves to three dimensions, we will always
choose £, = 0 as the plane { at infinity. For points in the affine space,
then, x, % 0, and when the coordinates of x = (x;,%,,%,%,) are so normal-
ized thatz, = 1, the numbers x,,x,,2, are called the affine coordinates of z.

A collineation of the projective space which carries £, =0 into itself
is called an affinify. By the same argument as in the plane case, it has the
form

3
=Y ane, =123, =2z, |ax|320, ik=1235
k=1

Therefore, the general form of an affinity, in affine coordinates, is:

3
(45.1) o= ¥+ a,  1=123, |ax|50.
k=1
The special affinities which leave the plane z, =0 pointwise invariant
have the form:

(45.2) x; = bx; + a, i=1,2,3, b0,

and are called similifudes. A similitude, which is not the identity, has a
fixed point in the affine space if and only if the equations,

Xy = bxz + as, = 1!233,

have a solution, that is, if and only if b 3¢ 1. The fixed point, when b =1,
has the affine coordinates ai/(1 — b), i =1,2,3, and in this case the similitude
is a homology with a/(1 - b) as its center and the plane at infinity as its
axial plane. It is a harmonic homology when its square,

z; = b(bx: + @) + ag = b2r; + a;(1 4 b), i=1,2,3,
is the identity, that is, when b=~ 1. In that case it is also called the
reflection in the point a/(1 - b) = a/2.
‘When b =1, the similitude
(45.3) = + a; i=1,2,3,

if it is not the identity, has no finite fixed points. It is then (compare (15.5))
an elation with x,= 0 as its axial plane, and (a,,a,,a3,0) as its center.
The mappings (45.3), which are called franslations, form an Abelian group.

Lines which intersect at a point of x, =0 are called parallel lines and
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planes which intersect in a line of x, = 0 are called parallel planes. Thus,
affinities preserve parallelism, while under a similitude a line and its image
line are parallel, as is the case with every plane and its transform. As
before, affine geometry deals with those theorems which remain true
under affinities.

The affine ratio A(a,b,c) of three collinear points a,b,c is defined as in
the two-dimensional case. If the line M carrying a, b and ¢ intersects the
plane { in the point p_,, then by definition (see (15.12)),

Ci— Q;
bi— a;’

A(a,b,c) = R(p,,a,b,c) = i—=1,2,3.
The point ¢ is the affine center of a and b when A(a,b,c) = 1/2. In that
case a, b, p,,, and ¢ form a harmonic quadruple and the reflection in ¢
interchanges a and b.

The quadrics are classified, from the affine point of view, by the nature
of their intersection with the plane atinfinity. Let Q be a non-degenerate
quadric. Then the following cases are possible.

1) ¢ is not a tangent plane of Q.
a) @ is imaginary and called an imaginary ellipsoid.
b) Q is non-ruled and does not intersect {. Then Q is a real ellipsoid.
¢) Q is non-ruled and intersects . Then Q is a hyperboloid of two sheets.

d) Q is ruled (and therefore infersects {). Then Q is a hyperboloid of one
sheet.

2) ¢ isatangent plane of Q (hence Q is not imaginary ).
a) Q is non-ruled and called an elliptic paraboloid.
b) Q isruled and called a hyperbolic paraboloid.

Normal forms for these types are easily obtained, either by geometric or

analytic arguments. For the cases under 1), ¢ is not self-conjugate, hence

projective coordinates can be so chosen that the coordinate tetrahedron
4

is self-polar and with ¢ still , = 0. Then Q has the formZbix? =0,

=1

bi 20, i =1,2,3,4. With b, = -1 and z,=1, this takes the affine form,
o= 0 xf = ey} =t =1, ¢ >0, i =1,2,3.

The affinity x{ =\/cizi, { = 1,2,3, then takes Q into one of the following
four types (with the primes dropped):

2} + a2} + 23 =-1 imaginary ellipsoid,
(45.4) 4+ +ax3= 1 real ellipsoid,
: 2} + a3 - 28 = 1 hyperboloid of one sheet,

2} + 2§ — a3 =-1 hyperboloid of two sheets,
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Replacing 1 by a} on the right gives a check on this statement. The
last equation, for example, becomes x, + z,— 23 + 13=0 which is a
non-ruled quadric intersecting x, =0 in the real conic 23 + x3-23=0.

For the reduction of the quadrics under 2) to the types indicated, we
employ the following generalization of (16.4).

If p is the pole of {with respect to a real (non-degenerate) quadric Q,

(45.5) the intersectors of Q in a pencil of parallel planes, whose axis M

' does not contain p, intersect Q in central conics whose centers lie on
N, the polar lineto M.

For, let M be any line in ¢, not through p. Then M is not self-polar and its
polar line N passes through p. Any plane & through M which intersects Q
intersects it in a conic Cy, and the point p in which N intersects & is the
pole of M with respect to the conic CE’ and is thus the center of C.

The forms in (45.4) may be obtained from (45.5) if Q is not imaginary.
For the assumption that M, in ¢, does not pass through p is always satisfied
if £ is not a tangent plane of Q. Hence, p is the affine center of Q (which is
then called a central quadric). If p is selected as the origin of the affine coor-
dinate system, then since the reflection in p, namely the affinity z{ = —x;,
carries Q into itself, the equation representing Q cannot possess any
linear terms. Next, a plane £ through p which intersects Q may be chosen
for the plane x, = 0 and coordinates x,,2, selected in £ so that C; has the
form af &= 23 =1. With the x, — axis chosen as the line polar to the
intersection of & with ¢, (45.5) shows that 2] =1x,, xh=—-x, Ti—=- 1,
carries ( into itself, hence the equation of Q has no mixed terms involving
x,. With a proper choice of a unit on the z,-axis the last three types in
(45.4) are then obtained.

If p lies on ¢, let £ be any plane which intersects Q and whose inter-
section, M, with { does not pass through p. In £ select coordinates x,,x,
such that the intersection of £ with Q has the form x3 == x3 = 1 and take N s
the polar to M, as the x,~axis. Since x| = 2,, ) = — T,, T3 = — T3 again
carries Q into itself, there are no mixed terms containing z, in the equation
of Q. Also, because the point with projective coordinates (1,0,0,0) lies on
Q, the coelficient of 22 must vanish. Hence Q has the form

2a,,% + 23 =23 =1, a4 7 0.
The affinity x| == a;4x, — 1/2, ) = x,, 2} = 24 leads to the normal forms:
2v, + a3 + 23 =0, elliptic paraboloid,
2x, + 23 - a3 = 0, hyperbolic paraboloid.
The first of these is not ruled since the plane z;, =¢, ¢> .Of does' not
intersect it. The second is ruled because it carries the two families of lines,

Ty—Ty==1%, -2 =X=, + Z;), and T, + T3 =12, —28; = NTp — Iy).

(45.6)
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The affine classification of degenerate quadrics is left to the reader.s We
only observe that cones and cylinders are distinguished by the apex being
at a finite or infinite distance.

Besides affine geometry, equiaffine geometry of space deals with the prop-
erties invariant under affinities of the form

3
(45.7) z= Y o+ @ =123, |ax|==1
k=1
In equiaffine geometry, volume can be defined in a manner analogous

to that used for area in the plane case, but the area of plane figures
can no longer be defined.

46. Convex Sets in Space

Corresponding to the distinct points a and b in space, the open and
closed segments S*(a,b) and S(a,b) are defined, as in the plane, by the sets
Ba + (1 —6)b, where 0 << 6 << 1 and 00 < 1 respectively. A set K in
the affine space is called conver if for any pair of points a,b in K the
segment S(a,b) is also in K. Many statements about spatial convex
sets can be reduced to facts about plane convex sets since every plane
which intersects a spatial convex set cuts it in a plane convex set. The
converse holds even in the stricter form:

If the intersection of a (non-empty) set K with every plane through
(46.1) o . ,
a fixed point p is either empty or convex, then K is convezx.

For any two points, a and b, of K lie in at least one plane through p. By
assumption S(a,b) lies in the intersection of this plane with K and hence
lies in K.

As an application of (46.1) we show that the no-tangent points of either
an ellipsoid E or an elliptic paraboloid E’' form a convex set. Let p be a
no-tangent point of E (or E'). Then the polarity which defines the quadric
induces a hyperbolic polarity on any plane & which passes through p.
The intersection of E (or E') with & is the conic defined by the induced
polarity which also has p as a no-tangent point. When E is used, the conic
has no points at infinity and is therefore an ellipse. For E’, the conic can
have at most one ideal point and so is either an ellipse or a parabola. In
either case the intersection with ¢ consists of the no-tangent points of an
ellipse or a parabola and these, in (17.1) where shown to be convex sets.
Using (46.1) and (17.2) we obtain:

(46.2) The no-tangent points of an ellipsoid or of an elliptic paraboloid,
) alone or together with the quadric, form a convex set.
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Consider now L(x) = a,T; + a,x, + 33 + a,, where a,,a,,a; is not
the null triple. Then the fwo sides of the plane L(x) =0 are given by
L(x) >0 and L(z) << 0 while the fwo half-spaces correspond to L(z) > 0
and L(z) << 0. The same argument as in the plane case (see (17.3)), or
(46.1), shows that each of the sides of L(x) = 0, and each of the half-spaces
is a convex set.$ Since the intersection of any aggregate of convex sets is
either empty or else convex (compare (17.5)), convex sets may be cons-
tructed by intersecting sets which are known to be convex. For instance,
let a',a?,a3,a* be four non-co-planar points. The plane through a2,a3,a¢* has
two sides and two half-spaces, and we choose Ly and L,, to denote that
side and that half-space respectively which contains a. Similarly L
and L; contain ¢; and are defined with respect to the plane through the
remaining triple. The four convex sets L7 intersect in a convex set called
an open tetrahedron, denoted by T*(a',a?,a3,a%), while the convex inter-
section of the four L; sets, denoted by T(a',a%a3,a%), is called a closed
tetrahedron. If the points a;, { = 1,2,3,4, belong to a convex set K, then -
T(a',a%a3,a%) c K.

A point is defined as an inferior point of a convex set K if it belongs to
an open tetrahedron, T*, whose vertices lie in K.

The point p is an interior pointof the convex set K, if three non-co-
(46.3) planar open segments, S*(d',bY), i=1,2,3, exist which lie in K
and confain p.

Proor: Let aieS*(p,a’), bieS*(p,b%), i =1,2,3 (Figure 93). The points
at,a?,a® are not co-planar, nor are the points b*,5%b® because the segments
S*(a',b%) are given non-co-planar. Because K is convex and contains the
points a and bi, i = 1,2,3, the triangular sets T(a!,a?,a®) and T(b,b2b%)
belong to K. Let a be an interior point of T(a',a%,a®). Then the line
[a,p] intersects the set T'(%,b%,b%) in one of its interior points, b. The
tetrahedron 7T'(b,a!,a?,a®) has its vertices in K, and since p belongs to
T*(b,at,a?,a3) it is interior to K.

Obviously, if p is an interior point of a convex set K, it is also an interior
point of the plane convex set in which any plane through p intersects K.
As a corollary of (46.3), two planes suffice for the converse, that is:

The point p is an interior point of a convex set K if it is an interior

(46.4) point of two distinct plane sections of K.

The points of a convex set K which are not interior points are called
boundary points. If a convex set K has no interior points, then it lies in a
plane. For if K contained four non-co-planar points, the interior of the
tetrahedron spanned by these points would consist of points interior
to K.
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A supporting plane & of a convexset K is a plane which contains points
of K but is such that K lies entirely in one of the half-spaces bounded by &.
Clearly a supporting plane of K cannot contain an interior point of K.
When K has no interior points and so lies in a plane £, then £ is a supporting
plane of K and, in a trivial way, every boundary point of K lies in a support-
ing plane (namely £). However, this important property is true in general.

Every boundary point of a convex set K lies on a supporfing

(46.5) plane.1?

Proor: From the previous remarks, it may be supposed that K has an
interior point p. Let ¢ be any boundary point (Figure 94). Every plane
through p, and in particular every plane £ through p and ¢, intersects Kin a
plane convex set K; which has p as an interior point and ¢ (see (17.6)) as
a boundary point. Let ME and M denote the extreme supporting lines of
K¢ at g. Clearly K lies in one of the half-planes of M; rand in one of the

12This theorem will not be used later.
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half-planes of M é'. We denote by V; the intersection of those two hali-
planes. For each plane ¢ in the pencil L(p,q) there is then a set V; and the
union of all the plane convex sets V; is a convex set V.

For, suppose V is not convex. Then points 2! and «? exist in V such that
§(x*,x?) contains a point £* not in V. By hypothesis, 2! isin a set Vi, and
22 1is in a set VEz, and since those sets are convex, £! and £2 must be distinct
planes. This in turn implies that 2 is not on [p,q], hence p,q and x® deter-
mine a plane &% and 2®is not in V. Now if 2! and 22 are not interior points
of the sets Vi1 and Vi, then points y* and y® existin Vi and V. respectively
which are interior points, and such that y¢is arbitrarily close to x?, i =1,2.
(We could take y* on S*(p,x') for example.) If y® denotes the inter-
section of S(y*,y*) with g3, then for y! sufficiently near i, i = 1,2, y3 can
be kept so near 3 that y® also is not in Vy. From the construction of

£

/“‘
A,

’ / 7%

Fig. 94

the sets V, the fact that y®is not in Vis implies that for 0 < 6 <1 none
of the points y3=(1-0)y® + 0g is in V. On the other hand all the
points yh = (1-0)y* +0g, 0 L6 <1, lie in Vg, i=12. But since
y* and y? are interior points of Vil and VEe, and these sets are bounded
by the extreme supporting lines of Ky and Kp it follows that for
8 = O sufficiently near 1, y}] and y;"-] are points of KE‘ and K, respect-
ively and so belong to K. Hence S(y%, yz) is in K. Therefore the intersection

point of S(y%, yg) and S*(y%,¢) is in K and so is in Vy,, which contradicts the
previous conclusion that no point of S*(y%q) is in Vis. We conclude there-
forethat V is convex.

Now let r be any point of V, distinct from ¢, and lying on one of the
supporting lines M; or M, say M;. A plane n through r and p, but not
through ¢, intersects V in a plane convex set C.Because S(p,r) lies in v,
but no point following p on the ray R(p,r) lies in V, r is a boundary point
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of V (compare (17.6)). In 4 let N be a supporting line of C through r.
Then the plane { through N and q is clearly a supporting plane of V.Because
V contains K, and q is in K, this plane is also a supporting plane of K at ¢,
which establishes (46.5).

As in the plane case, this proof yields more than the stated theorem.
The set W of boundary points of V consists of rays, originating at g,
and lying on lines My and My . The set Wis called the supporting cone of
K at q. This cone becomes a plane if and only if for two distinct planes
E1£2 the lines Mé,- and My coincide, i =1,2. In that case it is called the
tangent plane of K at ¢ and is the only supporting plane through g.

