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PREFACE.

IN writing a preface, what I am most tempted to
do is to enumerate and account for the omissions
of this treatise; if it were not that the size to
which the volume has swelled, renders it ncedless
for me to apologize for not having made it larger.
It may be right however to mention that the
chapters of this work were written and sent to press
at intervals as I found leisure, and that the earlier
part of the book has been in type more than a year.
This will explain why no use has been made of
some recent works and memoirs. In particular, I
must express my regret that Hesse’s ¢ Lectures on
the Analytic Geometry of Space” came too late to
be of service to me.

In treating of the less modern parts of the Science,
I have usually had Leroy’s and Gregory’s Treatises
before me. The parts of this work which corre-
spond to the contents of theirs are, the Theory of
Surfaces of the Second Order, pp. 1—88; of the
Curvature of Surfaces, pp. 197—223 ; of what I have
called the Non-Projective Properties of Curves of
Double Curvature, pp. 2569—277 and of Families
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of Surfaces, pp. 312—338. Junior readers will pro-
bably find all the information they require, if to
the course here marked out they add part of the
Theory of Confocal Surfaces, pp. 129—138, and
the General Theory of Surfaces, Chap. x.

I have to acknowledge with thanks the kind
readiness with which assistance was afforded me
by any of my friends whose help I claimed. Those
to whom I am most indebted are Dr. Hart and
the Messrs. Roberts; but I have received occasional
assistance from Messrs. Townsend, Williamson, and
Gray, to the latter of whom I owe the list of Errata
which follows the Table of Contents.

I have to thank the Board of Trinity College,
for their liberality in contributing to the expense
of publication.

Teoary Correes, DusLIx,
May, 1862,
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ANALYTIC GEOMETRY OF THREE DIMENSIONS.

CHAPTER I

THE POINT.

1. WE have scen already how the position of a point C
in a plane is determined, by referring it to two co-ordinate
axes 0X, OY drawn in the plane. To determine the position
of any point P in space, we have only to add to our apparatus
a third axis OZ not in the plane (see figure next page).
Then if we knew the distance of the point P from the plane
XO0Y, measured parallel to the line OZ, and also knew the
« and y co-ordinates of the point C, where PC parallel to 0Z
meets the plane, it is obvious that the position of P would
be completely determined.

Thus, if we were given the three equations 2 =a, y =5, 2=c,
the first two equations would determine the point C, and then
drawing through that point a parallel to OZ, and taking on
it a length PC = ¢, we should have the point P.

™We have seen already how a change in the sign of a
or b affects the position of the point C. The sign of ¢ will
determine on which side of the plane XOY the line PC is
to be measured. If it be scttled that lines on one side of
the plane are to be considered as positive, then those in the
other direction must be considered as negative. Thus, if we
conceive the plane XOY to be horizontal, it is customary to

B



2 THE POINT.

consider as positive the z of every point adove that plane,
in which case the z of every point Jelow it must. be counted
as negative. It is obvious that cvery point on the plane has
its 2=0.

The angles between the axes may be any whatever; but
the axes are said to be rectangular when the lines OX, OY
are at right angles to each other, and the line OZ perpendicular
to the plane XOY.

2. We have stated the method of representing a point in
space, in the manner which seemed most simple for readers
already acquainted with Plane Analytic Geometry. We pro-
cced now to state the same more symmetrically. Our appa-
ratus evidently consists
of three co-ordinate axes /z
0X, 0Y, OZ meeting F
in a point O, which, as
in Plane Geometry, is
called the origin. The
three axes are called the
axes of x, y, z respec-
tively. These three axes
determine also three co-
ordinate planes, namely, (/]
the planes X0Y, Y0Z,

Z0X, which we shall ¥

call the planes zy, yz,

gx respectively. Now since it is plain that PA= CE=aq,
PB=CD =5, we may say that the position of any point P
is known if we are given its three co-ordinates; viz. PA drawn
‘parallel to the axis of = to meet the plane yz, PB parallel to
the axis of y to meet the plane 2z, and PC drawn paralleWto
the axis of £ to meet the plane xy.

Again, since OD=a, OE=5, OF =c¢, the point given by
the equations z=a, y==>4, z=c may be found by the follow-
ing symmetrical construction: measure on the axis of z, the
length OD =a, and through D draw the plane PBCD parallel
to the plane yz: measure on the axis of y, OE=25, and through
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E draw the plane PACE parallel to zz: measure on th® ¥xis
of z, OF=c, and through F draw the planc PABF parallel
to xy: the intersection of the three plancs so drawn is the
point 7, whose construction is required.

A B C
3. The points & Y, ¥, are called the projections of the

point P on the three co-ordinate planes; and when the axes are
rectangular they are its orthogonal projections. In what fol-
lows we shall be almost exclusively concerned with orthogonal
projections, and therefore when we speak simply of projections,
are to be understood to mean orthogonal projections, unless
the contrary is stated. There are some properties of orthogonal
projections which we shall often have occasion to employ, and
which we therefore collect here, though we have given the
proof of some of them already. (See Conics, p. 315.)

The length of the orthogonal projection of a finite right line
on any plane 13 equal to the line multiplied by the cosine of
the angle® which it makes with the plane.

* The angle a line makes with a plane is measured by the angle
which the line makes with its orthogonal projection on that plane.

The angle between two planes is measured by the angle between the
perpendiculars drawn in each plane to their line of intersection at any
point of it. It may also be measured by the angle between the perpen-
diculars let fall on the planes from any point.

The angle between two lines which do not intersect, is measured by
the angle between parallels to both drawn through any point.

When we speak of the angle between two lines, it is desirable to express
without ambiguity whether we mean the acute or the obtuse angle which
they make with each other. When therefore we speak of the angle be-
tween two lines (for instance PP, C'C” in the figure, next page), we shall
understand that these lines are measured in the direction from P to P’ and
from C to C’, and that the parallel PQ is measured in the same direction.
The angle then between these lines is acute. But if we spoke of the angle
between PP and C'C, we should draw the parallel PQ’ in the opposite
direction, and should wish to express the obtuse angle made by the
lines with each other.

‘When we speak of the angle made by any line OP with the axes, we
shall always mean the angle between OP and the positive direction of
the axes, viz. 0X, 0Y, OZ, ®

B2



4 THE POINT.

“Let PC, P'C’ be drawn perpendicular to the plane XOY;

and CC'is the orthogonal pro- »’
jection of the line PP on that z

plane. Complete the rectangle

by drawing PQ parallel to CC’, ' e
and PQ will also be equal to P/

CC'. But PQ= PP cosPPQ.

4. The projection on any
plane of any area tn another 2 z
plane 18 equal to the original
area multiplied by the cosine of / o
the angle between the planes. c
(See Conics, p. 315.) .

For if ordinates of both figures be drawn perpendicular to
the intersection of the two planes, then, by the last article,
every ordinate of the projection is equal to the corresponding
ordinate of the original figure multiplied by the cosine of the
angle between the planes. But it was proved (Conics, p. 293,)
that when two figures are such that the ordinates corres-
ponding to equal abscissee have to each other a constant ratio,
then the areas of the figures have to each other the same ratio.

5. The projection of a point on any line, is the point where
the line is met by a plane drawn through the point perpendicular
to the line. Thus, in figure, p. 2, if the axes be rectangular,
D, E, F are the projections of the point P on the three axes.

The projection of a finite right line upon another right line
18 equal to the first line multiplied by the cosine of the angle
between the lines.

Let PP be the given line, and DD’ its projection on OX.
Through P draw PQ parallel to z
OX tomeet the plane P'C'D’; and

since it is perpendicular to this - e
plane, the angle PQP is right, and
PQ= PP cos PPQ. But PQ and o D ¥ .

planes on two parallel right lines.

DI are equal, since they are the /
intercepts made by two parallel a
4% ’
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6. If there be any three points P, P, P", the projection of
PP’ on any line will be equal to the sum of the projections on
that line of PP’ and P'P".

Let the projections of the three points be D, IV, D", then
if I lie between D and D", DD is evidently the sum of DD
and D'D". 1f D" lie between D and I, DD" is the difference
of DI and D'D"; but since the direction from I to D" is
the opposite of that from D to I¥, DD" is still the algebraic
sum of DD’ and D’'D’. It may be otherwise seen that the
projection of P’P” is in the latter case to be taken with a
negative sign from the consideration that in this case the
length of the projection is found by multiplying P’P” by the
cosine of an obtuse angle (see note, p. 3). In general, if there
be any number of points P, P, P, P", &c., the projection
of PP on any line is equal to the sum of the projections of
PP, PP, P'P",

7. We shall have constant occasion to make use of the
following particular case of the preceding.

If the co-ordinates of any point P be projected on any line,
the sum of the three projections is equal to the projection of the
radius vector on that line.

For consider the points O, D, C, P (see figure, p. 2) and
the projection of OP must be equal to the sum of the pro-
jections of OD (=), DC (=y), and CP (=¢2).

8. Having established those principles concerning projec-
tions which we shall constantly have occasion to employ, we
return now to the more immediate subject of this chapter.

The co-ordinates of the point dividing in the ratio m : n the

1. "o n_n

distance between two points x'y'z, x'y"z", are

_ mz" +nx my'+ny  m2"4nd

= Tmtn YT Tmxn P 'T T
The proof is precisely the same as that given at Conics, p. 5,
for the corresponding theorem in Plane Analytic Geometry.
The lines PM, QN in the figure there given, now represent
the ordinates drawn from the two points to any one of the
co-ordinate planes.
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If we consider the ratio m :n as indeterminate, we have
the co-ordinates of any point in the line joining the two given
points.

9. Any side of a triangle is cut in the ratio m:n, and
the line joining this point to the opposite vertex is cut in the
ratio m+n : 1, to find the co-ordinates of the point of section.

Ans.

. _ b’+m" +M"" _ly'+my"+ny7" z_l‘z' +n!z"+nz"'

ST Txm+n YT Txmin T lamtn

This is proved as in Plane Analytic Geometry (see Conics,
p- 6). If we consider I, m, n as indeterminate, we have the
co-ordinates of any point in the plane determined by the
three points.

Ex. The lines joining middle points of opposite edges of a tetrahedron
iz’ x'+z"
2’ 2 '
i+ 2"+ 2"
—_—
The other co-ordinates are found in like manner, and their symmetry shows
that this is also a point on the line joining the other middle points.
Through this same point will pass the line joining each vertex to the
centre of gravity of the opposite triangle. For the z of one of these
diz'+2”
3
vertex be cut in the ratio of 3 : 1, we get the same value as before.

meet in a point. The z’s of two such middle points are

and the z of the middle point of the line joining them is

centres of gravity is , and if the line joining this to the opposite

10. To find the distance between two points P, P, whose
rectangular co-ordinates are x'y'z', x'"y"2".

Evidently (see figure, p. 4) PP* = P Q'+ PQ*. But
P Q=2¢—2" and P¢'= CC™ is by Plane Analytic Geometry
=(@'-2")+ @y -y")". Hence

PPl=-a")+(y —y" )+ —2")"

Cor. The distance of any point z'y'z’ from the origin is
given by the equation

OP =x" +y"+2"
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11. The position of a point is sometimes expressed by its
radius vector and the angles it makes with three rectangular
axes. Let these angles be a, B, y. Then since the co-ordinates
x, ¥, # are the projections of the radius vector on the three
axes, we have

x=p cosa, y=p cosf3, z=p cosy.

And, since z'+y"+2'=p', the three cosines (which are
sometimes called the direction-cosines of the radius vector)
are connected by the relation

cos’a + cos’B + cos’y = 1.*

The position of a point is also sometimes expressed by the
following polar co-ordinates—the radius vector, the angle o which
the radius vector makes with a fixed axis OZ, and the angle
COD (=¢) which OC the projection of the radius vector on a
plane perpendicular to OZ (see figure, p. 4) makes with a fixed
line OX in that plane. Since then OC=p sinyy, the formule
for transforming from rectangular to these polar co-ordinates are

x=p siny cos¢, y=p siny sin¢d, z=p cosy.
12. The square of the area of any plane figure ts equal to

the sum of the squares of its projections on three rectangular
planes.

¢ I have followed the usual practice in denoting the position of a line
by these angles, but in one point of view there would be an advantage in
using instead the complementary angles, namely, the angles which the
line makes with the co-ordinate planes. This appears from the correspond-
ing formule for oblique axes which I have not thought it worth while
to give in the text, as we shall not have occasion to use them afterwards.
Let a, B, v be the angles which a line makes with the planes yz, zz, zy, and
let 4, B, C be the angles which the axis of z makes with the plane of yz,
of y with the plane of zz, and of z with the plane of zy, then the formule
which correspond to those in the text, are

z 8inA4 =p sina, y sinB=p sinB, £ sin C=p sinv.

These formule are proved by the principle of Art. 7. If we project on a
line perpendicular to the plane of gz, since the projections of y and of z on
this line vanish, the projection of z must be equal to that of the radius
vector, and the angles made by x and p with this line are the complements
of 4 and a.
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Let the area be 4, and let a perpendicular to its plane
make angles a, B, v with the three axes; then (Art. 4) the
projections of this area on the planes ye, sz, xy respectively,
are A4 cosa, A cosB, A cosy. And the sum of the squares
of these three = A" since cos’a + cos'8 + cos’y = 1.

13. To express the oosine of the angle 0 between two lines
OP, OP in terms of the direction-cosines of these lines.
‘We have proved (Art 10),
PP (@) + (y- y)'+ (e~ 2)"

Baut also PP*=p"+ p" —2pp’ cosf.

" Andsince p'=a'+y'+ef pt=2"+y" +2",
we have pp’ cosl=xx'+yy' + 22/,
or cos 0 = cosa cosa’ + cos 8 cos3’ + cosy cosy'.

Cor. The condition that two lines should be at right angles
to each other is

cosa cosa’ + cos 3 cosS’ + cosy cosy’ =0.

14. The following formula is also sometimes useful :

8in’ @ = (cosB cosy' — cosy cos')* + (cosy cosa’ —cosa cosy')*
+ (cosa cosB’ — cosB cosa')".
This may be derived from the following elementary theorem
for the sum of the squares of three determinants (Lessons on
Higher Algebra, Art. 21), but which can also be verified at
once by actual expansion,
(bc' = cb')* + (ca' — ac')* + (ab’ — ba')*
= (a'+b8'+¢") (a™+ 8™+ c") — (aa’ + b’ +cc)*.

For when a, b,c; a', ¥, c are the direction-cosines of two
lines, the right-hand side becomes 1 ~ cos"é.

Ex. To find the perpendicular distance from a point zy# to a line
through the origin whose direction-angles are a, 8, 4.

Let P be the point z’y'?, OQ the given line, PQ the perpendicular,

then it is plain that PQ=OP sin POQ; and using the value just obtained
for sin POQ, and remembering that z’= OP cosa’, &c., we have

PQ = (3 cosy - £ cosf)* + (2’ cosa — 2’ cosy)® + (2’ cosfB - y cosa)’.
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15. To find the direction-cosines of a line perpendicular to
two given lines, and therefore perpendicular to their plane.

Let a'8'y, a"8"y" be the direction-angles of the given line,
and aBy of the required line, then we have to find aBy from
the three equations

cosa cosa’ + cosB cosS’ + cosy cosy' =0,
cosa cosa” + cos B cos8” + cosy cosy” =0,
cos'a + cos’ B + cos’y = 1.
From the first two equations we can easily derive, by elimi-
nating in turn cosa, cosf, cosy,
A cosa = cos3’ cosy” — cosS” cosy',
A cosB =cosy’ cosa” — cosy” cosa’,
A cosy =cosa’ cos" — cosa” cosf,

where A is indeterminate; and substituting in the third eqffa-
tion, we get (see Art. 14)
) A'=sin"6.

This result may be also obtained as follows: take any two
points P, Q, or z'y'z'y z"y"2", one on each of the two given lines.
Now double the area of the projection on the plane of zy
of the triangle POQ, is (see Conics, p. 25) 'y"—y'z", or
p'p" (cosa’ cosB” —cosa” cosB’). But double the area of the
triangle is p'p" sin@, and therefore the projection on the plane

of zy is p'p” sin@ cosy. Hence, as before,

8in@ cosy =cosa’ cosB” —cosa” cosf,
and in like manner

sin@ cosa=cosS’ cosy’ — cos " cosy';

8in @ cosB = cosy’ cosa” — cosy” cosa’.

TRANSFORMATION OF CO-ORDINATES.

16. To transform to parallel axes through a new origin,
whose co-ordinates referred to the old axes are &', ', 2'.
The formule of transformation are (as in Plane Geometry)

e=X+2, y=Y+y, z2=2+7.
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For let a line drawn through the point P phrallel to one
of the axes (for instance z) meet the old plane of zy in a point
C, and the new in a point C'; then PC=PC’ + C'C.

But PC is the old £, PC' is the new z; and since parallel
planes make equal intercepts on parallel right lines, CC'
must be equal to the line drawn through the new origin O
parallel to the axis of z, to meet the old plane of zy.

17. To pass from a rectangular system of axes to another
system of axes having the same origin.

Let the angles made by the new axes of z, y, z with the
old axes be a, B, v; a, B, v'; a', B", v respectively. Then
if we project the new co-ordinates on one of the old axes, the
sum of the three projections will (Art. 7) be equal to the
projection of the radius vector, which is the corresponding old
cg-ordinate. Thus we get the three equations

= X cosa + Y cosa’ + Z cosa”
y=XcosB+ Y cosf + Z cos’ }
2= X cosy+ Y cosy' + Z cosy"

We have, of course, (Art. 11)

cos'a +cos' 8+ cos'y=1, cos'a’ + cos’'B +cos'y' =1,
cos’a”’ +cos’ B + cos’y =1 ..ccuvrurunnen. (B).
If the new axes be also rectangular, we have also (Art. 13)
cosa cosa’ + cosf cosB’ + cosqy cosy' =0
cosa’ cosa’ +cosS’ cosB” + cosy’ cosy”’ =0 } «.(0)
cosa” cosa + cosB" cosB + cosy” cosy =0

By the help of these relations we can verify that when
we pass from one system of rectangular axes to another, we
have, as is geometrically evident, &* + "+ 2*' = X"+ Y* + 2*

‘When the new axes are rectangular, since a, o, @’ are
the angles made by the old axis of « with the new axcs, we
must have

cos’a + cos'a’ +cos’a’ =1, cos*S+cos’'S +cos’B =1,
cos’y +cos’y' + cos’y" =1 .cciieninnnnnns (D),
cosa cosB + cosf cosy + cosy cosa =0
cosa’ cosB’' + cosfB’ cosy’ + cosy' cosa’ =0 }(E),
cosa’ cosB" + cosB" cosy” + cosy” cosa’ =0
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and the new co-ordinates expressed in terms of the old are
X=x cosa + y cosB + z cosy
Y=z cosa’ + y cosf' + z cosy }
Z=uz cosa”’ +y cosB" + z cosy”
It would not be difficult to derive analytically equations
D, E, F, from equations 4, B, C, but we shall not spend
time on what is geometrically evident.

18. When we transform rectangular axes to a system not
rectangular, let A, g, v be the angles between the new axes
of y and z, of z and z, of « and y respectively, then (Art. 13)

cosA = cosa’ cosa’ + cosB' cosS” + cosy' cosy”,
cosu = cosa” cosa + cosS” cosB + cosy” cosry,
cosy = cosa cosa’ + cosf cosB’ + cosy cosy'.

Hence
L4y +2=X"+Y'+2"+2YZ cosh+2ZX cospu+ 2XY cosv.

Thus we obtain the radius vector from the origin to any
point expressed in terms of the oblique co-ordinates of that point.
It is proved in like manner that the square of the distance
between two points, the axes being oblique, is

(& =&Y+ (f — g+ (£ - 2 42 (4 — y) (2 — ") com

+2(2'=2") (@ —2") cosp+2 (2 —2") (¥ — ") cosv.®*

19. The degree of any equation between the co-ordinates ts
not altered by transformation of co-ordinates.

This is proved, as at Conics, p. 8, from the consideration
that the expressions just given for z, y, z, only involve the
new co-ordinates in the first degree.

* As we shall never require in practice the formule for transforming
from one set of oblique axes to another, we only give them in a note.

Let 4, B, C have the same meaning as at note, p. 7, and let a, 8, 4;
d, B, v'; a, B, v be the angles made by the new axes with the old
co-ordinate planes; then by projecting on lines perpendicular to the old
co-ordinate planes, as in the note referred to, we find

z sinAd = X sina + ¥ sina’ + Zsina”,
ysinB = XsinB + ¥Ysing + Zsing’,
zs8in C = X siny + ¥ siny’ + Z sin~".
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CHAPTER IL

INTERPRETATION OF EQUATIONS.

20. It appears from the construction of Art. 1 that if we
were given merely the two equations z=a,y=25, and if the
& were left indeterminate, the two given equations would de-
termine the point C, and we should know that the point P
lay somewhere on the line PC. These two equations then
are considered as representing that right line, it being the
locus of all points whose z=a, and whose y=5. We learn
then that any two equations of the form z=a, y =5 represent
a right line parallel to the axis of z. In particular, the equations
=0,y=0 represent the axis of z itself. Similarly for the
other axes,

Again, if we were given the single equation z=a, we
could determine nothing but the point D. Proceeding, as at
the end of Art. 2, we should learn that the point P lay some
where in the plane PBCD, but its position in that plane would
be indeterminate. This plane then being the locus of all points
whose z=a is represented analytically by that equation. We
learn then that any equation of the form z=a represents a
plane parallel to the plane yz. In particular, the equation
=0 denotes the plane yz itself. Similarly, for the other
two co-ordinate planes.

21. In general, any single equation between the co-ordinates
represents a surface of some kind ; any two stmultaneous equations
between them represent a line of some kind, either straight or
curved ; and any three equations denote one or more points.

I. If we are given a single equation, we may take for z
and y any arbitrary values; and then the given equation
solved for ¢z will determine one or more corresponding values
of z. In other words, if we take arbitrarily any point C in
the plane of xy, we can always find on the line PC one or
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more points whose co-ordinates will satisfy the given equation.
The assemblage then of points so found on the lines PC will
form a surface which will be the geometrical representation
of the given equation (see Contes, p. 13). '

II. When we are given two equations, we can, by elimi-
nating y and z alternately between them, throw them into
the form y=¢ (z), 2=+ (x). If then we take for = any ar-
bitrary value, the given equations will determine corresponding
values for y and z. In other words, we can no longer take
the point C anywhere on the plane of zy, but this point is
limited to a certain locus represented by the equation y=¢ ().
Taking the point C anywhere on this locus, we determine
as before on the line PC a number of points P, the assemblage
of which is the locus represented by the two equations. And
since the points C which are the projections of these latter
points, lie on a certain line, straight or curved, it is plain that
the points P must also lie on a line of some kind, though of
course they do not necessarily lie all in any one plane.

Otherwise thus: when two equations are given, we have
seen in the first part of this article that the locus of points
whose co-ordinates satisfy either equation separately, is a surface.
Consequently, the locus of points whose co-ordinates satisfy
both equations is the assemblage of points common to the
two surfaces which are represented by the two equations con-
sidered separately: that is to say, the locus is the line of in-
tersection of these surfaces.

III. When three cquations are given, it is plain that they
are sufficient to determine absolutely the values of the three
unknown quantities z, y, 2z, and therefore that the given
equations represent one or more points. Since each equation
taken separately represents a surface, it follows hence that
any three surfaces have one or more common points of inter-
section, real or imaginary.

22. Surfaces, like plane curves, are classed according to
the degrees of the equations which represent them. Since
every point in the plane of zy has its z=0, if in any equation
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we make z=0, we get the relation between the @ and y
co-ordinates of the points in which the plane xy meets the
surface represented by the equation: that is to say, we get
the equation of the plane curve of section, and it is obvious
that the equation of this curve will be in general of the same
degree as the equation of the surface. It is evident, in fact,
that the degree of the equation of the section cannot be greater
than that of the surface, but it appears at first as if it might
be less. For instance, the equation
2z’ + oy’ + V'x=c

is of the third degree, but when we make z=0, we get an
equation of the second degree. But since the original equation
would have been unmeaning if it were not homogeneous, every
term must be of the third dimension in some linear unit (see
Conics, p. 61), and therefore when we make z=0, the re-
maining terms must still be regarded as of three dimensions.
They will form an equation of the second degree maultiplied
by a constant, and denote (see Contes, p. 61) a conic and
a line at infinity. If then we take into account lines at infinity,
we may say that the section of a surface of the n™ degree
by the plane of xy will be always of the n™ degree, and
since any plane may be made the plane of zy, and since
transformation of co-ordinates does not alter the degree of an
equation, we learn that every plane section of a surface qf the
“degrwuacurveqfthen degree.

In like manner it is proved that every right line meets a
surface of the n™ degree in n points. The right line may be
made the axis of z, and the points where it meets the surface
are found by making =0, y= 0 in the equation of the surface,
when in general we get an equation of the n™ degree to de-
termine 2. If the degree of the equation happened to be less
than n, it would only indicate that some of the » points
where the line meets the surface are at infinity.

23. Curves tn space are classified according to the number
of points in which they are met by any plane. Two equations
of the m™ and n™ degrees respectively represent a curve of the
mn™ degree. For the surfaces represented by the equations
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are cut by any plane in curves of the m™ and »™ degrees
respectively, and these curves intersect in mn points.

Three equations of the m™, n™, and p™ degrees respectively,
denote mnp points.

This follows from the theory of elimination, since if we
eliminate y and 2z between the equations, we obtain an equation
of the mnp™ degree to determine x (see Lessons on Higher
Algebra, p. 26). This proves also that three surfaces of the
m™, 0", p' degrees respectively, intersect in mnp points.

24. If an equation only contain two of the variables
¢ (z, y) =0, the learner might at first suppose that it represents
a curve in the plane of xy, and so that it forms an exception
to the rule that it requires two equations to represent a curve.
But it must be remembered that the equation ¢ (z, y) =0 will
be satisfied not only for any point of this curve in the plane
of zy, but also for any other point having the same z and y
though a different z: that is to say, for any point of the
surface generated by a right line moving along this curve,
but remaining parallel to the axis of z* The curve in the
plane of xy can only be represented by two equations, namely,
2=0, (2, 9)=0.

If an equation contain only one of the variables x, we
know by the theory of equations, that it may be resolved
into n factors of the form z—a=0, and therefore (Art. 20)
that it represents n planes parallel to one of the co-ordinate
planes.

* A surface generated by a right line moving parallel to itself is called
a cylindrical surface.
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CHAPTER IIL

THE PLANE.

25. IN the discussion of equations we commence of course
with equations of the first degree, and the first step is to
prove that every equation of the first degree represents a plane,
and conversely, that the equation of a plane is always of the
Jirst degree. 'We commence with the latter proposition, which
may be established in two or three different ways.

In the first place we have seen (Art. 20) that the plane
of xy is represented by an equation of the first degree, viz.
£=0; and transformation to any other axes cannot alter the
degree of this equation (Art. 19).

‘We might arrive at the same result by forming the equation
of the plane determined by three given points, which we can
do by eliminating 7, m, n from the three equations given
Art. 9, when we should arrive at an equation of the first
degree. The following method however of expressing the
equation of a plane leads to one of the forms most useful in
practice.

26. To find the equation of a plane, the perpendicular on
which from the origin =p, and makes angles a, B, y with the
axes.
The length of the projection on the perpendicular of the
radius vector to any point of the plane is of course =p, and
(Art. 7) this is equal to the sum of the projections on that
line of the three co-ordinates. Hence we obtain for the equation
of the plane

x cosa+y cosB+z cosy=p.*

* In what follows we suppose the axes rectangular, but this equation
is true whatever be the axes.
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27. Now, conversely, any equation of the first degree
Ax+By+Cz+ D=0,
can be reduced to the form just given, by dividing it by a
factor B. We are to have 4 = R cosa, B= R cosB, C= R cosy,
whence, by Art. 11, R is determined to be =4/(4*+ B*+ C*).
Hence any equation Ax+ By+Cz+ D=0 may be identified
with the equation of a plane, the perpendicular on which from

the origin = m, and makes angles with the

axes whose cosines are A4, B, C, respectively divided by the
same square root. We are to give to the square root the
sign which will make the perpendicular positive, and then the
signs of the cosines will determine whether the angles which
the perpendicular makes with the positive directions of the
axes are acute or obtuse.

28. To find the angle between two planes
Axz+By+Cz+ D=0, Az+ By+Cz+ D=0,

The angle between the planes is the same as the angle
between the perpendiculars on them from the origin. By the
last article we have the angles these perpendiculars make with
the axes, and thence, Arts. 13, 14, we have

4A4'+BB' +CC
(A'-I-B’-}-C')(A"-}-.B"-}-G")}’
sin'f = (AB'—A'B)*+ (BC'—B'C)'+ (CA'-C'A)*
= @+ B+O) A+ B+ 0 ‘

Hence the condition that the planes should cut at right angles
is A4'+ BB+ CC' =0.

They will be parallel if we have the conditions

AB'=A'B, BC'=B'C, CA'=C(C'4;
in other words, if the coefficients 4, B, C be proportional to
A’y B’y C'y in which case it is manifest from the last article
that the direction of the perpendicular on both will be the same.

0080=~/{

29. To express the equation of a plane in terms of the in-
tercepts a, b, c, which it makes on the awes.
]
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The intercept made on the axis of x by the plane
Ax+ By+Cz+ D=0
is found by making y and z both =0, when we have da+ D=0.
And similarly, Bb+ D=0, Cc+D 0. Substituting in the
general equation the values just found for 4, B, O, it becomes
TLYLE
atste=l
If in the general equation any term be wanting, for instance,
if A=0, the point where the planc meets the axis of z is at
infinity, or the plane is parallel to the axis of . If we have
both 4=0, B=0, then two axes meet at infinity the given
plane which is therefore parallel to the plane of @y (see also
Art. 20). If we have A=0, B=0, C=0, all three axes meet
the plane at infinity, and we see, as at Conics, p. 61, that an
equation D = 0 must be taken to represent a plane at infinity.

30. To find the equation of the plane determined by three
porints.

Let the equation be Axz+ By+ Cz+D=0; and since this
is to be satisfied by the co-ordinates of each of the given points,
A, B, 0, D must satisfy the equations

Am’+By’+Cz’+D—0 Ax" + By" + Cz" + D=0,
l"+ By"'+0zllf+D 0
Eliminating 4, B, C, D between the four equations, the
result is the determinant
z Y % 1
z, ¥, 2, 1
. 'y y'y 2" 1

Ill " "

y Yy 27, 1]|=0.
Expanding this by the common rule, the equation is
2y (-2 + YE"-5) + y @)
@) - ) o)
el )+ ST b )
=a (y's" —y"e) + (3 - g5 + 2 (9~ y'E).
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If we consider z, y, z as the co-ordinates of any fourth
point, we have the condition that four points should lie in
one plane.

31. The coefficients of 2, y, z in the preceding equation
are evidently double the areas of the projections on the co-
ordinate planes of the triangle formed by the three points.

If now we take the equation (Art. 26)

Z cosa+y cos B+ z cosy =p,

and multiply it by twice 4, (4 being the area of the triangle
formed by the three points) the equation will become identical
with that of the last article, since A4 cosa, 4 cosf3, A cosy
are the projections of the triangle on the co-ordinate planes
(Art. 4). The absolute term then must be the same in both
cases. Hence the quantity

(Y -y +x" (" - yd") & (Y7 —y')
represents double the area of the triangle formed by the three
points multiplied by the perpendicular on its plane from the
origin: or, in other words, six times the volume of the triangular
pyramid, whose base is that triangle, and whose vertex s the
origin®

® If in the preceding values we substitute for 2/, ¥, #'; p’ cosd’, p’ cosf’,
p’ cosq/, &c., we find that six times the volume of this pyramid = p'p"p"
multiplied by the determinant
cosa’, cosf¥, cosy’
cosa”, cosf’, cosy”
cosa"’, cosB"”, cosy”

Now let us suppose the three radii vectores cut by a sphere whose radius
is unity, having the origin for its centre, and meeting it in a spherical
triangle RR'R”. Then if a denote the side R'R", and p the perpendicular
on it from R”, six times the volume of the pyramid will be p'p“p"” sina sinp ;
for p'p" sina is double the area of one face of the pyramid, and p" sinp
is the perpendicular on it from the opposite vertex. It follows then that
the determinant above written is equal to double the function

V{(sin s sin(s - @) sin(s — ) sin(s - ¢)}
of the sides of the above-mentioned spherical triangle. The same thing
c2
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*J. can at once express A itself in terms of the co-ordinates
of the three points by Art. 12, and must have 44’ equal to
the sum of the squares of the coefficients of x, y, and 2, in
the equation of the last article.

32. To find the length of the perpendicular from a given point
x'y'e’ on a given plane.

If we draw through z'y'z’ a plane parallel to the given
plane and let fall on the two planes a common perpendicular
from the origin, then the intercept on this line will be equal
to the length of the perpendicular required, since parallel planes
make equal intercepts on parallel lines. But the length of
the perpendicular on the plane through x'y'z’ is, by definition,
(Art. 5) the projection on that perpendicular of the radius
vector to &'y'z, and therefore (Art. 26) is equal to

z' cosa+y' cosf3 + 2 cosry.
The length required is therefore
Z' cosa+y' cos3+ 2z cosy—p.
N.B. This supposes the perpendicular on the plane through
z'y's’ to be greater than p, or, in other words, that z'y'z’ and

may be proved by forming the square of the same determinant according
to the ordinary rule; when if we write

cosa” cosa” 4 cosf” cos 8" + cosy” cosy™” = cosa, &c.
we get
1 cose, cosd

cose, 1, cosa
cosd, cosa, 1
which expanded is 1+ 2 cosa cosd cosc — cos’a ~ cos’d - cos’e, which is
known to have the value in question.

It is useful to remark that when the three lines are at right angles
to each other the determinant
cosa’, cosf, cosey’
cosa’, cosf”, cosqy”
cosa”, cosfB", cos«y"
has unity for its value. In fact we see, as above, that its square is
1, 0,0
01,0
0,01
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the origin are on opposite sides of the planc. If they were
on the same side, the length of the perpendicular would be
p—(z' cosa+y cosfB+2 cosy). If the equation of the plane
were given in the form Ax+ By+ Cz+ D, it is reduced to
the other form, as in Art. 27, and the length of the per-
pendicular is
Ax'+ By'+Cz'+ D
V(4'+ B*+CY)

It is plain that all points for which Ax'+ By' + Cz'+ D
has the same sign as D, will be on the same‘side of the plane
as the origin, and vice versé when the sign is different.

33. To find the co-ordinates of the intersection of three planes.

This is only to solve three equations of the first degree
for three unknown quantities (see Lessons on Higher Algebra,
Art. 24). The value of the co-ordinates will become infinite
if the determinant (4B'C") vanishes, or

A(B'C"-B"C')+A4' (B"C-BC")+ 4" (BC'- B'C)=0.

This then is the condition that the three planes should be
parallel to the same line. For in such a case the line of in-
tersection of any two would be also parallel to this line, and
could not meet the third plane at any finite distance.

34. To find the condition that four planes should meet in a
pornt.

This is evidently obtained, by eliminating z, y, z between
the equations of the four planes, and is therefore the determinant
(4B'C"D™"), or

4, B, C, D
4, B, C, D
Al" BH’ 0”, Dll

Al", BIH, C'", DIH =0.

35. To find the volume of the tetrahedron whose vertices are
any four given points.

If we multiply the area of the triangle formed by three
points, by the perpendicular on their plane from the fourth,
we obtain three times the volume. The length of the per-
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pendicular on the plane whose equation is given, (Art. 30) is
formed by substituting in that equation the co-ordinates of the
fourth point, and dividing by the square root of the sum of
the squares of the coefficients of @, y, 2. But (Art. 31) that
square root is double the area of the triangle formed by the
three points, Hence six times the volume of the tetrahedron
in question s equal to the determinant

, ¥y, 7, 1

'y ¥y 2 1

=", y", ¢ 1

&y y"y 2"y 11

36. It is evident, as in Plane Geometry, (see Conics, Art. 36)
that if S, &', 8" represent any three surfaces, then aS+58’
where a and b are any constants, represents a surface passing
through the line of intersection of S and &§'; and that
aS+58' +c8" represents a surface passing through the points
of intersection of S, §’y and 8. Thus then if L, M, N denote
any three planes, al +bM denotes a plane passing through
the line of intersection of the first two, and aL +bM+cN
denotes a plane passing through the point common to all
three. As a particular case of the preceding aL+5 denotes
a plane parallel to Z, and aL +bM+c denotes a plane parallel
to the intersection of L and M (see Art. 29).

So again, four planes Z, M, N, P will pass through the
same point if their equations are connected by an identical
relation

al+bM+cN+dP=0,

*® The volume of the tetrahedron formed by four planes, whose equations
are given, can be found by forming the co-ordinates of its angular points,
and then substituting in the formula given above. The result is, (see
Lessons on Higher Algebra, Art. 25) that six times the volume is equal to

RS
@BC) (4B C")(4B"C)(4"BC)
where R is the determinant (45'C"D”) Art. 34, and the factors in the
denominator express the conditions (Art. 33) that any three of the
planes should be parallel to the same line.
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for then any co-ordinates which satisfy the first threc must
satisfy the fourth. Conversely, given any four planes inter-
secting in a common point, it is easy to obtain such an identical
relation. For multiply the first equation by the determinant
(4'B"C'), the second by - (A"B"C), the third by (4"BC’),
and the fourth by — (4B'C"), and add: then (Lessons on Higher
Algebra, Art. 7) the coefficients of x, y, 2z vanish identically;
and the remaining term is the determinant which vanishes
(Art. 34), because the planes rgeet in a point. Their equations
are therefore connected by the identical relation

L(AB"C")-M(A"B"C)+N(A"BC'Y—P(AB'C")=0.

37. Given any four planes L, M, N, P not meeting in a
point, it is easy to see (as at Conics, Arts. 58, 59) that the
equation of any other plane can be thrown into the form

al+bM+cN+dP=0.

And in general the equation of any surface of the n™ degree
can be expressed by a homogeneous equation of the n™ degree
between L, M, N, P (see Conics, Art. 270). For the number
of terms in the complete equation of the n™ order between three
variables is the same as the number of terms in the homogeneous
equation of the n" order between four variables.

Accordingly, in what- follows, we shall use these quadri-
planar co-ordinates whenever by so doing our equations can
be materially simplified.

Ex. 1. To find the equation of the plane passing through z’y’z, and
through the intersection of the planes

Az + By+ Cz+ D, A’z + By + C'z + I’ (see Conics, Ex. 3, p. 29).
Ans. (A'z + By + C¢ + D') (Az + By + Cz + D)
=(Ax + By + (2 + D) (A'z+ By + Cz + D).
Ex. 2. Find the equation of the plane passing through the points
ABC, figure, p. 2.

The equations of the line BC are evidently ==1, > +-=1, Hence

olr

z
a
z

+  oie

obviously the equation of the required plane is A +% . 2, since this
c

passes through each of the three lines joining the three given points.
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Ex. 8. Find the equation of the plane PEF in the same figure.
The equations of the line EF are x = 0, Y4+2-1, and forming as above

?
5*
the equation of the plane joining this line to the point abe, we get
Yy,2 %1
b ¢ a

38. If four planes which intersect in a right line be met by
any plane, the anharmonic ratio of the pencil so formed will be
constant. For we could by transformation of co-ordinates make
the transverse plane the plane of ‘zy, and then by making z=0
in the equations would have the equations of the intersections
of the four planes with this plane. These will be of the form
aL+ M, bL+ M, cL+ M, dL+ M, whose anharmonic ratio
(see Contcsy Art. 56) depends solely on the constants a, b, ¢, d;
and does not alter when by transformation of co-ordinates L
and M come to represent different lines.

THE RIGHT LINE.

39. The equations of any two planes taken together will
represent their line of intersection which will include all the
points whose co-ordinates satisfy both the equations. By elimi-
nating = and y alternately between the equations we reduce
them to a form commonly used, viz.

z=mz+a, y=nz+b.

The first represents the projection of the line on the plane of
xz and the second that on the plane of yz. The reader will ob-
serve that the equations of a right line include four independent
constants.

We might form independently the equations of the line
joining two points; for taking the values given (Art. 8) of the
co-ordinates of any point on that line, solving for the ratio
m : n from each of the three equations there given, and equa-
ting results, we get

z—-a y-y _2-4

a:' — wu - yl _ yn Z' _ Z"

for the required equations of thc line. It thus appears that
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the equations of the projections of the line are the same as the
equations of the lines joining the projections of two points on
the line, as is otherwise evident.

40. Two right lines in space will in general not intersect.
If the first line be represented by any two equations L =0,
M=0, and the second by any other two N=0, P=0, then if
the two lines meet in a point, each of these four planes must
pass through that point, and the condition that the lines should
intersect is the same as that already given (Art. 34).

Two intersecting lines determine a plane whose equation
can easily be found. For we have seen (Art. 36) that when
the four planes intersect, their equations satisfy an identical

relation
aL+bM+ cN+dP=0.

The equations therefore aL +bM=0, and cN+dP=0 must
be identical and thust represent the same plane. But the form
of the first equation shows that this plane passes through the
line Z, M, and that of the second equation shows that it passes
through the line N, P.

Ex. When the given lines are represented by equations of the form
z=mzta, y=nz+b; z=m'z+d, y=nz+V¥,
the condition that they should intersect is easily found. For solving for £
from the first and third equations, and equating it to the value found by
solving from the second and fourth, we get
a-a _b-V¥
m-m n-n’

Again, if this condition is satisfied, the four equations are connected by
the identical relation

(n-7) (- ms - @) - (z - m'z - @)} = (m - m) (y = nz - B) - (y - nz - )},
and therefore (n - %) (z - mz - @) = (m - ') (y ~ nz - b)
is the equation of the plane containing both lines.

41. To find the equations of a line passing through the point
Z'y's', and making angles a, B, vy with the axes.

The projections on the axes, of the distance of '3z’ from
any variable point zyz on the line, are respectively z—2,
y—y, z2—2'; and since these are each equal to that distance
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multiplied by the cosine of the angle between the linc and the
axis in question, we have

z—x y—y -2,

cosa cosB  cosy’

a form of writing the equations of the line which, although it
includes two superfluous constants, yet on account of its sym-
metry between z, y, z is often used in preference to the form
in Art. 39.

Reciprocally, if we desire to find the angles made with the
axes by any line, we have only to throw its equation into the
x—a y—y z-

4 B  C
line will be respectively 4, B, C, each divided by the square
root of the sum of the squares of these three quantities.

form ® when the direction-cosines of the

Ex. 1. To find the direction-cosines of 2 =mz + a, y = nz + b. Writing
the equations in the form z';_a = "’%b = ;, the direction-cesines are
m n 1

VA +m+a')’ YA +m i n’)’ J(1+m+n?)

Ex. 2. To find the direction-cosines of ; = % , 2=0.

1 m

Ans. V@E+m') @B rmY)’ 0.

Ex. 3. To find the direction-cosines of
Az + By +Cz+ D, Az+ By+Cz+ D.
Eliminating y and # alternately we reduce them to the preceding form,
BC'-BC CA'-CA AB - AB

and the direction-cosines are —g 57 ’ 7

R is the sum of the squares of the three numerators.

, where

Ex. 4. To find the equation of the plane through the two intersecting
lines =
-2 _y-y _:-% z-2 y-y s-7
cosa o8B cosy’ cosa’ cos@ cosy

The required plane passes through z'y’Z and its perpendicular is perpen-
dicular to two lines whose direction-cosines are given; therefore, (Art. 15)
the required equation is

(2 = 2) (cos B cosy ~ cosy cosB) + (y ~ ¥') (cos+y cosa’ - cosy’ cosa)

4 (2 - 2) (cosa cosf - cose’ cosf) = 0.
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Ex. 5. To find the equation of the plane passing through the two

parallel lines
£oF y-y i-% 2-2 y-y ¥

cosa cos8 cosy cosa cos8  cosy

The required plane contains the line joining the given points, whose
direction-cosines are proportional to z’' - 27, y’ - y”, 2 — z”; the direction-
cosines of the perpendicular to the plane are therefore proportional to
(¥ - y") cosy - (¥ - ") cosB, (¢ - 2) cosa — (¢’ - z") cosry,
(z'-2") cosB - (y - y”) cosa.

These may therefore be taken as the coefficients of z, y, z, in the required
equation, while the absolute term determined by substituting z’y’z for zyz
in the equation is

(7" - y'¥) cosa + (g2 - &'2") cos B + (z'y" - 2"y’) cosyy.

42. To find the equations of the perpendicular from y'z
on the plane Ax+ By+ Cz+ D. The direction-cosines of the
perpendicular on the plane (Art. 27) are proportional to 4, B, C;
hence the equations required are

x—x y—y z-2

A B c
43. To find the direction-cosines of the bisector of the angle

between two given lines.

As we are only concerned with directions it is of course
sufficient to consider lines through the origin. If we take
points &'y'z’, «"y"z" one on each line, equidistant from the
origin, then the middle point of the line joining these points
is evidently a point on the bisector, whose equation would
therefore be

x oy =
+2" y+y  F+2"
and whose direction-cosines are therefore proportional to
@+ Y +y’, 2+
but since &, ¥, 7, z", y", 2" are evidently proportional to the

direction-cosines of the given lines, the direction-cosines of the
bisector are

cosa +cosa’, cosB +cosB”, cosy' + cosy”,

each divided by the square root of the sum of the squares of
these three quantitics.
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The bisector of the supplemental angle between the lines
would be got by substituting for the point 2"y"2" a point equi-
distant from the origin measured in the opposite direction,
whose co-ordinates are —z", —y", —z"; and therefore the direc-

tion-cosines of this bisector are respectively proportional to
cosa’ — cosa”’, cosf —cosB", cosy — cosy”.
N.B. The equation of the plane bisecting the angle between
two given planes is found precisely as at Conics, p. 35, and is
(xcosa + y cosB + z cosyy — p)=+(x cosa’ + y cosB' + zcosy’ — p').

44. Tb find the angle made with each other by two lines

z-a y—-b z—c z—a_ y-b_ z-—c

] m n ' U m' n

Evidently (Arts. 13, 41),

'+ mm' + nn'
V(B +m* +2°) (" +m™ +n") "
CoR. The lines are at right angles to each other if
I+ mm'+nn'=0.

cos 0=

Ex. To find the an, le between the lines = = —Y_ = ——’—-; Z y 2=0,
¢ ang 2@ V@ Vo) Y
Ans. 30°

45. To find the angle between the plane Ax+ By+Cz+ D, .

and the line 252 =¥4=0 _2=¢
l m n °

The angle between the line and the plane is the complement
of the angle between the line and the perpendicular on the
plane, and we have therefore

Al+ Bm + Cn

V(P +m'+n*) /(A + B+ C?)°

Cor. When Al+Bm+Cn=0, the line is parallel to the
plane, for it is then perpendicular to a perpendicular on the
plane.

ginf =

46. To find the conditions that a line x=mz+a, y=nz+b
should be altogether in a plane Ax + By + Cz+ D. Substitute
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for « and y in the equation of the plane, and solve for z, when
we have

_ Aa+Bb+D
T Am+Bn+ C?
and if both numerator and denominator vanish, the value of 2
is indeterminate and the linc is altogether in the plane. We
have just seen that the vanishing of the denominator expresses
the condition that the line should be parallel to the plane; while
the vanishing of the numerator expresses that one of the points
of the line is #» the plane, viz. the point ab where the line meets
the plane of zy.

In like manner in order to find the conditions that a right
line should lie altogether in any surface, we should substitute
for  and y in the equation of the surface, and then equate to
zero the coefficient of every power of z in the resulting equation.
It is plain that the number of conditions thus resulting is one
more than the degree of the surface.*

47. To find the equation of the plane drawn through a given
line perpendicular to a given plane.

Let the line be given by the equations

Az +By+Cz+D=0, Az+By+Cz+D =0,
and let the plane be
A"z + B"y+C"z+ D" =0.
Then any plane through the line will be of the form
M(Az+By+Cz+D)+pu(Ad'z+By+Cz+D)=0,

and in order that it should be perpendicular to the plane we
maust have

(A +ud') A" + AB+uB') B"+ \C+uC") C" =0.

*® 8ince the equations of a right line contain four constants, a right line
can be determined which shall satisfy any four conditions. Hence any
surface of the second degree must contain an infinity of right lines, since
we have only three conditions to satisfy and have four constants at our
disposal. Every surface of the third degree must contain a finite number
of right lines since the number of conditions to be satisfied is equal to the
number of disposable constants. A surface of higher degree will not
necessarily contain any right line lying altogether in the surface.
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This equation determines A : u, and the equation of the require
plane is

(44" +B'B"+C'C") (Az+ By + Cz + D)
=(44"+ BB"+CC")(A'z+B'y+C'z+ D)
When the equations of the given plane and line are giver

in the form

mp;y I Y-y _E-k
2 cosa+ycosB+ 2z cosy=p; cosd — cosfB' — cosy'’
we can otherwise easily determine the equation of the require
plane. For it is to contain the given line whose direction-angle
are @, 8, o'; and it is also to contain a perpendicular to the
given planc whose direction-angles are a, 8,y. Hence (Art. 15
the direction-cosines of a perpendicular to the required plane ar
proportional to

cosf3’ cosry—cos/3 cosy’, cosy’ cosa—cosy cosa’, cosa’ cosS—cosa cosS’

and since the required plane is also to pass through z'y'7 it
equation ia

"(x—2') (cosB cosy’—cos B’ cosry) + (y—y’) (cosry cosa’'— cosy’ cosa

+(2—2') (cosa cos B’ — cosa’ cos8) =0.

48. Ghven two lines to find the equation of a plane drawn
through either parallel to the other.

First, let the given lines be the intersections of the plane:
L, M; N, P whose equations are given in the most genera
form. Then proceeding exactly as in Art. 36, we obtain the
identical relation

L(AIB" Cl")_M’(A"B" 0)+N(AI"BCI)_P(ABI C”)=(ABI OHDIII)
the right-hand side of the equation being the determinant, whos

vanishing expresses that the four planes meet in a point. It i
evident then that the equations

L (A'BN C"l) - M(A"B"l 0) — 0, N(AHIBOI) - I)(ABI 0") = 0

represent parallel planes since they only differ by a constan
quantity ; but these planes pass each through one of the giver
lines,
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Secondly, let the lines be given by equations of the form

x—ml ?/_y' z_z'. x_x" y_yll z—z"
cosa  cos@ cosy’ cosa’  cosB  cosy’’

Then since a perpendicular to the sought plane is perpendicular
to the direction of each of the given lines, its direction-cosines
(Art. 15) are the same as those given in the last example, and |
the equations of the sought parallel planes are

(x—') (cos B cosy’ —cos B’ cosy)+(y—z') (cosry cosa’ — cosy’ cosa)
+ (2—2") (cosa cos B’ — cosa’ cosB) =0,

(x—=a") (cosB cosry’ — cos B’ cosry) + (y—y") (cosry cosa’— cosey’ cosa)
+ (2 —2") (cosa cos 8’ — cosa’ cosB) =0.

The perpendicular distance between two parallel planes is equal
to the difference between the perpendiculars let fall on them
from the origin, and is therefore equal to the difference between
their absolute terms, divided by the square root of the sum of
the squares of the common coefficients of x, y, z. Thus the per-
pendicular distance between the planes last found is

(' —x")(cos B cosy’ — cos B’ cosry) + (3’ —y") (cosry cosa’ —cosy’ cosa)
+ (2 — 2") (cosa cos B’ — cosa’ cosB) divided by sin 6,

where 0 (see Art. 14) is the angle between the directions of the
given lines. It is evident that the perpendicular distance here
found «s shorter than any other line which can be drawn from
any point of the one plane to any point of the other.

49. To find the equations and the magnitude of the shortest
distance between two non-intersecting lines.

The shortest distance between two lines is a line perpen-
dicular to both, and which can be found as follows: Draw
through each of the lines, by Art. 47, a plane perpendicular
to either of the parallel planes determined by Art. 48; then the
intersection of the two planes so drawn will be perpendicular
to the parallel planes, and therefore to the given lines which
lie in these planes. From the construction it is evident that
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the line so determined meets both the given lines. Its mag-
nitude is plainly that determined iun the last article. Working
by Art. 47 the equation of a plane passing through a line whose
direction-angles are a, 8, v, and perpendicular to a plane whose
direction-cosines are proportional to

cos3’ cosry—cosScosy’, cosy’' cosa—cosycosa’, cosa’ cosS—cosacosS’,
.we find that the line sought is the intersection of the two planes
(x—2') (cosa’— cosf cosa) + (y—¥') (cosB’'—cosf cosB)
+ (2—2') (cosy’ —cosé cosy) =0,
(x—=z") (cosa —cosf cosa’) + (y —y") (cosB — cosf cos )
+ (2 —2") (cosy — cos@ cosy’) = 0.

The direction-cosines of the shortest distance must plainly be
proportional to

cosf3' cosy—cosS cosy’, cosy' cosa—cosycosa’, cosa’ cos3—cosacosS’.

NOTE ON THE PROPERTIES OF TETRAHEDRA.

50. We add as an appendix to the preceding chapters some
properties of tetrahedra which, though not obtained by the
method of co-ordinates, are worth bemg set down.

To find the relation between the siw lines joining any four
points in a plane.

Let a, b, ¢ be the sides of the triangle formed by any three
of them ABC, and let d, e, f be the lines joining the fourth
point D to these three. Let the angles subtended at D by
a, b, c be a, B, v; then we have cosa=cos(8+), whence

cos" & + cos* 8 + cos’y — 2 cosa cosB cosy=1.

This relation will be true whatever be the position of D,
either within or without the triangle 4ABC. But

¢+f'-a +d'-b" d+é-¢
——-;Zf a R cosﬁ=f'———2ﬁ R cos'y=———-—2fl‘9 .

cosa =
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Substituting these values and reducing, we find for the required
relation

@ (d&*—¢&) (@ —f) + 8 (¢ =) (=) + & (f* - @") (S - ¢)
+a'd (@' = 8 - &) + B (B — @ — &) + O (- 0" — BY) + a'B'e" =0

51. To express the volume of a tetrakedron tn terms of ts
six edges.

Let the sides of the triangle formed by any face ABC be
a, b, c; the perpendicular on that face from the remaining
vertex be p, and the distances of the foot of that perpendicular
from 4, B, C be d', ¢, f'. Then a, d, ¢, d’, ¢, f' are connected
by the relation given in the last article. But if d, ¢, f be the
remaining edges d'=d"+p", ¢'=¢"+p", f*=f"+p"; whence
d’— ' =d" —¢", &c. and putting in these values, we get

— F=p"(2a"" + 2b°c* + 2¢'a* - a* - b* — ¢*),

where F is the quantity on the left-hand side of the equation
in the last article. Now the quantity multiplying p" is 16 times
the square of the area of the triangle 4BC, and since p mul-
tiplied by this area is three times the volume of the pyramid,
we have F'=— 14477

52. To find the relation between the six arcs joining four
potnts on the surface of a sphere.

We proceed precisely as in Art. 50, only substituting for
the formule there used the corresponding formuls for spherical
triangles, and if a, 8, ¥, J, ¢, ¢ represent the cosines of the six
arcs in question, we get
&+ 8+ + 8+ '+ ¢ =o' — e’ — ' P* + 2a88e + 28y +2vadd

— 2afBy - 2as ~ 288¢p — 2488 = 1.
This relation may be otherwise proved as follows: Let the
direction-cosines of the radii to the four points be

cosa, cosS, cosvy,
cosa’, cosf’, cosy',
cosa’, cosS8”, cosy”,

" ' "

cosa™, cos@", cosy”.
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Now from this matrix we can form (by the method of Lessons
on Higher Algebra, Art. 20) a determinant which shall vanish
identically, and which (substituting cos’a + cos'8 + cos’y =1,
cosa cosa’ + cosf cos S’ + cosry cosy' = cosabd, &c.) is
1, cosab, cosac, cosad

cosba, 1, cosbe, cosdd

cosca, cosch, 1, coscd

cosda, cosdb, cosde, 1, |=0,
which expanded has the value written above.

53. To find the radius of the sphere circumscribing a tetra-
hedron.
Since any side a of the tetrahedron is the chord of the arc

]
whose cosine is a, we have a=1— —2?7—., , with similar expressions

for B, v, &c.; and making these substitutions, the formula of
the last example becomes

F | 200V + WS +20f'ad’ — a'd’ = be' — cif*

el 167 =0
whence if . ad +be + of = 26,
we have r’=S(S_ad)§;gI_,,be) (8-

The reader may exercise himself in proving that the shortest
distance between two opposite sides of the tetrahedron is equal
to six times the volume divided by the product of those sides
multiplied by the sine of their angle of inclination to each other,
which may be expressed in terms of the sides by the help of the
relation 2ad cosd =5"+¢' —c* —f.
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CHAPTER 1V.

*PROPERTIES COMMON TO ALL SURFACES OF THE
SECOND DEGREE.

54. WE shall write the general equation of the second
degree

ax® + by* + ¢ + 2lyz + 2mzx + 2nxy + 2px + 2y + 2rz +d=0.

This equation contains ten terms, and since its signification is
not altered if by division we make one of the coefficients unity,
it appears that nine conditions are sufficient to determine a
surface of the second degree, or as we shall call it for short-
‘ness, a quadric surface. Thus if we were given nine points on
the surface, by substituting successively the co-ordinates of each
in the general equation, we obtain nine equations which are

sufficient to determine the nine unknown quantities %, :i;, &e.

And in like manner the number of conditions necessary to de-
termine a surface of the n™ degree is one less than the number
of terms in the general equation.

The equation of a quadric may also (see Art. 37) be ex-
pressed as a homogeneous function of the equations of four
given planes z, y, 2, o,
ax’ +by’ + c2*+ do* + 2lyz+ 2mex + 2nxy + 2pxw + 2y +2rz0=0.

For the nine independent constants in the equation last written
may be so determined that the surface shall pass through nine
given points, and therefore may coincide with any given quadric.
In like manner (see Conics, p. 58) any ordinary =z, y, z equa-
tions may be made homogeneous by the introduction of the

* The reader will compare the corresponding discussion of the equation
of the second degree (Conmics, p. 119) and observe the identity of the
methods now pursued and of many of the results obtained.

D2
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linear unit (which we shall call w); and we shall frequently
employ equations written in this form for the sake of greater
symmetry in the results. We shall however for simplicity
commence with z, y, # co-ordinates.

55. The co-ordinates are transformed to any parallel axes
drawn through a point z'y'z', by writing =+, y+y, z+2
for x, y, z respectively (Art. 16). The result of this substitu-
tion will be that the coefficients of the highest powers of the
variables (a, b, ¢, I, m, n) will remain unaltered, that the new
absolute term will be U’ (where U’ is the result of substituting
@, y, & for z,y, z in the given equation), that the new coeffi-

cient of z will be 2 (ax'+ ny + mz'+p) or %, and in like

manner that the new coefficients of y and 2z will be %Z—
and 27
dz' -’

56. We can transform the general equation to polar co-
ordinates by writing = Ap, y=Bp, 2= Cp (where, if the axes
be rectangular, 4, B, C are equal to cosa, cosS, cosy respec-
tively, and if they are oblique (see note, p. 7) 4, B, C are still
quantities depending only on the angles the line makes with
the axes) when the equation becomes

P’ (ad*+bB*+¢C* +2lBC+ 2mCA + 2n A B)
+2p (pA+gB+7C)+d=0.
This being a quadratic gives two values for the length of the
radius vector corresponding to any given direction; and since
any point may be taken for origin it proves that every right
line meets a quadric in two points, as was proved already
(Art. 22).

57. Let us consider first the case where the origin is on the
surface (and therefore d=0), in which case one of the roots of
the above quadratic is p=0; and let us seek the condition that
the radius vector should touch the surface at the origin. In
this case obviously the second root of the quadratic will also
vanish, and the required condition is therefore p4 + ¢B +rC=0.
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If we multiply by p and replace 4p, Bp, Cp by =z, y, 2, this
becomes
pr+gy+rz=0,

and evidently expresses that the radius vector lies in a certain
fixed plane. And since 4, B, C are subject to no restriction
but that already written, every radius vector through the origin
drawn in this plane touches the surface.

Hence we learn that at a given point on a quadric an in-
finity of tangent lines can be drawn, that these lie all in one
plane which is called the tangent plane at that point; and that
if the equation of the surface be written in the form u +u =0,
then %, =0 is the equation of the tangent plane at the origin.

58. We can find by transformation of co-ordinates the equa-
tion of the tangent plane at any point z'y'z’ on the surface.
For when we transform to this point as origin the absolute term
vanishes, and the equation of the tangent plane is (Art. 56)

au’  4dU'  dU’
x ’E +y d 3.0 + = O’

(lzl
or, transforming back to the old axes,
au’ d U auv’
(m x) d’l)' +(y d,+(z 2)7',——0
This may be written in a more symmetrical form by the intro-
duction of the linear unit , when, since it is now a homogeneous
function, and since z'y'z’ is to satisfy the equation of the surface,
we have
d U + a0’ dU’ to ,au’
dzl 3/ d g z dzr d g
Adding this to the equation last found, we have the equation
of the tangent plane in the form
v, av, dv.  av
& dxl +.7/ 7y, +2 az_l w dﬂ"
or, writing at full length,
x (ax' + ny' + me' +p) +y (nx' + by’ + 12’ + q)
+2(mx' +ly' +cz +r)+px'+qy +rd +d=0.

=2U'=

=0,
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This equation, it will be observed, is symmetrical between zys
and z'y'z’, and may likewise be written

U, 4V, dU . dT_,
@ oty —d;--i-z 7 T 5o =0

59. To find the point of contact of a tangent line or plane
drawn through a given point x'y's’ not on the surface.

The equation last found expresses a relation between zyzew,
the co-ordinates of any point on the tangent plane, and z'y's'e’
its point of contact; and since now we wish to indicate that the
former co-ordinates are given and the latter sought, we have
only to remove the accents from the former and accentuate the
latter co-ordinates, when we find that the point of contact must
lie in the plane

z%+y ‘%/],—+z %+w %Z—,=0,

which is called the polar plane of the given point. Since the
point of contact need satisfy no other condition, if we take any
of the points where the polar plane meets the surface, the tan-
gent plane at that point will pass through the given point; and
the line joining the point of contact to the given point will be
a tangent line to the surface. If all the points of intersection
of the polar plane and the surface be joined to the given
point, we shall have all the lines which can be drawn through
that point to touch the surface, and the assemblage of these
lines forms what is called the tangent cone through the given
point.

N.B. In general a surface generated by right lines which
all pass through the same point is called a cone, and the point
through which the lines pass is called its vertex. A cylinder
(see p. 15) is the limiting case of a cone when the vertex is
infinitely distant.

60. The polar plane may be also defined as the locus of
harmonic means of radii passing through the pole. In fact let
us examine the locus of points of harmonic section of radii
passing through the origin; then if p’, p” be the roots of the
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quadratic of Art. 56, and p the radius vector of the locus, we
are to have
=— + _ =
P P
or, returning to x, y, £ co-ordinates,
px+qy+rz+d=0;

but this is exactly the polar plane of the origin, as may be seen
by making &, y, 2’ all =0 in the equation written in full
(Art. 58).

From this definition of the polar plane, it is evident that if
a section of a surface be made by a plane passing through any
point, the polar of that point with regard to the section will
be the intersection of the plane of section with the polar plane
of the given point. For the locus of harmonic means of all
radii passing through the point, must include the locus of har-
monic means of the radii which lie in the plane of section.

2_1 1 2 (4p+ Bq + Or)
- AT,

61. If the polar plane of any point 4 pass through B, then
the polar plane of B will pass through A.

For since the equation of the polar plane is symmetrical
with respect to xyz, 2'y'z’, we get the same result whether we
substitute the co-ordinates of the second point in the equation
of the polar plane of the first, or vice versd.

The intersection of the polar planes of 4 and of B will be
a line which we shall call the polar line, with respect to the
surface, of the line AB.

It is easy to see that the polar line of the line AB is the
locus of the poles of all planes which can be drawn through
the line 4B.

62. If in the original equation we had not only d=0, but
also p, ¢, » each =0, then the equation of the tangent plane
found (Art. 58) becomes illusory, since every term vanishes and
no single plane can be called the tangeut plane at the origin.
In fact the coefficient of p (Art. 56) vanishes whatever be the
direction of p, and therefore every line drawn through the origin
meets the surface in two consecutive points, and the origin is
said to be a double point on the surface.
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In the present case, the equation denotes a cone whose
vertex is the origin, as in fact does every homogeneous equation
in z, y, 2. For if such an equation be satisfied by any co-
ordinates ', y/, 2, it will also be satisfied by the co-ordinates
Ra', Ry', RZ (where R is any constant), that is to say, by the
co-ordinates of every point on the line joining z'y's’ to the
origin. This line then lies wholly in the surface which must
therefore consist of a series of right lines drawn through the
origin.

The equation of the tangent plane at any point of the
cone now under consideration may be written in either of the
forms

dUu’ dU' dU’ ,dU, ,dU  ,dU_
C Vg tr = Yty e ="

The former form (wanting an absolute term) shews that the
tangent plane at every point on the cone passes through the
origin; the latter form shews that the tangent plane at any
point z'y'z’ touches the surface at every point of the line joining
«'y'z’ to the vertex; for the equation will represent the same
plane if we substitute Bx', Ry', B2’ for 2/, ¥/, 2.

"~ When the point 2’3’2’ is not on the surface, the equation we
have been last discussing represents the polar of that point, and
it appears in like manner that the polar plane of every point
passes through the vertex of the cone, and also that all points
which lie on the same line passing through the vertex of a cone
have the same polar plane,

To find the polar plane of any point with regard to a cone
we need only take any section through that point, and take
the polar line of the point with regard to that section; then
the plane joining this polar line to the vertex will be the polar
plane required. For it was proved (Art. 60) that the polar
plane must contain the polar line, and it is now proved that the
polar plane must contain the vertex.

63. We can easily find the condition that the general equa-
tion of the second degree should represent a cone. For if it
does it will be possible by transformation of co-ordinates to
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make the new p, ¢, r, d vanish. The co-ordinates of the new
vertex must therefore (Art. 55) satisfy the conditions
au’ au’ au’ ,
TJ;’-=O’ d—y,=0, TJ—ZT=0, U =0,

which last combined with the others is equivalent to %=0.
And if we eliminate «, ', 2’ from the four equations

az' +ny' +mz' +p =0,

ne' +by + Iz +¢=0,

mx' + ly' + ¢z’ +r=0,

2 +gy +rd +d=0,
we obtain the required condition in the form of the determinant

a, ny My p
nb g
ly ¢, r
2 AR
which, written at full length, is
Up* + m*@ + n'r* — 2mgnr — 2nrlp — 2lpmg + abed + 2algr + 2bmpr
+ 2¢npq + 2dlmn — bep* — cag® — abr* — adl® — bdm® — cdn® =0,

which is the discriminant of the given equation (see Lessons on
Higher Algebra, p. 44).

64. Let us return now to the quadratic of Art. 56, in which
d is not supposed to vanish, and let us examine the condition
that the radius vector should be bisected at the origin. It is
obviously necessary and sufficient that the coefficient of p in
that quadratic should vanish, since we should then get for p
values equal with opposite signs. The condition required
then is

pA+qB+rC=0,

which multiplied by p shews that the radius vector must lie in
the plane px+gy+r2=0. Hence (Art. 60) every right line
drawn through the origin tn a plane parallel to its polar plane
18 bisected at the origin.

65. If however we had p=0, ¢=0, »=0, then every line
drawn through the origin would be bisected and the origin
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would be called the centre of the surface. Every quadric Aas
tn general one and but one centre. For if we seek by trans-
formation of co-ordinates to make the new p, ¢, » =0, we obtain
three equations, viz

‘ au’

7= +ny +me' +p=0,

‘fiu,_m: +by'+ l& +¢=0,

%:mz’+ly' +ce' +r=0,
which are sufficient to determine the three unknowns &, ¥/, 2
The resulting values are z’=%, y'=§, z'-z,, where

a=p(l' — bc)+q(cn — lm) +r (bm— In),

B=p(cn —Im)+q(m*'— ca)+r(al” —mn),

y=p (bm— ln)+ g (al — mn)+r(n* —abd),

8= abc + 2lmn - al* — bm* — cn’,
or, if A be the discriminant,

2““‘!_, 23-3;7 _QA—

If however 5=0 the co-ordinates of the centre become infinite
and the surface has no finite centre. If we write the original
equation u +u, +u,=0, it is evident that & is the discriminant
of u *

* It is possible that the numerators of these fractions might vanish at
the same time with the denominator, in which case the co-ordinates of the
centre would become indeterminate, and the surface would have an infinity
of centres. Thus if she three pl es :;f ‘:{U, ';:7 all pass through the
same line, any point on this line will be a centre. The conditions that
this should be the case may be written

a, n, m, p
n b I q
‘my }, ¢, 1l =0,
the notation indicating that all the four determinants must = 0, which are
got by erasing any of the vertical lines. We shall reserve the fuller dis-
cussion of these cases for the next chapter.
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66. Toﬁnd the locus of the middle points of chords parallel
y_ =2

toa_qwenlmeA B=T0"
If we transform the equation to any point on the locus as
origin, the new p, ¢, » must fulfil the condition (Art. 64)
pA+¢B+rC=0, and therefore (Art. 55) the equation of the

locus is
av, ,dU, ., dU

A——+B——+Cdz

Franl =0.

This denotes a plane through the intersection of the planes
v dU 4y that is to say, through th tre of the surf:
i dy & Y, gh the centre of the surface.
It is called the diametral plane conjugate to the given direction
of the chords.

If 2'y'2' be any point on the radius vector drawn through
the origin parallel to the given direction, the equation of the
diametral plane may be written

,dU ,dU ,dU
x £+y 'zg'i’ —d—z—-—o

If now we take the equation of the polar plane of Rz, By', R¢',

,dU ,dU ,dU aU

Ra' —— =t + Ry dy ——+ Rz %t ="
divide it by R, and then make R infinite, we see that the
diametral plane is the polar of the point at infinity on a line
drawn in the given direction, as we might also have inferred
from geometrical considerations (see Conics, p. 272). In like
manner, the centre is the pole of the plane at infinity, for if
the origin be the centre its polar plane (Art. 60) is d=0,
which (Art. 29) represents a plane situated at an mﬁmte
distance.

In the case where the given surface is a cone, it is evident
that the plane which bisects chords parallel to any line drawn
through the vertex is the same as the polar plane of any
point in that line. In fact it was proved that all points on
the line have the same polar plane, therefore the polar of the
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point at infinity on that line is the same as the polar plane
of any other point in it. '

67. The'plane which bisects chords parallel to the axis
of z is found by making B=0, C=0 in the equation of Art. 66,
to be

‘%U=O, or ax +ny +mz+ p=0,*
and this will be parallel to the axis of y, if »=0. But this
is also the condition that the plane conjugate to the axis of y
should be parallel to the axis of 2. Hence if the plane con-
Jugate to a given direction be parallel to a second given line,
the plane conjugate to the latter 1will be parallel to the former.

When n=0 the axes of x and y are evidently parallel to
a pair of conjugate diameters of the section by the plane of ay;
and it is otherwise evident that the plane conjugate to each
of two conjugate diameters of a section passes through the
other. For the locus of middle points of all chords of the
surface parallel to & given line must include the locus of the
middle points of all such chords which are contained in a given
plane.

Three diametral planes are said to be conjugate when each
is conjugate to the intersection of the other two, and three
diameters are said to be conjugate when each is conjugate to
the plane of the other two. Thus we should obtain a system
of three conjugate diameters by taking two conjugate diameters
of any central section together with the diameter conjugate
to the plane of that section. If we had in the equation =0,
m=0, n=0, it appears from the commencement of this article
that the co-ordinate planes are parallel to three conjugate
diametral planes.

® It follows that the plane z = 0 will bisect chords parallel to the axis
of z, if n=0, m=0, p=0; or, in other words, if the original equation
do not contain any odd power of z. But it is otherwise evident that
this must be the case in order that for any assigned values of y and z
we may obtain equal and opposite values of z.
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‘When the surface is a cone it is evident from what was
said (Arts. 62, 66) that a system of three conjugate diameters
meets any plane section in points such that each is the pole
with respect to the section of the line joining the other two.

68. A diametral plane is said to be principal if it be per-
pendicular to the chords to which it is conjugate.

The axes being rectangular, and 4, B, C the direction-
cosines of a chord, we have seen (Art. 66) that the corresponding
diametral plane is

A (ax +ny + mz +p) + B (nx+by+1lz+q)+C(mz+ ly+cz+7)=0,
and this will be perpendicular to the chord, if (Art. 42) the
coefficients of @, y, z be respectively proportional to 4, B, C.
This gives us the three equations

Aa+ Bn+ Cm=RA, An+ Bb+ Cl=RB, Am+ Bl+ Cc=RC.

From these equations which are linear in 4, B, C, we can
eliminate 4, B, C, when we obtain the determinant

a—R, n, m
n, b—R, I
m, Il c¢c—R|=0,

which expanded gives a cubic for the determination of B, viz.
R—-R'(a+b+c)+R(ab+bc+ca— T —m*—n')
— (abc + 2lmn — al' — bm® — en*) = 0.
And the three values hence found for R being successively
substituted in the preceding equations enable us to determine
the corresponding values of 4, B, C. Hence a quadric has
tn general three principal diametral planes, the three diameters
perpendicular to which are called the axes of the surface. We
shall discuss this equation more fully in the next chapter.
Ex. To find the principal planes of
2" + 6y" + b2 - 4zy - 4yz = 6.
R - 18R' + 99R - 162 =0,

whose roots are 3, 6, 9. Now our three equations are

74 -2B=RA, -24 +6B-2C=RB, - 2B +5C= RC.

The cubic for R is
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If in these we substitute R = 3, we find 24 = B = C. Multiplying by p,
and substituting z for 4p, &c., we get for the equations of one of the
axes 2z =y =25 And the plane drawn through the origin, (which is the
centre) perpendicular to this line, is 2+ 2y + 26 =0. In like manner
the other two principal planes are 2z - 2y +2=0, 22 + y - 26 = 0.*

69. The sections of a quadric by parallel planes are stmilar
to each other.

Since any plane may be taken for the plane of xy, it is
sufficient to consider the section made by it, which is found
by putting z=0 in the equation of the surface. But the section
by any parallel plane is found by transforming the equation
to parallel axes through any new origin, and then making z=0.
And since the coefficients of the highest terms are unaltered
by such transformation, we must obtain in every case the same
coefficients for 2%, xy, and 3%, and the curves are therefore
similar.

If we retain the planes yz and 2z, and transform the plane
xy parallel to itself, the section by this plane is got at once
by writing z=c in the equation of the surface, since it is evident
that it is the same thing whether we write z+c¢ for z, and
then make 2=0, or whether we write at once z=c.

It is easy to prove algebraically, that the locus of centres
of parallel sections is the diameter conjugate to their plane,
as is geometrically evident.

70. If p'y p" be the roots of the quadratic of Art. 56,

their product p'p” is =d divided by the coefficient of p’. But
if we transform to parallel axes, and consider a radius vector

® It is proved (Lessons on Higher Algebra, p. 112) that if U denote
the terms of highest degree in the equation, and § denote
(be - P) 2+ (ca-m") y*+ (ab - ") £+ (af - al) yz+ 2( fi - bm) 52 + 2 (do-en) 2,
then the equation of the three principal planes, the centre being origin,
is denoted by the determinant :
z, y =

av av du
dz’' dy’ @
dsS ds dS

dz' dy' dz |=0.



OF THE SECOND DEGREE. 47

drawn parallel to the first direction, the coefficient of p* remains
unchanged, and the product is proportional to the new d.
Hence if through two given points A4, B, any parallel chords
drawn meeting the surface in points R, R'; 8, §', then the
products RA.AR', SB.BS’ are to each other in a constant
ratio, namely, U’: U” where U, U" are the results of sub-
stituting the co-ordinates of 4 and of B in the given equation.

71. We shall conclude this chapter by shewing how the
theorems already deduced from the discussion of lines passing
through the origin might have been derived by a more general
process, such as that employed (Conics, Art. 150). For sym-
metry we use homogeneous equations with four variables.

To find the points where a given quadric is met by the line
Jotning two given points z'y'z'e’, x'y'z"w".

Let us take as our unknown quantity the ratio 7 : m, in which
the joining line is cut at the point where it meets the quadric,
then (Art. 8) the co-ordinates of that point are proportional to

ma:'-i-la:", myr+lyn, mz'+lz", mm'+lm";
and if we substitute these values in the equation of the surface,
we get for the determination of [ : m, a quadratic

m'U +mP+ U =0.

The coefficients of I* and m" are easily seen to be the results
of substituting in the equation of the surface the co-ordinates
of each of the points, while the coefficient of /m may be seen
(by Taylor’s theorem, or otherwise) to be capable of being
written in either of the forms

AT AT A0 T
x dxu +!/ 'W:'*‘ dz" @ dm" ]

or " é_q’ ” au’ " ii_ql + " é_g'
(4 da:' +y Ey_, + 2 tk' (4 dmr .

Having found from this quadratic the values of [ : m, sub-
stituting each of them in the values ————m;:"lf &ec., we find the

co-ordinates of the points where the quadric is met by the
given line. '
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72. If 2'y'2’@’' be on the surface, then U'=0, and one of
the roots of the last quadratic is /=0, which corresponds to
the point #'y'#'w’, a8 evidently ought to be the case. In order
that the second root should also be I=0, we must have P=0.
If then the line joining z'y'z'w’ to &"y"z"@" touch the surface
at the former point, the co-ordinates of the latter must satisfy

the equation

av aT auT au
YVt T g =%

0w n_n_n

and since z"y"2"@” may be any point on any tangent line
through 2'y'z'e’ it follows that every such tangent lies in the
plane whose equation has been just written.

73. If 2'y'2'o’ be not on the surface, and yet the relation
P=0 be satisfied, the quadratic of Art. 71 takes the form
m*U’ + I'U" =0, which gives values of / : m, equal with opposite
signs. Hence the line joining the given points is cut by the
surface externally and internally in the same ratio; that is to
say, i8 cut harmonically. It follows then that the locus of
points of harmonic section of radii drawn through z'y'z'e’ is
the polar plane :
x si_U_'_*_ ig’+z d—U—'+m Q—O

dw YAy TP T

74. In general if the line joining the two points touch
the surface, the quadratic of Art. 71 must have equal roots,
and the co-ordinates of the two points must be connected by
the relation 4U'U"=PF". If the point z'y'z'e’ be fixeds this
relation ought to be fulfilled if the other point lie on any of
the tangent lines which can be drawn through it. Hence the
cone generated by all these tangent lines will have for its
equation 4 UU’ = P*, where

AU’ 4dU dU’ auv
P=a:zh-,+y d—y,+z 727+m3?.

Ex. To find the equation of the tangent cone from the point 2y’ to

thesnrfacez.+£+f= .

@ &

P R S ERNCR S
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75. To find the condition that the plane ax+ By +yz+ dw
should touch the surface given by the gemeral equation.

If z, y, 2, @ be the co-ordinates of the point of contact,
and A an indeterminate multiplier, we have {Art. 58)

Aa= ax + ny + mz + pw,
AM=nx +by+ Iz +qo,
My=mx+ ly + cz +ro,
A= px + qy + rz +dw,

from which equations, together with ax + By + 4z + 8w =0, we
have to eliminate z, y, z, . But solving for z, y, 2, ® from
these equations, we have (Higher Algebra, p. 15)*

A dA dA da dAa
AT WetiG R vt S
A da da da da
Siget hHigvrig s
A dA dA dA dA
ZiTig et g B G vtig S

b

da da dA dAa
Xm=§3;a+}gq- B+§—d—r v+ 7d S,

where A is the discriminant. Substituting which values in
ax + By + vz + dw =0, we get

da dAa da da da da da

a’.%+,3’—d—b+'y" ?c--i-si-ﬂ-i-ﬁ'y W’f"ﬂl(m‘l‘ﬂﬁﬁ
da da dA

+a8—@+88 @4—78 (77: =0,

which is the required relation.

* It is there proved that the coefficient of B, for example, is the diffe-
rential of A with regard to » on the supposition that the constituents of
the determinant A are all different. But it is easy to see that the true
differential is double this, since the determinant has two symmetrical con-

stituents each = n.
E
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This condition may also be written
a n, m, p, &
ny b 1, q, B
my 1y ¢ r, v
Py g7y d 8
a, B, v, & =0.

76. The condition that the surface should be touched by
any line

ar+By+9z+8w=0, adz+By+yz2+8w=0,

is found by eliminating two of the variables between the equa-
tions of the line and of the quadric, and forming the condition
that the resulting quadratic should have equal roots. The
result contains the coefficients of the quadric in the second
degree, and is also a quadratic function of the determinants
(a8 — Ba), (ay' — '), &c. Writing these (af'), (ay'), &c. the
result is found to be

3 (ab— ') (y®) + 23 (mn —al) (85) (+5)

+23nr {(a8) (48) — (ay) (85)],
where the sum includes all terms of like form obtained by
symmetrical interchange of letters. This condition may also
be written

’

a, ny, M py & Q&
n b L ¢8R
my ¢, 7, v o
e Td 8 ¥
& B v 8
< 8,9, & =0.

If in the condition of the last article we write a+ Aa' for
a, &c., and then form the condition that the equation in A
should have equal roots, the result will be the condition of this
article multiplied by the discriminant. For the two planes
which can be drawn through a given line to touch a quadric,
will coincide either if the line touches the quadric or if the
surface has a double point.




CHAPTER V.

CLASSIFICATION OF QUADRICS.

77. OUR object in this chapter is the reduction of the
general equation of the second degree to the simplest form
of which it is susceptible, and the classification of the different
surfaces which it is capable of representing.

Let us commence by supposing the quantity which we called
6 (Art. 65) not to be =0. By transforming the equation to
parallel axes through the centre, the coefficients p, ¢, » are
made to vanish, and the equation becomes

ax’ + by + ¢z’ + 2lyz + 2mex + 2nxy + d' =
where d' is the result of substituting the co-ordinates of the
centre in the equation of the surface. Remembering that

9l = dU’+y dU’+ dU’+ au
T dy' dz' dw'
and that the co-ordinates of the centre make the first three
of the latter terms to vanish, it is easy to calculate that

d = Pa"'QB'*‘"Y

=0,

+d=%,

where A is the dmcnmma.nt of the equation.

78. Having by transformation to parallel axes made the
coefficients of @, y, z to vanish, we can next make the co-
efficients of yz, 2z, and ay vanish by changing the direction
of the axes, retaining the new origin; and so reduce the
equation to the form

A’ + By' + C2*=D.*

* D is of course = %é-. I suppose in what follows that D is positive.

If it were = 0, the surface would represent a cone (Art. 63). If it were
negative, we should only have to change all the signs in the equation.
E2
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It is easy to shew from Art. 17 that we have constants
enough at our disposal to effect this reduction, but the method
we shall follow is the same as that adopted, Conics, p. 141,
namely, to prove that there are certain functions of the co-
efficients which remain unaltered when we transform from one
rectangular system to another, and by the help of these re-
lations to obtain the actual values of the new 4, B, C.

Let us suppose that by using the most general transfor-
mation which is of the form

T=Azpytvz, y=NTHpY Ve s=NTtuly v
that ax' + by’ + c2* + 2lyz + 2mzx + 2nxy
becomes  a'z'+b'y’ + c'2" + 2lyz + 2m'zz + 2n'zy,
which we write for shortness U=U. And if both systems
of co-ordinates be rectangular, we must have

d+yt+d=a"+y'+2,

which we write for shortness S= 8. Then if R be any constant,
we must have U+ RS=U+ RS. And if the first side be re-
solvable into factors, so must also the second. The discrimi-
nants of U+ RS and of U+ RS must therefore vanish for the
same values of B. But the first discriminant is
R—-R'(a+b+c)+R(ab+bc+ca— P —m'—n")

— (abc + 2lmn — al* — bm" — cn®).
Equating then the coefficients of the different powers of R -
to the corresponding coefficients in the second, we learn that
if the equation be transformed from one set of rectangular
axes to another, we must have

a+b+c=d +¥b +¢,
betcatab—Cl—m*—n'=0bc +ca +a'b'—I*"-m"—n"

abe + 2lmn — al —bm* — en* =a'b'c’ + 2l'm'n’ — a'l® —b'm™ — c'n™®

* There is no difficulty in forming the corresponding equations for
oblique co-ordinates We should then substitute for S (see Art. 18),
’ 2' + y' + 2" - 2yz cos\ - 2zz cosp — 2zy cosv,
and proceeding exactly as in the text, we should form a cubic in R,
the coefficients of which would bear to each other ratios unaltered by
transformation.
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79. The above three equations at once enable us to trans-
form the equation so that the new !, m, n shall vanish, since
they determine the coefficients of the cubic equation whose
roots are the new a, b, c. This cubic is then
*A'—(a+b+c) A*+ (be+ca+ab—-T-m'—n") 4

. — (abe + 2lmn — al* — bm* — cn®) = 0,

which may also be written
(A—a)(4-0)(A-c)-T(A-a)—m"(A—b)—n*(4d—c)—2lmn=0.
We give here Cauchy’s proof that the roots of this equation

are all real. The proof of a more general theorem, in which

this is included, will be found in Lessons on Higher Algebra,
Lesson XV.

Let the cubic be written in the form
(4—a){(4-0) (A-c)=0}—m*(A-8)—n*(A—c)—2lmn =0,
Let a, 8 be the values of 4 which make (4—0)(4-c¢c)—-l'=0,
and it is easy to see that the greater of these roots « is greater

than either & or ¢, and that the less root 8 is less than either.t
Then if we substitute in the given cubic 4 = a, it reduces to
— {(a = b) m* + 2lmn + (a — c) n*},
and since the quantity within the brackets is a perfect square
in virtue of the relation (a—)(a—c)="0, the result of sub-
stitution is essentially negative. But if we substitute 4=2,
the result is
(6—B) m*—2lmn + (c - B) n*,

which is also a perfect square, and positive. Since then, if
we substitute A=w, A=a, A=, A=— o, the results arc
alternately positive and negative, the equation has three real
roots lying within the limits just assigned. The three roots are
the coefficients of 2% g, 2* in the transformed equation, but

® This is the same cubic as that found, Art. 68, as the reader will
easily see ought to be the case.

+ We may see this either by actually solving the equation, or by sub-
stituting successively 4 = 0, 4 =56, 4 =¢, 4 =~ ©, when we get results
+, =y = +, shewing that one root is greater than b, and the other less than .
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it is of course arbitrary which shall be the coefficient of «*
or of y', since we may call whichever axis we please the
axis of x.

80. Quadrics are classified according to the signs of the
roots of the preceding cubic.

L. First, let all the roots be positive, and the equation can
be transformed to
Az + By' + C2* = D.

The surface makes real intercepts on each of the three axes,
and if the intercepts be a, b, ¢, it is easy to see that the equation
of the surface may be written in the form

LA AN
dtpta=t

As it is arbitrary which axis we take for the axis of z, we
suppose the axes so taken that a the intercept on the axis
of z may be the longest, and ¢ the intercept on the axis of 2

may be the shortest.
The equation transformed to polar co-ordinates is

1  cos'a  cos’8 cos'y

F Tt

which (remembering that cos'a+cos’8+ cos’y=1) may be
written in either of the forms

from which it is easy to see that e is the maximum and ¢
the minimum value of the radius vector. The surface is con-
sequently limited in every direction, and is called an ellipsoid.

Every section of it is therefore necessarily also an ellipse. Thus
] 2
Y
1

the section by any plane z=R is :i,+p= -2 and we

shall obviously cease to have any real section when R is greater
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than ¢. The surface therefore lies altogether within the planes
z=4tc. Similarly for the other axes.

If two of the coefficients be equal (for instance, a =5), then
all sections by planes parallel to the plane of ay are circles,
and the surface is one of revolution, generated by the revolution
of an ellipse round its axis major or axis minor, according as
it is the two greater or the two less coefficients which are
equal. These surfaces are also sometimes called the prolate
and the oblate spheroid.

If all three coefficients be equal, the surface is a sphere.

81. II. Secondly, let one root of the cubic be negative.
We may then write the equation in the form

where a is supposed greater than &, and where the axis of z
evidently does not meet the surface in real points. Using
the polar equation

1 cos'a cos’B cos'y

pi P I3 - & !

it is evident that the radius vector meets the surface or not
according as the right-hand side of the equation is positive
or negative; and that putting it =0, (which corresponds to
p =) we obtain a system of radii which separate the diameters
which mect the surface from those that do not. We obtain
thus the equation of the asymptotic cone

Sections of the surface parallel to the plane of zy are ellipses;
those parallel to, either of the other two principal planes are
hyperbolas. The equation of the elliptic section by the plane

. » .
z= R being % + '%; =1+ -5, wesece that we get a real section

whatever be the value of R, and therefore that the surface
i8 continuous. It is called the Hyperboloid of one sheet.
If a=5d, it is a surface of revolution.
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82. IIL Thirdly, let two of the roots be negative, and
the equation may be written

The sections parallel to two principal planes are hyperbolas,
while that parallel to the plane of yz is an ellipse
3
‘ %+%=%—L

It is evident that this will not be real as long as R is within
the limits +a, but that any plane =R will meet the surface
in a real section provided that R is outside these limits. No
portion of the surface will then lie between the planes x=+a,
but the surface will consist of two separate portions outside
these boundary planes. This surface is called the Hyperbolod
of two sheets. It is of revolution if d=c.

By considering the surfaces of revolution, the reader can
easily form an idea of the distinction between the two kinds
of hyperboloids. Thus if a common hyperbola revolve round
its transverse axis the surface generated will evidently consist of
two separate portions; but if it revolve round the conjugate axis
it will consist but of one portion, and will be a case of the
hyperboloid of one sheet.

IV. If the three roots of the cubic be negative, the surface
4Lt
a bl
can evidently be satisfied by no real values of the co-ordinates.

