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Preface

In recent years, the discovery of new algorithms for dealing with polyno-
mial equations, coupled with their implementation on inexpensive yet fast
computers, has sparked a minor revolution in the study and practice of
algebraic geometry. These algorithmic methods and techniques have also
given rise to some exciting new applications of algebraic geometry.

One of the goals of Using Algebraic Geometry is to illustrate the many
uses of algebraic geometry and to highlight the more recent applications
of Grobner bases and resultants. In order to do this, we also provide an
introduction to some algebraic objects and techniques more advanced than
one typically encounters in a first course, but which are nonetheless of
great utility. Finally, we wanted to write a book which would be accessible
to nonspecialists and to readers with a diverse range of backgrounds.

To keep the book reasonably short, we often have to refer to basic re-
sults in algebraic geometry without proof, although complete references are
given. For readers learning algebraic geometry and Grobner bases for the
first time, we would recommend that they read this book in conjunction
with one of the following introductions to these subjects:

e Introduction to Gribner Bases, by Adams and Loustaunau [AL]
® Grébner Bases, by Becker and Weispfenning [BW]
o Jdeals, Varieties and Algorithms, by Cox, Little and O’Shea [CLO]

We have tried, on the other hand, to keep the exposition self-contained
outside of references to these introductory texts. We have made no effort
at completeness, and have not hesitated to point out the reader to the
research literature for more information.

Later in the preface we will give a brief summary of what our book covers.

The Level of the Text

This book is written at the graduate level and hence assumes the reader
knows the material covered in standard undergraduate courses, including
abstract algebra. But because the text is intended for beginning graduate

vii



viii Preface

students, it does not require graduate algebra, and in particular, the book
does not assume that the reader is familiar with modules. Being a graduate
text, Using Algebraic Geometry covers more sophisticated topics and has
a denser exposition than most undergraduate texts, including our previous
book [CLO].

However, it is possible to use this book at the undergraduate level, pro-
vided proper precautions are taken. With the exception of the first two
chapters, we found that most undergraduates needed help reading prelimi-
nary versions of the text. That said, if one supplements the other chapters
with simpler exercises and fuller explanantions, many of the applications we
cover make good topics for an upper-level undergraduate applied algebra
course. Similarly, the book could also be used for reading courses or senior
theses at this level. We hope that our book will encourage instructors to
find creative ways for involving advanced undergraduates in this wonderful
mathematics.

How to Use the Text

The book covers a variety of topics, which can be grouped roughly as
follows:

® Chapters 1 and 2: Grobner bases, including basic definitions, algorithms
and theorems, together with solving equations, eigenvalue methods, and
solutions over R.

® Chapters 3 and 7: Resultants, including multipolynomial and sparse
resultants as well as their relation to polytopes, mixed volumes, toric
varieties, and solving equations.

® Chapters 4, 5 and 6: Commutative algebra, including local rings, stan-
dard bases, modules, syzygies, free resolutions, Hilbert functions and
geometric applications.

® Chapters 8 and 9: Applications, including integer programming, combi-
natorics, polynomial splines, and algebraic coding theory.

One unusual feature of the book’s organization is the early introduction
of resultants in Chapter 3. This is because there are many applications
where resultant methods are much more efficient that Grobner basis meth-
ods. While Grébner basis methods have had a greater theoretical impact on
algebraic geometry, resultants appear to have an advantage when it comes
to practical applications. There is also some lovely mathematics connected
with resultants.

There is a large degree of independence among most chapters of the book.
This implies that there are many ways the book can be used in teaching a
course. Since there is more material than can be covered in one semester,
some choices are necessary. Here are three examples of how to structure a
course using our text.
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e Solving Equations. This course would focus on the use of Grobner bases
and resultants to solve systems of polynomial equations. Chapters 1, 2,
3 and 7 would form the heart of the course. Special emphasis would be
placed on §5 of Chapter 2, §5 and §6 of Chapter 3, and §6 of Chapter 7.
Optional topics would include §1 and §2 of Chapter 4, which discuss
multiplicities.

e Commutative Algebra. Here, the focus would be on topics from classical
commutative algebra. The course would follow Chapters 1, 2, 4, 5 and 6,
skipping only those parts of §2 of Chapter 4 which deal with resultants.
The final section of Chapter 6 is a nice ending point for the course.

® Applications. A course concentrating on applications would cover integer
programming, combinatorics, splines and coding theory. After a quick
trip through Chapters 1 and 2, the main focus would be Chapters 8 and
9. Chapter 8 uses some ideas about polytopes from §1 of Chapter 7,
and modules appear naturally in Chapters 8 and 9. Hence the first two
sections of Chapter 5 would need to be covered. Also, Chapters 8 and
9 use Hilbert functions, which can be found in either Chapter 6 of this
book or Chapter 9 of [CLO].

We want to emphasize that these are only three of many ways of using the
text. We would be very interested in hearing from instructors who have
found other paths through the book.

References

References to the bibliography at the end of the book are by the first three
letters of the author’s last name (e.g., [Hil] for Hilbert), with numbers for
multiple papers by the same author (e.g., [Macl] for the first paper by
Macaulay). When there is more than one author, the first letters of the
authors’ last names are used (e.g., [BE] for Buchsbaum and Eisenbud),
and when several sets of authors have the same initials, other letters are
used to distinguish them (e.g., [BoF] is by Bonnesen and Fenchel, while
[BuF] is by Burden and Faires).

The bibliography lists books alphabetically by the full author’s name,
followed (if applicable) by any coauthors. This means, for instance, that
[BS] by Billera and Sturmfels is listed before [Bla] by Blahut.

Comments and Corrections

We encourage comments, criticism, and corrections. Please send them to
any of us:

David Cox dac@cs.amherst.edu
John Little little@math.holycross.edu
Don O’Shea doshea@mhc.mtholyoke.edu
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For each new typo or error, we will pay $1 to the first person who reports
it to us. We also encourage readers to check out the web site for Using
Algebraic Geometry, which is at

http://www.cs.amherst.edu/"dac/uag.html

This site includes updates and errata sheets, as well as links to other sites
of interest.
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Chapter 1

Introduction

Algebraic geometry is the study of geometric objects defined by polynomial
equations, using algebraic means. Its roots go back to Descartes’ introduc-
tion of coordinates to describe points in Euclidean space and his idea of
describing curves and surfaces by algebraic equations. Over the long his-
tory of the subject, both powerful general theories and detailed knowledge
of many specific examples have been developed. Recently, with the devel-
opment of computer algebra systems and the discovery (or rediscovery) of
algorithmic approaches to many of the basic computations, the techniques
of algebraic geometry have also found significant applications, for example
in geometric design, combinatorics, integer programming, coding theory,
and robotics. Our goal in Using Algebraic Geometry is to survey these
algorithmic approaches and many of their applications.

For the convenience of the reader, in this introductory chapter we will
first recall the basic algebraic structure of ideals in polynomial rings. In §2
and §3 we will present a rapid summary of the Grébner basis algorithms de-
veloped by Buchberger for computations in polynomial rings, with several
worked out examples. Finally, in §4 we will recall the geometric notion of
an affine algebraic variety, the simplest type of geometric object defined by
polynomial equations. The topics in §1, §2, and §3 are the common prereq-
uisites for all of the following chapters. §4 gives the geometric context for
the algebra from the earlier sections. We will make use of this language at
many points. If these topics are familiar, you may wish to proceed directly
to the later material and refer back to this introduction as needed.

§1 Polynomials and Ideals

To begin, we will recall some terminology. A monomial in a collection of
variables 1, ..., Z, is a product

(1.1) z?lmgz o mgﬂ



2 Chapter 1. Introduction

where the a; are non-negative integers. To abbreviate, we will sometimes
rewrite (1.1) as z® where @ = (au, . . ., &y, is the vector of exponents in the
monomial. The total degree of a monomial £ is the sum of the exponents:
a1 + -+ + a,. We will often denote the total degree of the monomial z*
by |a|. For instance z3z2z, is a monomial of total degree 6 in the variables
z, T2, T3, L4, since a = (3,2,0,1) and |a| = 6.

If k£ is any field, we can form finite linear combinations of monomials
with coefficients in k. The resulting objects are known as polynomials in
zy,...,Z,. We will also use the word term on occasion to refer to a product
of a nonzero element of k and a monomial appearing in a polynomial. Thus,
a general polynomial in the variables z1, . .., z, with coefficients in &k has

the form
f = Z caZ”,

where ¢, € k for each «, and there are only finitely many terms c,z® in
the sum. For example, taking k to be the field Q of rational numbers, and
denoting the variables by z, y, z rather than using subscripts,

(1.2) p=2"+3y’z—2-1

is a polynomial containing four terms.

In most of our examples, the field of coefficients will be either QQ, the
field of real numbers, R, or the field of complex numbers, C. Polynomi-
als over finite fields will also be introduced in Chapter 9. We will denote
by k[zi,...,z,] the collection of all polynomials in z,...,z, with co-
efficients in k. Polynomials in k[z,...,z,] can be added and multiplied
as usual, so k[zy,...,T,] has the structure of a commutative ring (with
identity). However, only nonzero constant polynomials have multiplicative
inverses in k[zy,...,x,], so k[z1,...,Z,] is not a field. However, the set
of rational functions {f/g : f,g € k[z1,...,2zn],9 # 0} is a field, denoted
k(.’l}l, e ,(L'n).

A polynomial f is said to be homogeneous if all the monomials appearing
in it with nonzero coefficients have the same total degree. For instance,
f = 4z + 5xy? — 23 is a homogeneous polynomial of total degree 3 in
Q[z, y, 2], while g = 4z3 + 5zy? — 25 is not homogeneous. When we study
resultants in Chapter 3, homogeneous polynomials will play an important
role.

Given a collection of polynomials, f1,...,fs € k[z1,...,2Zs], we can
consider all polynomials which can be built up from these by multiplication
by arbitrary polynomials and by taking sums.

(1.3) Definition. Let fi,...,fs € klz1,...,z,]. We let (f1,...,fs)
denote the collection

(fiy-- -y fs)={prfr+ - +psfs : pi € k[z1,...,25] fori=1,...,s}.
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For example, consider the polynomial p from (1.2) above and the two
polynomials

fi=22+22 -1
=2+ + (2 -1 -4
We have
p=x+ %yzZ—Z—l
= (324 )@+ - D)+ (3@ + ¥ + (2 - 1) - 4).
This shows p € (fi1, f2)-

(1.4)

Exercise 1.

a. Show that 22 € (z — y?, zy) in k[z, y] (k any field).
b. Show that (z — y2, ry, y?) = (z, y?).

c. Is (z — %, zy) = (22, zy)? Why or why not?

Exercise 2. Show that (fi,..., fs) is closed under sums in k[z1, ..., Zy].
Also show that if f € (f1,...,fs), and p € k[z1,...,z,] is an arbitrary
polynomial, then p - f € (f1,..., fs).

The two properties in Exercise 2 are the defining properties of ideals in
the ring k[z1, ..., Zm].

(1.5) Definition. Let I C k[z1, ..., Z,]| be a non-empty subset. I is said

to be an ideal if

a. f+g € I whenever f € I and g € I, and

b. pf € I whenever f € I, and p € k[z1,...,Z,] is an arbitrary
polynomial.

Thus (fi,...,fs) is an ideal by Exercise 2. We will call it the ideal
generated by f1,..., fs because it has the following property.

Exercise 3. Show that (fy,..., fs) is the smallest ideal in k[z1, ..., 5]
containing fi,...,fs, in the sense that if J is any ideal containing

fh"'afsathen (fla---;fs) cJ.

Exercise 4. Using Exercise 3, formulate and prove a general criterion for
equality of ideals I = (f1,...,fs) and J = (g1,...,9) in k[z1,...,Zn].
How does your statement relate to what you did in part b of Exercise 17

Given an ideal, or several ideals, in k[z1, ..., Z,), there are a number of
algebraic constructions that yield other ideals. One of the most important
of these for geometry is the following.
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(1.6) Definition. Let I C k[z,...,Z,] be an ideal. The radical of I is
the set

VI = {g € k[z1,...,z,]) : g™ € I for some m > 1}
An ideal T is said to be a radical ideal if VI = I.

For instance,

x4y € (x? + 3zy,3zy + ¥2)
in Q[z, y] since
(z + y)® = z(z® + 3zy) + y(Bzy + v?) € (z? + 3zy, 3zy + ¥°).

Since each of the generators of the ideal (z% +3zy, 3zy+y?) is homogeneous
of degree 2, it is clear that z + y ¢ (z? + 3zy, 3zy + y?). It follows that
(x? + 3zy, 3zy + y?) is not a radical ideal.

Although it is not obvious from the definition, we have the following
property of the radical.

e (Radical Ideal Property) For every ideal I C k[zy,...,o,], VI is an
ideal containing I.

See [CLO], Chapter 4, §2, for example. We will consider a number of other
operations on ideals in the exercises.

One of the most important general facts about ideals in k[zy, ..., z,] is
known as the Hilbert Basis Theorem. In this context, a basis is another
name for a generating set for an ideal.

¢ (Hilbert Basis Theorem) Every ideal I in k{z1, . . ., 2,] has a finite gener-
ating set. In other words, given an ideal I, there exists a finite collection
of polynomials {f1,..., fs} C k[z1,...,2n] such that I = (f1,..., fs).

For polynomials in one variable, this is a standard consequence of the one-
variable polynomial division algorithm.

¢ (Division Algorithm in k[z]) Given two polynomials f, g € k[z], we can
divide f by g, producing a unique quotient ¢ and remainder r such that

f=aq+r,
and either 7 = 0, or r has degree strictly smaller than the degree of g.

See, for instance, [CLO], Chapter 1, §5. The consequences of this result for
ideals in k[z] are discussed in Exercise 6 below. For polynomials in several
variables, the Hilbert Basis Theorem can be proved either as a byproduct of
the theory of Grébner bases to be reviewed in the next section (see [CLO],
Chapter 2, §5), or inductively by showing that if every ideal in a ring R is
finitely generated, then the same is true in the ring R[z] (see [AL], Chapter
1, §1, or [BW], Chapter 4, §1).
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ADDITIONAL EXERCISES FOR §1
Exercise 5. Show that (y — 2%, 2 — 23) = (z — zy,y — ) in Q[z, y, 2].

Exercise 6. Let k be any field, and consider the polynomial ring in one
variable, k[z]. In this exercise, you will give one proof that every ideal in
k[z] is finitely generated. In fact, every ideal I C k[z] is generated by a
single polynomial: I = (g) for some g. We may assume I # {0} for there is
nothing to prove in that case. Let g be a nonzero element in I of minimal
degree. Show using the division algorithm that every f in I is divisible by
g. Deduce that I = (g).

Exercise 7.
a. Let k be any field, and let n be any positive integer. Show that in k[z],

V@) = (@),

b. More generally, suppose that
p(z) = (z = a1)" -~ (z — am)*™.

What is 1/(p(z))?
c. Let £ = C, so that every polynomial in one variable factors as in b.
What are the radical ideals in Clz]?

Exercise 8. Anideal I C k[z1,...,Zy] is said to be prime if whenever a
product fg belongs to I, either f € I, or g € I (or both).

a. Show that a prime ideal is radical.

b. What are the prime ideals in C[z]? What about the prime ideals in R|z]

or Q[z]?

Exercise 9. An ideal I C k[zi,...,z,] is said to be mazimal if there

are no ideals J satisfying I C J C k[zi,...,Z,] other than J = I and

J = k[z1,...,Zn).

a. Show that (z1,%2,...,T,) is a maximal ideal in k[zy, ..., zy].

b. More generally show that if (ai,...,a,) is any point in k", then the
ideal (z; — a1,...,Zn — an) C k[Z1,. .., Ty, is maximal.

c. Show that I = (22 + 1) is a maximal ideal in R[z]. Is I maximal
considered as an ideal in C[z]?

Exercise 10. Let I be an ideal in k[z1,...,2Zy), let £ > 1 be an integer,
and let I, consist of the elements in I that do not depend on the first £
variables:

I,=1InN k[.’l?e+1, e ,:Bn].

I, is called the £th elimination ideal of I.
a. For I = (2® + 92,22 — 28) C k[z, y, z], show that y° + 23 is in the first
elimination ideal I;.
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b. Prove that I, is an ideal in the ring k[zy1, . . ., Zn).

Exercise 11. Let I, J be ideals in k[z,, ..., z,], and define
I+J={f+g:fel,geJ}.

a. Show that I + J is an ideal in k[z4, ..., Z,)-.

b. Show that I + J is the smallest ideal containing I U J.

c. fI'=(f1,...,fs)and J = (g1,...,gt), what is a finite generating set
for I + J?

Exercise 12. Let I, J be ideals in k[z1,. .., Zn).

a. Show that I N J is also an ideal in k{z1, ..., z,].

b. Define IJ to be the smallest ideal containing all the products fg where
f € I,and g € J. Show that IJ C I N J. Give an example where
IJ#1INdJ.

Exercise 13. Let I,J be ideals in k[z,,...,z,], and define I:J (called
the quotient ideal of I by J) by

I:J={f €klzy,...,z,]: fg€ Iforall ge J}

a. Show that I:J is an ideal in k[z:,. .., z,].
b. Show that if I N (k) = (g1, ..., g:) (so each g; is divisible by k), then a
basis for I:{h) is obtained by cancelling the factor of h from each g;:

I:(h) = {g1/h,...,g:/h).

82 Monomial Orders and Polynomial Division

The examples of ideals that we considered in §1 were artificially simple. In
general, it can be difficult to determine by inspection or by trial and error
whether a given polynomial f € k[zi,...,z,] is an element of a given
ideal I = (f1,..., fs), or whether two ideals I = (fi,...,fs) and J =
{g1,---,9t) are equal. In this section and the next one, we will consider a
collection of algorithms that can be used to solve problems such as deciding
ideal membership, deciding ideal equality, computing ideal intersections
and quotients, and computing elimination ideals. See the exercises at the
end of §3 for some examples.

The starting point for these algorithms is, in a sense, the polynomial
division algorithm in k{z] introduced at the end of §1. In Exercise 6 of §1,
we saw that the division algorithm implies that every ideal I C k[z] has
the form I = (g) for some g. Hence, if f € k{z], we can also use division
to determine whether f € I.
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Exercise 1. Let I = (g) in k[z] and let f € k[z] be any polynomial. Let
g, be the unique quotient and remainder in the expression f = qg + r
produced by polynomial division. Show that f € I if and only if » = 0.

Exercise 2. Formulate and prove a criterion for equality of ideals I; =
(g1) and Iy = (g2) in k[z] based on division.

Given the usefulness of division for polynomials in one variable, we may
ask: Is there a corresponding notion for polynomials in several variables?
The answer is yes, and to describe it, we need to begin by considering
different ways to order the monomials appearing within a polynomial.

(2.1) Definition. A monomial order on k[z1, ..., z,] is any relation > on

the set of monomials z® in k[z1, ..., z,] (or equivalently on the exponent

vectors a € Z%) satisfying:

a. > is a total (linear) ordering relation.

b. > is compatible with multiplication in k[z,, ..., z,], in the sense that if
z®* > zP and z7 is any monomial, then z%zY = z*+7 > 8+ = 2fg7.

¢. > is a well-ordering. That is, every non-empty collection of monomials
has a smallest element under >.

Condition a implies that the terms appearing within any polynomial f
can be uniquely listed in increasing or decreasing order under >. Then
condition b shows that that ordering does not change if we multiply f by
a monomial z7. Finally, condition c is used to ensure that processes that
work on collections of monomials, e.g. the collection of all monomials less
than some fixed monomial z©, will terminate in a finite number of steps.

The division algorithm in k[z} makes use of a monomial order implicitly:
When we divide g into f by hand, we always compare the leading term
(the term of highest degree) in g with the leading term of the intermediate
dividend. In fact there is no choice in the matter in this case.

Exercise 3. Show that the only monomial order on k[z] is the degree order
on monomials, given by
> st s >3 s S>> L
For polynomial rings in several variables, there are many choices of mono-
mial orders. In writing the exponent vectors a and 8 in monomials z* and

z? as ordered n-tuples, we implicitly set up an ordering on the variables z;
in k[zq, ...,z

Ty > Ty >0 > Tn.

With this choice, there are still many ways to define monomial orders. Two
of the most important are given in the following definitions.
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(2.2) Definition (Lexicographic Order). Let z* and z” be monomials
in k[z1,...,T,]. We say 2% >, zP if in the difference a — 3 € Z", the
left-most nonzero entry is positive.

Lexicographic order is analogous to the ordering of words used in
dictionaries.

(2.3) Definition (Graded Reverse Lexicographic Order). Let z*
and z” be monomials in k[z1, . . ., Zn]. We say T% >grepter 2P if S ai >
S B, orif Y a; = 31 Bi, and in the difference o — § € Z™, the
right-most nonzero entry is negative.

For instance in k[z, y, 2], with £ > y > 2, we have

(2.4) 23y?2 >iep x2y0212

since when we compute the difference of the exponent vectors:
(3,2,1) — (2,6,12) = (1, -4, —11),
the left-most nonzero entry is positive. Similarly,
22y® >ier 2Py'z

since in (3, 6,0) — (3,4, 1) = (0, 2, —1), the leftmost nonzero entry is posi-
tive. Comparing the lex and grevlex orders shows that the results can be
quite different. For instance, it is true that

2, 6,12 3,2
7Y 2" Zgreviex TY 2.

Compare this with (2.4), which contains the same monomials. Indeed, lex

and grevlez are different orderings even on the monomials of the same total

degree in three or more variables, as we can see by considering pairs of

monomials such as z%y?2? and zy*z. Since (2,2,2) — (1,4,1) = (1,-2,1),
22222 >0 zyl2.

On the other hand by the Definition (2.3),

4 2,22
TY 2 >g7‘evle$ Ty z.

Exercise 4. Show that both >;.; and >greyiec 8re monomial orders in
k[z1, ..., z,] according to Definition (2.1).

Exercise 5. Show that the monomials of a fized total degree d in two
variables £ > y are ordered in the same sequence by >ie; and >grevies-
Are these orderings the same on all of k[z, y] though? Why or why not?

The natural generalization of the leading term (term of highest degree) in
a polynomial in k[z] is defined as follows. Picking any particular monomial
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order > on k[z1,...,Zy]|, we consider the terms in f = ) coz®. Then
the leading term of f (with respect to >) is the product coz* where =
is the largest monomial appearing in f in the ordering >. We will use the
notation 15 (f) for the leading term, or just LT(f) if there is no chance of
confusion about which monomial order is being used.

For example, consider f = 3z3y? + x2y2z3 in Q[r,y, z] (with variables
ordered z > y > z as usual). We have

LT> e (f) = 3w3y2

since z3y? >z £2y23. On the other hand

LT> e () = 2°92°
since the total degree of the second term is 6 and the total degree of the
first is 5.

Choosing any monomial order in k[zy, ..., Z,] gives all the information
necessary to establish a generalized division algorithm.

e (Division Algorithm in k[z1,...,%,]) Fix any monomial order > in
k[z1,...,zy], and let F = (f1,..., fs) be an ordered s-tuple of poly-
nomials in k[zi,...,z,]. Then every f € k[zi,...,z,] can be written
as:

(2'5) f=afi+ - +asfs +r,
where a;, 7 € k[z1, ..., Z,)], and either r = 0, or r is a linear combination
of monomials, none of which is divisible by any of LT~ (f1), ..., LTs(fs)-

We will call r a remainder of f on division by F'.

[CLOJ, Chapter 2, §3, and [AL], Chapter 1, §5 give one particular algo-
rithmic form of the division process, in which the intermediate dividend
is reduced at each step using the divisor f; with the smallest possible i
such that vr(f;) divides the leading term of the intermediate dividend. A
characterization of the expression (2.5) that is produced by this version
of division can be found in Exercise 11 of Chapter 2, §3 of [CLO]. [AL]
and [BW], Chapter 5, §1 also consider more general forms of division or
polynomial reduction procedures.

You should note two differences between this statement and the division
algorithm in k[z]. First, we are allowing the possibility of dividing f by
an s-tuple of polynomials with s > 1. The reason for this is that we will
usually want to think of the divisors f; as generators for some particular
ideal I, and ideals in k[z1,...,z,] for n > 2 might not be generated by
any single polynomial. Second, although any algorithmic version of division,
such as the one presented in Chapter 2 of [CLO], produces one particular
expression of the form (2.5) for each ordered s-tuple F' and each f, there are
always different expressions of this form for a given f as well. Reordering
F or changing the monomial order can produce different a; and r in some
cases. See Exercises 8 and 9 below for some examples.
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We will sometimes use the notation
—F

(2.6) r=f

for a remainder on division by F.
Most computer algebra systems that have Grobner basis packages pro-
vide implementations of some form of the division algorithm. However, in

most cases the output of the division command is just the remainder TF,
the quotients a; are not saved or displayed, and an algorithm different from
the one described in [CLO], Chapter 2, §3 may be used. For instance, the
Maple grobner package contains a function normalf which computes a
remainder on division of a polynomial by any collection of polynomials.
To use it, one must start by loading the grobner package (just once in a
session) with

with(grobner) ;
The format for the normalf command is
normalf (f, F, vars, torder);

where f is the dividend polynomial, F is the ordered list of divisors (in
square brackets, separated by commas), vars is the ordered list of variables
(also in square brackets, separated by commas), and torder is either plex
for >, or tdeg for >gpcyies. For instance, if we list [x,y] for vars and
plex for torder, then we get the >, order with x > y. Let us consider
dividing fi = z%y? — z and fo = zy® + y into f = z3y? + 2xy* using the
lex order on Q[z, y] with z > y. The Maple commands

f 1= x"3%y"2 + 2%x*xy~4;
(2.7 F:= [x"2%y~2 - x, x*y"3 + y];

normalf (f,F, [x,y],plex);
will produce as output
(2.8) z? — 292

Thus the remainder is fF = z2 — 2y2. The results from normalf may be
different from those computed by the algorithm from [CLO], Chapter 2, §3
for some inputs.

ADDITIONAL EXERCISES FOR §2

Exercise 6. Verify by hand that the remainder from (2.8) occurs in an
expression
f=a1fy +azfo+3° - 27,

where a; = x, a; = 2y, and f; are as in the discussion before (2.7).
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Exercise 7. Show that reordering the variables and changing the mono-
mial order to tdeg has no effect in (2.7).

Exercise 8. What happens if you change F in (2.7) to

F = [z%® — 2%, 2y° — 4]
and take f = 22y%. Does changing the order of the variables make a
difference now?

Exercise 9. Now change F to
F = [‘szz - Z47$y3 - y4]a

take f = x2y® + 25, change vars to [z, y, 2] (and permutations of this list)
and change the monomial order. What do you observe?

83 Grobner Bases

Since we now have a division algorithm in k[zi,...,z,] that seems to
have many of the same features as the one-variable version, it is natural
to ask if deciding whether a given f € k[zi,...,2Zp] is a member of a
given ideal I = (fi,..., fs) can be done along the lines of Exercise 1 in
§2, by computing the remainder on division. One direction is easy. Namely,
from (2.5) it follows that if r = f* = 0 on dividing by F = (f1,.. ., fa),
then f = a1 f1 + -+ - + asf,. By definition then, f € {f1,..., fs). On the
other hand, the following exercise shows that we are not guaranteed to get

TF = 0 for every f € {f1,..., fs) if we use an arbitrary basis F' for I.

Exercise 1. Recall from (1.4) that p = 22 + 33z — 2 — 1 is an element
of the ideal I = (x2 + 2% — 1,22 + % + (2 — 1)2 — 4). Show, however,
that the remainder on division of p by this generating set F' is not zero.
For instance, using >;.;, we get a remainder

ﬁF= %y2z—z—z2.

What went wrong here? From (2.5) and the fact that f € I in this case,
it follows that the remainder is also an element of I. However, p* is not
zero because it contains terms that cannot be removed by division by these
particular generators for I. The leading terms of fi = z2 + 22 — 1 and
f2 = 22 + 4% + (2 — 1)? — 4 do not divide the leading term of 5*. In order
for division to produce zero remainders for all elements of I, we need to be
able to remove all leading terms of elements of I using the leading terms
of the divisors. That is the motivation for the following definition.
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(3.1) Definition. Fix a monomial order > on k[zy, ..., z,], and let I C
k[z1,...,z,] be an ideal. A Grdbner basis for I (with respect to >) is a
finite collection of polynomials G = {g1,...,9:} C I with the property
that for every nonzero f € I, ur(f) is divisible by LT(g;) for some i.

We will see in a moment (Exercise 3) that a Grobner basis for I is indeed
a basis for I, ie., I = (g1,...,9:). Of course, it must be proved that
Grobner bases ezist for all I in k[zy, ..., z,]. This can be done in a non-
constructive way by considering the ideal (LT(I)) generated by the leading
terms of all the elements in I (a monomial ideal). By a direct argument
(Dickson’s Lemma: see [CLO], Chapter 2, §4, or [BW], Chapter 4, §3, or
[AL], Chapter 1 §4), or by the Hilbert Basis Theorem, the ideal (LT(I)) has
a finite generating set consisting of monomials z¢® for i = 1,...,t. By the
definition of (Lr(I)), there is an element g; € I such that LT(g;) = z*®
foreachi=1,...,t.

Exercise 2. Show that if (Lr(I)) = (z*1,...,z*®) and if g; € T are
polynomials such that LT(g;) = z*® for each i = 1,...,t, then G =
{g91,---,9:} is a Grobner basis for I.

Remainders computed by division with respect to a Grobner basis are
much better behaved than those computed with respect to arbitrary sets
of divisors. For instance, we have the following results.

Exercise 3.

a. Show that if G is a Grobner basis for I, then for any f € I, the remainder
on division of f by G (listed in any order) is zero.

b. Deduce that I = (g1,...,4:) if G = {g1,..., 9t} is a Grobner basis for
I. (If I = (0), then G = () and we make the convention that (§) = {0}.)

Exercise 4. If GG is a Grobner basis for an ideal I, and f is an arbitrary
polynomial, show that if the algorithm of [CLO], Chapter 2, §3 is used, the
remainder on division of f by G is independent of the ordering of G. Hint:
If two different orderings of G are used, producing remainders r; and ra,
consider the difference 1 — rs.

Generalizing the result of Exercise 4, we also have the following important
statement.

® (Uniqueness of Remainders) Fix a monomial order > and let I C
k[zi1,...,z,] be an ideal. Division of f € k[z1,...,2,] by a Grobner
basis for I produces an expression f = g + r where g € I and no term
in 7 is divisible by any element of vT(I). If f = ¢’ + ' is any other such
expression, then r = r/.
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See [CLOJ, Chapter 2, §6, [AL], Chapter 1, §6, or [BW], Chapter 5, §2.
In other words, the remainder on division of f by a Grébner basis for
is a uniquely determined normal form for f modulo I depending only on
the choice of monomial order and not on the way the division is performed.
Indeed, uniqueness of remainders gives another characterization of Grébner
bases.

More useful for many purposes than the existence proof for Grébner
bases above is an algorithm, due to Buchberger, that takes an arbitrary
generating set {f1,..., fs} for I and produces a Grobner basis G for I
from it. This algorithm works by forming new elements of I using expres-
sions guaranteed to cancel leading terms and uncover other possible leading
terms, according to the following recipe.

(3.2) Definition. Let f,g € k[zi,...,z,]| be nonzero. Fix a monomial
order and let

r(f) = cz® and L1(g) = daP,

where ¢,d € k. Let 7 be the least common multiple of z® and . The
S-polynomial of f and g, denoted S(f, g), is the polynomial
T z7

Y
S(f,9) = L'I‘—(f)-f_F(g).g.

Note that by definition S(f, g) € (f, g). For example, with f = z3y —
22%y? + z and g = 3z* — y in Q[z, y], and using >;.,, we have 27 = zly,
and

S(f,9) = =f — (y/3)g = —22°y* + =* + /3.

In this case, the leading term of the S-polynomial is divisible by the
leading term of f. We might consider taking the remainder on division by
F = (f, g) to uncover possible new leading terms of elements in (f, g). And
indeed in this case we find that the remainder is

(3.3) S, 9) = —dz?y® + a? + 2oy + ¢2/3

——F
and tr(S(f,g) ) = —4x%y? is divisible by neither vr(f) nor Lr(g). An
important result about this process of forming S-polynomial remainders is
the following statement.