As before, to exclude uninteresting convex sets, we define a convex
domain in affine space as a convex set with interior points which is not the
whole space and which contains S(a,b) if it contains S*(a,b). When K is
a convex domain, other than the region between two parallel planes, its
boundary S is called a convex surface and the supporting planes of K are
also called the supporting planes of S. As just shown, a convex surface
has at least one supporting plane at each of its points. If S contains no
(proper) segments, or if each of its supporting planes contacts it in only
one point, it is called strictly convex. It is differentiable if it has a unique
supporting plane (i.e., a tangent plane} at each of its points.

47. Three-Dimensional Projective Metrics

The definition of a projective metric for an n-dimensional space was
given in Section 20. Here we are interested in the case n = 3. The space R
is then a subset of P? which does not liein a plane and is so metrized that
the strict triangle inequality xy + yz > 2z holds for any distinct triple
z,y,z not collinear in the sense of P3. Moreover, for any two different
points of R, the intersection, M(z,y), of [z,y] with R is a metric straight
line or a great circle.

According to Hamel’s theorem, the sets A\(z,y) are either all straight
lines or they are all great circles of the same length.!3 In the second case
‘R spans the entire space P3, while in the first instance there is at least one
plane of P? which does not intersect R. With this plane as the distinguished
plane of an affine space, A3, the space R becomes a convex subset of A3
and has only interior points.§ For any two points, z and y, of R there is
exactly one metric segment connecting them and this segment coincides
with S(z,y).4

The space R is either the whole A3, is the region between (but not

13Hamel's theorem for the plane implies Hamel’s theorem for the space.$
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including) two parallel planes, or its boundary is a convex surface Sp. As
in the plane case:

(47.1)  An open projective melric, zy, is equivalent to =(x,y), (or e(x,y))-

Proor: Let =(a?,a) — 0 (Figure 95). To show that ala <C e for all i greater
than some N(c), choose a line L, in R, through g, and on L take b and b?
on opposite sides of a so that ab® <e/5, i =1,2. In a plane through 22,
but not through L, a triangular set T(c*,c%¢®) can be taken which has b?
as an interior point. The proof for the plane case showed that we can also
take the points ¢ so that z in T(ct,c2,¢%) implies b2 < ¢/5. The point a is an
interior point of the tetrahedron T(b%,c',¢%c%) hence a lies in this tetra-

Fig. 95

hedron for i > N (which depends indirectly on ¢). Let the line through
brand ai, i > N, intersect T'(c',c%,¢®) in ai’. Then,

ada K dat’ + a'h? + ba  bat + a'b? 4 b2a
< 20 + bb% 4 b2a << 2[5 + 2¢/5 + efd =,

A similar modification of the corresponding proof for the plane shows
that aia — 0 implies =(a‘,a) — 0.8

The following are strict analogues of the corresponding facts for the
plane established in Section 22.

A motion of a closed, projective-metric three-space is a collineation.
(47.2) A motion of an open, projeclive-metric three-space is induced by
one and only one collineation.’

A motion of an open, projective-metric three-space which leaves
two points fixed leaves every point of the line through these points

(47.3)  fixed. A motion which leaves three non-collinear points fixed leaves
every point in the plane through these poinis fized. If a motion
leaves four, non-co-planar points fixed it is the identity.s
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This theorem has the following two corollaries:

47 4 Four non-co-planar points and their images completely determine
(47.4) a motion of an open, projective-metric three-space.

In a motion (not the identity) of an open, projective-metric three-
(47.5)  space, there are no fixed points, or else the fized points consist of
a single point, all the points of a line, or all the points of a plane.

An involutory motion, @, of an open space always has fixed points,
for if a® A a, then the center ¢ of a and a® is fixed. According as the
fixed point set is a point, line, or plane, @ is called the reflection in a point,
a line, or a plane. The definite article is again justified by the uniqueness
of such a reflection. For a reflection in a determines the image =’ of x + a
by the fact that a is the center of 2 and z'. If @ is a reflection in the line
M (the plane £) and z is not on M (not on £) then the center a of x and
x' = z® must lie on M (on£) and be the unique foot of x on M (on&). For if
y is any point of M (of &) distinct from a, then

xx' = 2ax < 2y + xPyd = 2zy

implies ar < ay. In either case, then, 2’ is unique.

The line M is called perpendicular to the set p.at fif fisin p 0 M and every
point of M has f as foot on . Therefore the line which connects a point
a to its image a’ 4 a under a reflection in a line M or a plane £ is perpen-
dicular to M, or to &, at the center of ¢ and a’. Combining these statements
with earlier results in this chapter yields:

The reflection in x of the open three-space, R, is induced by a
harmonic homology with center z, whose axial plane does not
intersect R.

The reflection of R in a line L is induced by a biaxial involution,

(47.6)  one of whose axes is L and whose second axis M does nol intersect

R. The lines intersecting both L and M are perpendicular to L.

The reflection of R in a plane % is induced by a harmonic homol-
ogy whose axial plane is £ but whose center x is not in R. The per-
pendiculars to & are the lines through z.

If the reflection, ®, in the plane £ exists, and «a is not in £, then, as in
the plane case, £ is the locus B(a,a’) of points equidistant from a and
a' == a®. Theorem (23.7) allows the construction of the locus B(a,a’) for
any distinct pair of points, a,a’. In particular we can construct ¢, and c,
distinct from ¢, the center of a and «’, and such that ¢, ¢, and ¢, are not
collinear. If reflections in all planes are known to exist, the plane through
¢, ¢, and ¢, must then be the locus B(a,a') and the reflection in this plane
must interchange a and a'. The following is the analogue to (23.11):
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Corresponding fo cvery pair of congruent quadruples, there will
exist a molion carrying one info the other if and only if reflections
in all planes exist. If reflections in all planes exist, then every
motion is the product of four (or fewer) such reflections.

(47.7)

The second part of the theorem and the sufficiency statement in the first
part may be proved by the same type of reasoning as in the plane case.
If a;,ay,a5,a; and by, b,,b3,0, are given congruent quadruples, and if reflec-
tions in all planes exist, let ®, be the reflection in B(ay,b,), if a, 4 by, or
the identity if a, ~ b;. Choose ®, to be the reflection in B(a,®,,b,), if
a,®, A~ by, and the identity if a,®; ~ b,. The first motion takes a, into
b, and the product of the first and second takes a, into b,. Because
4,0y = (a;P)(a,®,) = by(aby) = b by, by is on B(ay®,,b,) and hence the
product ®,¥, leaves a, at b,. Continuing in this way, it is clear that after
four steps the first quadruple is mapped on the second by a product of
motions ©1P.P3P,, where @; is a reflection or the identity. On the other
hand, if a motion @ is given, then any non-coplanar set a; is mapped by @
into a non-coplanar set b;, { =1,2,3,4. By (47.4) the mapping a; — b:
determines @, which can then be expressed as the product of four (or
fewer) reflections.

Assume, now, that for any two congruent quadruples a motion exists
which maps one on the other. Let § be any plane and M any one of its
lines. In £ choose a and b on M, and ¢ and ¢’ on opposite sides of M, so
that a,b,c and a,b,¢’ are congruent triples. Applying the above assump-
tion to the quadruples a,b,c,c and a,b,¢',¢’ yields a motion which carries £
into itself and induces in £ a reflection about M. Thus every plane admits
(plane) reflections in all of its lines. Now suppose x is any point which is
not in the arbitrary plane & The minimum properties of a continuous
function of two variables imply that a foot f of x on £ exists.§ If ¢; and a,
are distinct points of £, not collinear with f, then f is the foot of x on the
line M; joining f and a;, i = 1,2. Choose x' so that f is the center of z
and z'. The plane determined by x, f and a; has a reflection ®; in
M;, i=1,2, hence z' =2xd;, i = 1,2, and the quadruples z,f,a1,a2 and
x',f,a;,a, are congruent in that order. Thercfore a motion ¥ exists map-
ping the first quadruple on the second. Since W induces ; in the plane of
x.f.ai, i = 1,2, it follows that W2 leaves x,f,a1,az fixed and is therefore the
identity. Because \I' leaves f, a, and a, fixed, it leaves all points of { fixed.
It is thus the reflection in £. This concludes (47.7).

As in the plane case this theorem implies:

If reflections in every plane cxist and if W is an isometry of the
(47.8)  set p. in R on the set p' in R, then a motion ® of R exists which
coincides with W on p..$
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As in the plane case, (47.7) is not true if “reflections in all planes’ is
replaced by ‘reflections in all points.” Again, Minkowskian geometry
will furnish an example. It is not difficult to prove, however, that it suffices
to postulate the existence of reflections in all lines.

48. Minkowskian Geometry in Space

Three-dimensional Minkowskian geometry is defined in the same way
as in the two-dimensional case. Ifs projective metric is defined in the whole
affine space, and has the property that affine ratio equals distance ratio.

Obviously in a Minkowskian three-space the induced geometry in any
plane is also Minkowskian. Conversely, if a three-dimensional projective
metric induces a Minkowskian geometry in every plane of the affine space,
then distance ratio equals affine ratio, hence the space geometry is Min-
kowskian. It follows that opposite sides in any parallelogram have equal
lengths and this implies, as in the plane case, that a Minkowskian metric
is invariant under the translations of the affine space. Also an affine reflec-
tion in a point is the reflection in the point for the Minkowski metric, in
the sense of the preceding section. More generally:

(48.1) The similitude, ;= )z + a;, i=1,2,3, A0, multiplies all
’ Minkowskian distances by |X|.

This follows from (24.8) and from the fact that x} = Ja; induces a simil-

itude in every plane through the origin, z = (0,0,0). Expressing a general

similitude as the product of this special similitude with a translation

gives the stated fact.

If K(p,8) (with 8 > 0 understood) denotes the sphere with center p
and radius 3, that is, the locus of points z satisfying m(x,p) = 8, then the
intersection of K(p,5) with any plane through p is a strictly convex curve
with p as affine center. From (46.1) it follows that K(p,3) is a strictly con-
vex surface with p as affine center, and (48.1) shows then that all spheres
are homothetic. In particular, z{=4z; transforms the unit sphere
K(z,1) into K(z,9). Hence if K(z,1) is known, then m(z,y) is determined for
any pair, z,y. Since a projective metric in A3 which induces a Minkowski
metric in every plane is itself Minkowskian, (24.12) yields:

In the affine space A’ let K be a closed, strictly convex surface
with affine center c¢. For any two points a and b in A3 define
(48.2) m(a,b) = | A(a,y,b) |, where y is the intersection of the ray from a
’ through b with the image of K under the mapping
Ti=x + (- &), i =1,2,3.
Then m(a,b) is the Minkowski metric for which K — K(c,1).
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If K(z,1) is given in a definite affine coordinate system, z,,z,,%,, then
F(z,,25,235) = F(x) = m(z,x)
has the following properties:

8.3 For 242z F(x)>0 and FQx)= |\| F(x) for all )\ Also
(48.3) F(x) =1 is a strictly convex surface.$

Conversely,
If a function F(x) has the properties of (48.3), then

(48.4) m(z,y) = F(x — §) = F(Z; = Yy, Ty — Yo» T3~ Y3)
is a Minkowski metric.

The proof is the same as for (25.8).%
While the reflection in a given point x exists, in general reflections in
planes do not exist. In fact, the following analogue of (25.2) holds.

185 The reflection in the plane € exists if and only if a sphere with center
(43.5) on & has one of its family of parallel chords bisected by &.

Proor: Let the reflection ¢ in the plane & exist. Then ¢ maps on itself
any sphere K(p,8), where p is on £. It also maps on itself every line perpen-
dicular to £, and hence maps on itself any chord of K(p,3) which is perpen-
dicular to £. All such chords are parallel since the lines carrying them pass
through the center of the harmonic homology induced by ¢, and this
center, not being in R, is on the plane at infinity (compare (47.6)).

Conversely, let £ bisect F, a family of parallel chords in a sphere K(p,?)
with center on £. Define ¢ as the mapping of A® on itself which leaves
every point of § fixed and which maps x not on § into x' determined by the
conditions that [x,2'] is parallel to the lines carrying F' and that the center
of x and 2’ is on £. Since @ is obviously an involution, it will be the reflec-
tion in £ if it preserves distance. But any pair of points x,y and their
images £ and y® lie in a plane « parallel to the direction of F. If gis
any point of N = [£,1], the chords of K(g,8) with the direction of F are
also bisected by £ since K(g,8) can be obtained from K(p,8) by a trans-
lation. By the proof of (25.2), ® induces in 1 a reflection about N, hence
m(z,y) = m(xd,yd), q.e.d.

If K(p,3), and therefore every sphere, is an ellipsoid, a plane § through p
bisects all chords whose lines pass through the poie of £ (see (16.4)), hence
the reflection in § exists, and by the same token reflections in all planes
exist. As in the two-dimensional case, the converse holds, hence:

A Minkowski geometry admits a reflection in every plane if and
(48.6) L S
only if its spheres are ellipsoids.
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To establish Lhe necessity we could follow ihe procedure of the plane
case and use the three-dimensional analogue of Loewner’s theorem (18.7).
But there is a simpler way. We make the definition:

A Euclidean geometry is a Minkowskian geometry possessing
reflections in all planes.

Then, (48.6) is equivalent to:

487 A Minkowskian geometry is Euclidean if and only if its spheres
(48.7) are ellipsoids.

We need only prove the necessity, so assume that reflections in all planes
exist. From (47.7), any quadruple can be moved into a given congruent
one, and the second part of the proof in (47.7) shows that every plane
possesses reflections in all its lines (this can also be deduced from (47.6)).
The metric is therefore Euclidean in every plane, hence the intersection
of K(z,1) with any plane through z is an ellipse. What we wish to prove is
that this implies that K(z,1) is an ellipsoid. Since we need this fact later,
we interrupt the present proof to state it explicitly.

48.8 A convex surface K with center z and the property that every plane
(48.8) through z intersects if in an ellipse is an ellipsoid.

For let an affine coordinate system be chosen so that z is the origin, with
the z;-axis perpendicular to the z,x, plane, and with m[z(0,0,1)] = 1.
Further, take the z,,,-axes so that their plane cuts K(z,1) in the ellipse
2} + «§= 1. If, now, = (x,,x,,2,) is an arbitrary point of K(z,1), the
line through z parallel to the x,-axis is perpendicular to the z,,z, plane
and intersects this plane in T = (z,,2,,0), the foot of z. Since the metric
is Euclidean in the plane determined by z and the ZTg-axis,

1 = m¥(z,2) = m2(z,Z) + m(Z,x).
The choice of m[z,(0,0,1)] implies m(z,x) = |25], while the choice of the

3,2, coordinates implies m(z,Z) =} + 23. Since the coordinates of

x satisfy #% + 23 + a3 =1, K(z,1) is an ellipsoid, and (48.6), (48.7) and
(48.8) are established.