V. When the absolute term vanishes, we have the cone

as a limiting case of the above. Forms I. and IV. then become

oA AL
a’ + b’ + cl 0,

which can be satisfied by no real values of the co-ordinates,

while forms II. and III. give the equation of the cone in

the form
xl 2 zﬁ
ZtE-a="

The forms already enumerated exhaust all the varieties of
central surfaces.
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Ex. 1. 72 + 6y* + 62" - dyz - 4zy = 6.
The discriminating cubic is
A*-184"+994 - 162=0,
and the transformed equation
2+ 20+ 32°=2,
an ellipsoid.
Ex. 2. 112" + 10y* + 62* - 122y - 8ysz + 422 = 12.
Discriminating cubic
A*- 274" + 1804 - 324 = 0.
Transformed equation
'+ 2y* + 62' = 4,
an ellipsoid.
Ex. 8. Tz* - 13y* + 62 + 24zy + 12ys ~ 1222 = + 84.
Discriminating cubic
A® - 3434 - 2058 = 0.
2+ 20 -3 =+£12
a hyperboloid of one or of two sheets, according to the sign of the last term.
Ex. 4. 22" + 3y* + 42" + 6xy + 4yz + 8zz =8,
Discriminating cubic is

Transformed equation

A®-94*-34 +20=0.

By Des Cartes’s rule of signs this equation has two positive and one negative
root, and therefore represents a hyperboloid of one sheet.

83. Let us proceed now to the case where we have 8=0.
In this case we have seen (Art. 65) that it is generally im-
possible by any change of origin to make the terms of the
first degree in the equation to vanish. But it is in general
quite indifferent whether we commence, as in Art. 65, by
transforming to a new origin, and so remove the coefficients
of z, y, 2, or whether we first, as in this chapter, transform
to new axes retaining the same origin, and so reduce the terms
of highest degree to the form A2*+ By'+ Cz". When 8=0,
the first transformation being impossible we must commence
with the latter. And since the absolute term of the cubic of
Art. 79 is 8, one of its roots, that is to say, one of the three
quantities 4, B, C must in this case =0. The terms of the
second degree are therefore reducible to the form Az*: By'.
This is otherwise evident from the consideration that §=0
is the condition that the terms of highest degree should be
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resolvable into two real or imaginary factors, in which case
they may obviously be also expressed as the difference or sum
of two squares. In this way the equation is reduced to the form

Ax* + By' + 2p'x + 29’y + 2r'z + d=0.

We can then, by transforming to a new origin, make the co-
efficients of « and y to vanish, but not that of z, and the equation

takes the form
Ax'+ By' +2r'z+d =0.

I. Let »'=0. The equation then does not contain £, and
therefore (Art. 24) represents a cylinder which is elliptic or
hyperbolic, according as 4 and B have the same or different
signs. Since the terms of the first degree are absent from
the equation the origin is a centre, but so is also equally
every other point on the axis of 2z, which is called the axis
of the cylinder. The possibility of the surface having a line of
centres is indicated by both numerator and denominator vanishing
in the co-ordinates of the centre, Art. 65 (see note p. 42).

If it happened that not only »' but also & =0, the surface
would reduce to two intersecting planes. ‘

IL. If ' be not =0, we can by a change of origin make
the absolute term vanish, and reduce the equation to the form

Az’ + By' +2r'2' =0.

Let us first suppose the sign of B to be positive. In this
case while the sections by planes parallel to the planes of xz
or yz are parabolas, those parallel to the plane of xy are ellipses,
and the surface is called the Elliptic Paraboloid. It evidently
extends only in one direction, since the section by any plane
g=cis Az’+ By'=-2cr', and will not be real unless the
right-hand side of the equation is positive. When therefore
r' is positive, the surface lies altogether on the negative side
of the plane of 2y, and when 7' is negative, on the positive side.

II1. If the sign of B be negative, the sections by planes
parallel to that of zy are hyperbolas, and the surface is called
a Hyperbolic Parabolovd. This surface extends indefinitely in
both directions. The section by the plane of xy is a pair of
right lines.
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IV. If B=0, that is, if two roots of the discriminating cubic
vanish, the equation takes the form

Ax®+ 24y +2r'z2+d=0,
but by changing the axes y and z in their own plane, and
taking for new co-ordinate planes the plane ¢'y+ 2 and a

plane perpendicular to it through the axis of x, the equation
is brought to the form

Az +¢'y+d=0,
which (Art. 24) represents a cylinder whose base is a parabola.

V. If we have also ¢'=0, =0, the equation Az*+d=0
being resolvable into factors would evidently denote a pair
of parallel planes.

84. The actual work of reducing the equation of a paraboloid
to the form Ax*+ By'+2Rz=0 is shortened by observing that
the discriminant is an invariant; that is to say, a function of
the coefficients which is not altered by transformation of co-
ordinates (Higher Algebra, p. 51). Now the discriminant of
Aa* + By* + 2Rz is simply ABR’, which is therefore equal to
the discriminant of the given equation. And as 4 and B are
known, being the two roots of the discriminating cubic which
do not vanish, R is also known. The calculation of the dis-
criminant is facilitated by observing that it is in this case a
perfect square (Higher Algebra, p. 124). Thus let us take the
example

52" —y' + 2"+ 6zx + 4y + 2x + 4y + 62=8.
Then the discriminating cubic is A’ — 5A*—14A =0 whose roots
are 0, 7, and —2. We have therefore A=7, B=—2. The
discriminant in this case is (p+2¢—3r)%, or putting in the
actual values p=1,¢=2,r=3 is 16. Hence we have 14R'=16,
R= %M)’ and the reduced equation is 72" — 2y" = —47(8_1% .

If we had not availed ourselves of the discriminant, we
should have proceeded as in Art. 68 to find the principal planes
answering to the roots 0, 7, — 2 of the discriminating cubic, and
should have found ‘

z4+2y—32=0, dr+y+22=0, x—-2y-2=0.
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Since the new co-ordinates are the perpendiculars on these
planes, we are to take

dx+y+2:=X4/(21), x—2y—2=Y/(6), x+2y—32=24/(14),
from which we can express z, y, £ in terms of the new co-
ordinates, and the transformed equation becomes

12" -2y + ——— =8,

-2
70 ~2YO) ¥~ g #
which finally transformed to parallel axes through a new origin
gives the same reduced equation as before.

If in the preceding example the coefficients p, ¢, » had been
go taken as to fulfil the relation p+2g— 3r =0, the discriminant
would then vanish, but the reduction could be effected with
even greater facility as the terms in x, y, 2 could then be ex-
pressed in the form

‘ (4x+y +22) + A (z— 2y —2).
Thus the equation
52—y’ +2°+ 622 + dxy + 22+ 2y + 22 =8
may be written in the form
(4 +y+22)'— (x—2y - 2)" + 2 (4 + y+22) — 2(x — 2y — 2) =24,
which transformed as before becomes
212" — 6y* + 2z 4/(21) — 2y #/(6) = 24
and the remainder of the reduction presents no difficulty.



CHAPTER VL

PROPERTIES OF QUADRICS DEDUCED FROM SPECIAL
FORMS OF THEIR EQUATIONS.

CENTRAL SURFACES.

85. WE proceed now to give some properties of central

quadrics derived from the equation :_: + g— + :- =1. This will
include properties of the hyperboloids as well as of the ellipsoids
if we suppose the signs of 4* and of ¢ to be indeterminate.
The equation of the polar plane of the point z'y'z’ (or of the
tangent plane, if that point be on the surface) is (Art. 59)
xx  yy 22
P
The perpendicular from the origin on the tangent plane is
therefore (Art. 32) given by the equation

=1.

3 3 2

j-Tee.
And the angles a, 8, v which the perpendicular makes with the
axes are given by the equations
cosa =%a,i , cosfB =£b_:z ’ cos'y=1—1;- ’
as is evident by multiplying the equation of the tangent plane
by p, and comparing it with the form
x cosa+y cosB+z cosyy=p.

From the preceding equations we can also immediately get
an expression for the perpendicular in terms of the angles it
makes with the axes, viz.

p'=a’ cos’a+b* cos’ B+ ¢ cos’y.

86. To find the condition that the plane ax+By+yz+8=0
should touch the surface.
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Comparing this with the equation —% +‘2;, =1, we
have at once
@ __o y_ W 2 oy
a &' b &' ¢ &

and the required condition is
aa'+ 0B +cy' =8
In the same way, the condition that the plane ax + By + vz
2
should touch the cone ::—: + ?II;—: - ’ci, =0is
a'a* + 0B -’y =0.
These might also be deduced as particular cases of Art. 75.

87. The normal is a perpendicular to the tangent plane
erected at the point of contact. Its equations are obviously

a' n b N C ,
;(:c—:c)=y(y—y)=;,(z—z)-

Let the common value of these be R, then we have

R ,_Ry ,_RZ
T=T =y Y=Y=7» %

Squaring and adding we find that the length of the normal

between z'y’2’, and any point on it zyz is g But if zyz be

taken as the point where the normal meets the plane of zy, we
have £=0, and the last of the three preceding equations gives
R=¢" Hence the length of the intercept on the normal be-

tween the point of contact and the plane of zy 1517
88. The sum of the squares of the reciprocals of any three

rectangular diameters is constant. This follows immediately
from adding the equations

1 cos’a  cos’B  cos'

? = + 7’— + 7
1 cos'a B’ cos’

"Tu = & + A & !
1  cos’a” cos'S8” cos'y’
’T' = o + A + c"Y )
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whence since cos*a + cos'a’ + cos*a” =1, &c., we have
R R T
PI P" P"i af b’ c’
89. In like manner the sum of the squares of three perpen-
diculars on tangent planes, mutually at right angles, is constant,

as appears from adding the.equations
2

p' =a'cos’a +8* cos’B +c cos’y,
p”' =a’ cos’a’ + b cos’B’ + ¢* cos’y,
p"=a' cos’a” + b* cos’ 8" + ¢’ cos’y".

Hence the locus of the intersection of three tangent planes
which cut at right angles in a sphere; since the square of its
distance from the centre of the surface is equal to the sum
of the squares of the three perpendiculars and therefore to
a+0+c.

CONJUGATE DIAMETERS.

90. The equation of the diametral plane conjugate to the
diameter drawn to the point x’y'z’ on the surface is

e @ _1/6_1{
It is therefore pa.rallel to the tangent plane at that point.
Since any diameter in the diametral plane is conjugate to that
drawn to the point 2'y'7’, it is manifest that when two diameters
are conjugate to each other, their direction-cosines are connected
by the relation

+——_o(Anem

cosa cosa’ cosS cosf’ | cosry cosy’
] 3 + 0 = 0.
a b c
Since the equation of condition here given is not altered if
we write Ka', Kb*, K¢ for a*, b", ¢', it is evident that two lines

2 3
which are conjugate diameters for any surface ::, +Z =+ +2 -1

are also conjugate diameters for any similar 81u£ace

£+%+ - K
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And by making K=0 we see in particular that any surface and
its asymptotic cone have common systems of conjugate diameters.

Following the analogy of methods employed in the case of
conics we may denote the co-ordinates of any point on the
ellipsoid, by a cosA, & cosu, c cosy, where A, u, v are the
direction-angles of some line; that is to say, are such that
cos’\ + cos’u 4+ cos’v=1. In this method the two lines answer-
ing to two conjugate diameters are at right angles to each
other; for writing cosa=a cosA, cosa’ =a cos\’, &c., the re-
lation last written becomes

cos\ cosA’ +cosu cosu’ + cosy cosy' =0.

91. The sum of the squares of a system of three conjugate
semi-diameters 18 constant.

For the square of the length of any semi-diameter z™+y"+2"
is, when expressed in terms of A, y, ¥,

a’ cos’\ +5° cos’u + ¢’ cos’y,
which when added to

a’ cos’\’ +8* cos’u' +¢* cos'V,

a® cos’\" +&* cos’u” + ¢* cos™v’
is equal to a*+8'+c'; since A, u, v, &c. are the direction-
angles of three lines mutually at right angles.

92. The parallelopiped whose edges are three conjugate sems-
diameters has a constant volume.

For if z'y'?, «"y"s", &c. be the extremities of the diameters
the volume is (Art. 35)

z, ¥y, ¢

zII’ y"’ z"

Z’", yl"’ zl" )
CO8A, COSu, COSY
cos\, cosu', cosy’
cosA”, cosu”, cosy” |,

or abe

but the value of the last determinant is unity (see note, p. 20);
hence the volume of the parallelopiped is abe.
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If the axes of any central plane section be a', &', and p the
perpendicular on the parallel tangent plane, then a'd’p=abc.
For if ¢’ be the semi-diameter to the point of contact, and 6 the
angle it makes with p, the volume of the parallelopiped under
the conjugate diameters @', %', ¢’ is a'd'c’ cosd, but ¢’ cosf =p.

93. The theorems just given may also with ease be deduced
from the corresponding theorems for conics.

For consider any three conjugate diameters o', %', ¢, and let
the plane of a'd’ meet the plane of xy in a diameter 4, and let
C be the diameter conjugate to A in the section a'?’, then
we have 4'+ C*=a"+b"; therefore a® + 5" +c*=A4"+C"+ c™.
Again, since 4 is in the plane zy, then if B is the diameter
conjugate to A in the section by that plane, the plane con-
jugate to 4 will be the plane containing B and containing the
axis ¢, and C, ¢’ are therefore conjugate diameters of the same
section as Byc. Hence we have 4*+C* + ¢ = A"+ B*+ ¢*; and
since, finally, 4* + B*=a"+ ", the theorem is proved. Precigely
similar reasoning proves the theorem about the parallelopipeds.

We might further prove these theorems by obtaining, as in
the note, p. 52, the relations which exist when the quantity
z + g + ol in oblique co-ordinates is transformed to a_,v+ y +i’
a" b c" q a' b’ c‘
in rectangular co-ordinates. These relations are found to be

a’+b’+ci =a'f+b'ﬁ+c'¥’
b'c*+ c'a’™+a"b* = b"c" sin’\ + c”a™ sin’u + a’d" sin’y,
a'd’e®  =a"b"c"(1—cos' A —cos"w—cos'v+2 cos cosu cosv).
The first and last equations give the properties already ob-
tained. The second expresses that the sum of the squares of
the parallelograms formed by three conjugate diameters, taken
two by two, is constant.

94. The sum of the squares of the projections of three con-
Jugate diameters on any line ts constant.

Let the line make angles a, B, v with the axes, then the
projection on it of the semi-diameter terminating in the point
Z'y'? is &’ cosa+y' cosB+ 2z cosy, or, by Art. 90, is

a cos\ cosa+b cosu cosB + ¢ cosy cosy.
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Similarly, the others are

a cos\' cosa+b cosu’ cosfB+c cosy' cosy,
a cos\” cosa+ b cosu” cosB+ c cosy” cosry,
and squaring and adding, we get the sum of the squares
a® cos'a + b* cos’B + ¢ cos'ry.

95. The sum of the squares of the projections of three con-
Jugate diameters on any plane vs constant.

If d, d', d" be the three diameters, 6, &, 6" the angles made
by them with the perpendicular on the plane, the sum of the
squares of the three projections is d” sin*d + d™ sin*¢" + d'” sin*@",
which is constant, since d* cos’d +d™ cos’@ + d'™ cos*@" is con-
stant by the last article; and d*+d™+ d" by Art. 91.

96. To find the locus of the vntersection of three tangent planes
at the extremities of three conjugate diameters.

The equations of the three tangent planes are

& cosh + Yy cosy . % COBY

a 5 tTe =b
x cos\’ ycg_s;_l. +zeosv =1,
x cos\” +4 cospu’ 45 cosy” _ L
a b c
Squaring and adding, we get for the equation of the locus,
@ v
pe + 53 5 + p =3.

97. To find the lengths of the axes of the section made by any
plane passing through the centre.

We can readily form the quadratic, whose roots are the
reciprocals of the squares of the axes, since we are given the
sum and the product of these quantities. Let a, B, v be the
angles which a perpendicular to the given plane makes with the
axes, R the intercept by the surface on this perpendicular; then
we have (Art. 88)

1

1
am+_m

1
+F+

9|»—-
|

+ Lo
r-

!



CONJUGATE DIAMETERS. 67

b 1 1 1 1 1 cos'a cos'B cos’y
Weme?+Ef%?+?+?‘7r“7“—7%
]

. 1 _ p* cos'a  cos’@  cos'y
while (Art. 92) a®* o't b ca’ a'h ’
The quadratic required is therefore
1 1 /sina  s&in’ gin" cos* * cos’
8 ( a"a + —_bié + 0'7) + b'c"a + c:’sa“ﬁ + a’b’:r =
This quadratic may also be written in the form
a'cos’a 4" cos'B ' cos'y
prpge By < e B B
This equation may be otherwise obtained from the principles
explained in the next article.

0.

=0.

98. Through a given radius OR of a central quadric we can
tn general draw one section of which OR shall be an axis.
Describe a sphere with OR as radius, and let a cone be
drawn having the centre as vertex and passing through the
intersection of the surface and the sphere, and let a tangent
plane to the cone be drawn through the radius OR, then OR
will be an axis of the section by that plane. For in it OR is
equal to the next consecutive radius (both being radii of the
same sphere) and is therefore a maximum or minimum ; while
the tangent line at R to the section is perpendicular to OR,
since it is also in the tangent plane to the sphere. OR is
therefore an axis of the section.
The equation of the cone can at once be formed by sub-
tracting one from the other, the equations
v 2 @ Yy =z

atpta=h ptuta=h

when we get

3"((%—5)4-3/’(1%_;_,)+z!($_$)=0'

If then any plane x cosa+ y cosB + z cosy have an axis in
length =, it must touch this cone, and the condition that it
should touch it, is (Art. 86)

a’ cos’a B cos’ ¢’ cos’y
d—r T p v e = %
which is the equation found in the last article.
F2



68 CIRCULAR SECTIONS.

In like manner we can find the axes of any section of a
quadric given by an equation of the form

az’ + by’ + c2' + 2lyz + 2mzx + 2nxy = 1.
The cone of intersection of this quadric with any sphere
AMt+y +2")=1
is (a=N)2'+(b—N)y'+ (c— ) 2" + 2lyz + 2mzz + 22y =0,
and we see as before, that if A be the reciprocal of the square
of an axis of the section by the plane x cosa+y cosf + z cosry,
this plane must touch the cone whose equation has just been

given. The condition that the plane should touch this cone
(Art. 75) may be written

a—»A, n, m, cosa
n, b-x I, cosB
m, l, c¢—X\, cosy
cosa, cosf3, cosy =0,
which expanded is
A=A {(b+c) cos’a+ (c+a) cos'B+ (a+ b) cos™y
— 20 cosf cosry — 2m cosy cosa — 2n cosa cos S}
+ (bc — I*) cos’a + (ca — m*) cos’ B + (ab — n*) cos’y
+2 (mn - al) cosB cosy + 2 (nl — bm) cosy cosa
+ 2 (Im — cn) cosa cos B =0.

CIRCULAR SECTIONS.

99. We proceed to investigate whether it is- possible to
draw a plane which shall cut a given ellipsoid in a circle. As
it has been already proved (Art. 69) that all parallel sections
are similar curves, it is sufficient to consider sections made by
planes through the centre. Imagine that any central section
is a circle with radius », and conceive a concentric sphere
described with the same radius. Then we have just seen

that 1 1 1 1 1 1
#(G-5)+9(E-5)+(G-5)=0
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represents a cone having the centre for its vertex and passing
through the intersection of the quadric and the sphere. But
if the surfaces have a plane section common, this equation must .,
necessarily represent two planes, which cannot take place unless
the coefficient of either &%, 3", or 2* vanish. The plane section
must therefore pass through one or other of the three axes.
Suppose for example we take r =5, the coefficient of y vanishes,
and there remains

(b= D) +e(b-D) =0,

which represents two planes of circular section passing through
the axis of y.

The two planes are easily constructed by drawing in the
plane of xz a semi-diameter equal to 5. Then the plane con-
taining the axis of y, and either of the semi-diameters which
can be so drawn, is a plane of circular section.

In like manner two planes can be drawn through each of
the other axes, but in the case of the ellipsoid these planes will
be imaginary ; since we evidently cannot draw in the plane of
zy a semi-diameter =c, the least semi-diameter in that section
being =b; nor, again, in the plane of yz a semi-diameter =a,
the greatest in that section being = b.

In the case of the hyperboloid of one sheet ¢* is negative,
and the sections through a are those which are real. In the
hyperboloid of two sheets where both 4" and ¢* are negative,
if we take r*= —c* (5" being less than c¢*), we get the two real

sections, - -
as'((—l—.+?)+y’(?—l7)=o.

These two real planes through the centre do not meet the
surface, but parallel planes do meet it in circles. In all cases
it will be observed that we have only two real central planes
of circular section, the series of planes parallel to each of which
afford two different systems of circular sections.

100. Any two surfaces whose coefficients of 2’, 3, 2', differ
only by a constant, have the same circular sections. Thus
Az’ + By'+Cz'=1,and (A + H)z'+ (B+ H)y" +(C+ H) 2’=1
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have the same circular sections as easily appears from the
formula in the last article.

The same thing appears by throwing the two equations into
the form

§,=A cos’a+ B cos*B + C cos'y,

’%,=A cos’a+ B cos’B + C cos'y + H,
from which it appears that the difference of the squares of the
reciprocals is constant of the corresponding radii vectores of the
two surfaces. If then in any section the radius vector be con-
stant, so must also the radius vector of the other. The same
consideration shews that any plane cuts both in sections having
the same axes, since the maximum or minimum value of the
radius vector will in each correspond to the same values of
a, B, v.

Circular sections of a cone are the same as those of a hyper-
boloid to which it is asymptotic.

101. Any two circular sections of opposite systems lie on the
same sphere.

The equations of the two planes of section are parallel each
to one of the planes represented by

o(h-d) (oo 2 (md) o

Now since the equation of two planes agrees with the
equation of two parallel planes as far as terms of the second
degree are concerned, the equation of the two planes must
be of the form

1 1 1 1\, /1 1 _
a:'(?—;_—,)+y"(?—;.)+z (;,—;,)+u,—0,
where u, represents some plane. If then we subtract this from

the equation of the surface, which every point on the section
must also satisfy, we get

2@y ) =1,

which represents a sphere.
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102. All parallel sections are as we have seen similar. If
now we draw a series of planes parallel to circular sections the
extreme one will be the parallel tangent plane which must
meet the surface in an infinitely small circle. Its point of
contact is called an wmbilic. Some properties of these points
will be mentioned afterwards. The co-ordinates of the real
umbilics are easily found. We are to draw in the section,
whose axes are a and ¢, a semi-diameter =5, and to find the
co-ordinates of the extremity of its conjugate. Now the for-
mula for conics 4" = a® — ¢'z* applied to this case gives us

2 2
P=a-T20 2
a
h £ _a'-b . larl 2 b=
waence (?-—a._c,, mmnn‘y;,—m.

There are accordingly in the case of the ellipsoid four real
umbilics in the plane of zz, and four imaginary in each of the
other principal planes.

103. Tt is convenient to add in this place how in like manner
we are able to determine the circular sections of the paraboloid
given by the equation

2 ¥y 2
FTET

Considering a circular section through the origin, whose
radius is », we can see, as in Art. 99, that it must lie in the
sphere

& +y + 2" =2rz.

And the cone of intersection of this sphere with the paraboloid is
or AW
a:“(l-—a—,)+y’(1$p)+z =0.
This will represent two planes if one of the terms vanishes.
It will represent two real planes, in the case of the elliptic
paraboloid, if we take %—1;:1, for the equation then becomes

b'2*=(a*—b")y". But in the case of the hyperbolic paraboloid
there is no real circular section, since the same substitution
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would make the equation of the two planes take the imaginary
form 52' + (a*+8") y* =0.

Indeed, it can be proved in general that no section of the
hyperbolic paraboloid can be a closed curve, for if we take its
intersection with any plane z =Lz +my+ n, the projection on

the plane of zy is ";':_?L’_M hlchmnecessanly

a hyperbola.

RECTILINEAR GENERATORS.

104. We have seen that when the -central section is an
ellipse all parallel sections are similar ellipses, and the section
by a tangent plane is an infinitely small similar ellipse. In
like manner when the central section is a hyperbola, the section
by any parallel plane is a similar hyperbola, and that by the
tangent plane reduces itself to a pair of right lines parallel to
the asymptotes of the central hyperbola. Thus 1f the equation
referred to any conjugate diameters be

«* '
u + %’i ?I =1,
and we consider the section made by any plane parallel to the
plane of zz (y = B), its equation is
2 B

pe il ek < B

And it is evident that the value 8=25' reduces the section to
a pair of right lines. Such right lines can only exist on the
hyperboloid of one sheet, since if we had the equation
Fofith,

the right-hand side of the equation could not vanish for any
value of 2. It is also geometrically evident that a right line
cannot exist either on an ellipsoid, which is a closed surface;
_mnor on a hyperboloid of two sheets, no part of which, as we
saw, lies in the space included between several systems of two
parallel planes, while any right line will of course in general
intersect them all.
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105. Throwing the equation of the hyperboloid of one sheet
into the form
o 2 1 v
it kg ¥
it is evident that the intersection of the two planes

-3-n(-9) 24D = ()

lies on the surface, and by giving different values to A we get
a system of right lines lying in the surface; while, again, we
get another system by considering the intersection of the planes

z_2_ Yy T ®8_1_9%
a ¢ 7\'(1.*-6)’ 7"(a+c) 1 b

What has been just said may be stated more generally as
follows: If a, B, v, & represent four planes, then the equation
ay =8 represents a hyperboloid of one sheet, which may be
generated as the locus of the system of right lines

a=AB3, Ny= S,
or a=2A3, Ay=45.
In the case of the equation

« y 2

stp-s=h
the lines may be also expressed by the equations

z_.?2 i y_%24
a—ccosa¥sln0, 5 csmaicoso.

106. Any two lines belonging to opposite systems lie n the

same plane.
Consider the two lines
a—AB, My =38,
a—N\8, Ny-8.

Then it is evident that the plane a—AB+ ANy —A'S contains
both, since it can be written in either of the forms
(a=2B) +X (= 8), a=NS+:(Ny—§B)
It is evident in like manner that no two lines belonging to
the same system lie in the same plane. Since no plane of
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the form (a —A8) + R(My—38) can ever be identical with
(a=NB)+ R (Ny—28) if X and N\’ are different. In the same

way we see that both the lines
:f=foosa—sin0, Y =2 4in6 +cos
a ¢ b ¢
z Yy =z

;=goos¢+sin¢, 3= —smcﬁ cos ¢,
which belong to different systems lie in the plane
2 cosg (0+ )+ sin} (0+¢) =2 cos} (6—¢) —sing (- ).

Now this plane is parallel to the second line of the first
system

cos¢ —sin¢h, ‘% = : sin¢ + cos ¢,

but it does not pass through it, for the equation of a parallel
plane through this line will be found to be

2 cosy (0+¢)+Y sing (8+$) =" cos} (0~ ¢) +sin§ (6—9),

which differs in the absolute term from the equation of the
plane through the first line.

107. We have seen that any tangent plane to the hyper-
boloid meets the surface in two right lines intersecting in the
point of contact, and of course touches the surface in no other
point. If through one of these right lines we draw any other
plane, we have just seen that it will meet the surface in a new
right line, and this new plane will touch the surface in the
point where these two lines intersect. Conversely, the tangent
plane to the surface at any point on a given right line in the
surface will contain the right line, but the tangent plane will
in general be different for every point of the right line. Thus,
take the surface ¢ = yyr, where the line zy lies on the surface,
and ¢ and y represent planes (though the demonstration would
equally hold if they were functions of any higher degree).
Then using the equation of the tangent plane

(w=a) S+ =9) G+ e-0) T =0,
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and seeking the tangent at the point z=0, y=0, s=¢', we find
xz¢'+yy'=0, where ¢’ and 4’ are what ¢ and Y become on
substituting these co-ordinates. And this plane will vary as
2’ varies.

All this is different in the case of the cone. Here every
tangent plane meets the surface in two coincident right lines.
The tangent plane then at every point of this right line is the
same, and the plane touches the surface along the whole length
of the line.

And generally, if the equation of a surface be of the form

z¢p+y'¥=0,
it is seen precisely, as above, that the tangent plane at every
point of the line zy is z=0.

108. It was proved (Art. 104) that the two lines in which
the tangent plane cuts a hyperboloid are parallel to the asymp-
totes of the parallel central section; but these asymptotes are
evidently edges of the asymptotic cone to the surface. Hence
every right line which can lie on a hyperboloid is parallel to
gome one of the edges of the asymptotic cone. It follows also
that no three of them can be parallel to the same plane, since,
if they were, a parallel plane would cut the asymptotic cone
in three edges, which is impossible, the cone being only of
the second degree.

109. We have seen that any line of the first system meets
all the lines of the second system. Conversely, the surface
may be conceived as generated by the motion of a right line
which always meets a certain number of fixed right lines.*

Let us remark in the first place, that when we are seeking
the surface generated by the motion of a right line, it is
necessary that the motion of the right line should be regulated
by three conditions. In fact, since the equations of a right

* A surface generated by the motion of a right line is called a ruled
surface. If every generating line is intersected by the next consecutive one,
the surface is called a developable. If not, it is called a skew surface. The
hyperboloid of one sheet belongs to the latter class; the cone to the former.



76 RECTILINEAR GENERATORS.

line include four constants, four conditions would absolutely
determine the position of a right line. When we are given
one condition less, the position of the line is not determined,
but it is so far limited that the line will always lie on a certain
surface-locus, whose equation can be found as follows: Write
down the general equations of a right line x=mz + p, y=nz+¢;
then the conditions of the problem establish three relations
between the constants m, n, p, ¢. And combining these three
relations with the two equations of the right line, we have
five equations from which we can eliminate the four quantities
m, n, p, ¢, and the resulting equation in z, y, z will be the
equation of the locus required. Or, again, we may write the
equations of the line in the form
z—a y—-y z-2
cosa  cos8 cosy’

then the three conditions give three relations between the con-
stants &', ¥/, 2', a, B, vy, and if between these we eliminate
a, B, v, the resulting equation in &, y, 2 is the equa-
tion of the required locus, since x'y'z' may be any point on
the line.

We see then that it is a determinate problem to find the
surface generated by a right line which moves so as always
to meet three fixed right lines.* For expressing, by Art. 40,
the condition that the moveable right line shall meet each
of the fixed lines, we obtain the three necessary relations between
m, n, p, ¢. Geometrically also we can see that the motion of
the line is completely regulated by the given conditions. For
a line would be completely determined if it were constrained
to pass through a given point and to meet two fixed lines,
since we need only draw planes through the given point and
each of the fixed lines, when the intersection of these planes
would determine the line required. If then the point through
which the line is to pass, itself moves along a third fixed line,
we have a determinate series of right lines, the assemblage of
which forms a surface-locus.

* Or three fixed curves of any kind.
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110. Let us then solve the problem suggested by the last
article, viz. to find the surface generated by a right line which
always meets three fixed right lines. In order that the work
may be shortened as much as possible, let us first examine
what choice of axes we must make in order to give the equa-
tions of the fixed right lines the simplest form.

And it occurs at once that we ought to take the axes, one
parallel to each of the three given right lines.®* The only
question then is where the origin can most symmetrically be
placed. Suppose now that through each of the three right
lines we draw planes parallel to the other two, we get thus
three pairs of parallel planes forming a parallelopiped, of which
the given lines will be edges. And if through the centre of
this parallelopiped we draw lines parallel to these edges, we
shall have the most symmetrical axes. Let then the equations
of the three pairs of planes be

z=ta, y=+b, z=tg¢,

then the equations of the three fixed right lines will be

y=b z=—c¢; 2=c,z=—a; z=a, y=-b.
The equations of any line meeting the first two fixed lines are

g+c=N(y—0b); z—c=p(z+a),
which will intersect the third if
c+pa+rb=0,

or replacing for A and u their values,

c(@+a)(y—b)+ale—c) (y=b)+b (e +) (+a),

which reduced is
ayz + bzx + cxy + abc =0,

On applying the criterion of p. 57 this is found to repre-
sent a hyperboloid of one sheet, as is otherwise evident, since

* We could not do this indeed if the three given right lires happened
to be all parallel to the same plane. This case will be considered in the
next Article. It will not occur when the locus is a hyperboloid of one
sheet, see Art. 108.
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it represents a central quadric and is known to be a ruled
surface. The problem might otherwise be solved thus:
Assume for the equations of the moveable line
z-2 y—y =z-¢
cosa cosB  cosy’

the three conditions obtained by expressing that this intersects
each of the fixed lines are

y=b_ 2+c

cosB ~ cosy’

Z—c ad+a

cosy cosa ’

d—a y+b
cosa cosfB’

We can eliminate a, 8, ¥y by multiplying the equations
together, and get for the equation of the locus,

(z—a) (y—2) (s- o) =(=+a) (y +0) (= +0),
or reducing
ayz + bzx + cxy + abc =0,
the same equation as before.

The following is another general solution of the same pro-
blem: Let the first two lines be the intersection of the planes
a, B; v, 8; then the equations of the third can be expressed in
the form a=Ay+ B3, 8=Cy+ D8. The moveable line, since
it meets the first two lines, can be expressed by two equations
of the form a=AB, y=pud. Substituting these values in the
equations of the third line we find the condition that it and
the moveable line should intersect, viz.

Ap+B=x\(Cu+ D).

And eliminating A\ and u between this and the equations of the
moveable line, we get for the equation of the locus,

B (A4y+ Bd) =a (Cy+ D).

111. From the general theory explained in Art. 105, it is
plain that the hyperbolic paraboloid may also have right lines
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(Art. 83) is included in the general form ay=pB3; and the
surface contains the two systems of right lines

zZ,Y= N=2,
ry=n 279 =1
The first equation shews that every line on the surface must

be parallel to one or other of the two fixed planes ~+ E =0;
and in this respect is the fundamental difference between right
lines on the paraboloid and on the hyperboloid (see Art. 108).

It is proved, as in Art. 106, that any line of one system
meets every line of the other system, while no two lines of
the same system can intersect.

We give now the investigation of the converse problem, viz.
to find the surface generated by a right line which always meets
three fixed lines which are all parallel to the same plane. Let
the plane to which all are parallel be taken for the plane of y,
any line which meets all three for the axis of z, and let the
axes of  and y be taken parallel to two of the fixed lines.
Then their equations are

z=0, z=a; y=0,2=b; xz=my, z=c.
The equations of any line meeting the first two fixed lines are
z=N(z-a), y=p(z-0),
which will intersect the third if
A(c—a)=mpu(c-b),
and the equation of the locus is
(a—c)z(z—b)=(b—c) y(z~a),

which represents a hyperbolic paraboloid since the terms of
highest degree break up into two real factors.

In like manner we might investigate the surface generated

by a right line which meets two fixed lines and is always parallel
to a fixed plane. Let it meet the lines

z=0, z2=a; y=0, 2=-—aq,
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and be parallel to the plane
z cosa+y cosfB+ z cosy=p.
Then the equations of the line are
z=A(—a), y=p(e+a),
which will be parallel to the given plane of
cosy + A cosa + p cos8=0.
The equation of the required locus is therefore
cosy (2'—a")+x cosa (2 +a) +y cosB (2 —a)=0,

which is a hyperbolic paraboloid since the terms of the second
degree break up at two real factors.

A hyperbolic paraboloid is the limit of the hyperboloid of
one sheet, when the generator in one of its positions may lie
altogether at infinity.

We have seen (Art. 104) that a plane is a tangent to a
surface of the second degree when it meets it in two real or
imaginary lines; and (Art. 83) that a paraboloid is met by
the plane at infinity in two real or imaginary lines. Hence
a paraboloid is always touched by the plane at infinity.

112. Four right lines belonging to ome system cut all lines
belonging to the other system in a constant ankarmonic ratio.

For through the four lines and through any line which
meets them all we can draw four planes; and therefore any
other line which meets the four lines will be divided in a
constant anharmonic ratio (Art. 38).

Conversely, if two non-intersecting lines are divided Zomo-
graphically in a series of points, that is to say, so that the
anharmonic ratio of any four points on one line is equal to
that of the corresponding points on the other; then the lines
joining corresponding points will be generators of a hyper-
boloid of one sheet. .

Let the two given lines be @, 8; v, 8. Let any fixed line
which meets them both be a=A'8, y=u'8; then, in order
that any other line a=A\8, y=pud should divide them homo-

graphically, we must have (Conics, Art. 55) %, =5 and if we

(&)
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eliminate A between the equations a=2g8, \'y=pu'A3, the result
i8 NBy = p'ad.

113. In the case of the hyperbolic paraboloid any three
right lines of one system cut all the right lines of the other
in a constant ratio. For since the generators are all parallel
to the same plane, we can draw through any three generators
parallels to that plane, and all right lines which meet three
parallel planes are cut by them in a constant ratio.

Conversely, if two finite non-intersecting lines be divided,
each into the same number of equal parts, the lines joining
corresponding points will be generators of a hyperbolic para-
boloid. By doing this with threads, the form of this surface
can be readily exhibited to the eye.

To prove this directly, let the line which joins two corre-
sponding extremities of the given lines be the axis of z; let
the axes of = and y be taken parallel to the given lines, and
let the plane of zy be half-way between them. Let the lengths
of the given lines be a and 5, then the co-ordinates of two
corresponding points are

z=¢, a=pa, y=0,

g=—c, 2=0, y=ub,
and the equations of the line joining these points are
z
;+%=#,2w—mu=wm
whence, eliminating u, the equation of the locus is

2cx=a(z+c) (g-i- %) ,

which represents a hyperbolic paraboloid.

SURFACES OF REVOLUTION.

114. Let it be required to find the conditions that the
general equation should represent a surface of revolution. In
this case the equation can be reduced (see p. 55), if the surface
be central, to the form g+g‘:i£‘==i 1, and if the surface

G
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be non-central to the form ‘:—;-:+ % = 2—: . In either case then

when the highest terms are transformed so as to become the
sum of squares of three rectangular co-ordinates, the coefficients
of two of those squares are equal. It would appear then that
the required condition would be at once obtained by forming
the condition that the discriminating cubic should have equal
roots. Since however the roots of the discriminating cubic are
always positive, its discriminant can be expressed as the sum
of squares (see Higher Algebra, p. 134), and will not vanish (the
coefficients of the given equation being supposed to be real)
unless two conditions are fulfilled which can be obtained more
easily by the following process. We want to find whether
it is possible so to transform the equation as to have
ax’ + by + c2' + 2lyz + 2mex + 2naxy = A (X*+ Y*) + C2°,
but we have (p. 52)
c+y+2=X"+Y"+2"
It is manifest then that by taking A =4, we should have the
following quantity a perfect square:
(ax* + by* + c2* + 2lyz + 2mzx + 2nxy) — A (2 + y* + 27),
and it is required to find the conditions that this should be
possible.
Now it is easy to see that when

Ax'+ By + C7* + 2Lyz + 2Mzx + 2 Nay

is a perfect square, the six following conditions are fulfilled :*
AB=N', BC=L), CA=M,
AL=MN, BM=NL, CN=LM;
the three former of which are included in the three latter. In
the present case then these latter three equations are
(a=A)l=mn, (b—A)m=nl, (c—N)n=0ln.

Solving for A from each of these equations we see that the
reduction is impossible unless the coefficients of the given equa-
tion be connected by the two relations

® That is to say, the reciprocal equation vanishes identically.
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If these relations be fulfilled and if we substitute any of these
common values for A in the function

(@a=A)a"+ (b=N) ¥ + (c =) 2" + 2lyz + 2mzx + 2nxy,
it becomes, as it ought, a perfect square, viz.

mn (3 +L+2) =(c-2) 2,

m

l
and since the plane Z=0 represents a plane perpendicular to the
axis of revolution of the surface, it follows that (—;-: + 1% + §= 0

represents a plane perpendicular to that axis.

In the special case where the common values vanish which
have been just found for A, the highest terms in the given
equation form a perfect square, and the equation represents
either a parabolic cylinder or two parallel planes (see IV.
and V., p. 59). These are limiting cases of surfaces of re-
volution, the axis of revolution in the latter case being any
line perpendicular to both planes. The parabolic cylinder is
the limit of the surface generated by the revolution of an ellipse
round its transverse axis, when that axis passes to infinity.

115. If one of the quantities /, m, » vanish, the surface
cannot be of revolution unless a second also vanish. Suppose
that we have ! and m both =0, the preceding conditions become

™
a— -_—
l

=b—n— =g
m
. « . . . l
from which, eliminating the indeterminate - we get

(a=c) (b—c)=n"
This condition might also have been obtained at once by
expressing that
(@a=N) &+ (b—N)y"+ (c—\) 2"+ 2nxy
should be a perfect square, and it is plain that we must have
A=c; (a—c)(b—c)=n"

116. The preceding theory might also be obtained from the
consideration that in a surface of revolution the problem of
G2
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finding the principal planes becomes indefinite. For since every
section perpendicular to the axis of revolution is a circle, any
system of parallel chords of one of these circles is bisected by
the plane passing through the axis of revolution, and through
the diameter of the circle perpendicular to the chords, a plane
which is perpendicular to the chords. It follows that every
plane through the axis of revolution is a principal plane. Now
the chords which are perpendicular to these diametral planes are
given (see p. 45) by the equations

(a—R)x + ny+mz=0, nz+ (b—R) y+ lz=0, mz+ly+(c- R)2=0,
which when R is one of the roots of the discriminating cubic
represent three planes meeting in one of the right lines required.
The problem then will not become indeterminate unless these
equations all represent the same plane, for which we have the
conditions

a-R n m a-—R

= =, =n__m
=Fp=7 —=1%

n b—-R 1’ m ¢c—R?
which expanded are the same as the conditions found already.

LOCI.

117. We shall conclude this chapter by a few examples of
the application of Algebraic Geometry to the snvestigation of
Loc.

Ex. 1. To find the locus of a point whose shortest distances from two
given non-intersecting right lines are equal.

If the equations of the lines are written in their general form, the solu-
tion of this is obtained immediately by the formula of Art. 14. We may
get the result in a simple form by taking for the axis of s the shortest
distance between the two lines, and choosing for the other axes the lines
bisecting the angle between the projections on their plane of the given
lines; then their equations are of the form

$=¢, y=mz; g=-0, y=-mz,
and the conditions of the problem give
']
(’; +'::)’ =(e+o)s (yl:":;) !
or cz(1 + m*) + may = 0.

(g-¢)'+

. 'The locus is therefore a hyperbolic paraboloid.
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If the shortest distances had been to each other in a given ratio, the
locus would have been

{(1+M)s+4(Q-MG{(1-Ms+(Q+N)¢}
+ ﬁ'—n-_{(ln)w(l-x) mz} {(1-1) y+ (1 +1) mz} =0,

which represents a hyperboloid of one sheet.

Ex. 2. To find the locus of the middle points of all lines parallel to
a fixed plane and terminated by two non-intersecting lines.

Take the plane z = 0 parallel to the fixed plane, and the plane s= 0,
as in the last example, parallel to the two lines and equidistant from them;
then the equations of the lines are

g£=¢, Yy=mr+n; g=-c, y=mz+n.

The locus is then evidently the right line which is the intersection of the
planes
520, 2y=(m+m)z+(n+n).

Ex.3. To find the surface of revolution generated by a right line
turning round a fixed axis which it does not intersect.

Let the fixed line be the axis of ¢, and let any position of the other be
Z=ams+n, y=ms+n. Then since any point of the revolving line de-
scribes a circle in a plane parallel to that of zy, it follows that the value
of 2* + y* is the same for every point in such a plane section, and it is plain
that the constant value expressed in terms of s is (ms + n)* + (m's + n')"
Hence the equation of the required surface is

2'+ y'= (msz + n)' + (m's + n)",
which represents a hyperboloid of revolution of one sheet.

Ex. 4. Two lines passing through the origin move each in a fixed plane,
remaining perpendicular to each other, to find the surface (necessarily a
cone) generated by a right line, also passing through the origin perpen-
dicular to the other two.

Let the direction-angles of the perpendiculars to the fixed planes be
a, b, ¢c; @, ¥, ¢, and let those of the variable line be a, 8, «; then the
direction-cosines of the intersections with the fixed planes, of a plane per-
pendicular to the variable line, will be proportional to (Art. 15)

cos 3 cosc — cosy cosd, cosy cosa - cosa cosc, cosa cosd - cosfS cosa.
cos 3 cosc’ ~ cosqy cosl, cosq cosa’ - cosa cosc, cosa cos¥ - cosf cosa,
and the conditjon that these should be perpendicular to each other is
(cos cosc — cosy cosb) (cosB cosc’ ~ cosvy cos)
+ (cosey cosa — cosa cosc) (cossy cosa’ - cosa cosc)
+ (cosa cosd - cos cosa) (cosa cosd’ - cosB cosa’) = 0,
which represents a cone of the second degree.
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Ex. 5. Two planes mutually perpendicular pass each through a fixed
line: to find the surface generated by their line of intersection.

Take the axes as in Ex. 1. Then the equations of the planes are

Az-c)+y-mz; N(z+c)+ty+mz=0,
which will be at right angles if A\ +1-m*=0; and putting in for
A, N their values from the pair of equations, we get
y-mz+(1-m")(e'-c") =0,

which represents a hyperboloid of one sheet.

If the lines intersect, in which case ¢ = 0, the locus reduces to a cone.

Ex. 6. To find the locus of a point, whence three tangent lines, mutually
Y
cTrta
If the equation were transformed so that these lines should become the

axes of co-ordinates, the equation of the tangent cone would take the form
Ayz + Bzx + Czy = 0, since these three lines are edges of the cone. But
the untransformed equation of the tangent cone is, see Art. 74,

z-" 2 z* 2! £24 w \

(G hon) (Sl on)- (0 8 o).
And we have seen (Art. 78) that if this equation be transformed to any
rectangular system of axes, the sum of the coefficients of 2%, y*, and #* will
be constant. We have only then to express the condition that this sum
should vanish, when we obtain the equation of the required locus, viz.

2 LAV l+l)+"(l+l 1.1,1
?(_' c') 17(4’ &) F\at b')_a' » &
Ex. 7. To find the equation of the cone whose vertex is z'y’z’ and which
yﬂ

stands on the conic in the plane of zy, ;+ =L

The equations of the line joining any point a8 of the base to the
vertex are

at right angles, can be drawn to the quad.nc

a(:’—z)=:':c—¥z, ﬁ(z’—z):{y—y’g.
Substituting these values in the equation of the base, we get for the
required cone

(e o) Y-y _ gy
5

a
The following method may be used in general to find the equation of
the cone whose vertex is Z'y'ruw’, and base the intersection of any two
surfaces U, V. Substitute in each equation for z, z + Aa’;. for g, y + Ay,
&c., and let the results be
U+MU+—3’U+&c,

V+AeV + i—2-6'V+ &c.,
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then the result of eliminating \ between these equations will be the equa-
tion of the required cone. For the points where the line joining 2’y'#w’ to
zyzw meets the surface U are got from the first of these two equations;
those where the same line meets the surface ¥ are got from the second;
and when the eliminant of the two equations vanishes they have.a common
root, or the point zyzw lies on a line passing through z'y’7w’ and meeting
the intersection of the surfaces.

Ex. 8. To find the equation of the cone whose vertex is the centre of
an ellipsoid and base the section made by the polar of any point Z'y'z.

Am y' 2 (zz‘ w M')

+ ==

tertac\dtrte
. . z’ y’ z
Ex. 9. To find the locus of points on the quadnc b’ + a° 1, the

normals at which intersect the normal at the point z’y’z’.
Ans. The points required are the intersection of the surface with the cone
a'(yz-2zy) (z-2)+ 8 (fz-22) (y-y) + ' (Zy - yz) (2 - %) =0.
Ex. 10. To find the locus of the poles of the tangent planes of one
quadric with respect to another.
‘We have only to express the condition that the polar of z’y'?e’, with
regard to the second quadric, should touch the first, and have therefore
du du du du
only to substitute — T @y & dw
Art. 75. The locus is therefore a quadric.

Ex. 11. To find the cone generated by perpendiculars erected at the
vertex of a given cone to its several tangent planes.

Let the cone be Lz'+ My'+ Nz2*=0, and any tangent plane is
Lrz + My'y + N2z =0, the perpendicular to which through the origin

for a, B, v, ¢ in the condition given

is ——=-Y -_%. If then we call the common value p, we have

dg—, y= H , d=—, substltutmg which values in Lz? + My + Nz*=0,

Np

I dmappears, and we bave 4 %;+ ;,— 0. The form of the equation
shews that the relation between the cones is reciprocal, and that the edges
of the first are perpendicular to the tangent plane to the second. It can
easily be seen that this is a particular case of the last example.

If the equation of the cone be given in the form
az* + by' + 2’ + 2dyz + 2ez2 + 2fzy = 0,
the equation of the reciprocal cone will be the same as that of the re-
ciprocal curve in plane geometry, viz.
(be-d)z*+(ca-6)y* +(ab-f") <2
+2(ef-ad)yz +2(fd-be)zz +2(de - cf) zy = 0.
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Ex. 12. A line moves about so that three fixed points on it move on
fixed planes: to find the locus of any other point on it.

Let the co-ordinates of the locus point P be «, B, y; and let the three
fixed planes be taken for co-ordinate planes meeting the line in points
A4, B, C. Then it is easy to see that the co-ordinates of 4 are 0,

4B . AC .
-P—Bﬁ, BoT where the ratios 4B: PB, AC: PC are known. Ex-

pressing then, by Art. 10, that the distance P4 is constant, the locus
is at once found to be an ellipsoid.

Ex. 13. 4 and O are two fixed points, the latter being on the surface
of a sphere. Let the line joining any other point D on the sphere to 4
meet the sphere again in 1. Then if on OD a portion OP be taken
= AD), find the locus of P. [Sir W. R. Hamilton].

We have AD'= 40"+ O0D'-240.0D cosAOD. But AD varies
inversely as the radius vector of the locus, and OD is given, by the equa-
tion of the sphere, in terms of the angles it makes with fixed axes. . Thus
the locus is easily seen to be a quadric of which O is the centre.

Ex. 14. A plane passes through a fixed line, and the lines in which
it meets two fixed planes are joined by planes each to a fixed point; find
the surface generated by the line of intersection of the latter two planes.

Ex. 15. The four faces of a tetrahedron pass each through a fixed point.
Find the locus of the vertex if the three edges which do not pass through
it move each in a fixed plane.

The locus is in general a surface of the third'degree having the inter-
section of the three planes for a double point. It reduces to a cone of
the second degree when the four fixed points lie in one plane.

Ex. 18. Find the locus of the vertex of a tetrahedron, if the three
edges which pass through that vertex each pass through a fixed point, if the
opposite face also pass through a fixed point and the three other vertices
move in fixed planes.

Ex. 17. A plane passes through a fixed point, and the points where
it meets three fixed lines are joined by planes, each to one of three other
fixed lines; find the locus of the intersection of the joining planes.

Ex. 18, The sides of a polygon in space pass through fixed points, and
all the vertices but one move in fixed planes; find the curve locus of the
remaining vertex.

Ex. 19. All the sides of a polygon but one pass through fixed points,
the extremities of the free side move on fixed lines, and all the other
vertices on fixed planes, find the surface generated by the free side.
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CHAPTER VIIL

METHODS OF ABRIDGED NOTATION.

118. WE shall in this chapter give an account of some of
those properties of quadrics which are most simply derived by
methods analogous to those explained in Chap. x1v. of the
Treatise on Conics. In order to economize space we shall
occasionally suppress such details as we think ought to present
no difficulty to an intelligent reader. In particular we leave
it to the reader to show that the whole theory of Reciprocal
Polars, as explained in Chap. xv. of the Conics, applies equally
to space of three dimensions, the polars being taken with respect
to-any quadricc. We shall thus dispense with the necessity of
giving separate proofs of a theorem and of its reciprocal. In
the method of Reciprocal Polars it will be observed that a point
corresponds to a plane and vice versd, and that to a line (join-
ing two points) corresponds a line (the intersection of two
planes). In order to show what corresponds to a curve in
space we shall anticipate a little of the theory of curves of
double curvature to be explained hereafter.

119. A curve in space may be considered as a series of
points in space 1, 2, 3, &c. arranged according to a certain law.
If each point be joined to its next consecutive, we shall have
a series of lines 12, 23, 34, &c., each line being a tangent to
the given curve. The assemblage of these lines forms a surface,
and a developable surface (see note, p. 75) since any line 12
intersects the consecutive line 23. Again, if we consider the
planes 123, 234, 345, &c. containing every three consecutive
points, we shall have a series of planes which are called the
osculating planes of the given curve, and which are tangent
planes to the developable generated by its tangents. Now
when we reciprocate, it is plain that to the series of points,
lines, and planes, will correspond a series of planes, lines, and
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points, and thus that the reciprocal of a series of points forming
a curve in space will be a series of planes touching a develop-
able. If the curve in space lies all in one plane, the reciprocal
planes will all pass through one point, and will be tangent planes
to a cone.

Thus the series of points common to two surfaces forms a
curve. Reciprocally the series of tangent planes common to two
surfaces touches a developable which envelopes both surfaces.

The degree of any surface being measured by the number
of points in which an arbitrary line meets it, the degree of the
surface reciprocal to a given one is the same as the number
of tangent planes which can be drawn to the original surface
through an arbitrary right line. The reciprocal of a quadric
is & quadric, éince it may be easily deduced, from Art. 75, that
but two tangent planes can be drawn to the quadric through
an arbitrary line. The same theorem is proved by forming, as
at p. 87, the actual equation of the locus of the polar with
respect to the quadric of the tangent planes to another, which
equation is at once proved to be of the second degree.

120. Let now U and V represent any two quadrics, then
U+AV represents a quadric passing through every point
common to U and ¥, and if A be indeterminate it represents
a series of quadrics having a common curve of intersection.
Since nine points determine a quadric (Art. 54), U+ AV is the
most general equation of the quadric passing through eight
given points (see Higher Plane Curves, p. 21). For if U and V
be two quadrics, each passing through the eight points, U+ AV
represents a quadric also passing through the eight points, and
the constant A can be so determined that the surface shall pass
through any ninth point, and can in this way be made to coin-
cide with any given quadric through the eight points. It
follows then that all quadrics which pass through eight points
have besides a whole series of common points, forming a com-
mon curve of intersection; and reciprocally, that all quadrics
which touch eight given planes have a whole series of common
tangent planes determining a fixed developable which envelopes
the whole series of surfaces touching the eight fixed planes.
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It is evident also that the problem to describe a quadric
through nine points may become indeterminate. For if the
ninth point lie any where on the curve which, as we have just
seen, is determined by the eighth fixed point, then every quadric
passing through the eight fixed points will pass through the
ninth point, and it is necessary that we should be given a ninth
point, not on this curve, in order to be able to determine the
surface. Thus if U and V be two quadrics through the eight
points, we determine the surface by substituting the co-ordinates
of the ninth point in U4+ AV=0; but if these co-ordinates
make U=0, V=0, this substitution does not enable us to de-
termine A.

121. Given seven points [or tangent planes] common to a
series of quadrics, then an eighth point [or tangent plane]
common to the whole system is determined.

For let U, V, W be three quadrics, each of which passes
through the seven points, then U+ AV+ uW may represent
any quadric which passes through them; for the constants A, x
may be so determined that the surface shall pass through
any two other points, and may in this way be made to coin-
cide with any given quadric through the seven points. But
U+ AV+uW represents a surface passing through all points
common to U, V, W, and since these intersect in eight points,
it follows that there is a point, in addition to the seven given,
which is common to the whole system of surfaces.

We see thus that though it was proved in the last article
that eight points in general determine a curve of double curva-
ture common to a system of quadrics, it is possible that they
may not. For we have just seen that there is a particular case
in which to be given eight points is only equivalent to being
given seven. When we say therefore that a quadric is deter-
mined by nine points, and that the intersection of two quadrics

"is determined by eight points, it is assumed that the nine or
eight points are perfectly unrestricted in position.*

* The reader who has studied Higher Plane Curves, Arts. 22-27, will
have no difficulty in developing the corresponding theory for surfaces of
any degree. Thus if we are given one less than the number of points
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122. If a system of quadrics have If a system of quadrics be in-
a common curve of intersection, that scribed in the same developable,
is to say, if they have eight points that is to say, if they have eight
in common, the polar plane of any common tangent planes, the locus
fixed point passes through a fixed of the pole of a fixed plane is a
right line. right line.

For if P and Q be the polar planes of a fixed point with
regard to U and V respectively, then P+AQ is the polar of
the same point with respect to U+AV.

In particular, the locus of the centres of all quadrics in-
scribed in the same developable, or touching the same eight
planes, is a right line.

123. If a system of quadrics pass through a common curve
of intersection [or be inscribed in a common developable], the
polars of a fixed line generate a hyperboloid of one sheet.

Let the polars of two points in the line be P+AQ, P’ +A¢Q,
then it is evident that their intersection lies on the hyper-
boloid PQ =P Q.

124. If a system pass through a common curve, the locus
of the pole of a fixed plane is a curve in space of the third
degree. For eliminating A between P+AQ, P'+AQ, P'+AQ"
we get the system of determinants

P P, P ”
Q ¢, ¢

which represents a curve of the third degree. For the inter-
section of the surfaces represented by PQ'=F'Q, PQ"=P"Q,

is a curve of the fourth degree, but this includes the right
line PQ, which is not part of the intersection of PQ"'=P"Q,

necessary to determine a surface of the n'® degree, we are given a series
of points forming a curve through which the surface must pass; and if
we are given two less than the number of points necessary to determine
the surface, then we are given a certain number of other points [namely
as many as will make the entire number up to n*] through which the
surface must also pass.
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PQ'=P'Q. There is therefore only a curve of the third
degree common to all three.

Reciprocally, if a system be inscribed in the same develop-
able, the polar of a fixed point envelopes the developable which
is the reciprocal of a curve of the third degree.

125. Given seven points in & Given seven tangent planes to
quadric, the polar plane of a fixed a quadric, the pole of a fixed plane
point passes through a fixed point. moves in a fixed plane.

For evidently the polar of a fixed point with regard to

U+AV+ uW will be of the form P+AQ + wR, and will there-
fore pass through a fixed point.*

126. Since the discriminant contains the coefficients in the
fourth degree, it follows that we have a biquadratic equation
to solve to determine A, in order that U+ AV may represent
a cone, and therefore that through the sntersection of two quadrics
Jour cones may be described. The vertices of these cones are
determined by the intersection of the four planes,

dU _.,dv dU, _,dV dU _,dV dU _,dV

E-I-X p g -Jy—'l'l d’?, E"‘X P E-}‘X 7o
where A’ is one of the roots of the biquadratic just referred
to; and they are given as the four points common to the

series of determinants,

dU dU dU dU

&' &y & de

dv. dv dV dV '=°-

& &y & ds
There are four points whose polars are the same with respect
to all quadrics passing through a common curve of intersection,

® Dr. Hesse has derived from this theorem a construction for the
quadric passing through nine given points. Crelle, Vol. xx1v. p. 36.
Cambridge and Dublin Mathematical Journal, Vol. IV. p. 44. See also
some further developments of the same problem by Mr. Townsend, sb.,
Vol 1v. p. 241,
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namely, the vertices of the four cones just referred to. For
to express the conditions that
AU, AU AU au
dz "V Ay TP T de'?
LAV AV v av
& AT E T d
should represent the same plane, we find the very same set
of determinants. In like manner there are four planes whose
poles are the same with respect to a set of quadrics inscribed
in the same developable.

127. As in the case of Conics (see Art. 298), if the two
quadrics U and V touch each other, the biquadratic in A will
have equal roots. This may be most easily proved by taking
the origin at the point of contact, and the tangent plane for
the co-ordinate plane z. Then for both the quadrics we shall
have d=0, p=0, ¢=0, and substituting these values in the
discriminant, p. 41, the biquadratic becomes

(r+ M) {(n+ An')’ — (@ + Aa') (B +AD)} =0,
which has two equal roots. The condition then that two
quadrics should touch is obtained by forming the discriminant
of the biquadratic in A.

In general, it is evident that the ratios of the coefficients
of the biquadratic in A will be invariants with regard to the
pair of quadrics.

128. It is to be remarked that when two surfaces touch,
the point of contact is a double point on their curve of in-
tersection.

In general, two surfaces of the m™ and n™ degrees re-
spectively intersect in a curve of the mn™ degree; for any
plane meets the surfaces in two curves which intersect in mn
points. And at each point of the curve of intersection there
_is a single tangent line, namely, the intersection of the tangent
planes at that point to the two surfaces. For any plane drawn
through this line meets the surfaces in two curves which touch:
such a plane therefore passes through two coincident points
of the curve of intersection.
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But if the surfaces touch, then every plane through the point
of contact meets them in two curves which touch, and every
such plane therefore passes through two coincident points of
the curve of intersection. The point of contact is therefore
a double point on this curve.

And we can show that, as in plane curves, there are two
tangents at the double point. For there are two directions
in the common tangent plane to the surfaces, any plane through
either of which meets the surfaces in curves having three points
in common.

Take the tangent plane for the plane of zy, and let the
equations of the surfaces be

z+ ax’ + 2nzy + by + &e.,
24+ a'd’ 4+ 2n'zy + 0y’ + &e.,

then any plane y = ux cuts the surfaces in curves which oscu-
late (see Conics, p. 206), if
a+2np+bu'=a' + 2n'p + 'y’
The two required directions then are given by the equation
(a—a)a'+2(n—n)ay+(b-0)y*'=0.

The same may be otherwise proved thus. It will be proved
hereafter precisely as at Higher Plane Curves, p. 27, that if
the equation of a surface be wu, +u, +u,+ &c.=0, the origin
will be on the surface, and », will include all the right lines
which meet the surface in two consecutive points at the origin,
while if », is identically 0, the surface has the origin for a
double point, and u, includes all the right lines which meet
the surface in three consecutive points. Now in the case we

are considering, by subtracting one equation from the other,
we get a surface through the curve of intersection, viz.

(@a-a)z'+2(n—-n)xy+ (b-0)y" + &e.,
in which surface the origin is a double point, and the two

lines just written are two lines which meet the surface in
three consecutive points.

129. When these lines coincide there is a cusp or stationary
point (see Higher Plane Curves, p. 28) on the curve of inter-
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section. We shall call the contact in this case stationary
contact. The condition that this should be the case, the axes
being assumed as above, is
(a—a') (b—b)=(n—n)"

Now if we compare the biquadratic for A, given Art. 127,
remembering also that in the form we are now working with,
we have r=7, we shall see that when this condition is
fulfilled, three roots of the biquadratic become equal to —1.
The conditions then for stationary contact are found by forming
the conditions that the biquadratic should have three equal
roots, viz., §=0, T'=0, 8 and T being the two invariants
of the biquadratic.

130. Since the condition that a quadric should touch a
plane (Art. 75) involves the coefficients in the third degree,
it follows that of a system of quadrics passing through a
common curve, three can be drawn to touch a given plane,
and reciprocally, that of a system inscribed in the same develop-
able, three can be described through a given point.

It is obvious that in the former case one can be described
through a given point, and in the latter, one to touch a given
plane. -

In either case, two can be described to touch a given line;
for the condition that a quadric should touch a right line
(Art. 76) involves the coefficients of the quadric in the second
degree. .

131. It is also evident geometrically, that only three quad-
rics of a system having a common curve can be drawn to
touch a given plane. For this plane meets the common curve
in four points, through which the section by that plane of every
surface of the system must pass. Now, since a tangent plane
meets a quadric in two right lines, real or imaginary, (Art. 104)
these right lines in this case can be only some one of the three
pairs of right lines which can be drawn through the four points.
The points of contact which are the points where the lines of
each pair intersect, are (Conics, p. 133) each the pole of the
line joining the other two with regard to any conic passing
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through the four points. Hence, (p. 45) if the vertices of one
of the four cones of the system be joined to the three points,
the joining lines are conjugate diameters of this cone.

132. A system of surfaces having the same centre and
common circular sections may be regarded as a particular case
of a system having a common curve; for their equation has
been proved (Art. 100) to be of the form S+ (*+y'+2").
And since 2"+ y’+ 2" represents a cone, it appears that the
common centre is one of the four vertices of cones of the
system. Moreover, any three conjugate diameters of the ima-
ginary cone z*+y'+2'=0 are at right angles to each other,
since this equation represents an infinitely small sphere. Hence
three concentric and concyclic quadrics can be described to touch
a given plane, and the lines joining the three points of conmtact
to the centre are mutually at right angles.

133. If two quadrics touch in two points, their curve of
intersection, which in the general case is a curve of double
curvature of the fourth degree, breaks up into two plane conics.
For if we draw any plane through the two points of contact
and through any point of their intersection, this plane will
meet the quadrics in sections having three points common, and
having common also the two tangents at the points of contact;
these sections must therefore be identical. The equations of
the quadrics will then be of the form §=0, S+ LM =0, where
L and M represent the planes of section. It is proved in like
manner that the surfaces are enveloped by two common cones
of the second degree. For take the point where the inter-
section of the two given common tangent planes is cut by any
other common tangent plane; then the cones having this point
for vertex, and enveloping each surface, have common three
tangent planes and two edges, and are therefore identical. The
reciprocals of a pair of quadrics having double contact will
manifestly be a pair of quadrics having double centact, and
the two planes of intersection of the one pair will correspond
to the vertices of common tangent cones to the other pair.
Any point on the line LM will have the same polar with

H
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regard to all surfaces of the system S+ALM. For if P be
the polar of S, the polar of S+ ALM will in general be
P+AN(L'M+ LM'), which reduces to P when L'=0, M'=0.
It thus appears again that at the two points where LM meets
&, all the surfaces have the same tangent plane.

There are two other points whose polars with regard to all
the quadrics are the same, which will be vertices of cones con-
taining both the curves of section. It is easy to see geome-
trically that these two points lie on the polar of the line LM
with regard to the surface 8 (that is to say, on the intersection
of the common tangent planes at the points where LM meets
8), and that these points are the foci of the involution deter-
mined by the pairs of points where that polar meets S and
where it meets L and M.

134. If two surfaces each intersect a third in the same
plane curve and in two other plane curves they will also inter-
‘sect each other again in a plane curve whose ‘plane passes
through the line of intersection of the two latter planes.

For evidently two surfaces S+ LM, 8+ LN have for their
mutual intersection two plane sections made by L, M— N.

135. Similar quadrics belong to the class now under dis-
cussion. Two quadrics are similar and similarly placed when
the terms of the second degree are the same in both (see
Contcs, p. 201). Their equations then are of the form §=0,
8+cL=0. We see then that two such quadrics intersect in
general in one plane curve, the other plane of intersection being
at infinity. If there be three similar quadrics, their three finite
planes of intersection pass through the same right line.

Spheres are all similar quadrics, and therefore are to be
considered as having a common section at infinity, which section
will of course be an imaginary circle.

A plane section of a quadric will be a circle if it passes
through the two’points in which its plane meets this imaginary
circle at infinity. We may see thus immediately of how many
solutions the problem of finding the circular sections of a quadric
is susceptible. For the section of the quadric by the plane at
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infinity meets the section of a sphere by the same plane in four
points, which can be joined by six right lines, the planes passing
through any one of which meet the quadric in & circle. The
eix right lines may be divided into three pairs, each pair inter-
secting in one of the three points whose polars are the same
with respect to the section of the quadric and of the sphere.
And it is easy to see that these three points determine the
direction of the axes of the quadric.

A surface of revolution is one which has double contact with a
sphere at infinity. For an equation of the form o* +y* + a2’ =%
can be written in the form

(@4 + 2=+ {(a—1) 2= ()] =0,
and the latter part represents two planes. It is easy to see
then why in this case there is but one direction of real circular
sections, determined by the line joining the points of contact
of the sections at infinity of a sphere and of the quadric.

FOCI.

136. When 8 represents a sphere, the equation of the
quadric having double contact with it, S=LM expresses as
at Conics, p. 216, that the square of the tangent from any point
on the quadric to the sphere is in a constant ratio to the rect-
angle under the distances of the same point from two fixed
planes. The planes L and M are evidently parallel to the
planes of circular section of the quadric since they are planes
of its intersection with a sphere. We have seen ( Conics, p. 217)
that the focus of a conic may be considered as an infinitely small
circle having double contact with the conic, the chord of con-
tact being the directrix. In like manner we may define a
focus of a quadric as an infinitely small sphere having double
contact with the quadric, the chord of contact being then the
corresponding directrix. That is to say, the point aBy is a
focus if the equation of the quadric can be expressed in the

form
(@—a)'+@-B)+(z-7)'=4¢
where ¢ is the product of the equations of two planes. We

must discuss separately however the two cases, where these
H2
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planes are real and where they are imaginary. In the one case
the equation is of the form S= LM, in the other 8=L*+ M"
In the first case the directrix (the line LM) is parallel to that
axis of the surface through which real planes of circular section
can be drawn. Thus, for example, if the surface be an ellip-
soid, the line LM must be parallel to the mean axis. In the
second case the line LM must be parallel to one of the other
axes.

In either case the section of the quadric by a plane through
a focus and the corresponding directrix will be a conic having
the same point and line for focus and directrix. For if we
take the axes # and y in any plane through LM and then
make z=0, the equation reduces to (z—a)'+ (y—B)'=1Im, or
else ="+ m" where [, m are the sections of L, M by the plane
£2=0. But if this plane pass through LM, these sections coin-
cide, and the equation reduces itself to (z—a)'+ (y—RB)'="0,
which represents a conic having af for focus and [ for directrix.
This is only the algebraical statement of the fact that the
section in question is touched by the infinitely small circle
which is the section of S, ! being the chord of contact.

137. Let us now examine whether a given quadric neces-
sarily has a focus and whether it has more than one; that is
to say, whether the equation of a given quadric can be ex-
pressed in the form S=L'i M*, where 8 is a point-sphere.
Now if the co-ordinate planes z and y were any two planes
mutually at right angles passing through LM, the quantity
L'+ M* would be expressed in the form ax® + 2bzy + cy*, which
by moving round these co-ordinate planes could be made to
take the form Az'i By'. And if now the origin were moved
to any point in the plane through the focus perpendicular to
the directrix, the equation S=L't+ M* would take the form

(0-a)' + G —B)+2'= 4 (s—v)'+ By~ ),
where a, 8 are the & and y of the focus, v, & those of the foot of
the directrix, and where, when 4 and B have opposite signs,
the planes of contact of the focus with the quadric are real,
while they are imaginary when 4 and B have the same sign.
Our co-ordinate planes have manifestly been so chosen as to
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be parallel to the principal planes of the surface, and we now
want to find whether by a proper choice of the constants
a, B, v, 8, 4, B, the form just written can be made identical
with a given equation

£ ¥y 7

ztuty="

First, in order that the origin may be the centre, we must

have a=Ay, B=DB5, by the help of which equations elimi-
nating ¢, ¢ the form written above becomes

1-4@+a-By+e=22 e 120
whénce l—A=1—I\Jr, A=£%£; 1—B=%, B=¥;
l—},‘—'i ’+-‘“TB;9"=N,
or . SIS

Thus it appears that the surface being given the constants 4
and B are determined, but that the focus may lie anywhere
on the conic

a s

—_—=1,

I-Ntu-¥
which accordingly is called a focal conic of the surface.

Since we have purposely said nothing as to either the signs
or the relative magnitudes of the quantities L, M, N, it follows
that there is a focal conic in eack of the three principal planes,
and also that this comic is confocal with the corresponding
principal section of the surface; the conics

@ B _ a'
I*x=Y I-8*m-n-"!
being plainly confocal. Any point a8’ on a focal conic being
taken for focus, the corresponding directrix is a perpendicular
to the plane of the conic drawn through the point
,_a I3 . La MB
'y=z, 8'=-E, 0r7=m, 8'=E-_‘;'N. .
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These values may be interpreted geometrically by saying that
the foot of the directrix is the pole, with respect to the principal
section of the surface, of the tangent to the focal canic at the
point @'8’. For this tangent is

aa’ BB ay  B¥

I-Ntm—x=b *Ttxg=h
which is manifestly the polar of '’ with regard to %. + %= 1.

Hence, from the theory of plane confocal conics, the line
joining any focus to the foot of the corresponding directrix is
normal to the focal conic.* The feet of the directrices must
evidently lie on that conic which is the locus of the poles of
the tangents of the focal conic with regard to the corresponding
principal section of the quadric. The equation of this conic is

L-N M-N_
'Y’ L« +8’ M: —17

as appears by eliminating o', 8 from the equation of the focal
conic and the equations connecting o', 8, o/, &'. The directrices
themselves form a cylinder of which the conic just written is
the base.

138. Let us now examine in detail the different classes of
central surfaces, in order to investigate the nature of their focal
conics and to find to which of the two different kinds of foci the
points on éach belong. Now it is plain that the equation

a B
I-ntu-wn="!
will represent an ellipse when N is algebraically the least of
the three quantities L, M, N; an hyperbola when N is the
middle, and will become imaginary when N is the greatest.
Of the three focal conics therefore of a central quadric, one

is always an ellipse, one a hyperbola, and one imaginary. In

* It was proved that the plane joining any focus to the corresponding
directrix meets the surface in a section of which that point is the focus.
It appears now that this may be stated as a property of any plane normal
to a focal conic.
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the case of the ellipsoid, for example, the equations of the focal
ellipse and focal hyperbola are respectively
) z' y z' s
d_etp—e-b Fop-pF_a="

The corresponding equations for the hyperboloid of one sheet
are found by changing the sign of ¢*, and those for the hyper-
boloid of two sheets by changing the sign both of 3* and ¢*.

Further, we have seen that foci belong to the class whose
planes of contact are imaginary or are real, according as 4
and B have the same or opposite signs, and that A=£%l—v,
%‘N . Now if N be the least of the three, both nume-

rators are positive, and the denominators are also positive in
the case of the ellipsoid and hyperboloid of one sheet, but in
the case of the hyperboloid of two sheets one of the denomi-
nators is negative. Hence, the points on the focal ellipse are
foci of the class whose planes of contact are imaginary in the
cases of the ellipsoid and of the hyperboloid of one sheet, but
of the opposite class in the case of the hyperboloid of two sheets.
Next, let N be the middle of the three quantities; then the two
numerators have opposite signs, and the denominators have
the same sign in the case of the ellipsoid, but opposite in the
case of either hyperboloid. Hence the points of the focal -
hyperbola belong to the class whose planes of contact are real
in the case of the ellipsoid, and to the opposite class in the case
of either hyperboloid. It will be observed then that all the
foci of the hyperboloid of one sheet belong to the class whose
planes of contact are imaginary; but that the focal conics of
the other two surfaces contain foci of opposite kinds, the ellipse
of the ellipsoid and the hyperbola of the hyperboloid being
those whose planes of contact are imaginary. This is equi-
valent to what appeared (Art. 136) that foci of the other kind
can only lie in planes perpendicular to that axis of a quadric
through which real planes of circular section can be drawn.

139. Focal conics with real planes of contact intersect the
surface, while those of the other kind do not. In fact, if the
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equation of a surface can be thrown into the form §=L'+ M",
and if the co-ordinates of any point on the surface make §=0,
they must also make L =0, M=0; that is to say, the focus
must lie on the directrix. But in this case the surface could
only be a cone. For taking the origin at the focus, the equa-
tion a'+y"'+2'=L"+ M*, where L and M each pass through
the origin, would contain no terms except those of the highest
degree in the variables, and would therefore represent a cone
(p. 40).

The focal conic on the other hand, which includes foci of
the first kind, passes through the umbilics. For if the equa-
tion of the surface can be thrown into the form S= LM, and
the co-ordinates of a point on the surface make S=0, they
must also make either L or M=0. But since the surface passes
through the intersection of 8, L; if the point 8 lies on L, the
plane L intersects the surface in an infinitely small circle; that
is to say, is a tangent at an umbilic. From this property
Professor Mac Cullagh called focal conics of this latter kind
umbilicar focal conics.

140. If the given quadric were a cone z + ¥ + L 0

) L'"M N 7

the reduction of the equation to the form S= L'+ M* proceeds
exactly as before, and it is proved that the co-ordinates of the

2

T+ %ﬁ 0, which re-
presents either two right lines or an infinitely small ellipse
according as L — N and M — N have opposite or the same signs.
In other words, in this case the focal hyperbola becomes two
right lines, while the focal ellipse contracts to the vertex of the

 y 2 .
cone. For the cone FtE— =0 the equation of the focal

¢

pE— z’ -
-8 T+
The focal lines of the cone, asymptotic to any hyperboloid,
are plainly the asymptotes to the focal hyperbola of the surface.
The foci on the focal lines are all of the class whose planes

of contact are imaginary; but the vertex itself, besides being
in two ways a focus of this kind, may also be a focus of the

focus must fulfil the condition

lines is 0.
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other kind, for the equation of the cone can be written m any
of the three forms
a+a b+e

d+y+e= v,
; :
or = a—b a:’+b:;c'z, y,+a +c’

The du-ectnx, which corresponds to the vertex considered as
a focus, passes through it.

The line joining any point on a focal line to the foot of
the corresponding directrix is perpendicular to that focal line.
This follows as a particular case of what has been already proved
for the focal conics in general, but may also be proved directly.
The co-ordinates of the foot of the directrix have been proved
to be o' = LLaN’ &= ﬁ‘i R N the equations of the line joining

this point to @'’ are
I°3 a . 1 1
H-N*"L-NP=F (M-—N‘ L—N) ’
and the condition that this should be perpendicular to the focal
'. ¢

line Sa=a'B is y N+ MB N—O, which we have already
seen is satisfied.

In like manner, as a particular case of Art. 136, the section
of a cone by a plane perpendicular to either of its focal lines
is a conic of which the point in the focal line is a focus.

141. The focal lines of a cone are perpendicular to the cir-
cular sections of the reciprocal cone (see Ex. 11, p. 87).

For the circular sections of the cone La*+ My*+ Nz'=0,
are (see Art. 99)

(L= N) &+ (M- N) y*=0,
and the corresponding focal lines of the reciprocal cone
z y' i’—09.1‘0a.swehmrejwstseeni—+—"/"-——0
Ltuty L-N M-N7
and the lines represented by the latter equation are evidently

perpendicular to the planes represented by the former.
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The theorem of this article is a particular case of the follow-
ing more general :—T%e sections of two reciprocal cones by any
plane are polar reciprocals with regard to the foot of the perpen~
dicular on that plane from the common vertex. For let the plane
meet an edge of one cone in a point P, and the perpendicular
tangent plane to the other in the line QR, let M be the foot
of the perpendicular on the plane from the vertex O, then it
is easy to see that the line PM is perpendicular to QR, and
if it meet it in 8, then since the triangle POS is right-angled,
the rectangle PM. M8 is equal to the constant OF*. The curve
therefore which is the locus of the points P is the same as that
got by letting fall from M perpendiculars on the tangents QR,
and taking on each perpendicular a portion inversely as its
length. When therefore the section of one cone is a circle, that
of the other will be a conic of which M is a focus. We shall
discuss with more detail the properties of cones when we treat
of sphero-conics.

142, The investigation of the foci of the other species of
quadrics proceeds in like manner. Thus for the paraboloids

included in the equation G + ¥ _2s. This equation can be

L' M
written in either of the forms
L-M L * s
@=af +97+ (o= =7~ (2= g=gz) +E-v+ M),
a
where m=2y—l[,
M-

or @'+ (g B+ (s =97 = X0 (y- 3 B) + =y + LN,

where L.

B g
M-I~
It thus appears that a paraboloid has two focal parabols,
which may easily be seen to be each confocal with the corre-
sponding principal section. The focus belongs to one or other
of the two kinds already discussed, according to the sign of

the fraction LZM. In the case of the elliptic paraboloid
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therefore where both L and M are positive, if L be the
greater, then the foci in the plane xz are of the class whose
planes of contact are imaginary, while those in the plane ys
are of the opposite class. But since if we change the sign

either of L or of M the quantity Lz remains positive, we

see that all the foci of the hyperbolic paraboloid belong to the
former class, a property we have already seen to be true of the
hyperboloid of one sheet.

It remains true that the line joining any focus fo the foot
of the corresponding directrix is normal to the focal curve, and
that the foot of the directrix is the pole with regard to the
principal section of the tangent to the focal conic. The feet
of the directrices lie on a parabola and the directrices them-
selves generate a parabolic cylinder.

To complete the discussion it remains to notice the foci of
the different kinds of cylinders, but it is found without the
slightest difficulty that when the base of the cylinder is an
ellipse or hyperbola there are two focal lines; namely, lines
drawn through the foci of the base parallel to the generators
of the cylinder, while, if the base of the cylinder is a parabola,
there is one focal line passing in like manner through the focus
of the base.

143. The geometrical interpretation of the equation S= LM
has been already given. We learn from it this property of foci
whose planes of contact are real, that the square of the distance
of any point on a quadric from such a focus i tn a constant
ratio to the product of the perpendiculars let fall from the point
on the quadric, on two planes drawn through the corresponding
directriz, parallel to the planes of circular section. The corre-
sponding property of foci of the other kind, which is less
obvious, was discovered by Professor Mac Cullagh. It is, that
the distance of any point on the quadric from such a focus 18 n
a oonstant ratio to its distance from the corresponding directrim,
the latter distance being measured parallel to either qf the planes
of esrcular section.

Suppose, in fact, we try to express the distance of the point
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z'y’2’ from a directrix parallel to the axis of z and passing
through the point whose  and y are ¢, 8, the distance being
measured parallel to a directive plane z=maz. Then a parallel
plane through &'y'z', viz. 2 —2'=m (z — '), meets the directrix
in a point whose z and y of course are ¢, 8, while its 2 is
given by the equation 2—2'=m (y—=2'). The square of the
distance required is therefore
@ =)+ -8 +m* (@ —9)'=(y - )"+ (1 + m") (' — )"
In the equation then, of Art. 137,
(@—a)+(y-B)'+'=A(z—9)'+ B(y-3),

where 4 and B are both positive and 4 is supposed greater
than B, the right-hand side denotes B times the square of the
distance of the point on the quadric from the directrix, the
distance being measured parallel to the plane z=mz where
m =222 By putting in the values of 4 snd B, given
in Art. 187, it may be seen that this is a plane of circular
section, but it is evident geometrically that this must be the
case. For consider the section of the quadric by any plane
parallel to the directive plane, and since evidently the distances
of every point in such a section are measured from the same
point on the directrix, the distance therefore of every point in
the section from this fixed point is in a constant ratio to its
distance from the focus. But when the distances of a variable
point from two fixed points have to each other a constant
ratio, the locus is a sphere. The section therefore is the inter-
section of a plane and a sphere ; that is, a circle.

An exception occurs when the distance from the focus is
to be equal to the distance from the directrix. Since the locus
of a point equidistant from two fixed points is a plane, it
appears as before, that in this case the sections parallel to the
directive plane are right lines. By referring to the previous
articles it will be seen (see Art. 142) that the ratio we are
considering is one of equality (B=1) only in the case of the
hyperbolic paraboloid, a surface which the directive plane could
not meet in circular sections, seeing that it has not got any.
Professor Mac Cullagh calls the ratio of the focal distance to
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that from the directrix, the modulus of the surface, and the foci
having imaginary planes of contact he calls modular foci.*

144. It was observed (Art. 133) that all quadrics of the
form S— LM are enveloped by two cones, and when S repre-
sents a sphere, these cones must be of revolution as every cone
enveloping & sphere must be. Further, when S reduces to a
point-sphere, these cones coincide in a single one, having that
point for its vertex; and we may therefore infer that the cone
enveloping a quadric and having any focus for its vertex is onc
of revolution.

This theorem being of importance we give a direct alge-
braical proof of it. First, it will be observed that any equa-
tion of the form &'+ ¥ + 2'= (ax + by + cz)" represents a right
cone. For if the axes be transformed, remaining rectangular,
but so that the plane denoted by ax+ by +cz may become one
of the co-ordinate planes, the equation of the cone will become
X'+ Y*+ Z*=AX", which denotes a cone of revolution since
the coefficients of Y* and Z* are equal.

But now if we form, by the rule of Art. 74, the cone whose
vertex is the origin and circumscribing 2*+3y*+2'— L'— M,
where

L=ax+by+cz+d, M=adxz+by+cz+d,
it is found to be

(@+d™)(+y'+2'-L'-M")+ (dL+d'M)'=0,

* In the year 1836 Professor Mac Cullagh published this modular method
of generation of quadrics. In 1842 I published the supplementary property
possessed by the non-modular foci. Not long after M. Amyot indepen-
dently noticed the same property, but owing to his not being acquainted
with Professor Mac Cullagh’s method of generation M. Amyot failed to
obtain the complete theory of the foci. Professor Mac Cullagh has pub-
lished a detailed account of the focal properties of quadrics, which will be
found in the Proceedings of the Royal Irish Academy, Vol. 11 p. 446,
Mr. Townsend also has published a valuable paper (Cambridge and Dublin
Mathematical Journal, Vol. 111, pp. 1, 97, 148) in which the properties of
foci, considered as the limits of spheres having double contact with a
quadric, are very fully investigated.
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or @+d™ (@ +y" +2)— (d'L-dM)'=0,
which we have seen represents a right cone.

A few additional properties of foci easily deduced from the
principles laid down are left as an exercise to the reader.

Ex. 1. The polar of any directrix is the tangent to the focal conic at
the corresponding focus.

Ex. 2. The polar plane of any point on a directrix is perpendicular to
the line joining that point to the corresponding focus.

Ex. 8. If a line be drawn through a fixed point O cutting any directrix
of a quadric, and meeting the quadric in the points 4, B, then if F be the
corresponding focus, tan}AFO.tan 3 BFO is constant. This is proved as
the corresponding theorem for plane conics, Conscs, p. 191.

Ex. 4. This remains true if the point O move on any other quadric
having the same focus. directrix and planes of circular section.

Ex. 5. If two such quadrics be cut by any line passing through the
common directrix, the angles subtended at the focus by the intercepts
are equal,

Ex. 6. If a line through a directrix touch one of the quadrics, the chord
intercepted on the other subtends a constant angle at the focus.*

145. Having now considered the most remarkable cases of
quadrics included in the equation S— LMt let us pass on to
the equation S— L*=0, which denotes a surface touching § all
along the section of S by the plane L. It is easily shewn
from geometrical considerations, as at Art. 133, that two quadrics
cannot touch in three points without thus touching all along a
plane curve. The equation of the tangent cone to a surface,
given p. 48, is a particular case of this equation S=L* Also
two concentric and similar quadrics are to be regarded as

* In this section an account has been given of the relations which each
focus of a quadric considered separately bears to the surface. In the next
chapter we shall give an account of the properties of those conics which
are the assemblage of foci, and of confocal surfaces. These properties
were first studied in detail by M. Chasles and by Professor .Mac Cullagh
who about the same time independently arrived at the principal of them.
M. Chasles’s results will be found in the notes to his Apercu Historique,
published in 1837.

+ The case where 8 breaks up into two planes has been discussed p. 78.
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enveloping each other, the plane of contact being at infinity.
Any plane obviously cuts the surfaces 8§ and 8— L' in two
conics having double contact with each other, and if the section
of one reduce to a point-circle, that point must plainly be the
focus of the other. Hence wken one quadric envelopes another
the tangent plane at the umbilic of ome cuts the other in a
conic of which the umbilic vs the focus; or if one surface be a
sphere every tangent plane to the sphere meets the other surface
in a section of which the point of contact is the focus.

Or these things may be seen by taking the origin at the
umbilic and the tangent plane the plane of zy, when on making
£=0, the quantity S8— L* reduces to «*+3"— 7, and denotes a
conic of which the origin is the focus, and [ the directrix.

Two quadrics enveloped by the same third intersect each other
#n plane curves. Obviously 8— L', S—M* have the planes
L — M, L+ M for their planes of intersection.

146. The equation aL®+ bM* + cN* + dP*, where L, M, N, P
represent planes, denotes a quadric such that any one of these
four planes is polar of the intersection of the other three.
For aL*+bM"+cN* denotes a cone having the point LMN
for its vertex, and the equation of the quadric shews that this
cone touches the quadric, P being the plane of contact. The
four planes form what I shall call a self-conjugate tetrahedron
with regard to the surface. It has been proved (Art. 126)
that given two quadrics there are always four planes whose
poles with regard to both are the same. If these be taken
for the planes L, M, N, P, the equations of both can be
transformed to the forms

al’ +bM*+cN*+dP*=0, a' L'+ M+ N*+d P =0.

It might also have been seen, a priori, that this is a form
to which it must be possible to bring the system of equations
of two quadrics. For L, M, N, P involve implicitly three
constants each; and the equations written above involve ex-
plicitly three independent constants each. The system therefore
includes eighteen constants, and is therefore sufficiently general
to express the equations of any two quadrics.
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147. To find the condition that one quadric should pass through
the vertices of a self-conjugate tetrahedron with regard to another.

If @, y, 2, w denote the faces of such a tetrahedron, then
the equation of the one quadric expressed in terms of these
assumes the form ax® + by* + c2* + dw* =0, while in the equation
of the other, the coefficients of a*, y*, 2", w' vanish. Now if
we form the discriminant of U+ AV, which we shall write

A+AO+ NP +AN'O' +A'A'=0,

it will be seen that if all the terms in U except a, b, ¢, d vanish,
then © becomes a'bed + b'cda + ¢'dab + d abe, which vanishes when
a, b, ¢y, d vanish, and since the coefficients A, ©, &c. are
invariants, ® will be =0, no matter how the axes are trans-
formed, if V pass through the vertices of a self-conjugate
tetrahedron with regard to U.

When U reduces to az’ + by* + c2* + dw", the quantity @' is

a%+b‘%+c %%MI%%,

but ‘—2% =0 is the condition that the plane 2 should touch the
surface V. Hence ©' =0 is the condition that the faces of a
self-conjugate tetrahedron with regard to U should touch the
surface V as well as the condition that the vertices of a self-
conjugate tetrahedron with regard to V should lie on the
surface U. If, therefore, one of these things be the case, the
other must also. ® =0 will be fulfilled if the edges of a self-
conjugate tetrahedron with regard to either all touch the other.