® (Buchberger’s Criterion) A finite set G = {g1,...,¢:} C I is a Grobner

basis of I if and only if S(g;, gj)G = 0 for all pairs ¢ # j.

See [CLO], Chapter 2, §7, [BW], Chapter 5, §3, or [AL], Chapter 1, §7.
Using this criterion above, we obtain a very rudimentary procedure for
producing a Grobner basis of a given ideal.
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e (Buchberger’s Algorithm)

Input: F = (f1,...,fs)
Output: a Grobner basis G = {g1,...,g:} for I = (F), with F C G
G:=F
REPEAT
G =G
FOR each pair p # ¢ in G’ DO

—_—C
S = S(p,q)
IF S # 0 THEN G := G U {S}
UNTILG =G’

See [CLO], Chapter 2, §6, [BW], Chapter 5, §3, or [AL], Chapter 1, §7. For

instance, in the example above we would adjoin b = S(f,g) from (3.3)
to our set of polynomials. There are two new S-polynomials to consider
now: S(f,h) and S(g, h). Their remainders on division by (f, g, h) would
be computed and adjoined to the collection if they are nonzero. Then we
would continue, forming new S-polynomials and remainders to determine
whether further polynomials must be included.

Exercise 5. Carry out Buchberger’s Algorithm on the example above,
continuing from (3.3). (You may want to use a computer algebra system
for this.)

In Maple, there is an implementation of a more sophisticated version of
Buchberger’s algorithm in the grobner package. The relevant command is
called gbasis, and the format is

gbasis(F,vars,torder) ;

Here F is a list of polynomials, vars is the list of variables, and torder
specifies the monomial order. See the description of the normalf command
in §2 for more details. For instance, the commands

F := [x"3*%y - 2%xx"2%y~2 + %,3*%x"4 - y];
gbasis(F, [x,y],plex);

will compute a lex Grobner basis for the ideal from Exercise 4. The output
is

(3.4)  [252z — 624y + 493y* — 3y, 6y* — 49y” + 48y"° — 9y]

(possibly up to the ordering of the terms, which can vary). This is not the
same as the result of the rudimentary form of Buchberger's algorithm given
before. For instance, notice that neither of the polynomials in F' actually
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appears in the output. The reason is that the gbasis function actually
computes what we will refer to as a reduced Grobner basis for the ideal
generated by the list F'.

(3.5) Definition. A reduced Gréibner basis for an ideal I C k[z1,...,z,]
is a Grébner basis G for I such that for all distinct p, ¢ € G, no monomial
appearing in p is a multiple of LT(g). A monic Grébner basis is a reduced
Grobner basis in which the leading coefficient of every polynomial is 1, or

0 if I = (0).

Exercise 6. Verify that (3.4) is a reduced Grébner basis according to this
definition.

Exercise 7. Compute a Grobner basis G for the ideal I from Exercise 1
of this section. Verify that ¢ = 0 now, in agreement with the result of
Exercise 3.

A comment is in order concerning (3.5). Many authors include the con-
dition that the leading coefficient of each element in G is 1 in the definition
of a reduced Grébner basis. However, many computer algebra systems (in-
cluding Maple, see (3.4)) do not perform that extra normalization because
it often increases the amount of storage space needed for the Grobner basis
elements when the coefficient field is Q. The reason that condition is often
included, however, is the following statement.

® (Uniqueness of Monic Grobner Bases) Fix a monomial order > on
k[z1,...,2z,). Each ideal I in k[z,, ..., z,] has a unique monic Grébner
basis with respect to >.

See [CLO], Chapter 2, §7, [AL], Chapter 1, §8, or [BW], Chapter 5, §2.
Of course, varying the monomial order can change the reduced Grobner
basis guaranteed by this result, and one reason different monomial orders
are considered is that the corresponding Grébner bases can have different,
useful properties. One interesting feature of (3.4), for instance, is that the
second polynomial in the basis does not depend on z. In other words, it
is an element of the elimination ideal I N Q[y]. In fact lex Grébner bases
systematically eliminate variables. This is the content of the Elimination
Theorem from [CLO], Chapter 3, §1. Also see Chapter 2, §1 of this book
for further discussion and applications of this remark. On the other hand,
the grevlex order often minimizes the amount of computation needed to
produce a Grobner basis, so if no other special properties are required, it
can be the best choice of monomial order. Other product orders and weight
orders are used in many applications to produce Grobner bases with special
properties. See Chapter 8 for some examples.



16 Chapter 1. Introduction

ADDITIONAL EXERCISES FOR §3

Exercise 8. Consider the ideal I = (z2y? — z, zy3 + y) from (2.7).

a. Using >, in Q[z, y|, compute a Grébner basis G for I.

b. Verify that each basis element g you obtain is in I, by exhibiting
equations g = A(z%y? — z) + B(zy® + y) for suitable A, B € Q[z, y].

c. Let f = 23y + 2zy*. What is TG? How does this compare with the
result in (2.7)?

Exercise 9. What monomials can appear in remainders with respect to
the Grobner basis G in (3.4)? What monomials appear in leading terms of
elements of the ideal generated by G?

Exercise 10. Let G be a Grébner basis for an ideal I C k[zy,...,z,] and
suppose there exist distinct p,q € G such that LT(p) is divisible by LT(q).
Show that G \ {p} is also a Grobner basis for I. Use this observation,
together with division, to propose an algorithm for producing a reduced
Grobner basis for I given G as input.

Exercise 11. This exercise will sketch a Grobner basis method for
computing the intersection of two ideals. It relies on the Elimination
Theorem for lex Grobner bases, as stated in [CLO], Chapter 3, §1. Let
I = (fi,...,fs) C k[z1,...,z,] be an ideal. Given f(t) an arbitrary
polynomial in k[t], consider the ideal

FOI = (f@&)f1,..., F@®)fs) C k[z1,...,2Zn, 1]
a. Let I, J be ideals in k[z1, . . ., z,]. Show that
INJ=(0{I+1-8)J)Nkz1,...,zn)

b. Using the Elimination Theorem, deduce that a Grébner basis G for INJ
can be found by first computing a Grébner basis H for tI + (1 — t)J
using a lex order on k[zi,...,Z,,t] with the variables ordered t > z;
for all 4, and then letting G = H N k[z1, ..., z,].

Exercise 12. Using the result of Exercise 11, derive a Grobner basis
method for computing the quotient ideal I:(h). Hint: Exercise 13 of §1
shows that if I N (h) is generated by g1, ..., g, then I: (h) is generated by

gl/h’"",gt/h'

§4 Affine Varieties

We will call the set ¥ = {(a1,...,8ap) : a1,...,a, € k} the affine n-
dimensional space over k. With k = R, for example, we have the usual
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coordinatized Euclidean space R™. Each polynomial f € k[zy,...,z,] de-
fines a function f : k™ — k. The value of f at (a1,...,a,) € k" is
obtained by substituting x; = a;, and evaluating the resulting expres-
sion in k. More precisely, if we write f = ) coz® for ¢, € k, then
fla1,...,an) =Y, caa®™ € k, where

«

a® =af*---aln

We recall the following basic fact.

® (Zero Function) If k is an infinite field, then f : k™ — k is the zero
function if and only if f = 0 € k[zy,...,z,).

See, for example, [CLO], Chapter 1, §1. As a consequence, when k is infinite,
two polynomials define the same function on k™ if and only if they are equal
in k[z1,...,2.].

The simplest geometric objects studied in algebraic geometry are the
subsets of affine space defined by one or more polynomial equations. For
instance, in R3, consider the set of (z, y, z) satisfying the equation

22 +22-1=0,

a circular cylinder of radius 1 along the y-axis (see Fig. 1.1).

Note that any equation p = ¢, where p, ¢ € k[z1, ..., Z,], can be rewrit-
ten as p — ¢ = 0, so it is customary to write all equations in the form
f = 0 and we will always do this. More generally, we could consider the
simultaneous solutions of a system of polynomial equations.

FIGURE 1.1. Circular Cylinder
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(4.1) Definition. The set of all simultaneous solutions (a1,...,a,) € k"
of a system of equations

fl((ltl,. .o ,.’En) =0
fz(ml,.. . ,(En) =0

fs(iL‘l,...,(L'n) =0

is known as the affine variety defined by fi,..., fs, and is denoted by
V(fi,---,fs). Asubset V C k™ is said to be an affine variety if V =
V(fi,...,fs) for some collection of polynomials f; € k[z1,...,zn}.

In later chapters we will also introduce projective varieties. For now,
though, we will often say simply “variety” for “affine variety.” For example,
V(22 + 22 — 1) in R3 is the cylinder pictured above. The picture was
generated using the Maple command

implicitplot3d(x~2+z~2-1,x=-2..2,y=-2..2,2=-2..2,
grid=[20,20,201);

The variety V(2% + 32 + (2 — 1) — 4) in R3 is the sphere of radius 2
centered at (0,0, 1) (see Fig. 1.2).

If there is more than one defining equation, the resulting variety can be
considered as an intersection of other varieties. For example, the variety
V(z? + 22 — 1,2% + y? + (z — 1)2 — 4) is the curve of intersection of the

FI1GURE 1.2. Sphere
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FiGURE 1.3. Cylinder-sphere intersection

cylinder and the sphere pictured above. This is shown, from a viewpoint
below the zy-plane, in Fig. 1.3.

The union of the sphere and the cylinder is also a variety, namely V((z2+
22 — 1)(z% + v + (2 — 1)? — 4)). Generalizing examples like these, we have:

Exercise 1.

a. Show that any finite intersection of affine varieties is also an affine
variety.

b. Show that any finite union of affine varieties is also an affine variety.
Hint: If V = V(f1,...,fs) and W = V(g1,...,9:), then what is
V(figj: 1<i<s1<j<t)

c. Show that any finite subset of k™, n > 1, is an affine variety.

On the other hand, consider the set S = R \ {0, 1,2}, a subset of R.
We claim S is not an affine variety. Indeed, if f is any polynomial in
R[z] that vanishes at every point of S, then f has infinitely many roots.
By standard properties of polynomials in one variable, this implies that
f must be the zero polynomial. (This is the one-variable case of the Zero
Function property given above; it is easily proved in k[z] using the division
algorithm.) Hence the smallest variety in R containing S is the whole real
line itself.

An affine variety V' C k™ can be described by many different sys-
tems of equations. Note that if g = pifi + pafe + -+ + psfs, Where
p; € k[zy,...,z,] are any polynomials, then g(a;,...,a,) = 0 at each
(a1,--.,ay) € V(f1,-.., fs). So given any set of equations defining a va-
riety, we can always produce infinitely many additional polynomials that
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also vanish on the variety. In the language of §1 of this chapter, the g as
above are just the elements of the ideal (f1,..., fs). Some collections of
these new polynomials can define the same variety as the fi,..., fs.

Exercise 2. Consider the polynomial p from (1.2). In (1.4) we saw that
pe€ (2 + 22— 1,22 + 4% + (2 — 1) — 4). Show that
@+ 22 - 1,02+ 92+ (-1 -4 = (2 + 22 - 1,4 — 22 - 2)
in Q[z, y, z]. Deduce that
V@2 4+ 221,22+ +(z-1)2 - 4) =V(z® + 2> - 1,9 — 22 - 2).

Generalizing Exercise 2 above, it is easy to see that

e (Equal Ideals Have Equal Varieties) If (f1,...,fs) = {(g1,-..,9:) in
k[x1,...,zn), then V(fi,..., fs) = V(g1,--.,9t)

See [CLO], Chapter 1, §4. By this result, together with the Hilbert Basis
Theorem from §1, it also makes sense to think of a variety as being defined

by an ideal in k{z1, ..., z,], rather than by a specific system of equations.
If we want to think of a variety in this way, we will write V' = V(I) where
I C k[z1,...,z,] is the ideal under consideration.

Now, given a variety V C k™, we can also try to turn the construction of
V from an ideal around, by considering the entire collection of polynomials
that vanish at every point of V.

(4.2) Definition. Let V' C k™ be a variety. We denote by I(V') the set
{f € k[z1,...,xz,] : fla1,-..,a,) =0for all (a3,...,a,) € V}.

We call I(V') the ideal of V for the following reason.

Exercise 3. Show that I(V) is an ideal in k{z1, . .., z,] by verifying that
the two properties in Definition (1.5) hold.

If V = V(I), is it always true that I{V) = I? The answer is no, as
the following simple example demonstrates. Consider V = V(z?) in R2.
The ideal I = (x?) in R[z, y] consists of all polynomials divisible by z2.
These polynomials are certainly contained in I(V'), since the corresponding
variety V' consists of all points of the form (0, b), b € R (the y-axis). Note
that p(z,y) = x € I(V), but = ¢ I. In this case, I(V(I)) is strictly larger
than I.

Exercise 4. Show that the following inclusions are always valid:
I cVIcIv()),
where /T is the radical of I from Definition (1.6).



§4. Affine Varieties 21

It is also true that the properties of the field &k influence the relation
between I(V(I)) and I. For instance, over R, we have V(z2 + 1) = @
and I(V(z? + 1)) = R[z]. On the other hand, if we take k = C, then
every polynomial in C[z] factors completely by the Fandamental Theorem
of Algebra. We find that V(z? + 1) consists of the two points +i € C, and
I(V(z? + 1)) = (2 + 1).

Exercise 5. Verify the claims made in the preceding paragraph. You may
want to start out by showing that if @ € C, then I({a}) = (z — a).

The first key relationships between ideals and varieties are summarized
in the following theorems.

e (Strong Nullstellensatz) If k is an algebraically closed field (such as C)
and I is an ideal in k[z1, .. ., z,], then

I(V(I)) = VI.
® (Ideal-Variety Correspondence) Let k be an arbitrary field. The maps
affine varieties — ideals
and
ideals — affine varieties

are inclusion-reversing, and V(I(V)) = V for all affine varieties V. If k
is algebraically closed, then

. I A
affine varieties — radical ideals
and
.. v . L.
radical ideals — affine varieties
are inclusion-reversing bijections, and inverses of each other.

See, for instance [CLO], Chapter 4, §2, or [AL], Chapter 2, §2. We con-
sider how the operations on ideals introduced in §1 relate to operations on
varieties in the following exercises.

ADDITIONAL EXERCISES FOR §4

Exercise 6. In §1, we saw that the polynomial p = 22 + %yzz —z—1is

in the ideal I = (2% + 22 — 1,22 + % + (z — 1)? — 4) C R[z, y, 2].

a. What does this fact imply about the varieties V(p) and V(I) in R3?
(V(I) is the curve of intersection of the cylinder and the sphere pictured
in the text.)

b. Using a 3-dimensional graphing program (e.g. Maple’s implicitplot3d
function from the plots package) or otherwise, generate a picture of the
variety V(p).
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c. Show that V(p) contains the variety W = V(z2 — 1, y? — 2). Describe
W geometrically.
d. If we solve the equation

2+ 3yPz2-2-1=0
for z, we obtain
z? -1
1- 392
The right-hand side r(z, y) of (4.3) is a quotient of polynomials or, in the
terminology of §1, a rational function in z,y, and (4.3) is the equation
of the gmph of r(z, y). Exactly how does this graph relate to the variety

V(z? + 3y*z — z — 1) in R3? (Are they the same? Is one a subset of
the other? What is the domain of r(x, y) as a function from R? to R?)

4.3 z =

Exercise 7. Show that for any ideal I C k[z1, ..., Zn), VWI = /1. Hence
VT is automatically a radical ideal.

Exercise 8. Assume k is an algebraically closed field. Show that in
the Ideal-Variety Correspondence, sums of ideals (see Exercise 11 of §1)
correspond to intersections of the corresponding varieties:

V(I +J)=VI)nV(J).
Also show that if V and W are any varieties,
LV nwW)=+IV)+ IW).
Exercise 9.
a. Show that the intersection of two radical ideals is also a radical ideal.
b. Show that in the Ideal-Variety Correspondence above, intersections

of ideals (see Exercise 12 from §1) correspond to unions of the
corresponding varieties:

vV(InJ)=V{I)UuV({J).
Also show that if V and W are any varieties,
LVUW)=1IV)nLW).
c. Show that products of ideals (see Exercise 12 from §1) also correspond
to unions of varieties:
V({IJ)=V({I)uV(J).
Assuming k is algebraically closed, how is the product I(V)I(W) related
to (VU W)?

Exercise 10. A variety V is said to be irreducible if in every expression
of V as a union of other varieties, V = V; U Vs, either Vi =V or Vo = V.
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Show that an affine variety V is irreducible if and only if I(V') is a prime
ideal (see Exercise 8 from §1).

Exercise 11.
a. Show by example that the set difference of two affine varieties:

VAW={peV:p¢g W}

need not be an affine variety. Hint: For instance, let k¥ be an infinite
field, consider k[z], and let V = k = V(0) and W = {0} = V(z).

b. Show that for any ideals I,J in kfzi,...,z,], V(I:J) contains
V(I) \ V(J), but that we may not have equality. (Here I:J is the
quotient ideal introduced in Exercise 13 from §1.)

c. If I is a radical ideal, show that any algebraic variety containing
V(I)\ V(J) must contain V(I:J). Thus V(I:J) is the smallest variety
containing the difference V(I) \ V(J); it is called the Zariski closure of
V() \ V(J). See [CLO], Chapter 4, §4.

d. Show that if I is a radical ideal and J is any ideal, then I:J is also a
radical ideal. Deduce that I(V):I(W) is the radical ideal corresponding
to the Zariski closure of V' \ W in the Ideal-Variety Correspondence.



Chapter 2

Solving Polynomial Equations

In this chapter we will discuss several approaches to solving systems of
polynomial equations. First, we will discuss a straightforward attack based
on the elimination properties of lexicographic Grébner bases. Combining
elimination with numerical root-finding for one-variable polynomials we get
a conceptually simple method that generalizes the usual techniques used
to solve systems of linear equations. However, there are potentially severe
difficulties when this approach is implemented on a computer using finite-
precision arithmetic. To circumvent these problems, we will develop some
additional algebraic tools for root-finding based on the algebraic structure
of the quotient rings k[zi,...,z,]/I. Using these tools, we will present
alternative numerical methods for approximating solutions of polynomial
systems and consider methods for real root-counting and root-isolation.
In Chapters 3, 4 and 7, we will also discuss polynomial equation solving.
Specifically, Chapter 3 will use resultants to solve polynomial equations,
and Chapter 4 will show how to assign a well-behaved multiplicity to each
solution of a system. Chapter 7 will consider other numerical techniques
(homotopy continuation methods) based on bounds for the total number
of solutions of a system, counting multiplicities.

81 Solving Polynomial Systems by Elimination
The main tools we need are the Elimination and Extension Theorems. For
the convenience of the reader, we recall the key ideas:

¢ (Elimination Ideals) If I is an ideal in k[zy,...,%,], then the fth
elimination ideal is

I, =1In k[we+1, ceey :L‘n].

Intuitively, if I = (fi,..., fs), then the elements of I, are the linear com-
binations of the fi,..., fs, with polynomial coefficients, that eliminate
Zy,...,xy from the equations f; = --- = f; = 0.

24
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® (The Elimination Theorem) If G is a Grobner basis for I with respect
to the lex order (z;1 > z2 > --- > z,) (or any order where monomi-
als involving at least one of zi,...,x, are greater than all monomials
involving only the remaining variables), then

Ge = Gﬂk[$g+1,...,wn]

is a Grobner basis of the Zth elimination ideal I,.

e (Partial Solutions) A point (ags1,-..,a,) € V(Iy) C k"¢ is called a
partial solution. Any solution (ai,...,a,) € V(I) C k™ truncates to
a partial solution, but the converse may fail—not all partial solutions
extend to solutions. This is where the Extension Theorem comes in. To
prepare for the statement, note that each f in I,_; can be written as a
polynomial in x4, whose coefficients are polynomials in z¢y1,...,Zn:

f = Cq(m€+17 s 7xn)wz +--+ C(](Il?z+1, ey I’n)

We call ¢, the leading coefficient polynomial of f if zj is the highest
power of z, appearing in f.

® (The Extension Theorem) If k is algebraically closed (e.g., K = C), then
a partial solution (a¢41, . . ., ay) in V(I;) extends to (ag, @ry1,- - ., a,) in
V(I;—1) provided that the leading coefficient polynomials of the elements
of a lez Grobner basis for I,—; do not all vanish at (ag+1, ..., an).

For the proofs of these results and a discussion of their geometric meaning,
see Chapter 3 of [CLOJ. Also, the Elimination Theorem is discussed in §6.2
of [BW] and §2.3 of [AL], and [AL] discusses the geometry of elimination
in §2.5.

The Elimination Theorem shows that a lex Grébner basis G successively
eliminates more and more variables. This gives the following strategy for
finding all solutions of the system: start with the polynomials in G with the
fewest variables, solve them, and then try to extend these partial solutions
to solutions of the whole system, applying the Extension Theorem one
variable at a time.

As the following example shows, this works especially nicely when V(I)
is finite. Consider the system of equations

z2+y2+z2=4
(1.1) 2 +2y2 =5
rz =1

from Exercise 4 of Chapter 3, §1 of [CLO]. To solve these equations, we
first compute a lex Grobner basis for the ideal they generate using Maple:

with(grobner):

PList := [x"2+y~2+z2"2-4, x"2+2xy~2-5, x*z-1];
VList := [x,y,2];

G := gbasis(PList,VList,plex);
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This gives output
G:=[22° - 32+, -1+ — 2% 14 22* - 327

From the Grobner basis it follows that the set of solutions of this system in
C3 is finite (why?). To find all the solutions, note that the last polynomial
depends only on z (it is a generator of the second elimination ideal Io =
I N Clz]) and factors nicely in Q[z]. To see this, we may use

factor(2*z~4 - 3%z"2 + 1) ;
which generates the output
(z = 1)(z + 1)(22% - 1).
Thus we have four possible z values to consider:
z = +1,+1/V2.

By the Elimination Theorem, the first elimination ideal I; = I N Cly, 2] is
generated by

v’ -2 -1

2% — 322 + 1.
Since the coefficient of 32 in the first polynomial is a nonzero constant,
every partial solution in V(I3) extends to a solution in V(I;). There are

eight such points in all. To find them, we substitute a root of the last
equation for z and solve the resulting equation for y. For instance,

subs(z=1,G) ;
will produce:
[-14z,9% - 2,0],

so in particular, y = ++/2. In addition, since the coefficient of z in the first
polynomial in the Grébner basis is a nonzero constant, we can extend each
partial solution in V(I7) (uniquely) to a point of V(I). For this value of z,
we have z = 1.

Exercise 1. Carry out the same process for the other values of z as well.
You should find that the eight points

(1,£v2,1), (-1,4+v2,-1), (V2,+V6/2,1/v2), (=v2,+V6/2,-1/v2)

form the set of solutions.

The system in (1.1) is relatively simple because the coordinates of the
solutions can all be expressed in terms of square roots of rational numbers.
Unfortunately, general systems of polynomial equations are rarely this nice.
For instance it is known that there are no general formulas involving only
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the field operations in k and extraction of roots (i.e., radicals) for solving
single variable polynomial equations of degree 5 and higher. This is a fa-
mous result of Ruffini, Abel, and Galois (see [Her]). Thus, if elimination
leads to a one-variable equation of degree 5 or higher, then we may not be
able to give radical formulas for the roots of that polynomial.

We take the system of equations given in (1.1) and change the first term
in the first polynomial from z2 to z°. Then executing

PList2 := [x~5+y~2+z"2~4, x"2+2%y~2-5, x*z-1];
VList2 := [x,y,z];
G2 := gbasis(PList,VList,plex);

produces the following lex Grébner basis:
Ga :=[2x + 225 — 22 — 32%, —10 4 z + 323 — 225 + 442,
2 — 23 — 325 +277).

In this case, the command

(1.2)

factor (2*z°7 - 3*z°5 - 2"3 + 2);
gives the factorization
227 — 325 — 22 42 = (2 - 1)(22% +22° — 2* — 2% — 222 — 22 - 2),

and the second factor is irreducible in Q[z]. In a situation like this, to
go farther in equation solving, we need to decide what kind of answer is
required.

If we want a purely algebraic, “structural” description of the solutions,
then Maple can represent solutions of systems like this via the solve
command. Let’s see what this looks like. Entering

solve(convert(G2,set),{x,y,z});
you should generate the following output:
{z = 1,y = RootOf(-2 + _Z%),z = 1},
{z = %1,y = 3 RootOf(—10 + %1 + 3%13 — 2%1° + _Z?),
= —32%12(2%1* — 1 - 3%1%)}
%1 := RootOf(2.2% +2.25 — 2z* — 7% - 2.2% 27 -2)
Here the %1 is an abbreviation for a subexpression that occurs several
times. It stands for any one root of the polynomial 2_2% + 2_.2% — _Z4 —
_Z3 —2_7% — 2_7Z — 2. Similarly, the other RootOf expressions that appear

in the solutions stand for any solution of the corresponding equation in the
dummy variable _Z.

Exercise 2. Verify that the expressions above are obtained if we solve for
z from the Grobner basis G5 and then use the Extension Theorem. How
many solutions are there of this system in in C3?
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On the other hand, in many practical situations where equations must
be solved, knowing a numerical approzimation to a real or complex solu-
tion is often more useful, and perfectly acceptable provided the results are
sufficiently accurate. In our particular case, one possible approach would
be to use a numerical root-finding method to find approximate solutions of
the one-variable equation

(1.3) 228 4225 — 2 — 23 — 222 -2, -2 =0,

and then proceed as before using the Extension Theorem, except that we
now use floating point arithmetic in all calculations. In some examples,
numerical methods will also be needed to solve for the other variables as
we extend.

One well-known numerical method for solving one-variable polynomial
equations in R or C is the Newton-Raphson method or, more simply but
less accurately, Newton’s method. This method may also be used for equa-
tions involving functions other than polynomials, although we will not
discuss those here. For motivation and a discussion of the theory behind
the method, see [BuF] or [Act].

The Newton-Raphson method works as follows. Choosing some initial
approximation zg to a root of p(z) = 0, we construct a sequence of numbers
by the rule

k41 = 2k — P(z)
P’ (2k)

fork=0,1,2,...,

where p’(z) is the usual derivative of p from calculus. In most situations,
the sequence z; will converge rapidly to a solution Z of p(z) = 0, that is,
Z = limg .o 2x Will be a root. Stopping this procedure after a finite number
of steps (as we must!), we obtain an approximation to Z. For example we
might stop when 2,1 and z; agree to some desired accuracy, or when a
maximum allowed number of terms of the sequence have been computed.
See [BuF], [Act], or the comments at the end of this section for additional
information on the performance of this technique. When trying to find all
roots of a polynomial, the trickiest part of the Newton-Raphson method is
making appropriate choices of 2g. It is easy to find the same root repeatedly
and to miss other ones if you don’t know where to look!

Fortunately, there are elementary bounds on the absolute values of the
roots (real or complex) of a polynomial p(z). Here is one of the simpler
bounds.

Exercise 3. Show that if p(z) = 2" + ap—12""! + -+ + ao is a monic
polynomial with complex coefficients, then all roots Z of p satisfy |Z| < B,
where

B = max{1, |ap—1| + - - - + |a1| + |ao|}-
Hint: The triangle inequality implies that |a + b| > |a| — |b].
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See Exercise 11 below for another better bound on the roots. Given any
bound of this sort, we can limit our attention to zy in this region of the
complex plane to search for roots of the polynomial.

Instead of discussing searching strategies for finding roots, we will use a
built-in Maple function to approximate the roots of the system from (1.2).
The Maple function fsolve finds numerical approximations to all real (or
complex) roots of a polynomial by a combination of root location and
numerical techniques like Newton-Raphson. For instance, the command

fsolve (2%z~6+2%z"5-2"4-2"3-2%z"2-2%z-2) ;

will compute approximate values for the real roots of our polynomial (1.3).
The output should be:

—1.395052015, 1.204042437.

(Note: In Maple, 10 digits are carried by default in decimal calculations;
more digits can be used by changing the value of the Maple system variable
Digits. Also, the actual digits in your output may vary slightly if you
carry out this computation using another computer algebra system.) To
get approximate values for the complex roots as well, try:

fsolve(2*z"6+2%z"~5-~2"4~-2"3-2%z"2-2*%z-2,complex) ;
We illustrate the Extension Step in this case using the approximate value
z = 1.204042437.
We substitute this value into the Grobner basis polynomials using
subs (z=1.204042437,G2) ;
and obtain
[2z — 1.661071025, —8.620421528 + 4y°, —.2 x 1078].

Note that the value of the last polynomial was not ezactly zero at our
approximate value of 2. Nevertheless, as in Exercise 1, we can extend this
approximate partial solution to two approximate solutions of the system:

(z,y, 2) = (.8305355125, +1.468027718, 1.204042437).
Checking one of these by substituting into the equations from (1.2), using
subs (z=1.204042437,y=1.468027718,x=.8305355125, G2);
we find
[0,—.4 %1078 —2 %1078,

so we have a reasonably good approximate solution, in the sense that our
computed solution gives values very close to zero in the polynomials of the
system.
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Exercise 4. Find approximate values for all other real solutions of this
system by the same method.

In considering what we did here, one potential pitfall of this approach
should be apparent. Namely, since our solutions of the one-variable equation
are only approximate, when we substitute and try to extend, the remaining
polynomials to be solved for z and y are themselves only approximate. Once
we substitute approximate values for one of the variables, we are in effect
solving a system of equations that is different from the one we started
with, and there is little guarantee that the solutions of this new system are
close to the solutions of the original one. Accumulated errors after several
approximation and extension steps can build up quite rapidly in systems
in larger numbers of variables, and the effect can be particularly severe if
equations of high degree are present.

To illustrate how bad things can get, we consider a famous cautionary
example due to Wilkinson, which shows how much the roots of a polynomial
can be changed by very small changes in the coefficients.

Wilkinson’s example involves the following polynomial of degree 20:

p(z) = ( +1)(x +2)---(z + 20) = 2%° + 2102 + - - - 4 20!.

The roots are the 20 integers x = —1,—2, ..., —20. Suppose now that we
“perturb” just the coefficient of 19, adding a very small number. We carry
20 decimal digits in all calculations. First we construct p(z) itself:

Digits := 20:
p:=1:
for k to 20 do p := p*(x+k) od:

Printing expand(p) out at this point will show a polynomial with some
large coefficients indeed! But the polynomial we want is actually this:

q := expand(p + .000000001*x"19) :
fsolve(q,x,complex) ;

The approximate roots of ¢ = p+.000000001 z'° (truncated for simplicity)
are:

— 20.03899, —18.66983 — .35064 I, —18.66983 + .35064 I,
—16.57173 — .88331 I, —16.57173 + .88331 I,

— 14.37367 — .77316 I, —14.37367 + .77316 I,

— 12.38349 — .10866 I, —12.38349 + .10866 I,

— 10.95660, —10.00771, —8.99916, —8.00005,

~ 6.999997, —6.000000, —4.99999, —4.00000,

— 2.999999, —2.000000, —1.00000.
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Instead of 20 real roots, the new polynomial has 12 real roots and 4 com-
plex conjugate pairs of roots. Note that the imaginary parts are not even
especially small!

While this example is admittedly pathological, it indicates that we should
use care in finding roots of polynomials whose coefficients are only approx-
imately determined. (The reason for the surprisingly bad behavior of this p
is essentially the equal spacing of the roots! We refer the interested reader
to Wilkinson’s paper [Wil] for a full discussion.)

Along the same lines, even if nothing this spectacularly bad happens,
when we take the approximate roots of a one variable polynomial and try
to extend to solutions of a system, the results of a numerical calculation can
still be unreliable. Here is a simple example illustrating another situation
that causes special problems.

Exercise 5. Verify that if £ > y, then
G=[z"+22+3+1° —uy,9° -y + 2]

is a lex Grobner basis for the ideal that G generates in R[z, y].

We want to find all real points (z,y) € V(G). Begin with the equation
v -y +2y =0,

which has exactly two real roots. One is y = 0, and the second is in the
interval [—2, —1] because the polynomial changes sign on that interval.
Hence there must be a root there by the Intermediate Value Theorem from
calculus. Using fsolve to find an approximate value, we find the nonzero
root is

(1.4) —1.267168305
to 10 decimal digits. Substituting this approximate value for y into G yields
[z + 2z + .999999995, .7 x 1078].
Then use
fsolve(x~2 + 2%x + .999999995) ;
to obtain
—1.000070711, —.9999292893.