The general expression for a Euclidean metric is now easily obtained.
In projective coordinates K(z,1) is a non-degenerate quadric,

4
Z ity = 0, Ay, = Qi [aikl =0,
1

k=

with center at the origin z = (0,0,0,1). Hence 2, =0 is the polar plane

4
to (0,0,0,1). Therefore the plane Y auz;=0 coincides with 2s = 0,

i=1
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which implies a,4 = @y, = a3, =0 and ay, 5% 0. From ai;; = ai we also
have a, = a4, = a,3 = 0. Dividing by - a,,, an affine representation of
K(z,1) is obtained in the form

3
E gy =1, Jir = Qi | g | 5= 0.

ik=1
Because every line z; =y, y 7% (0,0,0), through the origin intersects
3

K(z,1) for some non-zero value of £, it follows that Z Gieyiye=1/12>0,
k=1
which means that the form zgikl‘imk is positive definite. Moreover, when

ik

3
this condition is satisfied, then F(z) :[E gimxk]‘/z satisfies (48.4).
i k=1
Thus we have found: l

The general expression for a Euclidean metric e(z,y) is

S %
(48.9) e, ) = [ E, gir®i — i) (2 — yk)] )

i,k=1
3
where 2 guixy is a positive definite quadratic form.*
ik=1

The proof of the three-dimensional analogue to (25.5) is exactly the
same as for two dimensions, hence:

Two Minkowskian geomelries in A3, with respective unit spheres
(48.10)  K(z,1) and K'(z',1), are congruent, if and only if an affinity of
A3 exists which carries K(z,1) into K'(z',1).

Because any ellipsoid can be put in the form % + 3 + 23 =1 by an
affinity, any ellipsoid can be carried into any other by an affinity. This,
with (48.10), implies that all Euclidean, three-dimensional geomelries are
congruent and we may again speak of the Euclidean geometry instead of a
Euclidean geometry.

Volume is defined in a Minkowskian geometry much as area was for
the plane. The solid unit sphere m(z,z) < 1 is denoted by U, and affine

14The condition | gi;| 5 O follows from the definiteness of the form. The symbols gix
have been chosen for the coefficients in conformity with the usage of Riemannian geo-
metry.
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' g o= Ar /3. For
coordinates are chosen in such a way that f f] dr, dxydz,

7
any region D, the volume V(D) is then defined by

V(D) = f f dz, dzx, dzx,.
D

i i ions belong to
By the same argument as for the plane, Mmko_wsku?n m;)tmnzs belong
the equiaffine group and so leave this volume myanant.. e coordinates
The expression for volume is extended to arbitrary affine ¢

Z,,T9,%4 as follows. If
6= U [ dz, dz,dx,,
L5 U L%

inates for which the inte~
then 2 =1, x} =1,, T3 ==4r24/3s are coordinates for
gral over U equals 4=/3, hence

4 ‘
(48.11) V(D) = f f dx;dx;dxg=3—:- W dz, dx, dx,
D “p

is the expression for volume in general affine coordinates. . Kvrn
The explicit evaluation of 5, if at all possible, is usually diflicult. Fv

o -
when the unit sphere is an ellipsoid in the general form L Fixlile = 1,

the value of ¢ is most easily found by means of algebra instead of by
direct integration. The affinity

3
T = Zbijyj, =123, |by|35£0,
i=1

transforms the above quadratic form to

3 3 3 3
2 9’*( E bif!)f) ( E bknyn) = E Girbigbinyiyn
fk=1

=1 n=1 1,k jn=1

3

3 ~ O
inYins Where g, — L irbijbi.

Tke=1

N E

il

in
Setting by = by, and dji =29u.-bff =Zb,’-igu--, the general rule for matrix
multiplication, namely, ' !

(@) (bs) = <2aﬁbﬂ,>,
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shows that in terms of matrices we have

(i) = (b)) (9r) and  (Gim) = (dix) (ban)-

From

(gin) = (b) (gix) (ban)
it follows then that
(48.12) | i | = | i | - | ban |2

By a proper choice of the equiaffinity x; =2b.¢,-y,- (compare (18.4)),
i

the ellipsoid Zgikxixk:l can be transformed into zyiz—. a’. The
1

integral over Zy1 a* has the value 4=a®/3. If this ellipsoid is expressed

in the form ngny,yn =1, then

in
4ngd dn  _ _y
5 =310l

Thus it follows from (48.12) that for »\gudizs < 1

4

g == TC[ zkr‘

and hence by (48.11) that:

V(D) = | gu |2 f / dx, dz,dx, expresses the Euclidean volume
(48.13) D) | gir | . ) ATy ATy €TP.

D
when distance is given in the general form (48.9).

Although the area of the plane figures is not defined in the equiaffine
geometry of space, there is @ natural way (and only one) to introduce it in
Minkowski space. The reason for this is that the induced geometry in any
plane is Minkowskian and we know what area means in a Minkowski
plane.

Since area is defined for every polyhedron it can be extended to
surfaces by a limit process. However, the explicit expression for area,
even in the Euclidean case, becomes very complicated when distance has
the general form (48.9). To evaluate the area element, the methods of
Section 26 may be used by setting

©(,4) = X gustili-

Tk
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The same argument as there shows that the cgsine of the angle between
rays from the origin to the points x and y, distinct from the origin, is

(48.14) cos (z,) = (x,y) % @X) 2 4(Y.Y),

and so,

(48.15)  sin? (,5) = [¢(z,2)0(y,y) — 22,1 O (x,2) 2 (y,Y).

If now a surface is given in the parametric form x; = z;(u,v), i = 1,2,3,

and if x, = (ox,/ou, 3T,/oU, 3T4/31), T, = (3T1/0Vs 3T 2/dV, 3Z4/20), the{l the
area of the “infinitesimal’’ parallelogram spanned by z,du and z,dv is

@ (i, du, 2, du)d(z, dv, z,dv) SN (Lu,Ty),
and so, by (48.15), the area element has the form
[®(@ara) P (ts) ~ P2(u,w)]% dut .

When @(z,2) = Zq% and 3 denotes ax;/ou, this can be expressed as

[() (B - (S e

Another form, sometimes used in calculus, can be obtained from this by
using the Lagrange identity of vector calculus which states that the
bracketed expression above equals

+

2

+

2
x2w $3u

x21; xav

133“ x 1u

xa'u xl

xlu x2u

Ty X T2 =

v xlv z 2v

49. Euclidean Geometry in Space

We now assume that Euclidean distance has the standard form:
e@y) = (@~ Y)? + (@, - y)* + (5 = Y)*1*,
corresponding to the simplest form of the unit sphere, Zxﬁ-—: 1.

First we discuss the theory of quadrics. As in the case of conics, the axes
of a quadric present a new phenomenon, where an azxis is defined as &
straight line such that a reflection in this line carries the quadric into
itself. If M is an axis of the non-degenerate quadric Q, and the plane &
perpendicular to M at y intersects Q in a conic C,, then y is the center of
Cy. Hence € intersects ¢, the plane at infinity, in the line N, which is the
polar of y with respect to C,. Therefore N, is not tangent to Q and so does
not pass through p, the pole of {, even if p lies on £. From (45.5), then:

(49.1) The line M is an axis of the non-degenerate quadric Q if and only
’ if the planes through the polar line of M are perpendicular to M.
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To obtain Q in normal form, we first take the case where Q has a center
p which is then the pole of {. We wish to show that at least one axis of Q
exists, that is, that at least one line M is perpendicular to the planes
through its polar line M’'. With the point g, at infinity on M we associate
the point at infinity, g, in which the (parallel) perpendiculars to the polar
plane to g, intersect {. Since g, is the pole of M' in the plane polarity

induced by Ez‘f =1 on ¢, the mapping g, — g: of { on itself is a pro-
jectivity and so (compare (9.2)) has a fixed point g,, . Then M,-is perpen-
dicular to all the corresponding (parallel) planes ;. Among these planes,
we choose one which intersects Q in a conic Cg, and in this plane introduce
rectangular coordinates, x,,z, so that CE takes the standard form

3 = a3 =1, ¢ >0, i=12.

Now let M, be the z,-axis. Because Q goes into itself under the reflection,
Xy = Xy, Ty = — Xy, LTy = — X5, the equation of Q contains no mixed terms
involving z, and so has the form:

1} + cx} == cgxd + 2657, = 1.

That ¢, 2 0 follows from the fact that the point (1,0,0,0), which is not on
Q, would otherwise satisfy the projective equation of Q. If ¢,, 5% 0 then the
translation z} =z, + ¢,,/¢;, T3 =2, zj=—1x; reduces the equation to
ZcixF:l + ¢3,/c;, where the right side is not zero because Q is non-

dtegenerate. Dividing through by 1 + ¢%,/c,, and relabeling the coefficients,
yields the standard Euclidean form for a central quadric,

3
(49.2) Yaat =1,
i=1

where not all the a; are negative since Q is real. Clearly all of the coordinate
axes are axes of Q (in this form) hence every central quadric has at least
one triple of mutually perpendicular axes.

If p lies in ¢, then M), the line polar to p in the elliptic polarity induced
by Z@f =1, does not pass through p. The line My, polar to M, with respect
to Q, passes through p because M, lies in the polar plane to p. In any plane?
perpendicular to M} and intersecting Q in a conic C; let rectangular coordi-
nates z,,x; be introduced so that C; again has the form c,x§ #= ¢ =1,
where ¢,,¢, > 0. With M, taken as the z,-axis, the point (1,0,0,0) lies
on Q hence the resulting equation of Q reduces to the normal form:

(49.3) 2z, + apx} = agxd = 1.
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In addition to axes, a quadric has planes of symmetry such that a
reflection in one of these planes takes ( into itself. For a central quadric,
(49.2) shows the existence of at least three such planes, while the para-
boloid (49.3) has at least two.

We next consider I',, the group of motions of Euclidean three-space.
The study of this group is more involved than its plane counterpart, but
fortunately much of the work is already contained in Section 34, because
of the following argument. A motion ¥ in I, is an affinity of the form

L :L; —
k

ALy + az, i= 1’2937 I Asx; ] ;ﬁ 0.

3
=1

Clearly W is the product of

¢raf = Yanm, =123, |au|=0
k

and the translation

T:x, =z + a, i=1,2,3.
Since ¥ and T aremotions, ® = WT1isalso a motion. Under ® the origin zis
fixed, hence ® leaves invariant the distance from z to x and also its square,
Q,(x,x) = Ex? But in Section 34 we saw that if ® leaves Q,(z,x) fixed
it also has Q;(x -y, £ - y) =e¢*(z,y) as an invariant and is therefore a
motion on Euclidean three-space. Hence:

The group of motions of Euclidean spqce, where distance has the
standard form
1,
etws) = | Lews- W]
i=1

is represented in a one-to-one way by the transformations
(49.4) 3
T, = 2 Ay + a, =123,

k=1
for which

3 3
Yah=1,i=123, and N aua;=0, ij =123, i5].
k=1 k=1

We also know (see (34.3) that | aix | = == 1 and that

3 3
Z ap=1, i=1.23, Z arar =0, 1,j=1,23, i3£].
k=1 k=1
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To obtain the inverse of W, defined above, we observe that W — T
yields ¥t = T-'. @-L Since T-! is given by x{’ = x; - a;, and @-%, from

(34.2), is the mapping x; _—Zamlk , it follows that ¥-1 is:
49.5) Uiz =Lam(xt ) —Lamﬂ’»‘t S Qs  i=1,2,3.

A motion ® which leaves the point p fixed induces a projectivity in the
bundle p and so, by the space dual to (9.2), carries at least one plane £
through p into itself. Therefore it also leaves invariant the line M which
is perpendicular to % at p. The mapping induced by ® on M is theidentity
or the reflection in p, while, by (26.17), the induced mapping on ¢ is the
identity, a rotation about p, or the reflection in a line N through p.
Combined, we have the following six possibilities, labc and 2abc.

1. Identity on M: g ((;) ld?ntt.lty on b bout
2. Reflection of M in p: ( (b) rota ton of s avou: p,
(c) reflection of ¢ in N.
For (la), ® is clearly the space identity, and for (2a) is the reflection in &.
Case (1b) is called a rotafion of the space about the axis M. It includes the
reflection in M as a special case when the rotation of € about p is the re-
flection of € in p. In (lc¢), every point of M and of N is fixed, hence every
point of the plane n which they determine is fixed. Because @ is not the
identity it must be the reflection in . The case (2b), after the reflection
of M in p, becomes (1b) and is therefore the product of a rotation about
M and a reflection in £. This includes the reflection in p as a special case.
Finally (2c) leaves every point of N fixed and is easily seen to be the space
reflection in N.
If M is taken for the x,~axis and & for the x,,x; plane, then, for the

cases under 1, ¢ has the form

| —
T =%y, Ty == Ty + ApgTs, T3 == AgyTy + AggTy

and for the remaining cases ® becomes

Ty = - @, Ty == AppTy + 2Ty, Ty == Ugpy + UgyTy.
. a, . .
Putting A, = | * a""a , the determinant A of the motion has the value 4,
32 33
in the first case and — 4, in the second. Hence A =1 for the cases lab

and 2c¢ and A = -1 for the other cases.

If M, and p on M, are arbitrary, a suitable motion I will take M into
the z,-axis and £ into the the z,zy-plane. Then U-10W leaves z and the
x,-axis fixed, and the value of its determinant A is == 1 corresponding
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to the possibilities described above. But if Ais the determinant of ¥ and &’
that of ®, then from A =— A’A? we conclude:

A motion which has a fixed point, and whose determinant is 1, is the
identity or a rotation, the latter including reflections in a line. If ils

(49.6)  deferminant is — 1, it is either the reflection in a plane or a rotation
about a line followed by a reflection in a plane perpendicular to
the line. This last case includes reflections in a point.

If ¥ is a motion without a fixed point it carries the origin z into some
point a = z¥. Then the product of ¥ with the translation T, z;=xi - a;,
leaves z fixed and hence is one of the motions described in (49.6). Since
¥ = &T-1, and T-' is again a translation, we see:

497 Every motion of Euclidean space is the product of one of the motions
(49.7) (49.6) and a translation.*®

In particular, a motion with positive determinant is the product of a
rotation ® and a translation T, either of which may be the identity.
If the rotation is not the identity and the axis of rotation is taken for the
x,-axis, the motion has the form

=21, + a,,
Ly = QyeTp + GpeTy + Gy, (azz azs) ” (1 0)
T3 = A3y + dasT3 + a3, 0 1),

where A; = 1. This may be written as the product of

g, Qg3

. — [ J—
P i) =y, Ty = AyeTy + AuaTy + 4, Ty = gty + A5 + Qg
with
Ty:oy=x' +a, z=2x, xi=2a5.