Ex. 1. If a sphere be circumscribed about a self-conjugate tetrahedron,

the length of the tangent to it from the centre of the quadric is constant.
For when ¥ is a sphere whose centre is a, 8, 4 and radius r, and

.2y 2 .
Um;‘.'.b_'-{-?_l,thenwehave
1
A== g ¥=-1
1
0= (@ + B o - (a4 84417,

e R et
=+t -,

1
O =g BT ) @B - (S 4 ).

o=
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The equation © = 0 contains the theorem enunciated. The corresponding
theorem for conics is due to M. Faure.

Ex. 2. If a hyperboloid be such that al’+ ;l,+ cl.= 0, then the centre

of a sphere inscribed in a self-conjugate tetrahedron lies on the surface.

Ex. 3. The locus of the centre of a sphere circumscribing a self-
conjugate tetrahedron with regard to a paraboloid is a plane.

148. The vertices of two sclf-conjugate tetrahedra with
regard to a quadric, form a system of cight points, such that
every quadric through seven will pass through the eighth.
Hesse, Crelle, t. XX. p. 297.

For, if @, y, 2, w, X, Y, Z, W be the faces of the two
tetrabhedra, the quadric can be expressed in either of the
forms

L+y+8+0'=0=X"+ Y+ 2"+ W,
x, y, &c. being supposed to contain constant multipliers im-
plicitly. Now if any quadric given by the general equation
in z, y, 2, w were transformed to a function of X, Y, Z, W,
e find, from the invariance of the function ©,

a+b+c+d=A4A+B+C+D,

and consequently, if seven of these quantities vanish so must
the eighth. In like manner any quadric which touches seven
faces will touch the eighth.

149. The lines joining the vertices of any tetrahedron to the
corresponding vertices of its polar tetrahedron with regard to a
quadric belong to the same system of generators of a hyperboloid
of one sheet, and the tntersections of corresponding faces of the
two tetrahedra possess the same property.

The result of substituting the co-ordinates of any point 1,
in the polar of another point 2, is the same as that of sub-
stituting the co-ordinates of 2 in the polar of 1. Let this result
be called [1,2]. Let the polar of 1 be called . Then it is
easy to see that the line joining the point 1, to the intersection
of P, P, P, is

£ __L5 __F
(1,21 [,3] [1,4]°
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For this denotes a right line passing through the intersection
of P, P,, P, and whose equation is satisfied by the co-ordinates
of 1. The notation will be more compact if we call the four
polar planes z, y, 2, v, and denote the quantities [, 2], [1, 3],
(1, 4] by n, m, p, that is to say, by the same letters by which
we have expressed the coefficients of zy, z2, zw in the general
equation of a quadric. Then the equations of the four lines
we are considering are

y_2_v
n m p’
2 _w_ 7
Il ¢ n
vw_z_Y
r m U
r¥_z
rp q9 7

Now the condition that any line
ax+by+cz+dw=0, dz+bdy+cr+dw=0

should intersect the first, is, by eliminating & between the last
two equations, found to be

n (ad' — ba) + m (ac' — ca') + p (ad’ — da’) =0,
and the conditions that it should intersect each of the other
three, are in like manner found to be

n (ba' - ba) + U (bc' — ¥'c) + ¢ (b - b'd) =0,

m (ca’ —c'a) + I (ch' —c'B) +r (cd —c'd)=0,

p (da'—da)+ g (db' ~db) + 7 (dc' ~d'c)=0.

But these four conditions added together vanish identically.
Any right line therefore which intersects the first three will
intersect the foarth, which is, in other words, the thing to be
proved.*

* This theorem is due to M. Chasles. The proof here given is by
Mr. Ferrers, Quarterly Journal of Mathematics, (Vol. I. p. 241).
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The equation of the hyperboloid itself is found by the
methods of (p. 78) in the form
(lo — g2) (mw0 — rx) (n0 — py) = (ho — ry) (mw — ps) (nw0 — gz),
or (nr — mgq) (hoz + pye) + (mg — pl) (nwz + ray)
+ (pl— nr) (mwy + gzx) =0.

150. The second part of the theorem is only the polar
reciprocal of the first, but, as an exercise, we give a separate
proof of it.

Let [1, 1), [1, 2], &c. have the same signification as before,
viz. the result of substituting the co-ordinates of 1, in the polars
of 1,2, &e. Form the determinant

[l, l]’ [1’ 2]7 [l’ 3]’ [', 4]’
1] [22), [23), [24),
(3, 1], [3, 2], [3, 3], [3, 4],
[47 l]’ [4’ 2]’ [4’ 3]’ [4’ 4]’
and let any minor of this determinant, for example, that got
by suppressing the second row and third column, be denoted
by (2, 3). Then the equation of the plane containing the three
points 1, 2, 3, is easily seen to be
z(1,4)+y(2,4)+2(3,4) +w(4,4)=0.
And if) for compactness, we substitute for (1, 4), &ec., P, &c. as
before, the equations of the four lines are
z =0, Ny + Mz + Pw =0,
y=0, Ne+ Lz + Quw=0,
£ =0, Me+ Ly + Rw=0,
w=0, Pr+ Qy+ Rz =0.
Now the conditions that any line
ax+by+cz+dw=0, dz+bdy+cz+dw=0
should intersect each of these are found to be
N (ed —c'd) + M(db' — db) + P(bc' —b'c) =0,
N (de' - dc) + Q (ca’ —c'a) + L (ad —da') =0,
M (b2 -bd)+ L (da'— da)+ R (ab’ — a'd) =0,
P (b'c —b¢') + Q(ac’ —ca’) + R (ba' —b'a) =0,
12
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and, as before, the theorem is proved by the fact that these
conditions when added vanish identically. The equation of the
hyperboloid is found to be

@MNP+y'LNQ +2*LMR + w'PQR
+2yN (PL + QM) +yzL (QM+ BN+ zzM (PL+ RN)
+zwP (MQ+ RN) +ywQ (LP + NR) +zwR (LP+ QM).

As a particular case of these theorems the lines joining each
vertex of a circumscribing tetrahedron to the point of contact
of the opposite face are generators of the same hyperboloid.

151. Pascal’s theorem for conics may be stated as follows:
“The sides of any triangle intersect a conic in six points lying
in pairs on three lines which intersect each the opposite side of
the triangle in three points lying in one right line.” M. Chasles
has stated the following as the analogous theorem for space
of three dimensions: “ The sides of a tetrahedron intersect a
quadric in twelve points, through which can be drawn four
planes, each containing three points lying on edges passing
through the same angle of the tetrahedron, then the lines
of intersection of each such plane with the opposite face of
the tetrahedron, are generators of the same system of a certain
hyperboloid.”

Let the faces of the tetrahedron be z, ¥, 2, w, and the quadric

L+y+2+w - (l+ll)yz—-(m+;;—) 2z — (n+;l')a:y

(D)oo o+ - (o

then the four planes may be written
x =ny + mz + pw,
y=nx+ lz + qw,
z=qx+ ly +rw,
w=pz+ gy + 2,
whose intersections with the planes «, y, 2, w, respectively are

a system of lines proved in the last article to be generators of
the same hyperboloid.
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152. As a further illustration of the use of the invariants,
in finding the conditions which express the permanent relations
of two quadrics to each other, we investigate the condition that
two quadrics shall be such that a tetrahedron may have two
pairs of opposite edges on the surface of one while its four
faces touch the other.* The one quadric then can be made to
assume the form Prw+ Lyz=0. If the four planes z, y, z, w
touch a quadric its equation will be found to be of the form

'+ 3y + 2"+ v+ 2 (2w + yz) + 2m (yw + x2) + 2n (2w + xY) = 0,
where 1+ 2lmn ="'+ m*+n’, and if /, m, n be each less than
unity, we may write for them — cos.4, — cos B, — cos C, where

A4, B, C are the angles of a plane triangle. It will be found
then that

A=L'P', A'=-4 sin’4 sin*B sin*C,
© =—2LP(L+ P) cos4, @ =4(L+P)sin"4 sin BsinC,
=—(L+ P)"sin*4+4LPsinBsinC cos 4,
eliminating between which, the required condition is obtained, viz.
4PA'0' = 0" +8A"0.
If the discriminant of U+ AV had been written in the form
A+ 4B+ 6MC+4ND+ E|
then the relation in question would be 3CDE=2D" + BE".

153. To find the equation of the sphere circumscribing a
tetrahedron.

Let the four faces be a, 8, v, 8. Let the four perpendiculars
on each face from the opposite vertex be p, p', p", p"'. Now
the equation of the circle circumscribing any triangle abc may
be written in the form

M’ + @_a + (Q):‘_ﬁ = 0’
pp pp rp

® This appears to be the problem which corresponds to the plane
problem of finding the condition that a triangle shall be inscribed in one
conic and circumscribed about another.
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where a, p, &c., denote perpendiculars on the sides of the
triangle, the lengths of which are (bc), &c. But it is evident
that for any point in the face &, the ratio a:p is the same
whether a and p denote perpendiculars on the plane a, or
perpendiculars on the lins ad. We are thus led to the equation
required, viz.

BorBy , (colya , (@b)'aB  (ad'ad (b8, (cd)'od _

pp PP PP " P PP

For this is a quadric whose intersection with each of the
four faces is the circle circumscribing the triangle of which
that face consists.

It will be found, that when the equation of the sphere is
written in the above form, the coefficient of 3 #' is — 1.
Hence the square of the distance between the centres of the
inscribed and circumscribing spheres is

D'=R- r’{@: g ol (@ (adf GV, (“l)}

PP 728 H’ pp PP

154. From the preceding equation we can deduce the con-
ditions that the general equation should represent a sphere.
For the equation of any other sphere can only differ from
the preceding by terms of the first degree, which will be of

the form (Fa+ FB + Gy + H?) (;—)+§, +l%+1—fm), the second

factor denoting the plane at infinity. If then we add to the
equation of the last article the product of these two factors,
identify with the general equation of the second degree, and
eliminate the indeterminate constants, the resulting conditions
are found to be

4Ap'+ Bp” —2Npp' _ Bp"+ Cp”—-2Lpp"  Cp"+Ap'-2Mpp
(ad)” (be)? (ca)’
_ 4p'+ Dp™ —2Bpp"™ _ Bp”+ Dp™ —2Qpp"
(ad)? (bd)’

_ q’n’_'_ hug_sz::pm
- (ed)? '
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155. Given two quadrics U and V there are two other
principal covariant quadrics in terms of which together with
U and V and with the invariants, all other covariant quadrics
can be expressed. We shall choose as these two covariants,
8 the locus of the poles with respect to U of all the tangent
planes to ¥, and § the locus of the poles with respect to ¥
of all the tangent planes to U, (see Ex. 10, p. 87). Thus if

U=az’ + by + c2* + duw', V=a'2"+b'y'+ ' +dv',
it is easily found that
8 = beda"2" + cdab™y* + dabc™z* + abed™w",
8 =bdda’c" + cda't’y’ + da'b'c’z* + a'b'c v’
These quadrics it will be observed, as well as U and V, have
z, ¥, 2, w for the faces of a self-conjugate tetrahedron. Hence
we can solve the problem, given two quadrics U and V, to find
the equation which denotes the four planes z, y, 2, w whose
poles with regard to both are the same. Kor we form the
covariants 8 and § and then we have only to form the Jacobian
of the four functions U, 8, V, §', that is to say, the determinant
whose four rows are
dU dU dU dU
dz’ dy’ dz’ dw’
av av
dz' dy’
when we have a function denoting the four planes in question.

&e.,

156. The condition that ax+ By + vz + w should touch U
is a contravariant of the third order in the coefficients. If we
substitute for each coefficient a, a+\a’, &c. we shall get the
condition that ax + By + ¢z + 8w shall touch the surface U+ AV, a
condition which will be of the form o + At + A'r' + A%’ =0. The
fanctions ¢, o', T, 7’ each contain a, 8, &c. in the second degree,
and the coefficients of U and V7 in the third degree. In terms
of these functions we can express the conditions that the sections
of U and V by the plane ax + By + vz + w shall have any per-
manent relation to each other, such as can be expressed in
terms of the coefficients of the discriminant of U+ AV when
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U and V are two plane curves. For instance, the condition
that ax + By + vz + dw should meet the two surfaces in sections
which touch, is got by forming the discriminant with respect to
A of o+ AT+ A7 +A'=0; or, in other words, this expresses
the condition that the plane ax+ By+vyz+ dw should pass
through a tangent line of the curve of intersection of U and V.
This condition will be of the eighth order in a, 8, v, 8, and
of the sixth order in the coefficients of eack of the surfaces.

157. The condition that ax + By + vz + 8w should touch U,
may also be regarded as the equation of the surface reciprocal
to U with regard to «* + y* + 2* + ", (see Conics, p. 268). And
in like manner o + A7+ A"t + A’0’ is the equation of the surface
reciprocal to U+AV. Since if A varies, U+ AV denotes a
series of quadrics passing through a common curve, the re-
ciprocal system touches a common developable, the equation of
which is found by forming the discriminant of & + A7 + A'r' + Ao’
with respect to \. The equation therefore of the developable
reciprocal to the curve of intersection of U and V is, as has
been noticed in the last article, of the eighth degree in the
new variables, and of the sixth degree in the coefficients of
each of the surfaces.

By the same method we can form the equation of the
developable which touches both U and V. For let U and V
be the surfaces reciprocal to U and V, then the reciprocal of
T+\V will be a surface inscribed in the same developable as
U and V, and the discriminant with respect to A of its equation
will be the equation of the required developable.

158. By the help of the canonical form az*® + by* + c2* + dw*
we can readily express the circumscribing developable in terms
of U, V and the two covariants S and §. Let U the reciprocal
of U be Aa*+ BB*+ Cy*+ D&, then A =bcd, &c., and the
reciprocal of U will be BCDJ’: +&e., that is to say, A*T
Again, the coefficient of A is (BCD'+ CDB' + DBC') «* + &ec.,
which is = A aa’ (b'c'd + c'db + d'b'c) ' + &c., while the quantity
multiplied by A is

(fcda+cda’b+dalc+ab'cd) (ax’+ &e.) — (bc'da’s + &e.).



METHODS OF ABRIDGED NOTATION. 121

The developable then is the discriminant of
AU+ AN (O'TU-8)+ AN (OV - 8)+ A"\

4 The discriminant being cleared of the irrelevant factor A'A™
the result remains of the tenth degree in the coefficientsof each
equation. S’ and S evidently pass through the curves of
contact of the developable with U and V, while the develop-

able meets U again in the curve of intersection of U with
(OV- 8)' +4AVS, (see Art 160, infra).

159. To find the condition that a given line should pass
through the curve of intersection of two quadrics U and V.

Suppose that we have found by Art. 76 the condition p=0,
that the line should touch U, and that we substitute in it for
each coefficient a, a + \a’ the condition becomes p +Aa +N'p =03
and if the line have any arbitrary position, we can by solving
this quadratic for A determine two surfaces passing through
the curve of intersection UV and touching the given line.
But if the line itself pass through UV, then it is easy to see
that both these surfaces must coincide, for that the line cannot
in general be touched by a surface of the system anywhere
but in the point where it meets UV. The condition therefore
which we are seeking is o*=4pp’. It is of the second order
in the coefficients of each of the surfaces, and of the fourth
in the coefficients of each of the planes determining the right line.

The condition o =0 will be fulfilled if the right line is cut
harmonically by the two surfaces. In the case where the
quadrics are az’+by*+c2'+dw', o'z’ +b'y'+ 7 +dw', and
the right line is ax+ By +v9z+ 8w, a'z+ By +vy'2+ 8w, the
quantity p is (see Art. 76) Zab (yd' — ¢'8)", by which notation
we mean to express the sum of the six terms of like form
such as cd (a8’ — a'B)" &c. Then o will be = (ab’ + ba')(y8' — o'8)?,
and o” — 4pp' is
= (ab'-ba’)* (v&'—v'8)'+ 22 (ab'— ba') (ac'— ca’) (v&'— 4'8)* (B~ B'S)"
+22 {(ad'—da')(ch'-bc') + (ac'—ca’)(db'- bd ) } (aB'— Ba’)* (yd'— o' 8)".

160. To find the equation of the developable generated by the
tangent lines of the curve common to U and V.
If we consider any point on any tangent to this curve, the
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polar plane of this point with regard to either U or V passes
evidently through the point of contact of the tangent on which
it lies. The intersection therefore of the two polar planes meets
the curve U, V. We find therefore the equation of the develop-
able required by substituting in the condition of the last article
for o, B, &o., o) B, &, 5, Ty &0, ) G, Go Thin
developable will then be of the eighth degree in the variables
and of the sixth in the coefficients of each surface. ~When
we use the canonical form of the quadrics, it then easily
appears that the result is
=2 (ab' —ba')* (cd - c'd)* 2*v*

+ 23 (ad’ — ba') (ac' - ca') (cd - c'd)* (bd' - b'd)* y*s*w*

+ 2a™y*2*w" {(ab’ — ba') (cd — ¢'d) — (ad’ — da') (bc’ - b'c)}

x {(ad —da') (bc' — ¥'c) - (dd — db') (ca’ - c'a)}

x {(bd —db') (ca’ — c'a) — (ab' — ba') (cd’ — c'd)}.

‘When we make in the above equation w=0 we obtain a
perfect square, hence each of the four planes z, y, 2, w meets
the developable in plane curves of the fourth degree which
are double lines on the surface.* This is, a priore evident,
since it is plain from the symmetry of the figure, that through
any point in one of these four planes through which one
tangent line of the curve UV passes, a second tangent can
also be drawn.

By the help of the canonical form the previous result can
be expressed in terms of the covariant quadrics when the
developable is found to be

A(8U-AV(B'V-A'UY)=(8'U+8V-0'U'-0V*'+oTV)"
The curve UV is manifestly a double linet on the locus repre-

® See Cambridge and Dublin Mathematical Journal, Vol. nr. p. 171,
where, though only the geometrical proof is given, I had arrived at the
result by actual formation of the equation of the developable. See 1bid.
Vol. 1. p. 68. The equations were also worked out by Mr. Cayley,
sbid. Vol. v. pp. 60, 85.

+ It is proved, as at Higher Plane Curves, p. 89, (see also p. 75 of this
volume), that when the equation of a surface is U'p + UVY + V', then
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sented by this equation, as we otherwise know it to be, and
the locus meets U again in the line of the eighth order de-
- termined by the intersection of U with

(8-07)' +448'7.
This is precisely the same equation as that found in Art. 158,
and one can see geometrically that the line of the eighth order

is in fact the eight tangents to UV at the points where UV
meets S.

RECIPROCAL SURFACES.

161. Although we have made free use already in this
chapter of the method of reciprocation, we wish now to enter
into a little more detail on the theory of reciprocal surfaces.

To the section of a surface by any plane corresponds the
tangent cone which can be drawn to the reciprocal surface
through the corresponding point; and in particular to the
section of the onme by the plane at infinity corresponds the
tangent cone which can be drawn to the other through the
origin. Hence the asymptotic cone of the one surface is re-
ciprocal to the tangent cone which can be drawn to the other
from the origin, in the sense that each edge of the one cone
is perpendicular to a tangent plane of the other.

Hence also when the origin is without a quadric, that is to
say, is such that real tangents can be drawn from it to the
surface, the reciprocal is a hyperboloid; when it is inside it
is an ellipsoid; when the origin is on the surface, the tangent
plane at infinity touches the reciprocal surface, that is to say,
the reciprocal is a paraboloid.

UV is a double line on the surface, the two tangents at any point of it being
given by the equation u'¢y + uvy" + v'x, where u, v are the tangent planes
at that point to U and ¥, and ¢/ is the result of substituting in ¢ the co-
ordinates of that point. Applying this to the above equation it is immediately
found that the two tangents are given by the equation (S'u - Sv)*=0, where
in 8, 8 the co-ordinates of the point are supposed to be substituted. Thus
the two tangent planes at every point on the double curve coincide, and the
curve is accordingly called a cuspidal curve on the surface.
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The reciprocal of a ruled surface (that is to say, of a surface
generated by the motion of a right line) is a ruled surface.
For to a right line corresponds a right line, and to the surface
generated by the motion of one right line will correspond the
surface generated by the motion of the reciprocaldine.* Hence
to a hyperboloid of one sheet always corresponds a hyperboloid
of one sheet unless the origin be on the surface when the reci-
procal is a hyperbolic paraboloid.

It was proved (Art. 144) that the tangent cone whose vertex
is a focus is one of revolution, hence the reciprocal of a quadric
with respect to a point on a focal conic 18 a surface of revolution.

162. The equation of the reciprocal of a quadric given by
the general equation is given in Art. 75. The reciprocal of a
central surface with regard to any point may also be found
as at Conics, Art. 320. For the length of the perpendicular
from any point on the tangent plane is (see Art. 85)

p= 1%‘ =4/(a" cos’a+ b" cos’B+ ¢* cos’y)— (' cosa+y’ cosB+2' cosy),

and the reciprocal is therefore
(' + yy' + 22’ + K*)' = a’" + By* + ¢'2".

163. The reciprocal of a sphere with regard to any point
is a surface of revolution round the transverse axis. This may
be proved as at Conics, p. 259. It is easily proved that if we
have any two points 4 and B, the distances of these two points
from the origin are in the same ratio as the perpendicular from

® Mr. Cayley has remarked that the degree of any ruled surface s equal
to the degree of its reciprocal. The degree of the reciprocal is equal to
the number of tangent planes which can be drawn through an arbitrary
right line. Now it will be formally proved hereafter, but is sufficiently
evident in itself, that the tangent plane at any point on a ruled surface
contains the generating line which passes through that point. The degree
of the reciprocal is therefore equal to the number of generating lines which
meet an arbitrary right line. But this is exactly the number of points in
which the arbitrary line meets the surface, since every point in a generating
line is a point on the surface.
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each on the plane corresponding to the other (Conics, Art. 98).
Now the distance of the centre of a fixed sphere from the
origin, and the perpendicular from that centre on any tangent
plane to the sphere are both constant. Hence, any point on
the reciprocal surface is such that its distance from the origin
is in a constant ratio to the perpendicular let fall from it on
a fixed plane; namely, the plane corresponding to the centre
of the sphere. And this locus is manifestly a surface of re-
volution of which the origin is a focus.

By reciprocating properties of the sphere we thus get pro-
perties of surfaces of revolution round the transverse axis. The
left-hand column contains properties of the sphere, the right-

hand those of the surfaces of revolution.

Ex. 1. Any tangent plane to a
sphere is perpendicular to the line
joining its point of contact to the
centre.

Ex. 2. Every tangent cone to a
sphere is a right cone, the tangent
planes all making equal angles with
the plane of contact.

A particular case of Ex. 2.

The line joining focus to any
point on the surface is perpendi-
cular to the plane through focus
and the intersection with the direc-
trix plane of the tangent plane at
the point.

The cone whose vertex is the
focus and base any plane section is
a right cone, whose axis is the line
joining the focus to the pole of the
plane of section.

is “ Every plane section of a

paraboloid of revolution is projected into a circle on the tangent

plane at the vertex.”

Ex. 3. Any plane through the
centre is perpendicular to the con-
jugate diameter.

Ex. 4. The cone whose base is
any section of a sphere has its cir-
cular sections parallel to the plane
of section.

Ex. 5. Any plane is perpendi-
cular to the line joining centre to
its pole.

Any plane through the focus is
perpendicular to the line joining the
focus to its pole.

Any tangent cone has for its
focal lines the lines joining the ver-
tex of the cone to the two foci.

The line joining any point to the
focus is perpendicular to the plane
joining the focus to the intersec-
tion with the directrix plane of the
polar plane of the point.

~
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Ex. 8. Every cylinder envelop- Every section passing through
ing a sphere is right. the focus has this focus for a focus.

Ex. 7. Any two conjugate right Any two conjugate lines are such
lines are mutually perpendicular. that the planes joining them to the
focus are at right angles.

Ex. 8. Any quadric enveloping a If a quadric envelope a surface of
sphere is a surface of revolution. revolution, the cone enveloping the
’ former, whose vertex is a focus of

the latter is a cone of revolution.

164. The product of the perpendiculars from the two foci
of a surface of revolution round the transverse axis on any
tangent plane, is evidently constant. Now if we reciprocate
this property with regard to any point, by the method used
in Art. 163, we learn that the square of the distance from the
origin of any point on the reciprocal surface is in a constant
ratio to the product of the distances of the point from two fixed
planes.

It appears from Ex. 4, of the last article, that the two
planes are planes of circular section of the asymptotic cone to
the new surface; that is to say, that they are planes of circular
section of the new surface. The intersection of the two planes
is the reciprocal of the line joining the two foci; that is to
say, of the axis of the surface of revolution. The property
Just proved® belongs, as we know (Art. 143), to every point
on the umbilicar focal conic, hence the reciprocal of any quadric
with regard to an umbilicar focus is & surface of revolution
round the transverse axis, but with regard to a modular focus
is a surface of revolution round the conjugate axis. By reci-
procating properties of surfaces of revolution, we obtain pro-
perties of any quadric with regard to focus and corresponding
directrix. It is to be noted that in either case the axis
of the figure of revolution is the reciprocal of the directrix
corresponding to the given focus.

*® It was in this way I was first led to this property, and to observe the
distinction between the two kinds of foci.
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The axis of the figure of revolution is parallel to the tangent
to the focal conic at the given focus (see Art. 137).

The left-hand column contains properties of surfaces of re-
volution, the right-hand of quadrics in general.

Ex. 1. The tangent cone whose
vertex is any point on the axis is
a right cone whose tangent planes
make a constant angle with the
plane of contact, which plane is
perpendicular to the axis.

Ex. 2. Any tangent plane is at
right angles with the plane through
the point of contact and the axis.

Ex. 3. The polar plane of any
point is at right angles to the plane
containing that point and the axis.

Ex. 4. Any two conjugate lines
are such that the planes joining
them to the focus are at right
angles.

Ex. 5. If a cone circumscribe
surface of revolution, one principal
plane is plane of vertex and axis,
and another is parallel to plane of
contact.

Ex. 6. The cone whose vertex
is a focus and base any plane sec-
tion is a right cone.

The cone whose vertex is a focus
and base any section whose plane
passes through the corresponding
directrix, is a right cone, whose axis
is the line joining the focus to the
pole of the plane of section, and this
right line is perpendicular to the
plane through focus and directrix.

The line joining a focus to any
point on the surface is at right
angles to the line joining the focus
to the point where the corresponding
tangent plane meets the directrix.

The line joining a focus to any
point is at right angles to the
line joining the focus to the point
where the polar plane meets the
directrix.

Any two conjugate lines pierce
a plane through a directrix parallel
to circular sections, in two points
which subtend a right angle at the
corresponding focus.

The cone whose base is any plane
section of a quadric and vertex any
focus has for one axis the line join-
ing to the focus the pole of the
plane, and for another the line join-
ing focus to the point where the
plane meets the directrix.

The cone is a right cone whose
vertex is a focus and base the sec-
tion made by any tangent cone on
a plane through the corresponding
directrix parallel to those of the
circular sections,
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Ex. 7. Locus of intersection of
three tangent planes to a parabo-
loid, mutually at right angles, is a
plane.

Ex. 8, If a quadric envelope a
surface of revolution, the axis of the
latter is parallel to a principal plane
of the former.

RECIPROCAL SURFACES.

If through any point on a quadric
be drawn three lines mutually at
right angles, the plane joining their
other extremities passes through a
fixed point.

If the point be not on the quadric
the plane envelopes a surface of
revolution.

If two quadrics envelope each
other, the cone, whose vertex is any
focus of one and which envelopes
the other, has for one axis the line
joining that focus to the point where
the plane of contact meets the cor-
responding directrix.
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CHAPTER VIIL

CONFOCAL SURFACES.

165. WE shall in this chapter give an account of those
properties of surfaces which are analogous to those properties
of conics which are connected with their foci. And we com-
mence by pointing out.a method by which we should be led
to the consideration of the focal conics of a quadric, inde-
pendently of the method followed (Arts. 136, &c.).

Two concentric and coaxal conics are said to be confocal
when the difference of the squares of the axes is the same for
both. Thus given an ellipse g + ‘Z—: =1, any conic is confocal
with it whose equation is of the form

z y
T TEee =
If we give the positive sign to A*, the confocal conic will be
an ellipse; it will also be an ellipse when A' is negative as
long as it is less than 5. When A’ is between &* and a® the
confocal curve is a hyperbola, and when A’ is greater than o
the curve is imaginary. If A'=0" the equation reducing itself
to y*=0, the axis of z itself is the limit which separates con-
focal ellipses from hyperbolas. But the two foci belong to
this limit in a special sense. In fact through a given point
'y’ can in general be drawn two conics confocal to a given
one, since we have a quadratic to determine A*, viz.
G y'I
FowtEow=b
or x‘ _x’ (a’ +b‘ — z”_y’.) +aﬁb| — b.x’l —_ a.y" - O.

When y'=0 this quadratic becomes (A*— ") (' —a* +2™) =0,

and one of its roots is A*=25": but if we have also z™=a'- 3*,
K
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the second root is also A*=2%" and therefore the two foci are
in a special sense points corresponding to the value A'=3". If
‘
bl b] b. ! 0’
z
we get the equation of the two foci —; pe =

in the equation -% + 35 _1/’ =1, we make \'=0"

b!

166. Now in like manner two quadrics are said to be
confocal if the differences of the squares of the axes be the

yl

same for both. Thus given the ellipsoid a_:_: + 5 + ‘Z-: =1 any

surface is confocal whose equation is of the form
a:" ¥ 2

FIn T T Fe T

If we give A’ the positive sign, or if we take it negative
and less than ¢ the surface is an ellipsoid. A sphere of infinite
radius is the limit of all ellipsoids of the system, being what
the equation represents when A*=c. When A* is between
¢’ and &' the surface is a hyperboloid of one sheet. When
it is between 4" and a* it is & hyperboloid of two sheets. When
A'=c"' the surface reduces itself to the plane z=0, but if we

make in the equation A*=¢", yz =0, the points on the conic

1.

thus found, viz. aTw_ b"L =1, belong in a special sense

to the limit separating ellipsoids and hyperboloids. In fact,
in general through any point «’4'2’ can be drawn three surfaces
confocal to a given one; for regarding A’ as the unknown
quantity, we have evidently a cubic for the determination of
it; namely,
xﬂ + y" + z'i
a-\ -\ -V
or & (B =N (¢ = N) 497 (¢ V) (a" = N) +2* (a" — M) (')
=(a" =N (8" =AY (" =Y.
If &' =0, one of the roots of this cubic is A*=¢", the other two
being given by the equation

2 (B = ) + 3" (@ = W) = (a" = W) (3"~ ),

=l,
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and a root of this equation will also be A* = ¢, if
x:g G}

a-c + ¥ =1

The points on the focal ellipse therefore belong in a special
sense to the value A*=¢". In like manner the plane y=0
separates hyperboloids of one sheet from those of two, and to
this limit belongs in a special sense the hyperbola in that
plane a—,—:i—b, + c'%b’_—. 1. The focal conic in the third principal

plane is imaginary.

167. The three quadrics whick can be drawn through a given
point confocal to a given ome are respectively an ellipsoid, a
kyperboloid of one sheet, and one of two. For if we substitute
in the cubic of the last article successively

M=d!), M=l N=d, M=—o,
we get results successively +—+ — which proves that the
equation has always three real roots, one of which is less than ¢,
the second between ¢* and 4, and the third between 4* and a',
and it was shown in the last article that the surfaces corres-
ponding to these values of A' are respectively an ellipsoid, a
hyperboloid of one sheet, and one of two.

168. Another convenient way of solving the problem to
describe through a given point quadrics confocal to a given
one, is to take for the unknown quantity the primary axis
of the sought confocal surface. Then since we are given
a” —b" and a® —c™ which we shall call 4* and %, we have the

equation
x’! G z’!
Aapt el
or a*—a" (B+E+2"+y" +2")
+a" (B'F + & (B + &) + "I + 2’} — ="K'K = 0.
From this equation we can at once express the co-ordinates

of the intersection of three confocal surfaces in terms of their
K2
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axes. Thus if a*, @™, a" be the roots of the above equation,

the last term of it gives us at once ="A"A* =a"a""a"", or

. g _nry
g aaa

MNCELICED )
And by parity of reasoning, since we might have taken 4* or ¢!
for our unknown, we have
n_ - b’lb”ib"" o c'lc"'c"" .

N.B. In the above we suppose 4” 4™, &c. to involve their
signs implicitly. Thus ¢™ belonging to a hyperboloid of one
sheet is essentially negative, as are also "* and ¢"”.

169. The preceding cubic also enables us to express the
radius vector to the point of intersection in terms of the axes.
For the second term of it gives us

'+ y* +2"+ (2" b") + (@' — ) =a" +a" +a"™,

or '+ y*+2"=a"+ 8"+ "
This expression might also have been worked out directly from
the values given for 2, y”, 2 in the last article, by a process
which may be employed in reducing other symmetrical functions
of these co-ordinates. For on substituting the preceding values
and reducing to a common denominator, ™ + 5 + 2™ becomes

a’aa" (b* —c*) + "8 (* — a*) + ¢"c"*c"" (a® — b¥)

(6" —c") (¢'—a*) (a*- B") )

But the numerator obviously vanishes if we suppose either
V=, '=d'y a’=0". It is therefore divisible by the de-
nominator. The division then is performed as follows: Any
term, for example a"a"a""c’, when divided by a*—3" (or by
its equal a”—b0") gives a quotient a™a"”¢’, and a remainder
b"a"a"*c". This remainder divided by & — 5™ gives a quotient

* These expressions enable us easily to remember the co-ordinates of the
umbilics. The umbilics are the points (Art. 139) where the focal hyperbola
meets the surface. But for the focal hyperbola ™ =a"*=a*-3'. The
co-ordinates are therefore

a'- b -
z‘-d'm, y-o, I'.C';,—_—;'.
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b%a""¢" and a remainder 5”5"%a""¢", which divided in like manner
by a"* —b"" gives a quotient b”b""c’ and a remainder 5"5"5""¢’,
which is destroyed by another term in the dividend. Proceeding
step by step in this manner we get the result already obtained.

170. Two confocal surfaces cut each other everywhere at
right angles.

Let z'y’s’ be any point common to the two surfaces, p’ and p"
the lengths of the perpendicular from the centre on the tangent
plane to each at that point, then (Art. 85) the direction-cosines
of these two perpendiculars are

pe py p7 p'd p'y p7
m) bu’ cm) a!m, bna’ cnt'
And the condition that the two should be at right angles,
is, (Art. 13)

x’l G z"
pp { L "I + bgb”l + ’ ng} 0
But since the co-ordinates «'y’z' satisfy the equations of both
surfaces we have

G ] ] G 'S ]

x z x* Yyt 2
AtETEL gt sl
And if we subtract one of these equations from the other,
and remember that o — a* =" - }" = ¢"* — ¢"*, the remainder is

(a __an) { ) n: + b:?bﬂl + " "l} 07

which was to be proved.

At the point therefore where three confocals intersect, each
tangent plane cuts the other two perpendicularly, and the
tangent plane to any one contains the normals to the other two.

171. If a plane be drawn through the centre parallel to any
tangent plane to a quadric, the axes of the section made by that
plane are parallel to the normals to the two confocals through
the point of contact.

It has been proved that the parallels to the normals are at
right angles to each other, and it only remains to be proved
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that they are conjugate diameters in their section. But (Art. 90)
the condition that two lines should be conjugate diameters is
cosa cosa’ cosB cosS  cosy oosy
A+ 0 =0.
a b c*
The direction-cosines then of the normals being

p"zl p"yl p z p z plllyl plllz'

e ] b"l y , g Y b"'l ? c"" )

a [ a
we have to prove that
Rl z" " zm
PP {W + b:xbuxbuq + m lmcm’} —0.

But the truth of this equation appears at once on subtracting
one from the other the equations which have been proved in
the last article,
G 3 z'l w'ﬂ G z"
T T = gt g+

=0.
172. To find the lengths of the axes of the central section of a
quadric by a plane parallel to the tangent plane at the point x'y'z
From the equation of the surface the length of a central
radius vector whose direction-angles are @, 8, o is given by
the equation
1 cos'a cos’S cos'y
s=—a t s t+t—=.
P a b c
Put for a, B, y the values given in the last article, and we find
for the length of one of these axes,

mu ym z:’
-P { l! 14 + bl’bl" + " II‘}
Now we have the equations,

G
H
a" 7+ bzb"' + i PO 0'

U

z* y* £t 1
an. + b_ru + cu. ="P73'-

Subtracting we have

x* ¥ z? 1

TPt T e =)

¢
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And substituting this value in the expression already found
for p* we get p'=a"—a"™. In like manner the square of the
other axis is a” — o',

Hence, if two confocal quadrics intersect, and a radius of
one be drawn parallel to the normal to the other at any point

of their curve of intersection, this radius is of constant length.

173. Since the product of the axes of a central section by
the perpendicular on a parallel tangent plane is equal to abec
(Art. 54), we get immediately expressions for the lengths
P, 7", p". We have

Y a"b"c" "y a"'b""c""
Pr—am@—a) P S @ s @
P”u _ anquxcum
(anm_ al:) (aulg — ang .

These values might have been also obtained by substituting
in the equation

the values already found for =, y”, 2” and reducing the re-
sulting value for p™ by the method of Art. 169.

The reader will observe the symmetry which exists between
these values for p”, p, p"", and the values already found for
z" y", z”. If the three tangent planes had been taken as
co-ordinate planes, p', p", "' would be the co-ordinates of the
centre of the surface. The analogy then between the values
for p'p"p" and those for z'y'z’ may be stated as follows: With
the point z'y'z’ as centre three confocals may be described
having the three tangent planes for principal planes and inter-
secting in the centre of the original system of surfaces. The
axes of the new system of confocals are o', a”, a™; ¥, 3", 5";
¢, ¢’y c”. The three tangent planes to the new system are the
three principal planes of the original system.

If a central section be parallel to one of these principal
planes (the plane of ay for instance) in the surface to which it
is a tangent, it appears from Art. 172 that the squares of the
axes are a'—{', a’—c'. In other words, that the section is
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precisely equal to the focal ellipse, no matter where the point
«'y'z’ be situated. In like manner the section parallel to the
plane of zz is equal to the focal hyperbola.

174. If D be the diameter of a quadric parallel to the
tangent line at any point of its intersection with a confocal,
and p the perpendicular on the tangent plane at that point,
then pD is constant for every point on that curve of intersec-
tion. For the tangent line at any point of the curve of inter-
section of two surfaces is the intersection of their tangent planes
at that point, which in this ease (Art. 170) is normal to the third
confocal through the point. Hence (Art. 172) D'=a™—a"™,

Ly X Jo
and therefore (Art. 173) p*p'=;‘§f:‘;ﬁ which is constant if

a', a” be given.

175. To find the locus of the pole of a given plane with regard
to a system of confocal surfaces.

Let the given plane be Az + By+ Cz=1, and its pole £ng;
then we must identify the given equation with

x F14
pe _Exa + b:!{_ﬂxl + N 1,
n £
whence a’—EX’-:A’ b"—k."=B’ m=0.

Eliminating \* between these equations we find, for the equa-
tions of the locus,

Z_ =t _p=2_p

a~“=p~¥=g "
The locus is therefore a right line perpendicular to the given
plane.

The theorem just proved, implicitly contains the solution of
the problem, “to describe a surface confocal to a given one to
touch a given plane.” For since the pole of a tangent plane
to a surface is its point of contact, it is evident that but one
surface can be described to touch the given plane, its point of
contact being the point where the locus line just determined
meets the plane. The theorem of this article may also be
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stated—* The locus of the pole of the tangent plane to any
quadric, with regard to any confocal, is the normal to the first
surface.” '

176. To find an expression for the distance between the point
of contact of any tangent plane, and its pole with regard to any
confocal surface.

Let z'y'z' be the point of contact of a tangent plane to the
surface whose axes are a, b, c; §, 7, { the pole of the same
plane with regard to the surface whose axes are @', &', ¢. Then,
a8 in the last article, we have

g & y_n 2_¢
aﬂ am b bs bl: b cl c? b}
,_a"—a' , =0, . ct=d
whence § —a'= pr z, N—-Yy= [ Yy, £-2'= P 2,
squaring and adding
w" y'ﬁ z’ﬂ
D=(a"-a")? {Z; + 5 + ?} ’
s __ 8
whence D=2""2 where p is the perpendicular from the centre
on the plane.

177. The axes of any tangent cone to a quadric are the
normals to the three confocals which can be drawn through the
vertex of the cone.

Consider the tangent plane to one of these three surfaces
which pass through the vertex x'y'z’; then the pole of that
plane with regard to the original surface lies (Art. 61) on the
polar plane of 2'y'2', and (Art. 175) on the normal to the ex-
terior surface. It is therefore the point where that normal
meets the polar plane of z'y’z', that is to say, the plane of
contact of the cone.

It follows then (Art. 60) that the three normals meet
this plane of contact in three points, such that each is the
pole of the line joining the other two with respect to the
section of the surface by that plane. But since this is also
a section of the cone, it follows (Art. 67) that the three normals
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are a system of conjugate diameters of the cone, and since they
are mutually at right angles they are its axes.

178. If at any point on a quadric a line be drawn touching
the surface and through that line two tangent planes to any
confocal, these two planes will make equal angles with the
tangent plane at the given point on the first quadric. For by
the last article that tangent plane is a principal plane of the
cone touching the confocal surface and having the given point
for its vertex, and the two tangent planes will be tangent
planes of that cone. But two tangent planes to any cone
drawn through a line in a principal plane make equal angles
with that plane.

The focal cones (that is to say, the cones whose vertices
are any points and which stand on the focal conics) are limiting
cases of cones enveloping confocal surfaces, and it is still true
that the two tangent planes to a focal cone drawn through any
tangent line on a surface make equal angles with the tangent plane
in which that tangent line lies. If the surface be a cone its
focal conic reduces to two right lines, and the theorem just
stated in this case becomes, that any tangent plane to a cone
makes equal angles with the planes containing its edge of
contact and each of the focal lines. This theorem, however,
will be proved independently in Chap. IX.

179. It follows, from Art. 177, that if the three normals be
made the axes of co-ordinates, the equation of the cone must
take the form Aa*+ By'+ Cz'=0. To verify this by actual
transformation will give us an independent proof of the theorem
of Art. 177, and a knowledge of the actual values of 4, B, C
will be useful to us afterwards.

The equation of the tangent cone given, Art. 74, is

(G5 -0) (e Bo)- (F o o)

bl
If the axes be transformed to parallel axes passing through the
vertex of the cone, this equation becomes, as is easily seen,

(F+5e-0)Gb3)-(F+5+%)
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Now to transform to the three normals as axes, we have to
substitute the direction-cosines of these lines in the formule
of Art. 17, and we see that we have to substitute

" I "

fora:,z—x+p,,, y+P,,,, z,

"

tor gy B o+ B y + 2L s,

" I

for 2, L,;-a:+p,.. .’/+pm,. 2.

180. In order more easily to see the result of this substitu-
tion the following preliminary formulse will be useful :

Let "g, +5-1=8¢*
] U}
then since %,+%;;.+§m—1=0,
z* & 2" S
we have P + Z% + P B s B
. ™ Uk P 8
In like manner pov B 'bL,/ng t FR T
x’i '3 z" S
md hence a' lg ] + bgbmbun + ci '2 e (a -a ) ( -— a’) °
9
1
Lastly, since —4 + ‘Z,. pe i 7
;BI’ "9 zl! S
and Tt Tt e T
2 3 L 1
we have d y : 8

dad e toeT (@=a') pi(a"=a’)’

¢ It may be observed that this quantity § is equal to
(a* - a¥) (a” - @) (a" - a")
a't’e*
for a® - a*, @ - a*, " - a* are the roots of the cubic of Art. 166, whose
absolute term is a'0''S.
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181. When now we make the transformations directed, in
the left-hand side of the equation of Art. 179, the coefficient
of &' is found to be

¢ ]

” y =
S { :4 3 + bub’ + Mcl}
and that of 2y is
,, m ¢}
2pp ’S{ 3 m e + s3im b’b"b"’ + !z'! ”I}

cc¢

The left-hand side therefore of the transformed equation is

U "'z  § f z’
(A2 + AL+ A ..)—S{am ot it )

a —a a —-Q —-Qa

But the qna.ntlty + ‘12"{ + treated in like manner becomes

S(a,f’zﬁ f.’y.+ .,’Z z,)-

a

Its square therefore destroys the first group of terms on the
other side of the equation, and the equation of the cone becomes
' Yy 2"

s+ s + =0
anl — aﬂ alm — a! a""l_ al ?

which is the required transformed equation of the tangent cone.

182. As a particular case of the preceding may be found
the equations of the focal cones (Art. 178); that is to say, the
cone whose vertex is any point 'y'z’ and which stands on the
focal ellipse or focal hyperbola. These answer to the values
a’—¢', a*—b" for the square of the primary axis: the equa-
tions therefore are

z s
A
A

prymtym=0

These equations might also have been found, by forming, as at
p- 86, the equations of the focal cones, and then transforming
them as in the last articles.
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It may be seen without difficulty that any normal and the
eorresponding tangent plane meet any of the principal planes
in a point and line which are pole and polar with regard to
the focal conic in that plane. This is a particular case of
Art. 177.

-

183. Having all the necessary formule at hand, we give
also in this place the transforination of the equation of the
quadric itself to the three normals through any point z'y'z' as
axes. The equation transformed to parallel axes becomes

.+%:+ +8+2( +"’b,+ ) 0.

But the transformations of + 3{,‘ + — and of = + ylf{ +—

are given in Art. 181. The transformed equatlon is therefore
at once found to be

£ 'z « * 2!
S(a'?_Ta’-F ;?:yz ,?,’,, .+1) =a,T,.+%+T

a

and the quantity under the brackets on the left-hand side of
the equation is evidently the transformed equation of the polar
plane of the point.
This equation is somewhat modified if the point z'y'z’ is on
the surface. The equation transformed to parallel axes is
&y 2 yy _
;5+'I7.+?+2( +b,, +—,—)—O.
‘When we transform as before, the coefficient of 2* becomes
3 ¢ ] z" ;
PG5
which we write = %: that of y* becomes
] (AN i WS
P (auag + bubg + cu G’) - at— a'! )

that of R . R
3 (R i P A
=y = 2pp (W ties t c‘c") T p(a*-a)’
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the coefficient of yz vanishes while the terms of the first degree

reduce to 2?3: . The transformed equation is therefore
' Y ' 2p'zy 2p"zz 2z
FET T -y BTy R R
184. We give in this place also the transformation of the

equation of the reciprocal surface with regard to any point to
the three normals through the point. The equation is (Art. 162)

(' + yy' + 22’ + K)* =a'z" + b'y* + ¢'2".
Now using the formule of Art. 179, the quantity ='+yy'+22'+%*

is immediately transformed into (p'z+p"y +p"'z+X%"). Again,
when a’z" + b"y" + 2 is transformed, the coefficient of «* is

3,8
(CE T+ 0
" G ] L
=@-ap (Gt Lt 2+ (G 5)

=a'- a*+ p .
‘While the coefficient of zy is

) anxm b’y c'zn
2pp a——a ™t gaga t gl

. y'! z"
But since (a "‘a") ng + bmbn’ + m s 07

G

z* 2"

and a3 + % + P =1,
aﬂzl b! '3 c Z

we bave " "y + b"b”' + ll /e = l,

and the transformed equation is therefore
(a"—a") 2"+ (0" —a") y* + (o' - a") &'+ 2K* (p'z+p"y+p"'2) + &' =0.

185. To return to the equation of the tangent cone (Art. 181).
Its form proves that all cones having a common vertex and cir-
cumscribing a series of confocal surfaces are coaxal and confocal.
For the three normals through the common vertex are axes to
every one of the system of cones; and the form of the equation
shows that the differences of the squares of the axes are inde-
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pendent of a*. The equations of the common focal lines of the
cones are (Art. 140)
« 2,
arg _ arm - anx — ama ) .1/ - 0'

But it was proved (Art. 172) that the central section of the

ot 0

hyperboloid of one sheet which passes through z'y'z’ is

x* 2!

all — anv‘ - au’ — alu

a"l’

and the section of the hyperboloid by the tangent plane itself is
similar to this, or is also

Hence the focal lines of the system of cones are the generating
lines of the hyperboloid which passes through the point—a theorem
due to Jacobi ( Crelle, Vol. x11. p. 137).

This may also be proved thus: Take any edge of one of the
system of cones, and through it draw a tangent plane to that
cone and also planes containing the generating lines of the
hyperboloid ; these latter planes are tangent planes to the hyper-
boloid, and therefore (Art. 178) make equal angles with the
tangent plane to the cone. The two generators are therefore
such that the planes drawn through them and through any
edge of the cone make equal angles with the tangent plane to
the cone ; but this is a property of the focal lines (Art. 178).

Cor. 1. The reciprocals of a system of confocals, with
regard to any point, have the same circular sections. For
the reciprocals of the tangent cones from that point have the
same circular sections (Art. 141), and these reciprocals are the
asymptotic cones of the reciprocal surfaces.

Cor. 2. If a system of confocals be projected orthogonally
on any plane, the projections are confocal conics. The pro-
jections are the sections by that plane of cylinders perpendicular
to it, and enveloping the quadrics. And these cylinders may
be considered as a system of enveloping cones whose vertex
is the point at infinity on the common direction of their
generators.
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186. Two confocal surfaces can be drawn to touch a given line.
Take on the line any point 'y's’; let the axes of the three

”n "

surfaces passing through it be o, a”, a’, and the angles the
line makes with these axes @, 8, 9. Then it appears, from
Art. 181, that a is determined by the guadratic
cos’a cos’B cos’y
A—at-m—at w5 =0
a"—a' " d"—a' " a"-
If a and &’ be the roots of this quadratic, the two cones
z + a s : =0, z 2 =0

At =0, + e+
a"—-a'  a"-a'  ad"-a' a"—a”  a"—a" ' o"—a"

have the given line as a common edge, and it is proved, pre-
cisely as at Art. 170, that the tangent planes to the cones
through this line are at right angles to each other. And since
the tangent planes to a tangent cone to a surface, by definition
touch that surface, it follows that the tangent planes drawn
through any right line to the two confocals which it touches, are
at right angles to each other.

The property that the tangent cones from any point to
two intersecting confocals cut each other at right angles, is
sometimes expressed as follows: two confocals seen from any
point appear to intersect everywhere at right angles.

187. If through a given line tangent planes be drawn to a
system of confocals, the corresponding normals generate a hyper-
bolic paraboloid. .

The normals are evidently parallel to one plane; namely,

“the plane perpendicular to the given line; and if we consider
any one of the confocals, then, by Art. 174, the normal to any
plane through the line contains the pole of that plane with
regard to the assumed confocal, which pole is a point on the
polar line of the given line with regard to that confocal. Hence,
every normal meets the polar line of the given line with regard
to any confocal. The surface generated by the normals is
therefore a hyperbolic paraboloid (Art. 111). It is evident that
the surface generated by the polar lines, just referred to, is
the same paraboloid, of which they form the other system of
generators.
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The points in which this paraboloid meets the given line
are the two points where this line touches confocals.

A special case occurs when the given line is itself a normal
to a surface S of the system. The normal corresponding to
any plane drawn through that line is found by letting fall a
perpendicular on that plane from the pole of the same plane
with regard to S (Art. 175), but it is evident that both pole
and perpendicular must lie in the tangent plane to S to which
the given line is normal. Hence in this case all the normals
lie in the same plane.

From the principle that the anharmonic ratio of four planes
passing through a line is the same as that of their four poles with
regard to any quadric, it is found at once that any four normals
divide homographically all the polar lines corresponding to the
given line with respect to the system of surfaces. In the special
case, now under consideration, the normals will therefore en-
velope a conic, which conic will be a parabola, since the normal
in one of its positions may lie at infinity ; namely, when the
surface is an infinite sphere (Art. 166). The point where the
given line meets the surface to which it is normal lies on the
directrix of this parabola.

188. If a, B, v be the direction-angles, referred to the three
normals through the vertex, of the perpendicular to a tangent
plane of the cone of Arts. 179, &c., since this perpendicular lies
on the reciprocal cone, a, 8, v must satisfy the relation

(@™ —a') cos’a+ (a" —a®) cos’ B+ (a"* —a¥) cos®y=0,

"y

or a” cos'a+ a™ cos’B+ a" cos'y =da’.

This relation enables us at once to determine the axis of the
surface which touches any plane, for if we take any point on
the plane, we know a’, a”, a” for that point, as also the angles
which the three normals through the point make with the plane,
and therefore @* is known.

189. If the relation of the last article were proved inde-
pendently, we should, by reversing the steps of the demon-
stration, obtain a proof without transformation of co-ordinates

L
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of the equation of the tangent cone (Art. 181). The following
proof is due to M. Chasles: The quantity

a” cos’a+a™ cos’B + a"™ cos’y
is the sum of the squares of the projections on a perpen-
dicular to the given plane of the lines a, a", a”. We have
seen (Art. 173) that these are the axes of a surface having
Z'y'?’ for its centre and passing through the original centre.
And it was proved in the same article that three other con-
jugate diameters of the same surface are the radius vector
from the centre to z'y'z, together with two lines equal and
parallel to the axes of the focal ellipse. It was also proved
(Art. 74) that the sum of the squares of the projections on
any line of three conjugate diameters of a quadric is equal to
that of any other three conjugate diameters. It follows then
that the quantity

a” cos'a+ a" cos'B +a"" cos'y
is equal to the sum of the squares of the projections on the
perpendicular from the centre on the given plane, of the radius
vector, and of two lines equal and parallel to the axes of the
focal ellipse. The last two lines are constant in magnitude
and direction, and their projections are therefore constant, while
the projection of the radius vector is the perpendicular itself
which is constant if «'y'z’ belong to the given plane. It is
proved then that the quantity

a” cos’a+ a'™ cos’' 8 +a"" cos’y
is constant while the point z'y's' moves in a given plane; and
it is evident that the constant value is the a* of the surface
which touches the given plane, since for it we have

cosa=1, cosB=0, cosy=0.

190. The locus of the intersection of three planes mutually at
right angles, each of which touches one of three confocals ts a sphere.
This is proved as in Art. 89.
Add together
P’ =a' cos'a +85' cos'B +c' cog'y,
P" =a" cos'a’ +5" cos’S +c" cos'y),
P =a" cos’a” + 5" cos’B” + ¢ cos’y”,
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when we get p*=a'+ 8 +c'+ (a” - a°) + (a"" - a'),
where p is the distance from the centre of the intersection of
the planes.

Again, by subtracting one from the other, the two equations

P'=a" cos’a +b* cos’ B +c* cos’y, p™=a" cos’a+d" cos'B+c™ cos’y,
we learn that the difference of the squares of the perpendiculars

on two parallel tangent pia.nes to two confocals is constant and
equal a” — a™.

191. Two cones }uwz'ng a common vertex envelope two con-
Jocals ; to find the length of the intercept made on ome of their
common edges by a plane through the centre parallel to the tangent
plane to one of the confocals through the vertex. The intercepts
made on the four common edges are of course all equal since
the edges are equally inclined to the plane of section which is
parallel to a common principal plane of both cones.

Let there be any two confocal cones

2 ¥y & 2 ¥y 2
'a—,,+§+ ?-—0, a"+BI'+:im_0’
then for their intersection, we have
2 _ y 2*
S F =) BE =)y @—F)
and if the common value of these be 1Y, we have
L+y+2=N(a"- B (B - o) (" — o).

Putting in the values of &, 8% 4" from the equations of the
tangent cones (Art. 186), and remembering that the z* of the
a”*b"c”

(all - all’) (a" — al'l’)

get for the square of the required intercept
anblgcm
(a’ﬁ_a!) (al’_ a’ﬂ) M
If then the surfaces be all of different kinds this value shews
that the intercept is equal to the perpendicular from the centre
on the tangent plane at their intersection.

In the particular case where the two cones considered are

the cones standing on the focal ellipse, and on the focal hyper-
L2

plane through the centre is (Art. 173), we




148 CONFOCAL SURFACES.

bola we have a*=a"—¢", a” =a'—}", and the intercept reduces
to a’. Hence, if through any point on an ellipsoid be drawn
a chord meeting both focal conics, the intercept on this chord by
a plane through the centre parallel to the tangent plane at the
point will be equal to the axis-major of the surface. This
theorem, due to Prof. Mac Cullagh, is analogous to the theorem
for plane curves, that a line through the centre parallel to a
tangent to an ellipse cuts off on the focal radii portions equal
to the axis-major.

'192. M. Chasles has used the principles just established to
solve the problem to determine the magnitude and direction of
the axes of a central quadric being given a system of three
conjugate diameters.

Consider first the plane of any two of the conjugate dia-
meters, and we can by plane geometry determine in magnitude
and direction the axes of the section by that plane. The
tangent plane at P, the extremity of the remaining diameter,
will be parallel to the same plane. Now it was proved
(Art. 173) that the centre of the given quadric is the point
of intersection of three confocals, having the point P for their
centre. If now we could construct the focal conics of this new
system of confocals, then the two focal cones, whose common
vertex is the centre of the original quadric, determine by their
mutual intersection four right lines. The six planes containing
these four right lines intersect two by two in the directions of
the required axes, while (Art. 191) the three tangent planes
through the point P cut off on these four lines parts equal in
length to the axes.

The focal conics required are immediately constructed. We
know the planes in which they lie and the direction of their
axes. The lengths of their axes are to be a*—a', a”—a™;
a'—a” a"—a". But now the lengths of the axes of the given
section are a'—a”, a’—a™ (Art. 172), and these latter axes
being known, the axes of the focal conics are immediately found.

193. If through any point P on a quadric & chord be
drawn, as in Art. 191, touching two confocals, we can find
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an expression for the length of that chord. Draw a parallel
semi-diameter through the centre, the length of which we shall
call . And if through P there be drawn a plane coujugate
to this diameter, and a tangent plane, they will intercept
(counting from the centre) portions on the diameter whose
product =R*. But the portion intercepted by the conjugate
plane is half the chord required, and the portion intercepted
by the tangent plane is the intercept found (Art. 191). Hence

o 2B V(@ - ") @ = s

a'b'c
When the chord is that which meets the two focal conics;
a'=a"-0" a’=a"-¢" and 0=2a—1,r.

194. To find the locus of the vertices of right cones which
can envelope a given surface.

In order that the equation a,,x_’ n % + ==

may represent a right cone, two of the cocfficients must be
equal; that is to say, a”"=a’, or a”"=a", or in other words,
for the point z'y'2’ the equation of Art. 166 must have two
equal roots, but from what was proved as to the limits within
which the roots lie, it is evident that we cannot have equal
roots except when A is equal to one of the principal axes, or
when z'y'z' is on one of the focal conics. This agrees with
what was proved (Art. 144).

It appears, hence, that the reciprocal of a surface, with
regard to a point on a focal conic, is a surface of revolution;
and that the reciprocal, with regard to an umbilic, is a para-
boloid of revolution. For an umbilic is a point on a focal
conic (Art. 139), and since it is on the surface the reciprocal
with regard to it is a paraboloid.

Another particular case of this theorem is that two right
cylinders can be circumscribed to a central quadric, the edges
of the cylinders being parallel to the asymptotes of the focal
hyperbola. For a cone whose vertex is at infinity is a cylinder.

As a particular case of the theorem of this article, the cone
standing on the focal ellipse will be a right cone only when
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its vertex is on the focal hyperbola and vice versd. This
theorem of course may be stated without any reference to the
quadrics of which the two conics are focal conics; that the
locus of the vertices of right cones which stand on a given contc

18 a conic of opposite species tn a perpendicular plane. If the
equation of one conic be §+ %: =1, that of the other will

bOT——=l.

It was proved (p. 126) that if a quadric circumscribe a
surface of revolution, the cone enveloping the former whose
vertex is a focus of the latter is of revolution. From this
article then we see that the focal conics of a quadric are the
locus of the foci of all possible surfaces of revolution which
can circumscribe that quadric.

195. The following examples will serve further to illustrate
the principles which have been laid down:

Ex. 1. To find the locus of the intersection of generators to a hyper-
boloid which cuts at right angles.

The section parallel to the tangent plane which contains the generators
must be an equilateral hyperbola, so that (Art. 172) (a” - a") + (a™*-a"*)=0.
But (Art. 169) the square of the radius vector to the point is

a*+ b + - (6™ - a®) - (" - a).
We have, therefore, the locus a sphere, the square of whose radius is equal
to @+ b*+ ¢". Otherwise thus: If two generators are at right angles,
their plane together with the plane of each and of the normal at the
point, are a system of three tangent planes to the surface, mutually at
right angles, whose intersection lies on the sphere r*=a" + * + ¢* (Art. 89).

Ex. 2. To find the locus of the intersection of three tangent lines to
a quadric mutually at right angles (see p. 86).

Let @, B, ¢ be the angles made by one of these tangents with the
normals through the locus point, and since each of these tangents lies
on the tangent cone through that point, we have the conditions

cos'a  cos'B cos'y

P R a""-a'_o'
cos'a’ cos'S | cos'y 0
a-a d - dn-g
cos*a” = cos'S”  cos'y”’ 0

a'-a" ad*-a a*-a




CONFOCAL SURFACES. 151

Adding, we have
1 1 1

a® - a‘ a-a a’ Pl
But a* - a*, " - a*, a™ - a* are the three roots of the cubic of Art. 166,
which arranged in terms of \* is
MiM@Ez+y*+8'-a"-0"-¢)
=A@+ )2+ (¢ +a%) ¥+ (a° + B) 5* - B - c'a® - 'Y
+ b%*z* + c'a'y" + a'b's* - a'b%" = 0.

And the sum of the reciprocals of the roots will vanish when the coefficient
of \'=0. This, therefore, gives us the equation of the locus required.

=0,

Ex. 3. The section of an ellipsoid by the tangent plane to the asymp-
totic cone of a confocal hyperboloid is of constant area.
The area (Art. 92) is inversely proportional to the perpendicular on
a parallel tangent plane, and we have
P =a'cos'a + b* cos'B + ¢* cos'yy,
But since the perpendicular is an edge of the cone reciprocal to the
asymptotic cone of the hyperboloid, we have
0 = a* cos®a + 4™ cos'B + ¢ cos'y,
whence p=a-
Ex. 4. To find the length of the perpendicular from the centre on the

polar plane of z’y’Z in terms of the axes of the confocals which pass
through that point.

Ans. 1If a"-a’:h’, a"‘_a',:k' am-a'= ’.,
1_KER 11
P e a’ 5t c' h'*k- z-}

196. Two points, one on each of two confocal ellipsoids,
are said to correspond if
z_ X

a=d

It is evident that the intersection of two confocal hyper-
boloids pierces a system of ellipsoids in corresponding points,

for from the value (Art. 168) =’ =

IN

y__Y
2= B

YK

a'a”a"
(a*=?") (@*-¢)?

g is constant as long as the hyperboloids, having «”, ™ for

the quantity

axes, are constant.
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It will be observed that, the principal planes being limits
of confocal surfaces, points on the principal planes determined

]
by equations of the form B Rl S LA S Z*=0,

correspond to any point «'y'z’ on a surface, and when z'y’2' is
in the principal plane, the corresponding point is on the focal
conic.

197. The points on the plane of zy, which correspond to
the intersection of an ellipsoid with a series of confocal surfaces,
form a series of confocal conmics, of which the points corre-
sponding to the umbilics are the common foci.

Eliminating 2* between the equations

& P @ g

T Y iy, LY
a’+ b’+ cg 1, am+ bm+c!|_ l’
. a-c)' (b'-c"
we find ( a"a"') + ( b"b"‘)y' =1,
whence the corresponding points are connected by the relation
X Y ]
Pl + 7w =1

This is evidently an ellipse for the intersections with hyper-
boloids of one sheet, and a hyperbola for the intersections with
hyperboloids of two.

The coordinates of the umbilics are

2 Y
a'—-b
2 2 N
- r=a — =0
P e RN »

the points corresponding to which are
X'=ad'-%", Y=0,

which are therefore the foci of the system of confocal conics.

Curves on the ellipsoid are sometimes expressed by what
are called elliptic co-ordinates; that is to say, by an equation
of the form ¢ (@', a")=0, expressing a relation between the
axes of the confocal hyperboloids which can be drawn through
the point. Now since it appears from this article that @’ is half
the sum and a” half the differcnce of the distances of the
points corresponding to the points of the locus from the points
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which correspond to the umbilics, we can from the equation
¢ (a’y a”) =0 obtain an equation ¢ (p + p', p — p') =0, from which
we can form the equation of the curve on the principal plane
which corresponds to the given locus.

198. If the intersection of a sphere and an ellipsoid be pro-
jected on either plane of circular section by lines parallel to
the least (or greatest) axis, the projection will be a circle.

This theorem is only a particular case of the following:
that “if any two quadrics have common circular sections, any
quadric through their intersection will have the same;’ a
theorem which is evident, since if by making z2=0 in U and
in V the result in each case represents a circle, making z=0
in U+ &V, must also represent a circle.

It will be useful, however, to investigate this particular
theorem directly. If we take as axes the axis of y which is
a line in the plane of circular section and a perpendicular to
it in that plane, the y will remain unaltered, and the new
o' = the old 2*+2'. But by the equation of the plane of

& _ : 3 3
circular section #*= & Z,, b,a: the new 2*= ,.Hz"
But for the intersection of
xﬂ k] ®
?+%x+%=], 27’+]/’+Z"=7’,
2 _ 3 CRIK
we have aa'c m‘+b b’c y=r-d,

which, on substituting for o*,

b -c a b'
P R «* becomes — — (:z:" +y)=
It will be observed that to obtain the projection on the
planes of circular scctions we left y unaltered, and substituted

for *, ¥ _:';, Z, 2*. But to obtain the points corresponding
. . 2
_to any pomt, as in the last article, we substitute for z*, %c" 2,

and for %, — b’ = y’ Now the squares of the former co-ordinates
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have to those of the latter the comstant ratio 7

we may immediately infer from the last article that the pro-
jection of the intersection of two confocal quadrics on a
plane of circular section of one of them is a conic whose foci
are the similar prejections of the umbilics; and, again, that
given any curve ¢ (@', ") on the ellipsoid we can obtain the
algebraic equation of the projection of that curve on the plane
of circular section.

Hence

199. The distance between two potnts, one on each of two
confocal ellipsords ts equal to the distance between the two corre-
sponding posnts.

We have
(2= X'+ (y— T)+(s—2)"

=+ ++ X+ Y+ 27 -2 X+ yY + 22).
Now (Art. 169) .

+y+e=a"+8"+c", X*+Y'+Z2'=4"+B*+ O™

But for the corresponding points
X"+ Y*'+Z2"=A4"+b"+c", 2"+y"+2"=a"+B"+C"™

The sum of the squares therefore of the central radii to the
two points is the same as that for the two corresponding points.
But the quantities =X, yY, 2Z are evidently respectively equal
to X', y'Y’, 2’2", since X'=—é—x, a:'=gzx, &c. The theorem
of this article, due to Sir J. Ivory, is of use in the theory of
attractions.

200. In order to obtain a property of quadrics analogous
to the property of conics that the sum of the focal distances
is constant, Jacobi states the latter property as follows: Take
the two points C and C' on the ellipse at the extremity of the
axis-major, then the same relation p + p'=2a which connects
the distances from C and C' of any point on the line joining
these points, connects also the distances from the foci of any
point on the ellipse. Now, in like manner, if we take on the
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principal section of an ellipsoid the three points which corre-
spond in the semse explained (Art. 196) to any three points
on the focal ellipse, the same relation which connects the dis-
tances from the former points of any point in their plane will
also connect the distances from the latter points of any point
on the surface. In fact, by Art. 198, the distances of the
points on the confocal conic from a point on the surface will
be equal to the distances of the point on the principal plane
which corresponds to the point on the surface, from the three
points in the principal section.*

201. Conversely, let it be required to find the locus of
a point whose distances from three fixed points are connected
by the same relation as that which connects the distances from
the vertices of a triangle, whose sides are «, b, ¢, to any point
in its plane. Let p, p', p” be the three distances, then (Art. 50)
the relation which connects them is
& (0" = 6 (0"~ p")+ B (0" = ) (07 = ") + & (0" =) (0" = ")
—a*(b*+c'—a") p* = V' (" +a'-b") p" - ¢ (@’ + 0" ") p" + D' =0.
But p*—p", &c. being only functions of the co-ordinates of
the first degree, the locus is manifestly only of the second
degree.

That any of the points from which the distances are
measured is a focus is proved by shewing that this equation

* Mr. Townsend has shewed from geometrical considerations ( Cambridge
and Dublin Mathematical Journal, Vol. 111., p. 154) that this property only
belongs to points on the modular focal conics, and in fact the points in the
plane y which correspond to any point Zy’z' on an ellipsoid are imaginary
as easily appears from the formula of Art. 196. Mr. Townsend easily
derives Jacobi’s mode of generation from Mac Cullagh’s modular property.
For if through any point on the surface we draw a plane parallel to a
circular section, it will cut the directrices corresponding to the three
fixed foci in a triangle of invariable magnitude and figure, and the distances
of the point on the surface from the three foci will be in a constant
ratio to its distances from the vertices of this triangle. And a similar
triangle can be formed with its sides increased or diminished in a fixed
ratio, the distances from the vertices of which to the point z’y’¥ shall be
equal to its distances from the foci.
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is of the form S+ LM, where 8 is the infinitely small sphere
whose centre is this point. In other words, it is required to
prove that the result of making p*=0 in the preceding equation
is the product of two equations of the first degree. But that
result is

a(p” = &) (p =) + (B'p” — ™) (p” — ™ +&' - ©).
Let now the planes represented by p”—p"—c', p" —p*'— 8" be
L and M, then the result of making p*=0 in the equation is
LM+ (0'L—-JM) (L- M),
or UL — 2bcLM cos 4 +c'M*, .
where A is the angle opposite a in the triangle abc. But this

breaks up into two imaginary factors, shewing that the point
we are discussing is a focus of the modular kind.

202. If several parallel tangent planes touch a series of
confocals, the locus of their points of contact ¢ a hyperbola.
Let a, B, v be the direction-angles of the perpendicular on
the tangent planes. Then the direction-cosines of the radius
2 2
vector to any point of contact are z cosa, 2 ;BB, c’,c;svy;

as easily appears by substituting in the formula (Art. 85)

cosa =I:l—:f , r cosa’ for ' and solving for cosa’. Forming then

by Art. 15, the direction-cosines of the perpendicular to the
plane of the radius vector and the perpendicular on the tangent
plane, we find them to be

(8*—c") cosB cosy (¢*—a®) cosy cosa  (a"—b") cosa cos B

rp sin ¢ ! rp sing ! rp sing

where ¢ is the angle between the radius vector and the per-
pendicular. Now the denominator is double the area of the
triangle of which the radius vector and perpendicular are sides.
Double the projections, therefore, of this triangle on the co-
ordinate planes are '

(8*—¢") cosB cosy, (c*—a') cosy cosa, (a'— %) cosa cosp.
Now these projections being constant for a system of confocal
surfaces, we learn that for such a system, both the plane of
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the triangle and its magnitude is constant. If then CM be
the perpendicular on the series of parallel tangent planes and
PM the perpendicular on that line from any point of contact
P, we have proved that the plane and the magnitude of the
triangle CPM are constant, and therefore the locus of P is a
hyperbola of which CM is an asymptote.

203. The reciprocal of a system of confocal surfaces
aﬂfh’ + bl z’x’ + c’i x’
is the system of concyclic surfaces
(@@= N) 2"+ ("= N\) ¥+ (" =N) =R
Now the latter equation denotes a system of quadrics passing
through a common curve, one quadric of the system being
the point sphere z*+3y*+2'=0. The reciprocal system is
therefore inscribed in a common developable. Many of the
properties proved in this chapter for confocal surfaces can be
derived as particular cases of properties of surfaces inscribed
in a common developable. Compare Arts. 132, 170, and
Arts. 122, 175.%

Since the tangent cone from any point on a focal conic is
one of revolution; that is to say, one which has double contact
with the imaginary circle at infinity (Art. 135), it follows that
through any point on a focal conic can be drawn two imaginary
planes which will touch every confocal surface, and we thus
see geometrically the existence of this developable, the tangent
planes to which touch all the confocals. And we can also
see that it is the same as the developable generated by the
tangent planes to the surtace which pass through the tangents
to the imaginary circle at infinity. The actual equation of
the developable is obtained by forming the discriminant with
regard to A’ of the equation of the confocals. The imaginary
circle at infinity and the focal conics are all double lines on
this surface.

=1

® See also Chasles’ Hist. Geom., p. 397, and Quarterly Journal of
Mathematics, Vol. 111., p. 155.
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CURVATURE OF QUADRICS.

204. The general theory of the curvature of surfaces will
be explained in Chap. x., but it will be convenient to state
here some theorems on the curvature of quadrics which are
immediately connected with the subject of this chapter.

If a normal section be made at any point on a quadric its

radius of curvature at that point is equal to %‘, where B 18 the

semi-diameter parallel to the trace of the section on the tangent
plane, and p 1s the perpendicular from the centre on the tangent
plane. ;

We repeat the following proof by the method of infini-
tesimals from Conics, p. 296, which see.

Let P, Q be any two points on a quadric; let a plane
throngh @ parallel to the tangent plane at P meet the central
radius CP in R, and the normal at P in S, then the radius
of a circle through the points P, Q having its centre on PS
is 5’% But if the point Q approach indefinitely near to P,
QP is in the limit equal to QR; and if we denote CP and
the central radius parallel to QR by &' and B, and if P’ be
the other extremity of the diameter CF, then (Art. 70)

B*:a":: QR': PR.RP' (=24.PR);

28'. PR

therefore QR'= p and the radius of curvature = g IR

a P8’

But if from the centre we let fall a perpendicular CM on the

tangent plane, the right-angled triangle CMP is similar to

PRS and PR: PS::a':p. And the radius of curvature is
g d_8g

therefore ap = ; which was to be proved.

If the circle through P@Q have its centre not on PS but on
any line PS8’ making an angle 6 with PS, the only change

is that the radius of the circle is %%’,, 8’ being still on the
plane drawn through @ parallel to the tangent plane at P.
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But PS8 evidently = PS8’ cosf. The radius of curvature is
therefore PT-Q'ScbsA or the value for the radius of curvature

of an oblique section ts the radius of curvature of the mormal
section through PQ, multiplied by cosé.

205. These theorems may also easily be proved analytically.
It is proved (Conics, p. 206) that if Ax*+2Bxy+ Cy'+2Ey=0
be the equation of any conic, the radius of curvature at the

origin is = —g . If then the equation of any quadric, the plane
of zy being a tangent plane, be

Az’ +2Bxy + Cy* + 2Lz + 2Myz + N2* + 2Ez =0,
then the radii of curvature by the sections y=0, =0 are

respectively —fi‘i, % But if the equation be transformed to

parallel axes through the centre, the terms of highest degree
remain unaltered, and the equation becomes

Az’ + 2Bxy + Cy* + 2Lxz + 2Myz + Ne*' = H.

o H

4’ ¢C’

This proves that the radii of curvature are proportional to the
squares of the parallel semi-diameters of a central section. And
since, by the theory of conics, the radius of curvature of that
section which contains the perpendicular on the tangent plane

The squares of the intercepts on the axis of = and y are —

is %, the same is the form of the radius of every other section.

The same may be proved by using the equation of the
quadric transformed to any normal and the normals to two
confocals as axes (Art. 183), viz.

< 2' p'zy  2p'zs | 2

<, 2 _,.
'y'+a’ P ~ p(a-a" a’—a"’+p—

The radii of curvature of the sections by the planes z=0, y=0

. a—-a® a'—a"
are respectively 7
squares of the semi-axes of the section by a plane parallel to
the tangent plane (Art. 172). The equation of the section

The numerators are the
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made by a plane making an angle @ with the plane of y is
found by first turning the axes of co-ordinates round through
an angle 6 by substituting y cos —2z siné, y sinf+ 2 cos@ for
y and 2, and then making the new z=0. The coefficient of
y* will then become

cos*d sin* @
a—a” " a'—a™’
and the radius of curvature is

1 ( cos'd sin’@
; (a:_au a:__anx) .

But this coefficient of 3" is evidently the square of that semi-
diameter of the central section, which makes an angle § with

the axis y.

206. It follows from the theorem enunciated in Art. 204,
that at any point on a central quadric the radius of curvature
of a normal section has a maximum and mintmum value, the
directions of the section for these values being parallel to the
axis-major and axis-minor of the central section by a plane
parallel to the tangent plane. '

These maximum and minimum values are called the prin-
ctpal radii of curvature for that point, and the sections to
which they belong are called the principal sections. It appears
from (Art. 171) that the principal sections contain each the
normal to one of the confocals through the point. The inter-
section of a quadric with a confocal is a curve such that at
every point of it the tangent to the curve is one of the prin-
cipal directions of curvature. Such a curve is called a line
of curvature on the surface.

In the case of the hyperboloid of one sheet the central
section is a hyperbola, and the sections whose traces on the
tangent plane are parallel to the asymptotes of that hyperbola
will have their radii of curvature infinite; that is to say, they
will be right lines, as we know already. In passing through
one of those sections the radius of curvature changes sign; that
is to say, the direction of the convexity of sections on one
side of one of those lines is opposite to that of those on the
other.
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207. The two principal centres of curvature are the two
poles of the tangent plane with regard to the two confocal surfaces
which pass through the point of contact. For these poles lie
on the normal to that plane (Art. 175), and at distances from

S__ 1 2 ___m
it =2"2 ang 22 (Art. 176), but these have been just

p
proved to be the lengths of the principal radii of curvature.
We can also hence find, by Art. 176, the co-ordinates of
the centres of the two principal circles of curvature, viz.

s’ L g0 "ng v ”"e_t " _t
x=a:¢’ y=bu ’ Z=cz; x=a:8, 3/=b;1/) z=_¢>’z.
a L/ ¢ a b c

208. If at each point of a quadric we take the two prin-
cipal centres of curvature, the locus of all these centres is a
surface of two sheets which is called the surface of centres.
To find its equation, we observe that the co-ordinates «', y', &'
satisfy the equations

m’! y" Z" _ z'l y'i z’l _
dtpte=bh FEtpptas="
Substituting for &' in terms of x by the help of the last
article, and writing for a*, a*— A", &c., we obtain the follow-

ing two equations:

a'z' by* + gzt )
(al_ht)i + (bs_ hl)t (6' - hi)n e |
a'z’ by c's’

(a’—h')' + (b’—-h’)’ + @- hz)l =0.

These equations express that all the centres which correspond
to points on a line of curvature on the given surface, for which
k is constant, lie on the intersection of two quadrics. If we
eliminate A" between these two equations, we get the equation
of the surface of centres. I have performed this elimina-
tion and given the result, Quarterly Journal of Mathematics,
Vol. 1., p. 218.* The surface is one of the twelfth degree.

* It may be worth while to state the process by which the elimination
was effected :
M
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209. We can see & priors the nature of the section of the
surface by the principal planes. In fact, one of the principal
radii of curvature at any point on a principal section is the
radius of curvature of the section itself, and the locus of the
centres corresponding is evidently the evolute of that section.
The other radius of curvature corresponding to any point in

3

the section by the plane of zy is 91-), as appears from the for-

mula of Art. 204, since ¢ is an axis in every. section drawn
through the axis of 2. From the formule of Art. 207 the
co-ordinates of the corresponding centre are a_;'i’ x, b—b;g H
that is to say, they are the poles with regard to the focal
conic of the tangent at the point 2y’ to the principal section.
The locus of the centres will be the reciprocal of the principal
section, taken with regard to the focal conic, viz.
alxl b.yl
(a:_cs)s + (bi_cl)l =1

The section then by a principal plane of the surface (which is
of the twelfth degree) consists of the evolute of a conic, which
is of the sixth degree, and of a conic (it will be found)
three times over, this conic being a double line on the surface.
The section by the plane at infinity is also of a similar nature.

Substitute in the co-ordinates of the centre of curvature (Art. 207) the

values for 27, y*, £* (Art. 168), and we have
a'z*(a* - V') (a' - ¢*) = a%a™, BYy*(P* - a*) (B - ) = B,
'zt (c" - a¥) (c* - b%) = ™.
Now if we write a” = a* - A%, a” = a" - k', the first equation may be thrown
into the form
a'z*(a*-b) (a* - c*) =a* - Pa* + Qa* - Ra' + 8§,

while the right-hand sides of the other two equations are got by writing
%" and ¢, in turn, instead of a* in this last equation. We thus get three
linear relations between P, Q, R, 8. But further, since these quantities
are coefficients of a biquadratic equation which has three roots equal,
those coefficients are connected by two relations, one of the second, the
other of the third degree. The elimination is thus reduced to elimination
between a cubic and a quadratic equation, which is practicable,
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210. The reciprocal of the surface of centres is a surfuce
of the fourth degree.

It will appear from the general theory of the curvature of
surfaces, to be explained in the next chapter, that the tangent
plane to either of the confocal surfaces through x'y’z' is also a
tangent plane to the surface of centres. The reciprocals of the
intercepts which the tangent plane makes on the axes are given
by the equation

o

§= G

Cc

e
il
&l8
S
I
SHie

The relation
y:] "

E4
drteE T =0
gives between £, 7, ¢ the relation

(E'+7"+ §)=(a"-a") (5‘ +%:+ g)’

and the relation
xm 3 U3

';;+Fg+

o

I N

=1

<

c
gives (A8+n'+—1)=(a’-a") (E+7°+ ).
Eliminating a* — a", we have
g 2 &\, . R SRS

@+ e =5+ 5+ %) @F B - 1R
But it is evident (as at Higher Plane Curves, p. 14) that €, 9, ¢
may be understood to be co-ordinates of the reciprocal surface;
since, if &, 7, £ be the co-ordinates of the pole of the tangent
plane with regard to the sphere a'+3'+2"'=1, the cquation
zE+yn+2¢{=1 being identical with that of the tangent plane,
&, n, & will be also the reciprocals of the intercepts made by
the tangent plane on the axis.

® This equation was first given, as far as I am aware, by I)r. Booth,
Tangyential Co-ordinates, Dublin, 1840.
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CHAPTER IX.

CONES AND SPHERO-CONICS.

211. IF a cone of any degree be cut by any sphere, whose
centre is the vertex of the cone, the curve of section will
evidently be such that the angle between two edges of the cone
is measured by the arc joining the two corresponding points
on the sphere. When the cone is of the second degree, the
curve of section is called a sphero-conic. By stating many of
the properties of cones of the second degree as properties of
sphero-conics, the analogy between them and corresponding
properties of conics becomes more striking.*

Strictly speaking, the intersection of a sphere with a cone
of the n™ degree is a curve of the 2n™ degree: but when the
cone is concentric with the sphere, the curve of intersection
may be divided, in an infinity of ways, into two symmetrical
and equal portions, either of which may be regarded as analo-
gous to a plane curve of the n™ degree. For if we consider
the points of the curve of intersection which lie in any hemi-
sphere, the points diametrically opposite evidently trace out
a perfectly symmetrical curve in the opposite hemisphere.

Thus then a sphero-conic may be regarded as analogous
either to an ellipse or to a hyperbola. A cone of the second
degree evidently intersects a concentric sphere in two similar
closed curves diametrically opposite to each other. One of
the principal planes of the cone meets neither curve, and if we
look at either of the hemispheres into which this plane divides

* S8ee M. Chasles’s Memoir on Sphero-conics (published in the Sixth
Volume of the Trunsactions of the Royul Academy of Brussels, and trans-
lated by Professor Graves, Dublin, 1837), from which the enunciations of
many of the theorems in this chapter are taken.
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the sphere, we see a closed curve analogous to an ellipse. But
if we look at one of the hemispheres into which the sphere
is divided by a principal plane meeting both the opposite
curves, we see a curve consisting of two opposite branches
like a hyperbola.

The curve of intersection of any quadric with a concentric
sphere is evidently a sphero-conic.

212. The properties of spherical curves have been studied
by means of systems of spherical co-ordinates formed on the
model of Cartesian co-ordinates. Choose for axes of co-ordi-
nates any two great circles OX, OY intersecting at right
angles, and on them let fall perpendiculars PM, PN from any
point on the sphere P. These perpendiculars are not, as in
plane co-ordinates, equal to the opposite sides of the quad-
rilateral OMPN; and therefore it would seem that there is
a certain latitude admissible in our selection of spherical co-
ordinates, according as we choose for co-ordinates the per-
pendiculars PM, PN, or the intercepts OM, ON which they
make on the axes.

M. Gudermann of Cleves has chosen for co-ordinates the
tangents of the intercepts OM, ON (see Crelle’s Journal,
Vol. v1., p. 240), and the reader will find an elaborate discussion
of this system of co-ordinates in the appendix to Dr. Graves’s
translation of Chasles’s Memoir on Sphero-conics. It is easy
to see however that if we draw a tangent plane to the sphere
at the point O, and if the lines joining the centre to the points
M, N, P, meet that plane in points m, n, p; then Om, On will
be the Cartesian co-ordinates of the point p. But Om, On
are the tangents of the arcs OM, ON. Hence the equation
of a spherical curve in Gudermann’s system of co-ordinates
is in reality nothing but the ordinary equation of the plane
curve in which the cone joining the spherical curve to the
centre of the sphere is met by the tangent plane at the
point O. - :

So again, if we choose for co-ordinates the sines of the per-
pendiculars PM, PN, it is easy to sce in like manner that the
equation of a spherical curve in such co-ordinates is only the
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equation of the orthogonal projection of that curve on a plane
parallel to the tangent plane at the point O.

It seems, however, to us that the properties of spherical
curves are obtained more simply and directly from the equa-
tions of the cones which join them to the centre, than from
the equations of any of the plane curves into which they can
be projected.

213. Let the co-ordinates of any point P on the sphere be
substituted in the equation of any plane passing through the
centre (which we take for origin of co-ordinates), and meeting
the sphere in a great circle 4B, the result will be the length
of the perpendicular from P on that plane; which is the sine
of the spherical arc let fall perpendicular from P on the great
circle 4B. By the help of this principle the equations of
cones are interpreted so as to yield properties of sphernca.l
curves in ‘a manner precisely corresponding to that used in
interpreting the equations of plane curves.

Thus, let «, 8 be the equations of any two planes through
the centre, which may also be regarded as the equations of the
great circles in which they meet the sphere, then (as at Conics,
p- 52) a— /B denotes a great circle such that the sine of the
perpendicular arc from any point of it on a is in a constant
ratio to the sine of the perpendicular on B; that is to say,
a great circle dividing the angle between a and 8 into parts
whose sines are in the same ratio.

Thus, again, a—%B8, a —%'8 denote arcs forming with a
and B a pencil whose anharmonic ratio is 7{:—, And a-%8,
a+ kB denote arcs forming with a, 8 a harmonic pencil.

It may be noted here that if 4’ be the middle point of
an arc 4B, then B’, the fourth harmonic to 4', 4 and B, is
a point distant from 4’ by 90°. For if we join these points
to the centre C, CA' is the internal bisector of the angle 4 CB,
and therefore CB’' must be the external bisector. Conversely,
if two corresponding points of a harmonic system are distant
from each other by 90°, each is equidistant from the other two
points of the system.
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It is convenient also to mention here that if «'y'z’ be the
co-ordinates of any point on the sphere, then aa’+ yy +22'
denotes the great circle having «'y’2’ for its pole. It is in
fact the equation of the plane perpendicular to the line joining
the centre to the point z'y'z".

214. We can now immediately apply to spherical triangles
the methods used for plane triangles ( Conics, p. 54, &c.). Thus
if a, B, y denote the three sides, then, as in plane triangles,
la=mB=ny denote three lines meeting in & point, one of
which passes through each of the vertices: while

mB+ny—la, ny+la—mB, la+mB—ny
are the sides of the triangle formed by connecting the points
where each of these joining lines meets the opposite sides of
the given triangle; and la + mB+ ny passes through the inter-
sections of corresponding sides of this new triangle and of the
given triangle.

The equations a=g8=¢ evidently rcpresent the threc bi-
sectors of the angles of the triangle. And if 4, B, C be the
angles of the triangle, it is easily proved that as in planc
triangles a cos.d = 8 cos B =y cosC denote the three per-
pendiculars. It remains true, as at Conics, p. 54, that if the
perpendiculars from the vertices of one triangle on the sides
of another meet in a point, so will the perpendiculars from the
vertices of the second on the sides of the first.

The three bisectors of sides are a sin4 =g sin B=¢ sinC.
The arc asind + 8 sinB+ o sinC passes through the three
points where each side is met by the arc joining the middle
points of the other two; or, again, it passes through the
point on each side 90° distant from its middle point, for
asind +BsinB meet v in two points which are harmonic
conjugates with the points in which «, 8 meet them, and since
one is the middle point the other must be 90° distant from it
(Art. 213).

It follows from what has been just said that the point
where « sin4 + 8 sinB+q sinC meets any side is the pole
of the great circle perpendicular to that side, and passing
through its middle point, and hence that the intersection of
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the three such perpendiculars; that is to say, the centre of
the circumscribing circle is the pole of the great circle
asind+ B sinB+ysinC.

215. The condition that two great circles ax + by + ce,
a'z+b'y+ c'z should be perpendicular is manifestly

aa' +bb' +cc' =0.

The condition that aa+ 58+ cy, a'a+ '8 +c'y should be per-
pendicular is easily found from this by substituting for a, 8,
their expressions in terms of z, y, £. The result is exactly the
same as for the corresponding case in the plane, viz.

aa’ +bb' +cc' — (be' +b'c) cos A — (ca’ +¢'a) cos B— (ab'+ba') cos C=0.

In like manner the sine of the arc perpendicular to aa + 58 + o,
and passing through a given point is found by substituting the
co-ordinates of that point in aa+ 58+ oy and dividing by the
square root of

a'+ 8+ c* — 2bc cos A —2ca cos B— 2ab cosC.

216. Passing now to equations of the second degree, we
may consider the equation ay=mp8" either as denoting a cone
having « and ¢ for tangent planes, while 8 passes through
the edges of contact, or as denoting a sphero-conic, having
a and  for tangents, and B for their arc of contact. The
equation plainly asserts that the product of the sines of per-
peundiculars from any point of a sphero-conic on two of its
tangents is in a constant ratio to the square of the sine of the
perpendicular from the same point on the arc of contact.