Clearly these are both close to z = —1, but they are different. Taken
uncritically, this would seem to indicate two distinct real values of  when
y is given by (1.4).

Now, suppose we used an approximate value for y with fewer decimal
digits, say y = —1.2671683. Substituting this value for y gives us the
quadratic

z2 + 2z + 1.000000054.
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This polynomial has no real roots at all. Indeed, using the complex option
in fsolve, we obtain two complex values for z:

—1. —.0002323790008 I, —1. +.0002323790008 I.

To see what is really happening, note that the nonzero real root of 4% —
y?2 + 2y = 0 satisfies y° — y + 2 = 0. When the exact root is substituted
into G, we get

[z® + 2z + 1, 0]

and the resulting equation has a double root x = —1.
The conclusion to be drawn from this example is that equations with
double roots, such as the eract equation

2 +2x+1=0

we got above, are especially vulnerable to the errors introduced by numer-
ical root-finding. It can be very difficult to tell the difference between a
pair of real roots that are close, a real double root, and a pair of complex
conjugate roots.

From these examples, it should be clear that finding solutions of polyno-
mial systems is a delicate task in general, especially if we ask for information
about how many real solutions there are. For this reason, numerical meth-
ods, for all their undeniable usefulness, are not the whole story. And they
should never be applied blindly. The more information we have about the
structure of the set of solutions of a polynomial system, the better a chance
we have to determine those solutions accurately. For this reason, in §2 and
§3 we will go to the algebraic setting of the quotient ring k[zi,...,z,]/]
to obtain some additional tools for this problem. We will apply those tools
in §4 and §5 to give better methods for finding solutions.

For completeness, we conclude with a few additional words about the
numerical methods for equation solving that we have used. First, if Z is a
multiple root of p(z) = 0, then the convergence of the Newton-Raphson se-
quence 2 can be quite slow, and a large number of steps and high precision
may be required to get really close to a root (though we give a method for
avoiding this difficulty in Exercise 9). Second, there are some choices of 2g
where the sequence z;, will fail to converge to a root of p(z). See Exercise
10 below for some simple examples. Finally, the location of Z in relation to
zg can be somewhat unpredictable. There could be other roots lying closer
to 2. These last two problems are related to the fractal pictures associated
to the Newton-Raphson method over C—see, for example, [PR]. We should
also mention that there are multivariable versions of Newton-Raphson for
systems of equations and other iterative methods that do not depend on
elimination. These have been much studied in numerical analysis. For more
details on these and other numerical root-finding methods, see [BuF] and
[Act]. Also, we will discuss homotopy continuation methods in Chapter 7,
§5 of this book.
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ADDITIONAL EXERCISES FOR §1

Exercise 6. Use elimination to solve the system

0==z2%+2°%—y—22
0=2x?-8°+10z -1
0 =22 - Tyz.

How many solutions are there in R3; how many are there in C3?

Exercise 7. Use elimination to solve the system
0=z4+9y*+2°2 -2z
=z —yz—z
O0=z—-y+ 2z

How many solutions are there in R3; how many are there in C3?

Exercise 8. In this exercise we will study exactly why the performance
of the Newton-Raphson method is poor for multiple roots, and suggest a
remedy. Newton-Raphson iteration for any equation p(z) = 0 is an example
of fized point iteration, in which a starting value 2y is chosen and a sequence

(1.5) zZe+1 = 9(2k) fork=0,1,2,...

is constructed by iteration of a fixed function g(z). For Newton-Raphson

iteration, the function g(z) is g(z) = Np(2) = z — p(2)/p'(2). If the se-

quence produced by (1.5) converges to some limit Z, then Z is a fired point
of g (that is, a solution of g(z) = 2). It is a standard result from analysis

(a special case of the Contraction Mapping Theorem) that iteration as in

(1.5) will converge to a fixed point Z of g provided that |¢’(Z)| < 1, and 2

is chosen sufficiently close to Z. Moreover, the smaller |¢'(Z)| is, the faster

convergence will be. The case ¢'(Z) = 0 is especially favorable.

a. Show that each simple root of the polynomial equation p(z) = 0 is a
fized point of the rational function Np(z) = z — p(2)/p'(2).

b. Show that multiple roots of p(z) = 0 are removable singularities of
N, (2) (that is, |Np(2)| is bounded in a neighborhood of each multiple
root). How should N,, be defined at a multiple root of p(z) = 0 to make
N, continuous at those points?

c. Show that N (z) = 0 if Z is a simple root of p(z) = 0 (that is, if
p(%) = 0, but p'(z) # 0).

d. On the other hand, show that if Z is a root multiplicity k of p(z) (that
is, if p(z) = p'(2) = - - - = p*~D(Z) = 0 but p*)(2) # 0), then

lim Nj(z) =1 - 1

2—Z k )
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Thus Newton-Raphson iteration converges much faster to a simple
root of p(z) = 0 than it does to a multiple root, and the larger the
multiplicity, the slower the convergence.

e. Show that replacing p(z) by

B p(z)
Pred(2) = GCD(p(z), p'(2))

(see [CLO], Chapter 1, §5, Exercises 14 and 15) eliminates this difficulty,
in the sense that the roots of p.e4(z) = 0 are all simple roots.

Exercise 9. There are cases when the Newton-Raphson method fails to

find a root of a polynomial for lots of starting points 2.

a. What happens if the Newton-Raphson method is applied to solve the
equation z2 + 1 = 0 starting from a real 29? What happens if you take
2p with nonzero imaginary parts? Note: It can be shown that Newton-
Raphson iteration for the equation p(z) = 0 is chaotic if z is chosen in
the Julia set of the rational function N,(2) = z — p(z)/p'(z) (see [PR]),
and exact arithmetic is employed.

b. Let p(z) = 2* — 22 — 11/36 and, as above, let N,(2) = z — p(2)/p(2).
Show that +1/+/6 satisfies N,(1/v6) = —1/v6, Np(—1/v6) = 1//6,
and N (1/ v6) = 0. In the language of dynamical systems, +1//6 is
a superattracting 2-cycle for Ny,(z). One consequence is that for any 2o
close to +1/ V6, the Newton-Raphson method will not locate a root of
p. This example is taken from Chapter 13 of [Dev].

Exercise 10. This exercise improves the bound on roots of a polynomial
given in Exercise 3. Let p(z) = 2™ + @p_12""1 4+ -+ a1z + ag be a monic
polynomial in C[2]. Show that all roots Z of p satisfy |Z| < B, where

B =1+ max{|an—1l,-- ., |a1], |ac|}.

This upper bound can be much smaller than the one given in Exercise 3.
Hint: Use the Hint from Exercise 3, and consider the evaluation of p(z) by
nested multiplication:

p(z) = ( . ((z + an-—l)z + an—2)z +-- 4+ (11)2 + ap.

§2 Finite-Dimensional Algebras

This section will explore the “remainder arithmetic” associated to a
Grobner basis G = {g1,...,9:} of an ideal I C k{z1,...,z,]. Recall from
Chapter 1 that if we divide f € k[z1, ..., Z,] by G, the division algorithm
yields an expression

-G
(2.1) f=hga+ ---+hg+f,
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. =G . o o .
where the remainder f is a linear combination of the monomials z ¢
(LT(I)). Furthermore, since G is a Grobner basis, we know that f € I if

and only if 76 = 0, and the remainder is uniquely determined for all f.
This implies

e _
(2.2) f =gC«>f-gecl
Since polynomials can be added and multiplied, given f, g € k[z1, ..., Z,]
it is natural to ask how the remainders of f + ¢ and fg can be computed
if we know the remainders of f, g themselves. The following observations
show how this can be done.

® The sum of two remainders is again a remainder, and in fact one can
. =G | _g G
easily show that f +g" = f+g .

® On the other hand, the product of remainders need not be a remain-
G G

=G ——G =G .
der. But it is also easy to see that f -§°¢ = fg ,and f -g% isa
remainder.

We can also interpret these observations as saying that the set of remain-
ders on division by G has naturally defined addition and multiplication
operations which produce remainders as their results.

This “remainder arithmetic” is closely related to the quotient ring
klz1,...,2z,]/I. We will assume the reader is familiar with quotient rings,
as described in Chapter 5 of [CLO] or in a course on abstract algebra.
Recall how this works: given f € k[z,...,2z,], we have the coset

fl=f+I={f+h:hel}

and the crucial property of cosets is

(2.3) fl=lgl = f-gel
The quotient ring k[zi,...,z,]/I consists of all cosets [f] for f €
k[:l)l, . .’l)n].

From (2.1), we see that fG € {f], and then (2.2) and (2.3) show that we
have a one-to-one correspondence

remainders «—— cosets
-G
f—1fl

Thus we can think of the remainder TG as a standard representative of its
coset [f] € k[z1,...,2z,])/]. Furthermore, it follows easily that remainder
arithmetic is ezactly the arithmetic in k[z.,...,2,])/I. That is, under the
above correspondence we have

7 +3° — A1+ 1]
G
75— la-
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Since we can add elements of k[z1, ..., z,]/I and multiply by constants
(the cosets [¢] for ¢ € k), k[z1, ..., z,]/I also has the structure of a vector
space over the field k. A ring that is also a vector space in this fashion
is called an algebra. The algebra klzi,...,z,]/I will be denoted by A
throughout the rest of this section, which will focus on its vector space
structure.

An important observation is that remainders are the linear combinations
of the monomials z* ¢ (LT(I)) in this vector space structure. (Strictly
speaking, we should use cosets, but in much of this section will identify
a remainder with its coset in A.) Since this set of monomials is linearly
independent in A (why?), it can be regarded as a basis of A. In other
words, the monomials

B = {z% : z* ¢ (ux(]))}

form a basis of A (more precisely, their cosets are a basis). We will refer to
elements of B as basis monomials. In the literature, basis monomials are
often called standard monomials.

The following example illustrates how to compute in A using basis
monomials. Let

(2.4) G = {.'r2 + 3zy/2 + y?/2 — 3x/2 — 3y/2, zy® — z,y3 — y}

Using the grevlex order with £ > y, it is easy to verify that G is a Grobner
basis for the ideal I = (G) C Clz, y] generated by G. By examining the
leading monomials of G, we see that (tr(I)) = (z2,zy?, 4%). The only
monomials not lying in this ideal are those in

B = {1,z,y, 7y, y*}

so that by the above observation, these five monomials form a vector space
basis for A = C|z, y]/I over C.

We now turn to the structure of the quotient ring A. The addition op-
eration in A can be viewed as an ordinary vector sum operation once we
express elements of A in terms of the basis B in (2.4). Hence we will consider
the addition operation to be completely understood.

Perhaps the most natural way to describe the multiplication operation
in A is to give a table of the remainders of all products of pairs of elements
from the basis B. Since multiplication in A distributes over addition, this
information will suffice to determine the products of all pairs of elements
of A.

For example, the remainder of the product = - zy may be be computed
as follows using Maple. Using the Grobner basis GG, we compute

normalf (x~2*y,G, [x,y],tdeg);

and obtain

g T 3T ¥ T a¥
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Exercise 1. By computing all such products, verify that the multiplication
table for the elements of the basis B is:

1 z y zy ¢

111 =2 y zy o

z azy B <«

y|y ay y® =y

zylzy B = a zy

(2.5) vy z oy zy ¥

where
a = —3zy/2 — y?/2 + 3z/2 + 3y/2
B = 3zy/2 + 3y%/2 — 3z/2 — y/2.

This example was especially nice because A was finite-dimensional as a
vector space over C. In general, for any field k C C, we have the following
basic theorem which describes when k[z1, ..., z,]/I is finite dimensional.

¢ (Finiteness Theorem) Let £ C C be a field, and let I C k[z1,...,z,] be
an ideal. Then the following conditions are equivalent:
a. The algebra A = k[z1, ..., xz,]/I is finite-dimensional over k.
b. The variety V(I) C C" is a finite set.
c. If G is a Grobner basis for I, then for each i, 1 < ¢ < n, there is an
m; > 0 such that z]** = vr(g) for some g € G.

For a proof of this result, see Theorem 6 of Chapter 5, §3 of [CLO], Theorem
2.2.7 of [AL], or Theorem 6.54 of [BW]. An ideal satisfying any of the above
conditions is said to be zero-dimensional. Thus

A is a finite-dimensional algebra <= I is a zero-dimensional ideal.

A nice consequence of this theorem is that I is zero-dimensional if and
only if there is a nonzero polynomial in I N k[z;] for each i = 1,...,n. To
see why this is true, first suppose that I is zero-dimensional, and let G be a
reduced Grébner basis for any lez order with z; as the “last” variable (i.e.,
z; > z; for j # i). By item c above, there is some g € G with LT(g) = ™.
Since we’re using a lez order with z; last, this implies g € k[x;] and hence
g is the desired nonzero polynomial. Note that g generates I N k[z;] by the
Elimination Theorem.

Going the other way, suppose I Nk[z;] is nonzero for each ¢, and let m; be
the degree of the unique monic generator of I N k[z;] (remember that k[z;)
is a principal ideal domain—see Corollary 4 of Chapter 1, §5 of [CLO}).
Then z;** € (Lr(I)) for any monomial order, so that all monomials not in
(uT(I)) will contain x; to a power strictly less than m;. In other words, the
exponents o of the monomials z* ¢ (LT(I)) will all lie in the “rectangular
box”

R={a€Z5y: foreachi, 0 < a; <m; —1}.
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This is a finite set of monomials, which proves that A is finite-dimensional
over k.

Given a zero-dimensional ideal I, it is now easy to describe an algorithm
for finding the set B of all monomials not in (rT(I)). Namely, no matter
what monomial order we are using, the exponents of the monomials in
B will lie in the box R described above. For each a € R, we know that
z* ¢ (ur(I)) if and only if 7%° = z*. Thus we can list the & € R in some
systematic way and compute 75 for each one. A vector space basis of A
is given by the set of monomials

Bz{m“:aeRandFG=z°‘}.

See Exercise 13 below for a Maple procedure implementing this method.
The vector space structure on A = k[z1,...,z,]/] for a zero-
dimensional ideal I can be used in several important ways. To begin, let
us consider the problem of finding the monic generators of the elimina-
tion ideals I N k[z;]. As indicated above, we could find these polynomials
by computing several different lex Grobner bases, reordering the variables
each time to place z; last. This is an extremely inefficient method, however.
Instead, let us consider the set of non-negative powers of [z;] in A:

S = {1, [.’17,'], [51),']2, .o }

Since A is finite-dimensional as a vector space over the field k, S must
be linearly dependent in A. Let m; be the smallest positive integer for

which {1, [z;], [z:]?, - . -, [z:i]™} is linearly dependent. Then there is a linear
combination

> _clzil = 0]

7=0

in A in which ¢; € k are not all zero. In particular, ¢,,; # 0 since m; is
minimal. By the definition of the quotient ring, this is equivalent to saying
that

my
(2.6) pi(z:) = chmf €l
—

Exercise 2. Verify that p;(z;) as in (2.6) is a generator of the ideal
I N k[z;], and develop an algorithm based on this fact to find the monic
generator of I N kfz;], given any Grobner basis G for a zero-dimensional
ideal I as input.

The algorithm suggested in Exercise 2 often requires far less computa-
tional effort than a lex Grobner basis calculation. Any ordering (e.g. greviex)
can be used to determine G, then only standard linear algebra (matrix op-
erations) are needed to determine whether the set {1, [z;], [z:]?, .. ., [z:]™}
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is linearly dependent. We note that the finduni function from Maple’s
grobner package is an implementation of this method.

We will next discuss how to find the radical of a zero-dimensional ideal
(see Chapter 1 for the definition of radical). To motivate what we will
do, recall from §1 how multiple roots of a polynomial can cause problems
when trying to find roots numerically. When dealing with a one-variable
polynomial p with coefficients lying in a subfield of C, it is easy to see that
the polynomial

B P
Pred = GCD(p, p)

has the same roots as p, but all with multiplicity one (for a proof of this, see
Exercises 14 and 15 of Chapter 1, §5 of [CLO]). We call p,.q the square-free
part of p.

The radical v/T of an ideal I generalizes the idea of the square-free part
of a polynomial. In fact, we have the following elementary exercise.

Exercise 3. If p € k[z] is a nonzero polynomial, show that \/(p) = (Dred)-

Since k[z] is a PID, this solves the problem of finding radicals for all
ideals in k[z]. For a general ideal I C k[z1,..., %], it is more difficult
to find /I, though algorithms are known and have been implemented
in Axiom, Macaulay, REDUCE, and Singular. Fortunately, when I is
zero-dimensional, computing the radical is much easier, as shown by the
following proposition.

(2.7) Proposition. Let I C Clzy,...,z,] be a zero-dimensional ideal.
For each i = 1,...,n, let p; be the unique monic generator of I N C[x;],
and let p; req be the square-free part of p;. Then

\/j =TI+ (pl,reda s 7pn,red>-

PRrOOF. Write J = I + (D1 red;- - - Pn,red). We first prove that J is a
radical ideal, i.e., that J = v/J. For each 4, using the fact that C is alge-
braically closed, we can factor each p; req to obtain p; req = (T; — a41)(z; —
ai2) - - - (Z; — @iq;), where the a;; are distinct. Then

J = J+ (prrea) = [ + (21 — ayj)),
J
where the first equality holds since p; req € J and the second follows from
Exercise 9 below since p; req has distinct roots. Now use p req to decompose
each J + (z; — ay;) in the same way. This gives

J= ﬂ(J + (z1 — a1j, T2 — G2x))-
gk
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If we do this for all = 1,2,...,n, we get the expression

J = n (J+(.’I:1~a1j1,...,mn—anjn)).

Jireendn

Since (z1 — a1j,,...,Zn — Gnj,) is a maximal ideal, the ideal J + (z;, —
@1y -+ - Tn — Qnj,) is either (1 — a1j,,...,%n — Gnj,) or the whole ring
Clzy,. .., zy). It follows that J is a finite intersection of maximal ideals.
Since a maximal ideal is radical and an intersection of radical ideals is
radical, we conclude that J is a radical ideal.

Now we can prove that J = +/I. The inclusion I C J is built into
the definition of J, and the inclusion J C /T follows from the Strong
Nullstellensatz, since the square-free parts of the p; vanish at all the points
of V(I). Hence we have

IcJcVI
Taking radicals in this chain of inclusions shows that v/J = +/I. But J is
radical, so v/J = J and we are done. 0

A Maple procedure that implements an algorithm for the radical of a
zero-dimensional ideal based on Proposition (2.7) is discussed in Exercise
16 below. It is perhaps worth noting that even though we have proved
Proposition (2.7) using the properties of C, the actual computation of
the polynomials p; req will involve only rational arithmetic when the input
polynomials are in Q[z1, ..., z,).

For example, consider the ideal

(2.8) I = (y'z + 33 —y* — 322, 2%y — 222, 29z — 23 — 2 + 2?)

Exercise 4. Using Exercise 2 above, show that
INQlz] = (2* ~ 2%
and
INQlyl = (¥° - 2y").

Writing p1(z) = z3 — 22 and p2(y) = ¥° — 2y%, we can compute the

square-free parts in Maple as follows. The command
pired := simplify(p1/gcd(pl,diff(p1,x)));
will produce
P1red(z) = z(z — 1).
Similarly,

P2,red(y) = y(y — 2).
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Hence by Proposition (2.7), VT is the ideal
(y*z + 323 — y* — 322, 2%y — 222, 2%z — 23 — 2t + 2% 2(x — 1), y(y — 2)).

We note that Proposition (2.7) yields a basis, but usually not a Grébner
basis, for V1.

Exercise 5. How do the dimensions of the vector spaces C[z,y]/I and
C[z, y]/V/T compare in this example? How could you determine the number
of distinct points in V(I)? (There are two.)

We will conclude this section with a very important result relating the
dimension of A and the number of points in the variety V(I), or what is
the same, the number of solutions of the equations f; = --- = f;, = 0 in
C™. To prepare for this we will need the following lemma.

(2.9) Lemma. LetS = {p1,...,0m} be a finite subset of C". There exist

polynomials g; € Clzy,...,2,], 4 = 1,...,m, such that
oy JO ifi# 3, and
9:(ps) = {1 ifi=j.
For instance, if p; = (ai1,...,6in) and the first coordinates a;; are

distinct, then we can take

[14i(aa — aj1)

as in the Lagrange interpolation formula. In any case, a collection of poly-
nomials g; with the desired properties can be found in a similar fashion. We
leave the proof to the reader as Exercise 11 below. The following theorem
ties all of the results of this section together, showing how the dimension

of the algebra A for a zero-dimensional ideal gives a bound on the number
of points in V(I), and also how radical ideals are special in this regard.

gi = gi(ﬂh) =

(2.10) Theorem. Let I be a zero-dimensional ideal in C[z,, ..., z,], and
let A = Clzy,...,z,)/I. Then dimc(A) is greater than or equal to the
number of points in V(I). Moreover, equality occurs if and only if I is a
radical ideal.

PrOOF. Let I be a zero-dimensional ideal. By the Finiteness Theorem,
V(I) is a finite set in C", say V(I) = {p1, ..., Pm}. Consider the mapping

¢ :Clzy,...,z,]/I — C™
[f] = (f(pl), .. 7f(pm))

given by evaluating a coset at the points of V(I). In Exercise 12 below,
you will show that ¢ is a well-defined linear map.
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To prove the first statement in the theorem, it suffices to show that ¢
is onto. Let g1, ..., gm be a collection of polynomials as in Lemma (2.9).
Given an arbitrary (A1,...,An) € C™, let f = Y 7", Aigi. An easy com-
putation shows that ¢([f]) = (A1,...,Am). Thus ¢ is onto, and hence
dim(A) > m.

Next, suppose that I is radical. If [f] € ker(yp), then f(p;) = 0 for all
i, so that by the Strong Nullstellensatz, f € I(V(I)) = +I = I. Thus
[f] = [0], which shows that ¢ is one-to-one as well as onto. Then ¢ is an
isomorphism, which proves that dim(A) = m if I is radical.

Conversely, if dim(A) = m, then ¢ is an isomorphism since it is an
onto linear map between vector spaces of the same dimension. Hence ¢ is
one-to-one. We can use this to prove that I is radical as follows. Since the
inclusion I C /T always holds, it suffices to consider f € VI = I(V(I))
and show that f € I. If f € /I, then f(p;) = O for all 4, which implies
o([f]) = (0,...,0). Since g is one-to-one, we conclude that [f] = [0], or in
other words that f € I, as desired. O

In Chapter 4, we will see that in the case I is not radical, there are
well-defined multiplicities at each point in V(I) so that the sum of the
multiplicities equals dim(A).

ADDITIONAL EXERCISES FOR §2

Exercise 6. Using the grevlex order, construct the monomial basis B for
the quotient algebra A = C|z,y]/I, where I is the ideal from (2.8) and
construct the multiplication table for B in A.

Exercise 7. In this exercise, we will explain how the ideal I = (z? +
3zy/2 + y?/2 — 3x/2 — 3y/2, zy® — z,y3 — y) from (2.4) was constructed.
The basic idea was to start from a finite set of points and construct a
system of equations, rather than the reverse.

To begin, consider the maximal ideals

L=(zy), L=(@-Ly-1),
I3=<‘77+17y—1)’ I4=($“1,y+1),
Iy =(z -2,y +1)

in C[z,y]. Each variety V(I;) is a single point in C?, indeed in Q* C
C2. The union of the five points forms an affine variety V, and by the
algebra-geometry dictionary from Chapter 1, V = V(I; NI, N--- N I5).

An algorithm for intersecting ideals is described in Chapter 1. Use it
to compute the intersection I = I; N I3 N --- N I5 and find the reduced
Grébner basis for I with respect to the grevlex order (z > y). Your result
should be the Grobner basis given in (2.4).
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Exercise 8.

a. Use the method of Proposition (2.7) to show that the ideal I from (2.4)
is a radical ideal.

b. Give a non-computational proof of the statement from part a using the
following observation. By the form of the generators of each of the ideals
I, in Exercise 7, V(I;) is a single point and I; is the ideal I(V(I)). As
a result, I; = \/I—J by the Strong Nullstellensatz. Then use the general
fact about intersections of radical ideals from part a Exercise 9 from §4
of Chapter 1.

Exercise 9. This exercise is used in the proof of Proposition (2.7). Suppose
we have an ideal I C k[zi,...,z,], and let p = (z1 — a1) - - (1 — aq),
where a1, ..., aq are distinct. The goal of this exercise is to prove that

I+(p)= ﬂ(f + (z1 — a5)).

Prove that I + (p) C ,;(I + (z1 — aj)).

Let p; = [L;4;(z1 — as)- Prove that p; - (I + (z1 — a;)) C I + (p).

c. Show that py, ..., p, are relatively prime, and conclude that there are
polynomials hy, ..., h, such that 1 = 3. h;p;.

d. Prove that (),(I+(z1—a;)) C I+(p). Hint: Given h in the intersection,

write b = 3~ h;p;h and use part b.

e

Exercise 10. (The Dual Space of k[z1,...,z,]/I) Recall that if V is a
vector space over a field k&, then the dual space of V, denoted V*, is the
k-vector space of linear mappings L : V — k. If V is finite-dimensional,
then so is V*, and dimV = dim V*. Let I be a zero-dimensional ideal in

k[z1,...,z,], and consider A = k[zy,...,zy]/] with its k-vector space
structure. Let G be a Grébner basis for I with respect to some monomial
ordering, and let B = {z*(, ... 2%(9} be the corresponding monomial

basis for A, so that for each f € k[z:,..., T,
-G d .
A SR

=1

for some c;(f) € k.

a. Show that each of the functions c¢;(f) is a linear function of f €
k[z1,...,zn). Moreover, show that ¢;(f) = 0 for all j if and only if
f € I, or equivalently [f] = 0 in A.

b. Deduce that the collection B* of mappings c; given by f — ¢;(f),
j=1,...,d gives a basis of the dual space A*.

c. Show that B* is the dual basis corresponding to the basis B of A. That
is, show that

(pay — J1 ifi=j
(@) {O otherwise.
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Exercise 11. Let S = {p1,...,pm} be a finite subset of C™.

a. Show that there exists a linear polynomial £(z1, ..., z,) whose values
at the points of S are distinct.

b. Using the linear polynomial ¢ from part a, show that there exist
polynomials g; € C[z,...,2,], %7 = 1,...,m, such that

0 ifi#j,and

Hint: Mimic the construction of the Lagrange interpolation polynomials
in the discussion after the statement of Lemma (2.9).

Exercise 12. As in Theorem (2.10), suppose that V(I) = {p1,...,0m}-
a. Prove that the map ¢ : C[zy,...,z,]/I — C™ given by evaluation at

D1, - - -, Pm is a well-defined linear map. Hint: [f] = [g] implies f —¢g € I.
b. We can regard C™ as a ring with coordinate-wise multiplication. Thus

(0,1, ‘e ,am) . (bl, .. ,bm) = (albl, .. .,ambm).

With this ring structure, C™ is a direct product of m copies of C. Prove
that the map ¢ of part a is a ring homomorphism.

c. Prove that ¢ is a ring isomorphism if and only if I is radical. This
means that in the radical case, we can express A as a direct product
of the simpler rings (namely, m copies of C). In Chapter 4, we will
generalize this result to the nonradical case.

Exercise 13. The following (very rudimentary) Maple procedure auto-
mates the process of finding the monomial basis B for a the quotient algebra
A = k[z1,...,z,])/] for a zero-dimensional ideal I.

kbasis := proc(PList,VList,torder)

# returns a list of monomials forming a basis of the quotient
# ring k[VList]/<PList> if the ideal is O-dimensional, and
# generates an error if it is not

local B,C,G,v,t,1,m;

if finite(PList,VList) then
G := gbasis(PList,VList,torder);
B := [1];
for v in VList do

m := degree(finduni(v,G,VList),v);

C :=B;

for t inCdo

for 1 tom-1do
t = t*v;
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if normalf (t,G,VList,torder) =t then
B := [op(B), t]
fi;
od;
od;

od;
RETURN(B)
else
ERROR(’Ideal is not zero-dimensional, no finite basis’)
fi
end:

a. Show that this procedure correctly computes {z* : z* ¢ (Lr(I))} if A

is a finite-dimensional vector space over &, and terminates for all inputs.
b. Use this kbasis procedure to check the results for the ideal from (2.4).
c. Use this procedure to check your work from Exercise 6 above.

Exercise 14. The algorithm used in the procedure from Exercise 13 can
be improved considerably. The “box” R that kbasis searches for elements
of the complement of (LT(I)) is often much larger than necessary. This is
because the call to finduni, which finds a monic generator for I N k[z;]
for each i, gives an m; such that z[** € (ur(I)), but m; might not be as
small as possible. For instance, consider the ideal I from (2.4). The monic
generator of I N Clz] has degree 4 (check this). Hence kbasis computes

22, 23 and rejects these monomials since they are not remainders. But
the Grébner basis G given in (2.4) shows that 22 € (17([)). Thus a smaller
set of a containing the exponents of the monomial basis B can be de-
termined directly by examining the leading terms of the Grobner basis G,
without using finduni to get the monic generator for I Nk[z;]. Develop and
implement an improved kbasis that takes this observation into account.

Exercise 15. Using your improved kbasis procedure, develop and
implement a procedure that computes the multiplication table for a
finite-dimensional algebra A.

Exercise 16. Implement the following Maple procedure for finding the
radical of a zero-dimensional ideal given by Proposition (2.7) and test it on
the examples from this section.

zdimradical := proc(PList,VList)

# constructs a set of generators for the radical of a
# zero-dimensional ideal.

local p,pred,v,RList;
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if finite(PList,VList) then
RList := PList;
for v in VList do
p := finduni(v,PList,VList);
pred := simplify(p/gcd(p,diff(p,v)));
RList:=[op(RList) ,pred];
od;
RETURN(RList)
else
ERROR(‘Ideal not zero-dimensional; method does not apply‘)
fi
end:

§3 Grobner Basis Conversion

In this section, we will use linear algebra in A = k[z1,...,z,]/I to show
that a Grobner basis G for a zero-dimensional ideal I with respect to one
monomial order can be converted to a Grobner basis G’ for the same ideal
with respect to any other monomial order. The process is sometimes called
Grébner basis conversion, and the idea comes from a paper of Faugere,
Gianni, Lazard, and Mora [FGLM)]. We will illustrate the method by con-
verting from an arbitrary Grobner basis G to a lex Grobner basis Gy,
(using any ordering on the variables). The Grobner basis conversion method
is often used in precisely this situation, so that a more favorable monomial
order (such as grevlez) can be used in the application of Buchberger’s al-
gorithm, and the result can then be converted into a form more suited for
equation solving via elimination. For another discussion of this topic, see
[BW], §1 of Chapter 9.

The basic idea of the Faugere-Gianni-Lazard-Mora algorithm is quite
simple. We start with a Grébner basis G for a zero-dimensional ideal I,
and we want to convert G to a lez Grobner basis G, for some lex order.
The algorithm steps through monomials in kfzi, ..., z,] in increasing lex
order. At each step of the algorithm, we have a list Giez = {g1,-.., 9k} of
elements in I (initially empty, and at each stage a subset of the eventual
ler Grobner basis), and a list By, of monomials (also initially empty, and
at each stage a subset of the eventual lexz monomial basis for A). For each
input monomial z (initially 1), the algorithm consists of three steps:

(3.1) Main Loop. Given the input z®, compute 7. Then:
a. If 72 is linearly dependent on the remainders (on division by G) of the
monomials in Bje,, then we have a linear combination

— — G
zo° — Y ezt =0,
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where z2U) € By, and ¢; € k. This implies that
g=2z%— chjma(j) €l

We add g to the list G, as the last element. Because the z* are con-
sidered in increasing lex order (see (3.3) below), whenever a polynomial
g is added to Gieg, its leading term is LT(g) = z* with coefficient 1.

b. If 7€ is linearly independent from the remainders (on division by G)
of the monomials in B, then we add z* to By, as the last element.

After the Main Loop acts on the monomial %, we test Gie, to see if we
have the desired Grébner basis. This test needs to be done only if we added
a polynomial g to Gje; in part a of the Main Loop.

