




















Philosophy of Mathematics

and Natural Science






Phalosophy
of Mathematics

and
Natural Science

BY

HERMANN WEYL
REVISED AND AUGMENTED
ENGLISH EDITION
BASED ON A TRANSLATION BY
OLAF HELMER

PRINCETON
PRINCETON UNIVERSITY PRESS
1949




SecoNp PrINTING, 1950

Copyright, 1949, by Princeton University Press
London: Geoffrey Cumberlege, Oxford University Press

Parts of this book were originally published
by R. Oldenbourg in German in 1927 in Handbuch der Philosophie
under the title ““Philosophie der Mathematik
und Naturwissenschaft.”

Printed in the United States of America

The Maple Press Company, York, Pa.



Preface

Home is where one starts from. As we grow older
The world becomes stranger, the pattern more complicated
Of dead and living.

T. S. Evrior, Four Quartets, East Coker, V.

A scientistT who writes on philosophy faces conflicts of conscience
from which he will seldom extricate himself whole and unscathed;
the open horizon and depth of philosophical thoughts are not easily
reconciled with that objective clarity and determinacy for which he
has been trained in the school of science.

The main part of this book is a translation of the article, ‘“Philo-
sophie der Mathematik und Naturwissenschaft,” that I contributed
to R. Oldenbourg’s Handbuch der Philosophie in 1926. Writing it, I
was bound by the general plan of the Handbuch, as formulated in
broad outlines by the editors, that laid equal stress on both the sys-
tematic and historical aspects of philosophy. I was also bound,
though less consciously, by the German literary and philosophical
tradition in which I had grown up, and by the limited circle of prob-
lems that had come to life for me in my own mental development.

Under the heading ‘Naturwissenschaft” my Handbuch article
dealt almost exclusively with physics. It is the only branch of the
natural sciences with which I am familiar through my own work.
There were additional reasons why biology was dismissed with a few
general observations: the space allotted me was more than exhausted,
and I could rely on the following article, ‘“Metaphysik der Natur”
by the biologist and philosopher Hans Driesch, to fill the gap.

Twenty odd years have since passed, a long and eventful timein the
history of science. But when (not of my own initiative) the plan
arose to have the book translated into English I gave my consent,
fully aware though I was of the accidental circumstances of its birth
and the wrinkles of old age in its face. For it seemed to me that its
message of the interpenetration of scientific and philosophical thought
is today as timely as ever. But the events of the last two decades
could not be ignored altogether. For more than one reason the alter-
native of re-writing the book myself in English was out of the question;
how could I hope to recapture the faith and spirit of that epoch of my
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PREFACE

life when I first composed it — after due literary preparations dashing
off the manuscript in a few weeks? Thus a different course had to be
followed.

In spite of numerous alterations in detail, I mention especially
Sections 13-15 and the concluding Section 23, the substance of the
old text has been preserved, the outlook still being that of a philo-
sophically-minded mathematician at the time when the theory of
relativity had reached completion and the new quantum mechanics
was just about to rise. But the references are brought up to date and
six essays have been appended for which the development of mathe-
matics and physies in the intervening years, as well as biology, have
provided the raw material. This arrangement, objectionable from the
standpoint of esthetic unity, has a certain stimulating value. The
appendices are more systematic-scientific and less historico-philo-
sophical in character than the main text. With the years I have
grown more hesitant about the metaphysical implications of science;
“as we grow older, the world becomes stranger, the pattern more
complicated.” And yet science would perish without a supporting
transcendental faith in truth and reality, and without the continuous
interplay between its facts and constructions on the one hand and the
imagery of ideas on the other.

One of the principal tasks of this book should be to serve as a
critical guide to the literature listed in the references.

{Sections of historical and supplementary interest not necessary
to the main course of development of the book, set off in the German
edition by small print, are indicated in this volume by opening and
closing brackets, such as these. }

Dr. Olaf Helmer, versed both in mathematics and philosophical
logic, translated the whole Handbuch article, with the exception of
sections 16 and 17 which were done by my son, Dr. Joachim Weyl.
His and Dr. Helmer’s manuseripts have been revised by the author.
Unless an excessive amount of care and labor is bestowed on it, the
translation of a work that depends to some degree on the suggestive
power of language — and the communication of philosophical thoughts
does — or that has any literary qualities is apt to be a compromise.
I am afraid this book is no exception. But I can at least vouch for
the absence of any gross errors or misunderstandings; that is more
than can be said about the majority of translations.

Hermany WeyL
Princeton, New Jersey
December 1947
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Davip Humge's Treatise of Human Nature and JoaN LocCkEe’s
Enquiry concerning Human Understanding are quoted by ‘chapter
and verse,” which makes the quotations independent of any special
edition.
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Schriften, ed. Gerhardt, VII, pp. 352-440.

Sir Isaac NEWTON's Mathematical Principles of Natural Philosophy
and his System of the World, ed. F. Cajori, Berkeley, California, 1934,
2nd print 1946. [Original in Latin: Philosophiae naturalis principia
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Part One. Mathematics



THE two parts of this book are intended to be a
report on some of the more important philo-
sophical results and viewpoints which have
emerged primarily from research within the
fields of mathematics and the exact empirical
sciences. I shall point out connections with the
great philosophical systems of the past wher-
ever I have been aware of them. Illustrative
examples will be chosen as simple as possible.
In principle, however, knowledge of the sciences
themselves must be upheld as a pre-requisite for
anyone engaging in the philosophy of science.