In like manner the equation ay=/%Q83 asserts (see Conics,
p. 215) that the product of the sines of the perpendiculars
from any point of a sphero-conic on two sides of an inscribed
quadrilateral is in a constant ratio to the product of sines of
perpendiculars on the other two sides. And from this pro-
perty again may be deduced, precisely as at Conics, p. 216,
that the anharmonic ratio of the four arcs joining four fixed
points on a sphero-conic to any other point on the curve is
constant. In like manner almost all the proofs of theorems
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respecting plane conics (given Conics, chaps. X1v., XV.) apply
equally to sphero-conics.

217. If a, B represent the planes of circular section (or
cyclic planes) of a cone, the equation of the cone is of the
form o'+ y*+2'=FkaB (Art. 99), which interpreted, as in the
last article, shews that the product of the sines of perpen-
diculars from any point of a sphero-conic on the two cyclic
arcs is constant. Or, again, that, “ Given the base of a spherical
triangle and the product of cosines of sides, the locus of vertex
is a sphero-conic, the cyclic arcs of which are the great circles
having for their poles the extremities of the given base.” The
form of the equation shews that the cyclic arcs of sphero-conics
are analogous to the asymptotes of plane conics.

Every property of a sphero-conic can be doubled by con-
sidering the sphero-conic formed by the cone reciprocal to
the given one. Thus (Art. 141) it was proved that the cyclic
planes of one cone are perpendicular to the focal lines of the
reciprocal cone. If then the points in which the focal lines
meet the sphere be called the foci of the sphero-conic, the
property established in this article proves that the product
of the sines of the perpendiculars let fall from the two foci
on any tangent to a sphero-conic is constant.

218. If any great circle meet a sphero-conic in two points
P, Q, and the cyclic arcs in points 4, B, then AP= BQ.

This is deduced from the property of the last article in
the same way as the corresponding property of the plane
hyperbola is proved. The ratio of the sines of the perpen-
diculars from P and @ on a is equal to the ratio of the sines
of perpendiculars from @ and P on 8. But the sines of
the perpendiculars from P and @ on a are in the ratio
sin4P: sin AQ, and therefore we have

sinAP:sinAQ :: sinBQ : sin BP,
whence it may easily be inferred that AP=BQ.

Reciprocally, the two tangents from any point to a sphero-
conic make equal angles with the arcs joining that point to
the two foci.
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219. As a particular case of the theorem of Art. 218
we learn that the portion of any tangent to a sphero-conic
tntercepted between the two cyclic arcs is bisected at the chord
of contact. This theorem may also be obtained by the method
of infinitesimals from that of Art. 217; or it may be obtained
directly from the equation of a tangent, viz.

2 (a2’ + yy' +22) =k (a'B +af).

The form of this equation shews that the tangent at any point
is constructed by joining that point to the intersection of its
polar (zz' +yy' + 27, see Art. 213) with a'8+ Ba’ which is the
fourth harmonic to the cyclic arcs a, 8, and the line joining
the given point to their intersection. Since then the given
point is 90° distant from its harmonic conjugate in respect of
the two points where the tangent at that point meets the
cyclic arcs, it is equidistant from these points (Art. 213).

Reciprocally, the lines joining any point on a sphero-conic
to the two foci make equal angles with the tangent at that
point.

220. From the fact that the intercept by the cyclic arcs
on any tangent is bisected at the point of contact, it may at
once be inferred by the method of infinitesimals (see Conics,
p- 294) that every tangent to a sphero-conic forms with the cyclic
arcs a triangle of constant area, or a triangle the sum of whose
base angles is constant. This may also be inferred trigono-
metrically from the fact that the product of sines of perpen-
diculars on the cyclic arcs is constant. For if we call the
intercept of the tangent c, and the angles it makes with the
~ cyclic arcs 4 and B, the sines of the perpendiculars on a
and B are respectively sinjc sin4, sin§c sinB. But consider-
ing the triangle of which ¢ is the base and 4 and B the base
angles, then by spherical trigonometry,

sin*}c sin4 sin B=— cos 8 cos (8- C).
But C is given, therefore S, the half sum of the angles, is given.

Reciprocally, the sum of the arcs joining the two foct to
any point on a sphero-conic s constant. Or the same may be
deduced by the method of infinitesimals (see Contcs, p. 297)
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from the theorem that the focal radii make equal angles with
the tangent at any point.*

221. Conversely, again, we can find the locus of a point
on a sphere, such that the sum of its distances from two
fixed points on the sphere may be constant. The equation
cos(p + p') =cosa may be written

cos’p + cos’p' — 2 cosp cosp’ cosa =sin’a.
If then « and B denote the planes which are the polars of
the two given points, since we have a =cosp, the equation
of the locus is

o'+ B —2aB cosa=sin"a (2" + y* + 2*).

In order to prove that the planes a and 8 are perpendicular
to focal lines of this cone, it is only necessary to shew that
sections parallel to either plane have a focus on the line per-
pendicular to it. Thus let o, a” be two planes perpendicular
to each other and to a, and therefore passing through the
line which we want to prove a focal line. Then since

L+y+2r=a+a"+a",
the equation of the locus becomes
gin‘a (a” + @) = (B — a cosa)*.
If then this locus be cut by any plane parallel to a, a®+ a™
is the square of the distance of a point on the section from

"

the intersection of a'a”, and we see that this distance is in a
constant ratio to the distance from the line in which 8 —« cosa

® Here again we can see that a sphero-conic may be regarded either
as an ellipse or hyperbola. The focal lines each evidently meet the sphere
in two diametrically epposite points. If we choose for foci two points
within one of the closed curves in which the cone meets the sphere, then
the sum of the focal distances is constant. But if we substitute for
one of the focal distances FP, the focal distance from the diametrically
opposite point, then since F'P = 180° - FP, we should have the difference
of the focal distances constant.

In like manner we may say that a variable tangent makes with the
cyclic arcs angles whose difference is constant, if we substitute its supple-
ment for one of the angles at the beginning of this article.
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is cut by the same plane. This line is therefore the directrix
of the section, the point a'a” being the focus.

'We see thus also that the general equation of a cone having
the line xy for a focal line is of the form 2* + y* = (ax + by + ¢2)*;
whence again it follows that the sine of the distance of any point
on a sphero-conic from a focus is in a constant ratio to the sine
of the distance of the same point from a certain directriz arc.

222. Any two variable tangents meet the cyclic arcs in four
points which lie on a circle. For if L, M be two tangents
and R the chord of contact, the equation of the sphero-conic
may be written in the form LM = R'; but this must be iden-
tical with aB8=2"+3y"+2'. Hence a8 —.LM is identical with
2*+y'+2'—R'. The latter quantity represents a small circle,
having the same pole as R, and the form of the other shews that
that circle circumscribes the quadrilateral o SLM.

Reciprocally, the focal radii to any two points on a sphero-
conic form a spherical quadrilateral in which a small circle can
be inscribed. From this property again may be deduced the
theorem that the sum or difference of the focal radii is con-
stant, since the difference or sum of two opposite sides of such
a quadrilateral is equal to the difference or sum of the re-
maining two.

223. From the properties just proved for cones can be
deduced properties of quadrics in general. Thus the product
of the sines of the angles that any generator of a hyperboloid
makes with the planes of circular section ts constant. -For the
generator is parallel to an edge of the asymptotic cone whose
circular sections are the same as those of the surface. Again,
since the focal lines of the asymptotic cone are the asymptotes
of the focal hyperbola, it follows from Art. 220 that the sum
or difference is constant of the angles which any generator of
a hyperboloid makes with the asymptotes to the focal hyper-
bola. Again, given one axis of a central section of a quadric,
the sum or difference is given of the angles which its plane
makes with the planes of circular section. For (Art. 98) given
one axis of a central section its plane touches a cone concyclic
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with the given quadric, and therefore the present theorem
follows at once from Art. 220,

We get an expression for the sum or difference of the angles,
in terms of the given axis, by considering the principal sec-
tion containing the greatest and least axes of the quadric.
We obtain the cyclic planes by inflecting in that section
semi-diameters OB, OB’ each = b.
Then the planes containing these
lines and perpendicular to the
plane of the figure are the cyclic
planes. Now if we draw any
semi-diameter o’ making an angle
a with OC, we have

1 cos*a sin‘a
PO R

But o' is obviously an axis of the section which passes
through it and is perpendicular to the plane of the figure,
and (if o' be greater than b) a is evidently half the sum of
the angles BOA'y B'OA’ which the plane of the section makes
with the cyclic planes. If o’ be less than 4, 04’ falls between
OB, OB', and « is half the difference of BOA', B'OA'. But
this sum or difference is the same for all sections having the
same axis. Hence, if @', 5’ be the axes of any central section,
making angles 6, & with the cyclic planes, we have

1 _cos'}(6-0)  sin'}(0-0)
3 2 ?

o c a
1 _cos’}(6+6)  sin'}(0+6)
a’! - c’ + a, .

Subtracting, we have

1 _1_ (l,— %) ginf sin €',
or, the difference of the squares of the reciprocals of the axes of
a central section s proportional to the product of the sines of
the angles ¢t makes with the cyclic planes.

224. We saw (Art. 218) that given two sphero-conics
having the same cyclic arcs, the intercept made by the outer
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on any tangent to the inner is bisected at the point of contact;
and hence, by the method of infinitesimals, that tangent cuts
off from the outer a segment of constant area ( Conics, p. 294).

Again, if two sphero-conics have the same foci, and if
tangents be drawn to the inner from any point on the outer,
these tangents are equally inclined to the tangent to the outer
at that point. Hence, by infinitesimals, (see Conics, p. 297)
the excess of the sum of the two tangents over the included
arc of the inner conic is constant. This theorem is the reci-
procal of the first theorem of this article, and it is so that
it was obtained by Dr. Graves (see his translation of Chasles’s
Memoir, p. 77).

225. To find the locus of the intersection of two tangents to
a sphero-conic which cut at right angles. This is in other words
to find the cone generated by the intersection of two rect-

. @ ¥y 2
angular tangent planes to a given cone 4tg+to=% Let

the direction-angles of the perpendiculars to the two tangent
planes be a'8'y', a’8"y"; then they fulfil the relations

A cos*a'+ Bcos' 8+ C cos’y'=0, A cos’a”+.Bcos’S" +C cos'y’=0.
But if a, 8, v be the direction-cosines of the line perpendicular
to both, we have cos'a=1—cos'a’—cos'a”, &c. Therefore

adding the two preceding equntlons, we have for the equation
of the locus,

Ax'+ By'+ C2*=(A + B+ C) (&' +y" +27),
a cone concyclic with the reciprocal of the given cone. Reci-

procally, the envelope of a chord 90° in length is a sphero-
conic, confocal with the reciprocal of the given cone.

226. To find the locus of the foot of the perpendicular from
the focus of a sphero-conic on the tangent. The work of this
question is precisely the same as that of the corresponding -
problem in plane conics, and the only difference is in the inter-
pretation of the result. Let the equation of the sphero-conic
(Art. 221) be «*+y*=¢' where t=az+ by + cz, then the equa-

tion of the tangent is
mr + yy' = ul,
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and of a perpendicular to it through the point zy is
(&' —at) y—(y' - bt') z=0.
Solving for 2/, y/, and ¢ from these two equations, and sub-
stituting in 2™ +y™=1¢" we get for the locus required,
(@ +9") {(a®+ 8" = 1) (2" + ¥*) + 2¢z (ax + by) + ¢'2*} = 0.
The quantity within the brackets denotes a cone whose circular
sections are parallel to the plane 2.

227. It was proved (Art. 214) that the relation

asind + B sin B+ sinC=0
is not, as in plano, an identical relation satisfied by the perpen-
diculars from any point. It remains then to ask how the
three perpendiculars from any point on three fixed great circles
are connected. But this question we have implicitly answered
already, for the three perpendiculars are each the complement
of one of the three distances from the three poles of the sides
of the triangle of reference. If then @, b, ¢ be the sides;
A, B, C the angles of the triangle of reference, then a, 8, v
the sines of the perpendiculars on the sides from any point
are connected by the following relation, which is only a trans-
formation of that of Art. 52,

a* 8in"4 + B sin* B + «* sin*C
+ 2By sin B sin C cosa + 2ya 8in O sin 4 cosbd + 2a8 sin 4 sin B cosc
=1—cos'4 —cos' B—cos*C —2 cos 4 cos B cosC.

The equation in this form represents a relation between the
sines of the arcs represented by a, B, y. If we want to get
a relation between the perpendiculars from any point of the
sphere on the planes represented by «, 8, vy, we have evidently
only to multiply the right-hand side of the preceding equation
by #*, and that equation in a, 8,y will be the transformation
of the equation '+ y*+2*=+"

Hence, it appears that if we equate the left-band side of
the preceding equation to zero, the equation will be the same
as &'+ y'+2'=0, and therefore denotes the imaginary circle
which is the intersection of two concentric spheres; that is to
say, the imaginary circle at infinity (see Art. 135).
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228. This equation enables us to find the equation of the
sphere inscribed in a given tetrahedron, whose faces are
a, B, v, 6. If through the centre three planes be drawn
parallel to a, B, v, the perpendiculars on them from any point
will be a7, B—r, y—r. The equation of the sphere is
therefore
(a—7)" sin’4 + (8 —7)" sin’ B+ &e.

=7"(1—cos'4 —cos’ B—cos'C— 2 cos.4 cosB cosC).
But if L, M, N, P denote the areas of the four faces, we have
La+MB+ Ny+ Pé=(L+M+ N+ P)r.

Hence, we can eliminate », and the result is most conveniently
written as follows: Let

l=cos’}(bc), m=cos'}(ca), n=cos'}(ad),

p=cos'}(ad), g=cos'}(bd), r=cos'}(cd),

where (ad) is the angle made with each other by the planes
a, 8. Then the equation of the inscribed sphere is

 lrga® + mprB* + npgy + lmn8*
+ (Ip — mq — nr) (lad + pBy) + (mq — nr — Ip) (mBS + gay)
+ (nr = lp —mgq) (ny8 + raf) =0.

229. The equation of a small circle (or right cone) is easily
expressed. The sine of the distance of any point of the circle
from the polar of the centre is constant. Hence, if a be that
polar the equation of the circle is &' = cos’p (& + y* + 2").

All small circles then being given by equations of the form
8=d', their properties are all cases of those of conics having
double contact with the same conic.

The theory of invariants may be applied to small circles.
Let two circles 8, S’ be

+y+2—d" sec’p, Z+y'+2'-F sec’p',

and let us form the condition that AS+ 8’ should break up
into factors. This cubic being

MA+NO+AO' +A'=0,



[ J
CONES AND SPHERO-CONICS. 177

we have A=—tan'p, A'=—tan'p,
© =sec’p sec’p’ sin’ D — 2 tan’p — tan’p/,
©' =sec’p sec’p’ sin"D — 2 tan’p’' — tan’p,
where D is the distance between the centres.

Now the corresponding values for two circles in a plane are
A=-7, A=-1"] O=D'-2/"-1", O=D'-2"-1"
Hence, if any invariant relation between two circles in a plane
is expressed as a function of the radii and of the distance
between their centres, the corresponding relation for circles
on a sphere is obtained by substituting for r, ', D; tanr, tanr’,

and secr secr’ sin D.

Thus the condition that two circles in a plane should touch
is obtained by forming the discriminant of the cubic equation,
and is either D=0 or D=r+7. The corresponding equation
therefore for two circles on a sphere is ’

tanr + tans’ = secr secr’ sin.D, or sinD=sin(r + ).

Again, if two circles in a plane be the one inscribed in,
the other circumscribed about the same triangle, the invariant
relation is fulfilled ©*=4A0’, which gives for the distance
between their centres the expression J*= R'—2Rr.

The distance therefore between the centres of the inscribed
and circumscribed circles of a spherical triangle is given by
the formula

sec' R sec’r sin' D =tan'R — 2 tan R tanr.
So, in like manner, we can get the relation between two
circles inscribed in, and circumscribed about the same spherical

polygon.
230. The equation of any small circle (or right cone) in
trilinear co-ordinates must (Art. 227) be of the form
o sin’4 + B sin’ B+« sin’C
+ 2By sin Bsin C cosa + 2ya 8in C sin 4 cosd + 2a8 sin 4 sin B cosc
= (la+ mB + ny)".
If now the small circle circumscribe the triangle aBy, the

coefficients of ', 8%, and 4" must vanish, and we must therefore
N
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have la+ mB+ny=asind + B sinB+ysinC. Hence, as was
proved before, this represents the polar of the centre of the
circumscribing circle. Substituting this value, the equation
of the small circle becomes
Bry tan}a + ya tan b + a8 tangc=0.
The equation of the inscribed circle turns out to be of
exactly the same form as in the case of plane triangles, viz.

cos§.4 /(a) + cos3.B y/(8) +cos} C y/(y)=0.
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CHAPTER X.
GENERAL THEORY OF SURFACES.

INTRODUCTORY CHAPTER.

231. RESERVING for a future chapter a more detailed ex-
amination of the properties of surfaces in general, we shall
in this chapter give an account of such parts of the general
theory as can be obtained with least trouble.

Let the general equation of a surface be written in the form,

4
+Bx+ Cy+ D=
+ Ex* + Fy* + G2 + 2Hyz + 2Kzx + 2Ly
+ &c. =0,
or, a8 we shall write it often for shortness,
w,+u, +u, +u, + &c.=0,
where u, means the aggregate of terms of the second degree,
&c. Then it is evident that «, consists of one term, u, of three,
u, of six, &c. The total number of terms in the equation is
therefore the sum of n+1 terms of the series 1, 3, 6, 10, &c.,
(n+1(n+2)(n+3)
1.2.3 ’
The number of conditions necessary to determine a surface
n(n*+ 6n+11)
5 .
The equation above written can be thrown into the form
of a polar equation by writing p cosa, p cosf, p cosy, for
2, y, 2, when we obviously obtain an equation of the n" degree,
which will determine n values of the radius vector answering

to any assigned values of the direction-angles a, 8, 1.
N2

that is to say,

of the »™ degree is one less than this, or =
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232. If now the origin be on the surface, we have u,=0,
and one of the roots of the equation is always p=0. But &
second root of the equation will be p=0 if a, 8, y¥ be con-
nected by the relation

B cosa+ C cosB+.D cosey=0.

Now multiplying this equation by p it becomes Bz+ Cy+ Dz=0,
and we see that it expresses merely that thé radius vector must
lie in the plane w,=0. No other condition is necessary in order
that the radius should meet the surface in two coincident
points. Thus we see that in general through an assumed
point on a surface we can draw an infinity of radit vectores
which will there meet the surface tn two coincident points ; that
18 lo say, an infinity of tangent lines to the surface; and these
Uines lie all in one plane, called the tangent plane, determined
by the equation u, =0.

233. The section of any surface made by a tangent plane
18 a curve having the point of contact for a double point.*®

Every radius vector to the surface, which lies in the tangent
plane, is of course also a radius vector to the section made
by that plane; and since every such radius vector (Art. 232)
meets the section at the origin in two coincident points, the
origin is, by definition, a double point (see Higher Plane
Ourves, p. 27).

We have already had an illustration of this in the case
of hyperboloids of one sheet, which are met by any tangent
plane in a conic having a double point, that is to say, in
two right lines. And the point of contact of the tangent
plane to a quadric of any other species is equally to be con-
sidered as the intersection of two imaginary right lines.

From this article it follows conversely, that any plane
meeting a surface in a curve having a double point touches
the surface, the double point being the point of contact. If
the section have two double points, the plane will be a double
tangent plane; and if it have three double points, the plane

* This remark, I believe, was first made by Mr. Cayley: Gregory's
8Solid Geometry, p. 132.
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will be a triple tangent plane. Since the equation of a plane
contains three constants, it is possible to determine a plane
which will satisfy any three conditions, and therefore a finite
number of planes can in general be determined which will
meet & given surface in a curve having three double points:
that is to say, a surfuce has in general a determinate number
of triple tangent planes. It will also have an infinity of double
tangent planes, the points of contact lying on a certain curve
locus on the surface. The degree of this curve, and the
number of triple tangent planes will be subjects of investi-
gation hereafter.

234. Through an assumed point on a surface it 18 generally
possible to draw two lines which shall there meet the surface
wn three coincident points.

In order that the radius vector may meet the surface in
three coincident points, we must not only, as in Art. 232,
have the condition fulfilled

B cosa+ C cosB+ D cosy=0,
but also E cos’a + F cos’8 + G cos’y
+2H cosf cosey +2K cosry cosa+2L cosa cos 8=0.

For if these conditions were fulfilled, 4 being already supposed
to vanish, the equation of the n™ degree which determines p,
becomes divisible by p° and has therefore three roots = 0.
The first condition expresses that the radius vector must lie
in the tangent plane u,. The second expresses that the radius
vector must lie in the surface u, =0, or

Ex'+ Fy' + G2* +2Hyz + 2Kz + 2Lxy = 0.

This surface is a cone of the second degree (Art. 62) and
since every such cone is met by a plane passing through its
vertex in two right lines, two right lines can be found to
fulfil the required conditions.

Every plane (beside the tangent plane) drawn through
either of these lines, meets the surface in a section having
the point of contact for a point of inflexion. For a point of
inflexion is a point, the tangent at which meets the curve
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in three coincident points (Higher Plane Curves, p. 35). On
this account we shall call the two lines which meet the surface
in three coincident points, the snflexional tangents at the
point.

The existence of these two lines may be otherwise perceived
thus. We have proved that the point of contact is a double
point in the section made by the tangent plane. And it has
been proved (Higher Plane Curves, p. 28) that at a double
point can always be drawn two lines meeting the section
(and therefore the surface) in three coincident points.

235. A‘double point may be one of three different kinds
according as the tangents at it are real, coincident, or imaginary.
Accordingly the contact of a plane with a surface may be of
three kinds according as the.tangent plane meets it in a section
having a node, a cusp, or a conjugate point; or in other
words according as the inflexional tangents are real, coincident,
or imaginary.

Dupin, who first noticed* the difference between these three
kinds of contact, stated the matter as follows: Suppose that
we confine our attention to points so near the origin that all
powers of the co-ordinates above the second may be neglected,
then the tangent plane (or a very near plane parallel to it)
meets any surface u, +u,+wu,+&c. in the same section in
which it meets the quadric »,+u, And according as the
sections of this quadric by planes parallel to the tangent plane
are ellipses, hyperbolas, or parabolas, so the section made by
the tangent plane is to be considered as an infinitely small
ellipse, hyperbola, or parabola. This infinitely small section
Dupin calls the ¢ndicatriz at the point of contact, and he divides
the points of the surface, according to the nature of the in-
dicatrix into elliptic, hyperbolic, and parabolic points. We
shall presently show that there will be in general on every
surface a number of parabolic points forming a curve locus,
this curve separating the elliptic from the hyperbolic points.

* See Dupin’s Développements de Géométrie, p. 48.
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If the tangent plane be made the plane of zy, and the equa-
tion of the surface be

s+ Aa* + 2Bxy + Cy* + 2Dxz + 3Eyz + Fz' + &c. =0,
it is manifest that the origin will be an elliptic, hyperbolic,
or parabolic point according as B® is less, greater than, or
equal to AC.*

236. Knowing the equation of the tangent plane when
the origin is on the surface, we can, by transformation of
co-ordinates, find the equation of the tangent plane at any
point. It is proved precisely as at (Art. 58) that this equa~
tion may be written in either of the forms

au au’
(z"'w) dx +(f'/ .'/) d g +(z z) az =0,
aU'  4dU  4dU dU

wﬁ_h-'--i-yd’-l- dz'+ do—o

or

237. Let it be required now to find the tangent plane at
a point, indefinitely near the origin, on the surface
2+ A"+ 2Bzy + Cy* + 2Dz + 2Eyz + Fz' + &c.=0.

We have to suppose &', ¥’ so small that their squares may be
neglected ; while, since the consecutive point is on the tangent
plane, we have 2'=0: or, more accurately, the equation of
the surface shows that 2’ is a quantity of the same order as
the squares of ' and y'. Then, either by the formula of the
last article, or else directly by putting z+2', y+y' for =
and y, and taking the linear part of the transformed equation,
the equation of a consecutive tangent plane is found to be

2+2 (42 + By )z +2 (Be' + Cy') y=0.

® This is sometimes expressed as follows: When the plane of zy is the
tangent plane, and the equation of the surface is expressed in the form
=@ (z,y), we have an elliptic, hyperbolic, or parabolic point according

3

as (d'?—dy) is less, greater than, or equal to (%) (573,) It will be found
that this is equivalent to the statement in the text; but we do not enter
into details because we shall have scldom occasion in practice to deal with
equations where s is given explicitly as a function of x and y.
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Now (see Conics, Art. 141) (Az' + By') 2+ (Bx' + Cy') y denotes
the diameter of the conic Az*+ 2Bxy + Cy*=F, which is con-
jugate to that to the point z'y’. Hence any tangent plane s
tntersected by a consecutive tangent plane in the diameter of the
indicatriz which 18 conjugate to the dlrectwn to which the con-
secutive pomt 18 taken.

This in fact is geometrically ewdent from Dupin’s point
of view. For if we admit that the pointa consecutive to the
given one lie on an infinitely small conic, we see that the tan-
gent plane at any of them will pass through the tangent line to
that conic; and this tangent line ultimately coincides with
the diameter conjugate to that drawn to the point of contact:
for the tangent line is parallel to this conjugate diameter and
infinitely close to it.

Thus then all the tangent lines which can be drawn at
a point on a surface may be distributed into pairs such that the
tangent plane at a consecutive point on either will pass through
the other. Two tangent lines so related are called conjugate
tangents.

In the case where the two inflexional tangents are real,
the relation between two conjugate tangents may be otherwise
stated. Take the inflexional tangents for the axes of » and g,
which is equivalent to making 4 and C=0 in the preceding
equation: then the equation of a consecutive tangent plane is
2+ 2B(z'y+y«)=0. And since the lines z, y, 2'y+y'z,
o'y —y'xz form a harmonic pencil, we learn that a patr of
conjugate tangents form, with the inflexional tangents, a harmonic
pencil.

238. In the case where the origin is .a parabolic point,
the equation of the surface can be thrown into the form
g+ Ay'+ &c.=0, and the equation of a consecutive tangent
plane will be z+2A4y'y=0. Hence the tangent plane at every
point consecutive to a parabolic point passes through the in-
flexional tangent; and if the consecutive point be taken in
this direction so as to have y' =0, then the consecutive tangent
plane coincides with the given one. Hence the tangent plane
at a parabolic poipt s to be considered as a double tangent
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plane, since it touches the surface in two consecutive points.*
In this way parabolic points on surfaces may be considered
as analogous to points of inflexion on plane curves: for we
have proved (Higher Plane Curves, p. 35) that the tangent
line at a point of inflexion is in like manner to be regarded
as a double tangent. A further analogy between parabolic
points and points of inflexion will be afterwards stated.

It is convenient to have a name to distinguish double
tangent planes which touch in two distinct points, from those
now under consideration where the two points of contact coin-
cide. 'We shall therefore call the latter stationary tangent
planes, the word expressing that the tangent plane being
supposed to move round as we pass from one point of the
surface to another, in this case it remains for an instant in
the same position. For the same reason we have called the
tangent lines at points of inflexion in plane curves, stationary
tangents.

239. If on transforming the equation to any point on a
surface as origin we have not only »,=0 but also all the terms
in u, =0, so that the equation takes the form

Ex* + Fy* + G2 + 2Hyz + 2Kz + 2 Lay + u, + &e. =0,

then it is easy to see in like manner that every line through
the origin meets the curve in two coincident points; and the
origin is then called a double point. It is easy to see also
that a line through the origin there meets the surface in three
coincident points, provided that its direction-cosines satisfy the
equation
E cos’a+ F cos* 8+ G cos’y

+ 2H cosf cosy + 2K cosy cosa+ 2L cosa cosS =0.

In other words, through a double point on a surface can be
drawn an mﬁmty of lines which will meet the surface in three
coincident points, and these will all lie on a cone of the second
degree whose equation i8 4, =0. Further, of these lines six will

* I believe this was first pointed out, Cambridge and Dublin Mathe-
matical Journal, Vol. 111. p. 45.
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meet the surface in four coincident points; namely, the lines
of intersection of the cone u, with the cone of the third degree
u,=0.

Double points on surfaces might be classified according to
the number of these lines which are real, or according as two
or more of them coincide, but we shall not enter into these
details. The only special case which it is important to mention
is when the conme u, resolves itself into two planes; and this
again includes the still more special case when these two
planes coincide; that is to say, when u, is a perfect square.

240. Every plane drawn through a double point may in
one sense be regarded as a tangent plane to the surface, since
it meets the surface in a section having a double point, but
in a special sense the tangent planes to the cone u, are to be
regarded as tangent planes to the surface, and the sections
of the surface by these planes will each have the origin as a
cusp. To a double point then on a surface (which is a point
through which can be drawn an infinity of tangent planes),
will in general correspond on the reciprocal surface a plane
touching the surface in an infinity of points, which will in
general lie on a conic. If however the double point be of
the special kind noticed at the end of the last article, there
will correspond to it on the reciprocal surface a double tangent
plane having two points of contact.

241. The results obtained in the preceding articles by taking
a8 our origin the point we are discussing, we shall now extend
to the case where the point has any position whatever. Let us
first remind the reader (see p. 29) that since the equations of a
right line contain four constants, a finite number of right lines
can be determined to fulfil four conditions (as, for instance,
to touch a surface four times); while an infinity of lines can
be found to satisfy three conditions (as, for instance, to touch
a surface three times), those right lines generating a certain
surface, and their points of contact lying on a certain locus.
In a subsequent chapter we shall return to the problem to
determine in general the number of solutions when four con-
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ditions are given, and to determine the degree of the surface
generated, and of the locus of points of contact, when three
conditions are given. In this chapter we confine ourselves to
the case when the right line is required to pass through a
given point, whether on the surface or not. This is equivalent
to two conditions; and an infinity of right lines (forming a
cone) can be drawn to satisfy one other condition; while a
finite number of right lines can be drawn to satisfy two other
conditions.

We use Joachimstal’s method employed, Conics, pp. 81,
134 ; Higher Plane Curves, p. 61; and at p. 47 of this volume.

LSS

If the quadriplanar co-ordinates of two points be 2'y'z'w’,
«"y"z"w", then the points in which the line joining them is
cut by the surface are found by substituting in the equation
of the surface, for =, A&’ + pux", for y, Ay’ + puy", &c. The
result will give an equation of the n'™ degree in A\: u, whose
roots will be the ratios of the scgments in which the line joining
the two given points is cut by the surfacc at any of the points
where it meets it. And the co-ordinates of any of the points
of meeting are \az'+ u'z”, N'y'+u'y’, N2'+p'2", Nw' + p'v”,
where A’ : ' is one of the roots of the equation of the »™ degree.
All this will present no difficulty to any reader who has mastered
the corresponding theory for plane curves. And, as in plane

curves, the result of the substitution in question may be written
MU +A Al + % NWAD 4 &e. =0,

where A represents the operation

AP A &
rE Yy Tt G

Following the analogy of plane curves we shall call the surface

represented by

,dU, ,dU  ,dU  ,dU _
x Zz_+-" 3—3;4'5 d—z+w ’(E—O,

the first polar of the point #y'z'w’. 'We shall call
( d d

r ’ +"d li)’U—O
zd—;+yt_i1_; ~E+w dw -
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the second polar, and so on: the polar plane of the same point
dU’+ dU’+ dU’+ au o.
il ~ A AL M
Each polar surface is manifestly also a polar of the point «'y'z'w’
with regard to all the other polars of higher degree.

If a point be on a surface all its polars touch the tangent
plane at that point: for the polar plane with regard to the
surface is the tangent plane; and this must also be the polar
plane with regard to the several polar surfaces. This may
also be seen by taking the polar of the origin with regard to

uw” +u w0 +uw ™ + &e.,
where we have made the equation homogeneous by the in-
troduction of a new variable w. The polar surfaces are got
by differentiating with regard to this new variable. Thus the
first polar is
nuw™ " + (n—1) 0" + (n — 2) u 0™ + &e.,

and if u =0, the terms of the first degree, both in the surface
and in the polar, will be u,.

242. If now the point zy'z'w’ be on the surface, U" vanishes,
and one’ of the roots of the equation in A : u, will be u=0.
A second root of that equatlon will be =0, and the line
will meet the surface in two coincident points at the point
«'y'z'w', provided that the coefficient of A" vanish in the
equation referred to. And in order that this should be the
case, it is manifestly sufficient that x"y"2"w" should satisfy the
equation of the plane

g"'y‘fiZ"" cfg’+w‘flu:
It is proved then that all the tangent lines to a surface which
can be drawn at a given point lie in a plane whose equation
is that just written. By subtracting from this equation, the.
identity

=0.

dU’ AU AU 40"

YT I T =0
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we get the ordinary Cartesian equation of the tangent plane, viz.

N dU auv
(z=2) —+ (- )do+(3 &) o7 =0

Hence again by Art. 42, can immediately be deduced the
equations of the normal, viz.

7 -taf -

dy 7

243. The right line will meet the surface in three con-
secutive points, or the equation we are considering will have
for three of its roots u =0, if not only the coefficients of A" and
A'u vanish, but also that of A"'x*: that is to say, if the line

we are considering not only lies in the tangent plane, but
also in the polar quadric

( ‘Z:,+ydd,+zdi,+w d) U=

Now (Art. 241) when a point is on a surface all its polars
touch the surface. The tangent plane therefore, touching the
polar quadric, meets it in two right lines, real or imaginary,
which are the two inflexional tangents to the surface. (Art.234.)

244. Through a point on a surface can be drawn (n+2) (n - 3)
tangents which will also touch the surface elsewhere.

In order that the line should touch at the point 2'y'z'w’,
we must, as before, have the coefficients of A" and A" "'u=0;
in consequence of which the equation we are considering be-
comes one of the (n—2)" degree, and if the line touch the
surface a second time this reduced equation must have equal
roots. The condition that this should be the case involves
the coefficients of that equation in the degree n— 3; one term,
for instance, being (A*U".U)™*. By considering that term we
see that this discriminant involves the co-ordinates z'y'z'w’ in
the degree (n —2) (n — 3), and zyzw in the degree (n + 2) (n — 3).
When therefore z'y'z'w’ is fixed, it denotes a surface which
is met by the tangent plane in (n + 2) (n — 8) right lines.
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Thus then we have proved that at any point on a surface
an infinity of tangent lines can be drawn: that these in general
lie in a plane; that two of them pass through three consecutive
points, and (n + 2) (» — 3) of them touch the surface again.

245. Let us proceed next to consider the case of tangents
drawn through a point not on the surface. Since we have
in the preceding articles established relations which connect
the co-ordinates of any point on a tangent with those of the
point of contact, we can, by an interchange of accented and
unaccented letters, express that it is the former point which
is now supposed to be known, and the latter sought.

Thus for example, making this interchange in the equation
of Art. 242, we see that the points of contact of all tangent
lines (or of all tangent planes) which can be drawn through
Z'y'z'w', lie on the first polar, which is of the degree (n —1): viz.
' d__.U+ 'd_U+z’ d_U..*.w' @:0

dw Y dy dz dw
And since the points of contact lie also on the given surface,
their locus is the curve of the degree n(n—1), which is the
intersection of the surface with the polar.

246. The assemblage of the tangent lines which can be
drawn through z'y'2'w’ form a cone, the tangent planes to which
are also tangent planes to the surface. The equation of this
cone is found by forming the discriminant of the equation of
the ™ degree in A (Art. 241). For this discriminant expresses
that the line joining the fixed point to xyzw meets the surface
in two coincident points; and therefore zyzw may be a point
on any tangent line through «'y'z'w’. The discriminant is easily
seen to be of the degree m (n—1), and it is otherwise evident
that this must be the degree of the tangent come. For its
degree is the same as the number of lines in which any plane
through the vertex cuts it. But such a plane meets the surface
in a curve to which »(n—1) tangents can be drawn through
the fixed point, and these tangents are also the tangent lines
which can be drawn to the sarface through the given point.
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247. Through a point not on the surface can tn general be
drawn n(n—1) (n—2) wnflexional tangents. We have seen,
Art. 243, that the co-ordinates of any point on an inflexional
tangent are connected with those of its point of contact by
the relations U'=0, AU =0, A*U'=0. If then we consider
the zyzw of any point on the tangent as known; its point of
contact is determined as one of the intersections of the given
surface U, which is of the »™ degree, with its first polar AU,
which is of the (n — 1), and with the second polar A*U, which
is of the (n—2)®. There are therefore n(n—1)(n—2) such
intersections.

248. Through a point not on the surface can tn general be
drawn in (n—1) (n — 2) (n - 3) double tangents to . 'The points
of contact of such lines are proved by Art. 244, to be the
intersections of the given surface, of the first polar, and of the
surface represented by the discriminant discussed in Art. 244,
and which we there saw contained the co-ordinates of the point
of contact in the degree (n—2)(n—38). There are therefore
n(n—1)(n—2) (n—3) points of contact: and since there are
two points of contact on each double tangent, there are half
this number of double tangents.

Thus then we have completed the discussion of tangent
lines which pass through a given point. We have shown that
their points of contact lie on the intersection of the surface
with one of the degree n—1, that their assemblage forms a
cone of the degree n(n—1): that n(n—1)(n—2) of them are
inflexional, and 4z (n — 1) (n —2) (n — 8) of them are double.

These latter donble tangents are also plainly double edges
of the tangent core, since they belong to the cone in virtue of
either contact. Along such an edge can be drawn two tangent
planes to the cone, namely, the tangent planes to the surface
at the two contacts.

The inflexional tangents, however, are also to be regarded
as double tangents to the surface: since the line passing through
three consecutive points is a double tangent in virtue of joining
the first and second, and also of joining the second and third.
The inflexional tangents are therefore double tangents whose
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points of contact coincide. They are therefore double edges

of the tangent cone; but the two tangent planes along any

such edge coincide. They are therefore cuspidal edges of

the cone. We have proved then that the tangent cone which

ts of the degree n(n—1) has n(n—1)(n—2) cuspidal edges,

and n(n—1)(n—2)(n—3) double edges ; that is to say, any
plane meets the cone in a section having such a number of

cusps and such a number of double points.

249. It is proved precisely as for plane curves (Higher Plane
Curves, page 57), that if we take on each radius vector a length
whose reciprocal is the n™ part of the sum of the reciprocals
of the n radii vectores to the surface, then the locus of the
extremity will be the polar plane of the point: that if the
point be on the surface, the locus of the extremity of the mean
between the reciprocals of the » —1 radii vectores will be the
polar quadric, &c.

By interchanging accented and unaccented letters in the
equation of the polar plane, it is plain that the locus of the
poles of all planes which pass through a given point is the
first polar of that point. The locus of the pole of a plane
which passes through two fixed points is hence seen to be a
curve of the (n—1)" degree, namely, the intersection of the
two first polars of these points. We see also that the first
polar of every point on the line joining these two points must
pass through the same curve. And in like manner the first
polars of any three points on a plane determine by their in-
tersection (n— 1) points, any one of which is a pole of the
plane, and through which points the first polar of every other
point on the plane must pass.

250. From the theory of tangent lines drawn through a
point we can in two ways derive the degree of the reciprocal
surface. First; the number of points in which an arbitrary
line meets the reciprocal is equal to the number of tangent
planes which can be drawn to the given surface through a
given line. Consider now any two points .4 and B on that
line, and let C be the point of contact of any tangent plane

-



G((ENERAL THEORY OF SURFACES. 193

passing through AB. Then since the line AC touches the
surface, C lies on the first polar of 4 ; and for the same reason
it lies on the first polar of B. The points of contact therefore
are the intersection of the given surface, which is of the n™
degree with the two polar surfaces, which are cach of the degree
(n—1). The number of points of contact, and thercfore the
degree of the reciprocaly is n (n—1)%

251. Otherwise thus: let a tangent conec be drawn to the
surface having the point A4 for its vertex; then since every
tangent plane to the surface drawn through A touches this
cone, the problem is, to find how many tangent plancs to the
cone can be drawn through any line ADB; or if we cut the
cone by any plane through B, the problem is to find how many
tangent lines can be drawn through B to the scction of the
cone. But the class of a curve whose degree is n (n—1), which
has n(n—1) (n—2) cusps, and }n(n—1)(n—2)(n—3) double
points is
n(n—1)n(n—-1)=1}-38n(n—1) (n—2)

—n(n—1)n—-2)(n—-38)=nn-1)"
Generally the section of the reciprocal surface by any plane cor-
responds to the tangent cone to the original surface through
any point. And it is easy to sce that the degree of the tangent
cone to the reciprocal surface (as well as to the original surface)
through any point is of degree n (n—1).

252. Returning to the condition that a line should touch

a surface
aur dau dU au

x—&7+yd—y,—+z szT‘*‘w o’ =0,
we see that if all four differentials be made to vanish by the
co-ordinates of any point, then every line through the point
meets the surface in two coincident points; and the point is
therefore a double point. The condition that a given surface
may have a double-point is obtained by eliminating the variables

between the four equations %Z—U =0, &c., and is called the dis-

criminant of the given quantic (Lessons on Higher Algebra,
0
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page 43). The discriminant being the result of elimination
between four equations, each of the degree n— 1, contains the
coefficients of each in the degree (n—1)°, and is therefore of
the degree 4 (n — 1) in the coefficients of the original equation.

It is obvious from what has been said, that when a surface
has a double point, the first polar of every point passes through
the double point.

The surfaces represented by ‘(Zi—g, &c., may happen not

merely to have points in common, but to have a whole curve
common to all four surfaces. This curve will then be a double
curve on the surface U, and every point of it will be a double
point. Now we saw (Art. 233) that the surface represented
by the general Cartesian equation of the 2™ degree will, in
general, have an infinity of double tangent planes; the re-
ciprocal surface thercfore will, in general, have an infinity of
double points, which will be ranged on a certain curve. The
existence then of these double curves is to be regarded among
the “ordinary singularities” of surfaces (see Higher Plane
Curves, page 47).

When the point z'y'z'w’ is a double point, U’ and AU’
vanish identically ; and any line through the double point meets
the surface in three consecutive points if it satisfies the equation
A'U’ =0, which represents a cone of the second degree.

253. The polar quadric of a parabolic point on a surface
s a cone.

The polar quadric of the origin with regard to any surface

u20” +u,w" " + uw" " + &e. =0,
(where, as in Art. 241, we have introduced w so as to make
the equation homogeneous) is found by differentiating n— 2
times with respect to w. Dividing out by (n-—2)(n—83)...3,
the polar quadric is
n(n—1)u+2(n-1)u +2u,=0.

Now the origin being a parabolic point, we have seen, Art. 235,
that the cquation is of the form

z+ Cy'+ 2Dzx + 2Eey + F3' + &e.,
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[or, in other words, u,=0, and u, is of the form wv + w].
The polar quadric then is

z(n—1+2Dx+ 2Ey + Fz) + Cy*=0.

Bat we have seen (page 40) that any cquation represents a
cone when it is a homogeneous function of three quantities,
each of the first degrce. The cquation just written therefore
represents a cone whose vertex is the intersection of the three
planes, z, n—1+2Dx+2Ey+ Fz, and y. The two former
planes are tangent planes to this cone, and y the plane of
contact.

254. Tt follows from the last article that if we form the
locus of points whose polar quadrics represent a cone, this
will meet the surface in the parabolic points. This locus is
found by writing down the discriminant of A*U'=0. If q,

2 ’ t § '
b, &e., denote. the sccond differential cocfficients ‘%1—{,]; , i’é ,
22 dy
&ec., the discriminant will be (page 41)
abed + 2 (alqr + bmpr + enpg + dlinn)
— (adl' + bdm® + cdn* + bep® + caq* + abr)
+ Pp*+ m’q* + n'r® — 2mngr — 2alrp — 2lmpg = 0.

This denotes a surface of the degrce 4 (n—2), which we shall
call the Hessian of the given surface. In the same manner
then as the intersection of a plane curve with its Hessian de-
termines the points of inflexion, so the intersection of a surface
with its Hessian determines a curve of the degree 4n (n—2),
which is the locus of parabolic points (scc Art. 238).

255. It follows from what has been just proved that through
* a given point can be drawn 4n (n— 1) (n— 2) stationary tangent
planes (see Art. 238). For since the tangent planc passes
through a fixed point, its point of contact lies on the polar
surface, whose degree is » — 1, and the intersection of this sur-
face with the surface U, and the surface determined in the
last article as the locus of points of contact of stationary tangent -
planes, determine 4n (n — 1) (n — 2) points,

Otherwise thus; the stationary tangent planes to the surface

02
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through any point are also stationary tangent planes to the
tangent cone through that point, and if the cone be cut by
any plane, these planes meet it in the tangents at the points
of inflexion of the section. But the rfumber of points of in-
flexion on a plane curve are determined by the formula (Higher
Plane Curves, page 91)
t—xk=3(v—up).

But in this case, Art. 248, we have v=n(n—1)%, p=n(n-1);
therefore v—p=n(n—-1) (n—2), k=3n(n—1) (n—2). Hence,
as before, c=4n (n—1) (n —2).

The number of double tangent planes to the cone are de-
termined by the formula

2 (r—8) = (v— ) (v + w—9),
and 20=n(n—1)(n-2)(n—3); (v+p—-9)=n"—n'-9.
Hence 2r=n(n-1)(n—2)(n*—n*+2n-12).

It follows then that through any point can be drawn 7 double
tangent planes to the surface, where 7 is the number just de-
termined. It will be proved hereafter, that the points of contact

of double tangent planes lie on the intersection of the surface
with one whose degree is (n—2) (n"—n'+n—12).

256. If a right line lie allogether tn a surface st will touch
the Hessian and therefore the parabolic curve, (Cambridge and
Dublin Mathematical Journal, Vol. 1v., page 255).

Let the equation of the surface be z¢+ yy=0, and let
us seek the result of making = and y=0 in the equation of

the Hessian, so as thus to find the points where the line meets
that surface. Now evidently %g , % ’ d%’
« or y as a factor, and therefore vanish on this supposition.
And if we make a=0, d=0, =0 in the equation of the
Hessian, it becomes a perfect square (lp—mg)*, showing that
the right line touches the Hessian. If we make =0, y=0

in Ip — mq, it reduces to dp dy _ d¢ ‘—l\—k It is evident that

all contain

when the tangent plane touches all along any line, straight
or curved, this line lies altogether in the Hessian. The reader
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can verify this without difficulty, with regard to the surface
2h+ 4

CURVATURE OF SURFACES.

257. We proceed next to investigate the curvature at any
point on a surface of the various sections which can be made
by planes passing through that point.

In the first place let it be premised that if the equation of
a curve be v, +u,+u,+ &c. =0, the radius of curvature at the
origin is the same as for the conic u +u, For it will be
remembered that the ordinary expression for the radius of
curvature includes only the co-ordinates of the point and the
values of the first and second differential coefficients for that
point. But if we differentiate the equation not more than twice,
the terms got from differentiating u, w,, &c. contain powers
of z and y, and will therefore vanish for £=0, y=0. The
values therefore of the differential coefficients for the origin are
the same as if they were obtained from the equation u, + u, =0.

It follows hence that the radius of curvature at the origin
(the axes being rectangular) of y+ ax’+ 2bxy + cy* + &e.=0
is %z (sce Conics, p. 206); or this value can easily be found
directly from the ordinary expression for thc radius of curva-
ture (Higher Plane Curves, p. 108).

258. Let now the equation of a surface referred to any
tangent planc as plane of xy and the corresponding normal
as axis of z, be

2+ Ax* + 2Bxy + Cy* + 2Dxz + 2Eyz + F2* + &c. = 0,
and let us investigate the curvature of any normal section, that
is of the section by any plane passing through the axis of 2.

Thus, to find the radius of curvature of the section by the
plane zz, we have only to make y=0 in the equation, and

we get a curve whose radius of curvaturc is 2%1 In like

manner the section by the plane yz has its radius of curvature

1 . .
30" And in order to find the radius of curvature of any
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section whose plane makes an angle 6 with the plane xz, we
have only to turn the axes of # and y through an angle 6
(by substituting & cosé — y siné for x, and « sin 8 + y cosd for y,
Conics, p. 7); and by then putting y=0 it appears as before
that the radius of curvature is half the reciprocal of the new
cocfficient of *; that is to say,

ﬁ:A cos*0 + 2B cosf sin 0 + C sin* 4.

259. The reader will not fail to observe that this expression
for the radius of curvature of a normal section is identical in
form with the expression for the square of the diameter of a
central conic in terms of the angles which it makes with the
axes of co-ordinates. Thus if p be the semi-diameter answer-
ing to an angle @ of the conic Ax®+ 2Bxy+ Cy'=}, we have
R=p"

It may be seen otherwise that the radii of curvature are
connected with their directions in the same manmer as the
squares of the diameters of a central conic. For we have
seen that the radii of curvature depend only on the terms in
u, and .. The radii of curvature therefore of all the sections
of u + u,+u,+&ec. are the same as those of the sections of
the quadric », +u,; and it was proved (p. 158) that these are
all proportional to the squares of the diameters of the central
section parallel to the tangent plane.

It is plain that the conic, the squares of whose radii are
proportional to the radii of curvature, is similar to the in-
dicatrix.

260. We can now at once apply to the theory of these
radii of curvature all the results that we have obtained for
the diameters of central conics. Thus we know that the
quantity 4 cos’6 + 2B cosf sinf + C sin*6 admits of a maxi-
mum and minimum value; that the values of § which corre-
spond to the maximum and minimum are always real, and
belong to directions at right angles to each other; and that
those values of 6 are given by the equation (see Conics, p. 140)

B cos’0 — (A —C) cosl sinf - Bsin*@=0.
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Hence, at any point on a surface there are among the normal
sections, one for which the value of the radius of curvature
is a maximum and one for which it is a minimum; the direc-
tions of these sections are at right angles to each other; and.
they are the directions of the axes of the indicatrix. They
plainly bisect the angles between the two inflexional tangents.
We shall call these the principal sections, and the correspond-
ing radii of curvature the principal radii.

If we turn round the axes of = and y so as to coincide
with the directions of maximum and minimum curvature just
determined, it is known that the quantity Az'+2Bwy+ Cy'
will take the form A4'z*+ B'y*. Now the formula of the last
article, when the coefficient of zy vanishes, gives the following
§2= A’ cos'@+ B’ sin*6.
But evidently 4’ and B’ are the values of }R corresponding
to 6=0, and 6=90°. Hence any radius of curvature is ex-
pressed in terms of the two principal radii p and p', and of
the angle which the direction of its plane makes with the
principal planes, by the formula

cxpression for any radius of curvature

1 cos'd sin‘_o -

E - p p
It is plain (as in Conics, p. 142) that A’ and B, or

1 1
2’ 2p'
are given by a quadratic equation, the sum of these quantities
being A4 + C and their product 4C — B,

When p=p/, all the other radii of curvaturc are also =p.
The form of the equation then is z+ 4 (2*+3°) + &c.=0, or
the indicatrix is a circle. The origin is then an umbilic.

From the expressions in this article we deduce at once, as
in the theory of central conics, that the sum of the reciprocals
of the radii of curvature of two mormal sections at right angles
to each other s constant ; and again, tf normal sections be made
through a pair of comjugate tangents (sce Art. 237), the sum
of their radit of curvature is comstant.

* This formula (with the inferences drawn from it) is duc to Euler.
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261. It will be observed that the radius of curvature, being
proportional to the square of the diameter of a central conic,
does not become imaginary, but only changes sign, if the
quantity A4 cos'd+2B cosd sinf + C sin*@ becomes negative.
Now if radii of curvature directed on one side of the tangent
plane are considered as positive, those turned the other way
must be considered as negative; and the sign changes when
the direction is changed in which the concavity of the curve
is turned.

At an elliptic point on a surface; that is to say, when B*
is less than AC, the sign of A4 cos'd+ 2B cos@ sinf + C sin*f
remains the same for all values of 6; and therefore at such
a point the concavity of every section through it is turned in
the same direction. -

At a hyperbolic point, that is to say, when B* is greater
than A C, the radius of curvature twice changes sign and the
concavity of some sections is turned in an opposite direction
to that of others. The surface in fact cuts the tangent plane
in the neighbourhood of the point, and the inflexional tangents
mark the directions in which the surface crosses the tangent
plane and divide the sections whose concavity is turned one
way from those which are turned the other way.* And when
we have chosen a hyperbola the squares of whose diameters
are proportional to one set of radii, then the other set of radii
are proportional to the squares of the diameters of the con-
jugate hyperbola.

262. Having shewn how to find the radius of curvature
of any normal section, we shall ncxt show how to express,
in terms of this, the radius of curvature of any oblique section,
inclined at an angle ¢ to the normal section, but meeting the
tangent plane in the same line. Thus we have seen that the
radius of curvature of the normal section made by the plane

® The illustration of the summit of a mountain pass will enable the
reader to conceive how a surface may in two directions sink below the
tangent plane, and on the other sides rise above it. The shape of a saddle
affords another familiar illustration of the same thing.
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y=0is 2—12 Now let us turn the axes of y and 2 round in
their plane through an angle ¢ (which is done by substituting
£ cosdp—y sing for z and z sin¢ + y cos¢ for y). If we now
make the new y =0, we shall get the equation (still to rect-
angular axes) of the section by a plane making an angle ¢
with the old plane y =0, but still passing through the old axis
of ; and this equation will plainly be
z cosp+ Az’ +2Bxz sing+ C2* sin’p + 2 Dxz+ 2 Ez* sing + Fz' + &e,
and by the same method as before the radius of curvature is
found to be %ﬁ, or is =R cos¢, where B is the radius
of curvature of the corresponding normal section. This is
MEUNIER’S THEOREM, that the radius of curvature of an oblique
section 18 equal to the projection on the plane of this section of
the radius of curvature of a normal section passing through the
same tangent line. 'Thus we see that of all scctions which can
be made through any line drawn in the tangent plane, the
normal section is that whose radius of curvature is greatest;
that is to say, the normal section is that which is least curved
and which approaches most nearly to a straight line.

Mecunier’s theorem has been alrcady proved in the case of
a quadric (see p. 159), and wec might therefore, if we had
chosen, have dispensed with giving a new proof now; for
we have scen that the radius of curvature of any scction of
u, +u,+u, + &e. is the same as that of the corresponding
section of the quadric u, +wu,.

263. Every spherc whose centre is on a normal to a surface,
and which passes through the point where the normal meets
the surface, of course touches the surface. But the contact
will be of the kind called stationary contact (Art. 129) when
the length of the radius of the sphere is cqual to one of the
principal radii. For if the cquations of two surfaces which
touch be
2+ A2* + 2Bxy+Cy* + &e.=0, 2+ A'x* +2B'2y + C'y’ + &e. =0,
then (A=-4)2*+2(B-DB) axy+ (C-C") y' + &e.
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passes through their curve of intersection, and it was proved
(Art. 128) that the three terms just written represent the tan-
gents to the curve of intersection of the surfaces. These
tangents coincide, or there is stationary contact (Art. 129)
when (4—-4")(C-C)=(B-B'). When B=B =0, this
condition implies either A=4' or C=C'. The surface then
g+ Az’ + Cy* + &e. =0 will have stationary contact with the
: 1

sphere 2rz+a'+y'+2" =0, if 2r=%1 or=4- But these are

the values of the principal radii.

264. The principles laid down in the last article enable
us to find an expression for the values of the principal radii
at any point; the axes of co-ordinates having any position.
It will be observed that what we have proved is, that if
u, + u, + &c., u, +v,+ &c. represent two surfaces which touch,
then the intersection of the plane u, with the cone u,—v, gives
the two tangents to their curve of intersection: and there is
stationary contact when the plane touches the cone.

Now if we transform the equation to any point &'y'z’ on
the surface as origin, it becomes

RUAN C SENNTANEIY
or if we denote the first differential coeiﬁclents by L, M, N, P,
and the second by a, b, ¢, &c. as before

2(Lax+ My+Nz) + ax’ + by* + o2 + 2lyz + 2max + 2nxy + &c. = 0.
The equation then of any sphere having the same tangent
plane is

) U +&e.

2 (Lae+ My+ N2)+ A (a"+y' + 2") =
and the sphere will have stationary contact with the quadric if
M be determined so as to satisfy the condition that Lz + My+ Nz
.shall touch
(@=n) @+ (b=7) "+ (¢ =) 2"+ 2lyz + 2mzx + 2nzxy.
"This condition is
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which expanded is
{®=A)(e=N)-P} L+ {(c=\)(a—N)—m"} M+ {(@a—\) (B—A)—n*}| N*
+2{mn—(a— N[ MN+2{nl—(b-N)m}NL+2{lm—(c—\)n} LM=0,
or \ is given by the quadratic ’
(L*+M*+ N )N —{(b+c) L'+ (c+a) M*+ (a+b) N*
—2IMN-2mNL —2nLM} N

+(be= V) L* + (ca— m*) M* + (ab—n") N*

+2 (mn—al) MN+ 2 (nl —bm) NL + 2 (Im — cn) LM=0.
Now if » be the radius of the sphere
(@' +y'+2°) + 2 (Lx + My + Nz),
a4 N Wo thereforo find the principal

2 2 2
M—'*-—li—) for X in the preceding

we -have =

radii by substituting
quadratic.

The absolute term in the cquation for A may be simplified
by writing for L, M, N their values from the equations

(n=1) L=ax+ny + lz + pw, &c.,

Hv*

when the absolute term reduces to BCE where 7 is the
Hessian, written at full length Art. 63. We might have seen
a priori that for any point on the Hessian, the absolute term
must vanish. For since the directions of the principal sections
bisect the angles between the inflexional tangents; when the
inflexional tangents coincide, one of the principal sections coin-
cides with their common direction, and the radius of curvature
of this section is infinite, since three consecutive points are on
a right line. Hence one of the values of A (which is the
reciprocal of 7) must vanish. By equating to nothing the
coefficient of A in the preceding quadratic, we obtain the
equation of a surface of the degree 3n—4, which intersects
the given surface in all the points where the principal radii
are equal and opposite: that is to say, where the indicatrix
is an equilateral hyperbola.
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The quadratic of this article might also have been found
at once by Art. 98, which gives the axes of a section of the
quadric

ax® + by* + 2 + 2lyz + 2mzx + 2n2y =1
made parallel to the plane L&+ My + Nz =0

265. From the equations of the last article we can find
the radius of curvature of any normal section meeting the
tangent plane in a line whose direction-angles are given.

For the centre of curvature lies on the normal, and if we
describe a sphere with this centre, and radius equal to the
radius of curvature, it must touch the surface, and its equation
is of the form

2 (Lx+ My+ Nz)+ M (o + y' +2) =0.
The consecutive point on that section of the surface which we
are considering satisfies this equation, and also the equation
U, + U, = 0)

2 (Lx + My + Nz) + ax’ + by* + c2" + 2lyz + 2mzx + 2nxy = 0.
Subtracting, we find
ax' + by’ + c2* +2Iyz+2mzx+ 2na:y

z +y +2"
And since this equation is homogencous, we may write for

x, y, 2 the direction-cosines of the line joining the consecutive
’\/( L'+ M+ N')
- .

A=

point to the origin. As in the last article A=
Hence

,--_- I\/(L"-F.M'-}-.N!)
acos’a-+bcos’B+ccos’y+21cos3 cosy +2m cosy cosa+2n cosacosS

The problem to find the maximum and minimum radius of
curvature is therefore to make the quantity

ax’ + by' + cz" + 2lyz + 2mzx + 2nxy
a maximum or minimum subject to the relations

L+ My+ Nz=0, «'+y'+2'=1.
And thus we see again that this is exactly the same problem

as that of finding the axcs of the central section of a quadric
by a plane Lz + My + Nz.
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266. In like manner the problem to find the directions of
the principal sections at any point is the same as to find the
directions of the axes of the section by the plane La + My + Nz
of the quadric ax® + by* + c2* + 2lyz + 2mzx + 2nxy = 1.

Now given any diameter of a quadric, one section can
be drawn through it having that diameter for an axis; the
other axis being plainly the intersection of the plane perpen-
dicular to the given diameter with the plane conjugate to it.
Thus if the central quadric be U=1, and the given diameter
pass through «'y'2'; then the diamcter perpendicular and con-
jugate is the intersection of the planes

AU dU |, dU _
Tttt &=

If the former diameter lic in a plane Lz’ + My + Nz', the
latter diameter traces out the cone which is represented by
the determinant obtained on climinating «'y'2’ from the three
preceding cquations: viz.

xx' +yy +22' =0, 0.

dU dU au
And this cone must evidently meet the plane Lz + My+ Nz
in the axes of the section by that plane. Thus then the
directions of the principal sections are determined as the inter-
section of the tangent plane Lx + My + Nz with the cone

(Mz — Ny) (ax + ny + mz) + (Nx— Lz) (nz + by + 1z)
+ (Ly — Mx) (mz + ly + cz) =6,
or (Mm — Nn) &'+ (Nn— Ll) y* + (Ll— Mm) 2*
+{L(®—c)=-nM+nN} yz+ {In+ M (c—a) — NI} 2z
+{—Lm+ Ml+ N(a—0)} xy.

267. The methods used in Art. 264 enable us also easily
to find the conditions for an umbilic.* If the plane of xy be

* We might find the condition for an umbilic by forming the condition
that the quadratic of Art. 264 should have equal roots. But, as at p. 32,
this quadratic having its roots £lways real is one of the class discussed,
Higher Algebra, p. 134; whose discriminant can be expressed as the
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the tangent plane at an umbilic the equation of the surface
is of the form

2+ A(2+y") +2Dxz+ 2Eyz + F2" + &e.=0;

and if we subtract from it the equation of any touching
sphere, viz.
24+ (@ +y'+2") =0,

it is evidently possible so to choose A (namely, by taking it
=A) that all the terms in the remainder shall be divisible
by z. We see thus that if u, + u, + &c. represent the surface,
and u, +Av, any touching sphere, it is possible, when the
origin is an umbilic, so to choose A that u,—Av, may contain
u, as a factor. We see then by transformation of co-ordinates
as in Art. 264, that any point «'y’z’ will be an umbilic if it
is possible 80 to choose A that

(a=A) 2"+ (b—A) * + (c = \) 2+ 2lyz + 2mzz + 2n2y

may contain as a factor Lz + My + Nz, If so, the other factor
must be
a—x _ b-N_ e-2A
T x+ §74 y+ N 2.
Multiplying out and comparing the coefficients of yz, 2z, zy,
we get the conditions

BN T+ @ T =2, =N P+ (a=2) N =2m,

. O VRSN

Eliminating A between these equations we obtain for an umbilic

the two conditions

bN*+cM'—2IMN cL'+aN'—2mLN _aM'+bL'—2nLM
.N’-i-M' - L’-{-N’ - M’+L’

Since there are only two conditions to be satisfied, a surface

of the n™ degree has in general a determinate number of

umbilics; for the two conditions, each of which represents a

sum of squares. If therefore we only consider real umbilics, the result
of equating the discriminant to nothing is equivalent to two conditions,
which can be more easily obtained as in the text.
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surface, combined with the equation of the given surface de-
termine a certain number of points. It may happen however
that the surfaces represented by the two conditions intersect
in a curve which lies (either wholly or in part) on the given
surface. In such a case there would be on the given surface
a line, every point of which would be an umbilic. Such a
line is called a Line of spherical curvature.

268. There is one case in which the conditions of the
last article are not applicable in the form in which we have
written them. They appear to be satisfied by making L=0,
a=bN’+cM"— 2IMN

N® + M
surface L =0 must always pass through umbilics on the given
surface. Now it is easy to see geometrically that this is not

; whence we might conclude that the

the case, for L (or %) is the polar of the point yzw with

respect to the surface, so that if L necessarily passed through
umbilics it would follow by transformation of co-ordinates that
the first polar of every point passes through umbilics. On
referring to the last article, however, it will be seen that the
investigation tacitly assumes that none of the quantities Z, M, N
vanish ; since, if so, some of the equations which we have used
would contain infinite terms. Supposing then L to vanish,
we must examine directly the condition that My+ Nz may
be a factor in
(@a=N) 2"+ (5=N) '+ (c—\) 2° + 2lyz + 2mex + 2nxy.

We must evidently have A=aq, and it is then ecasily seen that
bN*+cM*—2IMN
N+ M*
addition since the terms 2mez +2nxy must be divisible by
My + Nz, we must have Mm = Nn. Combining then with the
two conditions here found, L =0, and the equation of the
surface, there are four conditions which, except in special

cases, cannot be satisfied by the co-ordinates of any points.
If we clear of fractions the conditions given in the last

article, it will be found that they each contain either L, M,

or N as a factor. And what we have proved in this article

we must, as before, have a=

, while in
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is that these factors may be suppressed as irrelevant to the
question of umbilics.®

We now proceed to draw some other inferences from what
was proved (Art. 263); namely, that the two principal sphercs
have stationary contact with the surface.

269. When two surfaces have stationary contact, they touch
in two consecutive points.

The equations of the two surfaces being written as in Art. 263,
the tangent planes at a consecutive point are (Art. 237)

z2+2(dAx + By') x+2(Bs + Cy) y=0,
z+2(4'x +B'y) z+2 (B2 +C'y) y=0.
That these may be identical, we must have
Ax'+ By'=A'x' + B'y', Bx'+Cy'=Bz'+C,
and eliminating @' : y' between these equations, we have
(4—4')(C-C) = (B-BY,
which is the condition for stationary contact.

The sphere, therefore, whose radius is equal to one of the
principal radii touches the surfaces in two consecutive points;

* From what has been said we can infer the number of umbilics which
a surface of the n™ degree will in general possess. We have seen that
the umbilics are determined as the intersection of the given surface with
a curve whose equations are of the form %, = % = g Now if 4, B, C
be of the degree /, and A4', B', C' of the degree m, then AB' - BA,
AC’ - CA' are each of the degree I+ m, and intersect in a curve of the
degree (I +m)". But the intersection of these two surfaces includes the
curve 44’ of the degree Im which does not lie on the surface BC' - CB'.
The degree therefore of the curve in question is I*+/m + m*. In the
present case !=3n -4, m =2n - 2 and the degree of the curve would
seem to be 19n' - 46n + 28. But we have seen that the system we are
discussing includes three curves such as

L, a(M*+ N*) - (bN* + cM* - 2IMN)

which do not pass through umbilics. Subtracting therefore from the
number just found 3(n - 1) (3n - 4), we see that the umbilics are deter-
mined as the intersection of the given surface with a curve of the degree
(10n® — 255 + 16), and therefore that the number of umbilics is in general
n (10n® - 26n + 16).
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or two consecutive normals to the surface are also normals to
the sphere, and consequently intersect in its centre. Now we
know that in plane curves the centre of the circle of curvature
may be regarded as the intersection of two consecutive normals
to the curve. In surfaces the normal at any point will not
meet the normal at a consecutive point taken arbitrarily. But
we see here that if the consecutive point be taken in the
direction of either of the principal sections, the two consecutive
normals will intersect, and their common length will be the
corresponding principal radius. On account of the importance
of this theorem we give a direct investigation of it.

270. To find in what cases the mormal at any point on a
surface 18 intersected by a consecutive normal. Take the tangent
plane for the plane of zy, and let the equation of the surface be

2+ Ax'+2Bxy+ Cy* + 2Dxz + 2Eyz + F2* + &c. = 0.
Then we have seen (Art. 237) that the equation of a consecutive
tangent plane is
z2+2(dx'+ By') 2+ 2 (Br' + Cy') y=0,
and a perpendicular to this through the point z'y’ will be
z—x  y-y

Az’ + By Bx' + Uy

This will meet the axis of z (which was the original normal) if

z - Y
Az’ + By Bx' +Cy'’
The direction therefore of a consccutive point whose normal
meets the given normal is detcrmined by the equation
Bx*+ (C-A4) 2y — By"=0.
Baut this is the same equation (Art. 260) which determines the
directions of maximum and minimum curvature. At any point
on a surface therefore there are two directions, at right angles
to each other, such that the normal at a consecutive point
taken on either, intersects the original normal. And these
directions are those of the two principal sections at the point.
Taking for greater simplicity the directions of the principal
sections as axes of co-ordinates; that is to say, making B=0
P

=2z,
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in the preceding equations, the equation of a consecutive normal
becomes m———;; = %’-:2‘1, whence it is easy to see that the
normals corresponding to the points ' =0, a'=0 intersect the
axis of z at distances respectively 2=44, z=3C. The inter-
cepts therefore on a normal by the two consecutive ones which
intersect it are equal to the principal radii.*

271. We may also arrive at the same conclusions by seek-
ing the locus of points on a surface, the normals at which meet
a fixed normal which we take for axis of z. Making =0,
y=0 in the equation of any other normal we see that the
point where it meets the surface must satisfy the condition

%= # The curve where this surface meets the given
dz dy

surface has the extremity of the given normal for a double
point, the two tangents to which are the two principal tangents
to the surface at that point.

The special case where the fixed normal is one at an
umbilic deserves notice. The equation of the surface being of
the form 2+ 4 («' + y*) + &c. =0, the lowest terms in the equa-
tion m%—yU=y %;U, when we make z2=0, will be of the third
degree, and the umbilic is a triple point on the curve locus.
Thus while every normal immediately consecutive to the normal

* M. Bertrand, in his theory of the curvature of surfaces, calculates
the angle made by the consecutive normal with the plane containing the
original normal and the consecutive point 2’y’. Supposing still the direc-
tions of the principal sections to be axes of co-ordinates, the direction-
cosines of the consecutive normal are proportional to 242, 20y, while
those of a tangent line perpendicular to the radius vector are proportional to
-y, #, 0. Hence the cosine of the angle between these two lines, or
the sine of the angle which the consecutive normal makes with the normal
section, is proportional to (C - 4) Zy’; or, if « be the angle which the
direction of the consecutive point makes with one of the principal tangents, is
proportiondl to (C - 4)sin2a. When a =0 or = 90°, this angle vanishes
and the consecutive normal is in the plane of the original normal.
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at the umbilic meets the latter normal, there are three directions
along any of which the next following normal will also meet
the normal at the umbilic.

272. A line of curvature® on a surface is a line traced on
it such that the normals at any two consecutive points of it
intersect. Thus starting with any point A on a surface, we
may go on to either of the two consecutive points N, N' whose
normals were proved to intersect the normal at . The normal
at N, again, is intersected by the consecutive normals at two
points P, P’, the element NP being a continuation of the
element MN while the element NP is approximately per-
pendicular to it. In like manner we might pass from the point
P to another consecutive point @ and so have a line of curva-
ture MNPQ. But we might evidently have pursued the same
process had we started in the direction M/N'. Hence, at any
point M on a surface can be drawn two lines of curvature;
these cut at right angles and are touched by the two ¢ prin-
cipal tangents” at M. A line of curvature will ordinarily not
be a plane curve, and even in the special case where it is plane
it need not coincide with a principal section at A, though it
must touch such a section. For the principal section must
be normal to the surface, and the line of curvature may be
oblique.

A very good illustration of lines of curvature is afforded
by the case of the surfaces generated by the revolution of any
plane curve round an axis in its plane. At any point P of
such a surface one line of curvature is the plane section passing
through P and through the axis, or, in other words, is the
generating curve which passes through 2. For all the normals
to this curve are also normals to the surface, and being in
one plane, they intersect. The corresponding principal radius
at P is evidently the radius of curvature of the plane section
at the same point. The other line of curvature at P is the

® The whole theory of lines of curvature, umbilics, &c. is due to Monge.
See his “ Application de I’Analyse 4 la Géométrie,” p. 124, Lioaville's

P2
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circle which is the section made by a plane drawn through
P perpendicular to the axis of the surface; for the normals
at all the points of this section evidently intersect the axis
of the surface at the same point, and therefore intersect each
other. The intercept on the normal between P and the axis
is plainly the second principal radius of the surface.

The generating curve which passes through P is a prin-
cipal section of the surface, since it contains the normal and
touches a line of curvature; but the section perpendicular to
the axis is not a principal section because it does not contain
the normal at P. The second principal section at that point
would be the plane section drawn through the normal at P
and through the tangent to the circle described by P. The
example chosen serves also to illustrate Meunier’s theorem ;
for the radius of the circle described by P (which, as we have
seen, i8 an oblique section of the surface) is the projection on
that plane of the intercept on the normal between P and the
axis, and we have just proved that this intercept is the radius
of curvature of the corresponding normal section.

273. It was proved (Art. 266) that the direction-cosines of
the tangent line to a principal section fulfil the relation

(M cosy— N cosB) (a cosa+ n cosB +m cosy)
+ (N cosa — L cosy) (n cosa+bcosB+ I cosry)
+ (L cos 8 — M cosa) (m cosa+ I cosB + ¢ cosy)=0.

Now the tangent line to a principal section is also the tangent
to the line of curvature; while, if ds be the element of the
arc of any curve, the projections of that element upon the
three axes being dz, dy, dz, it is evident that the cosines of

dy dz
ds’ds? ds’
‘The differential equation of the line of curvature is therefore
got by writing dz, dy, dz for cosa, cosB, cosy in the preceding
formula.

This equation may also be found directly as follows (see
Gregory’s Solid Geometry, p. 256): Let a, 8, v be the co-
ordinates of a point common to two consecutive normals.

the angles which ds makes with the axes are
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Then, if a«yz be the point where the first normal meets

the surface, by the equations of the normal, we have
a—z B-y gy-—=z, .
I = - N or if we call the common value of

these fractions 6, we have
a=z+L0, B=y+ M0, y=2z+ N6.

But if the second normal meet the surface in a point z+ d,
y+dy, z+dz, then expressing that aBy satisfies the equations
of the second normal, we get the same results as if we diffe-
rentiate the preceding equations, considering a8y as constant, or
dz+ Ld0+0dL =0, dy+ Mdf+ 6dM=0, dz+ Nd@+ 8dN =0,
from which equations eliminating 6, df, we have the same
determinant as in Art. 266, viz.

dz, dy, dz
L M, N
dL, dM, dN |=o.

Of course
dL=adz+ndy+mdz, dM=ndx+bdy+1dz, dN=mdx+ldy+ cdz.

Ex. To find the differential equation of the lines of curvature
of the ellipsoid

—,+—§+E-=l
Here we have
2 oy ¥ N E g Y %
L_a,, M—b,, N—c,,, dL—a,,, dM—b,, dN_c,.

Substituting these values in the preceding equation it becomes,
when expanded,

(8*—¢") zdydz + (¢* - @) ydzdx + (a* - b*) 2dxdy =0.
Knowing as we do that the lines of curvature are the inter-
sections of the ellipsoid with a system of concentric quadrics
(Art. 206), it would be easy to assume for the integral of this
equation Az*'+ By*+ (Cz*=0, and to determine the constants
by actual substitution. If we assume nothing as to the form
of the integral we can eliminate # and dz by the help of the
equation of the surface, and so get a differential equation in
two variables which is the equation of the projection of the lines
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of curvature on the plane of xy. Thus, in the present case,
multiplying by :—, and reducing by the equation of the ellipsoid
and its differential, we have
(@~ ady +=agie) {2 + L @) (1 -5 %) oy,
a (bn _ x) _ at (an _ bl)
b’ (a'—c")—A’ -7 B’
dy\' d. )
| Axy (ﬁ) +(«"— dy*- B) 3%- zy =0,
the integral of which (see Boole’s Differential Equations, Ex. 3,
p. 135) is

or writing

@ ¥y __1

or the lines of curvature are projected on the principal plane
into a series of conics whoge axes a', )’ are connected by the
relation

a® (a’— noo (b’—c")

a'(a*—0b") " b (b*—a)
It is not difficult to see that this coincides with the account
given of the lines of curvature in Art. 206.

=1.

274. The theorem that confocal quadrics intersect in lines
of curvature is a particular case of a thcorem due to Dupin,*
which we shall state as follows: If three surfaces intersect at
right angles, and if each pair also intersect at right angles at
their next consecutive common point, then the directions of the
tntersections are the directions of the lines of curvature on each.

Take the point common to all three surfaces as origin, and
the three rectangular tangent plancs as co-ordinate planes; then
the equations of the surfaces are of the form

vzt ayt + 2byz + o2 + 2dzx + &e. =0,
y+ a7 + 22z + '’ + 2d2y + &c. =0,
z+a"z" +20"zy + 'y’ + &e. =0.

® Développements de Géométrie, cinquidme Mémoire. The demonstra-
tion here given is by Professor W. Thomson : see Gregory's Solid Geometry,
p- 263. Cambridge Mathematical Journal, Vol. 1v., p. 62,
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At a consecutive point common to the first and second surfaces,
we must have =0, y=0, z=2" where 2' is very small. The
consecutive tangent planes are

(1+2d2)x+ 22y + 2c2'z =0,
207w+ (1 +2d2") y+2a'2'2=0.

Forming the condition that these should be at right angles and
only attending to the terms where 2’ is of the first degree, we
have 5+ %' =0.

In like manner, in order that the other pairs of surfaces
may cut at right angles at a consecutive point, we must have
b'+8"=0, b"+b5=0, and the three equations cannot be ful-
filled unless we have 3, J', " each separately =0; in which
case the form of the equations shows (Art. 260) that the axes
are the directions of the lines of curvature on each. Hence
follows the theorem in the form given by Dupin; namely, that
of there be three systems of surfaces, such that every surface of one
system 13 cut at right angles by all the surfaces of the other two
systems, then the intersection of two surfaces belonging to different
systems 18 a line of curvature on each. For, at cach point of
it, it is, by hypothesis, possible to draw a third surface cutting
both at right angles.

275. If two surfaces cut at right angles* and if their inter-
section 18 a line of curvature on one, it 1s also a line of curvature
on the other.

Proceeding as in the last article, and taking the origin at
any point of their intersection, we must, in order that they may
cut at right angles, have 4 + &' =0, whence if =0, 5" =0.

Otherwise thus: the direction-cosines of the tangent planes
of the two surfaces being proportional to L, M, N; L', M’, N';
the direction-cosines of their line of intersection are propor-
tional to MN'- M'N, NL'—-N'L, LM'—~ L'M; and in order
that this intersection should be the direction of a line of curva-

* This is also true if they cut at any constant angle.
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ture on the first surface, we must have the condition fulfilled
(Art. 273)
MN'-M'N, NL'-N'L, LM'- ML
L, M, N
dL, dM, dN =0,
which expanded is
(LL + MM’ + NN') (LdL + MdM + NdN)
—(L*+M*+ N*) (L'dL+ M'dM+ N'dN)=0.
If the two surfaces are at right angles, we have
LL + MM + NN =0,
and the condition just written reduces to
L'dL+ M'dM+ N'dN=0,
from which two equations we infer
LdL'+ MdM' + NdN'=0;
but this is the condition that the line of intersection should be
a line of curvature on the second surface.

276. A line of curvature is, by definition, such that
the normals to the surface at two comsecutive points of it
intersect each other. If then we consider the surface gene-
rated by all the normals along a line of curvature, this will be
a developable surface (Note, p. 75) since two consecutive gene-
rating lines intersect. The developable generated by the nor-
mals along a line of curvature manifestly cuts the given surface
at right angles.

“The locus of points where two consecutive generators of
a developable intersect is a curve whose properties will be more
fully explained in the next chapter, and which is called the
cusprdal edge of that developable. Each generator is a tan-
gent to this curve, for it joins two conmsecutive points of the
curve; namely, the points where the generator in question
is met by the preceding and by the succeeding generator (see
Art. 119).

Consider now the normal at any point M of a surface;
through that point can be drawn two lines of curvature
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MNPQ, &c., MN'P'Q, &c.: let the normals at the points
M, N, P, Q, &c. intersect in" C, D, E, &c., and those at
M, N',P,Q in C'yD, E'; then it is evident that the curve
CDE, &c. is the cuspidal edge of the developable generated by
the normals along the first line of curvature while C'D'E’ is
the cuspidal edge of the developable generated by the normals
along the second. The normal at M, as has just been ex-
plained, touches these curves at the points C, C' which are
the two centres of curvature corresponding to the point M.

What has been proved may be stated as follows: The
cuspidal edge of the developable generated by the normals
along a line of curvature, is the locus of one of the systems
of centres of curvature corresponding to all the points of that
line.

277. The assemblage of the centres of curvature C, C'
answering to all the points of a surface is a surface of two
sheets called the surface of centres (see Art. 208). The curve
CDE lies on one sheet while C'D'E’ lies on the other sheet.
Every normal to the given surface touches both sheets of the
surface of centres: for it has been proved that the normal at
M touches the two curves CDE, C'D'E’y and every tangent
line to a curve traced on a surface is also a tangent to the
surface.

Now if from a point, not on a surface, be drawn two con-
secutive tangent lines to a surface, the plane of those lines is
manifestly a tangent plane to the surface; for it is a tangent
plane to the cone which is drawn from the point touching the
surface. But if two consecutive tangent lines intersect on the
surface, it cannot be inferred that their plane touches the
surface. For if we cut the surface by any plane whatever,
any two consecutive tangents to the curve of section (which,
of course, are also tangent lines to the surface) intersect on the
curve, and yet the plane of these lines is supposed not to touch
the surface.

Consider now the two consecutive normals at the points
M, N, these are both tangents to both sheets of the surface
of centres. And since the point C in which they intersect is on
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the first sheet but not necessarily on the second, the plane of
the two normals is the tangent plane to the seoond sheet of
the surface of centres.

The plane of the normals at the points M, N’ is the tangent
plane to the other sheet of the surface of centres. But because
the two lines of curvature through M are at right angles to
each other, it follows that these two planes are at right angles
to each other. Hence, the tangent planes to the surface of centres
at the two points C, C', where any normal meets o, cut each
other at right angles.

It is manifest that for every umbilic on the given surface,
the two sheets of the surface of centres have a point common;
or, in other words, the surface of centres has a double point;
and if the original surface have a line of spherical curvature,
the surface of centres will have a double line. The two sheets
will cut at right angles every where along this double line.

278. It is convenient to define here a geodesic Une on a
surface, and to establish the fundamental property of such
a line; namely, that its osculating plane (see Art. 119) at any
point is normal to the surface. A geodesic line is the form
assumed by a strained thread lying on a surface and joining
any two points on the surface. It is plain that the geodesic
is ordinarily the shortest line on the surface by which the two
points can be joined, since, by pulling at the ends of the
thread, we must shorten it as much as the interposition of the
surface will permit. Now the resultant of the tensions along
two consecutive elements of the curve, formed by the thread,
lies in the plane of those elements, and since it must be de-
stroyed by the resistance of the surface, it is normal to the
surface ; hence, the plane of two consecutive elements of the geo-
desic contains the normal to the surface®

*® I have followed Monge in giving this proof, the mechanical principles
which it involves being so elementary that it seems pedantic to object to
the introduction of them. For the benefit of those who would prefer a
purely geometrical proof I add one or two in the text. For readers familiar
with the theory of maxima and minima it is scarcely necessary to add that



CURVATURE OF SURFACES. 219

The same thing may also be proved geometrically. In the
first place, if two points 4, C in different planes be connected
by joining each to a point B in the intersection of the two
planés, the sum of 4B and BC will be less than the sum of
any other joining lines AB', B'C, if AB and BC make equal
angles with 7'7", the intersection of the planes. For if one
plane be made to revolve about 7’7" until it coincide with the
other, AB and BC become one right line since the angle 77BA4
is supposed to be equal to 7"BC; and the right line AC is
the shortest by which the points 4 and C can be joined.

It follows then that if AB and BC be consecutive elements
of a curve traced on a surface, that curve will be the shortest
line connecting 4 and C when AB and BC make equal
angles with BT, the intersection of the tangent planes at 4
and C.

We see then that 4B (or its production) and BC are con-
secutive edges of a right cone having B7' for its axis. Now
the plane containing two consecutive edges is a tangent plane
to the cone; and since every tangent plane to a right cone
is perpendicular to the plane containing the axis and the line
of contact, it follows that the plane ABC (the osculating plane
to the geodesic) is perpendicular to the plane AB, BT which
is the tangent plane at 4. The theorem of this article is thus
established.

M. Bertrand has remarked (Liouville, t. XIIL, p. 73, cited
by Cayley, Quarterly Journal, Vol. 1., p. 186) that this funda-
mental property of geodesics follows at once from Meunier’s
theorem (see Art. 262). For it is evident, that for an inde-
finitely small arc the chord of which is given, the excess in
length over the chord is so much the less as the radius of
curvature is greater. The shortest arc therefore joining two

a geodesic need not be the absolutely shortest line by which two points on
the surface may be joined. Thus, if we consider two points on a sphere
joined by a great circle, the remaining portion of that great circle, exceed-
ing 180° is a geodesic though not the shortest line connecting the points.
The geodesic however will always be the shortest line if the two points con-
sidered be taken sufficiently near. .
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indefinitely near points 4, B, on a surface is that which has
the greatest radius of curvature, and we have seen that this
is the normal section.

279. Returning now to the surface of centres, I say that
the curve CDE (Art. 277) which is the locus of points of inter-
section of consecutive normals along a line of curvature is
a geodesic on the sheet of the surface of centres on which it
lies. For we saw (Art. 277) that the plane of two consecutive
normals to the surface (that is to say, the plane of two con-
secutive tangents to this curve) is the tangent plane to the
second sheet of the surface of centres and is perpendicular to
the tangent plane at C to that sheet of the surface of centres
on which C lies. Since then the osculating plane of the curve
CDE is always normal to the surface of centres, the curve is
a geodesic on that surface.

280. We have given the equations connected with lines of
curvature on the supposition that the equation of the surface
has been given, as it ordinarily is, in the form ¢ (z, y, z) =0.
As it is convenient, however, that the reader should be able
to find here the formule which have been commonly employed,
we shall conclude this chapter by giving the principal equations
in the form given by Monge and by most subsequent writers,
viz. when the equation of the surface is in the form 2= ¢ (=, ).
‘We use the ordinary notations

dz=pde + qdy, dp=rdx+sdy, dg=sdz+tdy.
We might derive the results in this form from those found
already; for since we have U=¢ (z, y) —2=0, we have
av_, dU_  dU__|
dz D dy~ H F=—h
with corresponding expressions for their second differential
coefficients. - We shall, however, repeat the investigations for

this form as they are usually given.
The equation of a tangent plane is

z—d=pz—-a)+q(y-y)
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and the equations of the normal are
(z-2)+p(2-2)=0, y—y'+g(z—2)=0.

If then aBy be any point on the normal and wyz the point
where it meets the surface, we have

(@=2z)+p(y—2)=0, (B—y)+q(y—2)=0.

And if aBy also satisfy the equations of a second normal, the
differentials of these equations must vanish, or

de+pdz=(y- £)dp, dy+gde=(y-2)dg;
whence, eliminating (y — z), we have the equation of condition
(dx + pdz) dg = (dy + qdz) dp.

Putting in for dz, dp, dg their values already given, and
arranging, we have

B (144 0-pa) + L (144 r=(14+57) 6~ (147" s—par}=0.

This equation determines the projections on the plane of xy of
the two directions in which consecutive normals can be drawn
8o a8 to intersect the given normal.

281. From the equations of the preceding article we can
also find the lengths of the principal radii. The equations

dz+pdz=(y—z)dp, dy+qde=(y-2)dy,

when transformed as above become
{(1+p'—(y—2)r} de+{pg— (v—2) s} dy=0,
{1+g'—(v-2)8 dy+{pg— (v—2) s} dz=0,

whence eliminating dz : dy, we have

(y—2)* (rt—4") - (y—2){(1+¢")r—2pgs+ (14+p") } +(1+p"+4") =0.

Now -z is the projection of the radius of curvature on the
axis of 2; and the cosine of the angle the normal makes with

that radius being V_(IT}'*'—f) , wWe have
R=(y-2)V(1+p'+¢)
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Eliminating then 4 —2z by the help of the last equation, R is
given by the equation
R(rt—s)—R{(1+¢)r—2pgs+ (1 +p") ) V(1 +p' +¢")

: +(1+p"+¢)'=0.

282. From the preceding theorems can be deduced
Joachimsthal’s theorem (see Crelle, Vol. XXX., p. 347) that if a
line of curvature be a plane curve, its plane makes a constant
angle with the tangent plane to the surface at any of the
points where it meets it. Let the plane be 2=0, then the
equation of Art. 278

(d= + pde) dg = (dy + gdz) dp
becomes dxdg=dydp. But we have also pdzr+ gdy =0, con-
sequently pdp +gdg=0; p"+ ¢'=constant. But p'+4* is the
square of the tangent of the angle which the tangent plane

makes with the plane zy; since cosv=m.

Otherwise thus (see Liouville, Vol. x1., p. 87): Let MM',
M'M" be two consecutive and equal elements of a line of
curvature, then the two consecutive normals are two perpen-
diculars to these lines passing through their middle points 7, I",
and C the point of meeting of the normals is equidistant from
the lines MM', M"M". But if from C we let fall a perpen-
dicular CO on the plane MM'M", O will be also equidistant
from the same elements; and therefore the angle CI0=CI'O.
It is proved then that the inclination of the normal to the plane
of the line of curvature remains unchanged as we pass from
point to point of that line.

More generally let the line of curvature not be plane. Then
as before the tangent planes through MM’ and through M'M”
make equal angles with the plane MM'M"”. And evidently
the angle which the second tangent plane makea with a second
osculating plane M'M"M" differs from the angle which it
makes with the first by the angle between the two osculating
planes. Thus we have Lancret’s theorem, that along a line
of curvature the variation in the angle between the tangent plane
to the surface and the osculating plane to the curve ts equal to
the angle between the two osculating planes.
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For example, if a line of curvature be a geodesic it must
be plane. For then the angle between the tangent plane and
osculating plane does not vary, being always right: therefore
the osculating plane itself does not vary. From the same prin-
ciples we obtain a simple proof of the theorem of Art. 275.