Then ¢; maps every plane z;’=¢, in particular z}' =0, into itself,
whereas, by (26.15), the induced mapping on z}' = 0 is a rotation about
a point y. Hence @, is a rotation about the line perpendicular to the plane

x;' =0 at y, while T, is a translation (possibly the identity) parallel to
the x{’-axis. Thus we have:

A motion with positive determinant is the identity, a rotation, a
(49.8)  translation, or the product of a rotation and a translation parallel
lo the axis of rotation.

1*Because the translations form an invariant subgroup of the affinities$, hence also
of the Euclidean motions, the given motion is also the product of a (generally) different
translation and the same motion (49.6) (compare (15.9)).
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50. Hilbert's Geometry in Space. Hyperbolic Geometry

Let K beaclosed, strictly convex surface in affine space and D be its inte-
rior. Hilbert geometry in D is defined exactly as in the plane case. If  and b
are any two points of D and if x and y are the respective intersections of
the rays R(a,b) and R(b,a) with K, then the Hilbert distance of a from b
is defined to be

h(a,b) = (k/2) log R(a,b,x.y), k>0.

With this distance, the points of S*(x,y) form a metric line (compare
Section 28). The induced geometry in the intersection of a plane with D
is a plane Hilbert geometry. If ¢ is any point of D, not on S(z,y), then this
remark applied to the plane through a, b and ¢ shows that

h(a,b) + h(b,c) > h(a,c).

Thus the conditions for a projective metric are satisfied.

If K(p,3), where 3 > 0, denotes the sphere about p with radius ¢, that
is the locus of points whose Hilbert distance from p is 5, then the previous
remark, together with (46.1) and (28.10), implies that K(p,3) is a (closed)
strictly, convex surface in D.

A motion of the Hilbert geometry is induced by a collineation of the
projective space which carries D into itself; conversely every such collin-
eation induces a motion of the Hilbert geometry because it leaves cross
ratio invariant.

If a plane £ intersects D and if ¢, the reflection in % of the Hilbert space,
exists, then ¢ is induced by a harmonic homology, with § as axial plane
and with center x not in D (see (47.6)). The lines through x carry the per-
pendiculars to £. In any plane 4 through x, ¢ induces a reflection in the
line [1,£]. It follows from the construction of perpendiculars (Section 28)
that x cannot lie on K. Corresponding to (29.2) we have:

When the boundary K of the domain D of a Hilbert geometry is an
(50.1)  ellipsoid, reflections in all planes exist. When reflections in all the
planes through one fixed point of D exist, then K is an ellipsoid.

Proor: Let K be an ellipsoid. Take any plane & intersecting D and let x
denote its pole with respect to K. The harmonic homology, ®, with center x
and axial plane £ carries K, and therefore D, into itself. It is therefore the
reflection in £ for the Hilbert geometry defined in D.

Conversely, let the Hilbert geometry defined in D, with boundary K,
possess the reflection in any plane through a point z of D. Choose & to be
any plane through z and let M denote the perpendicular to £ at z. Any
line N in £, and through z, is perpendicular to M. This follows from (23.6)
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because the rellection in £ induces in the plane of M and N a reflection in
N. Therefore the reflection in any plane 1 through M leaves fixed every
point of L = [+,£] and carries into itself the line of £ perpendicular to L
at z. Hence it induces in & the reflection in L. Since n can be taken as any
plane through M, the line L can be taken as any line of £ through z and it
follows from (29.2) that ¢ intersects K in an ellipse, The arbitrariness of §
implies that every plane through z cuts K in an ellipse. We now choose
the plane at infinity £ so that it contains the center of the harmonic
homology, induced by the space reflection in £, and also contains the polar
line of z with respect to the ellipse in which £ intersects K. Then ¢ does not
intersect K or D, and z becomes the affine center of K. Now (48.8) shows
that K is an ellipsoid, q.e.d.

A Hilbert geomelry which possesses reflections in all planes is called
hyperbolic. We may then express (50.1) as follows:

50.2 The Hilbert geomelry defined in D is hyperbolic if and only if D
(50.2) is the interior of an ellipsoid.

By theorems (47.4) and (47.7), hyperbolic geometry enjoys the maximum
possible degree of mobility. If two congruent, non-co-planar quadruples
are given, then exactly one hyperbolic motion exists carrying one into the
other. Thus, as in the plane case, hyperbolic geometry satisfies the con-
gruence axioms of Euclidean geometry, but not the parallel axiom.
Clearly, there is nothing to prevent the extension of these considerations
to n-dimensions.

Though in principle the development of spatial hyperbolic geometry
is now straightforward, the technical difficulties in dealing with length,
area, and volume become considerable. Riemannian geometry provides
the adequate tools, and we restrict ourselves here to the simplest problems.

Consider first the general case where h(a,b) is any Hilbert distance
defined in D. If N, cutting K at z, and y,, is an arbitrary line through
a point p, and if the variable points a and b tend to p in such a way that
the line [a,b] converges to N,, then the same argument as in the plane
case (Section 29) shows that

. h(a,b) k[ 1 1 J
50.3 lim =577 + 70— | = ¢(p,N,),
G0, e@h) ~ 2l apa) T apgs ] = PPN

14
where e(a, b)=[2(ai - bi)zj’z, and the affine coordinate system is such
that { does not intersect K or D. From (29.5) and (46.1) we conclude:

" If on every line N, of the bundle through p, two points, z, and z,,
(50.4)  are selected so that e(p,z,) = ®-1(p,N), i = 1,2, then the locus of
the points z; is a strictly convex surface, K,, with center p.
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If m(a,b) is the Minkowski metric with K, as unit sphere, the limit
(50.3) becomes

. h(a,b)
50.5 1 —— = 1.
( ) (L,(}E v m(a’b)
Because of (50.3), on an arbitrary (continuously differentiable) curve in
D, expressed as x(f) = (z,(1),T2(1),z5(})), arc length is given by

f ((h),N(@©) (@ + 2* + a5?) 1L,

where N(f) denotes the line tangent to the curve at the point correspond-
ing to {. One may also say that in Hilbert geometry the line element ds,
with point of origin x and direction N, has length:

(50.6) dSy = P (x,N) (dx} + da} + da3)'/?

(the primes indicating differentiation).

The expression for volume is obtained by considerations analogous to
those at the end of Section 29. If Uy is the domain bounded by K, then, as
before, let s(p) be defined by:

(50.7) a(p) _—.:%lr [{[ ddxldmzdxa]_l

U

According to (50.5), in the neighborhood of p the Hilbert distance is approzim-
ated by the Minkowski distance corresponding {o the unit sphere K,. Hence,
in a small region  containing p it is reasonable to postulate that the

Minkowski volume of 8, namely s(p) f ﬁ dzx, dz, dx,, is a good approxim-
g

ation for the Hilbert volume of £. Using this principle, the usual limit
procedure for integrals yields

(50.8) f Bf f s(x)dx, dz, dz,

as the Hilbert volume of a general region B in which z is a variable point.
The same principle determines surface arca in Hilbert geometry through
the use of Minkowski area.

We now turn to hyperbolic geometry, and choose affine coordinates
I,,T,,%5 Such that the boundary ellipsoid K takes the form a} + 23 +x3=1.

3

1/2
Again, the Euclidean metric, e(x,y):‘:}:(mz—yi)z] will play an

i=1
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auxiliary role. Any motion, in terms of the Euclidean metric, which leaves
the origin z=1(0,0,0) fixed, carries K into itself. Since the motion is
induced by a collineation it is also a motion for the hyperbolic space.
Hence a sphere about z with (Euclidean) radius 7 <Z 1 is also a hyperbolic
sphere whose radius r (again) satisfies

(60.9) T = tanh (r/k).

In the plane case, the local Minkowskian unit circle K, was seen to be
an ellipse with its minor axis on the line p x z. With 7=e(p,z), the
Euclidean lengths of the semi-minor and semi-major axes were obtained
as (1 =)k and (1 - ?)1/2/k respectively. Because the Euclidean rotations

about [p,z] are also hyperbolic rotations, the Minkowskian sphere K, is

generated by the rotation of the circle K, about [p,z]. Therefore the volume
of this sphere is

4 (1-1) [(1-PR2E  4x (1 - )
f{ dxldxzdxsz—g--( k )-[( l{) ]:—gfg——l—(i—)—
U

so that, by (50.7) and (50.9),
a(p) = Kk3(1 - 1%)~2 = k® cosh? (r/k).
To find the volume of a sphere with hyperbolic radius r, its center can

be placed at z so that F == tanh (r/k). If p,¢,6 denote spherical coordinates,

with 0 < 9 <{ = and 0 < 8 <C 2x, the two coordinate systems are con-
nected by the standard relations

x; = p cos b sin ¢, Z, = p sin 8 sin 9, Ty ==p COS ¢.
The Euclidean element of volume has the form:

dx, dx, dx, = ¢?* sin ¢ dpde db.

Therefore,

T T 3
fffc(x)dxldxzdx,,:ksfdefsm ?dcpfp’(l -¢%)2dp
Ui, n 0 0 1]

= 2zk3 [T{_fi’ — area tanh i] ,
which, simplified, yields

(50.10)  In a hyperbolic space the volume of a sphere with radius r is
LT r r
27ks [smh % cosh - E]'

The surface area of this sphere can be found without explicit integration.
If = is any point of the sphere, the plane & through 2 and normal to [z,z]
cuts the ellipsoid K, in a (Euclidean) circle C with center x and radius
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(1 —r®)12/k. Hence (1 — 1?)/k? is the ratio of the area element at x of §, asa
plane in the Euclidean x,,z,,x5-space, to the area element of the Euclid-
ean geometry with C as unit circle. Since this ratio is independent of z,
the Euclidean area of the sphere, 4=r%, multiplied by the factor k%/(1 - 1?)
gives the hyperbolic area, or:

(50.11)  The area of a sphere, with radius r, is 4=k sinh?(r/k).

The general expression for the hyperbolic line element in the present
Z,,Z5,X5-coordinates is obtained as in the plane case. The function @®(x,N)
is given by

O(x,N) = k(1 — 72 sin? 0)12/(1 - 1%)

(compare with (31.2)), where r is the Euclidean distance of x from the
origin, and w is the angle between N and the line [x,z]. If x,%5,2; are
direction numbers of N, then it follows from Section 48 that

2

+

T, T,
zy I

Ty

. ‘ Z,
sin? o ==
l Ty X

12 27
2+ | @+ ot + a9 @ + a4+ o,

8.8
B

Hence, from (50.6), the line element, originating at x with direction N,
determined by dz,, dz, and dzg, has the form:

(Xat) -

Since the hyperbolic angular measure coincides with that of the local v
Euclidean geometry, the angle between two directions at a point can be
computed from (50.12) in conjunction with (26.5) (compare with (31.12)).

2

T3 z, |?

dxy dz,

T, X T, X r
dz, dz, dz, dzx,
2 2 _ 12)2
(1 -x%-x2-1x3)

(50.12) dS}= k?

51. Hyperbolic Spheres, Limit Spheres
and Equidistant Surfaces

Consider two points p and g, on the sphere K(z,r), r > 0, and let « denote
the hyperbolic angle at z formed by the segments S(z,p) and S(z,g), where
0 < a < = If z is the origin, then « is both the Euclidean and the hyper-
bolic measure of the angle. The plane (or a plane) through z, p and ¢
intersects K(z,r) in a circle, and, by (31.5), the smaller arc connecting p
and ¢ has the length ak sinh (r/k). This is also the Euclidean length of
arc intercepted by the same rays on the sphere with the Euclidean radius
k sinh (r/k). Hence:

The hyperbolic metric induces on a sphere of radius r the metric of

(51.1) the Euclidean sphere with radius k sinh (r/k).
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If K(y,r) is a sphere whose center is not z, a hyperbolic motion which
carries z into y carries K(z,r) into K(y,r). Since it is induced by a collin-
eation, the motion takes a quadric into a quadric so that K(y,r), which
is a closed surface in D, appears in the Euclidean space as an ellipsoid.
Moreover, since the Euclidean rotations about [y,z] are also hyperbolic
rotations, K(y,r) is an ellipsoid of revolution about the axis [y,z].

If, now, N is a line through a point x which intersects K at xy. and if g
is a variable point on N in D moving toward xy, then as h(y,x) — o the
spheres K(y,h(y,x)) tend to an ellipsoid A(N,x) of revolution about N,
touching K at x,, and passing through z. The surface A(N,x) is called the
limit sphere through x with radius N. The intersection of A(N,z) with a
plane & through N is the limit circle in & which passes through = and has
N as a radius. From (32.7), and the definition of “corresponding points,”
it follows that:

A(N,x) is the locus of corresponding points to x on the bundle of

(1.2) asymptotes to N.

The same arguments as in Section 32 shows that A(N,x) depends only
on x and zy, and the latter is called the center of the limit sphere. The
analogue of (32.9) also holds.

If x' is the point of A(N,z) on N', an asymplote to N, then
A(N,x) = A(N',x').%

The geometry induced on K(y,h(y,z)) is, by (51.1), that of the Euclid-
ean sphere with radius k sinh h(y,x)/k. Since sinh { - oo asf — o, and
since the geometry on a Euclidean sphere tends to that of the Euclidean
plane as the radius of the sphere becomes infinite, it follows that:

(51.3)

(51.4) The metric of hyperbolic space induces the Euclidean metric on a
) limit sphere.

The spheres K(y,r) are the surfaces orthogonal (in the hyperbolic sense)
to all lines through an ordinary point y, and the limit sphere A(N,z) is
orthogonal to all lines through the point z, on K. Now let p be a point
outside of K with £ as its polar plane (with respect to K). Then all lines of
D perpendicular to £ are carried by lines through p. Let M be such a line,
perpendicular to £ at 2. In both directions from z on M lay off equal seg-
ments whose hyperbolic length is «, and let x, and 2% denote the opposite

endpoints. As x varies on &, r, and 2> traverse Ci, the two equidistant sur-
faces to & at a distance «. If £ passes through z, and K; denotes the inter-
section of K with &, then the initial results in"Section 32 show that the
two surfaces Ci together with K; form an ellipsoid of revolution about
the perpendicular to £ at z, and that this ellipsoid touches K at K. More
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generally, the two surfaces Ci, at a distance « from &, together with K,
form an ellipsoid of revolution about the line through z perpendicular to %
(in the hyperbolic or Euclidean sense). The surfaces CE are orthogonal to
the lines through p, the polar to £.