(3.2) Termination Test. If the Main Loop added a polynomial g to Giex,
then compute rT(g). If LT(g) is a power of z;, where x; is the greatest
variable in our lexz order, then the algorithm terminates.

The proof of Theorem (3.4) below will explain why this is the correct way
to terminate the algorithm. If the algorithm does not stop at this stage, we
use the following procedure to find the next input monomial for the Main
Loop:

(3.3) Next Monomial. Replace £ with the next monomial in lex order
which is not divisible by any of the monomials r1(g;) for g; € Gies-

Exercise 3 below will explain how the Next Monomial procedure works.
Now repeat the above process by using the new z* as input to the Main
Loop, and continue until the Termination Test tells us to stop.

Before we prove the correctness of this algorithm, let’s see how it works
in an example.

Exercise 1. Consider the ideal

2

I ={zy+2z—x2,2° - 2,223 — z?yz — 1)

in Q[z, y, z]. For grevler order with £ > y > z, I has a GrGbner basis
G = {f1, f2, f3, fa}, where

fi=2—32% —dyz + 22 —y+ 22 -2

fo=y22 +2yz - 222+ 1

fa=yi—2yz+22 -2

fa=z+y—z
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Thus (Lt(l)) = (2%, 922,92, z), B = {1,y, 2, 22, 23, y2z}, and a remainder
f is a linear combination of elements of B. We will use basis conversion
to find a lex Grobner basis for I, with z > y > =z.

a. Carry out the Main Loop for z% = 1, z, 22, 23, z*, 2%, 28. At the end of

doing this, you should have
Glez = {2% — 2% — 22° + 1}
Biex = {1, z, 22,23, 24, 2°}.

Hint: The following computations will be useful:

%=1

z¢ = —-y+z
20 =2
FG = —yz + 2
717 = 2
Fc=z3+2yz——2z2+1
=2

Note that TG, .- ,EG are linearly independent while FG is a linear

combination of FG, FG and 1°. This is similar to Exercise 2 of §2.

b. After we apply the Main Loop to z%, show that the monomial provided
by the Next Monomial procedure is y, and after y passes through the
Main Loop, show that

Grez = {28 — 25 - 22% + 1,y — 2% + 2}
Bier = {1,z,22, 23, 2%, 2°}.
c. Show that after y, Next Monomial produces z, and after z passes through

the Main Loop, show that

Grex = {2® —2° - 223 + 1,y — 2° + 7,2z — 27}

2.3 .4 .5
B = {1, 2,2, 2°, 2%, z°}.

d. Check that the Termination Test (3.2} terminates the algorithm when
Gle is as in part c¢. Hint: We're using lez order with z > y > .
e. Verify that Gie, from part ¢ is a lex Grébner basis for 1.

We will now show that the algorithm given by (3.1), (3.2) and (3.3)
terminates and correctly computes a lex Grébner basis for the ideal I.

(3.4) Theorem. The algorithm described above terminates on every in-
put Grobner basis G generating a zero-dimensional ideal I, and correctly
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computes a lex Grobner basis Giep for I and the lex monomial basis Bjey
for the quotient ring A.

PRrROOF. We begin with the key observation that monomials are added
to the list Bj., in strictly increasing lex order. Similarly, if G, =

{gl7 R 7gk}7 then
LT(gl) <tez *** <lex LT(gk)a

where >, is the lex order we are using. We also note that when the Main
Loop adds a new polynomial gri1 t0 Giez = {¢1,-.-,9x}, the leading
term LT(gk+1) is the input monomial in the Main Loop. Since the input
monomials are provided by the Next Monomial procedure, it follows that
for all k,

(3.5) LT(gr+1) is divisible by none of L1(g91), ..., LT(gk).

We can now prove that the algorithm terminates for all inputs G gener-
ating zero-dimensional ideals. If the algorithm did not terminate for some
input G, then the Main Loop would be executed infinitely many times, so
one of the two alternatives in (3.1) would be chosen infinitely often. If the
first alternative were chosen infinitely often, Gi., would give an infinite list
Lr(g1), LT(g2), - - . of monomials. However, we have:

e (Dickson’s Lemma) Given an infinite list z*(!), 2% ... of monomials
in k[zy,...,x,], there is an integer N such that every z2(®) is divisible
by one of 22 .., zo(),

(See, for example, Exercise 7 of [CLO], Chapter 2, §4). When applied to
11(g1), LT(g2), - - ., Dickson’s Lemma would contradict (3.5). On the other
hand, if the second alternative were chosen infinitely often, then B, would
give infinitely many monomials ) whose remainders on division by G
were linearly independent in A. This would contradict the assumption that
I is zero-dimensional. As a result, the algorithm always terminates for G
generating a zero-dimensional ideal I.

Next, suppose that the algorithm terminates with Gier = {g1,--., 9k}
By the Termination Test (3.2), LT(gx) = z3*, where 1 >iez *** >iex Tn-
We will prove that Gj., is a lex Grobner basis for I by contradiction.
Suppose there were some g € I such that r1T(g) is not a multiple of any of
the tT(g;), i = 1,..., k. Without loss of generality, we may assume that g
is reduced with respect to Gje, (replace g by g&ie=).

If LT(g) is greater than LT(gx) = z}*, then one easily sees that LT(g) is
a multiple of LT(gx) (see Exercise 2 below). Hence this case can’t occur,
which means that

L1(g;) < ur(g) < LT(gi+1)

for some 7 < k. But recall that the algorithm places monomials into Bje,
in strictly increasing order, and the same is true for the LT(g;). All the
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non-leading monomials in g must be less than T(g) in the lez order. They
are not divisible by any of LT(g;) for j < i, since g is reduced. So, the non-
leading monomials that appear in g would have been included in B, by
the time LT(g) was reached by the Next Monomial procedure, and g would
have been the next polynomial after g; included in G, by the algorithm
(i.e., g would equal g;11). This contradicts our assumption on g, which
proves that Gj, is a lex Grébner basis for 1.

The final step in the proof is to show that when the algorithm terminates,
Bic consists of all basis monomials determined by the Grébner basis Giey-
We leave this as an exercise for the reader. O

ApDITIONAL EXERCISES FOR §3

Exercise 2. Consider the lex order with z; > --- > z, and fix a power
z¢ of z;. Then, for any monomial z* in k[zy, ..., z,], prove that * > z§
if and only if x is divisible by z§.

Exercise 3. Suppose Gie; = {g1,--., 9k}, where LT(g1) < --+ < LT(gk),
and let £ be a monomial. This exercise will show how the Next Monomial
(3.3) procedure works, assuming that our lex order satisfies z; > --- > z,.
Since this procedure is only used when the Termination Test fails, we can
assume that L1(gy) is not a power of ;.

a. Use Exercise 2 to show that none of the LT(g;) divide z
b. Now consider the largest 1 < k < n such that none of the L1(g;) divide

the monomial

a1+1
1 .

ay ag—1_ar+1
Iy Ty 1 Ty .

By part a, k = 1 has this property, so there must be a largest such k. If
z? is the monomial corresponding to the largest k, prove that z? > z°
is the smallest monomial (relative to our lex order) greater than z*
which is not divisible by any of the LT(g;).

Exercise 4. Complete the proof of Theorem (3.4) by showing that when
the basis conversion algorithm terminates, the set By, gives a monomial
basis for the quotient ring A.

Exercise 5. Use Grobner basis conversion to find lex Grobner bases for
the ideals in Exercises 6 and 7 from §1. Compare with your previous results.

Exercise 6. What happens if you try to apply the basis conversion algo-
rithm to an ideal that is not zero-dimensional? Can this method be used
for general Grobner basis conversion? What if you have more information
about the lex basis elements, such as their total degrees, or bounds on those
degrees?
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Exercise 7. Show that the output of the basis conversion algorithm is
actually a monic reduced lez Grobner basis for I = (G).

Exercise 8. Implement the basis conversion algorithm outlined in (3.1),
(3.2) and (3.3) in a computer algebra system. Hint: Exercise 3 will be useful.
For a more complete description of the algorithm, see pages 428433 of
[BW].

§4 Solving Equations via Eigenvalues

The central problem of this chapter, finding the solutions of a system of
polynomial equations f; = fo = --- = fs = 0 over C, rephrases in fancier
language to finding the points of the variety V(I), where I is the ideal
generated by f1,..., fs. When the system has only finitely many solutions,
i.e., when V() is a finite set, the Finiteness Theorem from §2 says that
I is a zero-dimensional ideal and the algebra A = Clzi,...,z,]/I is a
finite-dimensional vector space over C. The first half of this section exploits
the structure of A in this case to evaluate an arbitrary polynomial f at
the points of V(I); in particular evaluating the polynomials f = x; gives
the coordinates of the points (Corollary (4.6) below). The values of f on
V(I) turn out to be eigenvalues of certain linear mappings on A, and the
remainder of the section discusses techniques for evaluating them.

We begin with the easy observation that given a polynomial f €
C[z1,--.,%n], we can use multiplication to define a linear map my from
A = C[zy,...,Tn)/I to itself. More precisely, f gives the coset [f] € A,
and we deﬁne mys : A — A by the rule: if [g] € A, then

my([g]) = [f] - [9] = [fg] € A.

Then my has the following basic properties.

(4.1) Proposition. Let f € C[zy,...,z,). Then

a. The map my is a linear mapping from A to A.

b. We have my = my ezactly when f — g € I. Thus two polynomials give
the same linear map if and only if they differ by an element of I. In
particular, my is the zero map exactly when f € I.

PRrROOF. The proof of part a is just the distributive law for multiplication
over addition in the ring A. If [g], [h] € A and ¢ € k, then

m(clg] + [h]) = [f]- (clg] +[A]) = c[f]- [g]+ [f]- [h] = cm((g]) +my([R])-

Part b is equally easy. Since [1] € A is a multiplicative identity, if my = my,
then

(] = [f]- [1] = ms((1]) = my((1]) = [g] - [1] = [g],
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so f—g € I. Conversely, if f —g € I, then [f] = [g]in A,som; =mg. O

Since A is a finite-dimensional vector space over C, we can represent m
by its matrix with respect to a basis. For our purposes, a monomial basis
B such as the ones we considered in §2 will be the most useful, because
once we have the multiplication table for the elements in B, the matrices
of the multiplication operators ms can be read off immediately from the
table. We will denote this matrix also by my, and whether m refers to the
matrix or the linear operator will be clear from the context. Proposition
(4.1) implies that my = mzc, SO that we may assume that f is a remainder.

For example, for the ideal I from (2.4) of this chapter, the matrix for the
multiplication operator by f may be obtained from the table (2.5) in the
usual way. Ordering the basis monomials as before,

B = {17 z,Y,TY, y2}7

we make a 5 X 5 matrix whose jth column is the vector of coefficients in the
expansion in terms of B of the image under my of the jth basis monomial.
With f = z, for instance, we obtain

0 0 0 0 0
1 3/2 0 -3/2 1
me=|0 3/2 0 —1/2 0
0 -3/2 1 3/2 0
0 -1/2 0 3/2 0

Exercise 1. Find the matrices m;, my, m;,_,2> with respect to B in this
example. How do m,2 and (m,)? compare? Why?

We note the following useful general properties of the matrices my (the
proof is left as an exercise).

(4.2) Proposition. Let f, g be elements of the algebra A. Then

a. Myypg = My + My.

b. ms.g = my - my (where the product on the right means composition of
linear operators or matriz multiplication).

This proposition says that the map sending f € Clzy,...,z,] to the
matrix mys defines a ring homomorphism from C[z,,...,z,] to the ring
M;y4(C) of d x d matrices, where d is the dimension of A as a C-vector
space. Furthermore, part b of Proposition (4.1) and the Fundamental
Theorem of Homomorphisms show that [f] — m induces a one-to-one ho-
momorphism A — My, 4(C). A discussion of ring homomorphisms and the
Fundamental Theorem of Homomorphisms may be found in Chapter 5, §2
of [CLO], especially Exercise 16. But the reader should note that My 4(C)
is not a commutative ring, so we have here a slightly more general situation
than the one discussed there.
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For use later, we also point out a corollary of Proposition (4.2). Let h(t) =
S citt € Clt] be a polynomial. The expression h(f) = 31— ¢; f* makes
sense as an element of Clzy, ..., ,). Similarly h(ms) = 31" ci(my)* is
a well-defined matrix (the term ¢y should be interpreted as col, where I is
the d x d identity matrix).

(4.3) Corollary. In the situation of Proposition (4.2), let h € C[t] and
f € Clzy,...,z,]. Then

M) = h(my).

Recall that a polynomial f € C[zy,.. ., z,] gives the coset [f] € A. Since
A is finite-dimensional, as we noted in §2 for f = x;, theset {1, [f], [f]%,-. .}
must be linearly dependent in the vector space structure of A. In other
words, there is a linear combination

m .

> alflf =0

i=0
in A, where ¢; € C are not all zero. By the definition of the quotient ring,
this is equivalent to saying that

(4'4) Z Cifi SR
i=0

Hence }_[" ¢;f* vanishes at every point of V(I).

Now we come to the most important part of this discussion, culminating
in Theorem (4.5) and Corollary (4.6) below. We are looking for the points in
V(I), I azero-dimensional ideal. Let h(t) € C[t], and let f € Clz,. ..,z
By Corollary (4.3),

hmp)=0 <« A(f) = [0 in 4.

The polynomials h such that h(mys) = 0 form an ideal in C[t] by the
following exercise.

Exercise 2. Given a d x d matrix M with entries in a field k, consider
the collection Ips of polynomials h(t) in k[t] such that k(M) = 0, the d x d
zero matrix. Show that Ips is an ideal in k[t].

The nonzero monic generator hys of the ideal I is called the minimal
polynomial of M. By the basic properties of ideals in k[t], if h is any poly-
nomial with h(M) = 0, then the minimal polynomial hys divides h. In
particular, the Cayley-Hamilton Theorem from linear algebra tells us that
has divides the characteristic polynomial of M. As a consequence, if k = C,
the roots of hjys are eigenvalues of M. Furthermore, all eigenvalues of M
occur as roots of the minimal polynomial. See [Her| for a more complete
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discussion of the Cayley-Hamilton Theorem and the minimal polynomial
of a matrix.

Let hy denote the minimal polynomial of the multiplication operator m
on A. We then have three interesting sets of numbers:

e the roots of the equation h¢(t) = 0,

¢ the eigenvalues of the matrix my, and

® the values of the function f on V(I), the set of points we are looking
for.

The amazing fact is that all three sets are equal.

(4.5) Theorem. Let I C Clzxy,...,z,] be zero-dimensional, let f €
Clz1,...,2n], and let hy be the minimal polynomial of my on A =
Clz1,---,zp)/I. Then, for A € C, the following are equivalent:

a. A is a root of the equation h¢(t) = 0,

b. A is an eigenvalue of the matriz my, and

c. X is a value of the function f on V(I).

PROOF. a < b follows from standard results in linear algebra.

b => c: Let A be an eigenvalue of m¢. Then there is a corresponding
eigenvector [z] # [0] € A such that [f — A][z] = [0]. Aiming for a con-
tradiction, suppose that A is not a value of f on V(I). That is, letting
V({I) = {p1,...,Pm}, suppose that f(p;) # A foralli=1,...,m.

Let ¢ = f — ), so that g(p;) # 0 for all . By Lemma (2.9) of this
chapter, there exist polynomials g; such that g;(p;) = 0 if i # j, and
gi(p;) = 1. Consider the polynomial ¢ = ;" 1/g(p;)g;. It follows that
g’ (p:)g(p;) = 1 for all i, and hence 1 — ¢g'g € I(V(I)). By the Nullstellen-
satz, (1 — g'g)® € I for some £ > 1. Expanding by the binomial theorem
and collecting the terms that contain g as a factor, we get 1 — gg € I for
some § € C[zy,...,Z,]. In A, this last inclusion implies that [1] = [g][g],
hence g has a multiplicative inverse [g] in A.

But from the above we have [g][z] = [f — A][2] = [0] in A. Multiplying
both sides by [g], we obtain [2] = [0], which is a contradiction. Therefore
A must be a value of f on V(I).

¢ = a: Let A = f(p) for p € V(I). Since hy(mys) = 0, Corollary (4.3)
shows h¢([f]) = [0], and then (4.4) implies h¢(f) € I. This means hs(f)
vanishes at every point of V(I), so that hf(X) = hs(f(p)) = 0. a

Exercise 3. We saw earlier that the matrix of multiplication by z in the

5-dimensional algebra A = Clz, y|/I from (2.4) of this chapter is given by

the matrix displayed before Exercise 1 in this section.

a. Using the minpoly command in Maple (part of the 1inalg package) or
otherwise, show that the minimal polynomial of this matrix is

he(t) = t* — 263 — 12 4+ 2t.
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The roots of h;(t) = 0 are thus ¢ = 0, -1, 1, 2.

b. Now find all points of V() using the methods of §1 and show that that
the roots of h; are exactly the distinct values of the function f(z,y) = =
at the points of V(I). (Two of the points have the same z-coordinate,
which explains why the degree and the number of roots are 4 instead of
5!) Also see Exercise 7 from §2 to see how the ideal I was constructed.

c. Finally, find the minimal polynomial of the matrix m,, determine its
roots, and explain the degree you get.

When we apply Theorem (4.5) with f = x;, we get a general result
exactly parallel to this example.

(4.6) Corollary. Let I C Clzy,...,z,] be zero-dimensional. Then the
eigenvalues of the multiplication operator m,, on A coincide with the
z;-coordinates of the points of V(I). Moreover, substituting t = z; in
the minimal polynomial hy, yields the unique monic generator of the
elimination ideal I N C[z;].

Corollary (4.6) indicates that it is possible to solve equations by com-
puting eigenvalues of the multiplication operators m,,. This fact has been
studied recently by Stetter [Ste], Moéller [M&]], and others. As a result a
whole array of numerical methods for approximating eigenvalues can be
brought to bear on the root-finding problem, at least in favorable cases.
We include a brief discussion of some of these methods for the convenience
of some readers; the following two paragraphs may be safely ignored if
you are familiar with numerical eigenvalue techniques. For more details, we
suggest [BuF] or [Act].

In elementary linear algebra, eigenvalues of a matrix M are usually
determined by solving the characteristic polynomial equation:

det(M — tI) = 0.

The degree of the polynomial on the left hand side is the size of the matrix
M. But computing det(M — tI) for large matrices is a large job itself, and
as we have seen in §1, exact solutions (and even accurate approximations
to solutions) of polynomial equations of high degree over R or C can be
hard to come by, so the characteristic polynomial is almost never used in
practice. So other methods are needed.

The most basic numerical eigenvalue method is known as the power
method. It is based on the fact that if a matrix M has a unique dom-
inant eigenvalue (i.e., an eigenvalue X satisfying |A| > |u| for all other
eigenvalues p of M), then starting from a randomly chosen vector xg, and
forming the sequence

ZTk+1 = unit vector in direction of My,
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we almost always approach an eigenvector for A as k — co. An approxi-
mate value for the dominant eigenvalue A may be obtained by computing
the norm ||Mzy| at each step. If there is no unique dominant eigenvalue,
then the iteration may not converge, but the power method can also be
modified to eliminate that problem and to find other eigenvalues of M. In
particular, we can find the eigenvalue of M closest to some fixed s by ap-
plying the power method to the matrix M’ = (M — sI)~!. For almost all
choices of s, there will be a unique dominant eigenvalue of M'. Moreover, if
) is that dominant eigenvalue of M’, then 1/)\ + s is the eigenvalue of M
closest to s. This observation makes it possible to search for all the eigen-
values of a matrix as we would do in using the Newton-Raphson method to
find all the roots of a polynomial. Some of the same difficulties arise, too.
There are also much more sophisticated iterative methods, such as the LR
and QR algorithms, that can be used to determine all the (real or complex)
eigenvalues of a matrix except in some very uncommon degenerate situa-
tions. It is known that the QR algorithm, for instance, converges for all
matrices having no more than two eigenvalues of any given magnitude in
C. Some computer algebra systems (e.g., Maple and Mathematica) provide
built-in procedures that implement these methods.

A legitimate question at this point is this: Why might one consider apply-
ing these eigenvalue techniques for root finding instead of using elimination?
There are two reasons.

The first concerns the amount of calculation necessary to carry out this
approach. The direct attack—solving systems via elimination as in §1—
imposes a choice of monomial order in the Grobner basis we use. Pure
lex Grobner bases frequently require a large amount of computation. As
we saw in §3, it is possible to compute a grevler Grobner basis first, then
convert it to a lez basis using the Faugere-Gianni-Lazard-Mora basis con-
version algorithm, with some savings in total effort. But basis conversion
is unnecessary if we use Corollary (4.6), because the algebraic structure of
C[z1,. .., zs]/I is independent of the monomial order used for the Grobner
basis and remainder calculations. Hence any monomial order can be used
to determine the matrices of the multiplication operators my,.

The second reason concerns the amount of numerical versus symbolic
computation involved, and the potential for numerical instability. In the
frequently-encountered case that the generators for I have rational coef-
ficients, the entries of the matrices m,, will also be rational, and hence
can be determined ezactly by symbolic computation. Thus the numerical
component, of the calculation is restricted to the eigenvalue calculations.

There is also a significant difference even between a naive first idea for
implementing this approach and the elimination method discussed in §1.
Namely, we could begin by computing all the m,, and their eigenvalues
separately. Then with some additional computation we could determine
exactly which vectors (1, ...,z,) formed using values of the coordinate
functions actually give approximate solutions. The difference here is that
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the computed values of z; are not used in the determination of the z;,
j # i. In §1, we saw that a major source of error in approximate solutions
was the fact that small errors in one variable could produce larger errors
in the other variables when we substitute them and use the Extension
Theorem. Separating the computations of the values z; from one another,
we can avoid those accumulated error phenomena (and also the numerical
stability problems encountered in other non-elimination methods).

We will see shortly that it is possible to reduce the computational effort
involved even further. Indeed, it suffices to consider the eigenvalues of only
one suitably-chosen multiplication operator me,z,+..4c,z,- Before devel-
oping this result, however, we present an example using the more naive
approach.

Exercise 4. We will apply the ideas sketched above to find approximations
to the complex solutions of the system:

0=2%2—-222+4+5
0=z’ +yz+1
0 = 3y% — 8zz.
a. First, compute a Grébner basis to determine the monomial basis for the

quotient algebra. We can use the grevlex (Maple tdeg) monomial order
and the kbasis procedure from Exercise 13 in §2:

PList := [x"2 - 2*%x*z + b, x¥y~2 + y*z + 1, 3%y~2 - 8xx*z];
VList := [x,y,2]:

G := gbasis(PList,VList,tdeg);

B := kbasis(G,VList,tdeg);

and obtain the 8 monomials:
[1, 2,9, 2y, 2, 2%, x2, y2].

(You should compare this with the output of kbasis for lex order. Also
print out the lez Grobner basis for this ideal if you have a taste for
complicated polynomials.)

b. Using the monomial basis B, check that the matrix of the full
multiplication operator m, is

(0 -5 0 0 0 -3/16 -3/8 0 \
1 00 0 0 O 0 0
0 00 -5 0 0 0 0
0 0 1 320 0 O 0  3/40
0 0 0 0 0 5/2 0 0
0 0 0 -2 0 O 0 -1
0 2 0 0 1 0 0 0
ko 0 0 -3/10 0 -3/16 —3/8 —3/20 )
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c. Now, applying the numerical eigenvalue routine eigenvals from Maple,
check that there are two approximate real eigenvalues:

—1.100987715, 9657124563,

and 3 complex conjugate pairs. (These values agree with the results
of finding the monic generator of I N C|z] and doing numerical root
finding.)

d. Complete the calculation by finding the multiplication operators m,,
m,, computing their real eigenvalues, and determining which triples
(z,y, 2) give solutions. (There are exactly two real points.) Also see
Exercises 9 and 10 below for a second way to compute the eigenvalues
of mz, my, and m,.

In addition to eigenvalues, there are also eigenvectors to consider. In fact,
every matrix M has two sorts of eigenvectors. The left eigenvectors of M
are the usual ones, which are column vectors v # 0 such that

Mv=M

for some A € C. Since the transpose M7 has the same eigenvalues \ as M,
we can find a column vector v’ # 0 such that

MT o = M.
Taking transposes, we can write this equation as
wM = d\w,

where w = v'T is a row vector. We call w a right eigenvector of M.

The left and right eigenvectors for a matrix are connected in the following
way. For simplicity, suppose that M is a diagonalizable n x n matrix, so
that there is a basis for C" consisting of left eigenvectors for M. In Exercise
7 below, you will show that there is a matrix equation MQ = QD, where
Q@ is the matrix whose columns are the left eigenvectors in a basis for
C”, and D is a diagonal matrix whose diagonal entries are the eigenvalues
of M. Rearranging the last equation, we have Q"!M = DQ!. By the
second part of Exercise 7 below, the rows of Q! are a collection of right
eigenvectors of M that also form a basis for C™.

For a zero-dimensional ideal I, there is also a strong connection between
the points of V(I) and the right eigenvectors of the matrix my relative to
the monomial basis B coming from a Grébner basis. We will assume that
I is radical. In this case, Theorem (2.10) implies that A has dimension m,
where m is the number of points in V(I). Hence, we can write the monomial
basis B as the cosets

B = {[z°0],..., [g*™)}.

Using this basis, let m be the matrix of multiplication by f. We can relate
the right eigenvectors of my to points of V(I) as follows.
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(4.7) Proposition. Suppose f € Clz1,...,z,] is chosen such that the
values f(p) are distinct for p € V(I). Then the right eigenspaces of
the matric my are 1-dimensional and are spanned by the row vectors
@®,...,p*™) forp € V(I).

PROOF. If we write my = (m;;), then for each j between 1 and m,
220 f] = my([z°9]) = may[a*D] + - - + my 2],
Now fix p € V(f1,-.., fn) and evaluate this equation at p to obtain
P9 f(p) = myp™® + - -+ 4+ my,;p*™
(this makes sense by Exercise 12 of §2). Doing this for j = 1,...,m gives

fEED, ..., p*™) = O, p* ™) my.

Exercise 14 at the end of the section asks you to check this computation
carefully. Note that one of the basis monomials in B is the coset [1] (do
you see why?), which shows that (p*(, ..., p>(™)) is nonzero and hence is
a right eigenvector for my, with f(p) as the corresponding eigenvalue.

By hypothesis, the f(p) are distinct for p € V(I), which means that the
m x m matrix my has m distinct eigenvalues. Linear algebra then implies
that the corresponding eigenspaces (right and left) are 1-dimensional. O

This proposition can be used to find the points in V(I) for any zero-
dimensional ideal I. The basic idea is as follows. First, we can assume that
I is radical by replacing I with v/T as computed by Proposition (2.8). Then
compute a Grobner basis G and monomial basis B as usual. Now consider
the function

f=azi+- -+ cnZn,

where ¢y, . . . , ¢, are randomly chosen integers. This will ensure (with small
probability of failure) that the values f(p) are distinct for p € V(I). Rel-
ative to the monomial basis B, we get the matrix my, so that we can
use standard numerical methods to find an eigenvalue A and correspond-
ing right eigenvector v of my. This eigenvector, when combined with the
Grébner basis G, makes it trivial to find a solution p € V(I).

To see how this is done, first note that Proposition (4.7) implies

(4.8) v = Ap*Y,...,p*M™)

for some nonzero constant A and some p € V(I). Write p = (a1, ..., an).
Our goal is to compute the coordinates a; of p in terms of the coordinates
of v. Equation (4.8) implies that each coordinate of v is of the form Ap®().

The Finiteness Theorem implies that for each 7 between 1 and n, there is
m; > 1 such that z]" is the leading term of some element of G. If m; > 1,
it follows that [z;] € B (do you see why?), so that Ag; is a coordinate of
v. As noted above, we have [1] € B, so that A is also a coordinate of v.
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Consequently,

_ )\ai

DY

is a ratio of coordinates of v. This way, we get the z;-coordinate of p for
all ¢ satisfying m; > 1.

It remains to study the coordinates with m; = 1. These variables appear
in none of the basis monomials in B (do you see why?), so that we turn
instead to the Grobner basis G for guidance. Suppose the variables with
m; = 1 are z;,,...,%;,. We will assume that the variables are labeled so
that z; > --- > z, and i; > --- > iy. In Exercise 15 below, you will show
that for j = 1, ..., ¥, there are elements g; € G such that

a;

gj = T;; + terms involving z; for ¢ > i;.

If we evaluate this at p = (a1, ..., a,), we obtain

(4.9) 0 = a;; + terms involving a; for ¢ > i;.

Since we already know a; for i ¢ {ii,...,i,}, these equations make it
a simple matter to find a;,,...,a;. We start with a;,. For j = ¢, (4.9)

implies that a;, is a polynomial in the coordinates of p we already know.
Hence we get a;,. But once we know a;,, (4.9) shows that a;,_, is also a
polynomial in known coordinates. Continuing in this way, we get all of the
coordinates of p.

Exercise 5. Apply this method to find the solutions of the equations given
in Exercise 4. The z-coordinates of the solutions are distinct, so you can
assume f = z. Thus it suffices to compute the right eigenvectors of the
matrix m, of Exercise 4.

Since the right eigenvectors of my help us find solutions in V(I), it is
natural to ask about the left eigenvectors. In Exercise 17 below, you will
show that these eigenvectors solve the interpolation problem, which asks
for a polynomial that takes preassigned values at the points of V().

This section has discussed several ideas for solving polynomial equations
using linear algebra. We certainly do not claim that these ideas are a com-
putational panacea for all polynomial systems, but they do give interesting
alternatives to other, more traditional methods in numerical analysis, and
they are currently an object of study in connection with the implementa-
tion of the next generation of computer algebra systems. We will continue
this discussion in §5 (where we study real solutions) and Chapter 3 (where
we use resultants to solve polynomial systems).

ApDDITIONAL EXERCISES FOR §4

Exercise 6. Prove Proposition (4.2).
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Exercise 7. Let M, Q, P, D be n x n complex matrices, and assume D is

a diagonal matrix.

a. Show that the equation M@ = @D holds if and only if for each j the
jth column of Q) is a left eigenvector of M and the jth diagonal entry
of D is the corresponding eigenvalue.

b. Show that the equation PM = DP holds if and only if for each i the
ith row of P is a right eigenvector of M and the ith diagonal entry of
D is the corresponding eigenvalue.

c. If MQ = QD and Q is invertible, deduce that the rows of Q! are right
eigenvectors of M.

Exercise 8.

a. Apply the eigenvalue method from Corollary (4.6) to solve the system
from Exercise 6 of §1. Compare your results.

b. Apply the eigenvalue method from Corollary (4.6) to solve the system
from Exercise 7 from §1. Compare your results.

Exercise 9. Let V; be the subspace of A spanned by the non-negative
powers of [z;], and consider the restriction of the multiplication operator
mg, : A — AtoV;. Assume {1, [z;],...,[z:]™ '} is a basis for V;.

a. What is the matrix of the restriction m,, |y, with respect to this basis?
Show that it can be computed by the same calculations used in Exer-
cise 4 of §2 to find the monic generator of I N C[z;], without computing
a lex Grobner basis. Hint: See also Exercise 11 of §1 of Chapter 3.

b. What is the characteristic polynomial of m, |y, and what are its roots?

Exercise 10. Use part b of Exercise 9 and Corollary (4.6) to give another
determination of the roots of the system from Exercise 4.

Exercise 11. Let I be a zero-dimensional ideal in C[zy,...,z,], and
le¢ f € Clzy,...,z,]). Show that [f] has a multiplicative inverse in
Clz1,...,zn)/I if and only if f(p) # 0 for all p € V(I). Hint: See the
proof of Theorem (4.5).

Exercise 12. Prove that a zero-dimensional ideal is radical if and only if
the matrices m,, are diagonalizable for each ¢. Hint: Linear algebra tells
us that a matrix is diagonalizable if and only if its minimal polynomial is
square-free. Proposition (2.8) and Corollary (4.6) of this chapter will be
useful.

Exercise 13. Let A = C[zy,...,%,]/I for a zero-dimensional ideal I,
and let f € Clzy,...,z,]. If p € V(I), we can find g € Clzy,...,zn]
with g(p) = 1, and g(p’) = 0 for all p’ € V(I), p’ # p (see Lemma (2.9)).
Prove that there is an £ > 1 such that the coset [¢°] € A is a generalized
eigenvector for my with eigenvalue f(p). (A generalized eigenvector of a
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matrix M is a nonzero vector v such that (M —AI)™v = 0 for some m > 1.)
Hint: Apply the Nullstellensatz to (f — f(p))g. In Chapter 4, we will study
the generalized eigenvectors of my in more detail.