283. Finally, to obtain the radius of curvature of any
normal section. Since the centre of curvature aBy lies on
the normal, we have

(@=2)+p(y—2)=0, (B-y)+g(y—2)=0.
Further, we have
(@a—2)'+ (B—y)'+(v—2)'= B
And since this relation holds for three consecutive points of the

section which is osculated by the circle we are considering,
we have

(a—z)dz +(B—y)dy 4 (y—2)dz =0,
(a—z)d’z+ (B —y) A’y + (y—2) d’z2=dx" + dy* + dz".
Combining this last with the preceding equations, we have
a—z _B-y_ _vy-z_ R _ AP +dy' +de
? q 1 V1+p'+¢) pdz+gdy—de’
But differentiating the equation dz = pdx + ¢dy, we have
d'z — pd*c — qd’y = rdx* + 2sdxdy + tdy*,

dz’ + dy’ + (pdz + qdy)*

- ]

whence R=1+4/(1+p"'+¢") T+ Todeody 1 idy

The radius of curvature therefore of a section whose projection
on the plane of y is parallel to y = mz is

svtiop e LR Lt

The conditions for an umbilic are got by expressing that this
value is independent of m, and are

1+9' _pg_1+¢

r 8 t
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CHAPTER XL
CURVES AND DEVELOPABLES.

SECTION 1. PROJECTIVE PROPERTIES.

284. It was proved (p. 13) that two equations represent
a curve in space. Thus the equations U=0, V=0 represent
the curve of intersection of the surfaces U, V.

The degree of a curve in space is measured by the number
of points in which it is met by any plane. Thus, if U, V be
of the m™ and n™ degrees respectively, the surfaces which they
represent are met by any plane in curves of the same degrees,
which intersect in m, n points. The curve UV is therefore of
the mn™ degree.

By eliminating the variables alternately between the two
given equations, we obtain three equations

¢y 2)=0, ¥(z,2)=0, x(x,3) =0,

which are the equations of the projections of the curve on the
three co-ordinate planes. Any one of the equations taken
separately represents the cylinder whose edges are parallel to
one of the axes, and which passes through the curve (Art. 24).
The theory of elimination shows that the equation ¢ (y, 2)=0
obtained by eliminating = between the given equations is of
the mn™ degree. And it is also geometrically evident that
any cone or cylinder* standing on a curve of the »™ degree
is of the »" degree. For if we draw any plane through the
vertex of the cone [or parallel to the generators of the cylinder]
this plane meets the cone in r lines; namely, the lines joining
the vertex to the » points where the plane meets the curve.

* A cylinder is plainly the limiting case of a cone, whose vertex is
at infinity.
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285. Now, conversely, if we are given any curve in space
and desire to represent it by equations, we need only take the
three plane curves which are the projections of the curve on
the three co-ordinate planes; then any two of the equations
¢ (y,2)=0, ¥ (2, 2) =0, x(z,y) =0 will represent the given
curve. But ordinarily these will not form the simplest system
of equations by which the curve can be represented. For if
r be the degree of the curve, these cylinders being each of
the " degree, any two intersect in a curve of r* degree; that
is to say, not merely in the curve we are considering but in
an extraneous curve of the degree »*—r. And if we wish
not merely to obtain a system of equations satisfied by the
points of the given curve, but also to exclude all extraneous
points, we must preserve the system of three projections; for
the projection on the third plane of the extraneous curve in
which the first two cylinders intersect will be different from
the projection of the given curve.

It may be possible by combining the equations of the three
projections to arrive at two equations U=0, V=0, which shall
be satisfied for the points of the given curve, and for no other.
But it is not generally true that every curve in space is the
complete intersection of two surfaces. To take the simplest
example, consider two quadrics having a right line common,
as, for example, two cones having a common edge. The
intersection of these surfaces, which is in general of the fourth
degree, must consist of the common right line, and of a curve
of the third degree. Now since the only factors of 3 are 1
and 3, a curve of the third degree cannot be the complete
intersection of two surfaces unless it be a plane curve; but
the curve we are considering cannot be a plane curve,® for
if so any arbitrary line in its plane would meet it in three
points, but such a line could not meet either quadric in more

* Curves in space which are not plane curves have commonly been
called “curves of double curvature.” In what follows, I use the word
“curve” to denote a curve in space, which ordinarily is not a plane curve,
and I add the adjective “twisted” when I want to state expressly that
the curve is not a plane curve.

Q
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than two, and therefore could not pass through three points
of their curve of intersection.

286. If a curve be either the complete or partial inter-
section of two surfaces U, V, the tangent to the curve at any
point is evidently the intersection of the tangent planes to the
two surfaces, and is represented by the equations

au’' du' dU' ay

mz’c—,--i'y"‘l?'i' dz'+ —-—-—0,
dV' dV' dV' av'
dm’ +y d 7 dl +W7u7=0-

The direction-cosines of the tangent are plainly proportional
to MN'—M'N, NL' - N'L, LM' — L'M, where L, M, &c. are
the first differential coefficients.

An exceptional case arises when the two surfaces touch, in -
which case the point of contact is a double point on their
curve of intersection. All this has been explained before (see
Art. 128). As a particular case of the above, the projection
of the tangent line to any curve is the tangent to its projec-
tion; and when the curve is given as the intersection of the
two cylinders y=¢(z), =+ (), the equations of the tan-
gent are

y=¥=22 (), a-a=W (-0

This may be otherwise expressed as follows: Consider any
element of the curve ds; it is projected on the axes of co-
ordinates into dz, dy, dz. The direction-cosines of this element

are therefore ‘Z’ , Z:Z, Z , and the equations of the tangent are

z—a -y z-2
et k23
ds ds ds
Since the sum of the squares of the three cosines are equal to

unity, we have ds' = da* + dy* + d2".
‘We shall postpone to another section the theory of normals,
radii of curvature, and in short everything which involves the
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consideration of angles, and in this section we shall only
consider what may be called the projective properties of
curves.

287. The theory of curves is in a great measure identical
with that of developables on which account it is necessary to
enter more fully into the latter theory. In fact it was proved
(Art. 119) that the reciprocal of a series of points forming a
curve is a series of planes enveloping a developable. We there
showed that the points of a curve regarded as a system of
points 1, 2, 3, &c. give rise to a system of lines; namely, the
lines 12, 23, 34, &c. joining each point to its next consecutive,
these lines being the tangents to the curve: and that they also
give rise to a system of planes, viz. the planes 123, 234, &c.
containing every three consecutive points of the system, these
planes being the osculating planes of the curve. The as-
semblage of the lines of the system forms a surface whose
equation can be found when the equation of the curve is given.
For the two equations of the tangent line to the curve involve
the three co-ordinates ', ¥/, #', which being connected by two
relations are reducible to a single parameter; and by the
elimination of this parameter from the two equations, we obtain
the equation of the surface. Or, in other words, we must
eliminate z'y'z' between the two equations of the tangent and
the two equations of the curve. We have said (Art. 119)
that the surface generated by the tangents is a developable
since every two consecutive positions of the generating line
intersect each other. The name given to this kind of surface
is derived from the property that it can be unfolded into a
plane without crumpling or tearing. Thus imagine any series
of lines da, Bb, Cc, Dd, &c. (which for the moment we take
at a finite distance from each other) and such that each inter-
sects the consecutive in the points a, 3, ¢, &c.; and suppose
a surface to be made up of the faces 4aB, BbC, CcD, &e.,
then it is evident that such a surface could be developed into
a plane by turning the face AaB round aB as a hinge until
it formed a continuation of BbC; by turning the two, which
we had thus made into one face, round ¢C until they formed

Q2
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a continuation of the next face and so on. In the limit when
the lines Aa, Bb, &c. are indefinitely near, the assemblage of
plane elements forms a developable which, as just explained,
can be unfolded into ome plane.

The reader will find no difficulty in conceiving this from
the examples of developables with which he is most familiar,
viz. a cone or a cylinder. There is no difficulty in folding
a sheet of paper into the form of either surface and in un-
folding it again into a plane. But it will easily be seen to
be impossible to fold a sheet of paper into the form of a sphere
(which is not a developable surface); or, conversely, if we cut
a sphere in two it is impossible to make the portions of the
surface lie smooth in one plane.

288. The plane AaB containing two consecutive gene-
rating lines is evidently, in the limit, a tangent plane to the
developable. It is plain that we might consider the surface
as generated by the motion of the plane 4aB according to
some assigned law, the envelope of this plane in all its positions
being the developable. Now if we consider the developable
generated by the tangent lines of a curve in space, the equa-
tions of the tangent at any point &'y’s’ are plainly functions
of those co-ordinates, and the equation of the plane containing
any tangent and the next consecutive (in other words, the
equation of the osculating plane at any point z'y'z') is also
a function of these co-ordinates. But since z'y'z’ are connected
by two relations, namely, the equations of the curve; we can
eliminate any two of them, and so arrive at this result, that
a developable 1s the envelope of a plane whose equation contains
a single variable parameter. To make this statement better
understood we shall point out an important difference between
the cases when a plane curve is considered as the envelope of
a moveable line, and when a surface in general is considered as
the envelope of a moveable plane.

289. The equation of the tangent to a plane curve is a
function of the co-ordinates of the point of contact; and these
two co-ordinates being connected by the equation of the curve,
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we can cither eliminate one of them, or else express both in
terms of a third variable so as to obtain the equation of the
tangent as a function of a single variable parameter. The
converse problem to obtain the envelope of a right line whose
equation includes a variable parameter has been discussed,
Higher Plane Curves, p. 93. Let the equation of any tan-
gent line be u=0, where u is of the first degree in = and y,
and the constants are functions of a parameter a. Then
the line answering to the value of the parameter a+4 is
u+du h + == du ¥ + &c. ; and the point of intersection of these
da 17 3da 12757 P
d h d*
"7t 124
And, in the limit, the point of intersection of a line with the
next consecutive (or, in other words, the point of contact of
any line with its envelope) is given by the equations u=0,

d . . . .
¢T: =0. If from these two equations we eliminate @ we obtain

two lines is given by the equations u = + &ec.=0.

the locus of the points of intersection of each line of the system
with the next consecutive; that is to say, the equation of the
envelope of all these lines. It is easy to prove that the result
of this elimination represents a curve to which u is a tangent.
For if in » we replace a by its value, in terms of = and g,

du du  (du\ = du da
derived from the equation = We have = ((TJ: ) + 5 7

du duw\  du da du du .

and — ( dy) + o P where (d_z)’ (@) are the diffe-
rentlals of » on the snpposition that a is constant. And since

du du

E—O it is evident that dz’ & are the same as on the sup-

position that a is constant. It follows that the eliminant in
question denotes a curve touched by u.

If it be required to draw a tangent to this curve through
any point, we have only to substitute the co-ordinates of that
point in the equation =0, and determine a so as to satisfy
that equation. This problem will have a definite number of
solutions, and the number will plainly be the number of tan-
gents which can be drawn to the curve from an arbitrary
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point; that is to say, the class of the curve. For example,
the envelope of the line

aa’ + 3ba’ + 8ca+ d=0,

where a, b, ¢, d, are linear functions of the co-ordinates, is
plainly a curve of the third class.

290. Now let us proceed in like manner with a surface.
The equation of the tangent plane to a surface is a function
of the three co-ordinates, which being connected by only one
relation (viz. the equation of the surface), the equation of the
tangent plane, when most simplified, contains two variable
parameters. The converse problem is to find the envelope of
a plane whose equation w=0 contains two variable parameters
a, B. The equation of any other plane answering to the
values a+ %, 8+ % will be

’
wt(p i) L (r Dhrao)=0.
Now in the limit, when % and % are taken indefinitely small,
they may preserve any finite ratio to each other A=Ak We
see thus that the intersection of any plane by a consecutive
one is not a definite line, but may be any line represented by -
the equations u=0, Za+xgz..o where A is indeterminate.

But we see also that all planes consecutive to u pass through
di_o du_,

‘da ' dBT

From these three equations we can eliminate the parameters
a, B, and so find the locus of all those points where a plane of
the system is met by the series of consecutive planes. It is
proved, as in the last article, that the surface represented by
this eliminant is touched by u. If it be required to draw a
tangent plane to this surface through any point, we have only
to substitute the co-ordinates of that point in the equation u =0,
The equation then containing two indeterminates « and 8 can
be satisfied in an infinity of ways; or, as we know, through
a given point an infinity of tangent planes can be drawn to
the surface, these planes enveloping a cone.

the point given by the equations u =0
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Suppose, however, that we either consider 8 as constant,
or as any definite function of a, the equation of the tangent
plane is reduced to contain a single parameter, and the envelope
of those particular tangent planes which satisfy the assumed con-
dition is a developable. Thus, again, we may see the analogy
between a developable and a curve. When a surface is con-
sidered as the locus of a number of points connected by a given
relation, if we add another relation connecting the points we
obtain a curve traced on the given surface. So if we consider
a surface as the envelope of a series of planes connected by
a single relation, if we add another relation connecting the
planes we obtain a developable enveloping the given surface.

291. Let us now see what properties of developables are to
be deduced from considering the developable as the envelope
of a plane whose equation contains a single variable parameter.
In the first place it appears that through any assumed point
can be drawn, not as before an infinity of planes of the system,
forming a cone; but a definite number of planes. Thus if it
be required to find the envelope of aa®+ 3ba’+ 3ca+ d, where
a, b, ¢, d represent planes, it is obvious that only three planes
of the system can be drawn through a given point, since on
substituting the co-ordinates of any point we get a cubic for a.
Again, any plane of the system is cut by a consecutive plane
in a definite line; namely, the line =0, Z—Z:O; and if we
eliminate a between these two equations we obtain the sur-
face generated by all those lines, which is the required
developable.

It is proved, as at Art. 289, that the plane u touches the
developable at every point which satisfies the equations u =0,
%=0; or, in other words, touches along the whole of the line
of the system corresponding to u. It was proved (Art. 107)
that in general when a surface contains a right line the tangent
plane at each point of the right line is different. But in the
case of the developable the tangent plane at every point is
the same. If z be the plane which touches all along the line
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xy, the equation of the surface can be thrown into the form
z¢p +y'y =0 (see p. 75).*

292. Let us now consider three consecutive planes of the
system, and it is evident as before that their intersection satisfies

the equations u =0, %:0, %=O. For any value of @, the

point is thus determined where any line of the system is met
by the next consecutive. The locus of these points is got by
eliminating « between these equations. We thus obtain two
equations in z, y, 2, one of them being the equation of the
developable. These two equations represent a curve traced
on the developable. Thus it is evident that starting with the
definition of a developable as the envelope of a moveable plane,
we are led back to its generation as the locus of tangents to
a curve. For the consecutive intersections of the planes form
a series of lines, and the consecutive intersection of the lines
arc a series of points forming a curve to which the lines are
tangents. We shall presently show that the curve is a cuspidal
edget on the developable.

* It seems unnecessary to enter more fully into the subject of envelopes
in general, since what is said in the text applies equally if u, instead of
representing a plane, denote any surface whose equation includes a variable
du
-
the system is intersected by the consecutive, the characteristic of the
envelope. For the nature of this curve depends only on the manner in
which the variables z, y, = enter into the function , and not on the manner
in which the constants depend on the parameter. Thus when u represents
a plane, the characteristic is always a right line, and the envelope is the
locus of a system of right lines. When u represents a sphere, the cha-
racteristic, being the intersection of two consecutive spheres, is a circle
and the envelope is the locus of a system of circles. And so envelopes
in general may be divided into families according to the nature of the
characteristic.

+ Monge has called this the “ardte de rebroussement,” or “edge of
regression” of the developable. There is a similar curve on every envelope,
namely, the locus of points in which each *characteristic” is met by the
next consecutive. The part of the characteristic on one side of this curve
generates one sheet of the envelope, and that on the other side generates
another sheet. The two sheets touch along this curve which is their

parameter. Monge calls the curve u =0, 0, in which any surface of
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293. Four consecutive planes of the system will not meet

in a point unless the four conditions be fulfilled =0 d—"=o,
! da

2 8

%=O, Z—at—:=0. It is in general possible to find certain
values of a, for which this condition will be satisfied. For if
we eliminate z, y, 2, we get the condition that the four planes,
whose equations have been just written, shall meet in a point.
This condition is a function of a; and by equating this function
to nothing, we shall in general get a determinate number of
values of a for which the condition is satisfied. There are
therefore in general a certain number of points of the system
through which four planes of the system pass; or, in other
words, a certain number of points in which three consecutive
lines of the system intersect. We shall call these, as at Higher
Plane Curves, p. 28, the stationary points of the system ; since
in this case the point determined as the intersection of two
consecutive lines, coincides with that determined as the inter-
section of the next consecutive pair.

Reciprocally, there will be in general a certain number of
planes of the system which may be called stationary planes.
These are the planes which contain four consecutive points
of the system ; for in such a case the plancs 123, 234 evidently
coincide.

294. We shall now show how, from Pliicker’s equations con-
necting the ordinary singularities of plane curves,®* Mr. Cayleyt

common limit, and is a cuspidal edge of the envelope. Thus in the case
of a cone the parts of the generating lines on opposite sides of the vertex
generate opposite sheets of the cone, and the cuspidal edge in this case
reduces itself to a single point, namely, the vertex.

* These equations are as follows: see Higher Plane Curves, p. 91.
Let u be the degree of a curve, » its class, ¢ the number of its double
points, = that of its double tangents, x the number of its cusps, « that of
its points of inflexion; then

v= p(u-1)-20-3c; p= »(r-1)-2r-38,
t=3u(p-2)-63-8r; x=3v(v-2)-67-8u.
Whence also ¢t ~x=3(v-p); 2(7-8)=(v-p)(»+pu-9)

t+ See Liouville’s Journal, Vol. x., p. 245; Cambridge and Dublin

Mathematical Journal, Vol. v., p. 18.
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has deduced equations connecting the ordinary singularities of
developables. We shall first make an enumeration of these
singularities. 'We speak of the “points of the system,” the
“lines of the system,” and the *planes of the system” as ex-
plained (Art. 119).

Let m be the number of points of the system which lie in
any plane; or, in other words, the degree of the curve which
generates the developable.

Let n be the number of planes of the system which can be
drawn through an arbitrary point. We have proved (Art. 291)
that the number of such planes is definite. We shall call this
number the class of the system.

Let » be the number of lines of the system which intersect
an arbitrary right line. It is plain that if we form the con-

dition that u, Z—: and any assumed right line may intersect,

the result will be a function of @, which being equated to
nothing gives a definite number of values of a. Let » be the
number of solutions of this equation. We shall call this
number the rank of the system, and.we shall show that all
other singularities of the system can be expressed in terms
of the three just enumerated.

Let a be the number of stationary planes, and 8 the number
of stationary points (Art. 293).

Two non-consecutive lines of the system may intersect.
When this happens we call the point of meeting a * point
on two lines,” and their plane a *plane through two lines.”
Let « be the number of “points on two lines” which lie
in a given plane, and y the number of * planes through two
lines” which pass through a given point.

In like manner we shall call the line joining any two points of
the system a ¢ line through two points,” and the intersection of any
two planes a “ line in two planes.” Let g be the number of * lines
in two planes” which lie in a given plane, and 4 the number of
¢lines through two points” which pass through a given point.

The developable has other singularities which will be deter-
mined in a subsequent chapter, but these are the singularities
which Pliicker’s equations (note, p. 233) enable us to determine.
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295. Consider now the section of the developable by any
plane. It is obvious that the points of this curve are the traces
on its plane of the “lines of the system,” while the tangent
lines of the section are the traces on its plane of the *planes
of the system.” The degree of the section is therefore r,
since it is equal to the number of points in which an arbitrary
line drawn in its plane meets the section, and we have such
a point whenever the line meets a “line of the system.”

The class of the section is plainly n. For the number of
tangent lines to the section drawn through an arbitrary point
is evidently the same as the number of * planes of the system”
drawn through the same point.

A double point on the section will arise whenever two
“lines of the system’ meet the plane of section in the same
point. The number of such points by definition is =. The
tangent lines at such a double point are usually distinct because
the two planes of the system corresponding to the lines of the
system intersecting in any of the points x are commonly
different.

The pumber of double tangents to the section is in like
manner g; since a double tangent arises whenever two planes
of the system meet the plane of section in the same line.

The m points of the system which lie in the plane of section
are cusps of the section. For they are double points as being
the intersection of two lines of the system; and the tangent
planes at these points coincide, since the two consecutive lines,
intersecting in one of the points m, lie in the same plane of
the system. This proves, what we have already stated, that
the curve whose tangents generate the developable is a cuspidal
edge on the developable; for it is such that every plane mects
that surface in a section which has as cusps the points where
the same plane meets the curve.

Lastly, we get a point of inflexion (or a stationary tangent)
wherever two consecutive planes of the system coincide. The
number of points of inflexion is therefore a.

We are to substitute then in the formuls, note p. 233,

p=r, v=n, 8=z, =g, K=m, 1=a.
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And we have
n= r(r—1)—2z-3m; r= n(n—1)—2g-3a,
a=3r(r—2)—6x—8m; m=3n(n-2)- 6g—8a,
whence also
m—a=38(r—n); 2(@—g)=(F-n)(r+n-09).

296. Another system of equations is found by considering
the cone whose vertex is any point and which stands on the
given curve. It appears at once by considering the section
of a cone by any plane that the same equations connect the
double points, double tangent planes, &c. of cones, which con-
‘nect the double points, double tangents, &c. of plane curves.

The edges of the cone which we are now considering are
the lines joining the vertex to all the points of the system;
and the tangent planes to the cone are the planes connecting
the vertex with the lines of the system, for evidently the plane
containing two consecutive edges of the cone must contain the
line joining two consecutive points of the system.

The degree of the cone is plainly the same as the degree of
the curve and is therefore m.

The class of the cone is the same as the number of tangent
planes to the cone which pass through an arbitrary line drawn
through the vertex. Now since each tangent plane contains
a line of the system, it follows that we have as many tangent
planes passing through the arbitrary line as there are lines
of the system which meet that line. The number sought is
therefore ».*

A double edge of the cone arises when the same edge of
the cone passes through two points of the system, or 8=A4.
The tangent planes along that edge are the planes joining
the vertex to the lines of the system which correspond to
each of these points.

* It is easy to see that the class of this cone is the same as the degree
of the developable which is the reciprocal of the points of the given system.
Hence, the degree of the developable generated by the tangents to any curve
ts the same as the degree of the developable which ts the reciprocal of the
points of that curve, see note, p. 124,
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A double tangent plane will arise when the same plane
through the vertex contains two lines of the system; or r=y.
A stationary or cuspidal edge of the cone will only exist
when there is a stationary point in the system; or x=8.
Lastly, a stationary tangent plane will cxist when a plane
containing two consecutive lines of the system passes through
the vertex; or ¢=n.
Thus we have p=m, v=r, 8=k, 7=y, k=8, ¢=n.
Hence by the formule (note p. 233)
r=m(@m—1)-2k-38; m= r(r—1)—2y—3n,
n=3m(m—2)—6k—88; B=3r(r—2)—6y—8n.
Whence also
(n-B)=8(r—m); 2(y-k)=(r—m)(r+m-9).
And combining these equations with those found in the last
article, we have also
a—B=2(n-m); z—y=n—m; 2(g—h)=(n—m)(n+m-17).
Pliicker’s equations enable us, when three of the singularities
of a plane curve are given, to determine all the rest. Now
three quantities », m, » are common to the equations of this
and of the last article. Hence, when any three of the singu-
larities which we have enumerated, of a- curve in space, are
gtven, all the rest can be found.

297. To illustrate this theory, let us take the developable
which is the envelope of the plane

k(k—1) _
0 et 4 &c. =0,

where ¢ i8 a variable parameter, a, b, ¢, &c. represent plancs,
and % is any integer.

The class of this system is obviously %, and the equation
of the developable being the discriminant of the preceding
equation, its degree is 2(k—1); hence »=2(k—1).

Also it is easy to see that this developable can have no
stationary planes. For in general if we compare coefficients
in the equations of two planes, three conditions must be satisfied
in order that the two planes may be identical. If then we

at* + kbt +
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attempt to determine ¢ so that any plane may be identical
with the consecutive one, we find that we have three conditions
to satisfy, and only one constant ¢ at our disposal.

Having then n==%, r=2(k—1), a=0, the equations of the
last two articles enable us to determine the remaining singu-
larities. The result is

m=3(k—-2); B=4(k—-3); xz=2(k—-2)(k-3);

k—-1)(k-2 9%* — 53k + 80
y=2(k-1)(k-3); .9=(—“‘—)2(—2; ' h=—‘2— .
The greater part of these values can be obtained independently
as at Higher Plane Curves, p. 94. But in order to economize
space we do not enter into details.

298. The case considered in the last article, which is that
when the variable parameter enters only rationally into the
equation, enables us to verify easily many properties of de-

du

velopables. Since the system u=0, 7= is obviously re-

ducible to
a4+ (k—1) b+ &e. =0, btv'+(k—1) ct*™+ &e. =0,
and the system » =0, %=0’ gt_‘:‘ =0 is reducible to

at?+ (k—2) b8+ &e.=0, b+ (k—2) et + &e. =0,
o+ (k—2) de* + &e.=0;

it follows that @ is itself a plane of the system (namely, that
corresponding to the value ¢=o0 ), ab is the corresponding line,
and abc the corresponding point. Now we know from the
theory of discriminants (see Higher Algebra, p. 47) that the
equation of the developable is of the form a¢ + b*yr =0, where
4 is the discriminant of u when in it a is made=0. Thus we
verify what was stated (Art. 291) that a touches the develop-
able along the whole length of the line abd. Further, 4 is
itself of the form d¢'+c™'. If now we consider the section
of the developable by one of the planes of the system (or, in
other words, if we make a=0 in the equation of the develop-
able), the section consists of the line ab twice and of a curve
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of the degree »—2; and this curve (as the form of the equation
shows) touches the line ab at the point abc, and consequently
meets it in » —4 other points. These are all * points on two
lines,” being the points where the line ab meets other lines
of the system. And it is generally true that if » be the rank
of a developable eack line of the system meets r— 4 other lines
of the system. The locus of these points forms a double curve
on the developable, the degree of which is «, and the other
properties of which will be given in a subsequent chapter,
where we shall also determine certain other singularities of
the developable.

We add here a table of the singularities of some special
sections of the developable. The reader, who may care to
examine the subject, will find no great difficulty in establishing
them. T have given the proof of the greater part of them,
Cambridge and Dublin Mathematical Journal, Vol. v., p. 24,

Section by a plane of the system
p=r—2, v=n—1, i=a, k=m—38, r=9g—n+2, §=x—2r+8.
Cone whose vertex is a point of the system
p=m—1, v=r—2, ¢=n—38, k=B, 1=y—2r+8, d=h-m+2.
Section by plane passing through a line of the system

p=r—1, v=n, t=a+1, k=m—2, r=g—1, §=x-r+4.
Cone whose vertex is on a line of the system

p=myv=r—1, 1=n-2, x=8+1, r=y—r+4, d=h~-1.
Section by plane through two lines
p=r—2, v=n, t=a+2, k=m—4, T=9-2, §=2-2r+9.
Cone whose vertex is a point on two lines
p=my v=r—2, t=n—4, k=B+2, T=y—2r+9, §=h-2.
Section by a stationary plane
p=r—38, v=n-2, 1=a—1, k=m—4, T=g-2n+6, d=z—-38r+13.
Cone whose vertex is a stationary point
p=m=—2, y=r—3, t=n—4, k=B-1, T=y—3r+13, §=h—2m+6.
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SECTION II. CLASSIFICATION OF CURVES.

299. The following enumeration rests on the principle that
a curve of the degree r meets a surface of the degree p in
pr points. This is evident when the curve is the complete
intersection of two surfaces whose degrees are m and =.
For then we have r=mn and the three surfaces intersect in
mnp points. It is true also by definition when the surface
breaks up into p planes. We shall assume that, in virtue
of the law of continuity, the principle is generally true.

The use we make of the principle is this. Suppose that
we take on a curve of the degree r, as many points as are
sufficient to determine a surface of the degree p; then if the
number of points so assumed be greater than pr, the surface
described through the points must altogether contain the curve;
for otherwise the principle would be violated.

We assume in this that the curve is a proper curve of the
degree r, for if we took two curves of the degrees m and =
(where m+n=r), the two together might be regarded as a
complex curve of the degree », and if either lay altogether on
any surface of the degree p, of course we could take on that
curve any number of points common to the curve and surface.
All this will be sufficiently illustrated by the examples which
follow.

300. There vs mo line of the first degree but the right line.
For through any two points of a line of the first degree and
any assumed point we can describe a plane which must alto-
gether contain the line, since otherwise we should have a line
of the first degree meeting the plane in more points than one.
In like manner we can draw a second plane containing the
line, which must therefore be the intersection of two planes;
that is to say, a right line.

There 18 no proper line of the second degree but a conic.
Through any three points of the line we can draw a plane,
which the preceding reasoning shows must altogether contain
the line. The line must therefore be a plane curve of the
second degree.
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The exception noted at the end of the last article would
occur if the line of the second degree consisted of two right
lines not in the same plane; for then the plane through three
points of the system would only contain one of the right lines.
In what follows we shall not think it nccessary to notice this
again, but shall speak only of proper curves of their respective
orders.

301. A curve of the third degree must either be a plane
cubtc or the partial intersection of two quadrics, as explained,
Art. 285.*

For through scven points of the curve and any two other
points describe a quadric; and as before, it must altogether
contain the curve. If the quadric break up into two planes,
the curve may be a plane curve lying in one of the planes.
As we may evidently have plane curves of any degrec we
shall not think it nccessary to notice these in subscquent cascs.
If then the quadric do not break up into plancs, we can draw
a second quadric through the seven points, and the intersection
of the two quadrics includes the given cubic. The complete
intersection being of the fourth degree, it must be the cubic
together with a right linc; it is proved therefore that the
only non-planc cubic is that explained, Art. 285.

302. The conc containing a curve of the m™ degrce and
whose vertex is a point on the curve, is of the degrce m—1;
hence the cone containing & cubic and whose vertex is on the
curve is of the sccond degree.t We can thus describe a twisted

* Non-plane curves of the third degree appear to have been first noticed
by Mobius in his Barycentric Calculus, 1827. Some of their most
important properties are given by M. Chasles in Note XXXIIL. to his
Aperqu Historique, 1837, and in a paper in Liouville's Journal for
1857, p. 397. More recently the properties of these curves have been
treated of by M. Schriter, Crelle, Vol. Lvl, and by Professor Cremona
of Milan, Crelle, Vol. LvIIL, p. 138. Considerable use has been made of
the latter paper in the articles which immediately follow.

+ M. Chasles hastily said that conversely the locus of the vertex of
a cone of the second degree passing through six points, is the cubic through

4 these points. But as Mr. Weddle pointed out, Cambridge and Dublin
R
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cubic through stz given points. For we can describe a cone
of the second degree of which the vertex and five edges arc
given, since evidently we are thus given five points in the
section of the cone by any plane, and can thus determine that
section. If then we arc given six points a, d, ¢, d, ¢, f, we
can describe a cone having the point a for vertex, and the
lines ab, ac, ad, ae, af for edges; and in like manner a cone
having & for vertex and the lines da, bc, bd, be, bf for edges.
The intersection of these cones consists of the common edge ab
and of a cubic which is the required curve passing through
the six points.

The theorem that the lines joining six points of a cubic
to any seventh are edges of a quadric cone, leads at once to
the following by Pascal’s theorem: “The lines of intersection
of the planes 712, 745; 723, 756; 734, 761 lie in one plane.”
Or in other words, “the points where the planes of three con-
secutive angles 567, 671, 712 meet the opposite sides lie in
one plane passing through the vertex 7.”* Conversely if this
be true for two vertices of a heptagon it is true for all the
rest: for then these two vertices are vertices of cones of the
second degrec containing the other points, which must there-
fore lie on the cubic which is the intersection of the cones.

308. A cubic traced on a hyperboloid of one sheet meets all its
generators of one system once, and those of the other system twice.

Any generator of a quadric meets in two points its curve
of intersection with any other quadric, namely, in the two points
where the generator meets the other quadric. Now when the’

Mathematical Journal, Vol. v., p. 69, the locus of the vertex is not a
curve but a surface, namely, that obtained by eliminating A, u, v between
the four differentials of S + AU + u¥V + vW, where 8, U, ¥V, W are any
surfaces through the six points.

The locus of the vertex of a cone of the second order which passes
through seven points s a curve and is of the sixth order. When eight
points are given four cones can be described through them. See appendix
“on the order of systems of equations.”

* M. Cremona adds that when the six points are fixed and the seventh
variable, this plane passes through a fixed chord of the cubic.
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intersection consists of a right llne and a cubic, it is cvident
that the generators of the same system as the line, since they
do not meet the line, must meet the cubic in the two points;
while the generators of the opposite system, since they meet
the linc in one point, only meet the cubic in one other point.
Conversely we can describe a system of hyperboloids through
a cubic and any chord which meets it twice. For take
seven points on the curve, and an eighth on the chord joining
any two of them; then through these cight points an infinity
of quadrics can be described. But since three of these points
are on a right line, that line must be common to all the
quadrics, as must also the cubic on which the seven points lic.

304. The question to find the envelope of af'— 3bt* + 3ct—d .
(where a, b, ¢, d represent planes and ¢ is a variable parameter)
is a particular case of that discussed, Art. 297. We have

r=4, m=n=38, a=B=0, x=y=0, g=h=1.

Thus the system is of the same naturc as the reciprocal system,
and all theorems respecting it arc consequently two-fold. The
system being of the third degrec must be of the kind we are
considering ; and this also appears from the equation of the
envelope

(ad = be)* =4 {b" — ac) (¢* - bd), .
for it is easy to see that any pair of the surfaces ad — be, * — ac,
' —bd, have a right line common, while there is a cubic
common to all three, which is a double line on the envelope.

It appears from the table just given that every plane con-
tains one “line in two planes’”; or that the section of the
devclopable by any plane has one double tangent; while re-
ciprocally through any point can be drawn one line to meet
the cubic twice ; the conc therefore, whose vertex is that point,
and which stands on the curve has one double point; or in
other words, the cubic 13 projected on any plane into a cubic
having a double point.

The three points of inflexion of a plane cubic are in one
right line. Now it was proved (Art. 296) that the points of in-
flexion correspond to the three planes of the system which can
be drawn through the vertex of the cone. Hence the three

R2
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points of the system which correspond to the three planes which
can be drawn through any point O, lie in one plane passing
through that point.*

Further it is known that when a plane cubic has a conjugate
point, its three points of inflexion are real; but that when the cubic
has a double point, the tangents at which are real, then two of
the points of inflexion are imaginary. Hence if the chord which
can be drawn through any point O meet the cubic in two real
points, then two of the plancs of the system which can be drawn
through O are imaginary. Reciprocally, if through any line
two real planes of the system can be drawn, then any planc
through that line meets the curve in two imaginary points, and
only one real one.t

305. These theorems can also be easily established alge-
braically ; for the point of contact of the plane at®— 3b¢* + 3ct — d,
being given by the equations at =b, bt=c, ct=d, may be denoted
by the co-ordinates a=1, b=t, c=¢', d=¢". Now the threo
values of ¢ answering to planes passing through any point are
given by the cubic a't’ — 35'¢" + 3¢'t — d' = 0, whence it is evident
from the values just found, that the points of contact lie in the
plane a'd — 3b'c + 3cb —d'a=0. But this plane passes through
the given point. Hence the intersection of three planes of the system
lses tn the plane of the corresponding points. The equation just
written is unaltered if we interchange accented and unaccented
letters. Hence if a point A be in the plane corresponding to a
point B, B will be in the plane corresponding to A. And again,
the planes which correspond to all the points of a line AB pass
through a fixed right line, namely the intersection of the planes
corresponding to 4 and B. The relation between the lines is
plainly reciprocal. To any plane of the system will correspond
in this sense the corresponding point of the system ; and to a line
in two planes corresponds a chord joining two points.

The three points where any plane Adae + Bb + Cc + Dd
meets the curve have their ¢'s given by the equation

* Chasles, Liouville, 1857. Schroter, Creile, Vol. LvI.
t Joachimsthal, Crelle,Vol. L¥1., p. 45. Cremona,Cyells, Vol. LVIII., p. 146.
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D'+ Cf'+ Bt+ A=0, and when this is a perfect cube, the
plane is a plane of the system. From this it follows at once, as
Joachimsthal has remarked, that any plane drawn through the
intersection of two real planes of the system meets the curve
in but one real point. For in such a case the cubic just written
is the sum of two cubes and has but one real factor.

306. We have scen (Art. 124) that a twisted cubic is the
locus of the poles of a fixed plane with regard to a system
of quadrics having a common curve. More gencrally such
a curve is expressed by the result of the elimination of A
between the system of equations Aa=a', Nb=10', Ac=c. Now
since the anharmonic ratio of four planes whose equations are
of the form Ma=4da, Na=a', &c. depends only on the
coefficients A, N, &c. (sec Conics, Art. 56), this mode of
obtaining the equation of the cubic may be interpreted as
follows: Let there be a system of planes through any line aa’,
a homographic system through any other line 44', and a third
through cc/, then the locus of the intersection of three corre-
sponding planes of the systcms is a twisted cubic. The lines
aa', bb'y cc' are evidently lines through two points, or chords
of the cubic. Reciprocally, if three right lines be homo-
graphically divided, the plane of three corresponding points
envelopes the developable generated by a twisted cubic, and
the three right lines are * lines in two planes” of the system.

The line joining two corresponding points of two homo-
graphically divided lines, touches a conic when the lines are
in one plane, and generates a hyperboloid when they are not.
Hence given a series of points on a right line and a homo-
graphic series either of tangents to a conic or of gencrators
of a hyperboloid, the planes joining each point to the corre-
sponding line envelope a developable as above stated.

Ex. If the four faces of a tetrahedron pass through fixed lines, and
three vertices move in fixed lines, the locus of the remaining vertex is
a twisted cubic. Any number of positions of the base form a system
of planes which divide homographically the three lines on which the
corners of the base move, whence it follows that the three planes which

intersect in the vertex are corresponding planes of three homographic
systems.
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307. From the theorems of the last article it follows con-
versely that ¢ the planes joining four fixed points of the system
to any variable line through two points form a constant an-
harmonic system’ and “four fixed planes of the system divide
any ‘line in two planes’ in a constant anharmonic ratio.” It
is very easy to prove these theorems independently. Thus
we know that the section of the developable by any plane 4* of
the system, consists of the corresponding line a of the system
twice, together with a conic to which all other planes of the
system are tangents. Thus then the anharmonic property of
the tangents to a conic shows at once that four planes cut
any two lines in two planes, AB, AC in the same anharmonic
ratio ; and in like manner 4 C is cut in the same ratio as CD.

As a particular case of these theorems, since the lines of
the system are both lines in two plancs and lines through
two points; four fixed planes of the system cut all the lines of
the system in the same anharmonic ratio; and the planes joining
Jour fixed points of the system to all the lines of the system are
a constant anharmonic system.

Many particular inferences may be drawn from these
theorems as at Conics, p. 273, which see.

Thus consider four points @, B, v, 8; and let us express
that the planes joining them to the lines @, 3, and a8, cut
the line 48 homographically. Let the planes 4, B meet o8 in
points ¢, ¢. Let the planes joining the line a to B, and the
line & to a meet 43 in %, . Then we have

(thyd) = (8} = ki y8).
If the points ¢, &' coincide, it follows from the first equation
that the points %, ¢ coincide, and from the second that the
points ¢, ¢, ¢, & are a harmonic system. Thus we obtain
Prof. Cremona’s theorem, that if a series of chords meet the
line of intersection of any plane 4 with the line joining the
corresponding point a to any line b of the system, then they

¢ It is often convenient to denote the planes of the system by capital
letters, the corresponding lines by italics, and the corresponding points
by Greek letters.



CLASSIFICATION OF CURVES. 247

will also meet the line of intersection of the plane B with
the line joining 8 to a; and will be cut harmonically where
they meet these two lines and where they meet the curve.

The reader will have no difficulty in seeing when it will
happen that one of these lines passes to infinity, in which case
the other line becomes a diameter.

808. We have seen that the sections of the developable
by the planes of the system are conics. We may therefore
investigate the locus of the centres of these conics, or more
generally the locus of the poles with respect to these conics
of the intersections of their planes with a fixed plane. Since
in every plane we can draw a “line in two planes” we may
suppose that the fixed plane passes through the intersection
of two planes of the system 4, B.

Now consider the section by any other plane C, the traces
on that plane of A and B are tangents to that section, and
the pole of any line through their intersection lies on their
chord of contact, that is to say, lies on the line joining the
points where the lines of the system a, b, meet C. But since
all plancs of the system cut the lines a, & homographically,
the joining lines generate a hyperboloid of one sheet, of which
a and b are generators. However then the plane be drawn
through the line 4B, the locus of poles is this hyperboloid.
But further, it is evident that the pole of any plane through
the intersection of 4, B lics in the plane which is the harmonic
conjugate of that plane with respect to thosc tangent planes.
The locus therefore which we seek is a plane conic. It is plain
also from the construction that since the poles when any plane
A+AB is taken for the fixed plane, lie on a conic in the
planc 4 —ABj; conversely the locus when the latter is taken
for fixed plane is a conic in the former plane.*

309. In conclusion, it is obvious enough that cubics may
be divided into four species according to the different sections
of the curve by the plane at infinity. Thus that plane may

* The theorems of this article are taken from Prof. Cremona’s paper.
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either meet the curve in three real points; in one real and
two imaginary points; in one real and two coincident points,
that is to say, a line of the system may be at infinity; or
lastly, in three coincident points, that is to say, a plane of
the system may be altogether at infinity. These species have
been called the cubical hyperbola, cubical ellipse, cubical hyper-
bolic parabola, and cubical parabola. It is plain that when
the curve has real points at infinity, it has branches proceeding
to infinity, the lines of the system corresponding to the points
at infinity being asymptotes to the curve. But when the
line of the system is itself at infinity as in the third and fourth
cases, the branches of the curve are of a parabolic form pro-
ceeding to’infinity without tending to approach to any finite
asymptote. Since the quadric cones which contain the curve
become cylinders when their vertex passes to infinity, it is
plain that three quadric cylinders can be described containing
the curve, the edges of the cylinders being parallel to the
asymptotes. Of course in the case of the cubical ellipse two
of these cylinders are imaginary: in the case of the hyper-
bolic parabola there are only two cylinders, one of which is
parabolic, and in the case of the cubical parabola there is
but one cylinder which is parabolic.

It follows from Art. 304 that in the case of the cubical
ellipse the plane at infinity contains a real line in two planes,
which is imaginary in the case of the cubical hyperbola. That
is to say, in the former case, but not in the latter, two planes
of the system can be parallel. From the anharmonic property
we infer that in the case of the cubical parabola three planes
of the system divide in a constant ratio all the lines of the
system. In this case all the planes of the system cut the
developable in parabolas. The system may be regarded as
the envelope of «f’— 3yt + 32t —d where d is constant. For
further details we refer to Prof. Cremona’s Memoir.

310. We proceed now to the classification of curves of higher
orders. We have proved (Art. 299) that through any curve
can be described two surfaces, the lowest valucs of whose de-
grees in cach case there is no difficulty in determining. It
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is evident then on the other hand that if commencing with
the simplest values of x and v we discuss all the different
cases of the intersection of two surfaces whose degrees are
p and v, we shall include all possible curves up to the " order,
the value of this limit » being in each case easy to find when
pu and v are given. With a view to such a discussion we
commence by investigating the characteristics of the curve of
intersection of two surfaces.®* We have obviously m=puv,
and if the surfaces do not touch, as we shall suppose they
do not, their curve of intersection has no multiple points (p. 95),
and therefore 8=0. In order to determine completely the
character of the system, it is necessary to know one more
of its singularities, and we choose to scek for r, the degree
of the developable generated by the tangents. Now this de-
velopable is got by eliminating «'y'z" between the four equations

U'=0, V'=0, Le+ My+ Nz+ Pw=0, L'c+ M'y+ N'z+ Pw=0,
where L, M, &c. are the first differential coefficients. These
equations are respectively of the degrees u, v, u—1, v—1:
and since only the last two contain zyz, these variables enter
into the result in the degree

wr(v=1)+pv(p—1)=pv(p+v-2)
Otherwise thus: the condition that a line of the system
should intersect the arbitrary line
ax+ By +vz+ 8w, dz+ By+v'z+ 8w

@, B, v, &

a B, 7, ¥

L, M, N, P

L, M, N, P|=0,
which is evidently of the degrec u+v—2. This denotes a
surface which is the locus of the points, the intersection of
whose polar planes with respect to U and V' meet the arbitrary
line. And the points where this locus meets the curve UV

is

* The theory explained in the remainder of this section is taken from
a paper dated July, 1849, which I published in the Cambridge and Dublin
Mathematical Journal, Vol. v., p. 23.

\
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are the points for which the tangents to that curve meet the
arbitrary line.
Having then m=puy, B8=0, r=pr(u+v-2), we find, by
Art. 296,
n=3uy(u+v—38), a=2ur(3u+3v—10), 2h=puv (u—1)(v—1),
29 =pv {(3pn+3v—9)"—22 (u+v) + 71},
2x=py{(p+v-2)—4(u+v)+8},
2y=puv {uv (u+v-2)"—10 (u+v) +28}.

311. We verify this result by determining independently
h the number of “lines through two points’” which can pass
through a given point, that is to say, the number of lines
which can be drawn through a given point so as to pass
through two points of the intersection of U and V. For this
purpose it is necessary to remind the rcader of the method
employed at the foot of p. 86 in order to find the equation
of the cone whose vertex is any point and which passes through
the intersection of U and V. Let us suppose that the vertex
of the cone is taken on the curve so as to have both U and
V=0 for the co-ordinates of the vertex. Then it appears
from p. 86 that the equation of the cone is the result of elimi-
nating A between
h‘

N o s _
sU+ i3 FU+ 133 & U+ &e. =0,
A A Sy e
8L+']T2'8'V+1-2'381+&C.—0.

These equations in A are of the degrees u—1, v—1; 38U, &0,
&ec. contain the co-ordinates z'y'z’, zyz in the degrees u—1,1;
p—2,2 &c. A specimen term of the result is (8U)"" V¥,
Thus it appears that the result contains the variables xyz in
the degree v—1+v(u—1)=pv—1; while it contains z'y'z’
in the degree (u—1)(v—1). Every edge of this cone of the
degree uv—1, whose vertex is a point on the curve, is of
course a “line through two points.” If now in this cone
we consider the co-ordinates of any point zyz on the cone
as known and «'y’2’ as sought, this equation of the degree
(w=1) (v -1) combined with the equations U and V determine
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the “points” belonging to all the “lines through two points”
which can pass through the assumed point. The total number
of such points is therefore wv(u—1)(v—1), and the number
of lines through two points is of course half this.

The number determined in this article, I call the number
of apparent double points in the intersection of two surfaces,
for to an eye placed at any point two branches of a curve
appear to intersect if any line drawn-through the eye meet
both branches.

312. Let us now consider the case when the curve UV
has also actual double points; that is to say, when the two
surfaces touch in one or more points. Now in this case, the
number of apparent double points remains precisely the same
as in the last article, and the cone, standing on the curve
of interscction and whose vertex is any point, has as double
edges the lines joining the vertex to the points of contact in
addition to the number determined in the last article. It
is easy to see that the investigation of the last article does
not include the lines joining an arbitrary point to the points
of contact. That investigation determines the number of cases
when the radius vector from any point has two values the
same for both surfaces, but the radius vector to a point of
contact has only one value the same for both, since the point
of contact is not a double point on either ‘surface. Every
point of contact then adds one to the number of double edges
on the cone, and thercfore diminishes the degree of the de-
velopable by two. This might also be deduced from Art. 310
since the surface generated by the tangents to the curve of
intersection must include as a factor the tangent plane at a
point of contact, since every tangent line in that plane touches
the curve of intersection.

If the surfaces have stationary contact at any point (Art. 129)
the line joining this point to the vertex of the cone is a cuspidal
cdge of that cone. If then the surfaces touch in ¢ points of
ordinary contact and in 8 of stationary contact, we have

m=uy, B=B, 2h=pv(u-1)(r—1)+2,
r=uv(n+v-—2)-2t-38,
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and the reader can calculate without difficulty how the other
numbers in Art. 310 are to be modified.

We can hence obtain a limit to the number of points at
which two surfaces can touch if their intersection do not break
up into curves of lower order; for we have only to subtract the
number of apparent double points from the maximum number of
double points which a curve of the degree wv can have (Higher
Plane Curves, p. 31).

. 313. We shall now show that when the curve of inter-
section of two surfaces breaks up into two simpler curves,
the characteristics of these curves are so connected that when
those of the one are known those of the other can be found.
It was proved (Art. 311) that the points belonging to the
“lines through two points” which pass through a given point
are the intersection of the curve UV with a surface whose
degree is (u—1) (v—1). Suppose now that the curve of inter-
section breaks up into two whose degrees are m and m', where
m+m' = uv, then evidently the “two points” on any of these
lines must either lie both on the curve m, both on the curve
m’, or one on one curve and the other on the other. Let the
number of lines through two points of the first curve be £,
those for the second curve %', and let H be the number of lines
which pass through a point on each curve, or, in other words,
the number of apparent intersections of the curves. Considering
then the points where each of the curves meet the surface
of the degree (u—1) (v —1), we have obviously the equations
m(p—1)(v-1)=2k+H, m'(p—1)(v—1)=2~+H,

whence 2(k=k)=(m—m) (u—1)(v—1).

Thus when m and % are known m' and A’ can be found. To
take an example which we have already discussed, let the
intersection of two quadrics consist in part of a right line
(for which m'=1, &' =0), then the remaining intersection must

be of the third degree m =3, and the equation above written
determines A=1.

314. In like manner it was proved (Art. 310) that the
locus of points, the intersection of whose polar planes with
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regard to U and V meets an arbitrary line, is a surface of
the degree u+v—2. The first curve meets this surface in
the ¢ points where the curves m and m' intersect (since U
and V touch at these points) and in the r points for which
the tangent to the curve meets the arbitrary line. Thus then
mu+v—2)=r+t, m'(ptv-2)=r"+¢,
(m—m) (3 +v—2) =r 7,

an equation which can easily be proved to follow from that
in the last article.

The intersection of the cones which stand on the curves
m, m' consists of the ¢ lines to the points of actual meeting
of the curves and of the H lines of apparent intersection ; and
the equation H+t=mm’ is easily verified by using the values

just found for H and ¢, remembering also that m'=puy—m,
r=m(m— 1) —2h.

315. Having now established the principles which we shall
have occasion to employ, we resume our enumeration of the
different species of curves of the fourth order. Every quartic
curve lies on a quadric. For the quadric determined by nine
points on the curve must altogether contain the curve (Art. 299).
It is not generally true that a sccond quadric can be described
through the curve; there are therefore two principal families
of quartics, viz. those which are the intersection of two quadrics,
and those through which only one quadric can pass.* We
commence with the curves of the first family. The character-
istics of the intersection of two quadrics which do not touch
are (Art. 310)
m=4, n=12, r=8, a=16, 8=0, =16, y=8, g=238, h=2.

Several of these results can be established independently.
Thus we have given (Art. 160) the equation of the developable
generated by the tangents to the curve which is of the eighth

degree. It is there proved also that the developable has in
each of the four principal planes a double line of the fourth

¢ The existence of this second family of quartics was, I believe, first
pointed out in the Memoir already referred to.
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order, whence x=16.* Again, it is shown, p. 123, that the
equation of the osculating plane is §'U= SV, which contains
the co-ordinates of the point of contact in the third degree.
If then it be required to draw an osculating plane through
any assumed point, the points of contact are determined as
the intersections of the curve UV with a surface of the third
degree, and the problem therefore admits of twelve solutions;
n=12. Lastly, every generator of a quadric containing the
curve i8 evidently a “line through two points” (Art. 303).
Since then we can describe through any assumed point a
quadric of the form U+ AV, the two generators of that quadric
which pass through the point are two lines through two points,
or h=2. The lines through two points may be otherwise found
by the following construction, the truth of which it is easy to
see: Draw a plane through the assumed point O, and through
the intersection of its polar planes with respect to the two
quadrics, this plane meets the quadrics in four points which
lie on two right lines intersecting in O.

A quartic of this species is determined by eight points
(Art. 120).

316. Secondly, let the two quadrics touch: then (Art. 312)
the cone standing on the curve has a double edge more than
in the former case, and the developable is of a degree less
by two. Hence

m=4, n=6, r=6; g=6, h=3; a=4, B=0; =6, y=4.
Thirdly, the quadrics may touch at a stationary point, when
we have
m=4, n=4, r=5; ¢g=2, h=2; a=1, B=1; =2, y=2.
This systemt may be expressed as the envelope of
at' + 6ct’ + 4dt +e,
where ¢ is a variable parameter. The envelope is
(ae + 8¢")> =27 (ace — ad®* — &),

* It ought to have been stated also that the developable circumscribing
two quadrics has, as double lines, a conic in each of the principal planes,
see Art. 168. The number y = 8 is thus accounted for.

+ I owe this remark to Mr. Cayley.
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which expanded contains ¢ as a factor and so reduces to the
fifth degree. The cuspidal edge is the intersection of ae+ 3¢%
4ce—3d".

Since a cone of the fourth degree cannot have more than
three double edges, two quadrics cannot touch in more points
than one, unless their curve of intersection break up into
simpler curves. If two quadrics touch at two points on the
same generator, this right line is common to the surfaces,
and the intersection breaks up into a right line and a cubic.
If they touch at two points not on the same generator, the
intersection breaks up into two plane conics whose planes
intersect in the line joining the points.

317. If a quartic curve be not the intersection of two
quadrics it must be the partial intersection of a quadric and
a cubicc. We have already seen that the curve must lie on
a quadric, and if through thirteen points on it, and six others
which are not in the same plane,* we describe a cubic, it must
contain the given curve. The intersection of this cubic with
the quadric already found must be the given quartic together
‘with a line of the second degree, and the apparent double
points of the two curves are connected by the relation 2 — %' =2,
as appears on substituting in the formula of Art. 313 the values
m=4,m =2, u=3,v=2. When the line of the second degree
is a plane curve (whether conic or two right lines), we have
k' =0; therefore 2=2, or the quartic is one of the species
already examined having two apparent double points. It is
easy to see otherwise that if a cubic and quadric have a plane
curve common, through their remaining intersection a second
quadric can be drawn; for the equations of the quadric and
cubic are of the form zw=wu, 2zv,=ugx, which intersect on
v,=zw. If, however, the cubic and quadric have common
two right lines not in the same plane, this is a system having
one apparent double point, since through any point can be

* This limitation is necessary, otherwise the cubic might consist of the
quadric and of a plane. Thus if a curve of the fifth order lie in a quadric
it cannot be proved that a'cubic distant from the quadric can contain the
given curve; see Cambridge and Dublin Mathematical Journal, Vol.v., p. 217.
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drawn a transversal meeting both lines. Since then A'=1,
h=3 or these quartics have three apparent double points, and
are thercfore essentially distinct from those already discussed
which cannot have more than two. The numerical character-
istics of these curves are precisely the same as those of the
first species in Art. 316, the cone standing on either curve
having three double edges, and the difference being that one
of the double edges in one case proceeds from an actual double
point while in the other they all proceed from apparent double
points.

This system of quartics is the reciprocal of that given by
the envelope of at'+ 4b° + 6¢t” +4dt +e. Moreover, this latter
system has, in addition to its cuspidal curve of the sixth
order, a nodal curve of the fourth which is of the kind now
treated of.

It is proved, as in Art. 303, that these quartics are met
in three points by all the generators of the quadric on which
.they lie, which are of the same system as the lines common
to the cubic and quadric, and are met once by the generators
of the opposite system. The cone standing on the curve,
whose vertex is any point of it is then a cubic having a double
edge, that double edge being one of the generators passing
through the vertex of the quadric which contains the curve.
Thus while any cubic may be the projection of the inter-
section of two quadrics, quartics of this second family can
only be projected into cubics having a double point. The
quadric may be considered as the surface generated by all
the “lines through three points” of the curve. It is plain
from what has been stated, that every gquartic, having three
apparent double points, may be considered as the intersection
of a quadric with a cone of the third order having one of the
generators of the quadric as a double edge.

318. Mr. Cayley has remarked that it is possible to de-
scribe through eight points a quartic of this second family.
We want to describe through the eight points a cone of the
third degree having its vertex at one of them, and having
a double edge, which edge shall be a generator of a quadric
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through the eight points. Now it was proved (Art. 315) that
if & system of quadrics be described through eight points all
the generators at any one of them lie on a cone of the third
degree, which passes through the quartic curve of the first
family determined by the eight points. Further, if §, §', 8"
be three cubical cones having a common vertex and passing
through seven other points, AS+ u8'+v8" is the general
equation of a cone fulfilling the same conditions; and if it have
a double edge A\ d8 +p i’—s—’+v a5 passes through that edge
dx dx de )
Eliminating then A, p, v between the three differentials, the
locus of double edges is the cone of the sixth order
d8 (dS' 48" dS8" d8'
%— (Ty‘-z_- -E;-E)""&ﬂ-—o.

The intersection then of this cone of the sixth degree with
the other of the third determines right lines, through any of
- which can be described a quadric and a cubic cone fulfilling
the given conditions. It is to be observed, however, that the
lines connecting the assumed vertex with the seven other points
are simple edges on one of these cones and double edges on
the other, and these (equivalent to fourteen intersections) are
irrelevant to the solution of the problem. Four quartics there-
Jore can be described through the points.

319. There is no difficulty in carrying on this enumera-
tion to curves of higher orders. The reader will find, in the
Memoir already cited, a classification of curves of the fifth
order, which consist of three families having four, five, or six
apparent double points; the first of which may have in addition
one or two, and the second one, actual double or cuspidal
points. We shall conclude this section by applying some of
the results already obtained in it, to the solution of a problem
which occasionally presents itself. ¢Three surfaces whose
degrees are u, v, p have a certain curve common to all three;
how many of their wwp points of intersection are absorbed
by the curve? In other words, in how many points do the
surfaces intersect in addition to this common curve?”’ Now
let the first two surfaces intersect in the given curve, whose

8
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degree is m, and in a complementary curve wv—m, then the
points of intersection not on the first curve must be included
in the (uv—m) p intersections of the latter curve with the
third surface. But some of these intersections are on the
curve m, since it was proved (Art. 314) that the latter curve
intersects the complementary curve in m (u+v—2)—r points.
Deducting this number from (uv—m) p we find that the sur-
faces intersect in uvp—m (u+v+p—2)+r points which are
not on the curve m; or that the common curve absorbs
m(u+v+p-2)—r points of intersection.

In precisely the same way we solve the corresponding
question if the common curve be a double curve on the sur-
face p. 'We have then to subtract from the number (uv —m) p,
2 {m (4 +v— 2) — r} points, and we find that the common curve
diminishes the intersections by m (p + 24 + 2v — 4) — 27 points.

These numbers expressed in terms of the apparent double
points of the curve m are

m(p+v+p—m—1)+2h and m(p+2u+2v— 2m —2) + 4k,

320. The last article enables us to answer the question:
“If the intersection of two surfaces is in part a curve of order
m which is a double curve on one of the surfaces; in how
many points does it meet the complementary curve of inter-
section?” Thus, in the example last considered, the surfaces
#, p intersect in a double curve m and a complementary curve
pup—2m; and the points of intersection of the three surfaces
are got by subtracting from (up - 2m) v the number of inter-
sections of the double curve with the complementary. Hence

(up—2m)v—=pvp- m(p+2u+2v—4)+2r,
whence v=m(p+2u —4)—2r

We can verify this formula when the curve m is the complete
intersection of two surfaces U, }” whose degrees are & and I
Then p is of the form AU+ BUT + CV* where 4 is of the
degree p — 2k, &c., and u is of the form DU+ EV where D
is of the degree u—%. The intersections of the double curve
with the complementary are the points for which one of the
tangent planes to one surface at & point on the double curve
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coincide with the tangent plane to the other surface. They
are therefore the intersection of the curve UV with the surface
ALE* - BDE+ CD* which is of the degree p+2u—2(k+1).
The number of intersections is  {p + 2u — 2 (k + )} which coin-
cides with the formula already obtained on putting %l=m,
Kl(+1-2)=r.

321. From the preceding article we can show how, when
two surfaces partially intersect in a curve which is a double
curve on one of them, the singularities of this curve and its
complementary are connected. The first equation of Art. 314
ceases to be applicable because the surface p + v —2 altogether
contains the double curve, but the second equation gives us

m(p+v—2)=20+7r=0"+2m(p+2v—4) - 4r,
whence 4r—7'=(2m—w') (u+v—2)+4m(v-2).
In like manner we find that the apparent double points of
the two curves are connected by the relation
8h—2k' =(2m—m') (u~-1)(v=-1)=2m (v=1).
Thus when a quadric passes through a double line on a cubic

the remaining intersection is of the fourth degree, of the sixth
rank, and has three apparent double points.

SECTION 1II. NON-PROJECTIVE PROPERTIES OF CURVES.

322. As we shall more than once in this section have
occasion to consider lines indefinitely close to each other, it
i8 convcenient to commence by showing how some of the
formulse obtained in the first chapter arc modified when the
lines considered are indefinitely near. We proved (Art. 14)
that the angle of inclination of two lines is given by the
formula
8in’6 = (cos B cosy’ — cos B’ cosy)* + (cosy cosa’ — cosy' cosa)’

+ (cosa cos 8’ —cosa’ cosS)*.
When the lines are indefinitely near we may substitute for
cosa’y cosa+ & cosa, &c., and put sinf =286, when we have
86" = (cos B & cosey — cosy &cosB)’ + (cosy & cosa — cosa & cosy)*
+ (cosa &cosB —cosB & cosa)”.
82
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If the direction-cosines of any line be f: y = g where
I'+m®+n"=7", the preceding formula gives
736" = (mdn — ndm)* + (ndl — In)" + (18m — mdI)".

Since we have

m
r

cos'a+ cos’B + cos’y=1;
cosa & cosa + cos8 8 cosB+ cosy & cosy=0,

if we square the latter equation and add it to the expression
for 36", we get another useful form

86 = (3 cosa)'+ (& cosB)* + (& cosy)™.

It was proved (Art. 15) that cosS cosy’ —cosS cosy, &e.
are proportional to the direction-cosines of the perpendicular
to the plane of the two lines. It follows then that the direc-
tion-cosines of the perpendicular to the plane of the consecutive
lines just considered are proportional to mdn —ndm, ndl- Idn,
18m — mdl, the common divisor being *86.

Again, it was proved (Art. 43) that the direction-cosines of
the line bisecting the obtuse angle made with each other by
two lines are proportional to

cosa — cosa’, cosf—cosf’, cosy— cosy', &e.

Hence when two lines are indefinitely near, the direction-cosines
of a line drawn in their plane, and perpendicular to their
common direction are proportional to & cosa, & cosS, & cosry,
the common divisor being 86.

323. We proved (Art. 286) that the direction-cosines of
a tangent to a curve are %, %, g, while, if the curve be

given as the intersection of two surfaces, these cosines are
proportional to MN'— M'N, NL' —N'L, LM'— L'M, where
L, M, &c. denote the first differential coefficients.

An infinity of normal lines can evidently be drawn at any
point of the curve. Of these two have been distinguished by
special names; viz. the normal which lies in the osculating
plane which is commonly called the principal normal; and
the normal perpendicular to that plane, which being normal
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to two consecutive elements of the curve has been called by
M. Saint-Venant the Binormal.

All the normals lie in the plane perpendicular to the tangent
line, viz.

(@=2) dz+(y-y) dy+(e—2) de=0
in the one notation; or in the other
(MN'-M'N) (z—2')+(NL' - N'L)(y ~-¥)
+(LM' - L'M)(s—-2)=0.

324. Let us consider now the equation of the osculating
plane. Since it contains two consecutive tangents of the curve,
its direction-cosines (Art. 322) are proportional to

dyd'z—dzdy, dzd'z—dads, ded’y—dyd'z,
quantities which for brevity we shall call X, Y, Z. The equa~
tion of the osculating plane is therefore
Xz-2)+Y(y—-y)+Z(z—2)=0.

The same equation might have been obtained (by Art. 30)
by forming the equation of the plane joining the three con-
secutive points

zlylz'; zl+hl, yl+dyl’ z'+&';
& +2da’ +d%, y +2dy +d%, 2'+2d' +d%.
In applying this formula we may simplify it by taking one
of the co-ordinates at pleasure as the independent variable,
and so making d'z, d’y or d'z=0.

325. In order to be able to illustrate by an example the
application of the formule of this section, it is convenient here
to form the equations and state some of the properties of the
heliz or curve formed by the thread of a screw. The helix may
be defined as the form assumed by a right line traced in any
plane when that plane is wrapped round the surface of a right
cylinder.* From this definition the equations of the helix are

* Conversely a helix becomes g right line when the cylinder on which
it is traced is developed into a plane, and is therefore a geodesic on the
cylinder (Art. 278).
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easily obtained. The equation of any right line y=mz ex-
presses that the ordinate is proportional to the intercept which
that ordinate makes on the axis of . If now the plane of
the right line be wrapped round a right cylinder so that the
axis of # may coincide with the circular base, the right line
will become a helix, and the ordinate of any point of the
curve will be proportional to the intercept, measured along
the circle, which that ordinate makes on the circular base,
counting from any fixed point on it. Thus the co-ordinates
of the projection on the plane of the base, of any point of
the helix are of the form w=a cos, y=a sinf, where a is
the radius of the circalar base. DBut the height 2z has been
just proved to be proportional to the arc 6. Hence the equa-
tions of the helix are

_ z z
r=a co8 7‘ ) Z
We plainly get the same values for  and y when the arc in-
creases by 27, or when 2 increases by 274 ; hence the interval
between the threads of the screw is 27k,

Since we have

y=asin;, whence also 2*+y'=a".

a

f
. 2 d2=% ds,

dip=— RCTh

sin%dz=-3—ldz, dy=; cos

k

2 2
p ;:" d2. It follows that j—j is constant, or

the angle made by the tangent to the helix with the axis
of z (which is the direction of the generators of the cylinder)
is constant. It is easy to scc that this is the same as the
angle made with the generators by the line into which the
helix is devecloped when the cylinder is developed into a
plane.

The length of the arc of the curve is evidently in a constant
ratio to the height ascended.

The equations of the tangent are (Art. 286)

z-z _ y-y z2-2'

we have ds'=

’ ! »

Yy £
If then = and y be the co-ordinates of the point where the
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tangent pierces the plane of the base, we have from the pre-
ceding equations

=2 +y-yP=("+y) =i,

or the distance between the foot of the tangent and the pro-
jection of the point of contact is equal to the arc which
measures the distance along the circle of that projection from
the initial point. This also can be proved geometrically, for
if we imagine the cylinder developed out on the tangent plane,
the helix will coincide with the tangent line, and the line
joining the foot of the tangent to the projection of the point
of contact will be the arc of the circle developed into a right
line. Thus then the locus of the points where the tangent
meets the base i the involute of the circle.
The equation of the normal plane is
ye—-xy=h(z-2).
To find the equation of the osculating plane, we have
1 1,
d’m=—P xdz', d*, =—Fydz’ d*z2=0,
whence the equation of the osculating plane is
h(yz—ay)=d'(z—2).

The form of the equation shows that the osculating plane makes
a constant angle with the planc of the base. We leave it
as an exercise to the reader to find the tangent, normal
plane, and osculating plane of the intersection of two central
quadrics.

326. We can give the equation of the osculating plane
a form more convenient in practice when the curve is given
as the intersection of two surfaces U, V. Since the osculating
plane passes through the tangent line, its equation must be
of the form

M (La+ My + Ne+ Pw)=p (L +M'y + N'z + P'w),
where Lz + &c. is the tangent plane to the first surface. This
equation is identically satisfied by the co-ordinates of a point
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common to the two surfaces, and by those of a consecutive
point; and on substituting the co-ordinates of a second con-
secutive point, we get
p=Ld*z2+Md*y+ Nd*z+ Pd*w, A\=L'd*z+M'd’y+N'd’s+Pd*w.
Baut differentiating the equation

Ldx + Mdy + Ndz + Pdw=0,
we get Ld'z+ Md"y + Nd'z + Pd*'w=-U",
where U’ =ada® + bdy" + cdz" + ddw"

+ 2ldyds + 2mds dz + 2ndxdy + 2pdzdw + 2qdydw + 2r dzdw,
where a, b, &c. are the second differential coefficients. Now
dx, &c. satisfy the equations
Ldx+ Mdy + Ndz+ Pdw=0, L'dx+M'dy+N'dz+ P'dw=0;
and since we may either, as in ordinary Cartesian equations,
take w as constant; or else x, or y, or z; or more generally
may take any linear function of these co-ordinates as constant;
we may therefore add to the two preceding equations the
arbitrary equation

adz + Bdy + ydz + ddw = 0.
Now it can easily be verified that if we substitute in any
quadric the intersection of three planes

Lz + My+ Nz+ Pw, L'x+ M'y+ N'z+ P'w, ax+ By + 4z + dw,
the result U’ will be proportional to the determinant (see p. 50)
a n m p L L a
n b L, ¢ M, M8
m 1, ¢ r N, N,g
. »n ¢ n & P P,3
L, M, N, P

L, M, N', P

e, B v 8 .
Now this determinant may be reduced by subtracting from the
fifth column multiplied by (m—1) the sum of the first four

columns, multiplied respectively by z, y, 2, w; when the whole
of the fifth column vanishes except the last row which becomes
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—(az+ By + 92+ dw). In like manner we may then subtract
from the fifth row maultiplied by (m —1) the sum of the first
four rows multiplied respectively by z, y, #, w, when in like
manner the whole of the fifth row vanishes except the fifth
column which is — (az+ By + 92+ dw). Thus the determinant
reduces to
(ax+By+vz+ow)| ay n m, p, L
(m—1)* n b L g M
m l, ¢ r, N'
P 9 5 d, P
L, M, N 'y P’
If we call the determinant last written S and the corresponding
determinant for the other equation 8, the equation of the
osculating plane is

(—),,(IA:+My+Nz+Pw) = ),(L + My + N's+ P'w)*

This equation has been verified in the case of two quadncs,
see note, p. 123.

Ex. 1. To find the osculating plane of
az' + by + c2* + dw', a'z* + by' + 2 + dw'.
Ans. (ab' - ba') (ac’ - cd) (ad - d&) 2z + (ba' - ba) (be’ - ¥'e) (b2 - bd)yy
+ (ea - da) (b - ¢b) (cd - ¢d) £ + (da’ - d'a) (¥ - @b) (de’ - d'c) wWw = 0.
Ex. 2. To find the osculating plane of the line of curvature
z y z y’ 2
atnta -1, pd t@ata-l
@z by
Ans. Gt e e =l
327. The condition that four points should lie in one plane,
or in other words, that a point on the curve should be the
point of contact of a stationary plane, is got by substituting
in the equation of the plane through three consecutive points,
the coordinates of a fourth consecutive point. Thus from the
cquation of Art. 324 the condition required is the determinant

&z (dyd'zs — ded'y)+ &y (ded’c — ded’z) + &'z (ded'y - dyd'z) =0.

* This equation is due to M. Hesse, see Crelle’s Journal, Vol. XLL
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If a curve in space be a plane curve, this condition must
be fulfilled by the co-ordinates of every point of it.*

828. We shall next consider the circle determined by three
consecutive points of the curve, which, as in plane curves, is
called the circle of curvature. It obviously lies in the oscu-
lating plane: its centre is the intersection of the traces on
that plane, by two consecutive normal planes; and its radius
is commonly called the radius of absolute curvature, to dis-
tinguish it from the radius of spkerical curvature, which is
the radius of the sphere determined by four consecutive points
on the curve, and which will be investigated presently. If
through the centre of a circle a line be drawn perpendicular
to its plane, any point on this line is equidistant from all the
points of the circle, and may be called a pole of the circle.
Now the intersection of two consecutive normal planes, evidently
passes through the centre of the circle of curvature, and is
perpendicular to its plane. Monge has therefore called the
lines of intersection of two consecutive normal planes, the polar
lines of the surface. It is evident that all the normal planes en-
velope a developable of which these polar lines are the generators,
and which accordingly has been called the polar surface. We
shall presently state some properties of this surface. The polar
line is evidently parallel to the line called the Binormal
(Art. 323).

329. In order to obtain the radius of curvature we shall
first calculate the angle of contact, that is to say, the angle
made with each other by two consecutive tangents to the

* I have not succceded in completing the reduction of the corresponding
condition when the curve is given as the intersection of two surfaces U, V.
M. Bischoff (Crelle, Vol. LVIIL) gives as the resulting condition the Jacobian
of the four surfaces U, ¥, S, 8’ (see Art. 155); but M. Bischoff’s reasoning
is unsound, and his result is only correct in the case where the surfaces
are quadrics. The condition in general is of the degree 6m + 6a - 20
in the coefficients, as might be inferred from the value of a, Art. 310. It
is the sum of two terms, one of which is the Jacobian, and the other
is the same function of the first and second differential coefficients as
the Jacobian is when the surfaces are quadrics.
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curve. The direction-cosines of the tangent being :]T: , %’: , % R
it follows from Art. 322 that d@ the angle between two con-
secutive tangents is given by either of the formule
2 ] ]
ao=(a%2) 1 (a %) + (a%)'s
or ds'd@*=X"+Y'+ 2%,
where X=dyd'z - dzd"y, &ec.

The truth of the latter formula may be seen geometrically:
for the right-hand side of the equation denotes the square of
double the triangle formed by thrce consecutive points (Art. 31);
but two sides of this triangle are each ds, and the angle between
them is d6, hence double the area is ds*dé.

If now ds be the element of the arc, the tangents at the
extremities of which make with each other the angle df, then
since the angle made with each other by two tangents to a
circle is cqual to the angle that their points of contact subtend
at its centrc, we have pdf =ds. And the element of the arc
and the two tangents being common to the curve and the
circle of curvature, the radius of curvature is given by the
formula

p=:ll_;; whence p* = T d;: T i)
EARTIRC
ds*

”——__
or P=xX iy 2

® By performing the differentiations indicated, another value for dé*
is found without difficulty,
ds'd@* = (d'r)* + (d')* + (d'%)* - (d%s)"
This formula may also be proved geometrically. ILet 4B, BC be two
consecutive elements of the curve; 4D a line parallel and equal to BC;
then since the projections of BC on the axes arc dz + d*z, dy + d'y, ds + d's,
it is plain that the projections on the ases of the diugonal CD are d'z,
&'y, d%z, whence CD* = (d'z)" + (d'y)* + (@%2)". But CD projected on the
element of the arc is d%, and on a line perpendicular to it is dsdf: whence
(d's)* + (dsdb)* = (d°x)* + (d'y)* + (d%2)".
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Ex. To find the radius of curvature of the helix. Using the formule
3
of Art. 325, we ﬂndpaa.:h ; or the radius of curvature is constant.

330. Having 4hus determined the magnitude of the radius
of curvature, we are enabled by the formulse of Art. 322 also
to determine its position. For the direction-cosines of a line
drawn in the plane of two consecutive tangents, and perpen-
dicular to their common direction are by that article,

dx dy ds
g% 1,9y 1 .ds % ‘% ‘G
0% a0 A A F TP =g Py P

If «, y, £ be the co-ordinates of a point on the curve,
and x, y, £ those of the centre of curvature, then the projec-
tions of the radius of curvature on the axes are o' —z, y' —y,
2 —z; but they are also p cosa, p cosB, p cosy. Putting in
then for cosa, cos/3, cosry their values just found, the co-ordinates
of the centre of curvature are determined by the equations

di” d"” d‘i'

7 —z= 97,-,3/ y= P'g,-:”"'ﬂ'z-

831. When a curve is given as the intersection of two
surfaces which cut at right angles, an expression for the radius
of curvature can be easily obtained. Let r and #' be the
radii of curvature of the normal sections of the two surfaces,
the sections being made along the tangent to the curve; and
let ¢ be the angle which the osculating plane makes with
the first normal plane: then by Meunier’s theorem, we have

, e 1 1 1
p=r cos¢ and also p=1r'sing, whenee;,=?+;a,

1 ,d=z

The same equations determine the osculating plane by the
formula tan¢=,—,:,.
If the angle which the surfaces make with each other be o,

the corresponding formula is
sin’ @ l 1 2cosmw
P =qpte i



NON-PROJECTIVE PROPERTIES OF CURVES. 269

‘We can hence obtain an expression for the radius of cur-
vature of a curve given as the intersection of two surfaces.
We may write L'+ M+ N*=R", L+ M"+N"=R"; and
we have

_LL + MM + NN’
cosw = BE ,
sin®e = (MN'-M'N)*+(NL' -N'L)*+(LM'- L'M)*
= R '
‘We must then substitute in the formula of Art. 265,
cosa MN -M'N NL'-NL LM -L'M

= R sme ’ P = RFmme ' "= KR snw
The denominator of that formula becomes
a n, my L, L
n, b U, MM
m, 1, ¢ N, N

L M, N
L, M, N
which reduced, as in Art. 326, becomes (m_i_l_). 5. And we
have
_ (m—1)" B°R" sin’o
r= S .
In like manner  #= 2= 1) I; 'R” sin'w .
1 8
‘Whence ;, = o1y PR e
87 288" cosw

eI R ae  (mol) n- 1) R sr'e"

332. Let us now consider the angle made with each other
by two consecutive osculating planes, which we shall call the
angle of torsion, and denote by dn. The direction-cosines of
the osculating plane being proportional to X, Y, Z; the second
formula of Art. 322 gives

(X’+ Y+ 2")'dn*=(YdZ- ZdY )'+(Zd X~ XdZ)*+(Xd Y- YdX)"
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Now Y=de:d'z- dxed’z, Z=dzd'y-dyd'z,
dY =d:dz—ded’z, dZ=dxdy- dydz.
Therefore (Lessons on Higher Algebra, p. 16)
YdZ - ZdY = Mdx,
where M is the determinant

Xd'x+ Y&y + Zd2.
Hence (X*+Y*+ 2% dn* = M'ds,
Mds

i % gy b

This formula may be also proved geometrically. For A/
denotes six times the volume of the pyramid made by four
consecutive points, while X*+ Y*+ Z" denotes four times the
square of the area of the triangle formed by three consecutive
points. Now if 4 be the triangular base of a pyramid, 4’ an
adjacent face making an angle % with the base, s the side
common to the two faces, and p the perpendicular from the
vertex on s, so that 24'=sp: then for the volume of the
pyramid we have 3 V=Ap siny and 6 Vs=2A4ps sinn=44.4" siny.
Now in the case considered, the common side is ds, and in
the limit 4 = 4'; hence 6 Vds=4A4%y. Q.E.D.

Following the analogy of the radius of curvature which is

g—;, the later French writers denote the quantity® %’7 by the

letter r, and call it the radius of torsion ; but the reader will
observe that this is not, like the radius of curvature, the radius
of a real circle intimately connected with the curve.

333. In the same manner, however, as we have considered
an osculating circle determined by three consccutive points of
the system, we may consider an osculating right cone determined
by three consecutive planes of the system. Imagine that a
sphere is described having as centre the point of the system
in which the three planes intersect; let the lines of the system

® The quantity %: is also sometimes called the “second curvature” of

the curve.
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passing through that point meet the sphere in 4 and B;
and let the corresponding planes meet the same sphere in
AT, BT then if we describe a small circle of the same sphere
passing through 4 and B, and touched by AT, BT, the cone
whose vertex is the centre, and which stands on that small
circle will evidently osculate the given curve. The problem
then is, being given dn the angle between two consecutive
tangents to a small circle of a sphere, and d the corresponding
arc of the circle to find 7 its radius.

Let C be the centre of the circle, and from the right-
tand C
tanA7TC’
¢ be the external angle between two tangents to a circle,
s the length of the two tangents; H the radius of the circle

ahgled triangle CAT we have sind71'= If then

o e _ sinjs TR
is given by the formula tanH= fan}d’ In the limit s is
the element of the arc of the circle, and tan H =£, or ac-
cording to the notation used, tan H= gg = g.*

334. Imagine that through every line of the system there
is drawn a plane perpendicular to the corresponding osculating
plane, the assemblage of these planes gencrates a developable
which is called the rectifying developable. The reason of the
name is, that the given curve is obviously a geodesic on this
developable, since its osculating plane is, by construction, every
where normal to the surface. If therefore the developable be
developed into a plane, the given curve will become a right
line.

The intersection of two consecutive planes of the rectifying
developable is the rectifying line. Now since the plane passing
through the edge of a right cone perpendicular to its tangent
plane passes through its axis, it follows that the rectifying
plane passes through the axis of the osculating cone considered

® It has been proved by M. Bertrand that when the ratio r:p is
constant, the curve must be a helix traced on a cylinder: and by Puiseux,
that when 7 and p are both constant, the cylinder has a circular base.
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in the last article; and therefore that the rectifying line 1s
the axis of that osculating cone. The rectifying line may be
therefore constructed by drawing in the rectifying plane a
line making with the tangent line an angle H, where H has
the value determined in the last article.

The rectifying surface is the surface of centres of the original
developable. In fact it was proved (Art. 277) that the normal
planes to the original surface along the two principal tangents
touch the surface of centres; but the generating line itself
is in every point of it one of the principal tangents; the recti-
fying plane therefore touches the surface of centres which is
the envelope of all these rectifying planes. The centre of
curvature at any point on a developable of the other principal
section, namely, that perpendicular to the generating line, is
the point where its plane meets the corresponding rectifying
line, for evidently the traces on this plane of two consecutive
rectifying planes are two consecutive normals to the section.
Hence if ! be the distance of any point on the developable
from the cuspidal edge measured along the generator, the radius
of curvature of the transverse section is [tanH. When [
vanishes, this radius of curvature vanishes as it ought, the
point being a cusp.

In the case of the helix the rectifying surface is obviously
the cylinder on which the curve is traced.

835. To find the angle between two successive radii of curvature.

Let AB, BC be traces on any B
sphere with radius unity, of planes
parallel to the osculating and
normal planes, then the central
radius to B is the direction of the
radius of curvature. If AB', B'C
be consecutive positions of the os- <4 ¢
culating and normal planes, B’ is in the direction of the con-
secutive radius of curvature, and BB’ measures the angle
between them. Now the triangle BOB' being a very small
right-angled triangle, we have

BB™=B0'+0B",




NON-PROJECTIVE PROPERTIES OF CURVES. 273

But since the angle ABC is right, BO measures BAB', which
is dy, the angle between two consecutive osculating planes,
and OB’ measures OCB', which is df, the angle between
two consecutive normal planes. The required angle is there-
fore given by the formula BB™=dn'+d6"; where dn and
d0 have the values already found. The series of radii of
curvature at all the points of a curve gencrate a surfacc on
the properties of which we have not space to dwell. It is
evidently a skew surface (see note, p. 75), since two consecutive
radii do not in general intersect (sce Art. 338, infra).

Ex. 1. To find the equation of the surface of the radii of curvature
in the case of the helix.

The radius of curvature being the intersection of the osculating and
normal planes has for its equations (Art. 325) 2’y = y'z, z = ¥, from which
we are to eliminate zy’z by the help of the equations of the curve. And
writing the equations of the helix z = a cosng, y = a sinnz, the required
surface is y cosne = z sinnz.

Ex. 2. To find the equation of the developable generated by the tan-
gents of a helix, The equations of the tangent being
(z - a cosnt) = - na sinnz' (z - £), y - asinnZ = na cosny (z - 2),
the result of eliminating ¢ is found to be
_ it e _ nt
z cos{mt(—z-.-ii—e—)-} +y sin{nz + (—&";‘__a)_}=a,

Since this equation becomes impossible when z* + y* < @', it is plain that
no part of the surface lies within the cylinder on which the helix is traced.

336. We shall now speak of the polar developable generated
by the normal planes to the given curve. Fourier has re-
marked, that the ‘“angle of torsion” of the one system is
equal to the “angle of contact” of the other, as is sufficiently
obvious since the planes of this new system are perpendicular
to the lines of the original system, and vice versé. The reader

dé

will observe however that it does not foilow that the 7 of

one system is equal to the gg of the other, because the ds is

not the same for both.
Since the intersection of the normal planes at two con-
sccutive points K, K’ of the curve is the axis of a circle of
T
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which K and K’ are points (Art. 328), it follows that if any
point D on that line be joined to K and K’, the joining lines
are equal and make equal angles with that axis.

It is plain that three consecutive normal planes intersect
in the centre of the osculating sphere; hence the cuspidal edge
of the polar developable 1s the locus of centres of spherical cur-
vature.

In the case of a plane curve this polar developable reduces
to a cylinder standing on the cvolute of the curve.

337. Every curve has an infinity of evolutes lying on the
polar developable ;* that is to say, the given curve may be
generated in an infinity of ways by the unrolling of a string
wound round a curve traced on that developable. Let MM,
M'M", &c. denote the successive elements of the curve, K, K,
&ec. the middle points of these elements, then the planes drawn
through the points K perpendicular to the elements are the
normal planes. The lines AB, A'B’, &c. are the lines in
which each normal plane is intersected by the consecutive;
these lines being the generators of the polar developable, and

D

hence tangents to the cuspidal edge RS of that surface. Draw
now at pleasuret any line KD in the first normal plane,
meeting the first generator in D; join DK’ which being in
the second normal plane will meet the second generator 4'B’,
say in D'. In like manner, let K"D' meet 4"B" in D". We

* See Monge, p. 396.
+ This figure is taken from Leroy’s Geometry of Three Dimensions.



NON-PROJECTIVE PROPERTIES OF CURVES. 275

get thus a curve DD'D" traced on the polar developable which
is an evolute of the given curve. For the lines DK, D'K’, &e.
the tangents to the curve DI'D", are normals to the curve
KK'K", and the lengths DK=DK', DK'=DK", &c. (see
Art. 336). If therefore DK be a part of a thread wound round
DI¥YD", it is plain that as the thread is unwound the point K
will move along the given curve.

Since the first line DK was arbitrary the curve has an
infinity of evolutes. A plane curve has thus an infinity of
evolutes lying on the cylinder whose base is the evolute in the
plane of the curve. For example, in the special case where
the evolute reduces to a point; that is, when the curve is a
circle, the circle can be described by moving round a thread
of constant length fastened to any point on the axis passing
through the centre of the circle.

In the general case, all the evolute curves DD'D", dc. are
geodesics on the polar developable.

For we have seen (p. 219) that a curve is a geodesic when
two successive tangents to it make equal angles with the inter-
section of the corresponding tangent planes of the surface;
and it has just been proved (Art. 336) that DK, DK' which
are two successive tangents to the evolute make equal angles
with 4B which is the intersection of two consecutive tangent
planes of the developable. An evolute may then be found
by drawing a thread as tangent from K to the polar develop-
able, and winding the continuation of that tangent freely round
the developable.

338. The locus of centres of curvature is a curve on the
polar developable, but is not one of the system of cvolutes.
Let the first osculating plane MM'M" meet the first two normal
planes in KC, K'C, then C is the first centre of curvature:
and in like manner the second centre is C’, the point of inter-
section of K'C’y K"C', the lines in which the second oscu-
lating plane M'M"M™ is met by the second and third normal
planes. Now the radii K'C, K'C’ are distinct, since they
are the intersections of the same normal plane by two different
osculating planes, K'C’ will therefore meet the line 4B in a

T2
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point 7 ‘which is distinct from C. Consequently the two radii
of curvature KC, K'C' situated in the planes P, P’ have no
common point in AB the intersection of these planes; two
consecutive radii therefore do not intersect, unless in the case
where two consecutive osculating planes coincide.

The centres of curvature then not being given by the suc-
cessive intersections of consecutive radii; these radii are not
tangents to the locus of centres. Any radius therefore KC
would not be the continuation of a thread wound round CC’C",
and the unwinding of such a thread would not give the curve
KK'K", except in the case where the latter is a plane curve.*

339. To find the radius of the sphere through four con-
secutive points. Let R be the radius of any sphere, p the
radius of a section by a plane making an angle 5 with the
normal plane at any point; then, by Meunier’s theorem,
R cosn=p; and for a consecutive plane making an angle

3
9+ 87, we have 8p=— R sinndy. Hence R"=p'+(§e) .

We have then only to give in this expression to p and dy

the values already found (Arts. 330, 332).

Z—s is obviously the length of the perpendicular distance-
from the centre of the sphere to the plane of the circle of

curvature.

340. To find the co-ordinates of the centre of the osculating
sphere. .
Let the equation of any normal plane be
(a-2) de +(B-y) dy +(y—2) dz=0,
where zyz is the point on the curve, and a8y any point on

the plane; then the equation of a consecutive normal plane
combined with the preceding gives

(a—z)d'z+ (B—y) d’y+ (y—2) d*z=ds".

® The characteristics of the polar developable may be investigated by
arguments similar to those used Higher Plane Curves, Art.116; thus it
is easy to sce that the class of that developable is m + , where m and r
have the same meaning as at p. 234.
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And the equation of the third plane gives
(a—z) d’z+ (B—y) &y + (y —2) d"x=3dsd’s.
Let us denote as before dyd'z—dzd'y, &c. by X, Y, Z;
dyd’z — dedy, &c. by X', Y', Z'y, and the determinant
Xd’x+ Yd*y + Zd’z by M. Then solving the preceding equa-

tions, we have
M(a—z)=—X'ds"+ 8 Xdsd's, M(B—y)=—Y'ds"+3Ydsd",
M (y—2)=—2Z'ds* + 8Zdsd’s.

By squaring and adding these equations we obtain another
expression for R*, which is what the value in the last article
would become when for p and :% we substitute their values.

We add a few other expressions, the greater part of which
admit of simple geometrical proofs, the details of which want
of space obliges us to omit.

Ex. 1. If ¢ be the arc of the curve which is the locus of centres of
absolute curvature,

do* = dp* + p'dn’; or do = Rdn.
Ex. 2. If T be the length of the arc of the locus of centres of spherical

curvature dX = @; where ¢ =:—:’ is the distance between the centres of

the osculating circle and osculating sphere. From this expression we
immediately get values for the radii of curvature and of torsion of this
locus, remembering that the angle of torsion is the angle of contact of
the original and vice versa.

Ex. 3. The angle between two consecutive rectifying lines is dH.

Ex. 4. The angle { between two successive R's is given by the formula
R = ds* + d=* - dR'.*

* The reader will find further details on the subjects treated of in this
section in a Memoir by M. de Saint-Venant, Journal de I Ecole Polytech-
nique, Cahier XXX., who has also collected into a table about a hundred
formule for the transformation and reduction of calculations relative to
the theory of non-plane curves; and in a paper by M. Frenet, Liouville,
Vol. xvi1.,, p.437. I abridge the following historical sketch from- M. de
Saint-Venant’s Memoir: “ Curve lines not contained in the same plane have
been successively studied by Clairaut (Recherches sur les courbes a doubls
courbure, 1731), who has brought into use the title by which they have
been commonly known (previously, however, employed by Pitot) and who
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SECTION 1IV. CURVES TRACED ON BURFACES.