Since the induced metric is spherical on K(z,r), and Euclidean on
A(N,z), it is natural to expect that it is hyperbolic on Ci. This is immedi-
ately confirmed by (32.2). If C is one of the surfaces CE, say the one consist-
ing of points z, in the previous construction, and if z} is mapped on z,
its foot on &, it follows from (32.2) that the ratio of the length of a curve
in C to the length of the image curve in ¢ has the constant value cosh («/k).
A shortest connection on C of two points 25,55 must therefore correspond

to a shortest connection in £ of the feet x,y, that is, to the segment
S(z,y).% Thus:

The hyperbolic metric h(z,y) induces on a surface C, equidistant at
distance a from &, the hyperbolic metric h(x,y) cosh (a/k). With

(51.5)  reference to this metric, the straight lines of C are its intersections
with the planes perpendicular to & (or the planes through the pole
of &).

To put these results another way, let y be a variable point on a ray
issuing from z, and let S, denote the surface through z orthogonal (in the
hyperbolic sense) to all lines through y which enter D. A visualization of
the results in (39.13) and (39.14) is obtained in the phenomenon that for
0 < e(y,z) << 1 the metric induced on §, is spherical, for e(y,z) = 1itis
Euclidean, and for e(y,z) > 1 it is hyperbolic.

If hyperbolic geometry had been developed first, the discovery of a
non-hyperbolic geometry would have been immediate, since the induced
geometry on a limit sphere provides a hyperbolic model for a non-hyper-
bolic geometry, namely Euclidean geometry.

It is natural to ask, in analogy, if there is not in Euclidean space a sur-
face on which the Euclidean metric induces a hyperbolic geomelry, and so
provides us with a model of it. The answer, whose proof requires t.ools not
available here, is as follows: on a surface with constant negative cur-
vature the geometry is hyperbolic in the sense that domains exist on 1Ehe
surface which are congruent, in terms of the induced metric, to sub-dorpams
of the hyperbolic plane. But hyperbolic geometry cannot be realized in t.he
large. There are no surfaces in E? which, in terms of the induced metric,
are congruent to the whole hyperbolic plane.!® )

To return to the general discussion, the result (51.4) leads to coordi-

1See W, Blaschke, “Vorlesungen iber Differentialgeometrie.”
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nates in which the hyperbolic line element takes a very simple form. Let
A = A(N,p) be any limit sphere (where p is on N). Since the induced
metric on A is Euclidean, ordinary rectangular coordinates, u;,u,, with p
as origin, can be introduced on A. On N, a third coordinate u; can be
taken indicating hyperbolic distance from p, and taken positive for the
direction toward the center of A(N,p). If u is any point of D, the radial
line N, of A which passes through u cuts A in a point u’ with rectangular
coordinates (u;,u,) on A, and the limit sphere A(NNy,u) intersects N at a
(signed) distance u, from p. Then (u;,u,,u,) are the so-called limit sphere
coordinates of u. By (32.10), the length of the segment on N, intercepted by
A and A(Nyu) = A, is also | u,].

The length of the line element dS; from u to u + du may be determined
in the following way. The length of the line element from (u,,u,,0) to
(uy + dug,u, + du,,0) is (du} + dug)!’2 because u; and u, are rectangular
coordinates on A. From (32.14), the length of the element on A, from
(upusug) to (uy + dug,u, + dusuy) is e/t (du} + dug)t/? Because
hyperbolic geometry is locally Euclidean, and because limit spheres are
orthogonal to their radii, the triangle with vertices

(Up,u5,05), (uy + duy,up + dug,uy), and  (uy + dug,u, + dug,u, + duy)

can be regarded as a Euclidean right triangle. From the theorem of
Pythagoras, then: .

(51.6) dS2 = e /% (du? + dud) + dul.
3
If dS} is written in the form 2 9y du;du,, it follows that

ik=1
e‘2“8”“ 0 0
ga@[=|0 e 0| i,
0 1
hence, from (48.13), the volume element in limit sphere coordinates is:
(1.7 dV = ¢ **du, du, du,.

We use this formula to evaluate the volume of a cylindrical set Z of the
following type. In A let B denote any set which has a finite area

A(B) = f f du, du,, and let Z be the region bounded by B and the

B
radii of A to the boundary of B. Then (51.7) yields:

V(Z) = ff duydu, f e-zusfkdu3=§A(B),
0
B

so V(Z) is proportional to A(B).
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Equidistant surfaces may also be used to define a coordinate system.
In a plane £ let u,,u, be any system of coordinates, with origin p, so that
the hyperbolic line element in £ has the general form

de?® = E(uy,uy)du} + 2F(u,, up)duy du, + G(uy,up)duj.

On the line N, normal to £ at p, let u, designate the hyperbolic distance of
a point from p, taken positive for points on one side of £ and negative for
points on the other side. If u is any point of D, the foot of u on § has coor-
dinates u,,u, in £ and the equidistant surface to % which passes through u
cuts N at a signed distance uz from p. Then (u;,u,,u;) are equidistant-
surface coordinates of u. To obtain the line element dS; from u to u + du
in these coordinates, the fact that ds is the line element from (u,,u,,0) to
(u; + duy,u, + duy,0), together with (32.2), implies that ds cosh ug/k is
the line element from (u,,u,u,) to (uy + dug,u, + dug,lty). As in the
previous case, this element and dS; and du, approximate a Euclidean right

triangle, hence
dS? = cosh? (uy/k)de* + dus.

Therefore,
E cosh? (uy/k) F cosh? (ug/k) 0
| gin(u) | = | F cosh? (ug/k) G cosh? (ug/k) 0| = (EG - F?) cosh* ug/k,
0 0 1

and the volume element is
dV = (E G - F?'2 cosh*(uy/k)du, du, du,.
If now B is any domain of £ with a finite hyperbolic area,

A(g):ff(EG-m)m du, du,,
B

and if Z' is the set of points which lie on the normals to % at points of B,
and which lie between % and an equidistant surface Ci, then

. g
V(Z") =JJ (EG - F?'2du, duzj cosh? (uyfk)dug
0
B

= % A(B)[k sinh («/k) cosh (a/k) + «].

As k — oo, the bracketed expression tends to 2a, so that V(Z') becomes,
as expected, «-A(B), the Euclidean formula for the volume of a cylinder
with base A(B) and altitude . }

The normals at B project the region B into a region B, on Cj. To obtain
A(B,), we need only observe that the ratio of the lengths of corresponding
line elements on B, and B is cosh «/k. Since the area element coincides
with the local, Euclidean area element, and since multiplying lengths by
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a factor multiplies Euclidean area by the square of the factor, it follows
that

A(B,) = cosh?® («/k) - A(B).

Two planes, £ and v, in D whose line of intersection contains no point
of D or K are called hyperparallel. There is exactly one line which is per-
pendicular to both £ and «, as may be seen with the use of equidistant
surfaces. If € is taken as the z,,z,-plane and its intersection with K is
denoted by Ky, then the equidistant surfaces C;, together with K, form an
ellipsoid of revolution, E,, about the z,-axis. For small o, the ellipsoid is
close to & and therefore does not intersect . For large «, 4 and E, intersect
in a curve. Hence there is exactly one value «,, greater than zero, for
which E,_is tangent to . If p is the point of contact and f1is its foot on %
then [p,f] is clearly a common perpendicular to Zand «. As x ranges over %
and y over v, the minimum of h(y,z) is «,. There is no other common per-
pendicular.t Moreover, if the line of intersection of two planes contains
points of D or K the planes have no perpendicular in common.}

52. The Hyperbolic Group of Motions

In homogeneous coordinates, the ellipsoid K has the form:
(62.1) af + 2} + 25 -2 =0,
and is defined by the polarity,

(62.2) =23, Ty = Gy, Ty = %, Ty =~

The argument for thé plane case, (13.3), generalizes to establish:

If a (real, non-degenerate) quadric Q is defined by the hyperbolic
(562.3)  polarity v, a collineation ® of the space carries Q into itself if and
only if &y =~®.§

Therefore the collineations which leave the ellipsoid (52.1) invariant are
precisely those which commute with the polarity (52.2).

To establish some results for the elliptic and hyperbolic cases simul-
taneously, let  (x,y) be defined by

Q(x.Y) = 1Yy + Tl + TaYs + XYy e==1,
and, with the same meaning for ¢, let y denote the polarity:
I = El’ Ty = 52, Ty = 53, T, = 224.

The collineations which commute with y form a group I'y.$ The argument

for this, and for the following results, exactly parallels that given in Sec-
tion 34 for the plane analogues.
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The collineation
4
(52.4) brzi= > aum, i=1234, |ax|==x1,
k=1

commutes with y if and only if the coefficients satisfy the relations:
ati + a¥i + adi + eafi =1, i=1,2,3,
(52.5) a}, + @, + @, + cafs=r,
Qi -+ Aeiter + Qsidar + cauayy —0, L,k=1,2,3,4, i2ks
(52.6) The transformations (52.4) leave Q. (x,y) invariant if and only

’ if the coefficients, aix, satisfy (52.5).%

In the two-dimensional case, the condition | ;| =1 could be imposed,
since replacing aix by — air changed the sign of | aix | without affecting the
collineation. With this condition, the form corresponding to (52.4) gave
a one-to-one representation of the elements in I'y. In the present situa-
tion, changing ai to its negative does not alter the sign of | aix|. For an
odd number of dimensions, and the elliptic case ¢ = 1, there is no natural
way of obtaining a one-to-one representation, and we will leave the form
ambiguous. In the hyperbolic case, where ¢ = — 1, the image of the origin
is (@y4,054034,04,) and hence a, 52 0. To impose the condition a > 0 is
therefore possible, but is desirable only if it does not destroy the group
property of the collineations in (52.4). The analogue to (34.2) shows
that the coeflicient of xj in ®1is also ay,, and is therefore positive. Hence,
the group property will be maintained if whenever a collineation

4
¥ x = E bjix

i=1

satisfies (52.5), and by, > 0, it follows that the coefficient of x, in ®¥ is
also positive. By direct calculation, this coefficient is

Cag = gy + byalaq + Dizlay + baallya.
From (52.5) and the analogue to (34.3) it follows that
3 3
(E biL.) ~B,=-1, and (Eaﬁ,) -~ =-1.
=1
Hence the desired property can be shown by establishing the lemma:
If @ y(@,x) = -1, Q4(y.y) = - 1, £, > 0 and y, > O, then

3
2 XiYi

i=1

52.7
2.0 Ty, =1+
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By hypothesis,
3
B=1+Y3x and yi=1+4Y 5

t=1 t=1

hence the elementary relation a? 4+ b2 > 2|ab| and the Cauchy-Schwarz
inequality (19.1) yield

=1+ Yt 1 + Nop)
=1+ 2@+ + (Zm%)(z.l}%) > 142 |zl +(Z$"y">2
>1+2| Yowr| + | B
:(1 —+ \ Exiyi )2.

Since z, > 0 and y, > 0 the lemma follows.
The normalization z, > 0 can now be introduced, and because

3
=1+ 2:1:,.2 it implies automatically that x, > 1. Since
1

Q@) =-1 and 0 + aGy + a§y - afy=-1,
the lemma implies that
Age%q 2 1 + | ayy + a7, + a,57, l»

hence z{ = Zauxi 2> 1 and the normalization is invariant. These results
may be summarized:

The transformations

4
x; —;2 Qi Ty, = 192’3)4’ [ a‘ikl == 1!
k=1

with ay, > 0, and satisfying

3 3
(52.8) Yai-ak=1 =123, Yau-a,=-1,
k=1 k=1

3
O

D it - awan =0, ik=1234, isk
=1

give a one-to-one representation of the group of motions of hyper-

bolic three-space. For Q_(x,x) =~ 1, all elements of the group
leave the inequality z, > 0 invariant.
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With the condition x, > 0, it follows from (52.7) that Q_,(z,y) <~ 1.
The analogue to (35.2) is obtained, by the same argument, but in the
form:

For any two points, x,y, in D,

52.9

(52.9) h(z,y) = k Area cosh [- Q_y(z,y)], Q_y(z,y) = - cosh h(z,y)/k.
The z; normalized by Q_,(r,x) =-1 and z, >0 are called Weierstrass
coordinates.

The equation of a plane may be written in the form

3
Q_y(@E) = Y, wiki - xks = 0.
=1

For the plane to belong to D it is necessary that its Euclidean distance
from the origin be less than one, namely that | Z,|(3 + % + B <,
so that ©_,(£) > 0. The numbers %, so normalized that Q_,((,8) =1,
are the Weierstrass plane coordinates, and are determined to within a
factor of == 1. In the present case, there is no natural way of removing
this ambiguity. As was true for the plane, the transformation in plane
coordinates which (52.8) induces is the same as the point transformation,
that is,

4
§ = E iksrs i=123,4.8
k=1

Because of (52.6), the expressions | 2_,(z,%) | and | Q_,(%,m) | are invariant
under motions and change of sign in the plane coordinates, and so must
have geometric meanings. Since Q_,(x,3) = 0 means that z lies on &, the
case of interest is Q_,(,%) 7 0. In that case, coordinates may be selected
so that £ is the plane x; =0 and z is on the positive half of the zg-axis.
Then the Weierstrass coordinates of £ are (0,0,1,0), while = has a repre-
sentation of the form (0,0,ms,\/ 1- x%) In the plane z,=0, 2, 73 and
x, are Weierstrass coordinates so, from (35.5),

Q_,(x,5) = x5 = sinh h(z,2)/k,

where z is the origin. Since z is also the foot of x on %, this implies:

| ©_,(x,) | is the hyperbolic sine of the distance of the point x from

(562.10) the piane <.

The angle between two planes, ¢ and 4, is defined as in the Euclidean
case. If N is the line of intersection of % and 1, a plane normal to N cuts §
and » in two lines, N; and N, respectively, and the smaller angle between
these lines is taken as the smaller angle between & and . To find the geo-
metric meaning of Q_,(§), let N = [%,1] be the xs-axis, so that the
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representations of £ and « are (£.,%,,0,5,) and (n,,m5,0,m,) respectively.
Take z3=0 as a plane normal to N and take N; and N, as the intersec-
tions of this plane with £ and «. Any point (z,,2,,0,2,) on N satisfies the
relation

Q_y(2,8) = ;b + by — 2,8, =0,

which shows that in the plane x; = 0, the numbers £,,5,,6, are Weierstrass
coordinates of the line Ny Similarly, in x; =0, the numbers =74
are the Weierstrass coordinates of NT.' Hence, by (35.8),

[€_,(E) | = &yny + Egny — By = cos X (Ng,N,) = cos <« (&)
When £ and « are hyperparallels, a similar procedure shows that|Q_,(,7)|
represents the hyperbolic cosine of the length of their common perpen-

dicular. By a limit process, this, or the preceding case, shows that

| @-;(¢n) | =1 means that & ~w or else that [£v] is tangent to K.
Summarized,

[Q_y(n)| =1 if the planes &, « are identical or if their inter-
section is tangent to K. When & and« intersect in D, | @_y(5,7) | is
(52.11)  the cosine of the smaller angle between them, and when they are
hyperparallels, it represents the hyperbolic cosine of the distance
between them (measured on their common perpendicular).