Exercise 14. Verify carefully the formula f(p)(p>™,...,px™) =
(P>, ..., p*™) m; used in the proof of Proposition (4.7).

Exercise 15. Let > be some monomial order, and assume ; > -- - > x,.
If g € k[z1,...,x,] satisfies LT(g) = z;, then prove that

g = z; + terms involving z; for ¢ > j.

Exercise 16. (The Shape Lemma) Let I be a zero-dimensional radical

ideal such that the z,-coordinates of the points in V(I) are distinct. Let

G be a reduced Grobner basis for I relative to a lex monomial order with

., as the last variable.

a. If V(I) has m points, prove that the cosets 1,[z,],...,[z™ 1] are
linearly independent and hence are a basis of A = k[zi,...,z,]/I.

b. Prove that G consists of n polynomials

g1 = 1 + hi(zy)

Gn—1 = Zn_1 + hn_1(zn)
gn = Ty + hn(xn)a

where hi, ..., h, are polynomials in z,, of degree at most m — 1. Hint:
Start by expressing [21], ..., [Tn-1], [z] in terms of the basis of part a.

¢. Explain how you can find all points of V(I) once you know their z,,-
coordinates. Hint: Adapt the discussion following (4.9).

Exercise 17. This exercise will study the left eigenvectors of the matrix

my and their relation to interpolation. Assume that I is a zero-dimensional

radical ideal and that the values f(p) are distinct for p € V(I). We write
the monomial basis B as {[z>(1)],. .., [z*(™)]}.

a. If p € V(I), Lemma (2.9) of this chapter gives us g such that g(p) = 1
and g(p') = 0 for all p’ # p in V(I). Prove that the coset [g] € A
is a left eigenvector of my and that the corresponding eigenspace has
dimension 1. Conclude that all eigenspaces of my are of this form.

b. If v = (v1,...,vm)" is a left eigenvector of my corresponding to the

eigenvalue f(p) for p as in part a, then prove that the polynomial
g — 'Ulwa(l) + cee vmxa(m)

satisfies g(p) # 0 and g(p’) = 0 for p’ # p in V(I).
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c. Show that we can take the polynomial g of part a to be
9= : g
i~
Thus, once we know the solution p and the corresponding left eigenvector
of my, we get an explicit formula for the polynomial g.

d. Given V(I) = {pi,...,pm} and the corresponding left eigenvectors of
my, we get polynomials gy, ..., gm such that gi(p;) = 1ifi = jand 0
otherwise. Each g; is given explicitly by the formula in part c. The in-
terpolation problem asks to find a polynomial h which takes preassigned
values Ay, ..., Ay, at the points py, ..., pp,. This means h(p;) = A; for
all 7. Prove that one choice for h is given by

h=>\lgl+"'+)\mgm-

Exercise 18. Develop and code an algorithm for computing the matrix of
mys on A = k[z1,...,2,]/I, given the polynomial f, a list of polynomials
generating I, a list of variables, and a monomial order. Implement this
algorithm in a computer algebra system, and call it getmatrix. (In one of
the exercises in §5, we will use a Maple version of getmatrix.)

§5 Real Root Location and Isolation

The eigenvalue techniques for solving equations from §4 are only a first way
that we can use the results of §2 for finding roots of systems of polynomial
equations. In this section we will discuss a second application that is more
sophisticated. We follow a recent paper of Pedersen, Roy, and Szpirglas
[PRS] and consider the problem of determining the real roots of a system
of polynomial equations with coefficients in a field ¥ C R (usually k£ =
Q or a finite extension field of Q). The underlying principle here is that
for many purposes, explicitly determined, bounded regions R C R", each
guaranteed to contain ezactly one solution of the system can be just as
useful as a collection of numerical approximations. Note also that if we
wanted numerical approximations, once we had such an R, the job of finding
that one root would generally be much simpler than a search for all of the
roots! (Think of the choice of the initial approximation for an iterative
method such as Newton-Raphson.) For one-variable equations, this is also
the key idea of the interval arithmetic approach to computation with real
algebraic numbers (see [Mis]). We note that there are also other methods
known for locating and isolating the real roots of a polynomial system (see
§8.8 of [BW] for a different type of algorithm).

To define our regions R in R™, we will use polynomial functions in the
following way. Let h € k[z1,...,z,] be a nonzero polynomial. The real
points where h takes the value 0 form the variety V(h) NR". We will denote
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this by Vg(h) in the discussion that follows. In typical cases, Vg(h) will
be a hypersurface—an (n — 1)-dimensional variety in R™. The complement
of Vg(h) in R" is the union of connected open subsets on which A takes
either all positive values or all negative values. We obtain in this way a
decomposition of R™ as a disjoint union

(5.1) R" = H* U H™ U Vg(h),

where HT = {a € R" : h(a) > 0}, and similarly for H~. Here are some
concrete examples.

Exercise 1.

a. Let h = (z®+y%—1)(z? +y?—2) in Rz, y]. Identify the regions H* and
H~ for this polynomial. How many connected components does each of
them have?

b. In this part of the exercise, we will see how regions like rectangular
“boxes” in R™ may be obtained by intersecting several regions H* or
H~. For instance, consider the box

R={(z,y) eR®:a<z<b c<y<d}
If hi(z,y) = (z — a)(z — b) and ho(z,y) = (y — ¢)(y — d), show that
R=H; nHy = {(z,y) € R?: hi(z,y) <0, i =1,2}.
What do H;f, Hf and H}' N Hj look like in this example?

Given a region R like the box from part b of the above exercise, and
a system of equations, we can ask whether there are roots of the system
in R. The results of [PRS] give a way to answer questions like this, using
an extension of the results of §2 and §4. Let I be a zero-dimensional ideal
and let B be the monomial basis of A = kfz1,...,x,]/I for any monomial
order. Recall that the trace of a square matrix is just the sum of its diagonal
entries. This gives a mapping Tr from d x d matrices to k. Using the trace,
we define a symmetric bilinear form S by the rule:

S(f,9) = Te(my - mg) = Tr(my,)
(the last equality follows from part b of Proposition (4.2)).

Exercise 2.

a. Prove that S defined as above is a symmetric bilinear form on A, as
claimed. That is, show that § is symmetric, meaning S(f, g) = S(g, f)
for all f,g € A, and linear in the first variable, meaning

S(cfr+ f2,9) = cS(f1,9) + S(f2,9)

for all f1, f2,9 € A and all ¢ € k. It follows that S is linear in the
second variable as well.
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b. Given a symmetric bilinear form S on a vector space V with basis
{v1,...,va}, the matrix of S is the d x d matrix M = (S(v;, v;)). Show
that the matrix of S with respect to the monomial basis B = {z*(®}
for A is given by:

M = (Tr(Myai) ga)) = (Tr(Myamr+aw )

Similarly, given the polynomial h € k[zi, ..., z,] used in the decompo-
sition (5.1), we can construct a bilinear form

Sw(f,9) = Tr(mnys - mg) = Tr(mng,).
Let M;, be the matrix of S; with respect to B.

Exercise 3. Show that S is also a symmetric bilinear form on A. What
is the i, 7 entry of My?

Since we assume k C IR, the matrices M and M}, are symmetric matrices
with real entries. It follows from the real spectral theorem (or principal axis
theorem) of linear algebra that all of the eigenvalues of M and M}, will be
real. For our purposes the exact values of these eigenvalues are much less
important than their signs.

Under a change of basis defined by an invertible matrix @}, the matrix
M of a symmetric bilinear form S is taken to QM Q. There are two fun-
damental invariants of S under such changes of basis—the signature o(S),
which equals the difference between the number of positive eigenvalues and
the number of negative eigenvalues of M, and the rank p(S), which equals
the rank of the matrix M. (See, for instance, Chapter 6 of [Her| for more
information on the signature and rank of bilinear forms.)

We are now ready to state the main result of this section.

(5.2) Theorem. Let I be a zero-dimensional ideal generated by polyno-
mials in k[z1,...,%,] (K C R), so that V(I) C C" is finite. Then, for
h € k[z1,...,T,], the signature and rank of the bilinear form Sy, satisfy:

o(Sr) = #{a € VII) NR™ : h(a) > 0} — #{a € V(I) NR" : h(a) < 0}
p(Sn) = #{a € V(I) : h(a) # 0}.

PROOF. This result is essentially a direct consequence of the reasoning
leading up to Theorem (4.5) of this chapter. However, to give a full proof
it is necessary to take into account the multiplicities of the points in V(I)
in C™ as solutions of the corresponding system of equations. Since we will
not give the precise definition of the multiplicity of a point in V(I) until
Chapter 4, we will only sketch the main ideas here.

By Theorem (4.5), for any f, we know that the set of eigenvalues of m;y
coincides with the set of values of the f at the points in V(I). The key new
fact we will need is that using the structure of the algebra A, for each point
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p in V(I) it is possible to define a positive integer m(p) (the multiplicity)

so that ), m(p) = d = dim(A), and so that (¢ — f (p))™®) is a factor of

the characteristic polynomial of m¢. (See §2 of Chapter 4 for the details.)
By definition, the 4, j entry of the matrix M}, is equal to

Tr(myp,. gas).gai )

The trace of the multiplication operator equals the sum of its eigenvalues.
By the previous paragraph, the sum of these eigenvalues is

(5.3) > mp)h(p)p*IpV,
peEV(I)

where p*(® denotes the value of the monomial z*(®) at the point p. List
the points in V(I) as py, ..., P4, where each point p in V(I) is repeated
m(p) times consecutivel(y. Let U be the d x d matrix whose jth column
consists of the values pj D fori = 1,...,d. From (5.3), we obtain a matrix
factorization M, = UDU?, where D is the diagonal matrix with entries
h(p1), - - ., h(pg). The equation for the rank follows since U is invertible.
Both U and D may have nonreal entries. However, the equation for the
signature follows from this factorization as well, using the facts that M, has
real entries and that the nonreal points in V(I) occur in complex conjugate

pairs. We refer the reader to Theorem 2.1 of [PRS] for the details. o

The theorem may be used to determine how the real points in V(I) are
distributed among the sets H*, H~ and Vg(h) determined by h in (5.1).
Theorem (5.2) implies that we can count the number of real points of
V(I)in H* and in H~ as follows. The signature of S, gives the difference
between the number of solutions in H+ and the number in H~. By the same
reasoning, computing the signature of Sy2 we get the number of solutions
in Ht U H—, since h?2 > 0 at every point of H* U H~. From this we can
recover #V(I) N H* and #V(I) N H~ by simple arithmetic. Finally, we
need to find #V(I) N Vr(h), which is done in the following exercise.

Exercise 4. Using the form S; in addition to S and Sj2, show that
the three signatures o(5), 0(S1), o(Sh2) give all the information needed to
determine #V(I) N H*, #V(I) N H~ and #V(I) N Vg(h).

From the discussion above, it might appear that we need to compute
the eigenvalues of the forms S; to count the numbers of solutions of the
equations in HY and H~, but the situation is actually much better than
that. Namely, the entire calculation can be done symbolically, so no recourse
to numerical methods is needed. The reason is the following consequence
of the classical Descartes Rule of Signs.

(5.4) Proposition. Let M}, be the matriz of Sy, and let
pr(t) = det(My, — tI)
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be its characteristic polynomial. Then the number of positive eigenvalues of
Sh 1s equal to the number of sign changes in the sequence of coefficients of
pr(t). (In counting sign changes, any zero coefficients are ignored.)

PRrROOF. See Proposition 2.8 of [PRS], or Exercise 5 below for a proof. 0O

For instance, consider the real symmetric matrix

3 1 5 4
12 6 9
M= 5 6 7 -1
4 9 -1 0

The characteristic polynomial of M is t* — 12¢t3 — 119t? 4 1098t — 1251,
giving three sign changes in the sequence of coefficients. Thus M has three
positive eigenvalues, as one can check.

Exercise 5. The usual version of Descartes’ Rule of Signs asserts that the

number of positive roots of a polynomial p(t) in R[t] equals the number of

sign changes in its coeflicient sequence minus a non-negative even integer.

a. Using this, show that the number of negative roots equals the number
of sign changes in the coeflicient sequence of p(—t) minus another non-
negative even integer.

b. Deduce (5.4) from Descartes’ Rule of Signs, part a, and the fact that all
eigenvalues of M}, are real.

Using these ideas to find and isolate roots requires a good searching
strategy. We will not consider such questions here. For an example showing
how to certify the presence of exactly one root of a system in a given region,
see Exercise 6 below.

The problem of counting real solutions of polynomial systems in regions
R C R" defined by several polynomial inequalities and/or equalities has
been considered in general by Ben-Or, Kozen, and Reif (see, for instance,
[BKR]). Using the signature calculations as above gives an approach which
is very well suited to parallel computation, and whose complexity is rela-
tively manageable. We refer the interested reader to [PRS] once again for
a discussion of these issues.

ADDITIONAL EXERCISES FOR §5

Exercise 6. In this exercise, you will verify that the equations
0=2?-222+5
0=z’ +yz+1
0 = 3y® — 8zz.
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have exactly one real solution in the rectangular box

R={(z,y,2) eR*:0<z <1, -3<y<-2 3<z<4}.

Using grevler monomial order with £ > y > 2, compute a Grébner
basis G for the ideal I generated by the above equations. Also find the
corresponding monomial basis B for C[z, y, z]/I.

Implement the following Maple procedure getform which computes the
matrix of the symmetric bilinear form Sj,.

getform := proc(h,B,G,VList,torder)

# computes matrix of the symmetric bilinear form S_h, with
# respect to the monomial basis B for the quotient algebra
# k[VList]/<G>. G is a Gr\"obner basis with respect to torder

local d,M,i,j,p,q;

with(1linalg):
d:=nops(B);
M := array(symmetric,1..d,1..d);
for i toddo
for j fromi toddo
p := normalf (h*B[i]*B[j],G,VList,torder);
M[i,j]l:=trace(getmatrix(p,B,G,VList,torder));
od;
od;
RETURN (eval(M))
end:

The call to getmatrix computes the matrix my, «¢)a;) With respect to
the monomial basis B = {x*(} for A. Coding getmatrix was Exercise
18 in §4 of this chapter.

Then, using

h :=x*x(x-1);
S := getform(h,B,G, [x,y,z] ,tdeg);

compute the matrix of the bilinear form Sy, for h = z(z — 1).
The actual entries of this 8 x 8 rational matrix are rather complicated
and not very informative; we will omit reproducing them. Instead, use

charpoly(eval(S),t);

to compute the characteristic polynomial of the matrix. Your result
should be a polynomial of the form:

8 — a1t” + agt® + ast® — agtt — ast® — agt® + ast + as,

where each a; is a positive rational number.
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e. Use Proposition (5.4) to show that S, has 4 positive eigenvalues. Since
ag # 0, t = 0 is not an eigenvalue. Explain why the other 4 eigenvalues
are strictly negative, and conclude that Sj, has signature

O'(Sh)=4—-4=0.

f. Use the second equation in Theorem (5.2) to show that h is nonvanishing
on the real or complex points of V(I). Hint: Show that S; has rank 8.
g. Repeat the computation for h?:

T := getform(h*h,B,G, [x,y,2] ,tdeg) ;

and show that in the case, we get a second symmetric matrix with ex-
actly 5 positive and 3 negative eigenvalues. Conclude that the signature
of Sp2 (which counts the total number of real solutions in this case) is

G(Shz) =5-3=2
h. Using Theorem (5.2) and combining these two calculations, show that
#FVIONHY =#V(I)NH =1,

and conclude that there is exactly one real root between the two planes
z = 0and z = 1 in R3. Our desired region R is contained in this infinite
slab in R3. What can you say about the other real solution?

i. Complete the exercise by applying Theorem (5.2) to polynomials in y
and z chosen according to the definition of R.

Exercise 7. Use the techniques of this section to determine the number
of real solutions of

0=a24+20° -y —22
0=2a2—-8y2+102 -1
0=2x2-Tyz
in the box R = {(z,9,2) € R®¥:0< < 1,0<y< 1,0 < 2z < 1}. (This

is the same system as in Exercise 6 of §1. Check your results using your
previous work.)

Exercise 8. The alternative real root isolation methods discussed in §8.8
of [BW] are based on a result for real one-variable polynomials known as
Sturm’s Theorem. Suppose p(t) € Q[t] is a polynomial with no multiple
roots in C. Then GCD(p(t), p’(t)) = 1, and the sequence of polynomials
produced by

po(t) = p(?)
p(t) = p'(t)
pi(t) = '_rem(pi—l(t)’ p‘i—-2(t)a t))i >2
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(so p;(t) is the negative of the remainder on division of p;_;(¢) by p;—2(¢) in
Q|[t]) will eventually reach a nonzero constant, and all subsequent terms will
be zero. Let p,,(t) be the last nonzero term in the sequence. This sequence
of polynomials is called the Sturm sequence associated to p(t).

a. (Sturm’s Theorem) If a < b in R, and neither is a root of p(t) = 0, then
show that the number of real roots of p(t) = 0 in the interval [a, b] is
the difference between the number of sign changes in the sequence of
real numbers pg(a), p1(a), - . . , pm(a) and the number of sign changes in
the sequence po(b), p1(b), - .., pm(b). (Sign changes are counted in the
same way as for Descartes’ Rule of Signs.)

b. Give an algorithm based on part a that takes as input a polynomial
p(t) € Q[t] with no multiple roots in C, and produces as output a
collection of intervals [a;, b;] in R, each of which contains exactly one
root of p. Hint: Start with an interval guaranteed to contain all the
real roots of p(t) = 0 (see Exercise 3 of §1, for instance) and bisect
repeatedly, using Sturm’s Theorem on each subinterval.



Chapter 3

Resultants

In Chapter 2, we saw how Grobner bases can be used in Elimination Theory.
An alternate approach to the problem of elimination is given by resultants.
The resultant of two polynomials is well known and is implemented in many
computer algebra systems. In this chapter, we will review the properties
of the resultant and explore its generalization to several polynomials in
several variables. This multipolynomial resultant can be used to eliminate
variables from three or more equations and, as we will see at the end of the
chapter, it is a surprisingly powerful tool for finding solutions of equations.

§1 The Resultant of Two Polynomials
Given two polynomials f, g € kfz] of positive degree, say

f=a0x1+---+a,, ao#o, 1>0

(1.1)
g=boz™ +---+byn, bg#£0, m>0.

Then the resultant of f and g, denoted Res(f, g), is the (I + m) x (I + m)

determinant
/ Qg b() \
a; ap by b
az Qi .. b2 b1 )
as . ag b2 .. bo
(1.2) Res(f, g) = det ) ;
a; . . a1 bm . . b
a as bm b2
K a; bm }
m coirllmns l colrxmns
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where the blank spaces are filled with zeros. When we want to emphasize
the dependence on z, we will write Res(f, g, z) instead of Res(f, g). As a
simple example, we have

(1.3) Res(z®+4z—1,22% +3z+7) = det = 159.

== R e
O O
OO NN WwWN
O J W o
~NwWwNOoOOoO

Exercise 1. Show that Res(f, g) = (—1)"™Res(g, f). Hint: What happens
when you interchange two columns of a determinant?

Three basic properties of the resultant are:

¢ (Integer Polynomial) Res(f, g) is an integer polynomial in the coefficients
of f and g.

e (Common Factor) Res(f, g) = 0 if and only if f and g have a common
factor in k[z].

¢ (Elimination) There are polynomials A, B € k[z] such that A f+ Bg =
Res(f, g). The coefficients of A and B are integer polynomials in the
coefficients of f and g.

Proofs of these properties can be found in [CLO], Chapter 3, §5. The Integer
Polynomial property says that there is a polynomial

Res;m € Zug, . .., U1, V0, - ., Unm)
such that if f, g are as in (1.1), then
Res(f, g9) = Res;m(ao,...,a1,bo,...,bn).

Over the complex numbers, the Common Factor property tells us that
f,g € C|z] have a common root if and only if their resultant is zero. Thus
(1.3) shows that 23 + z — 1 and 2% + 3z + 7 have no common roots in C
since 159 # 0, even though we don’t know the roots themselves.

To understand the Elimination property, we need to explain how resul-
tants can be used to eliminate variables from systems of equations. As an
example, consider the equations

f=z2zy—-1=0
g=w2+y2~4=0.
Here, we have two variables to work with, but if we regard f and g as

polynomials in z whose coefficients are polynomials in y, we can compute
the resultant with respect to z to obtain

y 0 1
Res(f,g,z) =det | -1 gy 0 =yt — 42+ 1
0 -1 y?2—-4
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By the Elimination property, there are polynomials A, B € k[z,y] with
A-(zy— 1)+ B- (22 + y? — 4) = y* — 492 + 1. This means Res(f, g, z)
is in the elimination ideal (f, g) N k[y] as defined in §1 of Chapter 2, and it
follows that y* — 4y? + 1 vanishes at any common solution of f = g = 0.
Hence, by solving y* — 4y%? + 1 = 0, we can find the y-coordinates of the
solutions. Thus resultants relate nicely to what we did in Chapter 2.

Exercise 2. Use resultants to find all solutions of the above equations f =
g = 0. Also find the solutions using Res(f, g, y). In Maple, the command
for resultant is resultant.

More generally, 'if f and g are any polynomials in k[z,y] in which z
appears to a positive power, then we can compute Res(f, g, z) in the same
way. Since the coefficients are polynomials in y, the Integer Polynomial
property guarantees that Res(f, g, z) is again a polynomial in y. Thus, we
can use the resultant to eliminate z, and as above, Res(f, g, ) is in the
elimination ideal (f, g) N k[y] by the Elimination Property. For a further
discussion of the connection between resultants and elimination theory, the
reader should consult Chapter 3 of [CLO] or Chapter XI of [vdW].

One interesting aspect of the resultant is that it can be expressed in
many different ways. For example, given f,g € k[z] as in (1.1), suppose
their roots are &1,...,& and ), . . ., N, respectively (note that these roots
might lie in some bigger field). Then one can show that the resultant is
given by

Res(f, 9) = ag boHH(ﬁz -

i=1 j=1
l
ag [] 9(&)
i=1

= (=1)'"b [T f(my).

=1

(1.4)

A proof of this is given in the exercises at the end of the section.

Exercise 3.

a. Show that the three products on the right hand side of (1.4) are all
equal. Hint: g = bo(z — m1) - - - (T — ).

b. Use (1.4) to show that Res(fi f2,9) = Res(f1, g)Res(f2, 9).

The formulas given in (1.4) may seem hard to use since they involve the
roots of f or g. But in fact there is a relatively simple way to compute
the above products. For example, to understand the formula Res(f,g) =

Hz_l g(&;), we will use the techniques of §2 of Chapter 2. Thus, consider



74 Chapter 3. Resultants

the quotient ring Ay = k{z]/(f), and let the multiplication map m, be
defined by

my([h]) = [g] - [n] = [gh] € Ay,

where [h] € Ay is the coset of h € k[z]. If we think in terms of remainders
on division by f, then we can regard A; as consisting of all polynomials h
of degree < I, and under this interpretation, mgy(h) is the remainder of gh
on division by f. Then we can compute the resultant Res(f, g) in terms of
myg as follows.

(1.5) Proposition. Res(f,g) = af* det(my : Ay — Ay).

PROOF. Note that Ay is a vector space over k of dimension [ (this is clear
from the remainder interpretation of Ay). Further, as explained in §2 of
Chapter 2, my : Ay — Ay is a linear map. Recall from linear algebra that
the determinant det(my,) is defined to be the determinant of any matrix M
representing the linear map m,. Since M and m, have the same eigenvalues,
it follows that det(im,) is the product of the eigenvalues of m,, counted with
multiplicity.

In the special case when g(&1),...,9(&) are distinct, we can prove our
result using the theory of Chapter 2. Namely, since {&1,...,&} = V(f), it
follows from Theorem (4.5) of Chapter 2 that the numbers g(&;), ..., g(&)
are the eigenvalues of my. Since these are distinct and A; has dimension
I, it follows that the eigenvalues have multiplicity one, so that det(mgy) =
g(&1) - - - g(&), as desired. The general case will be covered in the exercises
at the end of the section. O

Exercise 4. For f = 2> +z —1 and g = 22% + 3z + 7 as in (1.3), use the
basis {1, z, 22} of A; (thinking of A; in terms of remainders) to show

72 3
Res(f,g) = 1*det(m,) =det | 3 5 —1 | = 159.
2 3 5

Note that the 3 x 3 determinant in this example is smaller than the 5 x 5
determinant required by the definition (1.2). In general, Proposition (1.5)
tells us that Res(f, g) can be represented as an [ x | determinant, while the
definition of resultant uses an (I + m) x (I + m) matrix. The getmatrix
procedure from Exercise 7 of Chapter 2, §2 can be used to construct the
the smaller matrix. Also, by interchanging f and g, we can represent the
resultant using an m x m determinant.

For the final topic of this section, we will discuss a variation on Res(f, g)
which will be important for §2. Namely, instead of using polynomials in the
single variable x, we could instead work with homogenous polynomials in
variables z, y. Recall that a polynomial is homogeneous if every term has
the same total degree. Thus, if F, G € k[z, y] are homogeneous polynomials
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of total degrees [, m respectively, then we can write

F = aoxl + alwl_ly + -+ alyl

(16) m m—1 m
G =byx™ + bz Ty + -+ by™.

Note that ag or by (or both) might be zero. Then we define Res(F, G) € k
using the same determinant as in (1.2).

Exercise 5. Show that Res(z!,y™) = 1.

If we homogenize the polynomials f and g of (1.1) using appropriate
powers of y, then we get F and G as in (1.6). In this case, it is obvious that
Res(f, g) = Res(F, G). However, going the other way is a bit more subtle,
for if F and G are given by (1.6), then we can dehomogenize by setting
y = 1, but we might fail to get polynomials of the proper degrees since ao
or by might be zero. Nevertheless, the resultant Res(F, G) still satisfies the
following basic properties.

(1.7) Proposition. Fiz positive integers | and m.
a. There is a polynomial Res; ., € Zlao, . .., a1, bo, . .., by] such that

Res(F, G) = Res;m(ao, ..., a1, bo,.-.,bm)

for all F,G as in (1.6).

b. Ouver the field of compler numbers, Res(F,G) = 0 if and only if the
equations F = G = 0 have a solution (z,y) # (0,0) in C? (this is
called a nontrivial solution).

PRrROOF. The first statement is an obvious consequence of the determinant
formula for the resultant. As for the second, first observe that if (u, v) € C?
is a nontrivial solution, then so is (Au, Av) for any nonzero complex number
A. We now break up the proof into three cases.

First, if ag = by = 0, then note that the resultant vanishes and that we
have the nontrivial solution (z,y) = (1,0). Next, suppose that ag # 0 and
bo # 0. If Res(F, G) = 0, then, when we dehomogenize by setting y = 1, we
get polynomials f, g € C[z] with Res(f, g) = 0. Since we’re working over
the complex numbers, the Common Factor property implies f and g must
have a common root z = u, and then (z,y) = (u, 1) is the desired nontrivial
solution. Going the other way, if we have a nontrival solution (u, v), then
our assumption agby # 0 implies that v # 0. Then (u/v,1) is also a
solution, which means that u/v is a common root of the dehomogenized
polynomials. From here, it follows easily that Res(F,G) = 0.

The final case is when exactly one of ag, by is zero. The argument is a
bit more complicated and will be covered in the exercises at the end of the
section. a
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We should also mention that many other properties of the resultant,
along with proofs, are contained in Chapter 12 of [GKZ].

ADDITIONAL EXERCISES FOR §1

Exercise 6. As an example of how resultants can be used to eliminate
variables from equations, consider the parametric equations

z=14+s+t+st
y=2+s+st+t
z=s+1t+ 5%

Our goal is to eliminate s,t from these equations to find an equation

involving only z, ¥, 2.

a. Use Grobner basis methods to find the desired equation in z, y, 2.

b. Use resultants to find the desired equations. Hint: Let f =14+ s+t +
st—z,9=24+s+st+t>2—yand h = s+t + s> — 2. Then eliminate
t by computing Res(f, g, t) and Res(f, h, t). Now what resultant do you
use to get rid of s?

c¢. How are the answers to parts a and b related?

Exercise 7. Let f, g be asin (1.1). If we divide g by f, weget g = ¢ f +,
where deg(r) < deg(g) = m. Then, assuming that r is nonconstant, show
that

Res(f, 9) = ag *®"Res(f, 7).

Hint: Let g1 = g — (bo/ao)z™'f and use column operations to subtract
bg/ap times the first ! columns in the f part of the matrix from the columns
in the g part. Expanding repeatedly along the first row gives Res(f,g) =
ag % 9)Res(f, g1). Continue this process to obtain the desired formula.

Exercise 8. Our definition of Res(f, g) requires that f, g have positive

degrees. Here is what to do when f or g is constant.

a. If deg(f) > 0 but g is a nonzero constant by, show that the determinant
(1.2) still makes sense and gives Res(f, bp) = b}.

b. If deg(g) > 0 and ag # 0, what is Res(ag, g)? Also, what is Res(aq, bg)?
What about Res(f,0) or Res(0, g)?

c. Exercise 7 assumes that the remainder r has positive degree. Show that
the formula of Exercise 7 remains true even if r is constant.

Exercise 9. By Exercises 1, 7 and 8, resultants have the following three
properties: Res(f, g) = (—1)"™Res(g, f); Res(f, bo) = bh; and Res(f,g) =
aan—deg(r)Res( f,r) when g = g f + r. Use these properties to describe an
algorithm for computing resultants. Hint: Your answer should be similar
to the Euclidean algorithm.
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Exercise 10. This exercise will give a proof of (1.4).

a.

Given f, g as usual, define res(f, g) = af’ Hi=1 g(&;), where &1,...,&
are the roots of f. Then show that res(f, g) has the three properties of
resultants mentioned in Exercise 9.

Show that the algorithm for computing res(f, g) is the same as the
algorithm for computing Res(f, g), and conclude that the two are equal
for all f,g.

Exercise 11. Let f = aoz' + ajz'~! + - -- + a; € k[z] be a polynomial
with ag # 0, and let Ay = k[z]/(f). Given g € k[z], let my : Ay — Af be
multiplication by g.

a.

Use the basis {1,z,...,z!71} of As (so we are thinking of A; as
consisting of remainders) to show that the matrix of m; is

00 --- 0 —a/a

1 0 --- 0 ——al_l/ao
Cf = 01 .-.-0 —al_z/ao

00 --- 1 —al/ao

This matrix (or more commonly, its transpose) is called the companion
matriz of f.
If g = bpz™ + - - - + by, then explain why the matrix of m, is given by

9(Cy) = boCP + b:1CP ™ + -+ + bl

where I is the [ x ! identity matrix. Hint: By Proposition (2.4) of
Chapter 2, the map sending g € k[z] to my € M;.(k) is a ring
homomorphism.

Conclude that Res(f, g) = ag® det(g9(Cy)).

Exercise 12. In Proposition (1.5), we interpreted Res(f,g) as the de-
terminant of a linear map. It turns out that the original definition (1.2)
of resultant has a similar interpretation. Let P, denote the vector space
of polynomials of degree < n. Since such a polynomial can be written
aox™ + -+ + + ay, it follows that {z”,..., 1} is a basis of P,.

a. Given f, g asin (1.1), show that if (A, B) € Pp,.1®P_1,then A f+Bg

is in Ppym-1. Conclude that we get a linear map @54 : P,-1 ® P —
IJH—m—l-

If we use the bases {z™"!,...,1} of Pp,_1, {z'7%,...,1} of P_; and
{z!*m™=1 ... 1} of Piym—1, show that the matrix of the linear map
®; , from part a is exactly the matrix used in (1.2). Thus, Res(f, g) =
det(®y,4), provided we use the above bases.