341. It remains to say something of the properties of curves
.considered as belonging to a particular surface. Thus the
sphere we know has a geometry of its own, where great circles
take the place of lines in a plane; and in like manner each
surface has a geometry of its own, the geodesics on that surface
answering to right lines.

We have already by anticipation given the fundamental
property of a geodesic (Art. 278). The differential equation
is immediately obtained from the property there proved, that
the normal lies in the plane of two successive elements of the
curve and bisects the angle between them; hence L, M, N
which are proportional to the direction-cosines of the normal
must be proportional to d %, dé’:, di , which are the
direction-cosines of the bisector (Art. 322). Thus “if the tan-
gents to a geodesic make a constant angle with a fixed line,
the normals along it will be parallel to a fixed plane,” and vice
vers@ (Dickson, Cambridge and Dublin Mathematical Journal,
Vol. v., p. 168). For from the equation

de . dy

ag+ b @ _ constant,

dst%

has given expressions for the projections of these curves, for their tangents,
normals, arc, &c.; by Monge (Mémoire sur les développées, &c. presented
in 1771, and inserted in Vol. X., 1785, of the ‘ Savants étrangers’ as
well as in his ¢ dpplication de I’Analyu 3 la Géométrie’) who gave ex-
pressions for the normal plane, centre and radius of curvature, evolutes,
polar lines and polar developable, centre of osculating sphere, for the
criterion for ¢ points of simple infiexion’ where four consecutive points are
in a plane, and for ¢points of double inflexion’ where three consecutive
points are in a right line; by Tinseau (Solution de gquelques problemes, &c.
presented in 1774, Savants étrangers, Vol. 1x., 1780) who was the first
to consider the osculating plane and the developable generated by the
tangents; by Lacroix (Calcul Differentiel) who was the first to render
the formule symmetrical by introducing the differentials of the three
co-ordinates; and by Lancret (Mémoire sur les courbes a double courbure,
read 1802, and inserted Vol. 1., 1805, of Savants étrangers de I'Institut)
who calculated the angle of torsion, and introduced the consideration of
the rectifying lines and rectifying surface.”
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which denotes that the tangents make a constant angle with
a fixed line, we can deduce

aL +bM +cN=0,
which denotes that the normals are parallel to a fixed plane.

342, If through any point on a surface there be drawn two
tndefinttely near and equal geodesics, the line joining their ex-
tremities 18 at right angles to both.*

Let AB=AC and let us suppose the angle at B not to
be right, but to be =6. Take BD=—2u,

cosd
and then because all the sides of the tri-
angle BCD are infinitely small it may be
treated as a plane triangle and the angle
DCB is a right angle. We have therefore
DC< DB, AD+ DC < AB, and therefore
< AC. 1t follows that AC is not the
shortest path from 4 to C, contrary to hypothesis. Or the
proof may be stated thus: The shortest line from a point 4
to any curve on a surface meets that curve perpendicularly.
For if not, take a point D on the radius vector from 4 and
indefinitely near to the curve; and from this point let fall
a perpendicular on the curve [which we can do by taking
along BC a portion =BD cosf and joining the point so found
to D). We can pass then from D to the curve more shortly
by going along the perpendicular than by travelling along the
assumed radius vector which is therefore not the shortest path.

Hence, if every geodesic through A4 meet the curve per-
pendicularly, the length of that geodesic is constant. It is
also evident mechanically that the circle described on any
surface by a strained cord from a fixed point is every where
perpendicular to the direction of the cord.

343. The theorem just proved is the fundamental theorem
of the method of infinitesimals, applied to right lines (Conios,

® This theorem is due to Gauss, who also proves it by the Calculus of
Variations; see the Appendix te-Liouville’s Edition of Monge, p. 528.
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pPp. 289, &c.). All the theorcms therefore which are there
proved by means of this principle will be true if instead of
right lines we consider geodesics traced on any surface. For
example, ‘“if we construct on any surface the curve answering
to an ellipse or hyperbola; that is to say, the locus of a point
the sum or difference of whose geodesic distances from two
fixed points on the surface is constant; then the tangent at
any point of the locus bisects the angle between the geodesics
Jjoining the point of contact to the fixed points.” The converse
of this theorem is also true. Again, “if two geodesic tangents
to a curve, through any point P, make equal angles with the
tangent to a curve along which P moves, then the difference
between the sum of these tangents and the intercepted arc of
the curve which they touch is constant” (see Conics, Art. 356).
Again, “if equal portions be taken on the geodesic normals
to a curve, the line joining their extremities cuts all at right
angles,” or “if two different curves both cut at right angles
a system of geodesics they intercept a constant length on each
vector of the series.” We shall presently apply these principles
to the case of geodesics traced on quadrics.

344. As the curvature of a plane curve is measured by the
ratio which the angle between two consecutive tangents bears
td the element of the arc; so the geodesic curvature of a curve
on & surface is measured by the ratio borne to the element
of the arc by the angle between two consecutive geodesic
tangents. The following calculation of the radius of geodesic
curvature, due to M. Liouville,* gives at the same time a proof
of Meunier’s theorem.

Let mn, np be two consecutive and equal elements of the
curve. Produce nt=mn, and let fall
the perpendicular ¢g on the plane
mnp. If now 6 be the angle of con-
tact tp=0ds. Now ng is the second
element of the normal section: let
tng =@, then @ is the angle of contact

* Appendix to Monge, p, 576,
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of the normal section, and ¢g=@ds. Now the angle gtp (=¢)
is the angle between the osculating plane of the curve and
the plane of normal section, and since {g=tp cosp we have

¢ =0 cos¢ and }l? s¢ which is Meunier’s theorem ; R being

the radius of curvature of the normal section and p that of the
given curve.
Now, in like manner, png being @ the geodesic angle of

contact, we have pg=0"ds and pg=tp sing, or ;—Eu;—d’
The geodesic* radius of curvature is therefore si%ﬁ' It is

easy to see that this geodesic radius is the absolute radius of
curvature of the plane curve into which the given curve would
be transformed, by circumscribing a developable to the given
surface along the given curve, and unfolding that developable
into a plane.

345. The theory of geodesics traced on quadrics may be
said to depend on Joachimsthal’s fundamental theorem that
at every point on auch a curve pD is constant where, as at
Art. 174, p is the perpendicular on the tangent plane at the
point, and D is the diameter of the quadric parallel to the tan-
gent to the curve at the same point. This may be proved
by the help of the two following principles: (1) If from any
point two tangent lines be drawn to a quadric, their lengths
are proportional to the parallel diameters. This is evident
from Art. 70; and (2) If from each of two points 4, B on
the quadric perpendiculars be let fall on the tangent plane at
the other, these perpendiculars will be proportional to the per-
pendiculars from the centre on the same planes. For the
length of the perpendicular from z"y”z" on the tangent plane

'u
'y

at 2'y'?’ is p( i+ 3/1;7{ ?- —1), and the perpendicular

* I have not adopted the name *“second geodesic curvature” introduced
by M. Bonnet. It is intended to express the ratio borne to the element
of the arc by the angle which the normal at one extremity makes with the
plane containing the element and the normal at the other extremity.
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"_on_n

from z'y's’ on the tangent plane at z"y"z" is
" P n z’z"
P ).

If now from the points 4, B there be drawn lines 47, BT
to any point 7' on the intersection of the tangent planes at
A and B, and if AT make an angle ¢ with the intersection
of the planes, the angle between the planes being o ; then the
perpendicular from A4 to the intersection of the planes is
ATsin? and from 4 on the other plane is AT sini sinw.
In like manner the perpendicular from B on the tangent plane
at A is BT sini' sinw. If now the lines A7, BT make equal
angles with the intersection of the planes, the lines A7, BT
are proportional to the perpendiculars from 4 and B on the two
planes. But A7 and BT are proportional to D and 2, and
the perpendiculars are as the perpendiculars from the centre
P and p. Hence Dp=Dp'. But it was proved (Art, 278)
that if A7, T'B be successive elements of a geodesic they make
equal angles with the intersection of the tangent planes at
A and B. Hence the quantity p) remains unchanged as we
pass from point to point of the geodesic. Q.E.D.*

346. On account of the importance of the preceding theorem
we wish also to show how it may be deduced from the diffe-
rential equations of a geodesic.} Differentiating the equation

I* M* N? -

rrEtEFE=h

(where L, M, N are the differential coefficientsand B*=L'+ M4 N™),
and then substituting for L, &c., d %’, &c. (Art. 341), we get

A(E)o(h) o8 o)+ (3) )

® This proof is by Dr. Graves, Crelle, Vol. XLII., p. 279.

t See Joachimsthal, Crelle, Vol. XxVI., p. 155 ; Bonnet, Journal de I’ Ecole
Polytechnigue, Vol. x1x., p. 138; Dickson, Cambridge and Dublin Mathe-
matical Journal, Vol, v., p. 168, .
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It is to be remarked that this equation is also true for a
line of curvature; for since %, &ec. are the direction-cosines of
the normal, the direction-cosines of a line in the same plane
with two consecutive normals and perpendicular to them are

(Art. 322) proportional to d (%) , &c. Hence the %, &e. of

a line of curvature are proportional to d (%) . But if now

we differentiate
d* dy* d7f

&t =h

and substitute for %— the value just given we have again the

equation

2(z)4(5)+2(2) (x)+(Z) 2(z) -
If we actually perform the differentiations, and reduce the result

by the differential equation of the surface Ldx + Mdy + Ndz=0,
and its consequence

dLdx+dMdy + dNds = — (Ld'x + Md'y + Nd*z),
we get
(dLdx + dMdy + dNdz) (dRds — Rd's)
+(dLdz+dMdy + ANd'%) Rds=0,

dLdz+ dMTy+dNPz dR _Js_
or dLds+dMdy+dNde T R ds

347. The preceding equation is true for a geodesic or line
of curvature on any surface, but when the surface is only of
the second degree, a first integral of the equation can be found.
In fact we have

dLd'z + dMd'y + ANd'z = §d (dLdz + dMdy + dNdz).
This may be easily verified by using the general equation of
a quadric, or more simply by using the equation

x’ 2 zl
Ftpta=h



284 CURVES TRACED ON SURFACES.

when L=5, M=, N=2; daL=%, au-¥, av-%;
by substituting which values the equation is at once established.

The equation of the last article then consists of terms each
separately integrable. Integrating we have

R (dLdz + dMdy + dNde) = Cds".

Now from the preceding values
x* D |
R = .+'by;+‘c_4=?,
]
and dex_*_dey_’_dN@:_l_ ldy’ 1 dz

G ds T ds T d o ddR T Fdr TR

But the right-hand side of the equation denotes the reciprocal
‘of the square of a central radius whose direction-cosines are
dz dy ds
ds'dsds’

The geometric meaning therefore of the integral we have
found is p.D = constant.*

348. The constant pD has the same value for all geodestcs
which pass through an umbilic. For at the umbilic the p is
of course common to all, being =%c; and since the central
section parallel to the tangent plane at the umbilic is a circle,
the diameter parallel to the tangent line to the geodesic is
constant; being always equal to the mean axis . Hence for
a geodesic passing through an umbilic, we have pD =ac.

* Dr. Hart proves the same theorem as follows: Consider any plane
section of an ellipsoid, let @ be the perpendicular from the centre of the
section on the tangent line, d the diameter of the section parallel to that
tangent, s the angle the plane of the section makes with the tangent plane
at any point. Then along the section wd is constant, and it is evident
that pD is in a fixed ratio to wd sins. Hence along the section p.D varies
as sind and will be 8 maximum where the plane meets the surface per-
pendicularly. But a geodesic osculates a series of normal sections; there-
fore, for such a line pD is constant, its differential always vanishing.
Cambridge and Dublin Mathematical Journal, Vol. 1v., p. 84.
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Let now any point on a quadric be joined by geodesics to
two umbilics, since we have just proved that pD is the same
for both geodesics, and since at the point of meeting the p is
the same for both, the D for that point must also have the
same value for both; that is to say, the diameters are equal
which are drawn parallel to the tangents to the geodesics at
their point of meeting. But two equal diameters of a conic
make equal angles with its axes; and we know that the axes
of the central section of a quadric parallel to the tangent plane
at any point are parallel to the directions of the lines of cur-
vature at that point. Hence, the geodesics joining any point
on a quadric to two umbilics make equal angles with the lines
of curvature through that point*

It follows that the geodesics joining any point to the two
opposite umbilics, which lie on the same diameter, are con-
tinuations of each other; since the vertically opposite angles
are equal which these geodesics make with either line of cur-
vature through the point.

It follows also (see Art. 343) that the sum or difference 1s
constant of the geodesic distances of all the points on the same
line of curvature from two umbilics. 'The sum is constant
when the two umbilics chosen are interior with respect to the
line of curvature; the difference when for one of these umbilics
we substitute that diametrically opposite so that one of the
umbilics is interior, the other exterior to the line of curvature.

If 4, A’ be two opposite umbilics, and B another umbilic,
since the sum PA+ PB is constant and also the difference
PA'— PBy it follows that PA+ PA’ is constant; that is to
say, all the geodesics which connect two opposite umbilics are
of equal length. In fact, it is evident that two indefinitely near
geodesics connecting the same two points on any surface must
be equal to each other.

349. The constant pD has the same value for all geodesics

which touch the same line of curvature.

* This theorem and its consequences developed in the following articles
are due to Mr, Michael _Roberts, Liouville, Vol. x1., p. 1.
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It was proved (Art. 174) that pD has a constant value all
along a line of curvature; but at the points where either
geodesic touches the line of curvature both p and D have the
same value for the geodesic and the line of curvature.

Hence then a system of lines of curvature has properties
completely analogous to those of a system of confocal conics
in a plane; the umbilics answering to the foci. For example,
two geodesic tangents drawn to one from any point on another
make equal angles with the tangent at that point. Dr. Graves’s
theorem for plane conics holds also for lines of curvature, viz,
that the excess of the sum of two tangents to a line of cur-
vature over the intercepted arc is constant, while the intersection
moves along another line of curvature of the same species
(see Conics, p. 297).

850. The equation p.D = constant has bcen written in another
convenient form.* Let a', a” be the primary semi-axes of two
confocal surfaces through any point on the curve, and let ¢ be
the angle which the tangent to the geodesic makes with one of
the principal tangents. Then since a*—a”, a'- a™ (Art. 172) are
the semi-axes of the central section parallel to the tangent plane,
any other semi-diameter of that section is given by the equation

1 cog's sin’¢
D' @'—a" " a*—a"’
. .1 _(a'"—a")(a'=a")
while, again, 7o i (Art. 173).

The equation therefore pD = constant is equivalent to
(a*— a™) cog's + (a' — a’™) sin’s = constant,
or to a” cos't + a™ sin¢ = constant.
351. The locus of the intersection of two geodesic tangents to
a line of curvature, whick cut at right angles, is a sphero-conic.

This is proved as the corresponding theorem for plane conics.
If a', a" belong to the point of intersection, we have

a" cos'¢{ + a™ sin"¢ = constant, a™ sin"¢+ a" cos'¢= constant,
hence a"™ + a'™ = constant ;

* By Liouville, Vol. 1x., p. 401,
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and therefore (Art. 169) the distance of the point of intersection
from the centre of the quadric is constant. The locus of inter-
section is therefore the intersection of the given quadric with
a concentric sphere. The demonstration holds if the geodesics
are tangents to different lines of curvature; and, as a par-
ticular case, the locus of the foot of the geodesic perpendicular
from an umbilic on the tangent to a line of curvature is a
sphero-conic.

352. To find the locus of intersection of geodesic tangents
to a line of curvature which cut at a given angle (Besge,
Liouville, x1v. p. 247).

The tangents from any point whose a', a” are given, to
a given line of curvature are determined by the equation
a” cos't + o™ sin"s=B; and since they make equal angles with
either of the principal radii through that point, ¢ the angle
they make with one of these radii is half the angle they make
with each other. 'We have therefore

V(B—d”), _2/(B—a") ¥(@"-8)
V@B e
(@™ +a™—28)" tan*0 =48 (a” + a'™) — 4a"a"™ — 48",
This is reduced to ordinary co-ordinates by the equations
(Arts. 168, 169)
2 (a* - b') (a® - &)

a'tad"=2'+ '+ + b+ -a'; "= p ’

tan}6=

whence it appears that the locus required is the intersection
of the quadric with a surface of the fourth degree.®

353. It was proved (Art. 186) that two confocals can be
drawn to touch a given line; that if the axes of the three
surfaces passing through any point on the line be a, a', a”
and the angle the line makes with the three normals at the

* Mr. Michael Roberts has proved (Liouville, Vol. xv., p. 291) by the
method of Art. 197, that the projection of this curve on the plane of
circular sections is the locus of the intersection of tangents at a constant
angle to the conic into which the line of curvature is projected.
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point be a, B, o; then the axis-major of the touched confocal
is determined by the quadratic
cos'a  cos'B cog'y

+
a—-a'  a"—a' a"—

i 0.

Let us suppose now that the given line is a tangent to the
quadric whose axis is @, we have then cosa=0, since the line
is of course at right angles to the normal to the first surface;
and we have cos@=siny, since the tangent plane to the sur-
face a contains both the line and the other two normals. The
angle o is what we have called ¢ in the articles immediately
preceding. The axis then of the second confocal touched by
the given line is determined by the equation

sin’¢ cos't

+ =0, or a®cos’t+a'” sin¢=a’.
a—a  d —at )

If then we write the equation of a geodesic (Art. 351)
a™ cos’i +a"” sin"{=a") we see from this article that that equa-
tion expresses that all the tangent lines along the same geodesic
touch the confocal surface whose primary axis is a.*

The geodesic itself will touch the line of curvature in which
this confocal intersects the original surface; for the tangent
to the geodesic at the point where the geodesic meets the
confocal is, as we have just proved, also the tangent to the
confocal at that point. The geodesic therefore and the inter-
section of the confocal and the given surface have a common
tangent.

The osculating planes of the geodesic are plainly tangent
planes to the same confocal; since they are the planes of two
consecutive tangent lines to that confocal.

The value of pD for a geodesic passing through an
umbilic is ac (Art. 348); and the corresponding equation
is thcrefore a” cos't+ a™ sin't=a'-3". Now the confocal,
whose primary axis is 4/(a*— %), reduces to the umbilicar focal
conic. Hence, as a particular case of the theorems just proved,

®* The theorems of this article are taken from M. Chasles’s Memoir,
Liouville, Vol. x1., p. 5.
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all tangent lines to a geodesic which passes through an umbilic,
tntersect the umbilicar focal conic.

Conversely, if from any point O on that focal conic recti-
linear tangents be drawn to a quadric and those tangents
produced gcodetically on the surface, the lines so produced
will pass through the opposite umbilic; the whole lengths
from O to the umbilic being equal.

354. From the fact (proved p. 144) that tangent planes
drawn through any line to the two confocals which touch it
are at right angles to each other, we might have inferred
directly, precisely as at Art. 279, that tangent lines to a
geodesic touch a confocal. For the plane of two consecutive
tangents to a geodesic being normal to the surface is tangent
to the confocal touched by the first tangent. The second
tangent to the geodesic thercfore touches the same confocal;
as, in like manner, do all the succeeding tangents. Having
thus established the theorem of the last article, we could, by
reversing the steps of the proof, obtain an independent de-
monstration of the theorem pD) = constant.

355. The developable circumscribed to a quadric along a
geodesic has its cuspidal edge on another quadric, which is the
same for all geodesics touching the same line of curvature.

For any point on the cuspidal edge is the intersection of
three consecutive tangent planes to the given quadric, and
the three points of contact, by hypothesis determine an oscu-
lating plane of a geodesic which (Art. 353) touches a fixed
confocal. The point on the cuspidal edge is the pole of this
plane with respect to the given quadric; but the pole with
respect to one quadric of a tangent plane to another lies on
a third fixed quadric.

356. M. Chasles has given the following generalization of
Mr. Roberts’s theorem, Art. 348. If a thread fastened at two
Sixed points on one quadric A be strained by a pencil moving
along a confocal B (so that the thread of course lies in geo-
desics where it is in contact with the quadrics and in right
lines in the space between them), then the pencil will trace

u
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a line of curvature on the quadric A. For the two geodesics
on the surface B, which meet in the locus point P, evidently
make equal angles with the locus of P; but these geodesics
have as tangents the rectilinear parts of the thread which
both touch the same confocal; therefore (Art. 353) the pD is
the same for both geodesics, and hence the line bisecting the
angle between them is a line of curvature.

A particular case of this theorem is that the focal ellipse
of a quadric can be described by means of a thread fastened
to two fixed points on opposite branches of the focal hyperbola.

357. Elliptic Co-ordinates. The method used (Arts. 351, 352)
in which the position of a point on the ellipsoid is defined by
the primary axes of the two hyperboloids intersecting in that
point, is called the method of Elliptic Co-ordinates (see p. 152
and Higher Plane Curves, p. 276). It being more convenient
to work with unaccented letters, I follow M. Liouville* in
denoting the quantities which we have hitherto called o, a”
by the letters u, v; and in this notation the equation of the
lines of curvature of one system would be of the form
4= constant, and those of the other v = constant. The equation
of a geodesic (Art. 350) would be written u* cos*s + v* sin®s = pu™;
and when the geodesic passes through an umbilic, we have
p*=a"—=b"=k". It will be remembered (Art. 166) that u lics
between the limits 2 and %, and v between the limits % and 0.

Throwing the equation of a geodesic into the form

p'+ v tan* 7= p” (1 + tan*s);
we see that it is satisfied (whatever be u') by the values
p'=0,tan'i=—1. Whence it follows that the same pair of
imaginary tangents, drawn from an umbilic, touch all the lines
of curvature,t a further analogy to the foci of plane conics.

358. To express in elliptic co-ordinates the element of the
arc of any curve on the surface. Let us consider first the

® I cannot, however, bring myself to imitate him in calling the axis
of the ellipsoid p; and his denoting the quantities a* - 3, a* - ¢* (which
we call A, &*) by the letters &', ¢*, seems likely to confuse.

+ Mr. Roberts, Liouville, Vol. xv., p. 289,
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element of any line of curvature, u = constant. Let that line be
met by the two consecutive hyperboloids, whose axes are v and
v+dy; then, since it cuts them perpendicularly, the intercept
between them is equal to the difference between the central
perpendiculars on the tangent planes to the two hyperboloids.
But (Art. 190) (p"+dp")' —p™=(v+dv)'—V" or p"dp" =vdv.
Now we have proved that dp”=do, the element of the arc
we are seeking, and
@V PR =)
p —(ai_a"n) (am_aui) - (ax_ V’) (“z_ V’) .
_@=v)(p-v) .
NCGERICE A
In like manner the element of the arc of the line of curvature
v = constant is given by the formula
2 __ (a’ '—/"2) (”’i — Vg) 2
== E e
Now if through the extremities of the element of the arc ds
_of any curve, we draw lines of curvature of both systems, we
form an elementary rectangle of which do, do’ are the sides
and ds the diagonal. Hence
s_(a"—ﬂ')(#"—") (@ —v) (' —¥")
e I R G

359. In like manner we can express the area of any portion
of the surface bounded by four lines of curvature; two lines

By iy and two v, v,. For the element of the area is

Hence

W= Y= ) @ )
O oy Y [ G ) R
the integral of which is
O A Gl 2 K O Gt A K
T FIE T o TP
. f‘ (a— dp V(@ =V)dv
e Rk

So, in like manner, we can find the differential cquation of the

® The area of the surface of the ellipsoid was thus first expressed by
Legendre, Trasté des Fonctions Elliptiques, Vol. 1., p. 352,
U2
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orthogonal trajectory of a curve whose differential equation is
Mdu + Ndy. For the orthogonal trajectory to Pdo+ Qdo' is

plainly dP Q ; since do, do’' are a system of rectangular

co-ordinates. But Mdu + Ndv can be thrown without difficulty
into the form Pdo + Qdo’ by the equations of the last article.
The equation of the orthogonal trajectory is thus found to be

__@-w dp _a-v dv_
W-F)F-pw) M F-)F-" )N~
360. The first integral of a geodesic u® cos®s+ " sin*t=pu™
can be thrown into a form in which the variables are separated
and the second integral can be obtained. That equation gives

ta.m--\/( 3

da’ V(a'— p®) (B =) (B —+") d, L
V@A) WF) (F ) dv?
whence equatmg, we have
V(o= ) du «/(a —v) dv
V=i @) @ = A =) (P =)
the terms of which can be integrated separately.*
If the geodesic passes through the umbilics, we have u” = A*
(Art. 357), and the equation of the geodesic is
V(@ - ) V(e —V)
d
W =RV =) = A )

361. To find an expression for the length of any portion of
a geodesic. The element of the geodesic is the hypotenuse of

a right-angled triangle of which do, do’ are the sides and whose
base angle is ¢. Hence we have ds=sinido’ +cosido; and

putting in sin¢ =_“%'_._f:%) y COSE= ://((;, — y,)) , and giving

do, do' the values of Art. 358, we have .
A ol | N A T

* The equation of a geodeno was first integrated by Jacobi, Crelle,
Vol. xr1x., p. 309.

But tani=

=0,

dv=0.
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If p be the element of a line through the umbilics, we have

e 52 J323)

It is to be noted that when we give to the radical in the last
article the sign + we must give that in this article the sign —.
This appears by forming (Art. 359) the differential equation of
the orthogonal trajectory to a geodesic through an umbilic, an
equation which must be equivalent to dp =0 (Art. 342).

362. In place of denoting the position of any point on an
ellipsoid by the elliptic co-ordinates u, v, we might use geodesic
polar co-ordinates and denote a point by p its geodesic distance
from an umbilic, and by o the angle which the radius vector
makes with the line joining the umbilics. Now the equation
(Art. 360) of a geodesic passing through an umbilic gives the
sum of two integrals equal to a constant. This constant can-
not be a function of p since it remains the same as we go along
the same geodesic: it must therefore be a function of @ only;
and if we pass from any point to an indefinitely near one, not
on the same geodesic radius vector, we shall have

V(@' —u*) du Nd-v)dv
@=W V=@ T ie-w ¢ @) e

‘We shall determine the form of the function by calculating
its value for a point indefinitely near the umbilic, for which
p=v=h. The left-hand side of the equation then becomes

,\/ (Z,%;:,) x limit of (,Tdfﬁ"'},d%yﬂ) Now if we put
p=h+n, v=h—e, the quantity whose limit we want to find

. dn de . )
8 ohn+n' 2ke—¢e'! which, as 7 and e tend to vanish, becomes

. . 1 rdn de 1 7
the limit of . (7 - ?) or of o d log 1.

h 2k
Now since the angle external to the vertical angle of the
triangle formed by the line joining any point to two umbilics,
is bisected by the direction of the line of curvature, that external
angle is double the angle 4 in the formula u® cos’s+ " sin’¢=4A"
In the limit when the vertex of the triangle approaches the
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umbilic, the external angle of the triangle becomes w, and
we have at the umbilic
(R +m)* cos’w + (h— &) sin’ fo = A",
and in the limit
tan’jo = g .

Using this value, the limit of the left-hand side of the equation is

2h’\/k’ jx d (log tan'jw).

We have therefore
Jia*= ) dp V(@ (Gt o
(B = R) V(K —p') (A=) A\/(k" v") k’ h’ sinw
And the constant which occurs in the mtegrated equation of
a geodesic through an umbilic is of the form
a -k

2h Ic" h"

+

log tan*j + C.

363. If P, Q be two consecutive points on a curve, and if
PP’ be drawn perpendicular to the geodesic radius vector 0Q,
it is evident that P@Q'=PP"+ P'Q". Now since (Art. 342)
OP=O0P, we have P'Q=dp, while PP’ being the element
of an arc of a geodesic circle, for which p is constant (or
dp=0), must be of the form Pdw. Hence the element of the
arc of a curve on any surface can be expressed by a formula
ds'=dp'+ P'dew’. We propose now to examine the form of
the function P for the case of radii vectores drawn through
an umbilic of an ellipsoid. Let us consider the line of cur-
vature p=pu'. We have then (Art. 361)

2 (=) (a* —¥")
ds'=dv* A F=r)
And by the same article
a -V

3
dp' = dv' s

2 ( -k -
whence Pdo (’I:"—'))’(Ta_v"%) av'.

But (Art. 362), when u is constant,

(a—v a'v —l)'
(A=) v h\/A'—h’ sinw
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Putting in this value for dv, we have

P @R E N R e y
R (k' - &) sin’ @ T (' =d") (- sin'w T Ere
(Art. 168) ; therefore
) S
sinw

In this investigation it is not necessary to assume the result
of the last article. If we substitute for the right-hand side of
the equation in the last article an undetermined function of w,
it is proved in like manner that P=y¢ (w). We determine
then the form of the function by remembering that in the neigh-
bourhood of the umbilic the surface approaches to the form
of a sphere. Now on a sphere the formula of rectification
is ds'=dp’+sin’pdw’. Hence P=sinp. But in the sphere
y=sinp sinw. The function therefore which multiples y is

1
sinw

364. Consider now the triangle formed by joining any
point P to the two umbilics O, 0. Then for the arc OP

. 3 . .
we have the function P= si;: - and for the arc O'P, connecting

P with the other umbilic, we have the function P =ia

and P: P :: sinw : sinw’, an equation analogous to that which
expresses that the sines of the sides of a spherical triangle
are proportional to the sines of the opposite angles; since P
and P in the rectification of arcs on the ellipsoid answer to
sinp, sinp’ on the sphere.

365. Again, if P be any point on a line of curvature we
know (Art. 348) dp +dp' =0, where p and p' are the distances
from the two umbilics. Now if 6 be the angle which the
radius vector OP makes with the tangent, the perpendicular
element Pdw is evidently dp tan6. But the radius vector O'P
makes also the angle @ with the tangent. Hence, we have

do  do'

= —_— )
Pdw + Pdo’ =0, orB ismw 0,
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whence tan}e tan}e’ is constant when the sum of sides of the
triangle is given; and tanje is to tanje’ in a given ratio
when the difference of sides of the triangle is given. Thus
then the distance between two umbilics being taken as the
base of a triangle, when either the product or the ratio of
the tangents of the halves of the base angles is given; the
locus of vertex is a line of curvature.*

From this theorem follow many corollaries: for instance,
“If a geodesic through an umbilic O meet a line of curvature
in points P, P, then (according to the species of the line
of curvature) either the product or the ratio of tan}PO' O,
tan}P' O’ O is constant.” Again, “if the geodesics joining to
the umbilics any point P on a line of curvature meet the
curve again in P’, P, the locus of the intersection of the
transverse geodesics O'P’', OP" will be a line of curvature of
the same species.”

366. Mr. Roberts’s expression for the element of an arc
perpendicular to an umbilical geodesic has been extended as
follows by Dr. Hart: Let OZ, OT" be two consecutive geo-
desics touching the line
of curvature formed by
the intersection of the ===
surface with a confocal
B, do the angle at
which they intersect;
then the tangent at
any point 7' of either
geodesic touches B in
a point P (Art. 353);
and if 77" be taken
conjugate to 7P, the
tangent plane at 77
passes through TP

* This theorem, as well as those on which its proof depends, (Art. 362,
&c.) is due to Mr. M. Roberts, to whom this department of Geometry
owes so much {Liouville, Vols. x111,, p. 1, and xv., p. 273).
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(Art. 237) and the tangent line to the geodesic at 7" touches
the confocal B in the same point . 'We want now to express
in the form Pdw the perpendicular distance from 7" to TP.
Let the tangents at consecutive points, one on each geodesic,
intersect in P and make with each other an angle d¢'. Let
normals at the points 7}, 7, meet the tangents PT, PT" at
the points 7, 7, then since the difference between 7,7, T, T}
is infinitely small of the third order, PTd¢ and P T ,d¢' are
equal to the same degree of approximation. But PT,, P'T,
are proportional to D and I’ the diameters of the surface
B drawn parallel to the two successive tangents to the geo-
desic. Hence Dd¢p=D'd¢’. This quantity therefore remains
invariable as we proceed along the geodesic; but at the point
0,dp=dw; if therefore D, be the diameter of B parallel to
the tangent at O to the geodesic, Ddp=Ddw; and there-

fore the distance we want to express PTd¢= %’ tdw, where
t(=PT) is the length of the tangent from 7' to the confocal B;

or % tis a mean between the segments of a chord of B drawn

through 7' parallel to the tangent at O. When the geodesic
passes through an umbilic, the surface B reduces to the plane

of the umbilics, and %t becomes the line drawn through 7'

to meet the plane of the umbilics parallel to the tangent at O;
which is Mr. Roberts’s expression.

Hence, if a geodesic polygon circumscribe a line of curvature,
and if all the angles but one move on lines of curvature, this also
will move on a line of curvature, and the perimeter of the polygon
wtll be constant when the lines of curvature are of the same
species. The proof is identical with that given for the corre-
sponding property of plane conics (Conics, Art. 358).

367. If a geodesic joining any umbilic to that diametrically
opposite, and making an angle @ with the plane of the um-
bilics, be continued so as to return to the first umbilic, it
will not, as in the case of the sphere, return on its former
path, but on its return will make with the plane of the um-
bilics an angle different from w. In order to prove this we
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shall investigate an expression for 6, the angle made with
the plane of the umbilics by the osculating plane at any point
of that geodesic.

It is convenient to prefix the following lemma. In a
gpherical triangle let one side and the ad-
jacent angle remain finite while the base
diminishes indefinitely, it is required to find
the limit of the ratio of the base to the
difference of the base angles measured in
the same direction. The formula of spherical
cos}(a + D)

cosdc
limit df@=cosady. But evidently sinadyr=sin6d$. Hence
a6  do
sinf  tana’

Now we know (Art. 353) that the tangent line at any point
of a geodesic passing through an umbilic, if produced goes to
meet the plane of the umbilics in a point on the focal hyper-
bola; and the osculating plane of the geodesic at that point
will be the plane joining the point to the corresponding tangent
of the focal hyperbola. We know also (Art. 194) that the
cone circumscribing an ellipsoid and whose vertex is any point
on the focal hyperbola is a right cone.

Let now PP’ be an element of an umbilical geodesic pro-
duced to meet the focal , o
hyperbola in H. Let
PP’ be the consecutive P
element meeting the focal
hyperbola in H'; then
if Hh, H'K be two con- I
secutive tangents to the
focal hyperbola; PH#A,
P'HFK will be two consecutive osculating planes. Imagine
now a sphere round H', and consider the spherical triangle
formed by radii to the points &, #', P. Then if dp be the
angle RH'K, the angle of contact of the focal hyperbola;
0 the angle between the osculating plane and AH'A’ the plane
of the umbilics, while 2H'P’ is a the semi-angle of the cone;

trigonometry cos}(4d + B)=sin}C gives us in the

’
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then the spherical triangle is that considered in our lemma,
dé do

and we have —— = ——
sind  tana’

In order to integrate this equation we must express d¢ in
terms of a; and this we may regard as a problem in plane
geometry, for a is half the angle included between the tangents
from H to the principal section in the plane of the umbilics,
“while d¢ is the angle of contact of the focal hyperbola at the
same point. Now if a/, §'; a”, " be the axes of an ellipse
and hyperbola passing through H, confocal to an ellipse whose
axes are a, b; and if 2a be the angle included between the
tangents from H to the latter ellipse, we have (see Conics,

2 ]

Ex. 10, p. 192) tan’a:Z,—,—_ia; . Differentiating, regarding a"

as constant (since we proceed to a consecutive point along the

’ ’

same confocal hyperbola), we have da=—tana a""l — But

if p, p’' be the central perpendiculars on the tangents at H
to the ellipsc and hyperbola, we have a'da’=pdp (Art. 358).
Now dp is the element of the arc of the focal hyperbola, and
if p be the radius of curvature at the same point, dp = pd¢.

n__ N oy
Butp=a Pla . Henceda——tanap¢orda tana%?.

But o¢"=a"+ (a"— @) cot’a, " =0"+ (a’—a") cot'a.

d¢ _ a"[)"da
tana  4/(a"—a™ +d* tan’a) v/(a*— a’” + " tan’a) ’

Hence

In the case under consideration the axes of the touched
ellipse are a, c; while the squares of the axes of the confocal
hyperbola are a* - ?*, b* —¢*. Hence we have the equation

dd V(a'—b") (8" =) da
sind /(0" + a® tan*a) ¥/ (0* + ¢ tan’a)

Integrating this, and taking one limit of the integral at
the umbilic where we have § = », and a = §7; we have

tan&ﬂ j’ v (a Py V@B —C')da
8 tan jo  Jix ¥(0*+ o’ tan’a) /(8" + ¢’ tan’a)”
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If then I be the value of this integral; we have
tan}60 =k tanjo, where k=¢’.

Now this integral obviously does not change sign between
the limits + 4w, that is to say, in passing from one umbilic
to the other. If then o' be the value of @ for the umbilic
opposite to that from which we set out; at this limit / has
a value different from zero, and % a value different from unity ;
and we have tanjo' =% tanjw; o' is therefore always different
from . And in like manner the geodesic returns to the original
umbilic, making an angle ®" such that tanjw”=~#" tan}w,
and so it will pass and repass for ever making a series of
angles the tangents of whose halves are in continued pro-
portion.*

368. If we consider edges belonging to the same tangent
cone, whose vertex is any point H on the focal hyperbola, a
(and therefore k) is constant ; and the equation tan }6 =% tan e
gives — = —di. Now since the osculating plane of the
geodesic is normal to the surface, and therefore also normal
to the tangent cone, it passes through the axis of that cone.
If then we cut the cone by a plane perpendicular to the axis,

the section is evidently a circle whose radius is =, and the

sin@’
element of the arc is yﬂ y Or "’.ﬂ . Now this element, being
sin @ sinew
the distance, at their point of contact, of two consecutive sides
of the circumscribing cone, is what we have called (Art. 363)
Pdw, and we bhave thus from the investigation of the last

article an independent proof of the value found for P (Art. 363).

369. Lines of level. The inequalities of level of a country
can be represented on a map by a series of curves marking
the points which are on the same level. If a series of such
curves be drawn, corresponding to equi-different heights, the

® The theorems of this article are Dr. Hart’s, Cambridge and Dublin
Mothematicul Journal, Vol. 1v., p. 82; but in the mode of proof I have
followed Mr. William Roberts, Liouville 1857, p. 213.
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places where the curves lie closest together evidently indicate
the places where the level of the country changes most rapidly.
Generally, the curves of level of any surface are the sections
of that surface by a series of horizontal planes, which we may
suppose all parallel to the plane of xy. The equations of the
horizontal projections of such a series are got by putting z=¢
in the equation of the surface ; and a differential equation common
to all these projections is got by putting dz =0 in the differential
equation of the surface, when we have

(%U dz + ‘—2—5— dy=0.

We can make this a function of = and y only, by eliminating
the z which may enter into the differential coefficients, by the
help of the equation of the surface.

Lines of greatest slope. The line of greatest slope through any
point is the line which cuts all the lines of level perpendicularly ;
and the differential equation of its projection therefore is

au dau

The line of greatest slope is often defined as that, the tan-
gent at every point of which makes the greatest angle with
the horizon. Now it is evident that the line in any tangent
plane which makes the greatest angle with the horizon is
that which is perpendicular to the horizontal trace of that
plane. And we get the same equation as before by expressing
that the projection of the element of the curve (whose direction-
cosines are proportional to dx, dy) is perpendicular to the trace
whose equation is

au N dU o aU , .
E(:c—x)+-d—y,(y—y)—a?z—0.

* It is evident that the differential equation of the curve, which is
always perpendicular to the intersection of the tangent plane, [whose
direction-cosines are as L, M, N] by a fixed plane whose direction-cosines
are a, b, ¢, is
dz, dy, dz
L, M,°N
a, b ¢

=0.
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Ex. To find the line of greatest slope on the quadric 4z* + By* + C¢*= D.
The differential equation is Axdy = Bydr, which integrated, gives

z\B (y\4 . .
(;) = (-'7) , where the constant has been determined by the condition

that the line shall pass through the point 2 =2, y=y. The line of
greatest slope is the intersection of the quadric by the cylinder whose
equation has just been written, and will be a curve of double curvature
except when 2y’ lies in one of the principal planes when the equation
just found reduces to z=0 or y =0,

370. We shall conclude this chapter by giving an account
of Gauss’s theory of the curvature of surfaces.* In plane curves
we measure the curvature of an arc of given length by the
angle between the tangents, or between the normals, at its
extremities; in other words, if we take a circle whose radius
is unity, and draw radii parallel to the normals at the ex-
tremities of the arc, the ratio of the intercepted arc of the
circle to the arc of the curve affords a measure of the cur-
vature of the arc. Im like manner if we have a portion of
a surface bounded by any closed curve, and if we draw radii
of a unit sphere parallel to the normals at every point of the
bounding curve, the area of the corresponding portion of the
sphere is called by Gauss the total curvature of the portion
of the surface under consideration. And if at any point of
a surface we divide the total curvature of the superficial element
adjacent to the point by the area of the element itself, the
quotient is called the measure of curvature for that point.

371. We proceed to express the measure of curvature by
a formula. Then since the tangent plane at any point on the
surface, and at the corresponding point on the unit sphere
are by hypothesis parallel ; the areas of any elementary portions
on each are proportional to their projections on any of the
co-ordinate planes. Let us consider then their projections on
the plane of xy, and let us suppose the equation of the surface
to be given in the form z=¢ (z, )

* The reader will find his paper feprinted in the appendix to Liouville’s
edition of Monge.
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If then @, y, 2 be the co-ordinates of any point on the surface,
X, Y, Z those of the corresponding point on the unit sphere,
z+dx, x+ 8z, X+dX, X+ 38X, &c., the co-ordinates of two
adjacent points on each: then the areas of the two elementary
triangles formed by the points considered, are evidently in the
ratio

dX8Y - dY3X : dxdy—dydz.

But dX, dY: 8X, 8Y are connected with dx, dy, &c., by

the same linear transformations, viz.,
dX dX dY dY
dX=-——d£+"237 dy, dY="- dx+@dy,
dX dX aYy dYy
SX_ZES z+ dy 8y, SY_—S +o- & 8y;
whence by the theory of linear transformations, or by actual
multiplication,

dX8Y —dY8X = (dudy — dydz) (

dX dY dX dY.

and the quantity dz dy " dy d=

Now X, Y, Z being the projections on the axes of a unit

line parallel to the normal are proportional to the cosines of

the angles which the normal makes with the axes. We have
therefore

dX dY _dX dY'
de dy — dy dz)

18 the measure of curvature.

X=~/(1 +§*+¢>’ Y=Ta +§»‘+q’)’
_(+q)r— pqs _(1+q)s- pqt
(1+5"+) e (1+p 4+

dY _ (1+p’)s—pgt _(4p - qu
@ gt dy 145"+

dX dY _dX dY _ (rt—¢')
dx dy  dy dxr (1+p°+¢)"
But from the equation of (Art. 281, p. 222) it appears that

whence

. .1
the value just found for the measure of curvature s R’ where

R and R’ are the two principal radii of curvature at the point.



304 CURVES TRACED ON SURFACES.

872. It is easy to verify geometrically the value thus found.
For consider the elementary rectangle whose sides are in the
directions of the principal tangents. Let the lengths of the
sides be A, \', and consequently its area AA'. Now the normals
at the extremities of A\ intersect, and if they make with each
other an angle 6, we have 0=% where R is the corresponding
radius of curvature. But the corresponding normals of the
sphere make with each other, by hypothesis, the same angle;
and their length is unity. If therefore u be the length of

the element on the sphere corresponding to A, we have %: B
In like manner we have %=p’; and ’i—; = R%,: which was
to be proved.

373. Gauss has proved that if a surface supposed to be

. flexible but not extensible be deformed in any way: (that is to
say, if the shape of the surface be changed, yet so that the
distance between any two points measured along the surface
remains the same) then the measure of curvature at every
point remains unaltered. We have had an example of such
a change in the case of a developable surface which is such a
deformation of a plane (Art. 287). And the measure of cur-
vature vanishes for the developable as well as for the plane,
one of the principal radii being infinite (Art. 334). To establish
the theorem in general, let us suppose that any point on the
surface instead of being given by three co-ordinates connected
by the equation of the surface is given by two independent
co-ordinates. Let

dx=adu+ a'dv, dy=>bdu+b'dv, dz=cdu+ c'dv,
then ds* = do’ + dy* + d2* = (a’ + b + ¢*) du*
+2 (aa' + bb' + cc') dudv + (a™ + 8" + ™) dv'.
If we write this equation
ds' = Edu* + 2Fdudv + Gdv',

what we want to prove is that the measure of curvature, or

that the product of the principal radii, is a function of E, F, G.
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In fact, let «'y'z’ denote the point of the deformed surface
corresponding to any point xyz of the given surface. Then
«,y', 2’ are given functions of z, , 2, and can therefore also
be expressed in terms of v and ». And the element of any
arc of the deformed surface can be expressed in the form

ds"=E'du’ + 2F dudv + G'dv’.

But the condition that the length of the arc shall be un-
altered by transformation, manifestly requires E=E', F'=F',
G=G'. Any function thercfore of E, F, G is unaltered by
such a deformation as we are considering. )

Now it will be remembered (see p. 203) that the principal
radii are given by a quadratic, in which the coefficient of A*
is (L*+M*+ N*)*; and the absolute term is

(be —1*) L* + (ca—m*) M* + (ab—n’) N*
+ 2 (mn — al) MN+ 2 (0l — bm) NL + 2 (lm — cn) LM.*

We shall scparately express each of these quantities in
terms of E, F, G.

374. Now if we substitute in the equation of the surface
Ldx + Mdy + Ndz=0, the values of dx, dy, dz given in the
last article, and remember that since » and v are independent
variables, the coefficients of du and dv must vanish separately,
we have

La+ Mb+ Ne=0, La' + MY + Nc'=0.
Consequently we have
L=2x(bc'—0b'c)y M=X(ca'—c'a)y N=X\(ab' — a'd),
where A is indeterminate, and
L'+ M*+ N*=X\"{(a"+ 8"+ ) (a® + 8" + ¢*) — (aa’ +bb' +cc')'},
=\'"(EG-F).
(See Lessons on Higher Algebra, Art. 21).

375. Let us now examine the result of making in the
absolute term, given Art. 373, the same substitution, viz.

* We use Roman letters in order that the a, b, ¢ of p. 203 may not
be confounded with a, b, ¢ used in a different sense in this article.

X
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L=Xx(bd—¥bc), &ec. Now an equation which we had occasion
to use in the theory of conics (see Conics, Ex. 5, p. 269) enables
us to write this result in a more simple form. Let us write
down the equation of a conic

az’ + by® + c2* + 2lyz + 2mzx + 202y =0,

and substituting for z, y, z; a+ka', b+ kb, c+ kc'; let us write
the result U+2kV+£*U’, then

UU - V*=(bc—1) (bc' — cb')* + (ca — m*) (ca’ — c'a)* + &e.
In fact, either side of this equation, equated to nothing, ex-
presses the condition that the line joining the points abe, a'b'c’
should touch the conic. The equation however may be verified

by actual multiplication. What we want to calculate then is
A (UU' - V™) where

U = aa” + bb* + cc’ + 2lbc + 2mca + 2nad,

U =aa" +bd"” + cc™ + 216'¢’' + 2mc'a’ + 2na'd,
V=aaa'+ bbd' +ccc' + 1 (bc' + b'c) + m (ca’ + c'a) + n (ad’ + a'b).
Now let us differentiate the equatxon Ldx + Mdy + Ndz =0,

and we get
Ld*x + Md*y + Nd*z
= — (adz" + bdy" + cd2’ + 21dydz + 2mdzdz + 2ndxdy).
If now we write
d'z= adu'+ a'dudv + o"dv",
d'y =Bdu’ + B dudv + B"dv",
d’z = ydu’ + v'dudv + §"dv*,

and making these substitutions on the left-hand side of the
preceding equation, substitute for dr, dy, dz, from Art. 373,
we get, by equating the coefficients of du’, dudv, and dv*,

Lo+ MB+ Ny=—-U, Ld+MB +Ny=-V,
L'+ MB"+ Ny'=-U",
and what we want to calculate is the value of
A {(La+ MB + Ney) (La” + MB" + Nyy") — (La' + MB' + Nyy')*},
when for L, M, N are substituted the values in Art. 374.
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The result is A* multiplied by

% B,y a'y B 9" a B o [*
a, b c|lx|a b c|—|a b ¢
a, ¥, c a, ¥, ¢ a, b, ¢

Now if these products be expanded according to the ordinary
rule for multiplication of determinants, they give the difference
between the two determinants*

m"+ﬁﬁ'+wll’ aa"+bﬁ"+07l” l 'I+b'B' +cl "
aa + b8 + ¢y, a + b+, ad + b +cc |,
da+bB +cy, aa'+ b +c, a”+ b + *

ara + Bra + 'yr” M’+bﬁ'+0'y', a'a'+b'/3'+c'ry'

ad’ + b8 + ¢y, o'+ 8 + ¢, aa' + b + cc

ad +b8 +cy, aa'+bb' +cc, a*+ 8" + c*

376. Now it is easy to show that the terms in these deter-
minants are functions of £, F, G and their differentials. Re-
ferring to the definitions of q, b, ¢, a, ', a”, &c. (Arts. 373, 375)
it is obvious that

_da ,_da_dd ,_dd
) *Th ) * T d?

whence since
E=d"+b'+¢, F=aa' +bb'+cd, G=a"+0"+c",

dE , , dE
aa+bﬁ+o'y=}3;, ad’ + b + cy =t

&e.,

aa’+blﬁc+cpryl=%ﬁ’ '"+b'/3"+ ’ n_}lél?,

aa’ + 58" + oy’ --d——(aal +B +¢ ')—d—F *df
F

da+ b +cy= %‘—(aa +68 +oy dF %du

* I owe to Mr. Williamson the remark that the application of this
rule exhibits the result in a form which manifests the truth of Gauss’s
theorem.

X2
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It will be seen that these equations express in terms of E, F, (
every term in the preceding determinants except the leadin;
one in each. To express these, differentiate, with regard to ¢
the equation last written, and we have

n_&F ' dﬂ L.
aa’+BR" + oy’ = ~ dudv } dv’ ( dv tb dv)
Again, differentiate, with regard to u, the equation

add +¥B +cy'= =4 o dG

and we have

] e __ - ’
a*+B8+9"=% 7 Tu —+b T

da ‘fza , &c., the quantities within the bracket
in the last two equations are equal. And since the leading
term in each determinant is multiplied by the same factor, i1
subtracting the determinants we are only concerned with th
difference of these terms, and the quantity within the bracket
disappears from the result. This result is A* multiplied by
the difference of the determinants

ara ( , da’ dﬁ u)

Now because

IF_ TE dF i@ . d@
dudv * s i g
§ E ’ E: . F ’
dF dE
e F, G
&G dE . dG
and * d 'R 'l ! & du

i‘ EE: E) F

o B G
We get the measure of curvature by dividing the quantity
now formed, by (L' + M*+ N*)" whose value is given (Art. 374
when the common factor A* disappears and the result is ob
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viously a function of E, F, G and their differentials. Gauss’s
theorem is therefore proved.

We add the actual expansion of the determinants, though
not necessary to the proof. Writing the measure of curvature
K, we have

29t B aL ety o alf oy ahel
4(EG - F) K—E{dv a2 Zu dv T\ du
F{dE dG dEdG _dEdF  dFdF _dF a’G}

dE dG __ dF dG (dG)’}

udy dhde PH T R BT
dE d@ dE dF (dE\*
G{?.zz gt (@ }
d*E d'F d*@
2
~2(B¢-F") (37 -2 g+ )
(Liouville’s Monge, p. 523).*

377. We may consider two systems of curves traced on
the surface, for one of which u is constant, and for the other v;
8o that any point on the surface is the intersection of a curve
of each system. The expression then ds'=Edu’+ 2Fdudv+ Gdv"
shows that +/(E) du is the element of the curve, passing through
the point, for which v is constant; and +/(G)dv is the element
of the curve for which » is constant. If these two curves
intersect at an angle , then since ds is the diagonal of a

parallelogram of which «+/(E)du, 4/(G)dv are the sides, we

F . .
have cose =JEG’ while the area of the parallelogram being

dodo’ sinw =V (EG — F*) dudv. If the curves of the system u

cut at right angles those of the system v, we must have #'=0.
A particular case of these formulz is when we use geodesic

polar co-ordinates in which case we saw that we always have

* MM. Bertrand, Diguet, and Puiseux (see Liouville, Vol. x111., p. 80;
Appendix to Monge, p. 583) have established Gauss’s theorem by calcu-
lating the perimeter and area of a geodesic circle on any surface, whose
radius, supposed to be very small, is s. They find for the perimeter

s w8t
3RE 12RR’
that these are unaltered by deformation implies that RR' is constant.

278 - , and for the area =s* - And of course the supposition
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an expression of the form ds’=dp'+ P'de’. Now if in the
formulee of the last article we put F=0, E=constant, it

becomes

dG

1B @R=E( ) _2£q %4

d:’

bave TP, P
RR’“"’ Ve 3 TRE ™

an equation which must be satisfied by the function P on any
surface, if Pdw expresses the element of the arc of a geodesic
circle. Mr. Roberts verifies (Cambridge and Dublin Mathe-
matical Journal, Vol. 111., p. 161) that this equation is satisfied
¥y
sinw

and if we put

E=1, G=P*, u=p, K= 0,

378. Gauss applies these formule to find the total curvature,
in his sense of the word, of a geodesic triangle on any surface.

The element of the area being Pdwdp, and the measure of

curvature being — lei’—pl’) ; the total curvature is found by

¢
twice integrating — %dpd@. Integrating first with respect

to p, we get (0—:117, dw. Now if the radii are measured

from one vertex of the given triangle, the integral is plainly

to vanish for p=0; and it is plain also that for p =0 we must

have g—PI—)= 1; for as p tends to vanish, the length of an element

perpendicular to the radius tends to become pdw. Hence the
. . dP

first integral is dw (l - d_p) .

This may be written in & more convenient form as follows:
Let 0 be the angle which any radius vector makes with the
element of a geodesic ab. Now
since aa'=Pdw, bb'= (P+dP)dw; and

?\(-I:—\:—j c
if cb=ad, we have ¥'c = dPdw, and //l ]
) ) s L 5

the angle d'ac= %ﬁ—)dm. But bac is /

evidently the diminution of the angle ¢
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0 in passing to a consecutive point; hence d0=—‘2—fdm. The
integral just found is therefore dw +df, which integrated a
second time is w+ 6 — 6", where w is the angle between the
two extreme radii vectores which we consider, and &, 6" are
the corresponding values of 6. If we call 4, B, C the internal
angles of the triangle formed by the two extreme radii and
by the base, we have w =4, =B, §"== - C, and the total
curvature is 4+ B+ C—m. Hence the excess over 180° of
the sum of the angles of a geodesic triangle is measured by
the area of that portion of a unit sphere which corresponds to
the directions of the normals along the sides of the given
triangle.

The portion on the unit sphere corresponding to the area
enclosed by a geodesic returning upon itself is half the sphere.
For if the radius vector travel round so as to return to the
point whence it set out the extreme values of § and 6" are
equal, while « has increased by 27w. The measure of cur-
vature is therefore 27 or half the surface of the sphere.*

* For some other interesting theorems, relative to the deformation of
surfaces, see Mr. Jellett’s paper “On the Properties of Inextensible
Surfaces, Transactions of the Royal Irish Academy, Vol. Xx11. The theory
of surfaces applicable to one another was the subject proposed by the
French Academy as their Prize Question for 1860, and the report of the
Commission to which .the decision was referred, gives reason to think
that the Memoirs sent in for competition will, when published, add con-
siderably to what had been previously known on the subject. -
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CHAPTER XII
FAMILIES OF SURFACES,

379. LET the equations of a curve
¢ (2,9, 2, ¢, €yre0) =0, ¥ (2,9, 70, ¢...0) =0,

include n parameters, or undetermined constants: then it is
evident that if n equations connecting these parameters be
given, the curve is completely determined. If, however, only
n—1 relations between the parameters be given, the equa-
tions above written may denote an infinity of curves; and the
assemblage of all these curves constitutes a surface whose
equation is obtained by eliminating the » parameters from the
given n+1 equations; viz. the n—1 relations, and the two
equations of the curve. Thus, for example, if the two equa-
tions above written denote a variable curve, the motion of
which is regulated by the conditions that it shall intersect n — 1
fixed directing curves, the problem is of the kind now under
consideration. For by eliminating x, y, z between the two
equations of the variable curve and the two equations of any
one of the directing curves, we express the condition that these
two curves should intersect, and thus have one relation between
the n parameters. And having n—1 such relations we find
the equation of the surface generated, in the manner just stated,
We had (Art. 109) a particular case of this problem.

Those surfaces for which the form of the functions ¢ and
is the same, are said to be of the same family, though the
equations connecting the parameters may be different. Thus
if the motion of the same variable curve were regulated by
several different sets of directing curves, all the surfaces
generated would be said to belong to the same family. In
several important cases the equations of all surfaces belonging
to the same¢ family can be included in one equation involving
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one or more arbitrary functions; the equation of any individual
surface of the family being then got by particularizing the form
of the functions. If we eliminate the arbitrary functions by
differentiation, we get a partial differential equation, common
to all surfaces of the family, which ordinarily is the expression
of some geometrical property common to all surfaces of the
family, and which leads more directly than the functional equa~
tion to the solution of some classes of problems.

380. The simplest case is when the equations of the variable
curve include but two constants.* Solving in turn for each of
these constants, we can throw the two given equations into
the form u=c,, v=c,; where u and v are known functions of
Z, ¥, 2. In order that this curve may generate a surface we
must be given one relation connecting c,, c,, which will be of
the form ¢,=¢ (c,); whence putting for ¢, and ¢, their values,
we sce that, whatever be the equation of connection, the equa-
tion of the surface generated must be of the form u = ¢ (v).

We can also in this case readily obtain the partial diffe-
rential equation which must be satisfied by all surfaces of the
family. For if U=0 represents any such surface, U can only
differ by a constant multiplier from »—¢ (v). Hence we have
AU=u— ¢ (v), and differentiating

with two similar equations for the differentials with respect to
y and 2. Eliminating then A and ¢'(v), we get the required
partial differential equation in the form of a determinant

v, U, 1,
u, u, u, |=0,
v, v, v,
where, for shortness, we write U,, U, U,, &c. for
U U U
de’ dy’' dz’

® If there were but one constant the elimination of it would give
the equation of a dcfinite surface, not of a family of surfaces.
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In this case » and v are supposed to be known functions of the
co-ordinates; and the equation just written establishes & relation
dU dU dU
& dy &

If the equation of the surface were written in the form
z2—¢ (x,y)=0; we should have ‘fl—z[—]= 1, %”[—]:’—p, %]=_q’
where p and ¢ have the usual signification, and the partial
differential equation of the family is of the form Pp+ Qg¢=R,
where P, @, R are known functions of the co-ordinates. And
conversely the integral of such a partial differential equation,
which (see Boole’s Differential Equations, p. 322) is of the form
u=¢ (v), geometrically represents a surface which can be gene-
rated by the motion of a curve whose equations are of the
form u=c,, v=c,

The partial differential equation affords the readiest test
whether a given surface belongs to any assigned family. We
have only to give to U, U, U, their values derived from the
equation of the given surface, which values must identically
satisfy the partial differential equation of the family if the
surface belong to that family.

of the first degree between

381. If it be required to determine a particular surface of
a given family u = ¢ (v), by the condition that the surface shall
pass through a given curve, the form of the function in this
case can be found by writing down the equations u=¢,, v=c,,
and eliminating «, y, z between these equations and those of
the fixed curve, when we find a relation betwecen ¢, and c,,
or between u and v, which is the equation of the required
surface. The geometrical interpretation of this process is that
we direct the motion of a variable curve u=c,, v=c, by the
condition that it shall move so as always to intersect the given
fixed curve. All the points of the latter are therefore points
on the surface generated.

If it be required to find a surface of the family u=¢ (v)
which shall envelope a given surface, we know that at every
point of the curve of contact U, U, U,, &c. have the same
value for the fixed surface and for that which envelopes it.
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If then in the partial differential equation of the given family,
we substitute for U, U,, U, their values derived from the equa-
tion of the fixed surface, we get an equation which will be
satisfied for every point of the curve of contact, and which
therefore combined with the equation of the fixed surface deter-
mines that curve. The problem is therefore reduced to that
considered in the first part of this article; namely, to describe
a surface of the given family through a given curve. All this
theory will be better understood from the following examples
of important families of surfaces belonging to the class here
considered ; viz. whose equations can be expressed in the form

u=¢ @)

382, Cylindrical Surfaces. A cylindrical surface is gene-
rated by the motion of a right line, which remains always
parallel to itself. Now the cquations of a right line include
four independent constants; if then the direction of the right
line be given, this determines two of the constants, and there
remain but two undetermined. The family of cylindrical sur-
faces belongs to the class considered in the last two articles.

Thus if the equations of a right line be given in the form
x=lz+p, y=mz+q; | and m which determine the directions
of the right line are supposed to be given; and if the motion
of the right line be regulated by any condition (such as that
it shall move along a certain fixed curve, or envelope a certain
fixed surface) this establishes a relation between p and ¢, and
the equation of the surface comes out in the form

z—lz=¢ (y —mz).

More generally, if the right line is to be parallel to the
intersection of the two planes ax+by+cz, a'c+b'y+ 'z, its
equations must be of the form

ax+by+cz=a, adz+bdy+cz=4,
and the equation of the surface generated must be of the form
azx +by+cz=¢ (a'z+b'y +c'2).
Writing ax + by + cz for u, and a'z+ by +c'z for v in the
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p¥ | the partial differential equa-

316 ‘,-_lﬂ' ":;l;",csk R ,
. #¢qh;d,zd;+ (o'~ ) U,+ (ab’ - a'd) U,=0,
AT v &
o (ﬂ”’ , cosa+ U, c08B8 + U, cosy =0, where a, 8, oy

96 ©. 5 of the generating line. Rememberin
s 5 P osined O gen g g
o ‘{fd" "2.‘":,, proportional to the direction-cosines of the

,1,”,‘; A “t'be * arface, it is obvious that the geometrical mean-
pormal © © o gtion is that the tangent plane to the surface

ing o ‘bi;muol to the direction of the generating line.

is alwsy? . .
g1 T0 find the equation of the cylinder whose edges are parallel to

- ms, and which passes through the plane curve z = 0, ¢ (z, y) = 0.
s=ky Ans. (z -1z, y - mz) = 0,

Ex. 3. To find the equation of the cylinder whose sides are parallel to
¢he intersection of az + by + ez, @'z + by + ¢z, and which passes through
the intersection of oz + By + y2=¢, F(z,y,2)=0. Solve for z, y, =
petween the equations az + by + ct=u, @'z + Hy + 2 =0, ez + By + y£ =,
and substitute the resulting values in F'(z, y, 2) = 0.

Ex. 3. To find the equation of a cylinder, the direction-cosines of whose
edges are /, m, n, and which passes through the curve U=0, P =0. The
elimination may be conveniently performed as follows: If z', y, ¢ be the
co-ordinates of the point where any edge meets the directing curve; z, y, z

those of any point on the edge, we have z;—i’ =Y ;”"/ = ;{ Calling

the common value of these functions 6, we have

d=z-100, y=y-mb, Z=z-n6.
Substitute these values in the equations U=0, V=0, which z'y'z must
satisfy; and between the two resulting equations eliminate the unknown 6,
the result will be the equation of the cylinder.

Ex. 4. To find the cylinder, the direction-cosines of whose edges are
l, m, n, and which envelopes the quadric 4z*+ By* + C2'=1. From the
partial differential equation, the curve of contact is the intersection of the
quadric with Alz + Bmy + Cnz = 0. Proceeding then as in the last example
the equation of the cylinder is found to be

Al + Bm* + Cn*) (As' + By* + C2* - 1) = (Alz + Bmy + Cnz)'.
(

383. Conical Surfaces. These are generated by the motion
of a right line which constantly passes through a fixed point.
Expressing that the co-ordinates of this point satisfy the equa-
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tions of the right line, we have two relations connecting the
four constants in the general equations of a right line. In this
case therefore the equations of the generating curve contain
but two undetermined constants, and the problem is of the kind
discussed Art. 380.
Let the equations of the generating line be
z—a _y—B z—y
I " m

?

where a, 8, v are the known co-ordinates of the vertex of the
cone, and /, m, n are proportional to the direction-cosines of the
generating line; and where the equations, though apparently
containing three undetermined constants, actually contain only
two, since we are only concerned with the ratios of the quan-
tities 7, m, n.

‘Writing the equations then in the form

y-B_m,
- b

zZ—9y n

z—a
z—q
we see that the conditions of the problem must establish a

l
=7_),’

relation between ;ll and % , and that the equation of the cone

must be of the form ‘”—'“=¢(3f;’-9).

. z—vy z—rv

It is easy to see that this is equivalent to saying that the
equation of the cone must be a homogeneous function of the
three quantities x —a, y— 8, z— v ; as may also be seen directly
from the consideration that the conditions of the problem must
establish a relation between the direction-cosines of the gene-

. . l .
rator: that these cosines being VET Tk &c. any equation

expressing such a relation is a homogeneous function of 7, m, n,
and therefore of z—a, y—8, z—1, which are proportional
to I, my, n.

When the vertex of the cone is the origin, its equation is

of the form ;=¢(%); or, in other words, is a homogeneous

function of x, y, 2.
The partial differential equation is found by putting
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u=z—a, v=y;B—, in the equation of Art. 380, and when
z2—y Z—=qo
cleared of fractions is
U, O, U
z—y, 0, —(z—a)
0, z-9,-(y-8)|=0,
o0 () A T - G =0

This equation evidently expresses that the tangent plane at
any point of the surface must always pass through the fixed
point aBy.

We have already given in p. 86 the method of forming the
equation of the cone standing on a given curve; and p. 190
the method of forming the equation of the cone which envelopes
a given surface.

384. Conoidal Surfaces. These are generated by the motion
of a line which always intersects a fixed axis and remains
parallel to a fixed plane. These two conditions leave two of
the constants in the equations of the line undetermined, so that
these surfaces are of the class considered Art. 380. If the axis
is the intersection of the planes a, 8, and the generator is to
be parallel to the plane «v; the equations of the generator are
a=cpB, y=c, and the general equation of conoidal surfaces

is obviously %: & (7).*
The partial differential equation is (Art. 380)

U, U, U,
Bal - aﬂ,, Bq: - aﬂ,, Bas - aﬁs
'yli 'Y,, 'ya = 07

where a=ax+ay+az+a, &c. The left-hand side of the
equation may be expressed as the difference of two deter-
minants B(Ua,y,) —a(UB,y,) =0.

* In like manner the equation of any surface generated by the motion

of a line meeting two fixed lines a8, y3 must be of the fo! % = ¢(g) .
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This equation may be derived directly by expressing that
the tangent plane at any point on the surface contains the gene-
rator: the tangent plane, therefore, the plane drawn through
the point on the surface, parallel to the directing plane, and
the plane a'3— a8’ joining the same point to the axis, have
a common line of intersection. The terms of the determinant
just written are the coefficients of x, y, z in the equations of
these three planes.

In practice we are almost exclusively concerned with right
conoids; that is, where the fixed axis is perpendicular to the
directing plane. If that axis be taken as the axis of 2, and
the plane for plane of zy, the functional equation is y=x¢ (2),
and the partial differential equation is = %g+ y ‘fi__yU

The lines of greatest slope (Art. 370) are in this case always
projected into circles. For in virtue of the partial differential
equation just written, the equation of Art. 370,

dU aU
@— dx_}ia:—dy=0’

transforms itself into axdz + ydy =0, which represents a series
of concentric circles. The same thing is evident geometrically :
for the lines of level are the generators of the system; and
these being projected into a series of radii all passing through
the origin, are cut orthogonally by a series of concentric circles.

=0,

Ex. 1. To find the equation of the right conoid passing through the
axis of z and through a plane curve, whose equations are z=a, F(y, z)=0.
Eliminating then z, y, z between these equations and y = ¢,z, z = c,, we

get F(c,a, c;) = 0; or the required equation is F(‘—lg , z) =0,
Wallis’s cono-cuneus is when the fixed curve is a circle [2=a, y* + 2* =#*].
Its equation is therefore a'y* + 22" = r'z*

Ex. 2. Let the directing curve be a helix, the fixed line being the axis
of the cylinder on which the helix is traced. The equation is that given
Ex. 1, p..273. This surface is often presented to the eye, being that
formed by the under surface of a spiral staircase.

385. Surfaces of Revolution. The fundamental property of
a surface of revolution is that its section perpendicular to its
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axis must always consist of one or more circles whose centres
are on the axis. Such a surface may therefore be conceived
as generated by a circle of variable radius whose centre
moves along a fixed right line or axis, and whose plane is
perpendicular to that axis. If the equations of the axis be
z—a_y—-B _
I m
tion may be represented as the intersection of the plane per-
pendicular to the axis k+my+nz=c,, with the sphere whose
centre is any fixed point on the axis
(z—a)f+(y—B)+(e—9)=c,
These equations contain but two undetermined constants; the
problem therefore is of the class considered (Art. 380) and the
equation of the surface must be of the form
(@=a)+(y- B)'+ (s — )" = ¢ (ke + my +nz).
When the axis of z is the axis of revolution we may take the
origin as the point aBy, and the equation becomes
L+y+2=¢(2), or z=v (2" +3").
The partial differential equation is found by the formula of
Art. 380 to be

z;vy, then the generating circle in any posi-

U Gy
l, my, n

z—a, y—By 2—y
or (m (=) =nly-8)) 2

+in@=a) =L =o) G+ (- A= m(e—a) T =0.

‘When the axis of z is the axis of revolution this reduces to
daU dU

Y5-—x 5-=0.

dx dy

The partial differential equation expresses that the normal

always meets the axis of revolution. For if we wish to ex~
press the condition that the two lines

z—a_y—-B_z—qy =z-& y-y z-¢

! m n ' U U, U,

1 ]

U,

=0,

’

i N
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should intersect; we may write the common value of the equal
fractions in each case, § and ¢'. Solving then for z, y, 2, and
equating the values derived from the equations of each line,
we have

a+l0=2'+Uf, B+mb=y'+Uf, y+n0=2+Uf;

whence eliminating 6, @' the result is the determinant already
found

Uy Us
A m, n

*—a y-B, 2—y

T,

=0,

386. The equation of the surface generated by the revo-
lution of a given curve round a given axis, is found (Art. 381)
by eliminating z, y, # between

le+my+nz=u, (z-a)f'+(y—B)'+(2—9)=v,
and the two equations of the curve; replacing then » and v by
their values. We have already had an example of this (Ex. 3,
p- 85) and we take as a further example “to find the surface
generated by the revolution of a circle [y =0, (z—a)'+ 2*=7r"]
round an axis in its plane [the axis of 2].”

Putting z2=u, 2'+y'=v and eliminating between these

equations, and those of the circle, we get

W) —al'+u'=7" or (¥(2*+¥") —a}'+2' =+,
which cleared of radicals is

@ +y+2" +a'—r)=4d" (2" +¥).

It is obvious that when a is greater than r, that is to say, when
the revolving circle does not meet the axis, neither can the
surface, which will be the form of an anchor ring, the space
about the axis being empty. On the other hand, when the
revolving circle meets the axis, the segments into which the axis
divides the circle generate distinct sheets of the surface, inter-
secting in points on the axis z=4/(r"—a’), which are nodal
points on the surface.

The sections of the anchor ring by planes parallel to the
axis are found by putting y =constant in the preceding equa-
tion. The equation of the section may immediately be thrown

Y
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into the form S8’ = constant, where S and 8’ represent circles.
The sections are lemniscates of various kinds (see fig., Higher
Plane Curves, p. 204). It is geometrically evident, that as the
plane of section moves away from the axis, it continues to cut
in two distinct ovals, until it touches the surface [y=a —7]
when it cuts in a curve having a double point [Bernouilli’s Lem-
niscate] ; after which it meets in a continuous curve.

Ex. Verify that 2* + y* + 2° - 3zyz = r* is a surface of revolution.
Ans. The axis of revolutionis z =y = .

387. The families of surfaces which have been considered
are the most interesting of those whose equations can be ex-
pressed in the form u=¢ (v). We now proceed to the case
when the equations of the generating curve include more than
two parameters. By the help of the equations connecting
these parameters, we can, in terms of any one of them, express
all the rest; and thus put the equations of the generating curve
into the form

F{z,y,2,¢,¢(c), ¥(c),&c.} =0, fiz,9,2,¢,¢(c), ¥(c), &e.} =0.

The equation of the surface generated is obtained by elimi-
nating ¢ between these equations; and, as has been already
stated, all surfaces are said to be of the same family for which
the form of the functions #' and f is the same, whatever be the
forms of the functions ¢, v, &c. But since evidently the
elimination cannot be effected until some definite form has
been assigned to the functions ¢, y, &c. it is not generally
possible to form a single functional equation including all sur-
faces of the same family: and we can only represent them,
as above written, by a pair of equations from which there
remains a constant to be eliminated. We can however elimi-
nate the arbitrary functions by differentiation and obtain a
partial differential equation, common to all surfaces of the same
family ; the order of that equation being, as we shall presently
prove, equal to the number of arbitrary functions ¢, ¥, &ec.

It is to be remarked however that in general the order of
the partial differential equation obtained by the elimination of
a number of arbitrary functions from an equation is higher than
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the number of functions eliminated. Thus if an equation in-
clude two arbitrary functions ¢, ¥, and if we differentiate with
respect to « and y which we take as independent variables,
the differentials combined with the .original equation form a
system of three equations containing four unknown functions
¢, ¥, ¢, ¥'. The second differentiation (twice with regard
to x, twice with regard to y, and with regard to « and y)
gives us three additional equations; but then from the system
of six equations it is not generally possible to eliminate the
six quantities ¢, ¥, ¢, ¥, ¢", ¥". We must therefore pro-
ceed to a third differentiation before the elimination can be
effected. It is easy to see, in like manner, that to eliminate
n arbitrary functions we must differentiate 2n— 1 times. The
reason why, in the present case, the order of the differential
equation is less, is that the functions eliminated are all functions
of the same quantity.

388. In order to show this it is convenient to consider first
the special case, where a family of surfaces can be expressed
by a single functional equation. This will happen when it is
possible by combining the equations of the generating curve
to separate one of the constants so as to throw the equations
into the form u=c; F(x,y, 2, ¢, c,...c.)=0. Then express-
ing, by means of the equations of condition, the other constants
in terms of ¢, the result of elimination is plainly of the form

Fiz, y, 2, u, ¢ (u), ¥ (), &c.} =0.
Now if, as before, we denote by U, the differential with respect
to z of the equation of the surface, and by F,, the differential
on the supposition that u is constant, we have

dF

U|=F|"'E”u
dF

U'=F’+7'-‘u’,

U3=E+gu:'
du

Now in these equations, the derived functions ¢', ¥, &c. only
: Y2
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enter in the term idg ; they can therefore be all eliminated

together; and we can form the equation, homogeneous in
U, Uy U,
O, Uy U,

F, F, F,

U,

'“n Y, ]

) =0,
which contains only the original functions ¢, ¥, &c. If we
write this equation V=0, we can form from it in like manner
the equation

(0 Oy 0,

Vo Vo W,

Uy Upy Uy

which still contains no arbitrary functions but the original
¢, ¥, &c., but which contains the second differential coefficients
of U, these entering into V,, V,, V,. From the equation last
found we can in like manner form another, and so on; and
from the series of equations thus obtained (the last being of
the n™ order of differentiation) we can eliminate the n functions
é, ¥, &e.

If we omit the last of these equations, we can eliminate all
but one of the arbitrary functions, and according to our choice
of the function to be retained, can obtain n different equations
of the order n— 1, each containing one arbitrary function.
These are the first integrals of the final differential equation
of the n™ order. In like manner we can form ”(';_;' 1 equa-
tions of the second order, each containing two arbitrary func-
tions, and so on.

1)

389. If we take = and y as the independent variables, and
as usual write de=pde+ ¢dy, dp=rdx +sdy, &c., the process
of forming these equations may be more conveniently stated
as follows: ¢ Take the total differential of the given equation
on the supposition that u is constant,

Fdx + Fdy + F,(pde + gdy) =0;
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put dy=mdz, and substitute for m its value derived from the
differential of u =90, viz.

ude + udy + u, ( pdx + qdy) =0.”

For if we differentiate the given equation with respect to
z and y, we get

dF
F, +pF,+ 2 (4, +pu) =0,
dF
Ii‘a+qﬁ;+z,; (u:+qua)=01

and the result of eliminating (fl'—f from these two equations is

the same as the result of eliminating m between the equations
Fi+pF,+m(F,+gF)=0, u +pu,+m (u,+gu,)=0.
It is convenient in practice to chouse for one of the equations
representing the generating curve, its projection on the plane
of xy; then since this equation does not contain z, the value
of m derived from it will not contain p or ¢, and the first
differential equation will be of the form
p+gm=R,

R being also a function not containing p or ¢. The only terms
then containing r, 8, or ¢ in the second differential equation are
those derived from differentiating p+¢m, and that equation
will be of the form

r+2sm+tm' =8,
where S may contain z, y, 2, p, ¢, but not , s, or t. If now
we had only two functions to eliminate, we should solve for .
these constants from the original functional equation of the
surface, and from p + gm = R; and then substituting these values
in m and in 8, the form of the final second differential equation
would still remain

r+2sm' +tm" =8,
where m' and 8’ might contain <, y, 2, p, g. In like manner
if we had three functions to eliminate, and if we denote the
partial differentials of £ of the third order by a, B, v, §, the
partial differential equation would be of the form

a+3mB +3m'y +m*é="T. e

s v
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And so on for higher orders. This theory will be illustrated
by the examples which follow.

390. Burfaces generated by lines parallel to a fixed plane.
This is a family of surfaces which includes conoids as a par-
ticular case. Let us in the first place take the fixed plane
for the plane of zy. Then the equations of the generating
line are of the form z=c, y=cx+c, The functional equa-
tion of the surface is got by substituting in the latter equation
for c,, ¢ (2), and for ¢, ¥ (2). Since in forming the partial
differential equation we are to regard z as constant, we may
as well leave the equations in the form z=c, y=cx+c,
These give us

p+ 9m=07, m = C,.
According as we eliminate ¢, or c,, these equations give us

p+9c,=0, pxr +gy=gc,, There are therefore two equations
of the first order, each containing one arbitrary function, viz.

P+gp()=0, pz+gy=g¥ (o)
To eliminate completely arbitrary functions, differentiate
P +gm =0, remembering that since m=c, it is to be regarded
as constant, when we get
r+2sm + tm* =0,
and eliminating m by means of p + ¢gm =0, the required equa-
tion is
q'r —2pgs + p't=0.
Next let the generating line be parallel to az+by+cz;
its equations are

ax+bytez=c, y=cx+c,;
and the functional equation of the family of surfaces is got by
writing for ¢, and c,, functions of ax+ by +cz. Differentiating,

we have
at+cp+m(b+ecg)=0, m=c,

The equations got by eliminating one arbitrary function are
therefore
a+op+(b+cqg) ¢ (ax + by +c2) =0,

(a+cp) z+(b+0g) y=(b+cq) ¥ (ax + by + c2).
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Differentiating a+ bm + ¢ (p + mg), and remembering that m
is to be regarded as constant, we have
r+ 28m + tm* =0,
and introducing the value of m already found
(b+cq)*r—2(a+cp) (b+cq) s+ (a+cp)t=0.

391. This equation may also be arrived at by expressing
that the tangent planes at two points on the same generator
intersect, as they evidently must, on that generator. Let
a, B, v be the running co-ordinates, z, y, z those of the point
of contact; then any generator is the intersection of the tan-
gent plane .
y-2=p(a-2)+g(B-y)
with a plane through the point of contact parallel to the fixed
plane

ala—z)+b(B-y)+c(y—2)=0,
whence (@a+cp) (a—x)+ (b+cq) (B—y)=0.
Now if we pass to the line of intersection of this tangent plane
with a consecutive plane, a, 8, vy remain the same, while
x, ¥, 2, p, g vary. Differentiating the equation of the tangent
plane, we have

(rdz + sdy) (@ — x) + (sdz + tdy) (B—y)=0.
And eliminating a — 2, 8-y,
(b+cq) (rde + sdy) = (a+ cp) (sdz + tdy).
But since the point of contact moves along the generator which
is parallel to the fixed plane, we have
adz + bdy + cdz=0, or (a+cp) de+ (b+cq) dy=0.
Eliminating then dz, dy from the last equation, we have, as before,
(b4 cq)*r—2(a+cp) (b+cq) 8+ (a+cp)t=0.

392. Surfaces generated by lines which meet a fixed axis.
This class also includes the family of conoids. In the first
place let the fixed axis be the axis of z; then the equations
of the generating line are of the form y=cx, 2=cx+c,; and
the equation of the family of surfaces is got by writing in the
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latter equation for ¢, and c,, arbitrary functions of g . Diffe-

rentiating, we have m=c,, p+mg=c,, whence
pot+gy=ap (Z—) , and z—pz—gy= ().
Differentiating again, we have »+2sm + ¢m*=0, and putting

for m its value =°x=§l;’ the required differential equation is

ra’ + 2sxy + ty' =0.
This equation may also be obtained by expressing that two
consecutive tangent planes intersect in a generator. As, in
Art. 391, we have for the intersection of two consecutive tan-
gent planes

(rdz + sdy) (a — x) + (sdz + tdy) (B - y) =O.
But any generator lies in the plane ay=Bz, or (a—z)y=(8-y)=.
Eliminating therefore
@ (rdz + sdy) + y (sdx + tdy) =0.

But Z—Z= B =9, Therefore, as before, ra* + 2sxy + ty* = 0.

a z
More generally let the line pass through a fixed axis aB,
where a=ax+by+cz+d, B=az+b'y+cz+d. Then the
equations of the generating line are a=c8, y =c,x+¢,, and the
equation of the family of surfaces is y=x¢ %+ ¥ % . Diffe-
rentiating, we have
m=c, a+cp+m(b+cqg)=c,{a' +cp+m(¥+cq)}

Differentiating again, we have r+2sm + tm*=0, and putting
in for m from the last equation, the required partial differential
equation is
{(a+cp) B—(a'+cp) a}'t

—2{(a+cp) B—(a'+cp)a}{(6+cq) B— (¥'+cq) a}s

+{(b+cq) B—(b'+cq) a}*r=0.

393. If the equation of a family of surfaces contain n
arbitrary functions of the same quantity, and if it be required
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to determine a surface of the family which shall pass through
n fixed curves, we write down the equations of the generating
curve u=c,, F(z,y, 2, c, c,, &c.) =0, and expressing that the
generating curve meets each of the fixed curves, we have a
sufficient number of equations to eliminate c,, c,, &. Thus
to find a surface of the family =+ y¢ (2) + ¥ (2) =0 which shall
pass through the fixed curves y=a, F(z, 2)=0; y=—a,
F,(x,2)=0. The equations of the generating line being 2 =c,,
x=yc,+¢, we have, by substitution,
F (acc +¢y¢)=0, F (c,—ac,c)=0,

or replacing for c,, c,, their values,

Flz+c,(a—y),2}=0, F {z—c,(a+y),2}=0,
by eliminating ¢, between which the required surface is found.

Ex. Let the directing curves be
r 2
y=a, 5+ c_‘=l' y=-a, 2*+2=¢"
we eliminate ¢; between

_ g\
{—iﬁg—f——"ﬂ]-+§=l, {z-c(at+y)f+2'=c"

Solving for ¢, from each, we have
b
VO e
a-y T ary
The result is apparently of the eighth degree, but is resolvable into two

conoids distinguished by giving the radicals the same or opposite signs
in the last equation.

394. We have now seen that when the equation of a family
of surfaces contains a number of arbitrary functions of the same
quantity, it is convenient, in forming the partial differential
equation, to substitute for the equation of the surface, the two
equations of the generating curve. It is easy to see then
that this process is equally applicable when the family of
surfaces cannot be expressed by a single functional equation.
The arbitrary functions which enter into the equations (Art. 387)
are all functions of the same quantity, though the expression of
that quantity in terms of the co-ordinates is unknown. If then
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differentiating that quantity gives dy =mdz, we can eliminate
the unknown quantity m, between the total differentials of the
two equations of the generating curve, and so obtain the partial
differential equation required. In practice it is convenient to
choose for one of the equations of the generating curve, its
projection on the plane xy.

For example, let it be required to find the general equation
of ruled surfaces; that is to say, of surfaces generated by the
motion of a right line. The equations of the generating line
are z=cx+ ¢, y=cx+c, and the family of surfaces is ex-
pressed by substituting for c, ¢, ¢, arbitrary functions of c,.
Differentiating, we have p+mg=c,, m=c, Differentiating
the first of these equations, m being proved to be constant by
the second, we have r+2sm+ tm*=0. As this equation still
includes m or c,, the expression for which, in terms of the
co-ordinates is unknown, we must differentiate again, when we
have a + 38m + 3ym" + ém® =0, where a, B, v, & are the third
differential coefficients. Eliminating m between the cubic and
quadratic just found, we have the required partial differential
equation. It evidently resolves itself into the two linear equa-
tions of the third order got by substituting in turn for m in
the cubic the two roots of the quadratic.

This equation might be got geometrically by expressing that
the tangent planes at three consecutive points on a generator
pass through that generator. The equation dz=pdx+ ¢dy is
a relation between 1, p, ¢, which are proportional to the direc-
tion-cosines of a tangent plane, while dz, dy, dz are proportional
to the direction-cosines of any line in that plane passing through
the point of contact. If then we pass to a second tangent plane,
through a consecutive point on the same line, we are to make
P, ¢ vary while the mutual ratios of dz, dy, dz remain constant.
This gives rdx’+ 2sdzdy + tdy*=0. To pass to a third tan-
gent plane, we differentiate again, regarding d : dy constant;
and thus have adz®+ 3B8dx'dy+ 3ydxdy’+ 8dy*=0. Elimi-
nating dx : dy between the last two equations, we have the
same equation as before.

The first integrals of this equation are found, as explained
(Art. 388), by omitting the last equation and eliminating all
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but one of the constants. Thus we have the equation
p+mg=c, from which it appears that one of the integrals is
p+mg = ¢(m), where m is one of the roots of 7+ 2sm + tm*=0.
The other two first integrals are

y—ma=1 (m), and 2 px—mgz=x (m).
The three second integrals are got by eliminating m from
any pair of these equations.

395. Envelopes. If the equation of a surface include %
parameters connected by n—1 relations, we can in terms of
any one express all the rest, and throw the equation into

the form
z=Flz, y, ¢, ¢ (c), ¥ (c), &e.}.

Eliminating ¢ between this equation and %: 0, we find the

envelope of all the surfaces obtained by giving different values
to ¢. The envelopes so found are said to be of the same
family as long as the form of the function F' remains the same,
no matter how the forms of the functions ¢, ¥, &c. vary.
The curve of intersection of the given surface with ‘%F is the
characteristic (see p. 232) or line of intersection of two con-
secutive surfaces of the system. Considering the characteristic
as a moveable curve from the two equations of which ¢ is to
be eliminated, it is evident that the problem of envelopes is
included in that discussed, Art. 387, &c. If the function F
contain n arbitrary functions ¢, ¥, &c., then since %’E contains
¢, ¥, &c., it would seem, according to the theory previously
explained, that the partial differential equation of the family
ought to be of the 2rn™ order. But on examining the manner
in which these functions enter, it is easy to see that the order
reduces to the »™. In fact, differentiating the equation z=F,

we get

dF dF
P=Fu+%cn q=ﬁ'a+7dzcﬂ

but since %—1:= 0, we have p=F,, ¢=F,, where, since F, and F,
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are the differentials on the supposition that c is constant, these
quantities only contain the original functions ¢, 4~ and not the
derived ¢', 4. From this pair of equations we can form
another, as in Art. 394, and so on, until we come to the n™
order, when, as easily appears from what follows, we have
equations enough to eliminate all the parameters.

396. We need not consider the case when the given equation
contains but one parameter, since the elimination of this between
the equation and its differential gives rise to the equation of
a definite surface and not of a family of surfaces. Let the
equation then contain two parameters a, b, connected by an
equation giving & as a function of a, then between the three
equations e=F, p=F, ¢=F,, we can eliminate a, b, and the
form of the result is evidently £ (z, ¥, 2, p, ¢) =0.

For example, let us examine the envelope of a sphere of
fixed radius, whose centre moves along any plane curve in the
plane of zy. This is a particular case of the general class of
tubular surfaces which we shall consider presently.

Now the equation of such a sphere being

(@—a)'+(y-B) +2'=r
and the conditions of the problem assigning a locus along which
the point a8 is to move, and therefore determining 8 in terms*

of a, the equation of the envelope is got by eliminating a
between

@—a+{y—¢ @) +2'=r", (@-a)+{y—¢(a)} ¢'(a)=0.
Since the elimination cannot be effected until the form of the
function ¢ is assigned, the family of surfaces can only be ex-
pressed by the combination of two equations just written.
‘We might also obtain these equations by expressing that the
surface is generated by a fixed circle, which moves so that
its plane shall be always perpendicular to the path along which

its centre moves. For the equation of the tangent to the
locus of aB is

y-B=2 (z—a) or y— ¢ (0)=¢(a) (w—a).
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And the plane perpendicular to this is

(z—a)+¢a{y—¢(a)}=0,
as already obtained. To obtain the partial differential equa-
tion, differentiate the equation of the sphere, regarding a, 8 as
constant, when we have z—a+ pz=0, y—B8+¢z=0. Solving
for z—a, y — B and substituting in the equation of the sphere,
the required equation is
2(1+p'+¢")=""

We might have at once obtained this equation as the geo-
metrical expression of the fact that the length of the normal
is constant and equal to r, as it obviously is.