An immediate consequence of (52.9) is:

59.12 Q_,(x,c) + cosh (¢ [k) =0 is the equation of the sphere with center
(62.12) ¢ and radius 2.

Similarly, (52.10) yields:

Q2,(x,8) = sinh? («/k) is the equation of the two surfaces equidistant
(52.13) .
fo & at distance «.

The equation for a limit sphere may be obtained by a familiar modifi-
cation of the plane case. If N is aline through the origin z, its direction is
determined by its direction cosines, cos a;, where «; is the angle N makes
with the x;-axis, i = 1,2,3. Then, as in the plane case:

If N passes through the origin z, and p lies on N, the equation
of A(N,p) is
(52.14) (%1 €08 oy + T COS oy + Ty COS g — T)2 = /%

where cos o; is a direction cosine of N, s = h(p,z), and the plus

or minus sign is chosen according as p precedes or follows z on
N.§

We conclude this section with a few observations on the case : =
The theorems corresponding to (52.4) through (52.6) are:
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The transformations

4
T ap = TheLks | = 94y, Ty 1 == s
(52.15) &} igla Xk i=1,2,3,4 | @i | 1

commute with the polarity x; = &, i = 1,2,3,4, if and only if the
coefficients satisfy:

4

4
(6216) Dah=1, i=1234, Daa, =0 ij=1234, ix].
k=1

b K
k=1

59.17 The transformations (52.15) leave Q,(z,y) invariant if and only if
(62.17) the coefficients ai satisfy (52.16).

As in the plane case, we can give these results two different interpre-
4
tations. If ¢ satisfies (52.16), then, since Qi(x-y,x -p) =}:‘(:c,-—yi)2 is
1
invariant, ¢ is a motion of the 4-dimensional Euclidean space E* with the
4

metric e(x,y) = [E(x‘ - yi)z]llz. Because of (52.17), it is the most general

1
motion of E* which leaves the origin fixed. An arbitrary motion of E* is
then the product of such a motion with a translation (see (49.7)), and so
has the form
4
o= Y auze + @ i=1234, |ax|==1,
k=1
where the coefficients a;; satisfy (52.16).
For the second interpretation, since ¢ leaves Q,(x,x) fixed it carries
the sphere §3: fo =1 info itself. The spherical distance between two

points z and y on S’ can be expressed by
(52.18) d(z,y) = r Arc cos [r-2Q,(z,y)].

If a definite sphere is selected, the ratio of the coordinates of a point x
on it determine the point uniquely, hence the coordinates may be normal-

4
ized so that Exf = 1. The spherical distance then becomes
=1

(52.19) d(x,y) = r Arc cos Q,(z,y),

and the transformations xi =Zaik:ck which satisfy (52.16) represent in

a one-fo-one way the group of motions of S with the metric of either (52.18)
or (52.19).
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53. Elliptic Geometry in Space

Three-dimensional elliptic geometry originates from a metrization of
the entire projective space P? in the same manner as for the plane. Point
and plane coordinates are normalized so that

Qxx)=1 and ,(EZ) =1
Each point and each plane has thus two sets of coordinates which differ
only by sign. The elliptic distance ¢(x,y) is defined by
(53.1) e(x,5) = k Arc cos | Q,(2,1) |-

Because of (52.15) and (52.17) the mappings which leave|Q:(z,y)| inva-
riant, that is the motions of the space,'” are the transformations:

M
¢z = E agre, i=1234, |aw|==x1,
k=1
(53.2)  where

Ydi=1 i=1234 Daua,=0 ij=1234, i=]
k k

However, these transformations do not represent the motions in a one-to-
one manner because the mapping

(53.3) Vo=, Q= 1,2,3,4,

regarded as a linear transformation, is not the identity, while as a collin-
eation it is the identity. Therefore, ® and ®¥ represent the same motions.
It is easily seen that if @ is a motion, the only other transformation which
satisfies (53.2) and represents the same collineation as ® is ®¥.§ Thus:

(53.4) The pairs of transformations, ® and ¥V, satisfying (53.2), are
’ in one-fo-one correspondence with the motions of elliptic space.

Or, in the language of modern algebra, the factor group of the group
(63.2), modulo the group consisting of 1 and ¥, is isomorphic to the group
of motions of elliptic space, T..

From the analogue of (34.2) it can be seen that A = as; in the collin-
eation & of (53.2). The induced representation of ¢ in plane coordinates

has therefore the same form, namely % = Eaikik. Because of (52.17),

17Strictly speaking, since we defined motion only for metric spaces, the use of

the term motion is not justified before the triangle inequality has been established.
Until then, we mean mappings which leave <(z,y) invariant.
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® leaves |Q,(x,8)| and | ,(¢,m)| invariant. The smaller of the angles
formed by the planes £ and 7 can therefore be defined by

(53.5) <X (§,1) = Arc cos | Q;(§,4) |

It is still to be shown that =(z,y) as defined in (53.1) is a projective
metric.!® Under the polarity v, : z; =, the plane §,, polar to a point y,
has the equation

2yt Qxy) =0, or c(z,y) = kr/2,

and is therefore the locus of points x at a maximum distance from y.
The harmonic homology ¢, with center y and having &, for its axial plane,
commutes with y.. Because of (52.4), then, ¢ has the form (53.2) and so
leaves ¢(a,b) invariant. Let z be a point distinct from y, and not on g,
and take z* as the intersection of %, with [z,z'], where z' =z®. Since
yd =y, and z*d = z*,

(53.6) . i(z,2%) = e(7,2*) and e(y,2) = (y,7),

hence ® may be called either the reflection in y or the reflection in &,. By the
definition of ®, the points y, z*, z and z’' form a harmonic quadruple. If now
z and z' are given as distinct points, then the same argument as in Section
36 shows that points y, and y, exist on [r,x'], which correspond in the
involution induced by y. on [z,2'], and are such that y,y,x,x’ form a
harmonic set. The reflection in ys, or in &, { = 1,2, is amotion which takes
z into z’. Thus:

Given two distinct points, x and x', reflections in two planes (and

(83.7) in two points) exist, each of which maps x on x'.

By duality, for two distinct planes, n and =, reflection in two points (or
two planes) exist, each carrying « into =,

As in the case of open metrics, the line N is called a perpendicular to § if
it passes through y (the pole of £). If  is any plane through y, then y,
induces in 1 the reflection in the line M =[x,§,]. Hence N is also perpen-
dicular to all lines in &, which pass through the intersection point of N
and Z,.

In the plane x, = 0 the induced distance between points z and y is
T, + Z,Y, + Tyys, which coincides with the elliptic distance for two
dimensions. The previous remarks show that an arbitrary plane § can be
mapped into the plane z,=0 by a collineation @ which leaves ¢(a,b)
invariant, hence the metric induced in any plane is elliptic. Since any
three points lic in a plane, this implies that ¢(z,y) is a projective metric
in the space.

18The discussion that follows is nearly identical with that given in Section 36.
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The motions in the elliptic group I': which leave a point p fixed form
a subgroup [,. For any pair of points, p and g, the groups I', and I'; are
isomorphic (see (22.7)). In particular, the elements of I, where
z=1(0,0,0,1), also leave fixed the plane z,=0 polar to z. From affine
geometry it follows that the condition for a collineation of the form (53.2)
to belong to I, is that a;4= 0y = @3 = G4 = Gg2 = Qg3 = 0. Then

4
Za%4= a3, =1, and if a,, is taken as 1, the coeflicients a;x are uniquely
i

=1
determined. Thus T, is represented in a one-to-one way by the transfor-
mations

3
ri= ) am, =123, T=2
k=1

3
Yai=1 Yaa,=0 ij=123 i*],
k=1

hence I, is isomorphic to the group of motions on the two-sphere.

In particular, the foregoing implies that if z and y are two points equi-
distant from z, then a motion in T, exists which carries x into y. It is now
seen easily that:

If x,y and z',y' are pairs of points such that =(x,y) = <(x',y’), then
(53.8) . . . } )
a motion exists which maps x on ' and y on y'.

For, from (53.7) there is a motion ® taking z into z’. Let y ¢ == 7. Since
«(z,]) = «(z,§) = ¢(z',y’), the points § and y' are equidistant from z’, so a
motion ¢’ in I'y exists which maps 7 on y'. Then ®®’ is a motion which
takes z into z' and y into y'. The corresponding statement for congruent
triples is, of course, not correct for elliptic geometry (compare Section 37).

The most interesting new phenomena of spatial, as compared to plane,
elliptic geometry occur in the geometry of lines. As a point z traverses a
line N, the plane polar to z under v, traverses the plane pencil through

Nf polar to N. Since N’ lies in the polar plane to x, for every z on N, its
distance from every point of N is kr/2.

(53.9) If the lines N and N' are polar to each other, then every point of
one is at a distance kr[2 from every point of the other.

The perpendiculars to N form the congruence of lines intersecting both

N an_d its polar N'. Through a point g, not on N or N, there is exactly
one line perpendicular to both N and N'.

If the line N is taken as [dy,d,], N’ is the intersection of the planes
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23 == 0 and x, = 0, the respective polars of d; and d,, hence N' = [d,,d,].
The biaxial involution with N and N’ as axes (see Section 41),

T = Ty, Ty = Ty, Ty = — Ty, Ty = -1,

satisfies (53.2) and is therefore a motion W. If M is an arbitrary line, with
polar M’, (53.8) implies the existence of a motion ¢ which takes N into M.
Since, by (53.9), M’ = N'®, the mapping ¢-1Wd leaves every point of M
and M' fixed. It is also an involution, because

(OIWDY(DIWD) = GLY2P — p-1p — 1,

and (41.15) shows that it is the bi-axial involution having M and M’ as
axes. Since every point of N is at a distance k=/2 from every point of N’,
the same is true of M and M'. Because it is a product of motions, ®-1Wd
is itself a motion. Therefore:

53.10 A biaxial involution, whose axes are polar to each other, is an
(53.10) elliptic motion (called the reflection in either of the axes).

For 0 < « < kn/2, let FY denote the locus of points whose distance from
the line N is «. Any point x of the locus lies on exactly one line which is
perpendicular to both N and its polar N'. The distance from x to N' is

therefore g —a, hence:

(53.11) F¥ = F¥,, where o = ’—;’f ~a

A rotation about a line is defined in an obvious way,? and it is clear
that FY goes into itself under all rotations about N. But (53.11) shows

that FY also goes into itself under rotations about N'. Thus we have the
strange phenomenon of a surface of revolution with two different axes.
A motion which carries N into M takes Ff into F ff .In studying the prop-

erties of FY we may therefore assume that N = [d4,d,] on z, =0 and
x, = 0. The intersection of FY with the plane x, = 0 consists of the two,

plane, equidistant curves C2. In that plane, as previously observed, 2,232,
serve as the coordinates of plane elliptic geometry. The coordinates of N,
in the plane, are (1,0,0) so that (37.9) gives

| 2(@.N) | = |2, | = sin a/k

as the equation of CY. To interpret this relation geometrically, consider
its homogeneous form

x} = sin? («/k) (3 + 2§ + ), or a} - tan? («/k) (2} + =) =0.
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In T,, the rotations about N form the subgroup of motions which leave
every point of [d;,d,] fixed and so have the forms$
1 =T, COS x, sin B, T; = -2z, sin £ + x, cos 2,
(53'12) xll. _xl p + 2 ¥ ‘,’.— 1 p + z, hd
T3 = Xy, Ty = Z4.
Since z;? 4- 2,2 =13 + 22, for all B, the revolution of CY about N yields
FY as:

(53.13) 23 + 2} - tan® («/K) (&} + ) = 0.
The surface (53.13) is a ruled quadric carrying the two conjugate reguli:

. T + tan (a/k)zy = - i(x, + tan (z/k)x,),
1" iz, - tan (a/k)ry) = z, - tan (a/k)x,.

.. 8+ tan (/Ra, =z, - tan (+/R)z,),
P~ tx, - x5 tan «/k) = z, + tan («/k)z,.

Through an arbitrary point y of FZ there is one line of each regulus.
Because FY contains all points at a distance « from N, it follows that:

If the distance o from a point y to a line N is such that 0 << o < kr/2
(53.15)  then through y there are exactly two lines M 1 and M, equidistant
from N(i.e., every point of Mi is at a distance « from N ).

Named after their discoverer, W. K. Clifford (1845-1879), the lines M,
and M, are called the Clifford parallels to N through y.

If R denotes the line through y perpendicular to N, the plane  through
y and N cuts FY in an equidistant curve C} whose tangent L, at y is per-
pendicular to R. The plane through y which is normal to N cuts Ff ina
circle whose tangent L, at y is also perpendicular to R. Consequently, the
plane tangent to FY at y contains both L, and L, and is normal to R.

Because the Clifford parallels M, and M, liein this tangent plane they are
likewise perpendicular to R. This shows:

If M is a Clifford parallel to N, the perpendicular to N from a
(53.16)  point of M is also perpendicular to M, hence N is a Clifford
parallel to M (at the same distance ).

The rotation, about a line N, through an angle 6 induces, in any plane
normal to N, a rotation through 6. But all such planes contain the polar
N', and the rotation of = is a translation along N’ through k6. Thus Ff,v goes
into itself under the translations along N, each point z of the surface
moving on the curve equidistant to N’ in the plane (z A N’). Because

FJ=FY, (53.11), and F3/ goes into itself under the translations along N,
we obtain:

(53.14)

(53.17)  FY goes into itself under the translations along N.
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Because both the rotations about N and the translations along N are
motions which leave N fixed, either type of motion takes a Clifford
parallel M to N, into M', a Clifford parallel to N at the same distance. Since
M and M’ cannot intersect they belong to the same regulus.t Moreover,
if y and y’ are any two points of F2, and £ and ¢ denote the respective
planes (y A N) and (y' A N), then a suitable rotation will take £ into &
and carry y into some point y'’ of &'. A translation along N can then be
found which maps y’* on y'. Under the product of these two motions the
two Clifford parallels to N at y go into the Clifford parallels to N at y’,
hence the angle between the first pair is the same as that between the
second.

(53.18) The angle 0 between two Clifford parallels to N, through a point

y at a distance « from N, depends only on a.

The angle is therefore a function of «. The explicit form of the function
will be given in the next section.