If Res(f, g) # 0, conclude that every polynomial of degree < I +m — 1
can be written uniquely as A f+ B g where deg(A) < m and deg(B) < I.
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Exercise 13. In the text, we only proved Proposition (1.5) in the special

case when g(&;), ..., g(£) are distinct. For the general case, suppose f =

ag(z — &) - - (z — & )%, where &1, ..., & are distinct. Then we want to

prove that det(mgy) = []\_; 9(&)*.

a. First, suppose that f = (z — £)*. In this case, we can use basis of Ay
given by {(z—£)*"1,...,z—¢, 1} (as usual, we think of Ay as consisting
of remainders). Then show that the matrix of my with respect to the
above basis is upper triangular with diagonal entries all equal to g(£).
Conclude that det(mgy) = g(§)*. Hint: Write g = bpz™ + -+ + b, in
the form g = cp(z — &)™ + - - - + em—-1(z — £) + ¢, by replacing z with
(z — &) + £ and using the binomial theorem. Then let x = £ to get
cm = 9(§)-

b. In general, when f = ag(z — &)* -+ (z — &) , show that there is a
well defined map

Ay — (k[z]/{(z — &)™) @ - -- @ (K[z]/((z - &)"))

which preserves sums and products. Hint: This is where working with
cosets is a help. It is easy to show that the map sending [h] € Ay to
[h] € k[z]/{(z — &)™) is well-defined since (z — &;)* divides f.

c. Show that the map of part b is a ring isomorphism. Hint: First show
that the map is one-to-one, and then use linear algebra and a dimension
count to show it is onto.

d. By considering multiplication by g on

(klzl/{(z — £)*)) @ - - - @ (Klzl/{(z - &)™)

and using part a, conclude that det(my) = []._, g(&) as desired.

Exercise 14. This exercise will complete the proof of Proposition (1.7).

Suppose that F, G are given by (1.6) and assume ag # 0 and by = --- =

b.—1 = 0 but b, # 0. If we dehomogenize by setting y = 1, we get

polynomials f, g of degree I, m — r respectively.

a. Show that Res(F, G) = afRes(f, g).

b. Show that Res(F,G) = 0 if and only F = G = 0 has a nontrivial
solution. Hint: Modify the argument given in the text for the case when
ag and by were both nonzero.

§2 Multipolynomial Resultants

In §1, we studied the resultant of two homogeneous polynomials F, G in
variables z, y. Generalizing this, suppose we are given n + 1 homogeneous
polynomials Fy, ..., F, in variables x, ..., Z,, and assume that each F;
has positive total degree. Then we get n + 1 equations in n + 1 unknowns:

(21) F()((E(),...,l‘n)="'=Fn($0,...,.’2n)=0.
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Because the F; are homogeneous of positive total degree, these equations
always have the solution g = - - - = x,, = 0, which we call the trivial solu-
tion. Hence, the crucial question is whether there is a nontrivial solution.
For the rest of this chapter, we will work over the complex numbers, so
that a nontrivial solution will be a point in C**1 \ {(0,...,0)}.

In general, the existence of a nontrivial solution depends on the coef-
ficients of the polynomials Fy, ..., Fy,: for most values of the coefficients,
there are no nontrivial solutions, while for certain special values, they exist.

One example where this is easy to see is when the polynomials F; are all
linear, i.e., have total degree 1. Since they are homogeneous, the equations
(2.1) can be written in the form:

Fy = coozo + -+ + ConZp = 0
(2.2)
Fn = Cpo%o + -+ + CanTpn = 0.

This is an (n + 1) x (n + 1) system of linear equations, so that by linear
algebra, there is a nontrivial solution if and only if the determinant of the
coefficient matrix vanishes. Thus we get the single condition det(c;;) = 0
for the existence of a nontrivial solution. Note that this determinant is a
polynomial in the coefficients c;;.

Exercise 1. There was a single condition for a nontrivial solution of (2.2)
because the number of equations (n + 1) equaled the number of unknowns
(also n + 1). When these numbers are different, here is what can happen.
a. If we have r < n + 1 linear equations in n + 1 unknowns, explain why
there is always a nontrivial solution, no matter what the coefficients are.
b. When we have r > n + 1 linear equations in n + 1 unknowns, things
are more complicated. For example, show that the equations
Fo = cpoz + cony =0
Fi =cioz+cny=20
Fy =cpzr+cy=0

have a nontrivial solution if and only if the three conditions

det Coo Co1 — det Coo Co1 — det Cio C11 -0
Cio Ci11 C20 C21 C20 €21

are satisfied.

In general, when we have n + 1 homogeneous polynomials Fy, ..., F, €
Clzo, . . ., Zn], we get the following Basic Question: What conditions must
the coefficents of Fy, ..., F, satisfy in order that Fy = --- = F, = 0 has

a nontrivial solution? To state the answer precisely, we need to introduce
some notation. Suppose that d; is the total degree of F;, so that F; can be
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written

Fi= ) ciaz™

ja|=d;

For each possible pair of indices ¢, o, we introduce a variable u; o. Then,
given a polynomial P € Clu; ), we let P(Fp, ..., F,) denote the number
obtained by replacing each variable u; o in P with the corresponding coef-
ficient ¢; . This is what we mean by a polynomial in the coefficients of the
F;. We can now answer our Basic Question.

(2.3) Theorem. If we fix positive degrees dy,...,d,, then there is a

unique polynomial Res € Z[u; o] which has the following properties:

a. If Fo,...,F, € Clz1,...,xz,] are homogeneous of degrees dy, . .., dy,
then the equations (2.1) have a nontrivial solution over C if and only if
ReS(Fo, e ,Fn) = 0.

b. Res(z®,..., zd) = 1.

c. Res is irreducible, even when regarded as a polynomial in Clu; o).

PrOOF. A complete proof of the existence of the resultant is beyond the
scope of this book. See Chapter 13 of [GKZ] or §78 of [vdW] for proofs.
At the end of this section, we will indicate some of the intuition behind
the proof when we discuss the geometry of the resultant. The question of

uniqueness will be considered in Exercise 5. O

We call Res(Fy, . . ., F,,) the resultant of Fy, . .., F,. Sometimes we write
Resg,, ..., instead of Res if we want to make the dependence on the degrees
more explicit. In this notation, if each F; = > ¢;;z; is linear, then

discussion following (2.2) shows that
Resl,...,l(FOa ceey F’n) = det(c”)

Another example is the resultant of two polynomials, which was discussed in
§1. In this case, we know that Res(Fp, F}) is given by the determinant (1.2).
Theorem (2.3) tells us that this determinant is an irreducible polynomial
in the coeflicients of Fg, F}.

Before giving further examples of multipolynomial resultants, we want to
indicate their usefulness in applications. Let’s consider the implicitization
problem, which asks for the equation of a parametric curve or surface. For
concreteness, suppose a surface is given parametrically by the equations

z = f(s,1)
(2.4) y = g(s,t)
z = h(s,t),

where f(s,t), g(s, t), h(s, t) are polynomials (not necessarily homogeneous)
of total degrees dy, dy, d2. There are several methods to find the equation
p(z, y, 2) = 0 of the surface described by (2.4). For example, Chapter 3 of
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[CLO] uses Grobner bases for this purpose. We claim that in many cases,
multipolynomial resultants can be used to find the equation of the surface.

To use our methods, we need homogeneous polynomials, and hence we
will homogenize the above equations with respect to a third variable u. For
example, if we write f(s,t) in the form

f(s5t) = fao(8,) + fap—1(5,t) + - + fo(s, 1),
where f; is homogeneous of total degree j in s, t, then we get
F(s,t,u) = fuo(8,8) + fap—1(s, t)u + - + fo(s, t)u,
which is now homogeneous in s,t,u of total degree dp. Similarly, g(s,t)

and h(s,t) homogenize to G(s,t,u) and H(s,t,u), and the equations (2.4)
become

(25)  F(s,t,u) — zu® = G(s,t,u) — yu® = H(s,t,u) — 2u®™ = 0.

Note that z, y, z are regarded as coeflicients in these equations.
We can now solve the implicitization problem for (2.4) as follows.

(2.6) Proposition. With the above notation, assume that the system of
homogeneous equations

fdo(s1t) = ga,(8,t) = ha,(s,t) =0

has only the trivial solution. Then, for a given triple (z,y,z) € C3, the
equations (2.4) have a solution (s,t) € C? if and only if

Resg, 4.4, (F — zu®, G — yu®, H — 2u) = 0.

Proor. By Theorem (2.3), the resultant vanishes if and only if (2.5) has
a nontrivial solution (s,t,u). If u # 0, then (s/u,t/u) is a solution to
(2.4). However, if u = 0, then (s, t) is a nontrivial solution of fy,(s,t) =
94, (8, t) = hq,(s,t) = 0, which contradicts our hypothesis. Hence, u = 0
can’t occur. Going the other way, note that a solution (s, t) of (2.4) gives
the nontrivial solution (s, ¢, 1) of (2.5). |

Since the resultant is a polynomial in the coefficients, it follows that
2.7 p(x,y, 2) = Resgy 4, 4, (F — zu®, G — yu®, H — 2u)

is a polynomial in z,y, z which, by Proposition (2.6), vanishes precisely
on the image of the parametrization. In particular, this means that the
parametrizaton covers all of the surface p(z,y,z) = 0, which is not
true for all polynomial parametrizations—the hypothesis that fg,(s,t) =
94, (8,t) = hg,(s,t) = 0 has only the trivial solution is important Lere.

Exercise 2.

a. If f4,(s,t) = g4,(s,t) = hq,(s,t) = 0 has a nontrivial solution, show
that the resultant (2.7) vanishes identically. Hint: Show that (2.5) always
has a nontrivial solution, no matter what z, y, z are.
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b. Show that the parametric equations (z,y, 2) = (st, s%t, st2) define the
surface 23 = yz. By part a, we know that the resultant (2.7) can’t be
used to find this equation. Show that in this case, it is also true that
the parametrization is not onto—there are points on the surface which
don’t come from any s, ¢.

We should point that for some systems of equations, such as

z=14+s+1t+st
y=2+4+s5+3t+ st
z2=8—1+ st

the resultant (2.7) vanishes identically by Exercise 2, yet a resultant can
still be defined——this is one of the sparse resultants which we will consider
in Chapter 7.

One difficulty with multipolynomial resultants is that they tend to be
very large expressions. For example, consider the system of equations given
by 3 quadratic forms in 3 variables:

Fy = co12® + cooy® + co32® + couzy + coszz + cpeyz = 0
Fy = cnz® + 6127!2 + c132? + c142yY + ci522 + c16yz = 0

Fy = c17% + cogy® + c232® + coamy + 2572 + capyz = 0.

Classically, this is a system of “three ternary quadrics”. By Theorem (2.3),
the resultant Resg 2 2(Fo, F1, F2) vanishes exactly when this system has a
nontrivial solution in z, y, 2.

The polynomial Resy g2 is very large: it has 18 variables (one for each
coefficient c¢;;), and the theory of §3 will tell us that it has total degree
12. Written out in its full glory, Resy 2 2 has 21,894 terms (we are grateful
to Bernd Sturmfels for this computation). Hence, to work effectively with
this resultant, we need to learn some more compact ways of representing
it. We will study this topic in more detail in §3 and §4, but to whet the
reader’s appetite, we will now give one of the many interesting formulas for
R682,2,2.

First, let J denote the Jacobian determinant of Fy, F;, Fs:

0Fy, OFy OF

Bz Oy 0z

B OF, OF OFR

J=det| 5 B oz |
or dy 0z

which is a cubic homogeneous polynomial in z, y, 2. This means that the
partial derivatives of J are quadratic and hence can be written in the
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following form:

oJ
% bo1z> + bogy® + boaz® + boazy + bosTz + boeyz
oJ
Em = b1122 + bi2y? + b132? + brazy + biszz + bieyz
oJ
% = ba12? + bagy® + bosz® + baazy + basT2 + bagyz.

Note that each b;; is a cubic polynomial in the ¢;;. Then, by a classical for-
mula of Salmon (see [Sal], Art. 90), the resultant of three ternary quadrics
is given by the 6 x 6 determinant

Co1 Co2 Co3 Coa Cos Co6
Ci1 Ci2 €13 Cia Ci5 Cie

-1
(2.8) Resz,z,z(Fo,F1,F2)= = det C21 C22 C23 C24 C25 C26

512 bor boz bos bos bos bos
by bz biz bisa bis bis
bar b2z bz b2y bos by

Exercise 3.

a.

b.

Use (2.8) to explain why Resa 22 has total degree 12 in the variables

Co15 - - - 5 C26-

Why is the fraction —1/512 needed in (2.8)? Hint: Compute the
resultant Resg 2 2(z2, 32, 22).

Use (2.7) and (2.8) to find the equation of the surface defined by the
equations

r=14+s+t+st
y=2+4s+ st +t2
z2=s+1t+s%
Note that st = st 4+ t2 = s2 = 0 has only the trivial solution, so that

Proposition (2.6) applies. You should compare your answer to Exercise 6
of §1.

In §4 we will study the general question of how to find a formula for a

given resultant. Here is an example which illustrates one of the methods
we will use. Consider the following system of three homogeneous equations
in three variables:

Fo=axz+ay+a3z2=0

(2.9) Fy = bz + by + b3z =0

F=caz?+ czy2 + c322 + cazy + csx2 + cgyz = 0.

Since Fy and F) are linear and F; is quadratic, the resultant involved is
Resi,1,2(Fo, F1, F3). We get the following formula for this resultant.
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(2.10) Proposition. Res; 1 2(Fo, F1, F>) is given by the polynomial
a%bgc;», - afb2b3ce + afb%cz — 2aja2b1bacs + aiagbibscg
+ aiagbabscs — a1a2b§04 + ajaszbibace — 2a1a3b1b3cy — a1a3b§cs
+ ayagbabscy + agbfq — a§b1b305 + a%b%cl - agagbfce
+ agasgbibacs + asazbibscy — 2azazbabzc; + a%bfcz - a§b1b204 + a%bgcl.

PRrROOF. Let R denote the above polynomial, and suppose we have a non-
trivial solution (z, y, ) of (2.9). We will first show that this forces a slight
variant of R to vanish. Namely, consider the six equations

(211) III'Fo:y'F():Z'Fo:y'Fl=Z'F1=1'F2=0,

which we can write as

@z + 0 + 0 + agxy + azxz + 0 = 0
0 + a? + 0 + axy + 0 + agzyz = 0
0 + 0 + a322 + 0 + azz + ayz = 0
0 + b + 0 + bizy + 0 + bgyz = 0
0 + 0 + b322 + 0 + bizz + byz = 0
c1iz? 4+ cy? 4+ 322 4+ cazy + o5z + cgyz = 0.

[

If we regard z2,y?, 2%, zy, 22, yz as “unknowns”, then this system of six
linear equations has a nontrivial solution, which implies that the determi-
nant D of its coefficient matrix is zero. Using a computer, one easily checks
that the determinant is D = —a; R.

Thinking geometrically, we have proved that in the 12 dimensional space
C'? with a4, ..., c¢ as coordinates, the polynomial D vanishes on the set

(2.12) {(a1,...,cs) : (2.9) has a nontrivial solution} C C'2.

However, by Theorem (2.3), having a nontrival solution is equivalent to the
vanishing of the resultant, so that D vanishes on the set

V(ReSl’l,z) C Clz.

This means that D € I(V(Resy,1,2)) = 1/(Resy,1,2), where the last equality
is by the Nullstellensatz (see §4 of Chapter 1). But Res; ;2 is irreducible,
which easily implies that y/(Res; 12) = (Resy i,2). This proves that D €
(Resy,1,2), so that D = —a; R is a multiple of Res; ; 2. Irreducibility then
implies that Res; 2 divides either a; or R. The results of §3 will tell us
that Res; 1,2 has total degree 5. It follows that Res; ; 2 divides R, and since
R also has total degree 5, it must be a constant multiple of Res; ;2. By
computing the value of each when (Fp, F1, F3) = (z,y, 2?), we see that the
constant must be 1, which proves that R = Res; 12, as desired. O

Exercise 4. Verify that R = 1 when (Fp, F1, F») = (z, v, 2%).

The equations (2.11) may seem somewhat unmotivated. In §4 we will see
that there is a systematic reason for chosing these equations.
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The final topic of this section is the geometric interpretation of the resul-
tant. We will use the same framework as in Theorem (2.3). This means that
we consider homogeneous polynomials of degree dy,...,d,, and for each
monomial z* of degree d;, we introduce a variable u; . Let M be the total
number of these variables, so that CM is an affine space with coordinates
Ui q for all 0 <4 < n and |a| = d;. A point of CM will be written (c; o)-
Then consider the “universal” polynomials

F, = Z ui,axo‘, i=0,...,n.
|| =d;

Note that the coeflicients of the z* are the variables u; . If we evaluate
Fo,...,Fpat (cia) € CM, we get the polynomials Fy, . . ., F,, where F; =
Ela|=di Ci.ox®. Thus, we can think of points of CM as parametrizing all
possible (n + 1)-tuples of homogeneous polynomials of degrees dy, . . ., dp.

To keep track of nontrivial solutions of these polynomials, we will use
projective space P"(C), which we write as P™ for short. Recall the following:

® A point in P" has homogeneous coordinates (ag, - . ., @, ), where a; € C
are not all zero, and another set of coordinates (bo,...,b,) gives the
same point in P™ if and only if there is a complex number A # 0 such
that (bo,...,bs) = Aag, ..., an).

e If F(xp,...,z,) is homogeneous of degree d and (by,...,b,) =
Aag, - .., an) are two sets of homogeneous coordinates for some point
p € P*, then

F(bo,-..,bn) = MF(ag,-.-,an).

Thus, we can’t define the value of F' at p, but the equation F(p) = 0
makes perfect sense. Hence we get the projective variety V(F) C P,
which is the set of points of P"” where F' vanishes.

For a homogeneous polynomial F, notice that V(F) C P" is determined
by the nontrivial solutions of F' = 0. For more on projective space, see
Chapter 8 of [CLO].

Now consider the product CM x P™. A point (c; o, g, - - - , @) € CM xP"
can be regarded as n + 1 homogenegous polynomials and a point of P™. The
“universal” polynomials F; are actually polynomials on CM x P", which
gives the subset W = V(Fy, ..., F,). Concretely, this set is given by

W = {(Ciar @0, - - -,8n) € CM¥ x P" : (ag,...,a,) is 2
nontrivial solution of Fy = - .- = F,, = 0, where
(2.13) F, ..., F, are determined by (¢; o)}
= {all possible pairs consisting of a set of equations
Fy = --- = F,, = 0 of degrees dy, ..., d, and

a nontrivial solution of the equations}.
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Now comes the interesting part: there is a natural projection map
7:CM xP* — CM

defined by m(c¢iq,@0,..-,0n) = (Cio), and under this projection, the
variety W € CM x P™ maps to

7(W) = {(ci,o) € CM : there is (ao,...,an) € P"
such that (¢; o, ao, - . .,an) € W}
= {all possible sets of equations Fy = --- = F, = 0 of

degrees dy, . . ., d, which have a nontrivial solution}.

Note that when the degrees are (do, d1, d2) = (1,1,2), (W) is as in (2.12).

The essential content of Theorem (2.3) is that the set w(W) is defined
by the single irreducible equation Resg, ... 4, = 0. To prove this, first note
that w(W) is a variety in CM by the following result of elimination theory.

e (Projective Extension Theorem) Given a variety W C CM x P" and the
projection map 7 : CM x P* — CM, the image m(W) is a variety in CM.

(See, for example, §5 of Chapter 8 of [CLO].) This is one of the key reasons
we work with projective space (the corresponding assertion for affine space
is false in general). Hence w(W) is defined by the vanishing of certain
polynomials on CM. In other words, the existence of a nontrivial solution
of F = --- = F, = 0 is determined by polynomial conditions on the
coefficients of Fy, ..., F,.

The second step in the proof is to show that we need only one polynomial
and that this polynomial is irreducible. Here, a rigorous proof requires
knowing certain facts about the dimension and irreducible components of
a variety (see, for example, [Shal, §6 of Chapter I). If we accept an intuitive
idea of dimension, then the basic idea is to show that the variety #(W) C
CM is irreducible (can’t be decomposed into smaller pieces which are still
varieties) of dimension M — 1. In this case, the theory will tell us that (W)
must be defined by exactly one irreducible equation, which is the resultant
Resq,,...d, = 0.

To prove this, first note that CM x P" has dimension M + n. Then
observe that W C CM x P is defined by the n + 1 equations Fg = - - - =
F, = 0. Intuitively, each equation drops the dimension by one, though
strictly speaking, this requires that the equations be “independent” in an
appropriate sense. In our particular case, this is true because each equation
involves a disjoint set of coefficient variables u; o. Thus the dimension of
W is (M +n) — (n+1) = M — 1. One can also show that W is irreducible
(see Exercise 9 below). From here, standard arguments imply that 7(W)
is irreducible. The final part of the argument is to show that the map
W — w(W) is one-to-one “most of the time”. Here, the idea is that if
Fy = --- = F, = 0 do happen to have a nontrivial solution, then this
solution is usually unique (up to a scalar multiple). For the special case
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when all of the F; are linear, we will prove this in Exercise 10 below. For the
general case, see Proposition 3.1 of Chapter 3 of [GKZ]. Since W — «(W)
is onto and one-to-one most of the time, m(W) also has dimension M — 1.

ADDITIONAL EXERCISES FOR §2

Exercise 5. To prove the uniqueness of the resultant, suppose there are

two polynomials Res and Res’ satisfing the conditions of Theorem (2.3).

a. Adapt the argument used in the proof of Proposition (2.10) to show that
Res divides Res’ and Res’ divides Res. Note that this uses conditions a
and ¢ of the theorem.

b. Now use condition b of Theorem (2.3) to conclude that Res = Res’.

Exercise 6. A homogeneous polynomial in C[z] is written in the form
ax®. Show that Resg(az?) = a. Hint: Use Exercise 5.

Exercise 7. When the hypotheses of Proposition (2.6) are satisfied, the
resultant (2.7) gives a polynomial p(z, y, z) which vanishes precisely on the
parametrized surface. However, p need not have the smallest possible total
degree: it can happen that p = ¢¢ for some polynomial q of smaller total
degree. For example, consider the (fairly silly) parametrization given by
(z,9,2) = (s,8,12). Use the formula of Proposition (2.10) to show that in
this case, p is the square of another polynomial.

Exercise 8. The method used in the proof of Proposition (2.10) can be
used to explain how the determinant (1.2) arises from nontrival solutions
F = G = 0, where F,G are as in (1.6). Namely, if (z,y) is a nontrivial
solution of (1.6), then consider the [ + m equations

g™ F =0
™2y . F=0
y" L. F=0
271.G=0
27%y.G=0
y1.G=0.

Regarding this as a system of linear equations in unknowns z!+™~1,

gtm=2y ..,y 1, show that coefficient matrix is exactly the trans-
pose of (1.2), and conclude that the determinant of this matrix must vanish
whenever (1.6) has a nontrivial solution.
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Exercise 9. In this exercise, we will give a rigorous proof that the set W
from (2.13) is irreducible of dimension M — 1. For convenience, we will
write a point of CM as (Fy,. .., Fy,).

a. If p = (ag,-...,a,) are fixed homogeneous coordinates for a point
p € P?, show that the map CM — C"*! defined by (Fp,...,F,) —
(Fo(p), - - . , Fu(p)) is linear and onto. Conclude that the kernel of this
map has dimension M — n — 1. Denote this kernel by K(p).

b. Besides the projection m : CM x P* — CM used in the text, we also
have a projection map CM x P* — P", which is projection on the second
factor. If we restrict this map to W, we get a map # : W — P™ defined
by #(Fy, ..., Fn,p) = p. Then show that

#'(p) = K(p) x {p},

where as usual #~1(p) is the inverse image of p € P" under T, i.e., the
set of all points of W which map to p under 7. In particular, this shows
that # : W — P” is onto and that all inverse images of points are
irreducible (being linear subspaces) of the same dimension.

c. Use Theorem 8 of [Sha], §6 of Chapter 1, to conclude that W is
irreducible.

d. Use Theorem 7 of [Sha], §6 of Chapter 1, to conclude that W has di-
mension M — 1 = n (dimension of P*) + M — n — 1 (dimension of the
inverse images).

Exercise 10. In this exercise, we will show that the map W — n(W) is

usually one-to-one in the special case when Fy, . . ., F}, have degree 1. Here,

we know that if F; = )77 cijz;, then Res(Fo, ..., Fn) = det(A), where

A = (c¢;j). Note that A is a (n + 1) x (n + 1) matrix.

a. Show that Fy = --- = F,, = 0 has a nontrivial solution if and only if A
has rank < n + 1.

b. If A has rank n, prove that there is a unique nontrivial solution (up to
a scalar multiple).

c. Given 0 < i,j < m, let A% be the n x n matrix obtained from A by
deleting row ¢ and column j. Prove that A has rank < n if and only if
det(A®7) = 0 for all 4, j. Hint: To have rank > n, it must be possible
to find n columns which are linearly independent. Then, looking at the
submatrix formed by these columns, it must be possible to find n rows
which are linearly independent. This leads to one of the matrices A™7.

d. Let Y = V(det(A*7) : 0 < 4,j < n). Show that Y C 7(W) and that
Y # w(W). Since n(W) is irreducible, standard arguments show that ¥’
has dimension strictly smaller than «(W) (see, for example, Corollary 2
to Theorem 4 of [Sha], §6 of Chapter I).

e. Show that if a,b € W and w(a) = n(b) € 7(W) \ Y, then a = b. Since
Y has strictly smaller dimension than w(W), this is a precise version of
what we mean by saying the map W — w(W) is “usually one-to-one”.
Hint: Use parts b and c.
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§3 Properties of Resultants

In Theorem (2.3), we saw that the resultant Res(Fy,..., F,) vanishes if
and only if Fy = - -- = F,, = 0 has a nontrivial solution, and is irreducible
over C when regarded as a polynomial in the coeflicients of the F;. These
conditions characterize the resultant up to a constant, but they in no way
exhaust the many properties of this remarkable polynomial. This section
will contain a summary of the other main properties of the resultant. No
proofs will be given, but complete references will be provided.

Throughout this section, we will fix total degrees dy, . ..,d, > 0 and let
Res = Resq,,....d, € Z[uiq| be the resultant polynomial from §2.

We begin by studying the degree of the resultant.

(3.1) Theorem. For a fized j between 0 and n, Res is homogeneous in
the variables ujq, |a| = d;, of degree dy - --d;_1d;y1 - dn. This means
that

Res(Fy, ..., AFj,..., Fy) = Aordi-1diidnReg(Fy, ..., Fy).
FPuyrthermore, the total degree of Res is Z?:o do---dj_1djq1---dy.
PROOF. A proof can be found in §2 of [Jou] or Chapter 13 of [GKZ]. O
Exercise 1. Show that final assertion of Theorem (3.1) is an immediate

consequence of the formula for Res(Fy,...,AF},..., F,). Hint: What is
Res(AFp, ..., AF,)?

Exercise 2. Show that formulas (1.2) and (2.8) for Res; ,, and Resp22
satisfy Theorem (3.1).

We next study the symmetry and multiplicativity of the resultant.

(3.2) Theorem.
a. Ifi < j, then
Res(Fo, ..., Fi,..., Fj,..., F,) =
(=1)%dnRes(Fo, ..., Fj,..., F, ..., Fy),

where the bottom resultant is for degrees dy, . ..,d;j,...,di, ..., dy.
b. If F; = F;F}' is a product of homogeneous polynomials of degrees d;

and dj, then

Res(Fy, ..., Fj,..., F,) =
Res(Fp, ..., F},...,F,) - Res(Fy,..., F},..., Fy),

where the resultants on the bottom are for degrees dg, . . . ,d}, eeo,dy and
do,...,d", ..., d,.

[k A
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PROOF. A proof of the first assertion of the theorem can be found in §5 of
[Jou]. As for the second, we can assume j = n by part a. This case will be
covered in Exercise 9 at the end of the section. O

Exercise 3. Prove that formulas (1.2) and (2.8) for Res;,, and Resz 22
satisfy part a of Theorem (3.2).

Our next task is to show that the analog of Proposition (1.5) holds
for general resultants. We begin with some notation. Given homogeneous
polynomials Fy, ..., F, € C[zo,...,z,] of degrees dy, . . ., dy, let

(33) ;fi(l'o, e ,.’l)n_l) = .Fi(.’l,‘o, vev sy Tp—1, 1)
Fi(.’l,‘o, e ,.’En_l) = .Fi(.’L‘(), ey Tp—1, 0)
Note that Fy,...,F,_; are homogeneous in C[zo,...,Z,—1] of degrees

do, e ,dn—1~

(3.4) Theorem. If Res(Fy,...,Fn_1) # 0, then the quotient ring A =
Clzo, . .., Zn-1]/{fo, .-, fn—1) has dimensiondg - - - d,—1 as a vector space
over C, and

Res(Fy, ..., F,) = Res(Fy, ..., Fn_1)% det(m;y, : A — A),
where my, : A — A is the linear map given by multiplication by f,.

PRrROOF. Although we will not prove this result (see [Jou], §§2, 3 and 4 for a
complete proof), we will explain (non-rigorously) why the above formula is
reasonable. The first step is to show that the ring A is a finite dimensional
vector space over C when Res(Fl,...,Fn_1) # 0. The crucial idea is to
think in terms of the projective space P". We can decompose P" into two
pieces using x,: the affine space C* C P" defined by z, = 1, and the
“hyperplane at infinity” P?~1 C P" defined by z, = 0. Note that the

other variables xy, ..., Z,_1 play two roles: they are ordinary coordinates
for C* C P, and they are homogeneous coordinates for the hyperplane at
infinity.

The equations Fy = --- = F,,_; = 0 determine a projective variety V C
P™. By (3.3), fo = - -+ = fan—1 = 0 defines the “affine part” C" NV C V,
while Fg = - -+ = Fn_1 = 0 defines the “part at infinity” P"* NV C V.

Hence, the hypothesis Res(F,..., Fn_1) # 0 implies that there are no
solutions at infinity. In other words, the projective variety V is contained in
C™ C P". Now we can apply the following result from algebraic geometry:

® (Projective Varieties in Affine Space) If a projective variety in IP" is
contained in an affine space C® C P", then the projective variety must
consist of a finite set of points.

(See, for example, [Sha], §5 of Chapter I.) Applied to V, this tells us that V
must be a finite set of points. Since C is algebraically closed and V C C»
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is defined by fo = .-+ = fn_1 = 0, the Finiteness Theorem from §2
of Chapter 2 implies that A = C[zg,...,Zn-1]/{(fo,.-, fn-1) is finite
dimensional over C. Hence det(my, : A — A) is defined, so that the
formula of the theorem makes sense.

We also need to know the dimension of the ring A. The answer is provided
by Bézout’s Theorem:

e (Bézout’s Theorem) If the equations Fy = --- = F,_; = 0 have de-
gree do, - . ., d,—1 and finitely many solutions in IP", then the number of
solutions (counted with multiplicity) is dg - - - dp—1.

(See [Sha], §2 of Chapter II.) This tells us that V has dp---dn—1
points, counted with multiplicity. Because V' C C" is defined by f, =
-+ = fn1 = 0, Theorem (2.2) from Chapter 4 implies that the
number of points in V, counted with multiplicity, is the dimension of
A = Cizo,...,zn-1]/{fos-- -, fan—1). Thus, Bézout’s Theorem shows that
dim A = d() e dn—l-

We can now explain why Res(Fl, ..., Fp_1)% det(my,) behaves like a
resultant. The first step is to prove that det(my,) vanishes if and only if
Fy = --- = F, = 0 has a solution in P™. If we have a solution p, then
p € V since Fy(p) = -+ = F,_1(p) = 0. But V C C™, so we can write
p = (ag,..-,8n-1,1), and fr(ag,...,an—1) = 0 since F,(p) = 0. Then
Theorem (2.6) of Chapter 2 tells us that f,(ag,...,an—1) = 0 is an eigen-
value of my, , which proves that det(my,) = 0. Conversely, if det(my, ) = 0,
then one of its eigenvalues must be zero. Since the eigenvalues are f,(p)
for p € V (Theorem (2.6) of Chapter 2 again), we have f,(p) = 0 for some
p. Writing p in the form (aq, ..., a,—1,1), we get a nontrivial solution of
Fy =-.--=F, =0, as desired.