397. Before proceeding further we wish to show how the
arbitrary functions which occur in the equation of a family
of envelopes can be determined by the conditions that the
surface in question passes through given curves. The tangent
line to one of the given curves at any point of course lies in
the tangent plane to the required surface; but since the en-
veloping surface has at any point the same tangent plane as
the enveloped surface which passes through that point, it
follows that each of the given curves at every point of it
touches the enveloped surface which passes through that point.
If then the equation of the enveloped surface be

z=F(z, ¥, ¢, ...0.),

the envelope of this surface can be made to pass through » —1
given curves; for by expressing that the surface whose equa-
tion has been just written touches each of the given curves,
we obtain n—1 relations between the constants ¢, ¢, &ec.,
which combined with the two equations of the characteristic
enable us to eliminate these constants. For example, the
family of surfaces discussed in the last article contains but
two constants and one arbitrary function, and can therefore
be made to pass through one given curve. Let it then be
required to find an envelope of the sphere

(@—a)'+ (y—B)' +2'=r,
which shall pass through the right line z=me, y=0. The
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points of intersection of this line with the sphere being given
by the quadratic

(mz- a)*+B'+2"=7" or (1+m") 2" - 2meza+a’+ 8 - r'=0,
the condition that the line should touch the sphere is
(14 m*) (@ + B — ") =m*a".
We see thus that the locus of the centres of spheres touching
the given line is an ellipse. The envelope required then is

a kind of elliptical anchor ring, whose equation is got by
eliminating a, B between

(@—a)f+ (y— B+ =1, (L+m?) (o + 5 = ") = m'e,
(x—a)da+ (y—B)dB=0, ada+ (1+m*)BdB=0,
from which last two equations we have
(1+m') B(z—a)=a(y -B).
The result is a surface of the eighth degree.

398. Again, let it be required to determine the arbitrary
function so that the envelope surface may also envelope a
given surface. At any point of contact of the required sur-
face with the fixed surface z=f(z, ), the moveable surface
z=F (z,y,c,c, &c.) which passes through that point, has
also the same tangent plane as the fixed surface. The values
then of p and ¢ derived from the equations of the fixed surface
and of the moveable surface must be the same. Thus we have
fi=F, f,=F, and if between these equations and the two
equations z=F, z=4, which are satisfied for the point of
contact, we eliminate 2, y, 2, the result will give a relation
between the parameters. The envelope may thus be made
to envelope as many fixed surfaces as there are arbitrary
functions in the equation. Thus, for example, let it be re-
quired to determine a tubular surface of the kind discussed
(Art. 897), which shall touch the sphere o*+ "+ 2*=R". This
surface must then touch (z—a)'+ (y—B")+2'=+". We have
z-a y_y-8

7 '3z - ; conditions which imply z=0,

z
therefore ;=
z—a

z
y y-B

or Bz=ay. Eliminating  and y by the help of
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these equations, between the equation of the fixed and move-
able sphere, we get 4 (a'+8°) B'=(R'—r'+da*+8*")". This
gives a quadratic for a*+ 8%, whose roots are (R +r)'; showing
that the centre of the moveable sphere moves on one or other
of two circles, the radius being either R+». The surface
required is therefore one or other of two anchor rings, the
opening of the rings corresponding to the values just assigned.

399. We add one or two more examples of families of en-
velopes whose equations include but one arbitrary function. To
find the envelope of a right cone whosc axis is parallel to the
axis of z, and whose vertex moves along any assigned curve
in the plane of zy. Let the equation of the come in its
original position be 2z'=m®(c*+3"); then if the vertex be
moved to the point a, B, the equation of the cone becomes
2'=m'{(x—a)’'+ (y— B)"}, and if we are given a curve
along which the vertex moves, 8 is given in terms of a.
Differentiating we have pz=m'(zx—a), gz=m’(y—B); and
eliminating we have p'+¢*=m". This equation expresses
that the tangent plane to the surface makes a constant angle
with the plane of xy, as is evident from the mode of generation.
It can easily be deduced hence that the area of any portion
of the surface is in a comstant ratio to its projection on the
plane of xy.

400. The families of surfaces, considered (Arts. 396, 399),
are both included in the following: “To find the envelope of a
surface of any form which moves without rotation, its motion
being directed by a curve along which any given point of the
surface moves.” Let the equation of the surface in its original
position be z= F(z, y), then if it be moved without turning
so that the point originally at the origin shall pass to the
position aBy, the equation of the surface will evidently be
z2—y=F(x—a,y—B). If we are given a curve along which
the point a8y is to move, we can express a, 8 in terms of v,
and the problem is one of the class to be considered in the
next article, where the equation of the envelope includes two
arbitrary functions. Let it be given however that the directing
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curve ts drawn on a certain known surface, then, of the two
equations of the directing curve, one is known and only one
arbitrary, so that the equation of the envelope includes but
one arbitrary function. Thus if we assume 8 an arbitrary
function of a, the equation of the fixed surface gives ¢ as a
known function of a, 8. It is easy to see how to find the partial
differential equation in this case. Between the three equations

s—y=F(z—a,y—B), p=F,(z—a,y—B), ¢=F,(z—a,y- B),
golve for z—a, y— B, 2—r, when we find

z—a=f(p, ) y-B=F(p 9 2—v="F(p, 9
If then the equation of the surface along which aBy is to move
be I (a, B, v) =0, the required partial differential equation is

Tiz—f(p 9) y— (2 9) 2="f(p @} =0.
The three functions f, f, “'f, are evidently connected by the
relation d"f=pdf+ ¢d'f.

It is easy to see that the partial differential equation just
found is the expression of the fact that the tangent plane at
any point on the envelope, is parallel to that at the corre-
sponding point on the original surface.

Ex. To find the partial differential equation of the envelope of a
sphere of constant radius whose centre moves along any curve traced

on a fixed equal sphere
2+ytet=rt

The equation of the moveable sphere is (z-a)' + (y - B) + (s - 4)* =%,
whence

z-aip(e-9)=0, y-B+g(z-q)=0,
and we have

I ST T
(A s wy-re- LN Al eyt

If we write 1+ p*+¢*=p" it is easy to see, by actual differentiation,
that the relation is fulfilled

1 b4 q
as=-pd(%)- d(l—’) .
; rd ( o)1
The partial differential equation is

@ tpr) + (o +gr) + (sp- 1) = p'r",
or (+y+- "1+ +g)+2(pz+qy-5)r=0.
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401. We now proceed to investigate the form of the partial
differential equation of the envelope, when the equation of the
moveable surface contains three constants connected by two
relations. If the equation of the surface be z=F'(z, y, a, b, c),
then we have p=F, g=F, Differentiating again, as in
Art. 389, we have

r+8m=1’:|+mﬁ'm s+ tm:ﬁ‘n"’ an;
and eliminating m, the required equation* is
(r=F,) (e = Fp) = (s = F)"

The functions F,, F,,, F,, contain a, b, ¢, for which we are
to substitute their values in terms of p, ¢, , y, 2 derived from
solving the preceding three equations, when we obtain an equa-

tion of the form
Rr+28s+ Tt+ U(rt—s") =V,
where R, S, T, U, V are connected by the relation
RT+ UV=2_8"

402. The following examples are among the most important
of the cases where the equation includes three parameters.

Developable Surfaces. These are the envelope of the plane
2=ax + by + ¢, where for b and ¢ we may write ¢ () and ¥ (a).
Differentiating we have p=a, ¢g=5, whence ¢g=¢ (p). Any
surface therefore is a developable surface if » and ¢ are con-
nected by a relation independent of z, y, 2. Thus the family
(Art. 899) for which p*+¢*=m", is a family of developable
surfaces. We have also z —px - gy =+ (p), which is the other
first integral of the final differential equation. This last is
got by differentiating again the equations p=a, ¢g=>5, when
we have r+sm=0, s+tm=0, and eliminating m, rt—s"=0,
which is the required equation.

* I owe to Professor Boole my knowledge of the fact that when the
equation of the moveable surfice contains three parameters, the partial
differential equation is of the form stated above., He has kindly allowed
me to consult, previous to its publication, a memoir of his in which
this theorem is given.

zZ
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By comparing Arts. 264, 281 it appears that the condition
rt=g" is satisfied at every parabolic point on a surface. The
same thing may be shewn directly by transforming the equation
rt—8'=0 into a function of the differential coefficients of U,
by the help of the relations

U+pU,=0, U,+qU, =0,
l]u+2(]nP+ Uup'=_r'ja; U:’+pU”+qZ]“+qun=—8U.;
Un+2Uasq+ Usaq'=—tUn;
when the equation r¢—s® becomes identical with the equation
of the Hessian. We see now then that every point on a
developable is a parabolic point, as is otherwise evident, for
since (Art. 298) the tangent plane at any point meets the
surface in two coincident right lines, the two inflexional
tangents at that point coincide. The Hessian of a develop-
able must therefore always contain the equation of the surface
itself as a factor. The Hessian of any surface being of the
degree 4n—8, that of a developable consists of the surface

itself, and a surface of 3n—8 degree which we shall call
the Pro-Hessian. We may return to this subject hereafter.

403. Tubular Surfaces. Let it be required to find the
differential equation of the envelope of a sphere of constant
radius, whose centre moves on any curve. We have, as in
Art. 400,

(@—a)'+(y - B)'+ (=) = B,
z—a+p(z—9)=0, y—B+g(z—v)=0,
whence 1+p'+ (z—9q)r+m{pg+ (z—9q) s} =0,
pa+(z—7)s+m{l+q +(z—7) 8§ =0.
And therefore
(145" + (=) 7} {1+ + (z=0) 6} = (pg+ (e —m) o]".

£ Pl (Art. 400) this

Substituting for z—r its value T+

becomes .
R(rt—a)—RB{(1+)r—3pga +(1+2) W (14 5™ +¢)+(14+5"+4")'=0,
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which denotes, Art. 281, that at any point on the required
envelope one of the two principal radii of curvature is equal
to R as is. geometrically evident.

404. We shall briefly show what the form of the diffe-
rential equation is when the equation of the surface whose
envelope is sought contains four constants. We have, as
before, in addition to the equation of the surface the three
cquations p=F, g=F, (r- F,)(t~F,)=(s—F,. Let us,
for shortness, write the last equation pr=g" and let us write
a—F, =A4,8-F, =B, y—F_=C, §—F,_=D; then, diffe-
rentiating p7 = o”, we have

(A+Bm)r+(C+Dm)p—2(B+Cm)a=0.
Substituting for m from the equation ¢ + Tm =0, and remember-
ing that pT = ¢", we have

A7* —3Bo1* + 3Co’tr — Da* =0,
in which equation we are to substitute for the parameters im-
plicitly involved in it, their values derived from the preceding
equations. The equation is therefore of the form
a+3Bm+3ym’+&m* =T,

where m and U are functions of z, y; 2, py ¢y 7y 8 ¢ In like
manner we can form the differential equation when the equa-
tion of the moveable surface includes a greater number of
parameters.

405. Having in the preceding articles explained how
partial differential equations are formed, we shall next show
how from a given partial differential equation can be de-
rived another differential equation satisfied by every charac-
teristic of the family of surfaces to which the given equation
belongs (see Monge, p. 53). In the first place, let the given
equation be of the first order; that is to say, of the form
f(z, y,2,p,9q)=0. Now if this equation belong to the en-
velope of a moveable surface, it will be satisfied not only by
the envelope but also by the moveable surface in any of its
positions. This follows from the fact that the envelope touches
the moveable surface, and therefore that at the point of contact
x, y, 2, p, q are the same for both. Now if z, y, z be the

z2
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co-ordinates of any point on the characteristic, since such a
point is the intersection of two consecutive positions of the
moveable surface, the equation f(z, y, 2, p, ¢)=0 will be
satisfied by these values of z, y, 2, whether p and ¢ have the
values derived from one position of the moveable surface or
from the next consecutive. Consequently, if we differentiate
the given equation, regarding p» and ¢ as alone variable, then
the points of the characteristic must satisfy the equation

Pdp + Qdg =0.

Or we might have stated the matter as follows: Let the
equation of the moveable surface be z= F(z, y, a), where
the constants have all been expressed as functions of a single
parameter a. Then (Art. 395) we have p=F,(z, ¥, a),
g¢=7F,(z, y, @), which values of p and ¢ may be substituted in
the given equation. Now the characteristic is expressed by
combining with the given equation its differential with respect
to a: and a only enters into the given equation in consequence
of its entering into the values for p and ¢q. Hence we have,

o9 _
as before, P%+Q£—O.

Now since the tangent line to the characteristic at any point
of it, lies in the tangent plane to either of the surfaces which
intersect in that point, the equation dz =pdx + ¢dy is satisfied,
whether p and ¢ have the values derived from one position of
the moveable surface or from the next consecutive. We have

therefore Z_Ia) da + g% dy=0. And combining this equation with

that previously found, we obtain the differential equation of the
characteristic Pdy — Qdx =0.

Thus if the given equation be of the form FPp+ Qg=R,
the characteristic satisfies the equation Pdy — Qdx = 0, from
which equation combined with the given equation and with
dz =pdx + qdy, can be deduced Pdz= Rdx, Qdz= Rdy. The
reader is aware (see Boole’s Differential Equations, p. 322) of
the use made of those equations in integrating this class of
equations. In fact, if the above system of simultaneous equa-
tions integrated give u=c, v=c, these are the equations of
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the characteristic, or generating curve, in any of its positions,
while in order that v may be constant whenever u is constant,
we must have u=¢ (v).

Ex. Let the equation be that considered (Art. 396), viz. 2*(1+p*+ ¢*)=1",
then any characteristic satisfies the equation pdy = ¢gdr, which indicates
(Art. 370) that the characteristic is always a line of greatest slope on the
surface, as is geometrically evident.

406. The equation just found for the characteristic generally
includes p and ¢, but we can eliminate these quantities by com-
bining with the equation just found, the given partial diffe-
rential equation and the equation dz= pd:c+qdy Thus, in the
last example, from the equations 2*(1+ p*+ ¢*) =7 qd:z: = pdy,
we derive

2 (d* + dy* + d2*) = 7* (do’ + dy’).

The reader is aware that there are two classes of differential
equations of the first order, one derived from the equation of
a single surface, as, for instance, by the elimination of any
constant from an equation U=0, and its differential

Udx+ Udy + Udz =0.
An equation of this class expresses a relation between the
direction-cosines of every tangent line drawn at any point on
the surface. The other class is obtained by combining the
equations of two surfaces, as, for instance, by eliminating three
constants between the equations U=0, V=0 and their diffe-
rentials. An equation of this class expresses a relation satisfied
by the direction-cosines of the tangent to any of the curves
which the system U, V represents for any value of the con-
stants, The equations now under consideration belong to the
latter class. Thus the geometrical meaning of the equation
chosen for the example is that the tangent to any of the curves
denoted by it, makes with the plane of zy an angle whose

cosine is ; This property is true of every circle in a vertical

plane whose radius is »; and the equation might be obtained
by eliminating the constants a, 8, m, between the equations

(z—a)+(y-B)+2'=+, x—a+m(y-pL)=0.
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407. The differential equation found, as in the last article,
is not only true for every characteristic of a family of surfaces,
but since each characteristic touches the cuspidal edge of the
surface generated, the ratios dx: dy ::dz are the same for
any characteristic and the corresponding cuspidal edge; and
consequently the equation now found is satisfied by the cuspidal
edge of every surface of the family under consideration. Thus
in the example chosen, the geometrical property expressed by
the differential equation not only is true for a circle in a
vertical plane, but remains true if the circle be wrapped on
any vertical cylinder; and the cuspidal edge of the given
family "of surfaces always belongs to the family of curves thus
generated.

Precisely as a partial differential equation in p, ¢ (express-
ing as it does a relation between the direction-cosines of the
tangent plane), is true as well for the envelope as for the par-
ticular surfaces enveloped ; so the total differential equations here
considered are true both for the cuspidal edge and the series
of characteristics which that edge touches. The same thing
may be stated otherwise as follows: the system of equations

U=o, av_ 0 which, when a is regarded as constant, represents
the characteristic, represents the cuspidal edge when a is an

unknown function of the variables to be eliminated by means
2

of the equation %:0. But evidently the equations U=0,

%g =0 have the same differentials when a is considered as
variable, subject to this condition, as if a were constant.
Thus, in the example of the last article, if in the equations
(x—a)'+(y—B)'+2'=r", (@—a)+m(y—B)=0, we write
B=¢(a), m=¢ (a), and combine with these the equation
1+¢' (a)*=(y—B) ¢" (a), the differentials of the first and
second equations are the same when a is variable in virtue
of the third equation, as if it were constant; and therefore the
differential equation obtained by eliminating a, 8, m between
the first two equations and their differentials on the supposition
that these quantities are constant, holds equally when they
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vary according to the rules here laid down. And we shall
obtain the equations of a curve satisfying this differential
equation by giving any form we please to ¢(a) and then
eliminating a between the equations

(#—a)+{y—@ @) +2=r", z-a+¢'(a){y—¢(a)}=0,
1+{¢' @' ={y—¢(a)} ¢" (a).*

408. In like manner can be found the differential equation
of the characteristic, the given equation being of the second
order (see Monge, p. 74). In this case we can have two
consecutive surfaces, satisfying the given differential equation,
and touching each other all along their line of intersection.
For instance, if we had a surface generated by a curve moving
so as to meet two fixed directing curves, we might conceive
a new surface generated by the same curve meeting two new
directing curves, and if these latter directing curves touch the
former at the points where the generating curve meets them,
it is evident that the two surfaces touch along this line. In
the case supposed then the two surfaces have z, y, z, p, ¢
common along their line of intersection and can differ only
with regard to », s, t. Differentiate then the given differential
equation considering these quantities alone variable, and let

® It is convenient to insert here a remark made by Mr. M. Roberts,
viz. that if in the equation of any surface we substitute for z, z + Adz,
for y, y + Ndy, for z, z + Adz, and then form the discriminant with respect
to A, the result will be the differential equation of the cuspidal edge of
any developable enveloping the given surface. In fact it is evident (see
Art. 246) that the discriminant expresses the condition that the tangent
to the curve represented by it touches the given surface. Thus the general
equation of the cuspidal edge of developables circumscribing a sphere is

(2* + y* + 2* - a®) (d* + dy* + d2") = (2dz + ydy + zdz)},

or (ydz - zdy)* + (2dz — zdz)* + (zdy - ydz)* = a* (d2* + dy* + d2°).

In the latter form it is evident that the same equation is satisfied by
a geodesic traced on any cone whose vertex is the origin. For if the
cone be developed into a plane, the geodesic will become a right line,.
and if the distance of that line from the origin be a, then the arca of the
triangle formed by joining any element ds to the origin is half ads, but
this is evidently the property expressed by the preceding equation.
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the result be Rdr+ Sds+ Tdt=0. But since p and ¢ are con-
stant along this line, we have drdx+ dsdy =0, dsdx+ dtdy =0.
Eliminating then dr, ds, dt, the required equation for the cha-
racteristic is

Rdy* — Sdxdy + Tdy*=0.

In the case of any of the equations of the second order,
which we have already had, this equation would turn out a
perfect square. When it does not so turn out, it breaks up
into two factors, which, if rational, belong to two independent
characteristics represented by separate equations; and if not,
denote two branches of the same curve intersecting on the point
of the surface which we are considering.

409. In fact when the motion of a surface is regulated by
a single parameter (see Art. 290), the equation of its envelope,
as we have seen, contains only functions of a single quantity,
and the differential equation belongs to the simpler species
just referred to. But if the motion of the surface be regulated
by two parameters, its contact with its envelope being not a
curve, but a point; then the equation of the envelope will
in general contain functions of two quantities, and the diffe-
rential equation will be of the more general form. As an
illustration of the occurrence of the latter class of equations in
geometrical investigations, we take the equation of the family
of surfaces which has one set of its lines of curvature parallel
to a fixed plane, y=mz. Putting dy=mdx in the equation
of Art. 280, the differential equation of the family is

m*{(1+ ¢")8 — pgt} + m{(14 ¢")7— (14 p") ¢} — {(1+ p*) s — pgr}=0.

As it does not enter into the plan of this treatise to treat of
the integration of such equations, we refer to Monge, p. 161
for a very interesting discussion of this equation. Our object
being only to show how such differential equations present
themselves in geometry, we shall show that the preceding
-equation arises from the elimination of a, 8 between the follow-
ing equation and its differentials with respect to a and 8:

(@—a)'+(y—B)+{z- ¢ (a + mB)}'= ¥ (8- ma)"
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Differentiating with respect to a and 3, we have
(z—a) + (2—¢) ¢ =my'y,
. =B +m(s-¢)¢'=—¥'¥,
whence (z—a)+m(y—B)+ (1+m") (z—¢) ¢'=0.
But we have also
(#—a)+p(z—¢4)=0, (y—B)+g(z—¢)=0,
whence  (z-a)+m(y— B)+ (p+mq) (z—¢)=0.
And by comparison with the preceding equation, we have
p+mg=(1+m") ¢'(a+mpB). If then we call a+mpB, v the
problem is reduced to eliminate y between the equations
@t+my -y +(p+mg) {z—¢ (M} =0, p+mg=(1+m") ¢ (y).
Differentiating with regard to = and y, we have
(L+p"+mpg) +(r +ms) {z— ¢ ()} - {1+ (p+ mq) ¢} v,
{m(1+g)+pgl+ (s +mt) (2= ¢ (M)} — {L+ (p+mg) ¢},
but from the second equation
r+ms:st+mtiiey .
Hence the result is
(147" +mpg) (s +mt) = {m (1 +¢°) + pg} (r + ms),
as was to be proved.

RULED SURFACES.*

410. On account of the importance of ruled surfaces, we
add some further details as to this family of surfaces.

The tangent plane at any point on a generator evidently
contains that gencrator, which is one of the inflexional tangents
(Art. 234) at that point. Each different point on the gene-
rator has a different tangent plane (Art. 107) which may be
constructed as follows: We know that through a given point

* The theorems in this section are principally taken from M. Chasles’s
Memoir, Quetelet’s Correspondance, t. XL, p. 50, and from Mr. Cayley’s
paper, Cambridge and Dublin Mathematical Journal, Vol. vir., p. 171.
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can be drawn a line intersecting two given lines; namely, the
intersection of the planes joining the given point to the given
lines. Now consider three consecutive generators, and through
any point 4 on one, draw a line meeting the other two. This
line, passing through threec consecutive points on the surface,
will be the second inflexional tangent at A, and therefore the
plane of this line and the generator at 4 is the tangent plane
at 4. In this construction it is supposed that two consecutive
generators do not intersect, which ordinarily they will not do.
There may be on the surface, however, singular generators
which are intersected by a consecutive generator, and in this
case the plane containing the two consecutive generators is &
tangent plane at every point on the generator. In special
cases also two consecutive generators may coincide, in which
case the generator is a double line on the surface.

411. The ankarmonic ratio of four tangent planes passing
through a generator is equal to that of their four points of con-
tact. Let three fixed lines 4, B, C be intersected by four
transversals in points aa'a"a”, 6b'6"0", cc'c’¢”. Then the an-
harmonic ratio {bb'd"d""} = {cc'c"c"'}, since either measures the
ratio of the four planes drawn through 4 and the four trans-
versals. In like manner {cc'c’c"} = {aa'a"a™} either measuring
the ratio of the four planes through B (see Art.112). Now
let the three fixed lines be three consecutive generators of the
ruled surface, then by the last article, the transversals meet
any of these generators 4 in four points, the tangént planes
at which are the planes containing 4 and the transversals.
And by this article it has been proved that the anharmonic
ratio of the four planes is equal to that of the points where
the transversals meet 4.

412. Given any generator of a ruled surface, we can de-
scribe a hyperboloid of one sheet, which shall have this gene-
rator in common with the ruled surface, and which shall also
have the same tangent plane with that surface at every point
of their common generator. For it is evident from the con-
struction of Art. 410 that the tangent plane at every point
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on a generator is fixed, when the two next consecutive gene-
rators are given, and consequently that if two ruled surfaces
have three consecutive generators in common, they will touch
all along the first of these generators. Now any three non-
intersecting right lines determine a hyperboloid of one sheet
(Art. 76); the hyperboloid then determined by any generator
and the two next consecutive will touch the given surface as
required. ’

In order to see the full bearing of the theorem here enun-
ciated, let us suppose that the axis of z lies altogether in any
surface of the n' degree, then every term in its equation must
contain either = or y; and that equation arranged according
to the powers of  and y will be of the form

u_x+v_y+u_x'+v_xy+w,_y + & =0,
where u_, v, denote functions of z of the (n—1)" degree, &ec.
Then (see Art. 107) the tangent plane at any point on the axis
will be »'_x+ v _y=0, where u',_, denotes the result of sub-
stituting in u,_, the co-ordinates of that point. Conversely, it
follows that any plane y=mx touches the surface in n—1
points, which are determined by the equation u_, +mv,_,=0.
If however u_, v, , have a common factor u, so that the
terms of the first degree in z and y may be written
u, (u,_p x+v,, y)=0, then the equation of the tangent plane
will be #,_, x+v,, y=0, and evidently in this case any
plane y=max will touch the surface only in n—p—1 points.
It is easy to see that the points on the axis for which u,=0
are double points on the surface. Now what is asserted in the
theorem of this article is, that when the axis of z is not an
isolated right line on a surface, but one of a system of right
lines by which the surface is generated, then the form of the
equation will be
u,_, (ux+vy) + &e. =0,

so that the tangent plane at any point on the axis will be the
same as that of the hyperboloid wx + vy, viz. 'z + v'y=0. And
any plane y =mx will touch the surface in but one point. The
factor u,_, indicates that there are on each generator n—2
points which are double points on the surface.
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413. We can verify the theorem just stated, for an im-
portant class of ruled surfaces, viz., those any generator of
which can be expressed by two equations of the form

at™ + 5" + o+ &e.=0, a't"+bt7 +E*+&e. =0,

where a, @', b, ¥, &c. are linear functions of the co-ordinates,
and ¢ a variable parameter. Then the equation of the surface
obtained by eliminating ¢ between the equations of the gene-
rator (Higher Algebra, p. 34), may be written in the form of
8 determinant, the first row and first column of which are
identical, viz., (ab'), (ac), (ad’), &c. Now the line aa’ is a
generator, namely, that answering to ¢=o0; and we have
just proved that either a or &’ will appear in every term both
of the first row and of the first column. Since then every
term in the expanded determinant contains a factor from the
first row and a factor from the first column, the expanded
determinant will be a function of, at least, the second degree
in a and a', except that part of it which is multiplied by (ad’),
the term common to the first row and first column. But that
part of the equation which is only of the first degree in a
and a' determines the tangent at any point of aa’; the ruled
surface is therefore touched along that generator by the hy-
perboloid ab' — ba’=0.

If @ and & (or a' and ¥') represent the same plane, then
the generator aa’ intersects the next consecutive, and the plane
a touches along its whole length. If we had b=ka, b'=1ka/,
the terms of the first degree in @ and a’ would vanish, and
aa’ would be a double line on the surface.

414. Returning to the theory of ruled surfaces in general,
it is evident that any plane through a generator meets the
surface, in that generator and in a curve of the (n—1)" degree
meeting the generator in n—1 points. Each of these points
being a double point in the curve of section is (Art. 233) in
a certain sense a point of contact of the plane with the surface.
But we have seen (Art. 412) that only one of them is properly
a point of contact of the plane ; the other n —2 are fixed points
on the generator, not varying as the plane through it is
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changed. They are the points where this generator meets
other non-consecutive generators, and are points of a double
curve on the surface. Thus then a skew ruled surface in general
has a double curve which is met by every gemerator in n—2
points. It may of course happen that two or more of these
n— 2 points may coincide, and that the multiple curve on the
surface may be of higher order than the second. In the case
considered in the last article it can be proved (see Appendix
on the Order of Systems of Equations) that the multiple curve
(m4+n—1)(m+n—2)
1.2
(m+n—2)(m+n—38)(m+n—4)
1.2.3
A ruled surface having a double line will in general not
have any cuspidal line unless tne surface be a developable,
and the section by any plane will therefore be a curve having
double points but not cusps.

18 of the order

, and that there are on

it

triple points.

415. Consider now the cone whose vertex is any point,
and which cnvelopes the surface. Since every plane through
a generator touches the surface in some point, the tangent
planes to the cone are the planes joining the serics of gene-
rators to the vertex of the cone. The cone will, in general,
not have any stationary tangent planes: for such a plane would
arise when two consccutive generators lie in the same plane
passing through the vertex of the cone. But it is only in
special cases that a generator will be intersected by one con-
secutive ; the number of planes through two consecutive gene-
rators is therefore finite; and hence one will, in general, not
pass through an assumed point. The class of the cone, being
equal to the number of tangent planes which can be drawn
through any line through the vertex, is equal to the number
of generators which ‘can meet that line, that is to say, to the
degree of the surface (see note, p. 124). We have proved now
that the class of the cone is equal to the degree of a section
of the surface; and that the former has no stationary tangent
planes as the latter has no stationary, or cuspidal, points. The
equations then which connect any three of the singularities
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of a curve prove that the number of double tangent planes
to the cone must be equal to the number of double points
of a section of the surface; or in other words, that the number
of planes containing two generators which can be drawn
through an assumed point, is equal to the number of points
of intersection of two generators which lie in an assumed
plane.®

416. We shall illustrate the preceding theory by an enu-
meration of some of the singularities of the ruled surface gene-
rated by a line meeting three fixed directing curves, the degrees
of which are m , m, m .t

The degree of the surface generated is equal to the number
of generators which meet an assumed right line; it is there-
fore equal to the number of intersections of the curve m, with
the ruled surface having for directing curves the curves m,, m,
and the assumed line; that is to say, it is m, times the degree
of the latter surface. The degree of fhis again is, in like
manner, m, times the degree of the ruled surface whose directing
curves are two right lines and the curve m,, while by a repe-
tition of the same argumecnt, the degree of this last is 2m,
It follows that the degree of the ruled surface when the
generators are curves m,, m,, m,, is 2m mm,.

The three directing curves are multiple lines on the surface,
whose orders are respectively mm,, mm, mm, For through
any point on the first curve pass mm, generators, the inter-
sections namely of the cones having this point for & common
vertex, and resting on the curves m, m,

417. The order of the ruled surface being 2mmm,, it
follows, from Art. 414, that any generator is intersected by
2mmm,—2 other generators. But we have seen that at
the points where it meets the directing curves, it meets

(m;m,— 1)+ (m;m, — 1) + (mm,— 1) other generators. Conse-

® These theorems are Mr. Cayley’s. Cambridge and Dublin Mathe-
matical Journal, Vol. vIL., p. 171,

+ 1 published a discussion of this surface, Cambridge and Dublin
Mathematical Journal, Vol. VIIL, p. 45.
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quently it must meet 2mmm, — (mm,+mm, +mm)+1 gene-
rators, in points not on the directing curves. We shall establish
this result independently by seeking the number of generators
which can meet a given generator. Let us commence by
determining the degree of the ruled surface whose directing
curves are the curves m, m, and the given generator, which
is a line resting on both. In the first place this right line
is a multiple line of the order mm — 1, since obviously,
through any point of it can be drawn this number of
lines (distinct from the given line itself) meeting the curves
m,, m,. But the section of the surface by a plane through
the given line, will be that line itself (mm,—1) times, together
with the (m,— 1) (m,—1) generators, obtained by joining any
of the points where the plane meets the curve m, to one of
those where it meets the curve m, Thus then the degree
of the section (and therefore of the surface) is

(mm,— 1)+ (m, —1) (m,— 1) =2mm,—m, — m,

Multiplying this number by m,, we get the number of points
where this new ruled surface is met by the curve m,. But
amongst these will be reckoned (mm,— 1) times the point
where the given generator meets the curve m,. Subtracting this
number then, there remain 2mmgn,— mon, —mm —mm + 1
points of the curve m, through which can be drawn a line
to meet the curves m,, m, and the assumed generator. But

this is in other words the thing to be proved.

418. The ruled surface will contain a certain number of
double generators, those namely which meet one of the directing
curves twice and the other two once. The number of such
lines resting twice on the curve m, is proved by reasoning
similar to that used before, to be mgm, times the degree of
the ruled surface generated by a right line resting twice on
m, and also on an arbitrary line. Now if 4 be the number
of apparent double points of the curve m,, that is to say, the
number of lines which can be drawn through an assumed
point to meet that curve twice, it is evident that the assumed
right line will on this ruled surface be a multiple line of the



352 RULED SURFACES.

order A, and the section of the ruled surface by a plane through
that line, will be that line %, times together with the 4m, (m, —1)
lines joining any pair of the points where the plane cuts the
curve m,. '[he degree of this ruled surface will then be
h +34m (m—1), and the total number of double generators
on the original ruled surface is

ml{kl +§m1 (mn—l) }+mlm1 {k,+«}m,(m,—1) } 'Hnlml {k|+’}ma (ma—l )} .

I am unable to give the order of the double curve in general,
but in the particular case where one of the directing curves
is a right line, and the other two curves of the degree m,, m,,
it is evident that the section by any plane through the directing
right line consists of that right line m m, times together with
mm, lines intersecting in }mm, (m,— 1) (m,—1) points not on
the directing curves. This latter therefore would appear to
be in this case the order of the nodal curve, unless it intersect
the directing line in a certain number of points, which, if so,
must be added to the order of the curve. There are, of course,
besides, double generators, as determined in the first part of
this article.

It is easy to see, in like manner, that the surface generated
by a right line resting twice on a curve m and on a right line,
will have, besides its double generators, a double curve, whose
order is, at least, {m (m —1) (m —2) (m- 3).

419. The degree of the ruled surface, as calculated by
Art. 416, will admit of reduction if any pair of the directing
curves have points in common. Thus if the curves m, m,
have a point in common, it is evident that the cone whose
vertex is this point, and base the curve m, will be included
in the system, and that the order of the ruled surface proper
will be reduced by m,. And generally if the three pairs made
out of the three directing curves have common respectively
a, B, v points, the order of the ruled surface will be reduced
by ma+mpB+my* Thus if the directing lines be two right

* My attention was called by Mr. Cayley to this reduction which takes
place when the directing curves have points in common. .
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lines and 4 twisted cubic, the surface is in general of the sixth
order, but if each of the lines interscct the cubic the order is
only of the fourth. If cach intersect it twicc the surface is
a quadric. If onc intersect it twice and the other once, the
surface is a skew surface of the third degree on which the
former line is a double line.

Again, let the directing curves be any three plane sections
of a hyperboloid of one sheet. According to the gencral theory
the surface ought to be of the sixteenth order, and let us sce
how a reduction takes place. Each pair of directing curves
have two points common; namely, the points in which tho
line of intersection of their planes mects the surface. And the
complex surface of the sixteenth order consists of six cones of
the second order, together with the original quadric reckoned
twice. That it must be reckoned twice, appears from the fact
that the four generators which can be drawn through any point
on one of the directing curves, are two lincs belonging to the
cones, and two generators of the given hyperboloid.

In general, if we take as directing curves three plane sce-
tions of any ruled surface, the equation of the ruled surface
gencrated will have, in addition to the concs and to the original
surface, a factor denoting another ruled surface which passes
through the given curves. For it will generally be possible
to draw lines, mecting all three curves, which arc not genec-
rators of the original surface.

420. Returning to the case of ruled surfaces in genecral;
we know that a series of planes through any linc and a series
at right angles to them form a system in involution, the an-
harmonic ratio of any four being equal to that of their four
conjugates. It follows then, from Art. 411, that the system
formed by the points of contact of any plane, and of a plane
at right angles to it, form a system in involution; or, in other
words, the system of points where planes through any generator
touch the surface, and where they are normal to the surface,
form a system in involution. The centre of the system is the
point where the plane which touches the surface at infinity,
is normal to the surface; and by the known properties of in-

AA
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volution, the distances from this point of the poﬁs where
any other plane touches and is normal, form a constant rect-
angle.

421. The normals to any ruled surface along any generator,
generate a hyperbolic paraboloid. It is evident that they are
all parallel to the same plane, namely the plane perpendicular
to the generator. We may speak of the anharmonic ratio
of four lines parallel to the same plane, meaning thereby that
of four parallels to them through any point. Now in this
sense the anharmonic ratio of four normals is equal to that
of the four corresponding tangent planes, which (Art. 411) is
equal to that of their points of contact, which again (Art. 419)
is equal to that of the points where the normals meet the
generator. But a system of lines parallel to a given plane
and meeting a given line generates a hyperbolic paraboloid,
if the anharmonic ratio of any four is equal to that of the
four points where they meet the line. This proposition follows
immediately from its converse, which we can easily establish.

The points where four generators of a hyperbolic paraboloid
intersect a generator of the opposite kind, are the points of
contact of the four tangent planes which contain these generators,
and therefore the anharmonic ratio of the four points is equal
to that of the four planes. But the latter ratio is measured
by the four lines in which these planes are intersected by a
plane parallel to the four generators, and these intersections
are lines parallel to these generators.

422. The central points of the involution (Art. 419) are,
it is easy to see, the points where each generator is nearest
the next consecutive, that is to say, the point where each
generator is intersected by the shortest distance between it
and its next consecutive. The locus of the points on the
generators of a ruled surface, where each is closest to the
next consecutive, is called the line of striction of the surface.
It may be remarked, in order to correct a not unnatural
mistake (see Lacroiz, Vol. 111., p. 668), that the shortest distance
between two consecutive gencrators is not an element of the
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line of striction. In fact if Aa, Bb, Cc be thrce consecutive
generators, ab the shortest distance between the two former,
then &'c the shortest distance between the second and third
will in general meet Bb in a point & distinct from &, and
the element of the line of striction will be ab’ and not ab.

Ex. 1. To find the line of striction of the hyperbolic paraboloid
= 9
d e "

Any pair of generators may be expressed by the equations

Z,Y_a, T_9_1
atitM™ T E v
2, Y, T_¥.1
a+b_'uz’ a b u’

Both being parallel to the plane ;— %, their shortest distance is per-

pendicular to this plane, and thercfore lics in the plane
feom {EaY . s {5V 1_}
(a+b'){a+b ;tZ}+(a 1)) 5 ,

s e s . . a'-b 1
which intersects the first generator in the point z = T
When the two generators approach to coincidence, we have for the
co-ordinates of the point where either is intersected by their shortest

distance

La-01 z+g=a’—b’l
Ta@+bN a ' b a+dA’
and hence (a'+b’)(;+%)=(a'—b')(§-%),or‘—'::-,+%=0.

The line of striction is therefore the parabola in which this plane cuts
the surface. The same surface considered as generated by the lines
of the other system has another line of striction lying in the plane

Ex. 2. To find the line of striction of the hyperboloid
2.4
Ans. Tt is the intersection of the surface with
a'4d* BB oC*
=ty
1

1
where A= st C=b_' &

AA2
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CHAPTER XIII
SURFACES DERIVED FROM QUADRICS.

THE WAVE SURFACE.

423. BEFORE proceeding to surfaces of the third degree,
we think it more simple to treat of surfaces derived from
quadrics, the theory of which is more closely connected with
that explained in preceding chapters. The equation of the
surface of centres has been already given (Art.208), and we
proceed now to define, and form the equation of, Fresnel’s
Wave Surface.®

If a perpendicular through the centre be erected to the
plane of any central section of a quadric, and on it lengths be
taken equal to the axes of the section, the locus of their ex-
tremities will be a surface of two sheets which is called the
wave surface. Its equation is at once derived from Arts. 97,
98, where the lengths of the axes of any section are expressed
in terms of the angles which a perpendicular to its plane makes
with the axes of the surface. The same equation then ex-
presses the relation which the length of a radius vector to the
wave surface bears to the angles which it makes with the
axcs. The equation of the Wave Surface is therefore

a'z’ by c's*

a"—-r"+b"-—r"+c"—r"=o’

where »* =2+ 3*+ 2'. Or, multiplying out,
(2 + 3"+ ) (a2 + 59" + ¢'2")
— {0 (B 4 &) + B (& 4+ &) + ¢ (6 + 5] + B =0

* See Fresnel, Mémoires de I Institut, Vol. VII., p. 136, published 1827.
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From the first form it appears at once that the intersection
of the wave surface by a concentric sphere, is a sphe
conic. :

. 424. The section by one of the principal planes (e.g. the
plane z) breaks up into a circle and ellipse

(@ +9 — ) (a%* + By — a'B").

This is also geometrically evident, since if we consider any
section of the gencrating quadric, through the axis of z, one
of the axes of that section is equal to ¢, while the other axis
lies in the plane zy. If then we erect a perpendicular to
the plane of section, and on it take portions equal to each
of these axes, the extremitics of one portion will trace out a
circle whose radius is ¢, while the locus of the extremities of
the other portion, will plainly be the principal section of the
generating quadric, only turned round through 90°. In cach
of the principal planes the surface has four double points;
namely, the intersection of the circle and ellipse just men-
tioned. If &', y' be the co-ordinates of one of these intersec-
tions, the tangent cone (Art. 239), at this double point, has
for its equation

4 (2 + gy - &) 'z + By’ — a'B) + 2* (o' — ¢*) (B — &) = 0.

The generating quadric being supposed to be an ellipsoid, it
is evident that in the case of the section by the plane 2, the
circle whose radius is ¢ lies altogether within the ellipse whose
axes are a, b: and in the case of the section by the plane =z,
the circle whose radius is a, lies altogether without the ellipse
whose axes are b, c. Real double points occur only in the
scction by the plane y; they arc evidently the points corre-
sponding to the circular sections of the generating ellipsoid.
The section by the plane at infinity also breaks up intoa

factors z'+y* + 2, o'z’ + 0%y' + 2%, and may therefore also be
considercd as an imaginary circle and ellipse, which in like
manner give rise to four imaginary double points of the surface
situated at infinity. Thus the surface has in all sixtecn nodal
points, only four of which are real.
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425. The wave surface is one of a class of surfaces which
may be called apsidal surfaces. Any surface being given, if
we assume any point as pole, draw any section through that
pole, and on the perpendicular through the pole to the plane
of section, take lengths equal to the apsidal (that is to say,
to the maximum or minimum) radii of that section; then the
locus of the extremities of these perpendiculars is the apsidal
surface derived from the given one. The equation of the
apsidal surface may always be calculated, as in Art. 98. First
form the equation of the cone whose vertex is the pole, and
which passes through the intersection with the given surface
of a sphere of radius ». Each edge of this cone is proved
(as at Art. 98) to be an apsidal radius of the section of the
surface by the tangent plane to the cone. If then we form
the equation of the reciprocal cone, whose edges are perpen-
dicular to the tangent planes to the first cone, we shall obtain
all the points on the apsidal surface which correspond to the
tangent planes of the assumed cone. And by considering r
variable, in the equation of this latter cone, we have the
equation of the apsidal surface. .

426. If OQ be any radius vector to the generating surface,
and OP the perpendicular to the 0
tangent plane at the point @, then
0@ will be an apsidal radius of
the section passing through 0@
and through OR which is sup-
posed to be perpendicular to the '
plane of the paper POQ. For
the tangent plane at @ passes
through PQ and is perpendicular to the plane of the paper;
the tangent line to the section QOR lies in the tangent plane
- and is therefore also perpendicular to the plane of the paper.
Since then OQ is perpendicular to the tangent line in the
section QOR, it is an apsidal radius of that section.

It follows that OT, the radius of the apsidal surface corre-
sponding to the point @, lies in the plane POQ and is per-
pendicular and equal to 0Q.

)

o r
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427. The perpendicular to the tangent plane to the apsidal
surface at T lies also in the plane POQ, and is perpendicular
and equal to OP.*

Consider first a radius OT" of the apsidal surface, inde-
finitely near to O7, and lying in the plane T0OR, perpendicular
to the plane of the paper. Now OT" is by definition equal
to an apsidal radius of the section of the original surface by
a plane perpendicular to 07", and this plane must pass through
0Q. Again an apsidal radius of a section is equal to the
next consecutive radius. The apsidal radius therefore of a
section passing through 0@, and indefinitely near the plane
QOR, will be equal to 0Q. It follows then that OT'=0T,
and therefore that the tangent at 7' to the section TOR is
perpendicular to O7, and therefore perpendicular to the plane
of the paper. The perpendicular to the tangent plane at T'
must therefore lie in the plane of the paper, but this is the
first part of the theorem which was to be proved.

Secondly, consider an indcfinitely near radius OT" in the
plane of the paper; this will be equal to an apsidal radius
of the section RO, where OQ' is indefinitely necar to OQ.
But, as before, this apsidal radius being indefinitely near to
0@ will be equal to it, and therefore 07" will be equal
as well as perpendicular to O@Q. The angle then 770 is
equal to @Q'QO, and therefore the perpendicular OS is equal
and perpendicular to OP.

It follows from the symmetry of the construction that if
a surface 4 is the apsidal of B, then conversely B is the apsidal
of 4.

428. The polar reciprocal of an apsidal surface, with respect
to the origin O, i3 the same as the apsidal of the reciprocal, with
respect to O, of the given surface.

For if we take on OP, O@Q portions inversely proportional
to them, we shall have Op, Og¢, a radius vector and corre-
sponding perpendicular on tangent plane of the rcciprocal of

* These theorems are due to Prof. Mac Cullagh, Transactions of the
Royal Irish Academy, Vol. XvI.,
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the given surface. And if we take portions equal to these
on the lines 08, OT which lie in their plane, and are respec-
tively perpendicular to them, then by the last article we shall
have a radius vector, and corresponding perpendicular on tan-
gent plane, of the apsidal of the reciprocal. But these lengths
being inverscly as O, OT are also a radius vector, and per-
pendicular on tangent planc of the reciprocal of the apsidal.
The apsidal of the reciprocal is therefore the same as the
reciprocal of the apsidal.

In particular, the reciprocal of the wave surface generated
from any ellipsoid, is the wave surface generated from the reci-
procal ellipsoid.

. We might have otherwisc seen that the reciprocal of a
wave surface is a surface also of the fourth degree, for the
reciprocal of a surface of the fourth degree is in general of
the thirty-sixth degree (Art. 250); but it is proved, as for plane
curves, that each double point on a surface reduces the degree
of its reciprocal by two; and we have proved (Art. 424) that
the wave surface has sixtecn double points.

To a nodal point on any surface (which is a point through
which can be drawn an infinity of tangent planes, touching
a conc of the second degree) answers on the reciprocal surface
a tangent plane, having an infinity of points of contact, lying
in a conic. From knowing then that a wave surface has four
real double points, and that the reciprocal of a wave surface
is a wave surface, we infer that the wave surface has four
tangent plancs which touch all along a conic. We shall now
show gcometrically that this conic is a circle.®

429. Tt is convenient to premise the following lemmas:

LEMMA 1. “If two lines passing though a fixed point, and
at right angles to cach other, move each in a fixed plane, the

* Sir W. R. Hamilton first showed that the wave surface has four
nodes, the tangent planes at which envelope cones, and that it has four
tangent planes which touch along circles, Transactions of the Royal Irish
Acudemy, Vol. xvi1, p. 132. Dr. Lloyd experimentally verified the optical
theorems thence derived, Ibid, p. 145. The geometrical investigations
which follow arc duc to Professor Mac Cullagh, p. 248.
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plane containing the two lines envelopes a cone whose scctions
parallel to the fixed planes are parabolas.”” The plane of the
paper is supposed to be parallel to one of the fixed planes,
and the other fixed plane is supposed to pass through the
line MN. The fixed point O in which the two lines intersect
is supposed to be above the paper, P being the foot of tho
perpendicular from it on the plane

of the paper. Now let OB be one &, /7

position of the line which moves in
the plane OMN, then the other line

04 which is parallel to the plane 2

of the paper being perpendicular to

OB and to OP is perpendicular to N

the plane OBP. Bdt the plane ¥ P
OAB intcrsects the planc of the c

paper in a line BT parallel to 04, and therefore perpendicular
to BP. And the envelope of BT is cvidently a parabola of
which P is the focus and MN the tangent at the vertex.

Lemma II. “If a line OC be drawn perpendicular to
0AD, it will generate a cone whose circular sections are
parallel to the fixed planes.” (Ex. 4, p. 85). It is proved, as
at p. 106, that the locus of C is the polar reciprocal, with
respect to P, of the envelope of B7. The locus is therefore
a circle passing through P.

Lemma III. “If a central radius of a quadric moves in a
fixed plane, the corrcsponding perpendicular on tangent plane
also moves in a fixed plane.” Namely, the plane perpendicular
to the diameter conjugatc to the first planc, to which the
tangent plane must be parallel.

430. Suppose now (see figure, Art. 426) that the plane
OQR (where OR is perpendicular to the plane of the paper)
is a circular section of a quadric, then OT is the nodal radius
of the wave surface, which remains the same while O0Q moves
in the plane of the circular sections; and we wish to find
the cone generated by OS. DBut OS is perpendicular to OR
which moves in the plane of the circular sections and to OP
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which moves in a fixed plane by Lemma III., therefore OS
generates a cone whose circular sections are parallel to the
planes POR, QOR. Now T is a fixed point, and TS is
parallel to the plane POR, therefore the locus of the point
8 is a circle.

The tangent cone at the node is evidently the reciprocal of
the cone generated by OS, and is therefore a cone whose
sections parallel to the same planes are parabolas.

Secondly, suppose the line OP to be of constant length,
which will happen when the plane POR is a transverse section
of one of the two right cylinders which circumscribe the
ellipsoid, then the point S is fixed, and it is proved precisely
as in the first part of this article that the locus of 7 is a
circle. ’

431. The equations of p. 173 give immediately another
form of the equation of the wave surface. It is evident
thence, that if 6, & be the angles which any radius vector
makes with the lines to the nodes, then the lengths of the
radius vector are, for one sheet,

1 _cos'}(6-6) + sin* (6 —6')

- 2 @ Y

P c

and for the other ,

1 cos’}(0+6) + sin’} (0+ 6')
cﬁ aﬂ

G

)

while 5= = (5= ) sin0 sin.
[ SR Ca

It follows hence also that the intersections of a wave surface

with a series of concentric spheres, are a series of confocal

sphero-conics. For in the preceding equations if p or p' be

constant, we have 6+ 6 constant.

432. The equation of the wave surface has also been ex-
pressed as follows by Mr. W. Roberts in elliptic co-ordinates.
The form of the equation

aﬂxi biyﬂ c'lzi

prp 7 e e

=0

?
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shows that the equation may be got by eliminating »* between
the equations
z 2* .
#_¢+ﬁfy+f_a=l,mdw+f+f=ﬂ
Giving +* any series of constant values, the first equation
denotes a series of confocal quadrics, the axis of 2 being the
primary axis, and the axis of = the least. Since * is always
less than @' and greater than c*, the equation always denotes
a hyperboloid, which will be of one or of two sheets according
as 7* is greater or less than 4*. The intersections of the hyper-
boloids of one sheet with corresponding spheres generate one
sheet of the wave surface, and those of two sheets the other.
Now if the surface denote a hyperboloid of one sheet, and
if A, 4, v denote the primary axes of three confocal surfaces
of the system now under consideration which pass through any
point, then the equation gives us »* — ¢*=pu*, but (Art. 169)
=Nt p =,
whence the equation in elliptic co-ordinates is
M+vV=c+h+EF=a"+b-c"
In like manner the equation of the other sheet is
7\."+p.’=a"+b"—c".

The general equation of the wave surface also implies
p'+v'=a’+b" — ¢, but this denotes an imaginary locus.

Since, if N is constant, u is constant for one sheet and v
for the other, it follows that if through any point on the sur-
face be drawn an ellipsoid of the same system, it will meet
one sheet in a line of curvature of one system, and the other
sheet in a line of the other system.

If the equations of two surfaces expressed in terms of
A, p, v, when differentiated give

Pd\+ Qdp+ Rdv=0, Pdr+ Qdp+ Rdyv=0,
the condition that they should cut at right angles is (Art. 359)
PP(N-K)(N-K) QO -K)K-p’) RE#-v)(E—)
MW= )N =) - A=) W -Y) T (VY)W
which is satisfied if P=0, Q=0, R'=0. Hence any surface

=O,
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v =constant cuts at right angles any whose equation is of the
form ¢ (A, u) =0. The hyperboloid therefore, v= constant,
cuts at right angles one shect of the wave surface, while it
meets the other in a line of curvature on the hyperboloid.

433. The plane of any radius vector of the wave surface and
the corresponding perpendicular on the tangent plane, makes equal
angles with the planes through the radius vector and the nodal
lines. For the first plane is perpendicular to OR (Art. 426)
which is an axis of the section QOR of the generating ellipsoid,
and the other two planes are perpendicular to the radii of
that section whose lengths are 5, the mean axis of the ellipsoid,
and these two equal lines make equal angles with the axis.
The planes are evidently at right angles to each other, which
are drawn through any radius vector, and the perpendiculars
on the tangent planes at the points where it meets the two
sheets of the surface.

Reciprocating the theorem of this article we see that the
plane through any line through the centre and through one
of the points where planes perpendicular to that line touch
the surface, makes equal angles with the planes through the
same line and through perpendiculars from the centre on the
planes of circular contact (Art. 430).

434. If the co-ordinates of any point on the generating
ellipsoid be z'y'2', and the primary axes of confocals through
that point o', a”; then the squares of the axes of the section
parallel to the tangent plane are a'—a”, o'—a'™, which we
shall call p'y p”. These then give the two values of the
radius vector of the wave surface, whose direction-cosines are
];_a:, 1—’1%-, 1:—3 We shall now calculate the length and the
direction-cosines of the perpendicular on the tangent plane at
either of the points where this radius vector meets the surface.
It was proved (Art. 427) that the required perpendicular is
equal and perpendicular to the perpendicular at the point where -
the ellipsoid is met by one of thc axes of the section; and

. . . . "o 'y’ 'z
the direction-cosincs of this axis arc P—;»— r ’i Ii—- . The
“‘3 b bi ) c!
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co-ordinates of its extremity are then thcse scveral cosines
multiplied by p, and the direction-cosines of the corresponding
perpendicular of the ellipsoid are

! z
PPpn I3 PP b’b”’ PPI: k)

1 x* y” 2"
where 5= =p'p { atirt s ..}

Now if the quantity within the brackets be multiplied by

(a’—a"‘)" we see at once that it will become 1% +;1,,. Hence

_r+p’, e
P‘ Vi and P= P+
This then gives the length of the perpendicular on the
tangent plane at the point on the wave surface which we are
considering. Its direction-cosines are obtained from the con-
sideration that it is perpendicular to the two lines whose
direction-cosines are respcctively
pe py pe. r?

a"” bml) 'c'—la) PP unn ‘Ppbabr:) PP ali

Forming by Art. 15 the direction-cosines of a line perpendicular
to these two, we find, after a few reductions,

y U] ] g ] 13
2(5), B (-5 Z0-5)
Pp a@ Pp b p ¢
In fact it is verified without difficulty that the line whose
direction-cosines have been just written is perpendicular to
the two preceding.

It follows hence also, that the equation of the tangent
plane at the same point is

113, "y, 73
ax’ (l —%) +yy (1 —};T,) + 22’ (1 _p_) =pp.

In like manner the tangent plane at the other point where
the same radius vector meets the surface is

o (1) (e ()
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435. If 6 be the angle which the perpendicular on the

tangent plane makes with the radius vector, we have P=p cos@;
2 2

but we have in the last article proved P"=—,]i,,.
. P+p

cos’d = 1%2—9,—,, tan’6 =%,~. This expression may be trans-

Hence

formed by means of the values given for p and p' (Art. 173).
We have therefore

ot (@—p) (B pY) (¢ —p)

P =?P_'l’ V4 pa(pi_pm)
(- 6962
Whence tan’f =— = . L.
1-£,

In this form the expression is analogous to the value for the
angle between the normal and central radius vector of a plane

ellipse, viz.,
tan’0=—(1—§:) (1 —%:) .

In the case of the wave surface it is manifest that tan@ vanishes
only when p=a, b, or ¢, and becomes indeterminate when
p=p'=b.

436. The expression ta.n0=1—;- leads to a construction for

the perpendiculars on the tangent planes at the points where
a given radius vector meets the two sheets of the surface.
The perpendiculars must lie in one or other of two fixed
planes (Arts. 433, 434), and if a plane be drawn perpendicular
to the radius vector at a distance p, it is evident from the
expression for tan@, that p’ is the distance to the radius vector
from the point where the perpendicular on the tangent plane
meets this plane. Thus we have the construction, “ Draw a
tangent plane to the generating ellipsoid perpendicular to the
given radius vector, from its point of contact let fall perpen-
diculars on the two planes of Art. 433, then the lines joining
to the centre the feet of these perpendiculars, are the perpen-
diculars required. '
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We obtain by reciprocation a similar construction, to de-
termine the points where planes parallel to a given one touch
the two sheets of the surface.

437. 1 have sometimes found it convenicnt to transform
the equation of the surface, as at Art. 180, so as to make
the radius vector to any point on the surface the axis of 2,
and the axes of the corresponding scction of the generating
ellipsoid the axes of x and y. We may write the equation
of the surface in the form
(a’xﬁ_'_b'lyl_*_c‘lz!_bﬂc?_c'laﬂ_aﬁbﬂ) (w2+y2+zl)

x’ 2 zl
+ a’b’c" (;,+-%,+?+ 1)=0.
Now a'+ '+ 2" remains unaltered by transformation, and we
have given, Arts. 183, 184, the transformations of

2 PR
2‘+ﬁ%’ + 3 aazn_'_b:ya_*_caza.

Consequently the transformed equation is
(P2 +(p"+p) &+ (p™ +07) " + 2pp'ez + 2pp"yz + 2pp"ay}
x (@ +3"+2%) = p' (p"+ ") =& (P'" +2" 0" +p"p" +p'p")
=y (P +p"p " +p" 0"+ p’p") —2pp'p %z — 2pp"p"yz+ p'p’p"=0.
In this transformation we have substituted for the quantity
called «* (Art. 183), its value derived from the equation
1 1 + 1 1 1_ _l_
Fteta" PP
and have also used the identical equation
b’cﬂ+c’ai+a’b' =p! (p’+p") +pﬂpﬂ+p"fpl+p'p".

It is easy to see that if we make  and y=0 in the equation
thus transformed, we get for 2' the values p' and p™ as we
ought.

If we transform the equation to parallel axes through the
point z = p, the linear part of the equation becomes

2pp (0" — ") (P2 +p'2),

from which the results already obtained as to the position of
the tangent plane may be independently established.
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By expanding the terms of the second degree, the values
_ of the principal radii of curvature, and the directions of cur-
vature can be established, but I have arrived at no results of
importance.

438. The equation of the reciprocal of the wave surface
2
is got by writing % for a, &c., in the cquation of the wave
surface ; and if this be transformed as in the preceding article,
it becomes
(zi+y2 +zl) {pﬂpmxi +p’P’y’— 2mlpmmz — 2mllpﬂyz
+2* (p"" +7"p"+ p'p")}
=M(p+p"+ ") F = NP+ M+ p) Y =N (P4 P74 0"+ p7) 2
+ 2\'p'p"zy + 2N'pp'az + 2N'pp'yz + N =0.
2

We know that the surface is touched by the plane z=% R

and if we put in this value for 2z, we find, as we ought, a
’y ¥
curve having for a double point the point y=0, a:=‘; ); .

If in the equation of the curve we make y =0, we get
'A-* 3 , x‘
(-2 s ),

from which we learn that that chord of the outer sheet of the
wave surface which joins any point on the inner sheet to the
foot of the perpendicular from the centre on the tangent planc
is bisected at the point on the inner sheet. The inflexional
tangents are parallel to

(2" + 7 (p" — p")} & — 20D Py + {P7P" +p" (0" - )} 4" |
a result of which I do not see any geometrical interpretation.®

* 1 have no space for a discussion what the lines of curvature on the
wave surface are nof, though a hasty assertion on this subject in Crelle’s
Journal has led to interesting investigations by M. Bertrand, Comptes
Rendus, Nov. 1858; Combescure and Brioschi, Tortolini’s Annali di Mate-
matica, Vol. 11., pp. 135, 278. It is worth while to citc an observation
of Brioschi, that if in the plane Iz + my + nz = ¢; I, m, n, d be functions
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439. We shall next consider the surface parallel to a given
quadric, that is to say, the surface which may either be defined
as the envelope of plancs parallel to the tangent planes of
the quadric, and at a given distance from them; or else as
the locus of the points taken on the normals at a fixed distance
from the surface, (Higher Plane Curves, p. 273). It is evident
that the sphere whose centre is any point on the parallel surface,
and radius the given distance, will touch the original quadric.
We can then most easily form the equation of the parallel
surface by expressing (Art. 127) the condition that the given

'] zﬂ
%’ + 5 —1, may be touched by the sphere
(@—a)'+(y—B)" + (2 — o) =&
This is done by forming the discriminant with respect to ¢,
of a biquadratic whose coefficients are given p. 112, but which
may be written in the form
ta’ s ty*
Fri T F e T F e
The result represents a surface of the twelfth degree, but which,
when we make %=0, reduces to the quadric taken twice, to-
gether with the imaginary developable (Art. 203) which en-
velopes all quadrics confocal to the given one. This readily
appears from the form in which the equation of the biquadratic
has been written.

440. The locus of the feet of perpendiculars let fall, from
any fixed point, on the tangent planes of a surface is a de-

quadric z—: +

=t+ k.

of two variables u, v, as in Art. 373, then the plane will envelope a surface
in which curves of the families 4 = constant, v = constant, will, at their
intersection, be touched by conjugate tangents of the surface, if the con-
dition be fulfilled,

L m, n ¢

by my ny &
by my n, ¢o
bz Mgy 112, D13 | = 0.
where the suffixes 1, 2, denote differentiation with respect to » and v
respectively: while the curves will cut at right angles if
(I + m* + 0") (hb + mumg + nyng) = (U, + mmy + nny) (Uy + mm, + nny),
BB
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rived surface to which French mathematicians have of late
thought it worth while to give a distinctive name, “podaire,”
which we shall translate as the pedal of the given surface.
From the pedal may, in like manner, be derived & new surface,
and from this another, &c. forming a series of second, third,
&ec. pedals. Again, the envelope of planes drawn perpendicular
to the radii vectores of a surface, at their extremities is a
surface of which the given surface is the pedal, and which we
may call the first negative pedal. The surface derived in like
manner from this is the second negative, and so on. Pedal
curves and surfaces have been studied in particular by Mr. W,
Roberts, Liouville, Vols. X. and xi1., by M. Tortolini, and by
Mr. Hirst, Tortohm’s Annali, Vol. II . p- 95. We shall here
give some of their results, but must omit the greater part of
them, which relate to problems concerning rectification, quad-
rature, &c., which, on account of want of space, cannot be
included in this treatise. If @ be the foot of the perpendicular
from O on the tangent plane at any point P, it is easy to
see that the sphere described on the diameter OP touches
the locus of Q; and consequently the normal at any point Q
of the pedal passes through the middle point of the cor-
responding radius vector OP. It immediately follows hence
that the perpendicular OR on the tangent plane at Q lies
in the plane POQ, and makes the angle QOR=PO0Q, so
that the right-angled triangle QOR is similar to POQ; and
if we call the angle QOR, a, so that the first perpendicular 0Q
is connected with the radius vector by the equation p=p cosa,
then the second perpendicular OR will be p cos*a, and so on.*

It is obvious that if we form the polar reciprocals of a
curve or surface .4 and its pedal B, we shall have a surface a
which will be the pedal of 5; hence if we take a surface S
and its successive pedals S, S, ...8,, the reciprocals will be

* Thus the radius vector to the n'® pedal is of length p cos*a, and
makes with the radius vector to the curve the angle na. Using this defini-
tion of the method of derivation Mr. Roberts has considered fractional
derived curves and surfaces. Thus for n = 1, the curve derived from the
ellipse is Cassini’s oval. An analogofis surface may be derived from the
ellipsoid. ’
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a series S, 8, 8, ...8',, the derived in the latter case
being negative pedals.

It is also obvious that the first pedal is the tnverse (Higher
Plane Curves, p. 239) of the polar reciprocal of the given sur-
face (that is to say, the surface derived from it by substituting
in its equation, for the radius vector, its reciprocal); and that
the inverse of the series 8, S, ...8, will be the serics

8,8, .8,

441. As we shall not have opportunity to return to the
general theory of inversion, we give in this place the following
statement (taken from Hirst, Tortolini, Vol. 11., p. 165) of the
principal properties of inverse surfaces.

(1) Three pairs of corresponding points on two inverse
surfaces lie on the same sphere, (and two pairs of corresponding
points on the same circle) which cuts orthogonally the unit
sphere whose centre is the origin.

(2) By the property of a quadrilateral inscribed in a circle
the line ab joining any two points on one curve makes the
same angle with the radius vector Oa, that the line joining
the corresponding points a'd’ makes with the radius vector O¥'.
In the limit then, if ab be the tangent at any point a, the
corresponding tangent on the inverse curve makes the same
angle with the radius vector.

(8) In like manner for surfaces, two corresponding tangent
planes are equally inclined to the radius vector, the two cor-
responding normals lying in the same plane with the radius
vector, and forming with it an isosceles triangle whose base
is the intercepted portion of the radius vector.

(4) It follows immediately from (2) that the angle which two

curves make with each other at any point is equal to that which
the inverse curves make at the corresponding point.

(5) In like manner it follows from (3) that the angle which
two surfaces make with each other at any point is equal to that
which the inverse surfaces make at the corresponding point.

(6) The inverse of a line or plane is a circle or sphere
passing through the origin.

BEB2
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(7) Any circle may be considered as the intersection of a
plane, and a sphere A through the origin. Its inverse there-
fore is another circle, which is a sub-contrary section of the
cone whose vertex is the origin, and which stands on the given
circle.

(8) The centre of the second circle lies on the line joining
the origin to a the vertex of the cone circumscribing the sphere
A along the given circle. For a is evidently the centre of
a sphere B which cuts A4 orthogonally. The plane therefore
which is the inverse of 4 cuts B’ the inverse of B orthogonally,
that is to say, in a great circle, whose centre is the same as
the centre of B'. But the centres of B and of B’ lie in a right
line through the origin.

(9) To a circle osculating any curve, evidently corresponds
a circle osculating the inverse curve.

(10) For inverse surfaces, the centres of curvature of two
corresponding normal sections lie in a right line with the origin.
To the normal section a at any point m corresponds a curve
o' situated on a sphere A passing through the origin; and
the osculating circle ¢’ of a' is the inverse of ¢ the osculating
circle of . If now a, be the normal section which touches
«' at the point m', then by Meunier's theorem, the centre of
¢’ is the projection on its plane of the centre of ¢, the oscu-
lating circle of a,, But the normal m'c, evidently touches the
sphere 4 at m', so that ¢, is the vertex of the cone circumscribed
to 4 along ¢, and theorem (10) therefore follows from theorem (8).

(11) To the two normal sections at m whose centres of
curvature occupy extreme positions on the normal at m, will
evidently correspond two sections enjoying the same pro-
perty; therefore to the two principal sections on one surface
correspond two principal sections on the other, and to a line
of curvature on one, a line of curvature on the other.

T A .
442. The first pedal of the ellipsoid atEta=Lh being
the inverse of the reciprocal ellipsoid, has for its equation
a'2* + by + "2 = (" + y* +2°)"
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This surface is Fresnel’s ¢ Surface of Elasticity.” The inverse
of a system of confocals cutting at right angles is evidently a
system of surfaces of elasticity cutting at right angles; the
lines of curvature therefore of the surface of elasticity are
determined as the intersection with it of two surfaces of the
same nature derived from concyclic quadrics.

The origin is evidently a double point on this surface, and
the imaginary circle in which any sphere cuts the plane at
infinity is a double line on the surface.

443. Mr. Cayley first obtained the equation of the first
negative pedal of a quadric, that is to say, of the envelope
of planes drawn perpendicular to the central radii at their
extremities. It is evident that if we describe a sphere passing
through the centre of the given quadric, and touching it at
any point z'y'z’, then the point zyz on the derived surface
which corresponds to z'y'z, is the extremity of the diameter
of this sphere, which passes through the centre of the quadric.
‘We thus easily find the expressions

' ¢ , t , t
z=a/(2-5), y=y (2-p)s ==7(2-5);

where t=x"+y"+2"

Solving these equations for &', y', z' and substituting their
values in the two equations

U S SUC R Y AN
a4 yy +or ="y 4 S =,
2 : ]
we get z 7 + L + : =t
t t
(2_—') (2_17") (2_?)
2 2
» + y‘ : T - =1

. ¢ . t £\
(2-5) #(-5) <(-3)
Now the second of these equations is the differential, with

respect to ¢, of the first equation; and the required surface
is therefore represented by the discriminant of this equation,
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which we can easily form, the equation being only of the fourth
degree. If we write this biquadratic

At*+4Bt*+ 6Ct*+ 4Dt + E,

it will be found that 4 and B do not contain x, y, 2, while
C, D, E contain them, each in the second degree. Now the
discriminant is of the sixth degree in the coefficients, and is
of the form A¢ + B'r; consequently it can contain z, y, 2
only in the tenth degree. This therefore is the degree of the
surface required.

Its section by one of the principal planes consists of the
first negative pedal of the corresponding principal section of
the ellipsoid, which is a curve of the sixth order, together with
a conic, counted twice, which is a double curve on the surface.
The double points on the principal planes answer to points
on the ellipsoid for which &+ y™+2"=2a" or 25" or 2¢', as
easily appears from the expressions given for x, y, z in the
beginning of the article. There is a cuspidal conic at infinity,
and besides, a finite cuspidal curve of the sixteenth degree.

The reader will find (Pkilosophical Transactions, 1858, and
Tortolini, Vol. 11., p. 168) a discussion by Mr. Cayley of the
different forms assumed by the surface and by the cuspidal and
nodal curves according to the different relative values of a', 3", ¢,

444. Mr. W. Roberts has solved the problem discussed
in the last article in another way, by proving that the problem
to find the negative pedal of a surface, is identical with that
of forming the equation of the parallel surface. The former
problem is to find the envelope of the plane

xx' +yy +22' ="+ y" + 2"
where 2, 3/, 2’ satisfy the equation of the surface. The second

problem, being that of finding the envelope of a sphere whose
centre is on the surface and radius =, is to find the envelope of

(e-2)+@y-y) +(z-2)"=F,
or 2z’ + 2yy' + 222 = +y' + 2 - B+ 2+ y" + 2"

Now in finding this envelope the unaccented letters are treated
as constants, and it is evident that both problems are particular
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cases of the problem to find, under the same conditions, the
envelope of
ax' +by +c2'=a"+y" + 2" +d.

And it is evident that if we have the equation of the parallel
surface, we have only to write in it for 4%, 2+ y'+ 2", and
then 4§z, 4y, 4z for z, y, z; when we have the equation of the
negative pedal. Thus having obtained by Art. 439 the equation
of the parallel to a quadric, we can find by the substitutions
here explained, the equation of the first negative, the origin
being anywhere, as easily as when the origin is the centre.
Further, if we write for k, £+ %, and then make the same
substitution for %, we obtain the first negative, the origin being
anywhere, of the parallel to the qgadric, a problem which it
would probably not be easy to solve in any other way.

Having found, as above, the equation of the first .negative
of a quadric, we have only to form its inverse, when we have
the equation of the second positive pedal (Art. 440).

Ex. 1. To find the envelope of planes drawn perpendicularly at the
extremities of the radii vectores to the plane az + by + ¢z + d.

Here the parallel surface consists of a pair of planes, whose equation
is (az + by + ¢z + d)* = &*, that of the envelope is therefore

(az +by +es+ 2d)' = 2"+ y* + 2~
Ex. 2. To find, in like manner, the first negative of the sphere
(-af + (- B+ (- )=
The parallel surface consists of the pair of concentric spheres
@-af+(y-pBy+(-)=(rtk"
The envelope is therefore
(2- 20+ (y =28 + (5- 29)' = @r £ V(& +¢" + ),
which denotes a quadric of revolution.
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CHAPTER XIV.
SURFACES OF THE THIRD DEGREE.

445. THE general theory of surfaces, explained p. 190, &c.,
gives the following results, when applied to cubical surfaces.
The tangent cone whose vertex is any point, and which en-
velopes such a surface is, inegeneral, of the sixth degree, having
six cuspidal edges and no ordinary double edge. It is con-
sequently of the twelfth class, having twenty-four stationary,
and twenty-seven double tangent planes. Since then through
any line twelve tangent planes can be drawn to the surface,
any line meets the reciprocal in twelve points ; and the reciprocal
is, in general, of the twelfth degree. Its equation can be
found as at Higher Plane Curves, p. 99. The problem is the
same as that of finding the condition that the plane

ax+ By + vz + dw

should touch the surface. Multiply the equation of the surface
by &°, and then eliminate 3w by the help of the equation of
the plane. The result is a homogeneous cubic in z, y, =,
containing also a, B, v, & in the third degree. The discriminant
of this equation is of the twelfth degree in its coefficients,
and therefore of the thirty-sixth in aByd: but this consists of
the equation of the reciprocal surface multiplied by the
irrelevant factor 8". The form of the discriminant of a homo-
geneous cubical function in @, y, 2z is 648°= T" (Higher Plane
Curves, p. 190). The same then will be the form of the re-
ciprocal of a surface of the third degree, S being of the fourth,
and T of the sixth degree in a, B, 4, &; (that is to say, 8
and T are contravariants of the given equation of the above
degrees). It is easy to sce that they are also of the same
degrec in the coefficients of the given equation.
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446. Surfaces may have either multiple points or multiple
lines. When a surface has a double line of the degree p;
then any plane meets the surface in a section having p double
points. There is, therefore, the same limit to the degree of
the double curve on a surface of the n™ degree, that there is
to the number of double points on a curve of the n™ degree.
Since a curve of the third degree can have only one double
point; if a surface of the third degree has a double line, that
line must be a right line* A cubic having a double line is
necessarily a ruled surface, for every plane passing through
this line meets the surface in the double line, reckoned twice,
and in another line; but these other lines form a system of
generators resting on the double line as director. If we make
the double line the axis of z, the equation of the surface will
be of the form
(az® + 3ba’y + 3cxy® + dy’) + 2 (a'a" + 2b'zy + C'y)

+ (a"2" + 2b"zy + "'y*) =0,
which we may write u,+2u,+v,=0. At any point on the
double line there will be a pair of tangent planes z'u,+ v,=0.
But as 2’ varies this denotes a system of planes in involution
(Conics, p. 287). Hence the pair of tangent planes at any point
on the double line, are two conjugate planes of a system in tin-
volution.

There are two values of 2', real or imaginary, which will
make z'u,+ v, a perfect square; there are therefore two points
on the double line at which the tangent planes coincide; and
any plane through either of which meets the surface in a section
having this point for a cusp. If the values of these squares
be X* and Y7, it is evident that , and v, can each be expressed
in the form !X*+mY" If then we turn round the axes so

* If a surface have a double or other multiple line, the reciprocal
formed by the method of the last article would vanish identically; because
then every plane meets the surface in a curve having a double point,
and therefore the plane az + By + 4z + 3w is to be considered as touching
the surface, independently of any relation between a, B, o, 8. The re-
ciprocal can be formed in this case by eliminating z, y, 2, w between u = 0,
amuy B=ty Y=ty I,
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as to have for. co-ordinate planes, the planes X, Y, that is to
say, the tangent planes at the cuspidal points; then every term
in the equation will be divisible by either ' or 3*, and the
equation may be reduced to the form zz'=wy’.*

In this form it is evident that the surface is generated by
lines y =Ax, z=2\"w; intersecting the two directing lines xy,
zw; and the generators join the points of a system on zw
to the points of a system in involution on xy, homographic
with the first system. Any plane through zw meets the surface
in a pair of right lines, and is to be regarded as touching the
surface in the two points where these lines meet zw. Thus
then as the line zy is a line, every point of which is a double
point, so the line zw is a line, every plane through which is
a double tangent. The reciprocal of this surface, which is
that considered Art. 419, is of like nature with itself.

The tangent cone whose vertex is any point, and which
envelopes the surface, consists of the plane joining the point
to the double line, reckoned twice, and a proper tangent cone
of the fourth order. 'When the point is on the double line the
cone reduces to the second order.

447. There is one case, to which my attention was called
by Mr. Cayley, in which the reduction to the form zz*=uwy’
is not possible. If u, and v,, in the last article, have a common
factor, then choosing the plane represented by this for one of
the co-ordinate planes, we can easily throw the equation of
the surface into the form 3*+ (22 + wy)=0.

* It is here supposed that the planes X, ¥, the double planes of the
system in involution, are real. We can always, however, reduce to the
form w (z*+y') + 2zzy, the upper sign corresponding to real, and the
lower to imaginary, double planes. In the latter case the double line
is altogether “really” in the surface, every plane meeting the surface is
a section having the point where it meets the line for a real node. In
the former case this is only true for a limited portion of the double line,
sections which meet it elsewhere having the point of meeting for a con-
jugate point; the two cuspidal points marking these limits on the double
line. A right line, every point of which is a cusp, cannot exist on a
cubic unless when the surface is a cone.
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The plane = touches the surface along the whole length of
the double line, and meets the surface in three coincident right
lines. The other tangent plane at any point coincides with
the tangent plane to the hyperboloid zz+ wy. This case may
be considered as a limiting case of that considered in the last
article; viz., when the double director zy coincides with the
single one wz. The following generation of the surface may
be given. Take a series of points on zy, and a homographic
series of planes through it; then the generator of the cubic
through any point on the line, lies in the corresponding plane,
and may be completely determined by taking as director any
plane cubic having a double point where its plane meets the
double line.*

448. The argument which proves that a proper cubic curve
cannot have more than one double point does not apply to
surfaces. In fact the line joining two double points, since it
is to be regarded as meeting the surface in four points, must
lie altogether in the surface; but this does not imply that the
surface breaks up into others of lower dimensions. The con-
sideration of the tangent cone however supplies a limit to the
number of double points on any surface. We have seen
(Art. 251) that the tangent cone necessarily has a certain
number of double and cuspidal edges, and since every double
point on the surface adds a double edge to the tangent cone,
there cannot be more double points than will make up the
total number of double edges of the tangent cone to the
maximum number which such a cone can have. Thus a curve
of the sixth degree having six cusps can have only four other
double points; therefore since the tangent cone to a cubic is
of the sixth order, having six cuspidal edges, the surface can
at most have four double points.

When a surface has a double point, the line joining this
point to any assumed point is, as has been said, a double edge
of the tangent cone from the latter point; and it is easy to

* The reader is referred to an interesting geometrical memoir on cubical
ruled surfaces by Cremona, “ Atte del Reale Istituto Lombardo,” Vol. 11,
p. 291.
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sce that the tangent planes along this double edge are the planes
drawn through this line to touch the cone generated by the tan-
gents at the double point. If then this cone break up into two
planes, it follows that such a point entails a cuspidal edge on the
tangent cone through any assumed point. A cubic then can
have only three such biplanar double points. The reciprocal
of a cubic then having one or more double points may be
of any degree from the tenth to the third, each ordinary
double point reducing the degree by two, and each biplanar
by three.

If the two planes of contact at a biplanar point coincide,
the line joining this to any assumed point will be a triple edge
on the tangent cone through that point, and the degree of the
reciprocal will be reduced by six.

Ex. 1. What is the degree of the reciprocal of xyz = w*P

Ans. There are three biplanar points in the plane t, and the reci-
procal is a cubic.

Ex. 2. What is the reciprocal of £+ Ly Y
z y £z w

Ans. This represents a cubic having the vertices of the pyramid zyzw
for double points; and the reciprocal must be of the fourth degree.

The equation of the tangent plane at any point 2y'zw’ can be thrown
. le my nz pw X ..
into the form e + ."/T"' 7 t AT 0, whence it follows that the condition

that oz + By + % + éw should be a tangent plane is

()t + (mB)t + (ny)t 4 (p2)} - 0,
an equation which, cleared of radicals, is of the fourth degree. Generally
the reciprocal of az" + by" + cz® + pw" is of the form

Aad™' 4 B 4 Oy 4 DEF = 0,

(Higher Plane Curves, p. 102).

A cubic having four double points is also the envelope of

aa* + UB* + ' + 2iBy + 2mya + 2naf,

where a, b, ¢, !, m, n represent planes; and a:y, B:q are two variable
parameters. It is obvious that the envelope is of the third degree; and
it is of the fourth class; since if we substitute the co-ordinates of two
points we can determine four planes of the system passing through the
line joining these points.

The tangent cone to this surface, whose vertex is any point on the
surface, being of the fourth degree, and having four double edges, must
break up into two cones of the second degree.
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449. The equation of a cubic having no multiple point may
be thrown into the form az’+ by*+ c2’+ dv®+ ew®=0, where
Z, ¥, 2, v, w represent planes, and where for simplicity we
suppose that the constants implicitly involved in =, y, &c. have
been so chosen, that the identical relation connecting the equa-
tions of any five planes (Art. 37) may be written in the form
z+y+z+v+w=0. In fact the general equation of the third
degrec contains twenty terms and therefore nineteen indcpen-
dent constants, but the form just written contains five terms
and therefore four expressed independent constants, while besides
the equation of each of the five planes implicitly involves three
constants. The form just written therefore contains the same
number of constants as the general equation. This form given
by Mr. Sylvester in 1851 (Cambridge and Dublin Mathematical
Journal, Vol. vi., p. 199) is most convenient for the investi-
gation of the properties of cubical surfaces in general.*

450. If we write the equation of the first polar of any point
with regard to a surface of the n order

eL+yM+2N+wP=0,

* It was observed (Higher Plune Curves, Art. 18) that two forms may
apparently contain the same number of independent constants, and yet
that one may be less general than the other. Thus when a form is found
to contain the same number of constants as the general equation, it is
not absolutely demonstrated that the general equation is reducible to this
form; and Clebsch has noticed a remarkable exception in the case of curves
of the fourth order. In the present case, though Mr. Sylvester gave his
theorem without further demonstration, he states that he was in posses-
sion of a proof that the general equation could be reduced to the sum of
five cubes and in but a single way. Such a proof has been published
by Mr. Clebsch (Crelle, Vol. LIX., p. 193). He erroneously ascribes the
theorem in the text to Steiner, who gave it in the year 1856 (Crelle,
Vol. vi11., p. 133). It chanced that surfaces of the third order were
studied in this country a few years before German mathematicians turned
their attention to this subject; and consequently, though, as might be
expected from his ability, M. Steiner’s investigations led him to several
important results, these had been almost all well known here some years
before.
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then, if it have a double point, that point will satisfy the
equations
ax' +ny +mz' +pw' =0, nx'+by + ' +quw' =0,
mr' + ly + c2' +rw' =0, px'+qy +r+dw =0,

where a, b, &c. denote second differential coefficients corre-
sponding to these letters, as we have used them in the general
equation of the second degree. Now if between the above
equations we eliminate x'y'z'w’, we obtain the locus of all points
which are double points on first polars. This is of the degree
4(n—2) and is in fact the Hessian (Art. 254). If we eliminate
the zyzw which occur in a, b, &c., since the four equations
are each of the degree (n —2), the resulting equation in «'y'z'w’
will be of the degree 4 (n —2)°, and will represent the locus of
points whose first polars have double points. Or, again,  is
the locus of points whose polar quadrics are cones, while the
second surface, which we shall call J| is the locus of the vertices
of such cones. In the case of surfaces of the third degree, it
is easy to see that the four equations above written are sym-
metrical between zyzw and z'y'z'w’'; and therefore that the
surfaces & and J are identical. Thus then ¢f the polar quadric
of any point A with respect to a cubic be a cone whose vertex
@8 B, the polar quadric of B s a cone whose vertex is A. The
points 4 and B are said to be corresponding points on the
Hessian (see Higher Plane Curves, p. 154, &c.).

451. The tangent plane to the Hessian of a cubic at A s
the polar plane of B with respect to the cubic. For if we take
any point A4’ consecutive to A and on the Hessian, the pole
of any plane through 44’ will be somewhere on the inter-
section of the first polars of 4 and A4'; but these being con-
secutive and both cones, it appears (as at Higher Plane Curves,
p. 155) that B, the vertex of this cone, is & pole of any plane
through 4, A4', and therefore of the tangent plane at 4. And
the polar plane of any point 4 on the Hessian of a surface of any
degree is the tangent plane of the corresponding point B on the
surface J. In particular tke tangent planes to U along the para-
bolic curve, are tangent planes to the surface J: that is to say,
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in the case of a cubic the developable circumscribing a cubic
along the parabolic curve, also circumscribes the Hessian. If
any line meet the Hessian in two corresponding points 4, B,
and in two other points C, D, the tangent planes at 4, B

intersect along the line joining the two points corresponding
to C, D.

452. We shall also investigate the preceding theorems by
means of the canonical form. The polar quadric of any point
with regard to ax®+ by’ + ¢z’ 4 dv’ + ew’ is got by substituting
for w its value — (x+ y + z +v), when we can proceed according
to the ordinary rules, the equation being then expressed in
terms of four variables. We thus find for the polar quadric
ax'®® + by'y' + c2'2" + dv'v* + ew'n' =0. If we differentiate this
equation with respect to x, remembering that dw=—dx, we
get axr’'z=ew'w; and since the vertex of the cone must satisfy
the four differentials with respect to z, v, 2, v, we find that
the co-ordinates o', ¥/, 2, v’y w' of any point 4 on the Hessian
are connected with the co-ordinates x, y, 2, v, w of B, the
vertex of the corresponding cone, by the relations

ax'z=by'y =cz'z=dv'v=ew'w.

And since we are only concerned with mutual ratios of co-
ordinates, we may take 1 for the common value of these quan-
1 1 1 1 1
@ By A e
Since the co-ordinates of B must satisfy the identical relation

x+y+2+v+w=0, we thus get the equation of the Hessian
1 1 1 1 1
a+b?+c—z+z;’+;0=0,
or bedeyzvw + cdeazvwzx + deabvwxy + eabcwzyz + abedxyzv = 0.

tities and write the co-ordinates of B,

This form of the equation shows that the line vw lies altogether
in the Hessian, and that the point zyz is a double point on the
Hessian; and since the five planes z, y, z, v, w give rise to
ten combinations, whether taken by twos or by threes we have
Mr. Sylvester’s theorem that the five planes form a pentahedron
whose ten vertices are double points on the Hessian and whose
ten edges lie on the Hessian. The polar quadric of the point
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xyz is8 dv'v"+ ew'w", which resolves itself into two planes inter-
secting along vw, any point on which line may be regarded
as the point B corresponding to xyz; thus then there are ten
potints whose polar quadrics break up into pairs of planes ; these
potnts are double points on the Hessian, and the intersections of
the corresponding pairs of planes are lines on the Hessian. Tt
is by proving these theorems independently® that the reso-
lution of the given equation into the sum of five cubes can
be completely established.

The equation of the tangent plane at any point of the
Hessian may be written

=z .,y 2 v ®
ax" b‘y'! cz" dv'! ew" 1

which, if we substitute for 2, é,, &ec., becomes

az"z + by™y + cz"2 + dv™v + ew™w = 0,

but this is the polar plane of the corresponding point with
regard to U (Art. 451).

453. If we consider all the points of a fixed plane, their
polar planes envelope a surface, which (as at Higher Plane
Curves, p. 152) is also the locus of points whose polar quadrics
touch the given plane. The parameters in the equation of the
variable plane enter in the second degree; the problem is
therefore that considered (Ex. 2, Art. 448) and the envelope
is a cubic surface having four double points. The polar planes
of the points of the section by the cubic are the tangent planes
at those points, consequently this polar cubic of the given plane
is inscribed in the developable formed by the tangent planes
to the cubic along the section by the given plane (Higher

* It will appear from the appendix “on the order of systems of equa-
tions,” that a symmetric determinant of p rows and columns, each con-
stituent of which is a function of the n*® order in the variables, represents
a surface of the np degree having 4 p(p* - 1) n® double points; and thus
that the Hessian of a surface of the n*" degree always has 10 (n - 2)* double
points,



SURFACES OF THE THIRD DEGREE. 385

Plane Curves, Art. 161). The polar plane of any point 4 of
the section of the Hessian by the given plane, touches the
Hessian (Art. 451) and is therefore a common tangent plane
of the Hessian and of the polar cubic now under con-
sideration. But the polar quadric of B, being a cone whose
vertex is A4, is to be regarded as touching the given plane
at A; hence B is also the point of contact of this polar
plane with the polar cubic. 'We thus obtain a theorem
of Steiner’s that the polar cubic of any plane touches the
Hessian along a certain curve. This curve is the locus of
the points B corresponding to the points of the section of
the Hessian by the given plane. Now if points lie in any
plane lz+ my + nz + pv + qw, the corresponding points lie on
by + -+ gv +L. Now
the intersection of this surface with the Hessian is of the
sixteenth order, and includes the ten right lines ay, 2w, &c.
The remaining curve of the sixth order is the curve along
which the polar cubic of the given plane touches the Hessian.
The four double points lie on this curve; they are the
points whose polar quadrics are cones touching the given
plane.

the surface of the fourth order L +

"_rn_n

454. If on the line joining any two points z'y’z, z"y"z",
we take any point &' +Ax”, &c., it is easy to see that its
polar plane is of the form P, +AP, +\'P,, where P", P,
are the polar planes of the two given points, and P, is the
polar plane of either point with regard to the polar quadric
of the other. The envelope of this plane, conmsidering A
variable, is evidently a quadric cone whose vertex is the inter-
section of the three planes. This cone is clearly a tangent
cone to the polar cubic of any plane through the given line,
the vertex of the cone being a point on that cubic. If the
two assumed points be corresponding points on the Hessian, P,
vanishes identically ; for, the equation of the polar plane, with
respect to a cone, of its vertex vanishes identically. Hence the
polar plane of any point of the line joining two corresponding
points on the Hessian passes through the intersection of the tangent

cc
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planes to the Hessian at these points.® In any assumed plane
we can draw three lines joining corresponding points on the
Hessian ; .for the curve of the sixth degree considered in the
last article meets the assumed plane in three pairs of corre-
sponding points. The polar cubic then of the assumed plane
will contain three right lines; as will otherwise appear from
the theory of right lines on cubics which we shall now explain.