54. The Line Element of Elliptic Space

Without any essential change, the argument of Section 38 shows that
in the present variables the line element of elliptic space is:$

4
(54.1) ds? = K*o,(d, dz) = k' Y, dx,
=1

where Q,(x,x) = 1.
We apply this to find the line element on F2, where the surface is given
by (53.13), that is:
(54.2) 2} + 2% — tan? o'(x + «3) = O, o = afk.
4

Together with }:x% == 1, this relation implies
1

1 —o} —xj = tan® «'(a + x3), or x} -+ a}=cos?a.
It follows now, from (54.2), that
2} + x§ = cos? @’ tan? o' = sin? o',
Introducing u and v as parameters, the last two equations are satisfied
if:
(54.3) x, = sin «' ¢os v, T, == sin «' sin v,
’ T, == cos «’' €OS U, x, == cos «’ sin u.
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Conversely, every quadruple x,,2,,2,,%,, satisfying (54.2) and Q,(z,x) =1,
can be represented in this form, hence (54.3) is a parametric representation
of F¥. The line element of FZ is now obtained from (54.1) as:

(54.4) dS? = k?[cos? («/k) du? + sin? («/k) dv?].
Because E = k? cos® (a/k), F =0, and G = k? sin? («/k) are independent

of u and v, dS? represents a Euclidean metric in the general form discussed
in Section 25. Thus we have the surprising result:

(54.5)  In the small, the geometry induced on FY is Euclidean.

The phrase “in the small” indicates the obvious fact that F5 cannot be
congruent to the whole Euclidean plane, if for no other reason, because it
is a closed surface. The situation is similar to that of the sphere and the

elliptic plane: sufficiently small parts are congruent, whereas the whole
surfaces are not congruent.

Fig. 96

The shape of F% is easily seen. For a fixed value of u, or of v, the equa-
tions (54.3) represent a simple closed curve, actually a circle if z; and x,,
or 3 and x, are interpreted as plane rectangular coordinates. The ordinary
u,b plane may be generated by taking one line, say v = 0, and letting the
lines u = u, sweep out the plane as the point (u,0) moves on the line
v =0. In the same way, if the circle » = 0 is selected on Fﬁ’ , then the
circles u=u, generate FJ as the point (u,0) traverses » = 0. Hence
Fiv has the shape of a torus, that is, of the surface T in E® obtained by
revolving a circle about a line which lies in the same plane but does not
intersect the circle (Figure 96). However, the metric induced on 7' by the
Euclidean metric of E? is not the same as that on F5. This may be seen from

the fact that on T the circles » = const (see figure) do not all have the
same length.1?

®Those familiar with differential geometry will see that T has positive curvature on

the outer region bounded by C, and C, and negative curvature on the inner region,
hence the metric is not Euclidean.
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Though there is no torus shaped surface in E® on which the induced
metric is Euclidean, it is nonetheless quite simple to understand how a
torus, with a metric which is Euclidean in the small, can be constructed. First,
as indicated in the diagrams (Figure 97), if a finite cylinder Z is cut along
a generator L, Z can be unrolled into a rectangular region Z’ in the plane.
Both of the parallel boundaries of Z’, L, and L,, correspond to L. Con-
versely, starting with the region Z' the cylinder Z can be obtained by iden-
tifying L with both L, and L,. In the small, distances on the cylinder are
the same as the Euclidean distances in the plane. Now a torus T can be
obtained from the cylinder through the same principle, the two circles
r, and r, on Z corresponding to the single circle r of T. Points of T are
associated, through Z, with points of the rectangular strip Z'. If the metric
of Z' is transferred to T, distance on the torus is locally Euclidean.

T
)
L, / -
;s
Ty

Fig. 97

We now evaluate the function 9(=) defined in (53.18). Since 0 is independ-
ent of the position of y on FZ, y may be chosen as the point of intersection
of the lines M, and M, from the conjugate reguli in (53.14) corresponding
to = 0. Substituting in the resulting equations (53.14) from (54.3) yields:
M. : sin «' cos v + tan «' cos «’ cos u =20,

1*sin o sin v - tan ' cos o’ sin u=0.

_sin o’ cos » 4 tan a’ cos &’ cos u = 0,
2" sin «’ sin v 4 tan «’ cos «’ sin u =20.
From the first pair, M, corresponds to u + v==, on whichdu:dv=1:- 1.
The second set of equations gives M, as u —v = = on which du:dv=1:1.
(The choice of y was therefore u ==, v = 0.) Now (26.5) yields:
k*(cos? o — sin? o
cos § = cos & (My,My) = fageos & o PO [kz(cosz)a' Fsm? )t
= cos (2a/k).

(54.6)
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Observing that the lines M, and M, tend to N as « — 0 and tend to N’ as
« — kr/2, the measure of the smaller angle between M, and M, is taken
for 0 when o < kr/4. When « passes k=/4, the angular domain measured
by 8 goes continuously into the domain with the larger angular measure,
and this measure is taken for 0. Thus:

The angle between two Clifford parallels to N, at a distance « from
(54.7) .
N, is 2a/k.

The Clifford parallels have attracted the interest of many mathema-
ticians, since the very existence of these parallels is surprising. For a
concise account of their properties see Coxeter’s “Non-Euclidean Geo-
metry.”

In view of the aims of this book, a few additional remarks must suffice;
these are easily verified geometrically or by using the formulas (54.3)
and (54.4).

The translations along, and the rotations about, a line N generate an
Abelian group I'y, which consists of all those motions of the elliptic space
which induce an orientation preserving mapping of N on itself. On F) these
motions induce the translations, described in terms of 54.3)byu’' =u + a,
v’==v + b. Given two points £ and y of F¥ there is exactly one element
of I'y which carries z into y.

If R} and R? denote the two reguli carried by FY, every element of I'y
carries R; into itself, i = 1,2. The elements of I'y which carry a par-
ticular line L, of R}, into itself form a subgroup I'y of I'y. An element ¢ of
[ carries every element of R} into itself, and carries the element L, of R?
through the point z on L, into the element L,? of R2 through x®. If L]
is any other element of R;, and y denotes the intersection of L, with Lj,
then © carries y into the intersection of L, =L,® and L,®. Since ¢ is a
motion, zy = xdy®, therefore:

(54.8) The rulings of one of the requli R: intercept segmentis of equal
: lengths on any two rulings of the other.

Moreover, if &' is the foot of z on L}, then y’ = y® must be the foot of
x® on Lj, therefore zz' = yy'. Since for suitable ® in I'y the point y'
takes any position on Li, it follows that L, is a Clifford parallel to Lj:

(54.9) Any two rulings in the requlus R;, are Clifford parallels to each
) other, i—=1,2.

Thus the two reguli R} and R}, form on F¥ a net which is in many respects
similar to the net formed in the Euclidean plane by two families of parallel

lines. Because of (54.7) the net is rectangular for o == %‘-
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It should be observed that the above ® will not carry a line L of R,
into itself when a’ = a, that is, neither regulus R¥/ will stay linewise fixed.
Indeed, the line M, in (54.6) will go into itself under u' =u + a, v’ =v + b,
only if the numbers a and b satisfy an easily established relation which
depends on a.

Let p be the distance of a point = from the point d,. Analogous to
spherical coordinates in Euclidean space, spherical coordinates e,
can be introduced in elliptic space, with 0 6 <<2r, 0 <9 K™
They are related to the a;-coordinates by

x, = sin p' sin 0 sin g, X, = sin ¢’ sin ¢ cos 6,
Ty = sin p' cos o, T, = oS ¢, o' = o/k.
Then,

dx, = cos ¢’ sin ¢ sin 8 dp’ 4 sin p’ cos ¢ sin 0de 4 sin o’ sin ¢ cos 6d0

dx, = cos ¢’ sin ¢ cos 0dy’ + sin p’ cos ¢ cos 6 d¢ — sin p’ sin ¢ sin 6db

dxy = cos o’ cos ¢dp’ — sin p’ sin ¢ de

dxy = — sin ¢'dy’.

The line element, dS$? = kZde§ becomes
dS? = dp? + k2 sin? p’ (do® + sin? ¢ df2?),
hence,
| gix(e,9,8) | = k* sin* (p/kK) sin® o.
The volume element is therefore
dV = k2 sin? (p/k) sin ¢ dp do db.
Fora sphere with radius p < k= /2, the volume is then

ke ﬁ " ﬁ “sin ¢ dg ﬁ “sin? tfk dt = 2k (oK) — sin (ofK) cos (¢/K)]-

The volume of a sphere with radius p is
2nk[(p/k) - sin (p/k) cos (p/k)].
In the same way as in the hyperbolic case it is seen that:
(54.11)  The area of a sphere with radius 5 is 4=k? sin® (p/k).

As p — kr/2 the volume of the sphere, in (54.10), approaches =23, the
volume of the whole elliptic space. Under the same limit process, the
sphere with radius p tends to the plane polar to d,, so that (54.11) seems
to yield 4=k? for the area of the elliptic plane instead of 2=k? as previously
obtained. As in the plane case, however, it is seen that as p — kr/2 a
pair of points antipodal on the sphere tend to a single point of the plane.
Hence, the sphere tends to the plane traversed twice which accounts for
the apparent contradiction.

(54.10)
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It is, of course, even more difficult to “picture” three-dimensional
elliptic space than that of two dimensions. As before, pairs of diametric-
ally opposite points of the three-dimensional spherical space are in one-to-one
correspondence with elliptic space. The latter may therefore be thought of
as originating from spherical space by means of identifying diametrically
opposite points.

The interior and exterior regions of a torus Fy consist respectively of the
points whose distance from N is less than « and those whose distance is
greater than «. The torus FJ together with its interior and exterior fills
the space. By (53.11), the exterior of Fa is at the same time the interior of
Fiv Hence elliptic space may also be obtained from two solid tori by identify-
ing their boundaries. A thorough understanding of all these considerations
requires a knowledge of topology. We merely mention therefore, without
further explanation, that three-dimensional projective space does not have
the property of one-sidedness. It is, in topological language, orientable.

Generally, all odd-dimensional projective spaces have this property while
the even-dimensional spaces are non-orientable.
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The following abbreviations for n-dimensional spaces are used : E” for
Euclidean space, P» for projective space, H" for hyperbolic space, ¢ for
elliptic space, and S for spherical space. Numbers, by themselves, refer

to pages.
A

Abelian (or commutative) group, 22.
Affine center, 87.
Affine coordinates, in A2, sec. 15.
in A3, 275.
in An, 275.
Affine plane, A2, 83.
Affine ratio, in A2, 86.
in A3, 276.
Affine space, An, 275.
Affinity, 83, 275.
Altitudes of triangle in H?, 175.
Angle, as cross ratio, 233.
between Clifford parallels,317,319.
in elliptic geometry, 212.
in Euclidean geometry, sec. 26.
in hyperbolic geometry, 175.
of parallelism, 175, 198.
between planes in ¢, 313.
between planes in H?, 310.
Apollonious, 61
Area, in equiaffine geometry, sec. 18.
of a domain partially bounded,
by limit circles, 235.
by an equidistant curve, 189.
of equidistant surface, 306.
in Euclidean geometry, 144.
in Hilbert geometry, 167.
in hyperbolic geometry, sec. 31.
in Minkowskian geometry, 138,
144, 291.
of circles, in €2, 225.
in E2, 144.
in H2, 182.
of sphere, in €, 321.
in H3, 301.
of triangle, in ¢?, 226.
in H2, 183.

Associated regulus, 270.
Associative law, 21.
Asymptote, to a hyperbola, 92.
to a line in H?, 161, 209.
Axial plane of homology, 247.
Axis of, biaxial involution, 249.
conic in E2, 151.
elation in P2, 47.
homology in P?, 45.
perspectivity in P2, 35.
projectivity of conie, 71.
quadric, 292.

B

Base point of pencil of conics, 77.
Biaxial involution, 249, 315.
Bolyai, 164.
Boundary point of convex set,
in A%, 94.
in A3, 279.
Bounded convex set in A?, 98.
Brianchon, 67.
Brianchon point, 82.
Bundle, 244.

c

Cauchy-Schwartz inequality, 106.
Cayley, 227.
Center of, conic in A2, 90.
elation, in P2, 47.
in P3, 248, 249.
homology, in P32, 45.
in P2, 247.
perspectivity in P3, sec. 7.
projectivity of conic, 71.
quadric in A3, 277.
Central reflection, see Reflection.
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Circles in open projective metric
planes, 121.
Circular points, 231.
Clifford parallels, 316.
Closed, convex curve, 98.
projective metric space, 116.
Collinear, 6.
Collineation = projectivity : of
bundle, 244, of conics, sec. 13.
of P2, sec. 9.
of P? commuting with polarity,
sec. 13.
of P3, sec. 41.
of P* commuting with polarity,
307.
Commutative (or Abelian) groups,
22

Commute (mappings), 22.

Concurrent, 6.

Cone, 245, 278.

Congruence theorems, in E2, 149,
in 2, 222.
in H2, 194.
in Sg, 222,

Congruent sets in metric space, 124.

Conic = point conic = conic section,

sec. 11.

Conics, affine theory, sec. 16.
Euclidean theory, sec. 27.
in H2, 211.
in P2, sec. 11.
in P23, 245,

Conjugate, axis of hyperbola, 152.
diameters of conic, 90.
lines in plane polarity, 57.
planes in spatial polarity, 258.
points in plane polarity, 57.
points in spatial polarity, 258.
regulus, 271.

Content of, affine geometry, 83.
equiaffine geometry, 99, 278,
projective geometry, sec. 4.

Convex, curve, 97,
domain, in A?, 97,

in A3 282,
set, in A2, 93.

in A3, sec. 46.
surface, 282.

Co-planar, 240.

Correlation of, bundles, 244.
planes, 55.
space, 257,

INDEX

Corresponding points on lines,
in Hz, 191.
in H2, 302.
Cross ratio : of lines in P2, sec. 6.
of planes, 243.
of points, in P2, sec. 6.
in Ps,; 243.
Curve in metric space, 112.
Cycle in H2, 196.
Cylinder in A3, 278.

D

Darboux, 32.
Degenerate, complex, 256.
conic, 76.
quadric, 265.
Diameter of conic, 90.
Differentiable, convex curve, 98.
convex surface, 282.
Dilation, 85.
Directrix, 155.
Disc, 122.
Distance, properties, 105.
in E?, 143, 145, 147.
in E3, 289.
in E», 106.
in €2, 212,
in €, 312, sec. 54.
in Hz2, 159.
in H&, 301.
in Minkowskian plane geometry,
133, 137, 143.
in Minkowskian spatial geometry,
286.
in plane Hilbert geometry, 158.
of point from line, in =2, 219.
in H2, 209.
of point from plane, in €2, 314.
in H?, 309.
in S, 109.
in space of continuous functions,
109.
in spatial Hilbert geometry, 297.
Dual of a theorem, 20.
Duality principle, 20.