Finally, we will show that Res(Fy, ..., Fn_1)% det(my,) has the homo-
geneity properties predicted by Theorem (3.1). If we replace F; by AF; for
some j < nand A € C )\ {0}, then AF; = AF;, and neither A nor my, are
affected. Since

ReS(Fo, ey )\Fj, e ,_Fn—l) =
Ado"'dj_ldj+lmd"*IReS(F(), ce ,—F—j, . ,Fn_l),

we get the desired power of A because of the exponent d,, in the for-
mula _9f the tEeorem. On the other hand, if we replace F,, with AF,,, then
Res(Fy, ..., Fyn_1) and A are unchanged, but my, becomes mys, = Amy,.
Since

det(Amy,) = A4™ 4 det(my, )

it follows that we get the correct power of A because, as we showed above,
A has dimension dp - - - dj,_1. ]

This discussion shows that the formula Res(Fy, ..., Fn_1)% det(my,)
has many of the properties of the resultant, although some important points
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were left out (for example, we didn’t prove that it is a polynomial in the
coefficients of the F;). We also know what this formula means geometrically:
it asserts that the resultant is a product of two terms, one coming from

the behavior of Fy,..., F,_; at infinity and the other coming from the
behavior of f, = F,(zo,...,Zn—-1,1) on the affine variety determined by
vanishing of fg,..., fa-1. O

Exercise 4. When n = 2, show that Proposition (1.5) is a special case
of Theorem (3.4). Hint: Start with f, g as in (1.1) and homogenize to get
(1.6). Use Exercise 6 of §2 to compute Res(F).

Exercise 5. Use Theorem (3.4) and getmatrix to compute the resultant
of the polynomials 2% + 32 + 22, zy + zz + yz, TYz.

The formula given in Theorem (3.4) is sometimes called the Poisson
Formula. Some further applications of this formula will be given in the
exercises at the end of the section.

In the special case when Fy, .. ., F,, all have the same total degree d > 0,
the resultant Resq, .. 4 has degree d” in the coefficients of each F;, and its
total degree is (n + 1)d". Besides all of the properties listed so far, the
resultant has some other interesting properties in this case:

(3.5) Theorem. Res = Resq, .. 4 has the following properties:
a. If F; are homogeneous of total degree d and G; = E?:o a;; F;, where
(asj) is an invertible matriz with entries in C, then

Res(Gy, . ..,Gyn) = det(aij)d"Res(Fg, o B

b. If we list all monomials of total degree d as z*V) ... z*N) and pick
n+ 1 distinct indices 1 < 49 < --- < i, < N, the bracket [i; ... 14,] is
defined to be the determinant

[ig...1n] = det(ui,a(ij)) € Zlu; o)l
Then Res is a polynomial in the brackets [ig . . . i,].

PROOF. See Proposition 5.11.2 of [Jou] for a proof of part a. For part b,
note that if (a,;) has determinant 1, then part a implies Res(Go, ..., G,) =
Res(Fy, ..., Fy,), so Res is invariant under the action of SL(n + 1,C) =
{A € M(p11)x(n+1)(C) : det(A) = 1} on (n + 1)-tuples of homogenous
polynomials of degree d. If we regard the coefficients of the universal poly-
nomials F; as an (n 4+ 1) x N matrix (u;(;)), then this action is matrix
multiplication by elements of SL(n+ 1, C). Since Res is invariant under this
action, the First Fundamental Theorem of Invariant Theory (see [Stul],
Section 3.2) asserts that Res is a polynomial in the (n + 1) x (n + 1)
minors of (u; o(;)), which are exactly the brackets [ig . . . in]. O
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Exercise 6. Show that each bracket [ig .. .i,] = det(u; o)) is invariant
under the action of SL(n + 1, C).

We should mention that the expression of Res in terms of the brackets
[i - ..1%n] is not unique. The different ways of doing this are determined
by the algebraic relations among the brackets, which are described by
the Second Fundamental Theorem of Invariant Theory (see Section 3.2
of [Stul]).

As an example of Theorem (3.5), consider the resultant of three ternary
quadrics

F3 = co12® + cozy® + co3z® + coaxy + o5z + copyz = 0
Fy = cnnz? + c10y? + €132 + crazy + c1522 + creyz = 0
Fy = cn2® + caoy® + 2322 + coaxy + cos5z2 + Cco6yz = 0.

In §2, we gave a formula for Resg 2 2(Fu, F1, F2) as a certain 6 x 6 determi-
nant. Using Theorem (3.5), we get quite a different formula. If we list the
six monomials of total degree 2 as x2,y?, 22, 2y, £z, yz, then the bracket

[t0i172] is given by
Coiy  Coi;  Coiy
[tot142] = det { c1i €15, C1ip | -

C2ip  C2i; C24y

By [KSZ], the resultant Resy 2 2(Fo, F1, F») is the following polynomial in
the brackets [igi112]:

[145][246][356][456] — [146][156][246][356] — [145][245][256](356]

— [145][246][346][345] + [125][126][356][456] — 2[124][156][256](356]
— [134][136][246][456] — 2[135][146][346][246] + [235][234][145][456]
— 2[236][345][245][145] — [126]2[156][356] — [125])%[256](356]

— [134]2[246][346] — [136]2[146][246] — [145][245][235]*

— [145][345][234)? + 2[123][124][356][456] — [123][125][346][456]

— [123][134][256][456] + 2[123][135][246][456] — 2[123][145][246][356]
— [124]%[356]° + 2[124][125][346][356] — 2[124][134][256][356]

— 3[124][135][236][456] — 4[124][135][246][356] — [125]2[346]>

+ 2[125][135][246][346] — [134]%[256]° + 2[134][135][246}[256]

— 2(135]%[246)% — [123][126][136][456] + 2[123][126][146][356]

— 2[124][136]2[256] — 2[125][126][136][346] + [123][125](235][456]

— 2[123][125][245}(356] — 2[124][235])2[156] — 2[126][125][235][345]

— [123][234][134][456] + 2[123][234][346][145] — 2[236][134]%[245]

— 2[235][234][134][146] + 3[136][125][235][126] — 3[126][135][236][125]
— [136][125]%[236] — [126]2[135][235) — 3[134][136][126][234]

+ 3[124][134][136][236] + [134]?[126][236] + [124][136]*[234]
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— 3[124][135][234](235] + 3[134][234][235][125] — [135][234]%[125]
— [124][235]%[134] — [136]2[126]% — [125]%[235]2

— [134]%(234]% + 3[123][124][135][236] + [123][134][235][126]

+ [123][135][126][234] + [123][134][236][125] + [123][136][125][234]
+ [123][124][235][136] — 2[123]%[126](136] + 2[123]%[125](235]

— 2[123]%[134][234] — [123]*.

This expression for Resy 22 has total degree 4 in the brackets since the
resultant has total degree 12 and each bracket has total degree 3 in the c;;.
Although this formula is rather complicated, its 68 terms are a lot simpler
than the 21,894 terms we get when we express Resz 2 2 as a polynomial in

Exercise 7. When Fy = agz? +a1zy +azy? and F; = box? + byzy + bay?,
the only brackets to consider are [01] = agbi — a1bg, [02] = agbz — az2bo
and [12] = a1bs — agb; (why?). Express Resz 2 as a polynomial in these
three brackets. Hint: In the determinant (1.2), expand along the first row
and then expand along the column containing the zero.

Theorem (3.5) also shows that the resultant of two homogeneous poly-
nomials Fy(z,y), Fi(x,y) of degree d can be written in terms of the
brackets [¢7]. The resulting formula is closely related to the Bézout Formula
described in Chapter 12 of [GKZ].

For further properties of resultants, the reader should consult Chapter 13
of [GKZ] or Section 5 of [Jou].

ADDITIONAL EXERCISES FOR §3

Exercise 8. The product formula (1.4) can be generalized to arbi-
trary resultants. With the same hypotheses as Theorem (3.4), let V =
V(fo,---, fn-1) be as in the proof of the theorem. Then

Res(Fy, ..., F,) = Res(Fo, ..., Fn_1)% H fu(p)™®,
pEV

where m(p) is the multiplicity of p in V. This concept is defined in [Shal, §2
of Chapter II, and §2 of Chapter 4. For this exercise, assume that V' consists
of dp - - - d,—; distinct points (which means that all of the multiplicities
m(p) are equal to 1) and that f, takes distinct values on these points.
Then use Theorem (2.6) of Chapter 2, together with Theorem (3.4), to
show that the above formula for the resultant holds in this case.
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Exercise 9. In Theorem (3.4), we assumed that the field was C. It turns
out that the result is true over any field k. In this exercise, we will use this
version of the theorem to prove part b of Theorem (3.2) when F, = F,F},.
The trick is to chose k appropriately: we will let k¥ be the field of rational
functions in the coeflicients of Fy, ..., F,,_1, F,, F!'. This means we regard
each coefficient as a separate variable and then k is the field of rational
functions in these variables with coeflicients in Q.

a. Explain why Fy, ..., F,_, are the “universal” polynomials of degrees
do,...,dn-1 in Zg, ..., Tn-1, and conclude that Res(Fy,...,F,_1) is
nonzero.

b. Use Theorem (3.4) (over the field k) to show that
Res(Fy, - . ., Fn) = Res(Fy, ..., F.) - Res(Fp, ..., Fl).
Notice that you need to use the theorem three times. Hint: my, =

my, o myy.

Exercise 10. The goal of this exercise is to generalize Proposition (2.10)
by giving a formula for Res; ; 4 for any d > 0. The idea is to apply Theo-
rem (3.4) when the field &k consists of rational functions in the coefficients
of Fy, Fy, F» (so we are using the version of the theorem from Exercise 9).
For concreteness, suppose that

Fy=aiz+ay+azz=90
Fy = bz + by + b3z = 0.
a. Show that Res(Fg, F1) = ajbs — agb; and that the only solution of
fo=fi=0is
a2b3 - a3b2 . a1b3 - a3b1

Ty = 0 =
arby — azb, Y a1by — agxby

b. By Theorem (3.4), k[z,y]/{fo, f1) has dimension one over C. Use
Theorem (2.6) of Chapter 2 to show that

det(mfz) = f2(m0ay0)'
c. Since fz(z,y) = Fy(z,y,1), use Theorem (3.4) to conclude that
Resy1,4(Fo, F1, F2) = F(agbs — asba, —(a1bs — agb1), a1ba — agby).

Note that asbz — asbs, ajbs — asby, a1bs — azb; are the 2 x 2 minors of

the matrix
a; Qa2 as
by by b3 )’

d. Use part c to verify the formula for Res; 2 given in Proposition (2.10).

e. Formulate and prove a formula similar to part ¢ for the resultant
Resi,...,1,4. Hint: Use Cramer’s Rule. The formula (with proof) can be
found in Proposition 5.4.4 of [Jou].
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Exercise 11. Consider the elementary symmetric functions oy,...,0, €
C[z1,. .., Tn]. These are defined by

01 =21+ "+

Or = E Tiy Tip = ** Tiy,

11 <ig<---<ip

Op = T1X2° - Tp-

Since o; is homogeneous of total degree i, the resultant Res(oy,...,04)

is defined. The goal of this exercise is to prove that this resultant equals

—1 for all n > 1. Note that this exercise deals with n polynomials and n

variables rather than n 4 1.

a. Show that Res(z + y,zy) = —1.

b. To prove the result for n > 2, we will use induction and Theorem (3.4).
Thus, let

o; = 0’,;(1'1, vy Tp—1, 0)

5’,' = O‘i(.'L'l, ceey Tp—1, 1)

as in (3.3). Prove that &; is the ith elementary symmetric function in
Z1,...,Tn—1 and that &; = 7; + 7;—1 (where &g = 1).

c. If A=Clzy,...,Tn-1]/{61,...,6n—1), then use part b to prove that
the multiplication map ms_ : A — A is multiplication by (—1)". Hint:
Observe that 6, = 0,_;.

d. Use induction and Theorem (3.5) to show that Res(oy,...,0,) = —1
foralln > 1.

Exercise 12. Using the notation of Theorem (3.4), show that
ReS(Fo, e 7Fn-—1, .’L‘z) = ReS(Fo, e ,Fn_l)d.

§4 Computing Resultants

Our next task is to discuss methods for computing resultants. While Theo-
rem (3.4) allows one to compute resultants inductively (see Exercise 5 of §3
for an example), it is useful to have other tools for working with resultants.
In this section, we will give some further formulas for the resultant and
then discuss the practical aspects of computing Resg,,... 4,. We will begin
by generalizing the method used in Proposition (2.10) to find a formula for
Resy,1,2. Recall that the essence of what we did in (2.11) was to multiply
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each equation by appropriate monomials so that we got a square matrix
whose determinant we could take.

To do this in general, suppose we have Fy, ..., F, € Clzo,...,Z,] of
total degrees dy, .. ., d,. Then set

d=i(di—1)+1=2n:di—’n.

i=0 i=0

For instance, when (dg, dy,d2) = (1,1, 2) as in the example in Section 2,
one computes that d = 2, which is precisely the degree of the monomials
on the left hand side of the equations following (2.11).

Exercise 1. Monomials of total degree d have the following special prop-
erty which will be very important below: each such monomial is divisible
by mf" for at least one i between 0 and n. Prove this. Hint: Argue by
contradiction.

Now take the monomials z* = zg° - - - 22~ of total degree d and divide
them into n sets as follows:

So = {2 : |a| = d, zd divides z}

S, = {z% : |a| = d, zd doesn’t divide z* but z3* does}

dn— .
S, ={z*:|a] = d, zd,..., 22"} don’t divide z* but " does}.

By Exercise 1, every monomial of total degree d lies in one of Sy, ..., S,.
Note also that these sets are mutually disjoint. One observation we will
need is the following:

if z* € §;, then we can write £® = ¢ - 7 /2.

Notice that z* /zfi is a monomial of total degree d — d; since z* € §;.

Exercise 2. When (do,d;,d2) = (1,1,2), show that Sp = {z?, zy, zz},
S1 = {v?,yz}, and S; = {2%}, where we are using z,y, 2 as variables.
Write down all of the z®/z% in this case and see if you can find these
monomials in the equations (2.11).

Exercise 3. Prove that the number of monomials in S, is exactly
dy - -dp_1. This fact will play an extremely important role in what fol-
lows. Hint: Given integers aq, ..., 0,-1 with 0 < a; < d; — 1, prove that
there is a unique a, such that zg°---z% € S,. Exercise 1 will also be
useful.



98 Chapter 3. Resultants

Now we can write down a system of equations that generalizes (2.11).
Namely, consider the equations

z*/zd . Fy =0 for all z* € Sp
(4.1)

x"‘/zf{' -F,=0 forallz* € S,.

Exercise 4. When (dp,d;,d2) = (1,1,2), check that the system of
equations given by (4.1) is eractly what we wrote down in (2.11).

Since F; has total degree d;, it follows that = /xf“ - F; has total degree
d. Thus each polynomial on the left side of (4.1) can be written as a linear
combination of monomials of total degree d. Suppose that there are N such
monomials. (In the exercises at the end of the section, you will show that N
equals the binomial coefficient (**™).) Then observe that the total number
of equations is the number of elements in Sy U - - - U S,,, which is also N.
Thus, regarding the monomials of total degree d as unknowns, we get a
system of N linear equations in N unknowns.

(4.2) Definition. The determinant of the coeflicient matrix of the N x N
system of equations given by (4.1) is denoted D,.

For example, if we have

Fy =a1x+azy+asz=0
(4.3) Fy =bxz+by+bsz=0

Fy = a12® + cay® + c32® + cazy + 532 + coyz = 0,
then the equations following (2.11) imply that

ay 0 0 az asg 0
0 a2 0 ai 0 as
0 0 a3 0 a a2
0 b 0 b 0 b3
0 0 b3 0 b be
Ci C2 C3 €4 Cs Cg

(4.4) Dy = det

Exercise 5. When we have polynomials Fg, Fi € C[z, y] as in (1.6), show
that the coefficient matrix of (4.1) is exactly the transpose of the matrix
(1.2). Thus, D; = Res(Fp, Fy) in this case.

Here are some general properties of D,:
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Exercise 6. Since D,, is the determinant of the coefficient matrix of (4.1),

it is clearly a polynomial in the coefficients of the F;.

a. For a fixed i between 0 and n, show that D, is homogeneous in the
coefficients of F; of degree equal to the number u; of elements in S;.
Hint: Show that repacing F; by AF; has the effect of multplying a certain
number (how many?) equations of (4.1) by A. How does this affect the
determinant of the coefficient matrix?

b. Use Exercise 3 to show that D,, has degree dy - - - d,,_; as a polynomial
in the coefficents of F),. Hint: If you multiply each coefficient of F;, by
X € C, show that D, gets multiplied by Ado*-dn-1,

c. What is the total degree of D,,? Hint: Exercise 19 will be useful.

Exercise 7. In this exercise, you will prove that D, is divisible by the
resultant.

a. Prove that D,, vanishes whenever Fy = --- = F,, = 0 has a nontrivial
solution. Hint: If the F; all vanish at (cg,...,cn) # (0,...,0), then
show that the monomials of total degree d in ¢y, . . . , ¢, give a nontrivial

solution of (4.1).

b. Using the notation from the end of §2, we have V(Res) C CV, where C
is the affine space whose variables are the coefficients u; o of Fy, ..., Fy.
Explain why part a implies that D,, vanishes on V(Res).

c. Adapt the argument of Proposition (2.10) to prove that D,, € (Res), so
that Res divides D,,.

Exercise 7 shows that we are getting close to the resultant, for it enables
us to write

(4.5) D,, = Res - extraneous factor.

We next show that the extraneous factor doesn’t involve the coefficients of
F,, and in fact uses only some of the coefficients of Fy, ..., F_1.

(4.6) Proposition. The extraneous factor in (4.5) is an integer polyno-
mial in the coefficients of Fy, ..., Fn_1, where F; = Fy(xq,...,ZTn_1,0).

PROOF. Since D,, is a determinant, it is a polynomial in Z[u; o], and we
also know that Res € Z[u; o]. Exercise 7 took place in Clu; o] (because of
the Nullstellensatz), but in fact, the extraneous factor (let’s call it E,,) must
lie in Q[u; o] since dividing D, by Res produces at worst rational coeffi-
cients. Since Res is irreducible in Z[u; ), standard results about polynomial
rings over Z imply that E,, € Z[u; ] (see Exercise 20 for details).

Since D,, = Res- E,, is homogeneous in the coefficients of F,,, Exercise 20
at the end of the section implies that Res and E,, are also homogeneous
in these coefficients. But by Theorem (3.1) and Exercise 6, both Res and
D,, have degree dp - - - d,,_1 in the coefficients of F,,. It follows immediately
that F, has degree zero in the coeflicients of Fi,, so that it depends only
on the coefficients of Fy, ..., F,,_;.
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To complete the proof, we must show that E,, depends only on the coef-
ficients of the F';. This means that coefficients of Fy, ..., F,,_; with z, to
a positive power don’t appear in E,. To prove this, we use the following
clever argument of Macaulay (see [Macl]). As above, we think of Res, D,
and E, as polynomials in the u; o, and we define the weight of u; , to be

the exponent a, of z, (where @ = (ag,-..,a,)). Then, the weight of a
monomial in the u;q, say ;)% - - - ui",, , is defined to be the sum of the

weights of each u;; o, multiplied by the corresponding exponents. Finally, a
polynomial in the u; 4 is said to be isobaric if every term in the polynomial
has the same weight.

In Exercise 23 at the end of the section, you will prove that every term
in D, has weight dp - - - d,,, so that D,, is isobaric. The same exercise will
show that D,, = Res- E,, implies that Res and E,, are isobaric and that the
weight of D, is the sum of the weights of Res and E,,. Hence, it suffices to
prove that E, has weight zero (be sure you understand this). To simplify
notation, let u; be the variable representing the coefficient of a;f" in F;.
Note that ug,...,u,_; have weight zero while u, has weight d,,. Then
Theorems (2.3) and (3.1) imply that one of the terms of Res is

:tugl."d"u;l()d2”.dn L uiﬂmd"—l

(see Exercise 23). This term has weight dy - - - d,,, which shows that the
weight of Res is dp - - - d,,. We saw above that D,, has the same weight, and
it follows that E, has weight zero, as desired. QO

Although the extraneous factor in (4.5) involves fewer coeflicients than
the resultant, it can have a very large degree, as shown by the following
example.

Exercise 8. When d; = 2 for 0 < i < 4, show that the resultant has total
degree 80 while D, has total degree 420. What happens when d; = 3 for
0 < ¢ < 4? Hint: Use Exercises 6 and 19.

Notice that Proposition (4.6) also gives a method for computing the
resultant: just factor D,, into irreducibles, and the only irreducible factor
in which all variables appear is the resultant! Unfortunately, this method
is wildly impractical owing to the slowness of multivariable factorization
(especially for polynomials as large as D,,).

In the above discussion, the sets Sp, ..., S, and the determinant D,, de-
pended on how the variables zy, . . . , z,, were ordered. In fact, the notation
D,, was chosen to emphasize that the variable z, came last. If we fix ¢
between 0 and n — 1 and order the variables so that z; comes last, then
we get slightly different sets Sy, ..., S, and a slightly different system of
equations (4.1). We will let D; denote the determinant of this system of
equations. (Note that there are many different orderings of the variables
for which z; is the last. We pick just one when computing D;.)
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Exercise 9. Show that D; is homogeneous in the coefficients of each F;
and in particular, is homogeneous of degree dg - - - d;_1d;+1 - dpn in the
coefficients of Fj.

We can now prove the following classical formula for Res.

(4.7) Proposition. When Fy, ..., F, are universal polynomials as at the
end of §2, the resultant is the greatest common divisor of the polynomials
Dy, ..., D, in the ring Z[u,; o), i.e.,

Res = +GCD(Dy, . .., Dy).

PROOF. For each i, there are many choices for D; (corresponding to the
(n — 1)! ways of ordering the variables with z; last). We need to prove that
no matter which of the various D; we pick for each 7, the greatest common

divisor of Dy, ..., D, is the resultant (up to a sign).
By Exercise 7, we know that Res divides D,,, and the same is clearly
true for Dy, ..., D,_,. Furthermore, the argument used in the proof of

Proposition (4.6) shows that D; = Res - E;, where E; € Z[u; o] doesn’t
involve the coefficients of F;. It follows that

GCD(Dy, - . ., Dy) = Res - GCD(E, . . ., Ey,).

Since each E; doesn’t involve the variables u; o, the GCD on the right
must be constant, i.e., an integer. However, since the coefficients of D,, are
relatively prime (see Exercise 10 below), this integer must be 1, and we
are done. Note that GCD’s are only determined up to invertible elements,
and in Z[u; o), the only invertible elements are +1. O

Exercise 10. Show that Dn(:l;g“, ...,xd) = 41, and conclude that as
a polynomial in Z[u; ], the coefficients of D, are relatively prime. Hint:
If you order the monomials of total degree d appropriately, the matrix of
(4.1) will be the identity matrix when F, = z*.

While the formula of Proposition (4.7) is very pretty, it is not particularly
useful in practice. This brings us to our final resultant formula, which will
tell us exactly how to find the extraneous factor in (4.5). The key idea,
due to Macaulay, is that the extraneous factor is in fact a minor (i.e., the
determinant of a submatrix) of the N x N matrix from (4.1). To describe
this minor, we need to know which rows and columns of the matrix to
delete. Recall also that we can label the rows and columns the matrix of
(4.1) using all monomials of total degree d = Y ;- d; — n. Given such a
monomial ¢, Exercise 1 implies that a:?" divides z* for at least one 3.

(4.8) Definition. Let do,...,d, and d be as usual.
a. A monomial 2 of total degree d is reduced if 25 divides z* for ezactly

one 1.
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b. D! is the determinant of the submatrix of the coefficient matrix of (4.1)
obtained by deleting all rows and columns corresponding to reduced
monomials z¢.

Exercise 11. When (dy, d;, d2) = (1,1, 2), we have d = 2. Show that all
monomials of degree 2 are reduced except for zy. Then show that the D =
a; corresponding to the submatrix (4.4) obtained by deleting everything
but row 2 and column 4.

Exercise 12. Here are some properties of reduced monomials and DJ,.
a. Show that the number of reduced monomials is equal to

ZdO"'dj—ldj+1"'dn-
j=0

Hint: Adapt the argument used in Exercise 3.

b. Show that D/, has the same total degree as the extraneous factor in (4.5)
and that it doesn’t depend on the coefficients of F;,. Hint: Use part a
and note that all monomials in 5,, are reduced.

Macaulay’s observation is that the extraneous factor in (4.5) is exactly
D), up to a sign. This gives the following formula for the resultant as a
quotient of two determinants.

(4.9) Theorem. When Fy,..., F, are universal polynomials, the resul-
tant is given by
D,
Res = + D_;z

Further, if k is any field and Fy, ..., F, € k[zo,...,z,], then the above
formula for Res holds whenever D], # 0.

PRroOOF. The only proof we are aware of is in Macaulay’s original paper
[Mac2]. a

Exercise 13. Using xg, z1, z2 as variables with z¢ regarded as last, write
Resi 22 as a quotient Dy/Dg of two determinants and write down the
matrices involved (of sizes 10 x 10 and 2 x 2 respectively). The reason for
using Dy/Dyg instead of Dy/Dj will become clear in Exercise 2 of §5. A
similar example is worked out in detail in [BGW].

While Theorem (4.9) applies to all resultants, it has some disadvantages.
In the universal case, it requires dividing two very large polynomials, which
can be very time consuming, and in the numerical case, we have the awk-
ward situation where both D!, and D, vanish, as shown by the following
exercise.
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Exercise 14. Give an example of polynomials of degrees 1, 1, 2 for which
the resultant is nonzero yet the determinants Dy and Dj both vanish. Hint:
See Exercise 10.

Because of this phenomenon, it would be nice if the resuitant could be
expressed as a single determinant, as happens with Res; »,. It is not known
if this is possible in general, though many special cases have been found. We
saw one example in the formula (2.8) for Ress 2 2. This can be generalized
(in several ways) to give formulas for Res;;; and Res;;;; when ! > 2 (see
[GKZ], Chapter 3, §4 and Chapter 13, §1, and [Sal], Arts. 90 and 91). As an
example of these formulas, the following exercise will show how to express
Res;;; as a single determinant of size 2[2 — | when [ > 2.

Exercise 15. Suppose that Fy, Fi, F> € Clz, y, 2| have total degreel > 2.
Before we can state our formula, we need to create some auxilliary equa-
tions. Given nonnegative integers a, b, ¢ with a + b+ ¢ = { — 1, show that
every monomial of total degree I in x, y, 2 is divisible by either z°+1, y®+1,
or z¢t!, and conclude that we can write Fy, F, F3 in the form

Fp = z"" Py + "' Qo + 21 Ry
(4.10) Fy = 2ot P 4+ 4271Q + 2Ry
F = 2Py + y"71Q2 + 2T R,

There may be many ways of doing this. We will regard Fy, F1, F; as univeral
polynomials and pick one particular choice for (4.10). Then set

F, Q Ry
Fope=det| PL Q1 R
P, Q2 R

You should check that F; ;. has total degree 21 — 2.
Then consider the equations

z* - Fy =0, z* of total degree I — 2

z%-F =0, z% of total degree | — 2

% - Fy =0, z® of total degree | — 2
Fope =0, a:“ybzc of total degree [ — 1.

(4.11)

Each polynomial on the left hand side has total degree 2/ — 2, and you

should prove that there are 2/2 — [ monomials of this total degree. Thus we

can regard the equations in (4.11) as having 2!? — I unknowns. You should

also prove that the number of equations is 212 — I. Thus the coefficient

matrix of (4.11), which we will denote Cj, is a (212 — 1) x (2% — ) matrix.
In the following steps, you will prove that the resultant is given by

Resl,l,l(F()’ Fy, F2) =% det(Cl).
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a. If (u,v,w) # (0,0,0) is a solution of Fy = F; = Fy = 0, show that
F, b, vanishes at (u, v, w). Hint: Regard (4.10) as a system of equations
in unknowns z+!, y¥+1, zo+1,

b. Use standard arguments to show that Res;;,; divides det(C}).

c. Show that det(C;) has degree {2 in the coefficients of F. Show that the
same is true for F; and F5.

d. Conclude that Res;;,; is a multiple of det(C}).

e. When (Fp, Fy, F2) = (2%, 4}, 2!), show that det(C;) = +1. Hint: Show
that F, . = 271 7%y'~17b2!=17¢ and that all monomials of total degree
21— 2 not divisible by !, 3!, 2! can be written uniquely in this form. Then
show that C} is the identity matrix when the equations and monomials
in (4.11) are ordered appropriately.

f. Conclude that Res;;;(Fo, F1, F2) = £ det(C)).

Exercise 16. Use Exercise 15 to compute the following resultants.

a. Res(z? + 4% + 22, xy + z2 + yz, 2% + 222 + 3y?).

b. Res(st+ su+tu+u(1—1x), st+su+t>+u?(2 —y), s% + su+tu — u2z2),
where the variables are s, t,u, and z,y, z are part of the coefficients.
Note that your answer should agree with what you found in Exercise 3
of §2.

We will end this section with a brief discussion of some of the practical
aspects of computing resultants. All of the methods we’ve seen involve
computing determinants or ratios of determinants. Since the usual formula
for a N x N determinant involves N! terms, we will need some clever
methods for computing large determinants.

As Exercise 16 illustrates, the determinants can be either numerical,
with purely numerical coefficients (as in part a of the exercise), or sym-
bolic, with coefficients involving other variables (as in part b). Let’s begin
with numerical determinants. In most cases, this means determinants whose
entries are rational numbers, which can be reduced to integer entries by
clearing denominators. The key idea here is to reduce modulo a prime p and
do arithmetic over the finite field F, of the integers mod p. Computing the
determinant here is easier since we are working over a field, which allows
us to use standard algorithms from linear algebra (using row and column
operations) to find the determinant. Another benefit is that we don’t have
to worry how big the numbers are getting (since we always reduce mod p).
Hence we can compute the determinant mod p fairly easily. Then we do this
for several primes py,...,p, and use the Chinese Remainder Theorem to
recover the original determinant. Strategies for how to choose the size and
number of primes p; are discussed in [CM] and [Man2], and the sparseness
properties of the matrices in Theorem (4.9) are exploited in [CKL].

This method works fine provided that the resultant is given as a single
determinant or a quotient where the denominator is nonzero. But when we
have a situation like Exercise 14, where the denominator of the quotient
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is zero, something else is needed. One way to avoid this problem, due to
Canny [Canl], is to prevent determinants from vanishing by making some
coefficients symbolic. Suppose we have Fy, ..., F, € Z[zo,...,Zs]. The
determinants D,, and D), from Theorem (4.9) come from matrices we will
denote M,, and M/ . Thus the formula of the theorem becomes
det(M,,)
Res(Fy, ..., Fn) = £ ——+
" det(M!)
provided det(M!) # 0. When det(M;) = 0, Canny’s method is to
introduce a new variable ¢ and consider the resultant

(4.12) Res(Fo —uzl,..., F, — uzi).

Exercise 17. Fix an ordering of the monomials of total degree d. Since

each equation in (4.1) corresponds to such a monomial, we can order the

equations in the same way. The ordering of the monomials and equations

determines the matrices M, and M. Then consider the new system of

equations we get by replacing F; by F; — uxf" in(41)for0 <i < n.

a. Show that the matrix of the new system of equations is M,, —u I, where
I is the identity matrix of the same size as M,,.

b. Show that the matrix we get by deleting all rows and columns corre-
sponding to reduced monomials, show that the matrix we get is M, —u I
where [ is the appropriate identity matrix.

This exercise shows that the resultant (4.12) is given by

det{M,, — ul
Res(Fp —uzd, ..., F, —uzi) = :I:W
since det(M!, — uI) # 0 (it is the characteristic polynomial of Mj,). It
follows that the resultant Res(Fy, ..., Fy,) is the constant term of the poly-
nomial obtained by dividing det(M,, — u I) by det(M,, — u I). In fact, as
the following exercise shows, we can find the constant term directly from
these polynomials:

Exercise 18. Let F and G be polynomials in u such that F is a multiple
of G. Let G = b,u" + higher order terms, where b, # 0. Then F = a,u" +
higher order terms. Prove that the constant term of F/G is a,/b;.

It follows that the problem of finding the resultant is reduced to comput-
ing the determinants det(M,, — u I) and det(M}, — u I). These are called
generalized characteristic polynomials in [Canl].