455. We said, note, p. 29, that a cubical surface necessarily
contains right lines, and we now enquire how many in general
lie on the surface.t In the first place it is to be observed that
if a right line lie on the surface, every plane through it is a
double tangent plane because it meets the surface in a right
line and conic; that is to say, in a section having two double
points. The planes then joining any point to the right lines
on the surface are double tangent planes to the surface and
therefore also double tangent planes to the tangent cone whose
vertex is that point. But we have seen (Art. 445) that the
number of such double tangent planes is twenty-seven.

This result may be otherwise established as follows: let
us suppose that a cubic contains one right line, and let us
examine in how many ways a plane can be drawn through
that right line, such that the conmic in which it meets the
surface may break up into two right lines. Let the right
line be wz; let the equation of the surface be wU=2V; let
us substitute w = uz, divide out by #, and then form the dis-
criminant of the resulting quadric in @, y, 2. Now in this
quadric it i8 seen without difficulty that the coefficients of
«', xy, and y" only contain x in the first degree; that those of

® Steiner says that there are one hundred lines such that the polar
plane of any point of one of them passes through a fixed line, but I
believe that his theorem ought to be amended as above.

1 The theory of right lines on a cubical surface was first studied in
the year 1849 in a correspondence between Mr. Cayley and me, the results
of which were published, Cambridge and Dublin Mathematical Journal,
Vol. 1v., pp. 118, 252. Mr. Cayley first observed that a definite number
of right lines must lie on the surface; the determination of that number
as above, and the discussions in Art. 458 were supplied by me.
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xzz and yz contain u in the second degree, and that of 2* in
the third degree. It follows hence that the equation obtained
by equating the discriminant to nothing is of the fifth degree
in u: and therefore that through any right line on a cubical
surface can be drawn five planes, each of which meets the surface
in another pair of right lines; and consequently every right
line on a cubic is intersected by ten others. Consider now the
section of the surface by one of the planes just referred to.
Every line on the surface must meet in some point the section
by this plane, and therefore must intersect some one of the
three lines in this plane. But each of these lines is inter-
sected by eight in addition to the lines in the plane; there
are therefore twenty-four lines on the cubic besides the three
in the plane; that is to say, twenty-seven tn all.

We shall hereafter show how to form the equation of a
surface of the ninth order meeting the given cubic in those
lines.

456. Since the equation of a plane contains three inde-
pendent constants, a plane may be made to fulfil any three
conditions, and therefore a finite number of planes can be
determined which shall touch a surface in three points. We
can now determine this number in the case of a cubical surface.
We have seen that through each of the twenty-seven lines
can be drawn five triple tangent planes: for every plane
intersecting in three right lines touches at the vertices of the
triangle formed by them, these being double points in the
section. The number 5 x 27 is to be divided by three, since
each of the planes contains three right lines; there are therefore
tn all forty-five triple tangent planes.

457. Every plane through a right line on a cubic 1s obviously
a double tangent plane ; and the pairs of points of contact form
a system in involution. Let the axis of z lie on the surface,
and let the part of the equation which is of the first degree
inz and y be (az*+bz+c)x+(a'2*+b'2+¢)y; then the two
points of contact of the plane y=ux are determined by the
equation

(a2’ + b2+ ) +p(de +b2+¢)=0,
cc2
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but this denotes a system in involution (Conics, p. 287). It
follows hence, from the known properties of involution, that
two planes can be drawn through the line to touch the surface
in two coincident points: that is to say, which cut it in a line
and a conic touching that line. The points of contact are
evidently the points where the right line meets the parabolic
curve on the surface. It was proved (Art. 256) that the right
line touches that curve. The two points then where the line
touches the parabolic curve, together with the points of
contact of any plane through it, form a harmonic system.
Of course the two points where the line touches the parabolic
curve may be imaginary.

458. The number of right lines may also be determined
thus. The form ace=>bdf, (where a, b, &c. represent planes)
is one which implicitly involves nineteen independent constants,
and therefore is one into which the general equation of a
cubic may be thrown.* This surface obviously contains nine
lines (ab, cd, &c.). Any plane then a=ud which meets the
surface in right lines meets it in the same lines in which it
meets the hyperboloid uce=df. The two lines are therefore
generators of different species of that hyperboloid. One meets
the lines cd, ef; and the other the lines ¢f, de. And, since
4 has three values, there are three lines which meet ab, cd, ef.
The same thing follows from the consideration that the hyper-
boloid determined by these lines must meet the surface in
three more lines (Art. 313).

Now there are clearly six hyperboloids, ab, cd, ef; abd, cf, de,
&c., which determine eighteen lines in addition to the nine
with which we started, that is to say as before, twenty-seven
in all.

If we denote each of the eighteen lines by the three which
it meets, the twenty-seven lines may be enumerated as follows :
there are the original nine ab, ad, af, cb, cd, cf, eb, ed, ef: to-
gether with (ab.cd.ef),, (ab.cd.ef),, (ab.cd.ef),, and in like
manner three lines of each of the forms ab.cf.de, ad.bc.ef,

* It will be found in one hundred and twenty ways.
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ad.be.cf, af.bc.de, af.be.cd. The five planes which can be
drawn through any of the lines ab are the planes @ and &
meeting respectively in the pairs of lines ad, af; bc, be; and
the three planes which meet in (ab.cd.ef),, (ab.cf.de);
(ab.cd.ef),, (ab.cf.de),; (ab.cd.ef),, (ab.cf.de), The five
planes which can be drawn through any of the lines (ab.cd.ef),,
cut in the pairs of lines, ab, (ab.cf.de),; cd, (af.cd.be),;
ef, (ad.bc.ef),; and in (ad.be.cf),, (af.be.de),; (ad.bexf),,
(af.be.de),.

459. Prof. Schifli has made a new arrangement of the
lines (Quarterly Journal of Mathematics, Vol. 11., p. 116) which
leads to a simpler notation, and gives a clearer conception
how they lie. Writing down the two systems of six non-
intersecting lines

ab, cd, of, (ad.be.cf ), (ad.be.cf), (ad.De.cf ),
cf, be, ad, (ab.cd.ef),, (ab.cd.ef ), (ab.cd.ef),;

it is easy to see that each line of one system, does not intersect
the line of the other system which is written in the same
vertical line, but that it intersects the five other lines of the
second system. We may write then these two systems

a‘n as) an? ao an ae)

bl’ bs) ba) bn br,) b.,

which is what Schiifli calls a “ double-six.” It is easy to see
from the previous notation that the line which lies in the
plane of a, b, is the same as that which lies in the plane of
a, b. Hence the fifteen other lines may be represented by
the notation ¢, c,,, &c., where ¢, lies in the plane of a, b,
and there are evidently fifteen combinations in pairs of the
six numbers 1, 2, &c. The five planes which can be drawn
through ¢,, are the two which meet in the pairs of lines
ab, ab, and those which meet in ¢, ¢, C,C, CuC, There
are evidently thirty planes which contain a line of each of the
systems a, b, c: and fifteen planes which contain three ¢ lines.
It will be found that out of the twenty-seven lines can be

constructed thirty-six * double-sixes.”
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460. We can now geometrically construct a system of
twenty-seven lines which can belong to a cubical surface. We
may start by taking arbitrarily any line a, and five others
which intersect it, &, b,, b,, b,,b,, These determine a cubical
surface, for if we describe such a surface through four of the
points where a, is met by the other lines and through three
more points on each of these lines, then the cubic determined
by these nineteen points contains all the lines, since each line
has four points common with the surface. Now if we are
given four non-intersecting lines, we can in general draw two
transversals which shall intersect them all; for the hyperboloid
determined by any three meets the fourth in two points through
which the transversals pass.* Through any four then of the
lines &,, &,, b,, b, we can draw in addition to the line a, another
transversal a,, which must also lie on the surface since it meets
it in four points. In this manner we construct the five new
lines a,, a,, a, a, a, If we then take another transversal

meeting the four first of these lines, the theory already ex-
plained shows that it will be a line 5, which will also meet

¢ If the hyperboloid touches the fourth line, the two transversals reduce
to a single one, and it is evident that the hyperboloid determined by any
three others of the four lines also touches the remaining one, This remark
I believe is Mr. Cayley’s. If we denote the condition that two lines
should intersect by (12), then the condition that four lines should be
met by only one transversal is expressed by equating to nothing the
determinant
- (12), (13), (14)
(21), - (23), (29)
(81), (82), - (34)
(41)’ (42)' (48)o - e

The vanishing of the determinant formed in the same manner from five
lines, is the condition that they are all met by a common transversal.
The vanishing of the similar determinant for six lines, expresses that
they are connected by a relation which has been called the *involution of
six lines:” and which will be satisfied when the lines can be the directions
of six forces in equilibrium. The reader will find several interesting
communications on this subject by Mesars. Sylvester and Cayley, and by
M. Chasles, in the Comptes Rendus for 1861, Premier Semestre.
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the fifth. We have thus constructed a *double-six.” We
can then immediately construct the remaining lines by taking
the plane of any pair ab, which will be met by the lines
b,y a, in points which lie on the line cgc,.

461. M. Schifli has made an analysis of the different
species of cubics according to the reality of the twenty-seven
lines. He finds thus five species: 4. all the lines and planes
real; B. fifteen lines and fifteen planes real; C. seven lines
and five planes real; that is to say, there is one right line
through which five real planes can be drawn, only three of
which contain real triangles; D. three lines and thirteen planes
real: namely, there is one real triangle through every side of
which pass four other real planes; and, E. three lines and
seven planes real.

I have also given (Cambridge and Dublin Mathematical
Journal, Vol. 1v., p. 256) an enumeration of the modifications
of the theory when the surface has one or more double points.
It may be stated generally that the cubic has always twenty-
seven right lines and forty-five triple tangent planes, if we
count a line or plane through a double point as two, through
two double points as four, and a plane through three such
points as eight. Thus, if the surface has one double point,
there are six lines passing through that point, and fifteen
other lines one in the plane of each pair. There are fifteen
treble tangent planes not passing through the double point.
Thus 2x 64+ 15=27; 2 x 15+ 15 =45.

Again, if the surface have four double points, the lines are
the six edges of the pyramid formed by the four points (6 x 4),
together with three others lying in the same plane, each of
which meets two opposite edges of the pyramid. The planes
are the plane of these three lines 1, six planes each through
one ‘of these lines and through an edge (6 x 2), together with
the four faces of the pyramid (4 x 8).

The reader will find the other cases discussed in the paper
just referred to.
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INVARIANTS AND COVARIANTS OF A CUBIC.

462. We shall in this section give an account of the
principal invariants, covariants, &c. that a cubic can have.
We only suppose the reader to have learned from the Lessons
on Higher Algebra, or elsewhere, some of the most clementary
properties of these functions. An invariant of the equation
of a surface is a function of the coefficients, whose vanishing
expresses some permanent property of the surface, as for
example that it has a nodal point. A covariant, as for
example the Hessian, denotes a surface having to the original
surface some relation which is independent of the choice of
axes. A contravariant is a relation between a, B, v, 8, ex-
pressing the condition that the plane ax+ By + vz + dw shall
have some permanent relation to the given surface, as for
example that it shall touch the surface. The property of
which we shall make the most use in this section is that
proved (Lessons on Higher Algebra, p. 66), viz., that if we sub-

. . d
stitute in a contravariant for a, 8, &c"Tz ' gy &c., and then

operate on either the original function or one of its covariants
we shall get a new covariant, which will reduce to an invariant
if the variables have disappeared from the result. In like
manner if we substitute in any covariant for x, y, &ec. d%’ diiB’
&ec., and operate on a contravariant, we get a new contravariant.

Now in discussing the properties of a cubic we mean to use
Mr. Sylvester’s canonical form in which it is expressed by the
sum of five cubes. 'We have calculated for this form the
Hessian (Art. 452), and there would be no difficulty in calcu-
lating other covariants for the same form. It remains to show
how to calculatec contravariants in the same case. Let us
suppose that when a function U is expressed in terms of four
independent variables, we have got any contravariant in a, 8,
v, 8: and let us examine what this becomes when the function
is expressed by five variables connected by a linear relation.
But obviously we can reduce the function of five variables to
onc of four, by substituting for the fifth its value in terms
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of the others: viz. w=- (x+y+2+v). To find then the
condition that the plane az+ By + vz + v +ew may have any
assigned relation to the given surface, is the same problem as
to find that the plane (a—e)z+ (B—c)y+(y—¢e)z+(8—¢)v
may have the same relation to the surface, its equation being
expressed in terms of four variables; so that the contravariant
in five letters is derived from that in four by substituting
a—e, B—¢, y—e, d—¢ respectively for a, B, v, 8. Every
contravariant in five letters is therefore a function of the
differences between a, B, v, 8, e. This method will be better
understood from the following example.

Ex. The equation of a quadric is given in the form
az® + by + c2® + do* + ew* = 0,

where z+y+2+v+w=0: to find the condition that az+ By + 4z : dv + s
may touch the surface. If we reduce the equation of the quadric to a
function of four variables by substituting for w its value in terms of the
others, the coefficients of z*, y', z', v* are respectivelya+e, b1e, c+e, d1 e
while every other coefficient becomes . If now we substitute these values
in the equation of Art. 75, the condition that the plane az + By + 4z + év
touches, becomes
a* (bed + bee + cde + dbe) + 8* (cda + cde + dae + ace) + «* (dub -+ dae + abe + bde)
+ 8 (abe + abe + bee + cae) - 2¢ (adBy + bdya + cdap + Bead + caPd + abyd) = 0,

Lastly, if we write in the above for a, 8, &c., a-4¢, 8-1, &c., it
becomes
bed (a - «)* + cda (B - ¢)* + dab (y - ¢)' + abe (8- «)' + bee (a - 3)* + cae (8- 3)°

+aba(q—6)'+adc(ﬁ"Y)'*bd‘(“'q)'+¢‘l’(“'ﬁ)"’°o

a contravariant which may be brieﬂ‘y written Zede (a - 8)* = 0.

463. We have referred to the theorem that when a con-
travariant in four letters is given, we may substitute for
a, B, v, & differential symbols with respect to z, y, 2, w; and"
that then by operating with the function so obtained on any
covariant we get & new covariant. Suppose now that we operate
on a function expressed in terms of five letters z, y, 2, v, w.
Since = appears in this function both explicitly and also
where it i8 introduced in w, the differential with respect to

d d dw

@ is o+ 7= o=, on in virtue of the relation connecting w
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with the other variables, ‘% - di Hence a contravariant in
w
four letters is turned into an operating symbol in five by
substituting for
8,y 8; d d d d d d d_ d

SN T de Iy T e & @0’ d dw’
But we have seen in the last article that the contravariant
in five letters has been obtained from one in four, by writing
for a, a—e, &c. It follows then immediately that if in any
contravariant tn five letters we substitute for a, B, v, §, e,
d d d d d
dz’ (7!'/) az'dv! dw’
which operating on the original function, or on any covariant,
we obtatn a new covartant or tnvariant. The importance of
this is that when we have once found a contravariant of the
form in five letters we can obtain & new covariant without
the laborious process of recurring to the form in four letters.

we obtain an operating symbol, with

Ex. We have seen that Zcde (a - 8)* is a contravariant of the form

az® + by' + cz* + dv* + ew".
If then we operate on the quadric with Tcde (}z - -;;). , the result, which

only differs by a numerical factor from

bede + cdea + deab + eabe + abed
is an invariant of the quadric. It is in fact its discriminant, and could
have been obtained from the expression Art. 63, by writing as in the last

article a+e, b+e, c+e, d+e for a, b, ¢, d, and putting all the other
coefficients equal to e.

464. In like manner it is proved that we may substitute
in any covariant function for z, y, 2, v, w, differential symbols
with regard to a, 8, v, 3, ¢, and that operating with the function
80 obtained on any contravariant we get a new contravariant.
In fact if we first reduce the function to one of four variables,
and then make the differential substitution which we have a
right to do, we have substituted for

x sz'iiiimd-(g—+i+d d
y Yy By ¥y ) Ja’dR dy' &8’ &t g 17'-7+¢78)
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But since the contravariant in five letters was obtained from
that in four by writing a— e for a, &c. it is evident that the
differentials of both with regard to a, 8, vy, & are the same,
while the differential of that in five letters with respect to e
is the negative sum of the differentials of that in four letters
with respect to @, 8, v, 8. But this establishes the theorem.
By this theorem and that in the last article we can, being
given any covariant and contravariant, generate another, which
again combined with the former gives rise to new ones
without limit.

465. The polar quadric of any point with regard to the
cubic ax’®+ by* +c2* +dv’* +ew® is

axx”™ + byy™ + c22™ + dv™ + eww™ = 0.

Now the Hessian is the discriminant of the polar quadric.
Its equation therefore, by Ex., Art. 463, is Sbcdeyzvw =0, as
was already proved, Art. 452. Again, what we have called
(Art. 453) the polar cubic of a plane

ax + By + 9z + dv + ew,

being the condition that this plane should touch the polar
quadric is (by Ex., Art. 462) Zcdezvw (a—B8)*=0. This is
what is called a mixed concomitant, since it contains both
sets of variables z, y, &c., and a, B, &c.

If now we substitute in this for a, B8, &ec., dii , ‘%, &e.,
and operate on the original cubic, we get the Hessian; but
if we operate on the Hessian we get a covariant of the fifth
order in the variables, and the seventh in the coefficients to
which we shall afterwards refer as @,

® = abede Saba'ye.

In order to apply the method indicated (Arts. 463, 464) it
is necessary to have a contravariant; and for this purpose I
have calculated the contravariant ¢ which occurs in the equation
of the reciprocal surface, which, as we have already seen, is
of the form 64¢*=7". The contravariant o expresses the
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condition that any plane ax+ By + &ec. should meet the surface
in a cubic for which Aronhold’s invariant S vanishes. It is
of the fourth degree both in a, 8, &c. and in the coefficients
of the cubic. In the case of four variables the leading term
is a* multiplied by the S of the ternary cubic got by making
=0 in the equation of the surface. The remaining terms
are calculated from this by means of the differential equation
(Lessons in Higher Algebra, p. 70). The form being found
for four variables, that for five is calculated from it as in
Art. 462. I suppress the details of the calculation which
though tedious presents no difficulty. The result is

o=23abcd (a—¢)(B—¢e)(y—¢) (8—¢&)eeeurnnn. (1],

For facility of reference I mark the contravariants with
numbers between brackets and the covariants by numbers be-
tween parentheses, the cubic itself and the Hessian being
numbered (1) and (2). We can now, as already explained,
from any given covariant and contravariant generate a new
one, by substituting in that in which the variables are of lowest
dimensions, differential symbols for the variables, and then
operating on the other. The result is of the difference of
their degrees in the variables, and of the sum of their degrees
in the coefficients. If both are of equal dimensions, it is in-
different with which we operate. The result in this case is
an invariant of the sum of their degrees in the coefficients.
The results of this process are given in the next article.

466. (a) Combining (1) and [1], we expect to find a con-
travariant of the first degree in the variables, and the fifth
in the coefficients; but this vanishes identically.

(8) (2) and [1] gives an invariant to which we shall refer
a8 invariant 4,

A = 2b'c'd’e" — 2abedeZabe.

If A be expressed by the symbolical method explained
(Lessons on Higher Algebra, p. 77), its expression is

(1235) (1246) (1347) (2348) (5678)".
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(¢) Combining [1] with the square of (1) we get a covariant
quadric of the sixth order in the coefficients
abede (ax* + by + c2* + dv* + ew")............. (3),
which expressed symbolically is (1234) (1235) (1456) (2456).

(d) (3) and [1] gives a contravariant quadric
0 e ST (R <) O [2).

(e) (1) and [2] gives & covariant plane of the eleventh order
in the coefficients

aBEd'e (az + by + cz + dv + €w).nvunnenennn. (4).
() (3) and [2] gives an invariant B,
’ abede (a+b+c+d+e).

(9) Combining with (3) the mixed concomitant (Art. 465)
we get a covariant cubic of the ninth order in the coefficients

abedeZcde (@ + b) 2010, .vuveneiinnannnnns (5)-

(k) Combining (5) and [1] we have a linear contravariant
of the thirteenth order, viz.

abedeZ (a—b) (a— B) {(a + b) c*d’e" — abede (cd + de + ec)}.

It seems unnecessary to give further details as to the steps
by which particular covariants are found, and we may therefore
sum up the principal results.

467. It is easy to see that every invariant is a symmetric
function of the quantities a, b, ¢, d, e. If then we denote the
sum of these quantities, of their products in pairs, &c., by
Py ¢y 7y 8 t; every invariant can be expressed in terms of
these five quantities, and therefore in terms of the five following
fundamental invariants, which are all obtained by proceeding
with the process exemplified in the last article

A=¢-4rty B=t"p, C=t's, D=0q, E=0;
whence also C*— AE=4Fr.

We can, however, form skew invariants which cannot be
rationally expressed in terms of the five fundamental invariants,
although their squares can be rationally expressed in terms of
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these quantities. The simplest invariant of this kind is got
by expressing in terms of its coefficients the discriminant
of the equation whose roots are a, b, ¢, d, e. This, it will
be found, gives in terms of the fundamental invariants
4, B, C, D, E, an expression for ¢* multiplied by the product
of the squares of the differences of all the quantities e, b, &c.
This invariant being a perfect square, its square root is an
invariant F of the one hundredth degree. Its expression in
terms of the fundamental invariants is given, Philosophical
Transactions, 1860, p. 233.

The discriminant can easily be expressed in terms of the
fundamental invariants. It is obtained by eliminating the
variables between the four differentials with respect to z, y, 2, v,
that is to say,

ax’ =by' = cz* = dv’ = ew".

Hence 2%, 3", &c. are proportional to bede, cdea, &c. Sub-
stituting then in the equation z+y+2+v+w=0, we get the
discriminant

W (bede) + v/ (cdea) + ¥/ (deab) + ¥/ (eabe) + ¥/ (abed) = 0.

Clearing of radicals, the result, expressed in terms of the
principal invariants, is

- (4*—64B)*=16384 (D +240).

468. The cubic has four fundamental covariant planes of
the orders 11, 19, 27, 43 in the coefficients, viz.

L=~1Sax, L' =t"Sbedex, L' ={'Sa’z, L" = #2a’z.

Every other covariant, including the cubic itself, can in
general be expressed in terms of these four, the coefficients
being invariants. The condition that these four planes should
meet in a point, is the invariant F of the one hundredth
degree.

There are linear contravariants the simplest of which, of the
thirteenth degree, has been already given; the next being of
the twenty-first, ¢'S(a—b) (a—8); the next of the twenty-
ninth, £Zcde (a — b) (2 — B), &e.
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There are covariant quadrics of the sixth, fourteenth, twenty-
second, &c. orders; and contravariants of the tenth, eighteenth,
&ec. the order increasing by eight.

There are covariant cubics of the ninth order Stcde (a+b)zuv,
and of the seventeenth, £’Za’s", &c.

If we call the original cubic U, and this last covariant V,
since if we form a covariant or invariant of U+AV, the
coefficients of the several powers of A are evidently covariants
or invariants of the cubic: it follows that given any covariant
or invariant of the cubic we are discussing, we can form from
it a new one of the degree sixteen higher in the coefficients,
by performing on it the operation

"(“'d%+b'dib+°'g?;+ d’éid+ e’i) .
Of higher covariants we only think it necessary here to mention
one of the fifth order, and fifteenth in the coefficients t*zyzvw
which gives the five fundamental planes: and one of the
ninth order, © the locus of points whose polar planes with
respect to the Hessian touch their polar quadrics with respect
to U. Its equation is expressed by the determinant at the
top of p. 50, if a, B, &c. denote the first differential coefficients
with respect to the Hessian, and a, b, &c. the second diffe-
rentials with respect to the cubic.

The equation of a covariant whose intersection with the
given cubic determines the twenty-seven lines is ©® =4H®,
where ® has the meaning explained, Art. 465. We shall give
M. Clebsch’s proof of this at the end of the volume. I had
verified the form, which had been suggested to me by geometrical
considerations, by examining the following form, to which the
equation of the cubic can be reduced, by taking for the planes
« and y the tangent planes at the two points where any line
meets the parabolic curve, and two determinate planes through
these points for the planes w, z,

2"y + w'z+2ayz+ 2ryw+az’y+by's+ e’z + dy*w+exw'+ fy2' =0.

The part of the Hessian then which does not contain either
x or y is 2'w': the corresponding part of ® is —2(c2’° + due’),
and of © is —8w'’(cz’+dw’). The surface ©® —4HP has
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therefore no part which does not contain either = or y, and
the line xy lies altogether on the surface, ad in like manner
do the rest of the‘ twenty-seven lines.*

* This section is abridged from a paper which I contributed to the
Philosophical Transactions, 1860, p. 229. Shortly after the reading of
my memoir, and before its publication, there appeared two papers in
Crelle’s Journal, Vol. 58, by Professor Clebsch of Carlsruhe, in which
some of my results were anticipated: in particular the expression of all
the invariants of a cubic in terms of five fundamental : and the expression
given above for the surface passing through the twenty-seven lines. The
method however which I pursued was different from that of Professor
Clebsch, and the discussion of the covariants, as well as the notice of
the invariant F, I believe were new. Clebsch has expressed his last
four invariants as functions of the coefficients of the Hessian. Thus the
second is the invariant (1234)* of the Hessian, &c.
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CHAPTER XV,

GENERAL THEORY OF SURFACES.

469. WE shall in this chapter proceed, in continuation of
Art. 256, with the general theory of surfaces, and shall first
mention a few miscellaneous theorems which are sometimes
useful.

The locus of the points whose polar planes with regard to
Jour surfaces M, N, P, Q (whose degrees are m, n, p, q) meet
in a point, 18 a surface of the degree m+n+p+q—4. For its
equation is evidently got by equating to nothing the determi-
nant whose constituents are the four differential coefficients
of each of the four surfaces. If a surface of the form
aM+bN+cP touch Q, the point of contact is evidently a
point on the locus just considered, and must lie somewhere
on the curve of the degree ¢ (m+n+p+g—4) where Q is
met by the locus surface. In like manner, pg(m+n+p+g—4)
surfaces of the form aM+ bN, can be drawn so as to touch
the curve of intersection of P, Q; for the point of contact
must be some one of the points where the curve PQ meets
the locus surface. .

It follows hence that the condition that two of the
mnp points of intersection of three surfaces M, N, P may
coincide, contains the coefficients of the first in the degree
np(2m+n+p—4); and in like manner for the other two
surfaces. For if in this condition we substitute for each
coefficient a of M, a + \a’, where o' is the corresponding coeffi-
cient of another surface M’ of the same degree as M, it is
evident that the degree of the result in A, is the same as
" the number of surfaces of the form M+AM which can be
drawn to touch the curve of intersection of N, P.*

® Moutard, Zerquem’s Annales, Vol. XIX., p. 58.
DD
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I had arrived at the same result otherwise thus: (see
Quarterly Journal, Vol. 1., p. 339) Two of the points of inter-
section coincide if the curve of intersection MN touch the
curve MP. At the point of contact then the tangent planes
to the three surfaces have a line in common: and these planes
therefore have a point in common with any arbitrary plane
ax+by+cz+dw. The point of contact then satisfies the
determinant, one row of which is @, b, ¢, d: and the other
three rows are formed by the four differentials of each of the
three surfaces. The condition that this determinant may be
satisfied by a point common to the three surfaces is got by
eliminating between the determinant and M, N, P. The result
will contain a, d, ¢, d in the degree mnp; and the coefficients
of M in the degree np (m +n+p—3)+ mnp. But this result
of elimination contains as a factor the condition that the
plane ax+ by +cz+dw may pass through one of the points
of intersection of M, N, P. And this latter condition contains
a, b, ¢, d in the degree mnp, and the coefficients of M
in the degree mp. Dividing out this factor, the quotient, as
already seen, contains the coefficients of M in the degree

np (2m+n+p—4).

470. The locus of points whose polar planes with regard
to three surfaces have a right line common, is, as may be
inferred from the last article, the curve denoted by the system
of determinants
Uy Uy Uy U,
Yy YUy Yy Y
W,y Wy, Wy W,

=0,

where u,, &c. denote the differential coefficients. But this curve
(see Appendix) is of the order (m™ + 2™ + p" + m'n' + n'p’ + p'm’),
where m' is the order of u, &c., that is to say, m'=m—1.
If a surface of the form aM + bN touch P, the point of contact
is evidently a point on the locus just considered, and therefore
the number of such surfaces which can be drawn to touch P,
is equal to the number of points in which this locus curve
meets P, that is to say, is p times the degree of that curve.
Reasoning then as in the last article we see that the condition
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that two surfaces M and N should touch, contains the coeffi-
cients of M in the degree n(n"+2m'n’ + 3m™) or
n (n* + 2mn + 3m* — 4n — 8m + 6),

and in like manner contains the coefficients of N in the
degree m (m*+2mn+3n* —4m—- 8n+6). Moutard, Terquem,
Vol. x1x., p. 65. '

We add, in the form of examples, a few theorems to which
it does not seem worth while to devote a separate article.

Ex. 1. Two surfaces U, V of the degrees m, n intersect; the number
of tangents to their curve of intersection which are also inflexional tan-
gents of the first surface, is mn (3m + 2n - 8).

The inflexional tangents at any point on a surface are generating lines
of the polar quadric of that point; any plane therefore through either
tangent touches that polar quadric. If then we form the condition that
the tangent plane to ¥ may touch the polar quadric of U, which condition
involves the second differentials of U in the third degree, and the first
differentials of ¥ in the second degree, we have the equation of a surface
of the degree (3m + 2n - 8) which meets the curve of intersection in the
points, the tangents at which are inflexional tangents on U.

Ex. 2. In the same case to find the degree of the surface generated
by the inflexional tangents to U at the several points of the curve UV.
This is got by eliminating z’y’z'w’, between the equations
U=0,V'=0 4U0=0, a'TU’'=0,
which are in zy'zZw' of the degrees respectively m, n, m - 1, m - 2, and
in ryzw of the degrees 0, 0, 1, 2. The result is therefore of the degree
mn (3m - 4).

Ex. 3. To find the degree of the developable which touches a surface
along its intersection with its Hessian. The tangent planes at two con-
secutive points on the parabolic curve, intersect in an inflexional tangent
(Art. 238); and, by the last example, since n = 4 (m - 2), the degree of
the surface generated by these inflexional tangents is 4m (m - 2)(3m - 4).
But since at every point of the parabclic curve the two inflexional tangents
coincide, and therefore the surfaces generated by each of these tangents
coincide, the number just found must be divided by two, and the degree
required is 2m (m - 2) (3m - 4).

Ex. 4. To find the characteristics, as at p. 239, of the developable which
touches a surface along any plane section of a surface whose degree is m.
The section of the developable by the given plane is the section of the
given surface, together with the tangents at its 3m (m - 2) points of
inflexion. Hence we easily find
p=6m(m-2), vem(m-1), r=m (3m - §), a=0, B =2m (6m - 11), &e.

DD2
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Ex. 5. To find the characteristics of the developable which touches a
surface of the degree m along its intersection with a surface of degree n.

Ans. v=mn(m-1), a=0, r=mn(3m +n-6) whence the other
singularities are found as at p. 239.

Ex. 6. To find the characteristics of the developable touching two
given surfaces, neither of which has multiple lines.

Ans, vamn(m-1'(n-1)*; a=0, r=mn(m-1)(n-1)(m+n- 2).

Ex.7. To find the characteristics of the curve of intersection of two
developables.

The surfaces are of degrees r and ¢/, and since each has a nodal
and cuspidal curve of degrees respectively z and m, z' and m', therefore
the curve of intersection has rz + ¥z and rm’+ r'm actual nodal and
cuspidal points. The cone therefore which stands on the curve and
whose vertex is any point, has nodal and cuspidal edges in addition to
those considered at p. 250; and the formule there given must then be
modified. We have as there g =rs; but the degree of the reciprocal
of this cone is

p=rr(r+v-2)-r(22 + 3m’) - r'(2z + 3m),
or by the formule of p. 236, p =’ + ny’. In like manner
v=ar +a'r + 3rr.

Ex. 8. To find the characteristics of the developable generated by a
line meeting two given curves. This is the reciprocal of the last example.
‘We have therefore » =17, p=yrm’ + my, u= g’ + Br + 3rr.

CONTACT OF LINES WITH SURFACES.

471. We now return to the class of problems proposed in
Art. 241, viz., to find the degree of the curve traced on a surface
by the points of contact of a line which satisfies three conditions.
The cases we shall consider are: (4) to find the curve traced
by the points of contact of lines which meet in four con-
secutive points; (B) when a line is an inflexional tangent at
one point and an ordinary tangent at another, to find the
degree of the curve formed by the former points; and (C) that
of the curve formed by the latter; (D) to find the curve
traced by the points of contact of triple tangent lines. To
these may be added: (a) to find the degree of the surface
formed by the lines 4; () to find the degree of that formed
by the lines considered in (B) and (C); (c) to find the degree
of that generated by the triple tangents.
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Now to commence with problem 4 ; if a line meet a surface
in four consecutive points we must at the point of contact not
only have U’ =0, but also AU =0, A'U' =0, A’U =0. The
tangent line must then be common to the surfaces denoted by
the last three equations. We find the condition that this may
be possible by the method by which the points of inflexion,
and of contact of double tangents, are determined; Higher
Plane Curves, pp. 11, 86.

472. Let three surfaces U, V, W contain zwyz in the
degrees respectively A, A, A"; and 2'y'2"w’ in degrees u, u'y u";
and let the AA'A" points of intersection of these surfaces all
coincide with z'y'z'w’: then it is required to find what further
condition must be fulfilled in order that they may have a
line in common. When this is the case any arbitrary plane
ax+ by +cz + dw must be certain to have a point in common
with the three surfaces (namely the point where it is met by
the common line), and therefore the result of elimination
between U, V, W, and the arbitrary plane must vanish. This
result is of the degree AA'A" in abed, and MA"u + AN"Ap' +AN'u”
in 2'y'z'w’. But since the resultant is obtained by multiplying
together the result of substituting in ax+dy+cz+dw, the
co-ordinates of each of the points of intersection of UVW,
this result must be of the form

I (az’ + by’ + c&' + dw')™,

Now the condition ax'+ 3y +cz'+dw' =0, merely indicates
that the arbitrary plane passes through «'y’z'w’, in which case
it passes through a point common to the three surfaces whether
they have a common line or not. The condition therefore that
they should have a common line is [1=0; and this must be
of the degree :
NN+ N AN — AN
In the case of the three surfaces AU, A*U’, A’U’, we have

A=1, N=2 N'=8; p=n—1, g'=n—2, u"=n-3.
Hence, by the formula just given, IT is of the degree (11n — 24),
The points of contact then of lines which meet the surface in
four consecutive points: or (as we may call them) of doubdle
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inflexional tangents lie on the intersection of the surface with a
dervved surface S of the degree 11n —24.*

473. The equation of the surface generated by the double
inflexional tangents is got by eliminating z'y'z'w’ between
U=0, AU =0, A'U =0, A’U =0; which result, by the
ordinary rule, is of the degree
n(n—2)(n-3)+22(n—1)(n—3)+3n(n—1)(n—2)

=6n"— 222" + 18n.

Now this result expresses the locus of points whose first, second,
and third polars intersect on the surface; and since if a point
be anywhere on the surface, its first, second, and third polars
intersect in six points on the surface, we infer that the result
of elimination must be of the form UM =0. The degree

of M is therefore
2n (n—38) (3n—2).

474. We can in like manner solve problem B. For the
point of contact of an inflexional tangent we have U’'=0,
AU =0, AU =0: and if it touch the surface again, we have
besides W' =0, where W’ is the discriminant of the equation
of the degree n—3 in A:u, which remains when the first
three terms vanish of the equation, p. 187. For W then we
have M'=(n+3)(n—4), p"=(n-3)(n—4); and having, as

* I gave this thecorem in 1849 (Cambridge and Dublin Journal, Vol. 1v.,
p- 260). I obtained the equation in an inconvenient form (Quarterly
Journal, Vol. 1., p. 336): and in one more convenient (Philosophical
Transactions, 1860, p. 229) which I shall presently give. But I substitute
for my own investigation the very beautiful piece of analysis by which
Professor Clebsch performed the elimination indicated in the text, Crelle,
Vol. LviIL, p. 93. As the calculation is long, and the method, which is
applicable to other problems also, deserves to be studied, I have thought
it better to place it by itself in an appendix than to introduce it here.
Mr. Cayley has observed that exactly in the same manner as the equation
of the Hessian is the transformation of the equation #¢- s' which is
satisfied for every point of a developable, so the equation =0 is the
transformation of the equation (p. 330) which is satisfied for every
point on a ruled surface. .
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in the last article, A=1, p=n—1; N=2, u'=n-2, we

have for the degree of I1

2(n—38)(n—4)+ (n—-2)(n+38) (n—14)
+2(n—1)(n+3)(n—4)—2(n+3)(n-4).

The degree then of the surface which passes through the

points B is (n—4) (3n" + 50— 24).

The equation of - the surface generated by the lines (b)
which are in one place inflexional and in another ordinary
tangents is found by eliminating «'y'2'w’ between the four
equations U'=0, AU =0, A'U' =0, W'=0; and from what
has been just stated as to the degree of the variables in each
of these equations the degree of the resultant is

n(n—2)(n—3)(n-4)+2n(n—1)(n—-3)(n—4)

+n(n—=1)(n—2)(n+3)(n—4)=n (n—4) (n’+ 3n"—20n+ 18).
But it appears, as in the last article, that this resultant contains
as a factor, U in the power 2(n+3)(n—4). Dividing out
this factor the degree of the surface () remains

n(n—38)(n—4)(n'+6n-4).

475. In order that a tangent at the point «'y'z'w’ may
elsewhere be an inflexional tangent, we must have AU =0,
(an equation for which A=1, u=n—1), and besides we must
have satisfied the system of two conditions that the equation
of the degree »—2 in A:u, which remains when the first
two terms vanish of the equation, p. 187, may have three
roots all equal to each other. If then A, u'; A", u” be the
degrees in which the variables enter into these two conditions,
the order of the surface which passes through the points (C)
is, by Art. 472, Mu"+N'p' + (n—2)NA". But (see Appendix
on the order of systems of equations)

AMN'=(n—4)(n"+n+6), N'u"+N'p'=(n—2)(n—4)(n+86).
The order of the surface C is therefore
(n—2)(n—4) (n"+ 20+ 12).

The locus of the points of contact of triple tangent lines
is investigated in like manner, except that for the conditions
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that the equation just considered should have three roots all
equal, we substitute the conditions that the same equation should
have two distinct pairs of equal roots. It will be proved in the
Appendix that for this system of conditions we have

AN'=} (n—4) (n—>5) (n'+3n+6),
Ap'+N'p' = (n—2) (n—4) (n—35) (n+3).
The order of the surface which determines the points (D)
is, therefore, 4(n—2) (n—4)(n—5) (n"+ 5n+ 12).
To find the surface generated by the triple tangents we

are to eliminate x'y'2'w’ between U'=0, AU'=0, and the two
conditions, the order of the result being
np.'p."+'n (n_ l) (X'Il"'l' "F'):
but since this result contains as a factor U*": in order to find
the order of the surface (C) we are to substract nA'A" from the
number just written. Substituting the values first given for
My Mp"+A'u'; and for w'u’, §(n—2)(n—38)(n—4)(n-2>5),
we get for the order of the surface (c),
n{n—38)(n—4)(n—35) (n*+ 3n—2),
a number which probably ought to be divided by three.

476. There remains to be considered another class of
problems, viz., the determination of the number of tangents
which satisfy four conditions. The following is an enumera-
tion of these problems. To determine: (a) the number of
lines which meet in five consecutive points; (8) the number
of points at which both the inflexional tangents meet in four
consecutive points; (y) the number of lines which are doubly
inflexional tangents in one place, and ordinary tangents in
another; (8) of lines inflexional in two places; () inflexional
in one place and ordinary tangents in two others; (&) of lines
which touch in four places. None of these problems has as
yet been solved: but we can find equations which determine
a major limit to the number of points a, &c.

If a line meet in five consecutive points it touches the
surface 8 (Art. 472), since both at the first and second of
these points it is possible to draw a line meeting the surface
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in four consecutive points. The points a then are points on
the curve US, such that the tangent to that curve is one of
the inflexional tangents of U. Therefore, by Ex. 1, p. 403,
these points lie on a derived surface whose degree is

{8n +2 (11n — 24) — 8} = 25n — 56.

But the points B also lie on the same surface; for these are
evidently double points on the curve US, that is to say, points
at which U and S touch each other. At these points also
therefore the tangent plane to S passes through an inflexional
tangent of U. We get then an equation

a+ A8 =n(11n— 24) (252 — 56),

where A is & numerical multiplier, which I believe to be =2,
but which possibly may be greater. Another limit to the
number of points a and B is obtained from Professor Clebsch’s
calculation in the appendix.

In like manner the points @, ¢ are both included in the
intersections of the surfaces U, 8, and that found as the locus
of points B, Art. 474. And other equations of connexion are
found in like manner, but not sufficient to determine the number
of points.

CONTACT OF PLANES WITH SURFACES.

477. We can discuss the cases of planes which touch a
surface, in the same manner as we have done those of touching
lines. Every plane which touches a surface meets it in a
section having a double point: but since the equation of a
plane includes three constants, a determinate number of tan-
gent planes can be found which will fulfil two additional
conditions. And if but one additional condition be given, an
infinite series of tangent planes can be found which will satisfy
it, those planes enveloping a developable, and their points of
contact tracing out a curve on the surface. It may be re-
quired either to determine the number of solutions when three
conditions are given, or to determine .the nature of the curves
and developables just mentioned, when two conditions are
given. Of the latter class of problems we shall consider but
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two, viz., the discussion of the case when the plane meets
the surface in a section having a cusp; or, when it meets in
a section having two double points. Other cases have been
considered by anticipation in the last section, as for example,
the case when a plane meets in a section having a double
point, one of the tangents at which meets in four consecutive
points.

1 0

478. Let the co-ordinates of three points be z'y'z'w,
x"y"2"w", xyzw; then those of any point on the plane through
the points will be Az’ + px” +vx, Ay + py" +vy, &c.: and if
we substitute these values for xyzw in the equation of the
surface, we shall have the relation which must be satisfied for
every point where this plane meets the surface. Let the result

of substitution be [U] =0, then [U] may be written
n-2
MU+ A "wd, U+ AU + ?—2 (A, +vA)Y U + &e. =0,

where A“=a:"‘%+ y"%-{-z"dizq.w"‘%, :

d d d d
E+y@,+za?+wz;,.

The plane will touch the surface if the discriminant of this
cquation in A, u, v vanish. If we suppose two of the points
fixed and the third to be variable, then this discriminant will
represent all the tangent plancs to the surface which can be
drawn through the line joining the two fixed points.

We shall suppose the point z'y'2'w’ to be on the surface,
and the point z"y"z"w" to be taken anywhere on the tangent
plane at that point: then we shall have U'=0, A U =0,
and the discriminant will become divisible by the square of
AU'. For of the tangent plancs, which can be drawn to a
surface through any tangent line to that surface, two will
coincide with the tangent planc at the point of contact of
that line. If the tangent plane at 2'y'2'w’ be a double tan-
gent plane, then the discriminant we are considering, instead
of being, as in other cases, only divisible by the square of
the equation of thc tangent plane, will contain its cube as a

A=x
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factor. In order to examine the condition that this may be
80, let us for brevity write the equation [U] as follows, the
coefficients of A", A*”'u being supposed to vanish,

TNy + =N (At + 2By + OF) + &e.=0.

T represents the tangent plane at the point we are considering,
C its polar quadric, while 4 =0 is the condition that z"y"z"w"
should lie on that polar quadric. Now it will be found that
the discriminant of [U] is of the form

T4 (B*— AC) ¢ + T*( )=0,

where ¢ is the discriminant when 7' vanishes as well as U’
and A, U". In order that the discriminant may be divisible
by T°, some one of the factors which multiply 7"* must either
vanish or be divisible by 7.

479. First then let 4 vanish. This only denotes that the
puint 2"y"z"w" lies on the polar quadric of «y'z'w’: or, since
it also lies in the tangent plane, that the point "y"2"w" lies
on one of the inflexional tangents at z’y’z’w’. Thus we learn
that if the class of a surface be p, then of the p tangent
planes which can be drawn through an ordinary tangent line,
two coincide with the tangent plane at its point of contact,
and there can be drawn p—2 distinct from that plane: but
that if the line be an inflexional tangent, three will coincide
with that tangent plane, and there can be drawn only p- 3
distinct from it. If we suppose that z"y"z"w” has not been
taken on an inflexional tangent, 4 will not vanish, and we may
set this factor aside as irrelevant to the present discussion.

‘We may examine at the same time the conditions that 7
should be a factor in B*— AC, and in ¢.

"The problem which arises in both these cases is the follow-
ing: Suppose that we are given a function V, whose degrees
in z'y’2'w, in 2"y"z"w", and in xyzw are respectively (A, u, u).
Suppose that this represents a surface having as a multiple
line of the order x the line joining the first two points; or,
in other words, that it represents a series of planes through
that line: to find the condition that one of these planes should
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be the tangent plane 7' whose degrees are (n—1,0,1). If so
any arbitrary line which meets 7' will meet ¥, and therefore
if we eliminate between the equations 7=0, V=0, and the
equations of an arbitrary line
ax+by+cz+dw=0, az+by+cz+dw=0,

the resultant R must vanish. This is of the degree u in abed,
in abcd, and in z"y"z"w", and of the degree u(n—1)+2A
in 2y'2'w’. But evidently if the assumed right line met the
line joining «'y'z'w’, «"y"#"w", R would vanish even though 7'
were not a factor in V. The condition (M=0), that the two
lines should meet is of the first degree in all the quantities
we are considering: and we see now that R is of the form
M*R'. R remains a function of a'y'z'w’ alone, and is of the
degree u(n—2)+A.

480. To apply this to the case we are considering, since
the discriminant of [U] represents a series of planes through
a'y'z'w', 2"y "2"w", it follows that B*— 4C and ¢ both represent
planes through the same line. The first is of the degrees
{2(n—-2),2,2], while ¢ is of the degrees (n—2)(n*—86),
n'—2n'+n— 6, n° — 20"+ n — 6, as appears by subtracting the
sum of the degrees of 7™, 4, and (B*— AC)" from the degrees
of the discriminant of [U], which is of the degree n (n—1)*
in all the variables. It follows then from the last article that
the condition (H=0) that 7 should be a factor in B*—~A4C
is of the degree 4 (n—2), and the condition (K=0) that 7'
should be a factor in ¢ is of the degree (n— 2) (n*—n*'+n—12).
At all points then of the intersection of U and H the tan-
gent plane must be considered double. H is no other than
the Hessian; the tangent plane at every point of the curve
UH meets the surface in a section having a cusp, and is to be
counted as double (Art. 238). The curve UK is the locus of
points of contact of planes which touch the surface in two
distinct points.

481. Let us consider next the series of tangent planes
which touch along the curve UH. They form a developable
whose degree is p=2n(n—2)(3n—4), Ex. 2, p. 403. The
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class of the same developable, or the number of planes of the
system which can be drawn through an assigned point, is
v=4n(n—1)(n-2). For the points of contact are evidently
the intersections of the curve UH with the first polar of the
assigned point. We can also determine the number of
stationary planes of the system. If the equation of U, the
plane z being the tangent plane at any point on the curve UH,
be z+y'+u,+ &c.=0, it is easy to show that the direction

of the tangent to UH is in the line % =0. Now the tan-

gent planes to U are the same at two consecutive points
proceeding along the inflexional tangent y. If then u, do
not contain any term «*, (that is to say, if the inflexional tan-
gent meet the surface in four consecutive points) the direction
of the tangent to the curve UH is the same as that of the
inflexional tangent: and the tangent planes at two consecutive
points on the curve UH will be the same. The number of
stationary tangent planes is then equal to the number of
intersections of the curve UH with the surface 8. But since
the curve touches the surface, as will be shewn in the appendix,
we have a=2n(n—2)(112—24). From these data all the
singularities of the developable which touches along UH can
be determined, as at p. 237. We have

p=n(n—2)(28n— 60), v=4n(n—1) (n—2), p=2n(n-2)(3n—4),
a=2n(n-2)(11n—24), B=n(n—2) (70n—160);

2g =n (n - 2) (165" — 642" + 80n* — 108n + 156),

2k =n (n — 2) (784n* — 4928n° + 10320n" — T444n + 548).

The developable here considered answers to a cuspidal line
on the reciprocal surface, whose singularities are got by inter-
changing x and v, a and B, &c. in the above formule.

The class of the developable touching along UK, which is
the degree of a double curve on the reciprocal surface, is seen
as above to be n(n—1)(n-2) (n*—n*+n—12). Its other
singularities will be obtained in the next section, where we
shall also determine the number of solutions in some cases where
a tangent plane is required to fulfil two other conditions.
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THEORY OF RECIPROCAL SURFACES.

482. Understanding by the ordinary singularities of a
surface, those which in general exist either on the surface or
its reciprocal, we may make the following enumeration of
them. A surface may have a double curve of degree b and
a cuspidal of degree c. The tangent cone determined as in
Art. 246, includes doubly the curve standing on the double
curve, and trebly that standing on the cuspidal curve, so that
if the degree of the tangent cone proper be a, we have

a+2b+3c=n(n-1).

The class of the, cone a is the same as the degree of the
reciprocal. Let a have & double and « cuspidal edges. Let
b have k apparent double points, and ¢ triple points which
are also triple points on the surface; and let ¢ have % apparent
double points. Let the curves b and c intersect in ¢ points,
which are stationary points on the former, in 8 which are
stationary points on the latter, and in ¢ which are singular
points on neither. Let the curve of contact a meet b in p
points, and ¢ in o points. Let the same letters accented denote
singularities of the reciprocal surface.

483. We saw (Art. 247) that the points where the curve
of contact meets A’U give rise to cuspidal edges on the tan-
gent cone. But when the line of contact consists of the
complex curve a+2b+3c, and when we want to determine
the number of cuspidal edges on the cone a, the points where
b and ¢ meet A'U are plainly irrelevant to the question.
Neither shall we have cuspidal edges answering to all the
points where a meets A’U, since a common edge of the cones
a and c is to be regarded as a cuspidal edge of the complex
cone, although not so on either cone considered separately.
The following formule contain an analysis of the intersections
of each of the curves a, b, c, with the surface AT,

a(n—2)=x+p+20
b(n—2)=p+28+3y+ 3¢ ]

.............. 4).
c(n—2)=20+48+v J
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The reader can see without difficulty that the points indicated
in these formule are included in the intersections of A'U
with a, b, ¢, respectively: but it is not so easy to see the
reason for the numerical multipliers which are used in the
formule. Although it is probably not impossible to account
for these constants by a priori reasoning, I prefer to explain
the method by which I was led to them inductively.*

484. We know that the reciprocal of a cubic is a surface
of the twelfth degree which has a cuspidal edge of the twenty-
fourth degree, since its equation is of the form 648°= 7",
where 8§ is of the fourth, and 7 of the sixth degree (p. 376).
Each of the twenty-seven lines on the surface answers to a
double line on the reciprocal (p. 378). The proper tangent
cone, being the reciprocal of a plane section of the cubic,
is of the sixth degree, and has nine cuspidal edges. Thus we
have o' =6, b'=27, ¢'=24, n'=12, o' +20'+3c'=12.11. The
intersections of the curves ¢’ and 0’ with the line of contact of
a cone a’ through any assumed point, answer to tangent planes
to the original cubic, whose points of contact are the inter-
sections of an assumed plane with the parabolic curve UH,
and with the twenty-seven lines. Consequently there are
twelve points o, and twenty-seven points p'; one of the
latter points lying on each of the lines of which the nodal
line of the reciprocal surface is made up.

Now the sixty points of intersection of the curve a' with
the second polar which is of the tenth degree, comsist of
the nine points ', the twenty-seven points p', and the twelve
points o’. It is manifest then that the last points must

* The first attempt to explain the effect of nodal and cuspidal lines
on the degree of the reciprocal surface, was made in the year 1847 in
two papers which I contributed to the Cambridge and Dublin Mathematical
Journal, Vol. 1L, p. 65, and Iv., p. 188. It was not till the close of the
year 1849, however, that the discovery of the twenty-seven right lines
on a cubic, by enabling me to form a clear conception of the nature of
the reciprocal of a cubic, led me to the theory in the form here explained.
Some few additional details will be found in a memoir which I contributed
to the Transactions of the Royal Irish Academy, Vol. XXIII., p. 461.



416 THEORY OF RECIPROCAL SURFACES.

count double, since we cannot satisfy an equation of the form
9a +27b+ 12¢=60, by any integer values of a, b, ¢ except
1,1,2. Thus we are led to the first of the equations (4).

Consider now the points where any of the twenty-seven
lines 4 meets the same surface of the tenth order. The points
B answer to the points where the twenty-seven right lines
touch the parabolic curve; and there are two such points on
each of these lines (Art. 256). There are also five points ¢
on each of these lines (Art. 455), and we have just seen that
there is one point p. Now since the equation a+ 2b+5¢=10,
can have only the systems of integer solutions (1, 2, 1) or
(3, 1, 1), the ten points of intersection of one of the lines
with the second polar must be made up either p'+28 +¢, or
8p'+ 8 + ¢, and the latter form is manifestly to be rejected.
But considering the curve ' as made up of the twenty-seven
lines, the points ¢' occur each on three of these lines: we are
then led to the formula &' (n —2)=p'+ 23 +3¢.

The example we are considering does not enable us to
determine the coefficient of ¢ in the second formula 4, because
there are no points y on the reciprocal of a cubic.

Lastly, the two hundred and forty points in which the curve
¢ meets the second polar are made up of the twelve points o’,
and the fifty-four points 8. Now the equation 12a + 545 =240
only admits of the systems of integer solutions (11, 2), or (2, 4),
and the latter is manifestly to be preferred. In this way we
are led to assign all the coefficients of the equations (4) ex-
cept those of v.

485. Eet us now examine in the same way the reciprocal
of a surface of the n™ order, which has no multiple points.
We have then n' =2 (n—1)*, n'~2=(n—2) (n"+1),d'=n(n—1);
and for the nodal and cuspidal curves we have (Art. 255)

V=4n(n—1)(n—2)(n"—n"+n-12), ¢ =4n(n—1) (n —2).
The number of cuspidal edges on the tangent come to the
reciprocal, answering to the number of points of inflexion on
a plane section of the original, gives us &' =3n (n—2). The
points p' and o', answer to the points of intersection of an
assumed plane with the curves UK and UH (Art. 480):
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hence p’'=n (n—2) (n’—2'+n—12), o'= 4n(n—2). Substitute
these values in the formula a' (n' —2) =«'+p'+20%, and it is
satisfied identically, thus verifying the first of formule (4).
We shall next apply to the same case the third of the
formulss (A4). It was proved (Art. 481) that the number of
points B’ is 2n (n—2) (11n—24). Now the intersections of the
nodal and cuspidal curves on the reciprocal surface answer to
the planes which touch at the points of meeting of the curves
UH, and UK on the original surface. If a plane meet the
surface in a section having an ordinary double point and a cusp,
since from the mere fact of its touching at the latter point it is
a double tangent plane, it belongs in two ways to the system
which touches along UK; or, in other words, it is a stationary
plane of that system. And since evidently the points 8’ are
to be included in the intersections of the nodal and cuspidal
curve, the points U, H, K must either answer to points 8’
or points o'. Assuming, as it is natural to do, that the
points B count double among the intersections of UHK,
we have

¥=n{4(n-2)].{(n—2)(n’—n'+n—-12)} — 4n (n—2) (11n— 24)
=4n (n—2) (n— 3) (n* + 3n— 16).

But if we substitute the values already found for ¢, #, o', 8,
the quantity ¢’ (n'—2)—2¢'—48" becomes also equal to the
value just assigned for o/. Thus the third of the formule 4
is verified. It would have been sufficient to assume that the
points 8 count u times among the intersections of UHK, and
to have written the third of the formule provisionally
c(n'—2)=20+48+N\y,

when, proceeding as above, it would have been found that the
formule could not be satisfied unless A =1, u=2.

It only remains to examine the second of the formula (A4).
‘We have just assigned the values of all the quantities involved
in it except ¢. Substituting then these values, we find that the
pumber of triple tangent planes to a surface of the n™ degree
is given by the formula

6t =n(n—2) (n' —4n°+ Tn® — 450" + 1142° — 111n" + 548n — 960).
EE
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486. It was proved (Art. 248) that the points of contact
of those edges of the tangent cone which touch in two distinct
points lie on a certain surface of the degree (n-2)(n—3).
Now when the tangent cone is, as before, a complex cone
a+2b+ 3¢, it is evident that among these double tapgents
will be included those common edges of the cones ab, which
meet the curves a, b in distinct points: and similarly for the
other pairs of cones. If then we demote by [ad] the number
of the apparent intersections of the curves ¢ and 4; that is to
say, the number of points in which these curves seen from
any point of space seem to intersect, though they do not
actually do so; the following formule will contain an ana-
lysis of the intersections of a, b, ¢, with the surface of the
degree (r —2)(n—38):

a(n—2)(n—38)=28+3 [ac] +2 [ab],
b(n—2) (n—3)=4k+ [ab] + 8 [b¢c],
¢ (n—2) (n—3) =6k + [ac] + 2 [bc].

Now the number of apparent intersections of two curves is at
once deduced from that of their actual intersections. For if
cones be described having a common vertex and standing on
the two curves, their common edges must answer either to
apparent or actual intersections. Hencs,

*[ab)l=ab—-2p, [ac]=ac—38c, [bc]=bc—3B—2y—1t.
Sabstituting these values, we have
a{n—2)(n—38)=28+2ab+3ac—4p—9o
b(n-3)(n—8)=4k+ab+3bc—- 98- 67—3:’—2;;}...(3)
c(n—2)(n—38)=6k+ac+2bc -68—4y—2{—30

The first and third of these equations are satisfied identically
if we substitute for 8, v, p, o, &c. the values used in the last

® If the surface have a nodal curve, but no cuspidal, there will still
be a determinate number ¢ of cuspidal points on the nodal curve, and
the above equation receives the modification [ad]=ab-2p -4 In de-
temnmng however the degree of the reciprocal surface the quantity {ab]
ia eliminated.
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article, to which we are to add 28=n(n-2)(n*'-9), ¢=0,
and the value of 2 given (Art. 481), viz.

2k =n (n— 2) (16n* — 64n° + 800" — 108n + 156).
The second equation enables us to determine % by the equation
8k =n(n—2) (n' —6n° + 16n° — 54n’

+ 164n° — 288n® + 547n" — 1058n° + 1068n" — 1214n + 1464) ;
from this expression the rank of the developable of which b is
the cuspidal edge can be calculated by the formula

R=b"—b—2k—6t— 3.

Putting in the values already obtained for these quantities,
we find

R=4n(n-2)(n—3)(n'+2n—4).
This is then the rank of the developable formed by the planes
which have double contact with the given surface.*

487. From formul® 4 and B we can calculate the diminu-
tion in the degree of the reciprocal caused by the singularities
on the original surface enumerated Art. 482. If the degree of
a cone diminish from m to m — [, that of its reciprocal diminishes
from m(m—1) to (m —1I) (m—1—1); that is to say, is reduced
by 1(2m—1—-1). Now the tangent cone to a surface is in
general of the degree n(n—1), and we have seen that when
the surface has nodal and cuspidal lines this degree is reduced

* In order to verify the theory it would be necessary to show that this
number R coincides with what may be deduced from Ex. 5, p.404. In
the first place the developable generated by the cuspidal curve on the
reciprocal surface corresponds with that which envelopes the given surface
along UH, and which, by the example cited, ought to be of the degree
28(n - 2)*, but if we subtract from this the number B, we get the value
already determined. In like manner, if we take the surface enveloping
the given surface along UK (Art. 480) and subtract from the degree
determined, as in the example cited, 44 + B + 6¢, we get not R but 3R.
Possibly this may be because all the tangent planes which envelope the
developable in question are double tangent planes; but it must be owned
that there are points in all this theory which need further explanation.

EE2
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by 2b+8¢c. There is a consequent diminution in the degre
of the reciprocal surface
D = (2b + 3c) (2n" —2n — 25 — 8¢ —1).

But the existence of nodal and cuspidal curves on the surfac
causes also a diminution in the number of double and cuspid:
edges in the tangent cone. From the diminution in the degre
of the reciprocal surface just given must be subtracted twic
the diminution of the number of double edges and three tim¢
that of the cuspidal edges. Now from formulse 4, we have

k=(a—b—c)(n—2)+68+4y+3t

But since if the surface had no multiple lines the number !
cuspidal edges on the tangent cone would be (a + 25+ 8¢)(n —9
the diminution of the number of cuspidal edges is

K= (3b+4c)(n—2)—68—4y—8t.

Again, from the first system of equations (Art. 486), we have
(a—2b—3¢) (n—2) (n — 8) =28 — 8% — 18k — 12 [bc],
and putting for [bc] its value
28 = (a— 20~ 3¢c) (n—2) (n— 8) + 8k + 18k + 12bc — 368 — 24y —1§
But if the surface had no multiple lines 28 would
=(a+2b+3¢c) (n—2) (n—38).

The diminution then in the number of double edges is giw
by the formule
2H=(4b+ 6¢c) (n—2) (n— 3) — 8k—18’l—1250+363+24-y+15

The entire diminution then in the degree of the reciproc
D—-3K—-2H is, when reduced,

488. The formule 4 and B can be thrown into a form mo

convenient for use. If we remember that a+2b+ 8¢ =n (n — 1
the first of formul® B may be written

a’+a(-4n+6)=28—-4p—9o,
or, adding three times the first of formulse 4,
a'—na=28+3«c—p—3o.
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But a"—a—28—3« is n' the degree of the reciprocal surface.
Hence :
(rn=1)a=n'+p+30.

The truth of this equation may be otherwise seen from the
consideration that a, the curve of simple contact from any one
point, intersects the first polar of any other point, either in
the n' points of contact of tangent planes passing through the
line joining the two points, or else in the p points where a
meets 5, or the o points where it meets ¢, since every first
polar passes through the curves b, c.

Adding the second of formule B to four times the second
of formule 4, and giving R the same meaning as in Art. 486,
we get, in like manner,

2p=2R+ B + 38,
an equation of which I do not see the geometrical explanation ;
although evidently the R points on & the tangents at which
meet any line are included among the p points on & which
are points of contact of tangent planes through that line.

If the last of each of the formule be treated in like manner,
and if we call § the order of the developable generated by the
curve c; that is, if we write

S8=c'—c—2h-38,
we have ¢(n—6)=128+ 4+ 8¢—18a.

489. The effect of multiple lines in diminishing the degree
of the reciprocal may be otherwise investigated. The points
of contact of tangent planes which can be drawn through a
given line are the intersections with the surface of the curve
of degree (n—1)* which is the intersection of the first polars
of any two points on the line. Now let us first consider the
case when the surface has only an ordinary double curve of
degree b. The first polars of the two points pass each through
this curve, so that their intersection breaks up into this curve
b and a complemental curve d. Now in looking for the points
of contact of tangent planes through the given line, in the
first place, instead of taking the points where the complex
curve b+d meets the surface, we are only to take those in
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developable reduces to nothing. This application of the theory
both verifies the theory itself and enables us to determine some
singularities of developables not given, p. 239. We use the
notation of the section referred to. The tangent cone to a
developable consists of n planes; it has therefore no cuspidal
edges and §n (n—1) double edges. The simple line of contact
(@) consists of n lines of the system each of which meets the
cuspidal edge m once, and the double line z in (r—4) points.
The lines m and  intersect at the a points of contact of the
stationary planes of the system; for since there three con-
secutive lines of the system are in the same plane, the inter-
section of the first and third gives a point on the line «.*

‘We have then the following table. The letters on the left-
hand side of the equations refer to the notation of this Chapter
and those on the right to that of Chapter xI.:

n=r, a=n, b=z, c=m; p=n(r—4), o=n, k=0, B=P, h=h, 1=a;
and the quantities ¢, ¢, £ remain to be determined. On sub-

stituting these values in formule 4 and B, pp. 414, 418, we
get the system of equations

n(r—2) =n{2+(r—4)},
z(r-2) =n(r—4)+28+3y+3¢,
m(r—2) =2n+48+¢,

n(r—2)(r—8)=n{(n—1)+2x+3m—4(r—4)-9}, ~(C)

@(r—2) (r—38) = 4k+nx+3mz— 98— 6y—3a—2n(r—4),

m(r—2) (r—8) = 6k + mn + 2mzx — 68 — 4y —2a— 3n

The first of these equations is identically true, and the fourth

is satisfied by the help of the equation, proved p. 236,
r(r—1)=22+3m+n.

If we eliminate y between the third and sixth equations, we

obtain also an equation already proved to be true (Chapter x1.).

The three remaining equations determine the three quantities,
whose values have not before been given, vis. ¢ the number

ot “ points on three lines” of the system; ¢ the number of

® 1t is only on account of their occurrence in this example that I was
lod to fnglude the points ¢ in the theory.
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points of the system through each of which passes another
non-consecutive line of the system; and % the number of ap-
parent double points of the nodal line of the developable.
These quantities being determined, we can by an interchange
of letters write down the reciprocal singularities, viz. the
number of “planes through three lines,” &c.

From Art. 488 can be deduced R the rank of the develop-
able of which z is the cuspidal edge. For we have

2R=2n(r—4)—B8—3a.
Ex. 1. Let it be required to apply the preceding theory to the case
considered, Art. 297.
Ans. q=6 (k-3)(k-4), 8t=4 (k-3)(k-4)(k-5)
k=(k-3)(2k - 18k + 5Tk - 65), R=2(k - 1) (k- 3)
And for the reciprocal singularities
o =2(k-2)(k-3), 8¢=4(k-2)(k-3) (k-4),
' ¥=(k-2)(k-3)(2%*-10k + 11), R =6 (k- 3)"

Ex. 2. Two surfaces intersect the sum of whose degrees are p and

their products g.
Ans. o =q(pg-2q-6p +16).
This follows from the table, p. 250, but can be proved directly, see
Transactions of the Royal Irish Academy, Vol. xx111., p. 470,
R=3¢(p-2){g(p-3)-1}

Ex. 3. To find the singularities of the developable generated by a line
resting twice on a given curve. The planes of this system are evidently
¢ planes through two lines” of the original system: the class of the system
is therefore y; and the other singularities are the reciprocals of those of
the system whose cuspidal edge is z, calculated in this article. Thus the
rank of the system, or the order of the developable is given by the formula

2R =2m(r-4)-a-38.

491. Since the degree of the reciprocal of & ruled surface
reduces always to the degree of the original surface (p. 349)
the theory of reciprocal surfaces ought to account for this re-
duction. I have not obtained this explanation for ruled surfaces
in general, but some particular cases are examined and ac-
counted for in the Memoir in the Transactions of the Royal
Irish Academy already cited. I give only one example here.



DEVELOPABLE SURFACES. 425

Let the eqhation of the garface be derived from the elimination
of ¢ between the equations

ot +b7 + &e. =0, a'f+bE +&e =0,

where a, a', &c. are any linear functions of the co-ordinates.
Then if we write k+[=pu, the degree of the surface is u,
having a double line of the order § (ux —1)(x—2), on which
are }(u—2) (u—3)(u—4) triple points. For the apparent
double points of this double curve, we have

2k=1(n-2)(n—3) (4" -5n+8);
and the developable generated by that curve is of the order
2 (u—2)(w—38). Itwill be found then that we have
a=2(p-1), b=4§(u—1)(u-2), x=3(u—2), §=2(n—2)(u—3)
values which agree with what was proved, Art. 459, viz. that
the number of cuspidal edges in the tangent cone is diminished
by 85 (u—2)—3t; while the double edges are diminished by

2b(n—2)(n—38)—4k. In verifying the separate formule B
the remark, note, p. 418, must be attended to.

492. It may be mentioned here that the Hessian of a ruled
surface meets the surface only in its multiple lines, and in the
generators each of which is intersected by ome consecutive.
For, p. 347, if oy be any generator, that part of the equa-
tion which is only of the first degree in = and y is of the form
(xz + yw) . Then, Art. 256, the part of the Hessian which
does not contain « and y is

{(o+:2) (D)= 2 2.

which reduces to ¢'. But zy intersects ¢ only in the points
where it meets multiple lines. But if the equation be of the
form ux+vy' (Art. 256) the Hessian passes through zy. Thus
in the case we have considered the number of lines which meet
one consecutive are easily seen to be 2 (u—2); and the curve
UH whose order is 4u (u—2) consists of these lines each
counting for two and therefore equivalent to 4 (u—2) in
the intersection; together with the double line equivalent to

—1)(#—2). Again, if a surface have a multiple line
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whose degree is m, and order of multiplicity p, it will be a
line of order 4(p— 1) on the Hessian, and will be equivalent
to 4mp (p—1) on the curve UH, Now the ruled surface
generated by a line resting on two right lines and on a curve
m (which is supposed to have no actual multiple point) is of
order 2m, having the right lines as multiples of order m;
having 4m(m— 1)+ A double generators, and 2r generators
which meet a consecutive one. Comparing then the order of
the curve UH with the sum of the orders of the curves of
which it is made up, we have

16m (m—1)=8m (m —1)+4m (m— 1) + 8k + 4r=0,

an equation which is identically true.

If we form the Hessian of the developable zu+ ', it
appears in like manner that we get the developable itself
multiplied by a series of terms, in which the part independent
% %— (d%)} This proves that the
Pro-Hessian (see p. 338) meets each generator in the first place
where that generator meets v; that is to say, twice in the
point on the curve m, and in »—4 points on the curve z; and
in the second place where the generator meets the Hessian
of u; that is to say, in the Hessian of the system formed
by those » —4 points combined with the point on m taken three
times; in which Hessian the latter point will be included four
times. The intersection then of the generator with the Pro-
Hessian consists of the point on m taken six times, of the
r—4 points on «, and of 2(r—5) other points.

ofa:andyisv{
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APPENDIX I
ON THE CALCULUS OF QUATERNIONS,

1. Tae Calculus of Quaternions having been successfully
employed by its inventor Sir W. R. Hamilton in the deduction
of geometrical theorems, it may seem proper to add some
account of it to that which has been given in the preceding
pages of other methods of investigating the properties of
space of three dimenmsions. Neither the space now at my
disposal, nor my knowledge of the subject, allow me to
attempt here to teach this calculus; but in the following
sketch I hope to give the reader some idea what quaternions
are, and how they may be used in geometrical enquiries;
referring him for further information to Sir W. R. Hamilton’s
papers “On Symbolical Geometry” in the Cambridge and
Dublin Mathematical Journal, to his * Lectures,” and to his
forthcoming “ Elements of Quaternions.”

Vectors. 1In Algebraic Geometry though the symbols z, , 2,
&c. are used each with reference to a line measured in a
certain assigned direction, yet in the equations employed these
symbols denote merely the magnitudes of the lines which they
represent; and the equations only express that certain arith-
metical operations are to be performed on the numbers which
express the ratios of each of the lines z, y, 2 to the linear
unit. Thus if we form the sum z+y+2 of three known
lines, the result is a line of determinate length but of no
assigned direction. In the quaternion calculus a symbol de-
noting a line must always express direction as well as length;
and if for instance we form the sum z+y+¢, it is n
to assign the direction as well as the length of the line which
is the result. In this calculus then the signs + and — are
used not with reference to numerical addition or subtraction,
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but with reference to direction (as we proceed to explain),
and denote geometrical, not algebraical, addition and sub-
traction.

2. Let the line or vector AB be understood to denote the
operation of proceeding from the point 4 to the point B;
then BC in like manner would denote the operation of pro-
ceeding from B to C. The sign + may naturally be employed
to denote the consecutive performance of these two operations;
thus 4B+ BC would denote that we proceed first from
A to B, and then from B to C; and since the result is
the same as if we had gone direct from 4 to C, we have
AB+ BC=AC. The sum of two vectors then is the diagonal
of the parallelogram of which these lines are adjacent sides.
If AB and BC were portions of the same right line, then
their sum would be the ordinary algebraic sum of the two
lines; and it is easy to see by successive addition that if a
denote any vector, and m any arithmetical multiplier, ma
denotes a vector coincident in direction with that represented
by a, and in length bearing to it the ratio m:1. Two vectors
are said to be equal if one can be moved without rotation
8o as to coincide with the other: that is to say, two equal
lengths measured on parallel lines are said to be equal. By
the help of this convention we can interpret and verify the
equation a+b=>b+a. Let the vector a be represented by
either of the equal lines AE, EC, B 54
and & by either of the equal lmes /

DE, EB; then if we take a first
we have a+ b= 4B, but if we com-
mence with & we have b+ a=DC;
and these results are equal since 4 D
AB and DC are equal and parallel. It is evident on in-
terpretation of the equation that

(@a+d)+c=a+(d+c).
Thus we see that the sign + when geometrically interpreted
as here proposed conforms to the ordinary rules of algebraic
addition, viz., to the commutative law a+b= b+a, and the
associative la.w (@+d)+c=a+(d+c).
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3. Denoting, as before, by 4B the operation of going
from A to B, — AB naturally denotes the reversing of this
operation, viz., that of going from B to 4, so that 4B+ B4A=0.
It can easily be deduced hence that if a+b=c¢, a=c—b.
Since the addition of lines according to the method just ex-
plained corresponds exactly to the composition of mechanical
forces acting on a point, we can prove, as in Mechanics, that
any line may be resolved into the sum of three lines whose
directions are those of three given rectangular axes. If now
unit lines measured along the axes of z, y, z respectively be
denoted by t, j, £; and if the numerical ratios which the
lengths of the co-ordinates of any point P bear to the unit line
be denoted, as in algebraic geometry, by @, y, 2, then in this
calculus these co-ordinates will be denoted by uz, jy, kz re-
spectively, and the vector from the origin to P will be denoted
by @ +jy+%kz. And since any vector is equal to a parallel
one through the origin, there s no vector which may not be
expressed tn the form x4+ jy + kz.

If a, B be any two co-initial vectors it is easy to see that

la+ mB is & vector drawn from the same origin to the point

l+m
where the line joining their extremities is cut in the ratio /:m,
and that la+ mB + ny denotes a vector terminating in the
l+m+n

plane through the extremities of a, 8,v. If a and 8 be both
of unit length, la+mB makes with a and 8 angles whose
sines are in the ratio /:m. These principles may be used to
establish geometrical theorems. Thus 4 (a+8+y+8) is the
vector to the centre of gravity of the tetrahedron formed by
the extremities of a, 8, v, §; from which form inferences may
be deduced as in Ex., p. 6.

4. Quaternions. We have now shown how lines considered
with respect to their direction as well as to their magnitude
may be added and subtracted, and we come next to speak of
multiplication and division. It is not obvious what sense we
are to attach to the prdluct of two lines, but it is natural

to interpret the quotient% as denoting the operation necessary
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to change the line 8 into the line a so that§B=a. If the

vectors a and 8 be portions of the same line, it is evident that
the quotient is a numerical constant, or, as Sir W. R. Hamilton
calls it, a scalar : but, when this is not the case, in order to
change 8 into a we have not only suitably to alter its length,
but also to turn it through a certain angle in a certain plane.
Now we have seen that a vector is reducible to the sum of
three distinct terms, and we might have foreseen this because
in order to determine a vector we must know three things,
viz., its length, and its direction-cosines, equivalent to two
more conditions. But to determine a geometrical quotient four
things are necessary, viz., the numerical ratio of the lengths
of the two lines compared, the angle through which one must
be turned in order to coincide with the other, and the direction-
cosines of the plane of that angle, equivalent to two more
conditions. We shall presently show how to express any such
quotient as the sum of four irreducible terms: it is thence
called 8 quaternion. It is agreed on that the four elements
just mentioned shall be sufficient to determine such a quotient
as we are considering: that is to say, that two quotients are

§=%, first, if the lengths of the lines be

proportional, a:8::q:8; secondly, if the angle between a and
B be equal to that between ¢ and 3; and thirdly, if all four
lines be parallel to the same plane. In other words the
geometrical ratio of two lines is considered unchanged, not
only if both be increased or diminished in the same proportion,
but also if they be turned round in their plane their mutual
inclination being unaltered.

said to be equal

5. Two geometrical fractions having a common denominator
are added by adding their numerators: that is to say, we
B _uth
) [
reduce any such fraction to one, the two lines in which are at
right angles to each other. For if the fraction be, y divided
by 8, we can resolve ¢ into the sum of two lines a+p,

have §+ as in common algebra. We can thus
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one of them in the direction of & (in fact the projection
of o on 3), and the other perpendicular to it. Now since a
is supposed to be in the same direction as §, their ratio is
a mere number or scalar, while the ratio of 8 to & is that of
two rectangular lines. Thus then we can reduce every qua-
ternion to the form S+ V, the sum of a scalar part and a
vector part, the latter part being so called because we shall
presently see that the ratio of two rectangular lines can be
adequately represented by a vector perpendicular to their plane.

A quaternion may be resolved in another way; viz. into a
numerical factor multiplied by the ratio of two equal lines. We
§=$; for if we first turn « into 8 and
then B8 into a, the result is evidently the turning ¢ into . If
now S be supposed to be a line equal to ry, and in the direction
of a, the ratio of a to 8 is a mere number; and the ratio a
to v is resolved into the product of this number into the ratio
of the equal lines 8 and 4. Sir W. R. Hamilton calls this the
resolution of a quaternion into the product of a tensor and
a versor: the tensor being the number expressing in what
ratio the line « is to be increased or diminished in order to be
made equal to B, and the versor expressing through what angle
it is to be turned.

Thus sauppose that the symbol 7 denotes the operation of
turning a line round through a right angle in a plane per-
pendicular to the vector ¢: [in order to fix the ideas we may
agree that the direction of the rotation shall be that of the
hands of a watch as we look along ¢:] then mI denotes the
operation of turning the line round as before, and at the same
time altering the length in the ratio m: 1.

Thus then if the denominator of a fraction be a line of
unit length, and its numerator of length I; if the angle be-
tween them be 6, and the unit vector perpendicular to their
plane be p, we may first resolve [ into the portions [ cosé, I sind
measured in the direction of the denominator and perpendicular
to it, and if V denote the operation of turning through a
right angle round the axis p, without change of length, the
given fraction is resolved into the parts [ cosf+!siné. V.

have obviously % .
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If the position of the numerator and denominator had been
interchanged, it is easy to see that the operation of turning

through the same .angle in the opposite direction would have
been expressed I cosf —7siné. V.

6. If p, a, B be three vectors such that p=a+ B, and if
V, A, B represent rectangular rotations perpendicular to these
vectors as above explained, then V=A4+B. For (see fig.,
p. 358) let p= 08, a= 0T, B=TS8, and let OP, 0Q, QP
be equal and perpendicular to these lines, then if OR be a line
perpendicular to the plane of the paper equal in length to 08,
we have ?Oj—f—;= v, —g_IQZ=A’ —g—;=B, therefore V=4 + B.

It follows then that the symbols of rectangular rotation
may be resolved in precisely the same way as the vectors in
Art. 3; and, therefore, that if 1, J, K denote rotations without
change of length round the three axes respectively: then a
similar rotation round an axis p, making with these the angles
a, B, v, may be resolved into the sum 7 cosa + J cos8 + K cosy.
And in like manner the fraction partially resolved in the last
article may be completely resolved into the sum

l cos0+1sin6 (I cosa+J cosB+ K cosry).

We see then that the most general expression for a geo-
metrical fraction is of the form a+bI+c/+dK, where
a, b, ¢, d are numerical constants. It is because it can thus
be reduced to the sum of four terms that it is called a
quaternion.

7. Multiplication of fractions, as already intimated, denotes
the successive performance of the operations represented by the
factors. Thus %g denotes that we first perform the operation
of turning 4 into B, and then that of turning 8 into a, the
result being the same as if we turned 4 into a. To multiply

any two fractions g.%, it is only necessary to turn % round

in its plane until its numerator coincide with the intersection
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of the planes of the two fractions; and 2 until its denominator

B
coincide with the same line, when the multiplication is per-
formed as before.

It at once appears hence that when we multiply two qua-
ternions, the order of the factors is not indifferent. Thus, let
A, B, C, D represent four points B c
on a sphere of which O is the centre.

Then if we first turn OD to OFE

through an angle , and then OF to

OC through an angle a, the result is

the operation of turning OD to OC. 4 D
But if we had commenced with the operation of turning through
the angle a, which is that of turning 04 to OE, and then
OE to OB through the angle b, the result is the operation
of turning OA4 to OB. Now though the arc 4B is equal to
CD, the plane of AB is generally different from that of CD,

0C OFE. 0B OE
and therefore the product OF 0D 8 not equal to 0k 04°

which is the product of two equal factors taken in opposite order.

If the arcs @ and b be each 90°, then indeed the plane of 4B
will be the same as that of CD, but the direction of the rotations
in the two products will be opposite. If then we multiply to-
gether two rectangular quaternions 4, B, (that is, such that the
rotation is through a right angle) we see from Art. 5 that
if A.B be of the form ! cos@ + ! sin 8.V, then B. 4 will be of the
form / cos@ —sin@.V. Two quaternions thus related are said
to be conjugate quaternions: that is, when one is of the form
scalar + vector: and the other, the same scalar — the same vector.

It follows as a particular case of the last, that when 6=290°
the product of two rectangular quaternions whose planes are at
right angles to each other, gives 4.B=—B.4. Asthisisa
fundamental theorem we shall presently prove it independently.

8. It is seen without difficulty that the multiplication of
quaternions is a distributive operation: viz.,, that the product

of the quaternions (aiﬁi—l-_;_—l—_s_j—_g) ’l" is the sum of the

FF
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PR _
true if the order of multiplication be reversed. Hence then
if we have two quaternions,* each expressed in the form

(@+bl+cJ+dK) (@ + ¥ I+ cJ +d'K),

the product is the sum of the sixteen terms got by combining
each of the first four terms with each of the second four, care
however being taken to attend to the order of the multiplication.
Let us then examine the meaning of the terms 17, 1J, &c.,
which occur in such a product. Now if we remember that
I denotes a rectangular rotation round the axis of z as axis,
and that the effect of such a rotation would be to change a
line in the direction of the axis of y to that of z, and one in
the direction of z into the negative direction of y, we can
write down the equations [j=#%, Ik=—j;. In like manner,
Jk=1t, Ji=—k; Ki=j, Kj=—17. Let us now consider the
effect of two of these operations performed consecutively. If
we first operate on j with 7, and then again with 7 on the
result &, we get I'j=—j, or I'=—1. In like manner J*=—1,
K*=-1, and since it is evidently true, no matter what line
be taken for the axis of rotation, that the effect of twice turning
round a right angle is to reverse the position of the line operated
on; it follows that the square of every rectangular quaternion
may be said to be —1.

Again we have scen that 7j=4%, Jk=1; hence JIj=1; but
Kj=—1; hence JI=—K. In like manner, from the equa-
tions Ji=—%, Ik=—j, Ki=j, we conclude I/=K, Hence
1IJ=K=—-JI. Inlike manner JK=I=—-KJ: KI=J=- 1K,

If now we compare the equations Ij=%, I/=K, &c., we
shall find that the equations which represent the effect of the
operations I, J, K on the lines 7, j, X, are exactly the same
in form as those which denote the cffects of the successive
performance of these operations. Now since in the practice
of this calculus we are concerned with the laws according to

several products &c.; and that the same thing is

* It is also true, though it is not to be taken for granted, that when we
take the continued product of three quaternions (¢¢') ¢ = ¢ (¢'¢").
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which the symbols combine with each other rather than with
their interpretation, it is found unnecessary to keep up the
distinction of notation between I, J, K; 7, j, k. Whatever
propositions are true of the symbols in the one sense, are
equally true in the other, and, by interpreting some vectors
as lines and others as rotations, we can give a variety of
significations to the same equation all of which will be equally
true. 'We shall then understand ¢ to decnote at pleasure cither
a unit line measured along the direction of the axis of x, or
a rotation through a right angle round that axis. In like
manner & rectangular rotation round any unit vector a is re-
presented by the letter a as already stated in Art. 5. We
shall write the general form of a quaternion a+bi+¢)+dk;
and we shall combine these symbols according to the laws
C==l=-1; g=k=—ji; jk=i=-kj; ki=j=—1ik.

In forming the continued product of a number of factors
the order must be carefully attended to, except that if a scalar
or number is one of the factors its order is indifferent, and
it may be brought to the left hand as a multiplier of the whole.
Thus, if a, B, vy be any three unit vectors, or rectangular qua-
ternions, and if we multiply By by aB the result aBy is — ay,
since 8= —1.

Ex. 1. To form the square of the unit vector ¢ cosa +j cosf + k cosv.
By actual multiplication, we get
¢* cos'a + 5* cos'B + k' cos’y + (jk + kj) cos B cosv + (ki + tk) cosy cosa

+ (¢ + J7) cosa cosf3,
which, in virtue of the relations connecting 3, , &, reduces to
- (cos'a + cos* + cos'y), orto - 1,

as ought to be the case. If the vector be not of unit length the square
of iz + jy + kz is, in like manner, - (z* + y* + 5'), or is the negative square
of the length of the line which the vector represents. We may express
this by saying that the square of any vector is the negative square of the
tensor of that vector.

Ex. 2. To find the product of two unit vectors
(i cosa + g cosf + k cosy), (#cosa’ +jcosf +kcosvy).
Ans. - (cosa cosa’ + cosf cosf’ + cosy cosy') + ¢ {cos3 cosy - cosy cosf)

+J (cosy cosa’ — cosa cosy’) + k (cosa cos3 - cosB cosa’),
FF2
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If 6 be the angle between the two vectors, a”, 8”, o' the direction-cosines
of a perpendicular to their plane, the product may be written

- co80 + 8iné (¥ cosa” + 5 cos B” + k cosyy”).

(This agrees with Art. 5.) If the vectors were respectively of lengths
1, I, this product would evidently be multiplied by &.

If the product had been taken in different order the scalar part of
the product would still be - cosf, but the vector part would change
sign. Hence, if we denote by § and 7 the operation of taking the
scalar and vector part of a quaternion, we have S(ag)= 8 (Ba) = cos@,
¥V (af) = - ¥(Ba). And again, we have af + Ba = 2§ (ap).

If the two vectors be at right angles the scalar part of the product
evidently vanishes. Hence the condition that two vectors a, 8, may be
at right angles is §(28) = 0.

Thus then if p be a variable vector passing through the origin, and
a a fixed vector, the equation §(paz) =0 may be taken as the equation
of the plane through the origin perpendicular to a, since p is evidently
limited to that plane.

Let it be required to find the equation of any other plane. Let the
perpendicular from the origin on that plane be denoted in length and
direction by a, and let the radius vector to any point of the plane be p,
then p - a is the vector joining the extremity of this radius vector to
the foot of the perpendicular, and since this line is, by hypothesis, to
be perpendicular to @, the equation required is §(p — @) a = 0 or §(pa) = o*
But «* is a scalar, and we may therefore divide by it under the sign 8,
and write the equation in the form S(§)= 1. This equation may also
be inferred from what was stated in a previous article, viz., that the scalar
part of the above fraction denotes the projection of the line p on the line a.

In like manner the equation S(g) =1, which expresses that the pro-

jection of the fixed line @ on the direction p is in length equal to p,
obviously represents the sphere described on the vector « as diameter.
Again, the equation 8(’-:) S(€)= 1, in the first place represents a
cone because if it is satisfied for any value of p, it will also be satisfied
for the value mp, where m is any constant. Secondly, it passes throngh

the intersection of 8 2 =1, SE; =1: it is therefore the cone whose base
is the circle represented by the two equations just written.

Ex. 8. To find the product of two quaternions. We have only to
multiply out a + b + ¢f 4 dk, @'+ ¥i + ¢j + d'k. We may form a clearer con-
ception of the result by separating the scalar and vector parts, and writing
the two quaternions S+¥, 8'+¥", when the productis S§+SV '+ SV+V V",
Now if it be required to find the scalar part of the product (since S¥'
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and S’V are mere vectors), it is S’ + § (F'F7"), or the scalar of the product
is the product of the scalars + the scalar part of the product of the vectors.
Thus let a, B, v be three radii vectores of a sphere; then it is an

identical equation that = = — ;-'3 Now if a, b, ¢ be the sides of the spherical

b
triangle formed by the extremities of these vectors; cosa, cosd, cosc
are the scalars of the three quaternions, and the scalar part of the product
of the vectors on the right-hand side of the equation is the product of
their tensors sina, sind, into the cosine of the angle between them, thus
we have the fundamental formula of spherical trigonometry

cosc = cosa cosd + sina sind cos C.

9. We can, in like manner, form the product of three
vectors. It is found, without difficulty, by actual multipli-
cation, that if ¢+ jy + k2, &' +jy + k2, " +jy" + k2" be the
three vectors, the scalar part of the product is the determinant
whose three rows are «x, y, z; «, ¥, 2’; 2", y", 2". Hence if
a, B, o be the three vectors, the condition that they should Ule
n one plane is 8(aBy)=0 (Note, p. 19).

This is also evident from the consideration that if S(aBy)=0
then a8y is a pure vector, but aBy=a.S(By) +aV(By) there-
fore aV(By) is a pure vector, or a is perpendicular to ¥V (By),
and therefore is in the planc of 8 and 4. Q.E.D.

Thus we can find the equation of the plane passing through
the extremity of three vectors a, 8, 4. By hypothesis, the
lines joining the extremity of any variable vector terminating
in the plane, with the extremities of the assumed vectors, lie
in the plane. We have, therefore, S(p—a) (o —8) (o —9)=0.

In expanding this we may omit such terms as Sp*y, because
p' is a scalar, and p*y a mere vector whose scalar is nothing.
The expanded product is then

S (pBy + apy + aBp) = Safy,

and the vector perpendicular to the plane is V' (8y + ya+ a8).
Returning to the product of the three vectors, it is also

found by actual multiplication, that
V (aBy) = a8 (By) — BS (va) + ¥8 (28),

an equation of great usec.
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In connection with this, the following identical equation
may be given,

85 (aBy) = a8 (By8) — BS (vad) + 7S (a88),

as also that the vector part of the product VaBVy3 may be
written in either of the forms

a8 (8y8) — BS (ya8) or v (a8) - 88 (aBy).
In fact, VaB denotes a line perpendicular to a and B; the

vector now required must therefore lie in the plane, both of
a and B, and