E
Eccentricity of a conic, 155.

Elation, of Pz, 47.
of P, 248.
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Ellipse, in A2, 88.
in B2, 152,
imaginary, 89.
real, 89.
Ellipsoid, imaginary, 276.
real, 276.
Elliptic, area element, 225.
ge%metry, definition of plane, sec.
6

line element, 224, 225, sec. 54.
paraboloid, 277.
polarity of P2, 60.
projectivity of a line, 41.
spatial geometry, sec. 53.
trigonometry, sec. 37.
volume element, 321.
Equally oriented, lines in H?, 189.
mappings of lines in H2, 199.
Equation(s) of, affinity of A? 84;
of A3, 275.
central quadric, in A3, 277.
in E3, 293.
central reflection, in A?, 85.
in A3, 275.
collineation, of P2, 26.
of P3, 246.
of P2 leaving x; = 0 fixed, 84.
of P leaving x, = 0 fixed, 275.
cone in P3, 245, 246.
conic in A?, 88.
conic in P?, in point coordinates,
61, 64.
in line coordinates, 61.
correlation, of P2, 55.
of P9, 257.
cycles in Weierstrass coordinates,
210, 211.
degenerate conic in P, 76.
degenerate line complex, 256.
degenerate quadric in P?, 265.
elation in P2, 49.

in P3, 248.
ellipse in A%, 89, 91.
in E2, 152.
ellipsoid, in A2, 276.
in Es, 293.

elliptic paraboloid, 277.
equiaffinity, in A%, 99.
in A3, 278.
equidistant curve in H?, 186 ; sur-
face in H3, 310.
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Equation(s) of, continued

group Iy, in P2, 204.
in P3, 307.
harmonic homology, of P2, 49.
of P3, 249.
hyperbola, in A2z, 89, 91, 93.
in E2, 152,
hyperbolic paraboloid, 277.
hyperboloid of one sheet in A3,
276.
hypegboloid of two sheets in A3,
276.
hyperplane in P7, 111.
ideal line, 3.
imaginary ellipse in A?, 89.
imaginary quadric in P3, 265.
limit circle in H2, 192.
limit sphere in H3, 310.
lines in H?in Weierstrass coordi-
nates, 209.
line in P2, 5.
linear line complex, 256.
linear line congruence, 273.
lines in plane of P3, 255.
lines through point in P3, 256.
motions, of E2, 147, 148.
of E3, 294, 296.
of E4, 311.
of &2, 214, 215.
of ¢, 312, 314.
of H?, 204.
of Hs3, 308.
of Si, 220.
of S, 311.
non-ruled quadric in P3, 261.
null system, 258.
parabola, in A?, 89, 90.
in Ez, 152.
paraboloid, in E?, 293.
elliptic in A3, 277.
hyperbolic in A2, 277.
pencil of conics, 75.
plane in P, 240.
polarity, in P2, 56, 57, 59.
in P, 258, 259.
point locus in P2, 5.
point in P, 6.
points conjugate to points,
in plane polarity, 57.
in spatial polarity, 258.
projectivity, between lines in P,
24.
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Equation(s) of projectivity, contin.

of planes, 26.
of Ps, 246.

quadric in P3, 260.

regulus in line coordinates, 272.

ruled quadric in P3, 261.

rulings of quadric, 262, 316, 317,
319.

similitude, in A2, 84.
in A3, 275.

sphere in H3, 310.

tangent to conic, in A2, 93.
in P2, 63.

tangent plane to quadric, 263.

transformation, of line coordinates

in P2, 13.
of plane coordinates in P2, 246.
of point coordinates in P2, 11,
13.

of point coordinates in P3, 241.
of Weierstrass coordinates, 204,

209.
translation, in A2, 84.
in A3, 275,
Equiaffine geometry, of the plane,
sec. 18.

of space, 278.
Equiaffinity, in A2, 99.
in A3, 278.
Equidistant curve, 186.
surface, 302.
Equivalent metrics, 108.
Enanger program, 83.
Euclidean, area element, 292.
angle, sec. 26.
distance, in plane, 143, 145, 147.
in space, 289.
geometry, plane, sec. 25, def., 141.
spatial, 288, sec. 49.
metric on a torus, 319.
n-space, En, 106.
Excess, of triangle in €2, 226.
of triangle in H?, 183.
Extreme supporting line, 97.

F

Fixed points, of motion of E2, 148.
of motion of open projective me-
tric 2-space, sec. 23.
3-space, sec. 47.

INDEX

Fixed points, continued
of projectivity, on a line, 40, 41.
on a plane, 44, 45.
on space, 249.
Focus of a conic, 152.
Foot, of a point on a set, 119.
Fourth harmonic: point, 16, 19.
line, 19.

G

Gauss, 164.
Geodesic parallel coordinates in Hz2,
188.
Great circle in metric space, 114.
Group of,
affinities, 83.
elations, 50.
equiaffinities, sec. 18, 278.
isometries, 124.
mappings, 21.
motions, of E2, 147, 148.
E3, 294.
e?, 214, 215.
€3, 312, 314.
H2, sec. 34.
H2, sec. 52.
2, 220.
3, 311.
projectivities, of P, 24.
P2, 26.
P, 247.
leaving a conic invariant, 69.
commuting with a polarity, 204,
307.
rotations in E?, 314.
similitudes, 85, 275.
translations, 85, 320, 275.

H

Half, plane, 94.
space, 279.
Harmonic, conjugates, 32.
homology, in P2, 46.
in P, 248.
quadruple or set, of lines, 19, 31.
of planes, 243.
of points, 16, 31.
Hilbert, 117.
Hilbert geometry, in A3, sec. 28, 29,
def. 160.
in A%, sec. 50.
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Hjelmslev line, 199.
Homology, in P2, 45.
in P3, 247.
Homothetic, 136.
Hyperbola in A2, 88.
Hyperbolic, geometry, sec. 29 to
sec. 36, sec. 50, 51, 52.
area element, 182, 189.
line element, 181, 188, 301, 305.
paraboloid, 277.
plane, definition, 164.
polarity of plane, 60.
projectivity of line, 41.
space, definition, 298.
trigonometry, sec. 30.
volume element, 304, 305.
Hyperboloid, of one sheet, 273, 276.
of two sheets, 276.
Hyperparallel, 306.
Hyperplane, 111, 268.
at infinity, 275.

I

Ideal lines, sec. 1, 88.
Ideal points, sec. 1.
Identity mapping or identity, 21.
Incidence relation, 13.
Independent, complexes, 268.
hyperplanes, 241.
lines in P3, 267.
n-tuples of numbers, 240.
points in P3, 240.
points in P, 267.
Induced mapping, 27.
Interior point of convex set, in A?
94.
in A3, 279.
Intersection of sets, 94.
Interval, sec. 6.
Invariant subgroup, 85.
Inverse mapping, 21.
Involution, def. 39.
defining perpendicularity in E?,
233.
in P, sec. 8.
in P2, 45.
in P23, 247,
Isometric, mapping of isometry, 113,
124.
or congruent sets, 124.
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Isomorphic, groups, 125.
mapping or isomorphism, 125,
126.
Isotropic lines, 231.

K
Klein, 83.

Laguerre, 231.
Lambert, 186.
Law of, cosines, in €2, 219.
in E2, 145.
in S7, 223.
in H2, 180.
sines in H2, 179.
Length of, curve in metric spaces,
112.
circle, in €2, 224.
in H2, 181.
equidistant curve arc, 187.
limit circle arc, 192.
Limit, circle, 189.
sphere, 302 ;limit sphere coordi-
nates, 304.
Line, cone, 245.
coordinates in P?, sec. 42.
element, see specific geometries.
element of surface F% in ¢, 318.
at infiniry, sec. 1, 83.
in P2, 5, 7.
in P3, 242.
in Pr, 114.
Linear line complex = line complex,
sec. 42.
Linear line congruence = line con-
gruence, 273.
Linearly dependent n-tuples. 238.
Lobachevsky, 164.

M

Mapping, 20.
Medians of triangle in 3, 196.
Metric, space, sec. 19.
on equidistant surface in Hs, 303.
on limit sphere in H?, 302.
on sphere in H?, 301.
on surface F2 in ¢*, 318.
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Minkowski, 133.
Minkowskian geometry, in the plane,
sec. 24, sec. 25.
spatial, sec. 48.
Moebius strip, 217.
Motion, of metric space, sec. 22.
of elliptic geometry, plane, sec. 36.
spatial, see. 53.
Euclidean geometry, plane, sec. 26.
spatial, sec. 49.
Hilbert geometry, plane, sec. 29.
spatial, sec. 50.
hyperbolic geometry, plane, sec.
34

spatial, sec. 52.
Minkowskian plane, sec. 24, sec.
25.
space, sec. 48.
open projective metric two-space,
sec. 23.
open projective metric three-
space, sec. 47.
spherical geometry,
sional, sec. 37.
three-dimensional, 311.

two-dimen-

N

Non-Euclidean geometries, 164.

Non-ruled quadrics, 261.

No-tangent points, of conics, 62.
of quadrics, 263.

Normal subgroup, 85.

Null-system, 258.

0

One-sided surface, 217.

One-to-one mapping, 21.

Open, convex curve, 98.
projective metric space, 116.

P

Parabola, in A2, 88.
in Ez2, 151.
Parabolic projectivity, 41.
Paraboloid, elliptic, 277.
hyperbolic, 277.
Parallel, angle, 175, 198.
axiom, 164.

INDEX

Parallel, continued
lines, in A2, 83.
in A3, 275.
planes in A3, 276.
Pascal, 66.
Pascal line, 82.
Pencil, of conics, sec. 14.
of lines, 8.
of planes, 242.
Perpendicular bisectors of sides of
triangles in H2, 195.
Perpendicularity, in elliptic geome-
try, 219, 313.
in Euclidean geometry, 146, 147.
in Hilbert geometry, 160.
in Minkowskian geometry, 137.
in open projective two-space, sec.
21.
Perspectivity, of bundles, 244.
of lines in P2, sec. 7.
of pencils, in P2, sec. 7.
in P3, 244.
of planes in P3, 251.
Plane, in P2, 240.
cone, 245.
coordinates in P3, 241.
quadric, 262.
of symmetry of quadric, 294.
Pluecker, 253.
Point, in P2, 5.
in P3, 240.
in Pr, 111.
conic = conic, sec. 11.
quadric = quadric, sec. 43.
Polar, to point in polarity, of P2, 56.
of Ps, 258.
line in polarity, of P2, 56.
of P3, 260.
Polar coordinates, in 2, 225.
Polarity, in bundle, 245.
in P2, sec. 10.
in Ps, 258.
Pole, to line in polarity of P2, 56.
to plane in polarity of P, 258.
Product, of mappings, 21.
Projection, of conic on line, 72.
of mapping, 72.
Projective coordinates: on a line, 7.
in a pencil, 8.
in a plane, sec. 3.
in space, 240.
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Projective metric, 115.
n-space, 110, 115.
plane, sec. 21, 22, 23.
3-space, sec. 47.
Projectivity, of a conic on itself, 70.
of bundles, 244.
of a line on itself, sec. 8.
of lines, 22.
of pencils, 24.
of planes, 24, sec. 9.
of space, sec. 41.

Q

Quadrangular, pencil of conics, 78.
set of points, 10.

Quadric = point quadric, sec. 43.
in A3, 276.
in E3, sec. 49.

R

Rank of matrix, 238.
Reference, lines in a pencil, 9.
lines in a plane, 17.
points, on a line, 8.
in a plane, 10.
in space, 240.
Reflection, central or in a point of
Az, 85.
of A’, 284.
in a line, of €2, 213.
of 2, 148, 149.
of Hz, 204.
of &3, 315.
of E3, 296.
of H?, 298.
in a line of open projective metric
two-space, 128.
three-space, 284.
in a plane, of ¢, 313.
of E3, 296.
of Hs, 298.
of three-dimensional Hilbert geo-
metry, sec. 50.
of three-dimensional Minkow-
skian geometry, sec. 48.
in a point, of €2, 213.
of ¢, 313.
of E2, 149.
of E3, 296.
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Reflection, in a point, continued
of open projective metric two-
space, 127, 131.
of open projective metric three-
space, 284.
of two-dimensional Minkow-
skian geometry, sec. 25.
of three-dimensional Minkow-
skian geometry, sec. 48.
two-dimensional Hilbert geometry,
163.
two-dimensional Minkowskian geo-
metry, 134, sec. 25.
Regulus, 270.
Rotation of, open projective metric
two-space, 127.
E2, 149,
E3, 296.
e, 215.
e3, 313.
H2, 194.
Ruled quadric in P2, 261.

s

Secant, 62.
Segment, in metric space, sec. 20.
in Ez, 107
closed, in A2, 93.
in A3, 278.
open, in A2 93.
in A3, 278.
Self-conjugate, 57.
Self-polar, tetrahedron, 260.
triangle, 58.
Separated (points by line), 94.
Side, of a line, 94.
of a plane, 279.
Similitude, in A%, 85.
in A3, 275.
Spherical, coardinates in ¢, 321.
space, 108.
trigonometry, 219.
Straight line in metric space, 114.
Strictly convex, curve, 98.
surface, 282.
Supporting, line, 95, 97.
cone, 282.
plane, 280.
Symmetry point of parallels in H?,
200.
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T

Tangent, of conic, 61.
cone point, 263.
line of quadrie, 263.
plane of quadric, 262.
Tetrahedron, closed, 279.
open, 279.
self-polar, 260.
Theorem of, Brianchon, 67.
Ceva, 103.
Desargues, 14, 16, 51.
Hamel, 116.
Hjelmslev, 199.
Loewner, 101.
Menelaus, 102.
Pappus, 38, 67.
Pascal, sec. 12.
Pythagoras, in <?, 218.
in H2, 178.
Steiner, sec. 12.
Torus, 217.
Transformation of coordinates, see
under Equations of.
Translation, of A2, 84.
of A3, 275,
of E2, 148, 149.
of E3, 296.
of H* along a line, 186.
of <2 along a line, 214.
of ¢* along a line, 386.

INDEX

Transverse axis of hyperbola, 152.
Triangular set, 94.
Two-tangent point, 62.

U

Unit circle, of Minkowski plane, sec.
25.
of Minkowski space, sec. 48.
Unit point, 7.

v

Vertex of conic, 152.
Volume element, in E3, 291, 300.
in 3, 321.
in H3, 304, 305.
in Hilbert space, 299.
in Minkowski space, 289.
Volume,
of domain partially bounded by
equidistant surface, 305.
by limit sphere, 304.
of sphere, in E3, 290.
in 3, 321.
in H?, 300.

w

Weierstrass coordinates sec. 35, 309.