This brings us to the second part of our discussion, the computation
of symbolic determinants. The methods described above for the numerical
case don’t apply here, so something new is needed. One of the most interest-
ing methods involves interpolation, as described in [CM]. The basic idea is
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that one can reconstruct a polynomial from its values at a sufficiently large
number of points. More precisely, suppose we have a symbolic determinant,
say involving variables ug, . . ., %,. The determinant is then a polynomial
D(up, . ..,uy). Substituting u; = a;, where a; € Z for 0 < ¢ < n,
we get a numerical determinant, which we can evaluate using the above
method. Then, once we determine D(ay,...,a,) for sufficiently many
points (ao, - - . , an), we can reconstruct D(ug, ..., u,). Roughly speaking,
the number of points chosen depends on the degree of D in the variables
Ug,. .., Un. There are several methods for choosing points (ay,...,a,),
leading to various interpolation schemes (Vandermonde, dense, sparse,
probabilistic) which are discussed in [CM]. We should also mention that
in the case of a single variable, there is a method of Manocha [Man2] for
finding the determinant without interpolation.

Now that we know how to compute resultants, it’s time to put them to
work. In the next section, we will explain how resultants can be used to
solve systems of polynomial equations. We should also mention that a more
general notion of resultant, called the sparse resultant, will be discussed in
Chapter 7.

ApDITIONAL EXERCISES FOR §4

Exercise 19. Show that the number of monomials of total degree d in
n + 1 variables is the binomial coefficient (dﬁ").

Exercise 20. This exercise is concerned with the proof of Proposi-

tion (4.6).

a. Suppose that E € Z[u; o] is irreducible and nonconstant. If F' € Q[u; o]
is such that D = EF € Z[u;,], then prove that F' € Z[u;,]. Hint:
We can find a positive integer m such that mF € Z[u; o). Then apply
unique factorization tom - D = E - mF.

b. Let D = EF in Z[u; ] ,and that assume that for some j, D is ho-
mogenous in the u;q, |a| = d;. Then prove that E and F are also
homogeneous in the u; 4, |af = d;.

Exercise 21. In this exercise and the next we will prove the formula for

Resg 2,2 given in equation (2.8). Here we prove two facts we will need.

a. Prove Euler’s formula, which states that if F € k[zg,...,n] is
homogeneous of total degree d, then

“\ OF
dF = Zl‘i -
=0 6:1:,

Hint: First prove it for a monomial of total degree d and then use
linearity.
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Ay Ay A
M=det| B, By B3],

Ci C Cs

b. Suppose that

where A;,...,Cs are in k[zo, . . ., Z,]. Then prove that

8A1/6x,~ A2 A3 Al 8A2/8m1 A3

ZM = det BBl/axz By B3 | +det | B; 8Bg/axi B
i 8C,/8z; Cp Cs C, 0Cy/0z; Cs

A1 A2 6A3/6:1;1
+det | By Bs 633/811,‘1' .

C1 Cz 603/8331

Exercise 22. We can now prove formula (2.8) for Resg 2 2. Fix Fy, F1, F2 €
Clz, y, 2] of total degree 2. As in §2, let J be the Jacobian determinant

aFo/aiL' 6F0/6y 6F0/6z
J =det | 0F,/0z OF/0y OF:/0z |.
an/a.'B 6F2/8y 6F2/62

a. Prove that J vanishes at every nontrivial solution of Fp=F =F, =0.
Hint: Apply Euler’s formula (part a of Exercise 21) to Fg, Fy, Fa.

b. Show that
F() aFo/ay 6F0/6z
z-J=2det | Iy 8F1/0y OF:/0z },

F2 6F2/6y 3F2/62

and derive similar formulas for y - J and z - J. Hint: Use column
operations and Euler’s formula.

c. By differentiating the formulas from part b for z - J, y- J and 2z - J
with respect to x, y, 2, show that the partial derivatives of J vanish at
all nontrival solutions of Fy = F; = F; = 0. Hint: Part b of Exercise 21
and part a of this exercise will be useful.

d. Use part c to show that the determinant in (2.8) vanishes at all nontrival
solutions of Fy = F}, = F5 = 0.

e. Now prove (2.8). Hint: The proof is similar to what we did in parts b—f
of Exercise 15.

Exercise 23. This exercise will give more details needed in the proof of

Proposition (4.6). We will use the same terminology as in the proof. Let

the weight of the variable u; o be w(u; q).

a. Prove that a polynomial P(u; ) is isobaric of weight m if and only if
P()\“’(“"'“)ui,a) = A™P(u;,q) for all nonzero A € C.

b. Prove that if P = QR is isobaric, then so are @ and R. Also show that
the weight of P is the sum of the weights of @ and R. Hint: Use part a.
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c. Prove that D, is isobaric of weight dp - - - d,,. Hint: Assign the variables
Zg, ..., Tn_1, Ty Tespective weights 0,...,0,1. Let 27 be a monomial
with |y| = d (which indexes a column of D,), and let a € S; (which
indexes a row in D,,). If the corresponding entry in D, is ¢y, then
show that

w(ey,ai) = w(@7) - w(z®/z)

i+ {3, 57

Note that ¥ and z° range over all monomials of total degree d.
d. Use Theorems (2.3) and (3.1) to prove that if u; represents the coeflicient
0f:1: ¢ in F;, then iudl dn L uno ‘dn—1 is in Res.

§5 Solving Equations Via Resultants

In this section, we will show how resultants can be used to solve polynomial

systems. To start, suppose we have n homogeneous polynomials Fi, ..., Fy,
of degree ds, . . ., d,, in variables zy, . . . , z,. We want to find the nontrivial
solutions of the system of equations

(5.1) FF=---=F,=0

But before we begin our discussion of finding solutions, we first need to
review Bézout’s Theorem and introduce the important idea of genericity.
As we saw in §3, Bézout’s Theorem tells us that when (5.1) has finitely
many solutions in P*, the number of solutions is d; - - - d,,, counting multi-
picities. In practice, it is often convenient to find solutions in affine space.
In §3, we dehomogenized by setting z,, = 1, but in order to be compatible
with Chapter 7, we now dehomogenize using xo = 1. Hence, we define:

fi(mla oo 9-7:71.) = -Fi(].,xl, oo ’mn)
Fi(z1,...,%,) = F;(0,21,...,Zp).

Note that f; has total degree at most d;. Inside P*, we have the affine space
C" C P" defined by z¢ = 1, and the solutions of the affine equations

are precisely the solutions of (5.1) which lie in C® C P". Similarly, the
nontrivial solutions of the homogeneous equations

Fi= =Fn=0

(5.2)

may be regarded as the solutions which lie “at 0o”. We say that (5.3) has
no solutions at oo if F; = --- = F, = 0 has no nontrivial solutions. By
Theorem (2.3), this is equivalent to the condition

(5.4) Resq,,.. 4, (F1,...,Fn) # 0.
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The proof of Theorem (3.4) implies the following version of Bézout’s
Theorem.

(5.5) Theorem (Bézout’s Theorem). Assume that fi1,..., f, are de-
fined as in (5.2) and that the affine equations (5.3) have no solutions at co.
Then these equations have dy - - - d,, solutions (counted with multiplicity),
and the ring

A=Clay, ..., zal/{frs. s f)

has dimension dy - - - d,, as a vector space over C.

Note that this result does not hold for all systems of equations (5.3). In
general, we need a language which allows us to talk about properties which
are true for most but not necessarily all polynomials fy, ..., f,. This brings
us to the idea of genericity.

(5.6) Definition. A property is said to hold generically for polynomials
fi,--., fn of degree at most d,, ..., d, if there is a nonzero polynomial in
the coeflicients of the f; such that the property holds for all fi,..., f, for
which the polynomial is nonvanishing.

Intuitively, a property of polynomials is generic if it holds for “most”
polynomials fi,..., f,. Our definition makes this precise by defining
“most” to mean that some polynomial in the coefficients of the f; is non-
vanishing. As a simple example, consider a single polynomial az? + bz + c.
We claim that the property “az? + bz + ¢ = 0 has two solutions, counting
multiplicity” holds generically. To prove this, we must find a polynomial
in the coefficients a, b, ¢ whose nonvanishing implies the desired property.
Here, the condition is easily seen to be a # 0 since we are working over the
complex numbers.

Exercise 1. Show that the property “az? + bz + ¢ = 0 has two distinct
solutions” is generic. Hint: By the quadratic formula, a(b? — 4ac) # 0
implies the desired property.

A more relevant example is given by Theorem (5.5). Having no solutions
at co is equivalent to the nonvanishing of the resultant (5.4), and since
Resgq, ... d,, (Fi,...,F,) is a nonzero polynomial in the coefficients of the
fi, it follows that this version of Bézout’s Theorem holds generically. Thus,
for most choices of the coefficients, the equations f; = --- = f, = 0
have d; - - - d,, solutions, counting multiplicity. In particular, if we choose
polynomials fi, ..., f, with random coeflicients (say given by some random
number generator), then, with a very high probability, Bézout’s Theorem
will hold for the corresponding system of equations.
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In general, genericity comes in different “flavors”. For instance, consider
solutions of the equation ax? + bz + ¢ = 0:

® Generically, ax? + bz + ¢ = 0 has two solutions, counting multiplicity.
This happens when a # 0.

® Generically, az? 4+ bz 4+ ¢ = 0 has two distinct solutions. By Exercise 1,
this happens when a(b? — 4ac) # 0.

Similarly, there are different versions of Bézout’s Theorem. In particular,
one can strengthen Theorem (5.5) to prove that generically, the equations
fi = -+ = f, = 0 have d; - - - d,, distinct solutions. This means that
generically, (5.3) has no solutions at oo and all solutions have multiplicity
one. A proof of this result will be sketched in Exercise 6 at the end of the
section.

With this genericity assumption on fi, ..., f,, we know the number of
distinct solutions of (5.3), and our next task is to find them. We could
use the methods of Chapter 2, but it is also possible to find the solutions
using resultants. This section will describe two closely related methods,
u-resultants and hidden variables, for solving equations. The next section
will discuss further methods which use eigenvalues and eigenvectors.

The u-Resultant

The basic idea of van der Waerden’s u-resultant (see [vdW)) is to start with
the homogeneous equations F; = --- = F, = 0 of (5.1) and add another
equation Fy = 0 to (5.1), so that we have n + 1 homogeneous equations in
n + 1 variables. We will use

F0:u0w0+"'+unznv

where ug,...,u, are independent variables. Because the number of
equations equals the number of variables, we can form the resultant

Resig,,....d, (Fo, F1, ..., F),

which is called the u-resultant. Note that the u-resultant is a polynomial

in ug, ..., Uy.

As already mentioned, we will sometimes work in the affine situa-
tion, where we dehomogenize Fy, ..., F, to obtain fy,..., f,. This is the
notation of (5.2), and in particular, observe that
(5.7) fo=1uo+wz1 + - + UnZn.

Because fy, ..., f, and Fy, ..., F,, have the same coefficients, we write the

u-resultant as Res(fo, - .., fn) instead of Res(Fy,. .., Fy,) in this case.

Before we work out the general theory of the u-resultant, let’s do an
example. The following exercise will seem like a lot of work at first, but its
surprising result will be worth the effort.
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Exercise 2. Let
Fi=2?+4+23-10z2=0
Fy = 2% 4+ 2125 + 225 — 1623 = 0

be the intersection of a circle and an ellipse in P2. By Bézout’s Theorem,
there are four solutions. To find the solutions, we add the equation

Fy = ugxo + w11 + ugxe = 0.
a. The theory of §4 computes the resultant using 10 x 10 determinants Dy,
D, and D,. Using Dy, Theorem (4.9) implies
Resy 22(Fo, F1, F2) = £ —.

If the variables are ordered zsg, x1, g, show that Dy = det(Mp), where
M is the matrix

( w w1 u 0 0 0 0 O 0 O
0 Ug 0 wuw u3; 0 0 0 0 O
0 0 Ug Uuy 0 U 0 0 0 0
0 0 0 Ug 0 0 0 Uy U2 0
Moo= | 10 0 0 0 1 1 0 0 0 0
"l o -10 o o0 0 0 1 0 1 0
0 0 -10 0 0 0 0 1 0 1
-16 0 0 1 1 2 0 0 0 0
0 -16 0 0 0 0 1 1 2 0
\ 0o o0 -1 0 0 00 1 1 2)

Also show that Dy = det(My), where My is given by

1 1
M(,:(l 2).

Hint: Using the order zs,x1,zo gives So = {z3, z2xy, 2372, ToT172},
81 = {zoz?, 23,2222} and Sz = {zox3, 173, 23}. The columns in M,
correspond to the monomials =3, z3z1, z2z2, ToT1T2, ToT?, ToT3, 73,
z3x9, 173, T3. Exercise 13 of §4 will be useful.

b. Conclude that

Res; 2 2(Fo, Fi, F2) = % (2ug + 16u] + 36uj — 80udu, + 120u;ud
— 18u2u? — 22ulu2 + 52ulu? — duduyuz).
c. Using a computer to factor this, show that Res; 2 2(Fo, F1, F2) equals
(uo + uy — 3uz)(uo — ug + 3ug)(ua — 8uf — 2u3 — Bujuz)

up to a constant. By writing the quadratic factor as u2 — 2(2u; + u2)?,
conclude that Res; 2 2(Fo, F1, F2) equals

(uwo +u1 — 3ug)(up — ug + 3usz)(ug + 2v2u; + \/iuz)(uo —2V2u, — \/Quz)
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times a nonzero constant. Hint: If you are using Maple, let the resul-
tant be res and use the command factor(res). Also, the command
factor (res,Root0f (x~2-2)) will do the complete factorization.

d. The coefficients of the linear factors of Res; 2 2(Fo, F1, F2) give four
points

(1,1,-3), (1,-1,3), (1,2v2,v2), (1,-2v2, —V?2)

in P2. Show that these points are the four solutions of the equations
F; = F = 0. Thus the solutions in P2 are precisely the coefficients of
the linear factors of Resy g 2(Fo, F1, F2)!

In this exercise, all of the solutions lay in the affine space C?2 C P?
defined by zo = 1. In general, we will study the u-resultant from the affine
point of view. The key fact is that when all of the multiplicities are one,
the solutions of (5.3) can be found using Resi 4,.....4, (fo,- .-, fn)-

(5.8) Proposition. Assume that fi = --- = f, = 0 have total degrees
bounded by d, ..., d,, no solutions at oo, and all solutions of multiplicity
one. If fo = ug + urz1 + - -+ + un Ty, where ug, ..., u, are independent

variables, then there is a nonzero constant C such that

Resyd,,...d.(fo, -  fn) = C H Jo(p)-

PEV(f1,--,fn)

PROOF. Let C = Resg, ... 4,(F1,. .., Fp), which is nonzero by hypothesis.
Since the coefficients of fq are the variables ug, . . . , u,, we need to work over
the field K = C(uyp, - .., uy) of rational functions in wy, ..., u,. Hence, in
this proof, we will work over K rather than over C. Fortunately, the results
we need are true over K, even though we proved them only over C.
Adapting Theorem (3.4) to the situation of (5.2) (see Exercise 8) yields

Resl,dl,,..,dn (va ey f’n) =C det(mfo)’

where my, : A — A is the linear map given by multiplication by fo on the
quotient ring

A:K[wh""mn]/<fla--~afn>'

By Theorem (5.5), A is a vector space over K of dimension d; - - - d,, and
Theorem (4.5) of Chapter 2 implies that the eigenvalues of my, are the
values fo(p) for p € V(fi,..., fn). Since all multiplicities are one, there
are d; - - - d,, such points p, and the corresponding values fo(p) are distinct
since fo = up+u1z1+- - - +upx, and ug, . . . , u, are independent variables.
Thus my, has d; - - - d, distinct eigenvalues fy(p), so that

det(mg) = [ fol.

PEV(f1,-sfn)

This proves the proposition. O



§5. Solving Equations Via Resultants 113

To see more clearly what the proposition says, let the points of
V(fi,.-.,fn) be p; for 1 < 4 < dy---dy. If we write each point as
pi = (@i, .- -, ain) € C*, then (5.7) implies

fo(pi) = uo + aituy + -+ + Ginlin,
so that by Proposition (5.8), the u-resultant is given by

dy-+dn

(5.9) Resya,,..an(fo,--- fn) = C H (uo + @irur + -+ - + ainty).
i=1

We see clearly that the u-resultant is a polynomial in wy, . . ., %,. Further-

more, we get the following method for finding solutions of (5.3): compute

Res1,d,,....d,. (fo, - - -, fn), factor it into linear factors, and then read off the

solutions! Hence, once we have the u-resultant, solving (5.3) is reduced to
a problem in multivariable factorization.

To compute the u-resultant, we use Theorem (4.9). Because of our
emphasis on fg, we represent the resultant as the quotient

(5.10) Resl,dl,...,dn (fg, ey fn) =+ e

This is the formula we used in Exercise 2. In §4, we got the determinant Dy
by working with the homogenizations F; of the f;, regarding z¢ as the last
variable, and decomposing monomials of degree d = 1+d; +---+d, —n
into disjoint subsets Sy, ..., S,. Taking x, last means that Sy consists of
the dj - - - d,, monomials

5.11) Sp = {zloz% ...2% :0<a; <d; —1fori >0, Y a; = d}.
0 Ty n =0

Then Dy is the determinant of the matrix My representing the system of
equations (4.1). We saw an example of this in Exercise 2.
The following exercise simplifies the task of computing u-resultants.

Exercise 3. Assuming that Dy # 0 in (5.10), prove that Dj does not
involve ug, . . . , un, and conclude that Res; 4,. .. 4, (fo, - . ., fn) and Dq differ
by a constant factor when regarded as polynomials in Cluy, . . . , uy].

We will write Do as Dg(ug, - .-, u,) to emphasize the dependence on
Ug, - - . , Un. We can use Do(uo, - . ., u,) only when D # 0, but since Dy is
a polynomial in the coefficients of the f;, Exercise 3 means that generically,
the linear factors of the determinant Dy(ug,. .., u,) give the solutions of
our equations (5.3). In this situation, we will apply the term u-resultant to
both Res1,4y,....d, (an R fn) and DO(UO’ s ;un)'

Unfortunately, the u-resultant has some serious limitations. First, it is
not easy to compute symbolic determinants of large size (see the discussion
at the end of §4). And even if we can find the determinant, multivariable
factorization as in (5.9) is very hard, especially since in most cases, floating
point numbers will be involved.
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There are several methods for dealing with this situation. We will de-
scribe one, as presented in [CM]. The basic idea is to specialize some of the
coefficients in fo = ug + 121 + - - - + Upx,. For example, the argument of
Proposition (5.8) shows that when the z,-coordinates of the solution points
are distinct, the specialization 4; = - -+ = 4,1 = 0,u, = —1 transforms
(5.9) into the formula

dy-dp
(512) Resl,dl,...,dn (UO — Tp, f17 ceey fn) =C H (ul] - a'in)a

i=1

where a;,, is the z,,-coordinate of p; = (a;1,--., i) € V{(f1,..., fa). This
resultant is a univariate polynomial in ug whose roots are precisely the z,,-
coordinates of solutions of (5.3). There are similar formulas for the other
coordinates of the solutions.

If we use the numerator Dg(uy, . . ., Uy) of (5.10) as the u-resultant, then
setting u; = --- = u, = 0,u, = —1 gives Dp(up,0,...,0,—1), which
is a polynomial in ug. The argument of Exercise 3 shows that generically,
Do(ug,0,...,0,~—1) is a constant multiple Res(up — Zn, f1, ..., fn), so that
its roots are also the x,,-coordinates. Since Dg(uo, 0, . .., 0, —1) is given by
a symbolic determinant depending on the single variable ug, it is much
easier to compute than in the multivariate case. Using standard techniques
(discussed in Chapter 2) for finding the roots of univariate polynomials
such as Dy(uo, 0, ...,0,—1), we get a computationally efficient method for
finding the z,-coordinates of our solutions. Similarly, we can find the other
coordinates of the solutions by this method.

Exercise 4. Let Dy(ug, u1,u2) be the determinant in Exercise 2.

a. Compute Dg(ug, —1,0) and Dy{ug, 0, —1).

b. Find the roots of these polynomials numerically. Hint: Try the Maple
command fsolve. In general, fsolve should be used with the complex
option, though in this case it’s not necessary since the roots are real.

c¢. What does this says about the coordinates of the solutions of the equa-
tions 22 + z3 = 10, 2? + 7122 + 222 = 167 Can you figure out what
the solutions are?

As this exercise illustrates, the univariate polynomials we get from the
u-resultant enable us to find the individual coordinates of the solutions,
but they don’t tell us how to match them up. One method for doing this
(based on [CM]) will be explained in Exercise 7 at the end of the section.
We should also mention that a different u-resultant method for computing
solutions is given in [Can2].

All of the u-resultant methods make strong genericity assumptions on
the polynomials fo,..., fn. In practice, one doesn’t know in advance if a
given system of equations is generic. Here are some of the things that can go
wrong when trying to apply the above methods to non-generic equations:
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® There might be solutions at infinity. This problem can be avoided by
making a generic linear change of coordinates.

¢ If too many coefficients are zero, it might be necessary to use the sparse
resultants of Chapter 7.

® The equations (5.1) might have infinitely many solutions. In the language
of algebraic geometry, the projective variety V(Fy,..., F,) might have
components of positive dimension, together with some isolated solutions.
One is still interested in the isolated solutions, and techniques for finding
them are described in Section 4 of {Canl].

® The denominator Dj in the resultant formula (5.10) might vanish. When
this happens, one can use the generalized characteristic polynomials
described in §4 to avoid this difficulty. See Section 4.1 of [CM] for details.

¢ Distinct solutions might have the same z;-coordinate for some i. The
polynomial giving the z;-coordinates would have multiple roots, which
are computationally unstable. This problem can be avoided with a
generic change of coordinates. See Section 4.2 of [CM] for an example.

Also, Chapter 4 will give versions of (5.12) and Proposition (5.8) for the
case when f; = -.. = f, = 0 has solutions of multiplicity > 1.

Hidden Variables

One of the better known resultant techniques for solving equations is the
hidden variable method. The basic idea is to regard one of variables as a
constant and then take a resultant. To illustrate how this works, consider

the affine equations we get from Exercise 2 by setting z¢ = 1:
2 2
=z7+23~-10=0
(5.13) S T \
fo=2z7 + 2122 + 225 — 16 = 0.

If we regard z2 as a constant, we can use the resultant of §1 to obtain
Res(f1, f2) = 225 — 2222 + 36 = 2(z2 — 3)(z2 + 3)(22 — V2)(z2 + V2).

The resultant is a polynomial in zs, and its roots are precisely the zo-
coordinates of the solutions of the equations (as we found in Exercise 2).
To generalize this example, we first review the affine form of the resultant.

Given n + 1 homogeneous polynomials Gy, . . . , G, of degrees d, . . . , d,, in
n + 1 variables zy, . . . , Tn, we get Resg,,... 4, (Go, - . ., Gn). Setting zog = 1
gives

9i(x1, ..., xn) = Gi(L, 21, ..., ),

and since the g; and G; have the same coefficients, we can write the re-
sultant as Resq,,... 4, (g0, - - -, gn). Thus, n + 1 polynomials go,..., g, in n
variables 1, ..., z, have a resultant. It follows that from the affine point
of view, forming a resultant requires that the number of polynomials be one
more than the number of variables.
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Now, suppose we have n polynomials f1, ..., f, of degrees di,...,d, in
n variables z1, ..., z,. In terms of resultants, we have the wrong numbers
of equations and variables. One solution is to add a new polynomial, which
leads to the u-resultant. Here, we will pursue the other alternative, which
is to get rid of one of the variables. The basic idea is what we did above:
we hide a variable, say x,, by regarding it as a constant. This gives n

polynomials fi,..., f, in n — 1 variables z1, ..., z,—1, which allows us to
form their resultant. We will write this resultant as
(5.14) Resjr 4 (fi,---) fa)

The superscript z,, reminds us that we are regarding z, as constant.
Since the resultant is a polynomial in the coefficients of the f;, (5.14) is a
polynomial in z,,.

We can now state the main result of the hidden variable technique.

(5.15) Proposition. Generically, Resg” ; (f1,..., fx) is a polynomial
in T, whose roots are the x,-coordinates of the solutions of (5.3).

PRroOF. The basic strategy of the proof is that by (5.12), we already know
a polynomial whose roots are the z,-coordinates of the solutions, namely

Res1,d;,....d, (U0 — Zn, f1,- -+, Jn)-

We will prove the theorem by showing that this polynomial is the same as
the hidden variable resultant (5.14). However, (5.14) is a polynomial in x,
while Res(up — %, f1, - - -, fn) is & polynomial in ug. To compare these two
polynomials, we will write

Resszfgn (fla s ,fn)

to mean the polynomial obtained from (5.14) by the substitution =, = ug.
Using this notation, the theorem will follow once we show that

Resj =" (fi,--., fn) = £Res1,4,,. 4. (%0 — Zn, f1,- -+, fn)-

We will prove this equality by applying Theorem (3.4) separately to the
two resultants in this equation.

Beginning with Res(ug — Zn, fi,. .-, fn), first recall that it equals the
homogeneous resultant Res(upzo — Zn, Fi,. .., Fy,) via (5.2). Since ug is
a coefficient, we will work over the field C(up) of rational functions in ug.
Then, adapting Theorem (3.4) to the situation of (5.2) (see Exercise 8), we
see that Res(upzo — Zn, F1,. .., Fy,) equals

(5.16) Resid,....dp 1 (—Tny F1, .« oy Fpe1)? det(my,),

where —z,, Fy, ..., Fn_1 are obtained from ugzg — Zn, F1,..., Fn_1 by
setting g = 0, and my, : A — A is multiplication by f, in the ring

A= (C(u)[wly .. ,(En]/(’u - -T'n,fly' . 7fn)'
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Next, consider Res™~"°(fi, ..., fn), and observe that if we define

fi(zh O 1-’1"71,—1) = fi(-’l"lj e 11771.-—17"0)7

then Res™ =% (f1,..., fa) = Res(f1,..., fn). If we apply Theorem (3.4)
to the latter resultant, we see that it equals

(5.17) Res, ... d,_, (F1, . .., Foo1)® det(m; ),
where E is obtained from fi by first homogenizing with respect to zo and
then setting o = 0, and m; : A — A is multiplication by f, in
A = Cluo)@ry -y Zn1)/{F1s- s Fu)-

To show that (5.16) and (5.17) are equal, we first examine (5.17). We
claim that if f; homogenizes to F;, then F; in (5.17) is given by
(5.18) Fy(z1,...,Tn_1) = F(0,24,...,Tn_1,0).
To prove this, take a term of F;, say

cxg®---xpr, ag+---+a, =d;.

Since zo = 1 gives f; and z, = uo then gives fi, the corresponding term
in f; is

an—1

agp a1 AQn—1, an
cl1%gyt - et -

= a . al ...
T,V ug™ = cyy” - T z

When homogenizing fi with respect to zg, we want a term of total degree

d; in zo, ..., Zn—1. Since cuy™ is a constant, we get
a ap+a ai an-—-1 __ aop An—1 a
cug® - gt -2, = ¢ xg® -2, (o)

It follows that the homogenization of fi is Fi(xo, - - ., Tn—1, upZo), and since
F; is obtained by setting z¢o = 0 in this polynomial, we get (5.18).
Once we know (5.18), Exercise 12 of §3 shows that

Resl,dl,m,dn_l (—:vn,Fl, ce ,Fn—l) = iReSdl,...,dn_l(F‘l, e aﬁn—l)
since F;(z1,...,zn) = F;(0,z1,...,,). Also, the ring homomorphism
C(ug)[z1 - - -y Zn] — C(uo)[z1,- .., Tn-1]

defined by z, — wug carries f; to fz It follows that this homomorphism
induces a ring isomorphism A & A (you will check the details of this in
Exercise 8). Moreover, multiplication by f, and f, give a diagram

A o

A
(5.19) mf"l lmfn
A

A

o~

IR
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In Exercise 8, you will show that going across and down gives the same map
A — A as going down and across (we say that (5.19) is a commutative
diagram). From here, it is easy to show that det(my,) = det(m; ), and it
follows that (5.16) and (5.17) are equal. |

The advantage of the hidden variable method is that it involves re-
sultants with fewer equations and variables than the u-resultant. For
example, when dealing with the equations f; = fa = 0 from (5.13), the u-
resultant Resy 2,2(fo, f1, f2) uses the 10 x 10 matrix from Exercise 2, while
Resy%(f1, f2) only requires a 4 x 4 matrix.

In general, we can compute Res™ (f1, ..., fn) by Theorem (4.9), and as
with the u-resultant, we can again ignore the denominator. More precisely,
if we write
(5.20) Restt g, (fieos fo) = 22,

0

then 13(’, doesn’t involve z,,. The proof of this result is a nice application of
Proposition (4.6), and the details can be found in Exercise 10 at the end
of the section. Thus, when using the hidden variable method, it suffices
to use the numerator Dy—when fi, ..., f, are generic, its roots give the
z,,-coordinates of the affine equations (5.3).

Of course, there is nothing special about hiding x,—we can hide any of
the variables in the same way, so that the hidden variable method can be
used to find the z;-coordinates of the solutions for any i. One limitation of
this method is that it only gives the individual coordinates of the solution
points and doesn’t tell us how they match up.

Exercise 5. Consider the affine equations

f1=xf+m§+m§—3
fo=a} +a3 -2

f3 =73 + 3 — 2x3.

a. If we compute the u-resultant with fo = ug + u1z1 + u2z3 + uszs, show
that Theorem (4.9) expresses Res; 22.2(fo, f1, f2, f3) as a quotient of
determinants of sizes 35 x 35 and 15 X 15 respectively.

b. If we hide x3, show that Res;% ,(f1, f2, f3) is a quotient of determinants
of sizes 15 x 15 and 3 x 3 respectively.

c. Hiding x3 as in part b, use (2.8) to express Res;% 5(f1, f2, f3) as the
determinant of a 6 x 6 matrix, and show that up to a constant, the
resultant is (z% + 223 — 3)*. Explain the signficance of the exponent 4.
Hint: You will need to regard z3 as a constant and homogenize the f;
with respect to zo. Then (2.8) will be easy to apply.
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The last part of Exercise 5 illustrates how formulas such as (2.8) allow
us, in special cases, to represent a resultant as a single determinant of
relatively small size. This can reduce dramatically the amount of compu-
tation involved and explains the continuing interest in finding determinant
formulas for resultants (see, for example, [SZ]).

ADDITIONAL EXERCISES FOR §5

Exercise 6. In the text, we claimed that generically, the solutions of n
affine equations f; = --- = f, = 0 have solutions of multiplicity one.
This exercise will prove this result. Assume as usual that the f; come from
homogeneous polynomials F; of degree d; by setting o = 1. We will also

use the following fact from multiplicity theory: if F; = --- = F,, = 0 has
finitely many solutions and p is a solution such that the gradient vectors
OF;

VE®) = (G20 ), 1<i<n

are linearly independent, then p is a solution of multiplicity one.

a. Consider the affine space CM consisting of all possible coefficients of the
F;. As in the discussion at the end of §2, the coordinates of CM are Cia
where for fixed 4, the c; o are the coefficients of F;. Now consider the set
W c CM x P* x P*~1 defined by

W = {(Cia,P,01,---,8,) ECY xP" xP" ! :pisa
nontrivial solution of Ffy = --- = F,, = 0 and
a1 VFi(p) + -+ a,VF,(p) = 0}.

Under the projection map 7 : CM x P x P»~! — CM, explain why
a generalization of the Projective Extension Theorem from §2 would
imply that 7(W) C C¥ is a variety.

b. Show that 7r(W) C CM is a proper variety, i.e., find Fi,..., F, such
that (Fy,...,F,) € CM \ n(W). Hint: Let F; = H (=i — jxo) for
1<i<n

¢. By part ¢, we can find a nonzero polynomial G in the coefficients of the
F; such that G vanishes on m(W). Then consider G - Res(F1i, ..., F,).
We can regard this as a polynomial in the coefficients of the f;. Prove
that if this polynomial is nonvanishing at fi, ..., f,, then the equations
fo =+ = fn = 0 have d; - - - d,, many solutions in C?, al<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>