The method of presenting the foundations
of mathematics will lead from the surface into
the depth; consideration of the more formal
aspects will precede the study of problems con-
nected with the infinite. Though these latter
problems have stirred the imagination of all ages,
their careful formal preparation and stringent
treatment are recent achievements. Among the
heroes of philosophy it was Leibniz above all
who possessed a keen eye for the essential in
mathematics, and mathematics constitutes an
organic and significant component of his philo-
sophical system.



CHAPTER I
Mathematical Logic, Axiomatics

To the Greeks we owe the insight that the structure of space, which
manifests itself in the relations between spatial configurations and
their mutual lawful dependences, is something entirely rational.
Whereas in examining a real object we have to rely continually on
our sense perception in order to bring to light ever new features,
capable of description in concepts of vague extent only, the strue-
ture of space can be exhaustively characterized with the help of a
few exact concepts and in a few statements, the axioms, in such a
manner that all geometrical concepts can be defined in terms of those
basic concepts and every true geometrical statement follows as a
logical consequence from the axioms. Thereby geometry has become
the prototype of a deductive science. And in view of this its character,
mathematics is eminently interested in the methods by which concepts
are defined in terms of others and statements are inferred from others.
(Aristotelian logic, too, was essentially a product of abstraction from
mathematics.) What is more, it does not seem possible to lay the
foundations of mathematics itself without first giving a complete
account of these methods.

1. RELATIONS AND THEIR COMBINATION,
STRUCTURE OF PROPOSITIONS

In Euclidean geometry we are concerned with three categories
of objects, points, lines, and planes, which are not defined but assumed
to be intuitively given, and with the basic relations of <ncidence (a
point lies on a line, a line lies in a plane, a point lies in a plane), between-
ness (a point z lies between the points z and y), and congruence
(congruence of line segments and of angles). Analogously, in the
domain of natural numbers 1,2, 3, . . . we have a single basic relation
in terms of which all others are definable, namely that between a
number n and the number n’ immediately following upon n. Again,
the kinship relations among people furnish an excellent illustration
of the general theory of relations. In this case there are two basic
categories, males and females, and two basic relations, child (x is child
of y) and spouse (z is married to y).

The propositional scheme of a relation, e.g. ‘z follows upon y,’
contains one or more blanks z, y, . . . , each of which refers to a cer-
tain category of objects. From the propositional scheme a definite
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MATHEMATICS

proposition is obtained, e.g. ‘5 follows upon 4, when each blank is
filled by (the name of) a certain object of the corresponding category.
Language does not reflect the structure of such a relational proposition
correctly; we have no subject, copula, and predicate, but a relation
with two blanks, neither subordinate to the other, which are filled by
objscts. One might, in order to get rid of the grammatical accidents
of language, represent the propositional schemata of relations by
wooden boards provided with so many holes co:responding to the
blanks, and the objects by little pegs which fit into the holes. In
principle these would be symbols as suitable as words. Two proposi-
tions such as ‘5 follows upon 4’ and ‘4 precedes 5’ are expressions of
one and the same relation between 4 and 5. It is unwarranted to
speak here of two relations inverse to each other. The blanks in a
relational proposition, though, do each have a specific position; and
it is a particular property (commutativity) if the relation R(xy) (e.g.
z is a cousin of y) is equivalent (or coextensive) with R(yzx).

Properties will have to be counted among the relations, just as 1
is taken to be a natural number. Their propositional scheme pos-
sesses exactly one blank.

{In §47 of bis fifth letter to Clarke, Leibniz speaks of a ““relation
between L and M, without consideration as to which member is pre-
ceding or succeeding, which is the subject or object.” ‘“One cannot
say that both together, L and M, form the subject for such an accidens;
for we would then have one accidens in two subjects, namely one which
would stand, so to speak, with one foot in one subject and with the
other in the other subject, and this is incompatible with the concept
of an accidens. It must be said, therefore, that the relation . . . is
something outside of the subjects; but since it is neither substance nor
acctdens it must be something purely ideal, which is nevertheless well
worthy of examination.” The (explicit or implicit) assumption that
every relation must be based on properties has given rise to much
confusion in philosophy. A statement asserting, say, that one rose
is differently colored from a second is indeed founded on the fact that
one is red, the other yellow. But the relation ‘the point A lies on the
left of B’ is not based on a qualitatively describable position of A
alone and of B alone. The same holds for kinship relations among
people. The view here opposed evidently originates within the domain
of sense data, which — it is true — can yield but quality and not rela-
tion. It is for this reason that Leibniz, in the above quotation, refers
to the relation as something purely ideal. More than two-place rela-
tions are hardly ever mentioned in the logico-philosophical literature.

The introduction of propositional schemata with blanks represents
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MATHEMATICAL LOGIC, AXIOMATICS

an important progress of mathematical beyond traditional logic. In
analogy to mathematical functions, which yield a number when their
arguments, or blanks, are filled by numbers, propositional schemata
are often also referred to as ““propositional functions.”

Aside from relations, operations play a part in the axioms of arith-
metic; e.g. the operation of addition which, when applied to two
numbers, a¢ and b, produces a third, a + b. This operation can be
replaced, however, by the relation ¢ + b = ¢ between the three
numbers a, b, c; it is ‘single-".. 'uad’ with respect to the argument ¢, in
the sense that for any two numbers a and b there exists one and only
one number ¢ which stands in the relation a 4+ b = ¢ to them. Thus
we are able to subordinate genetic construction to the static existence
of relations. Later, however, we shall proceed conversely, inasmuch
as we shall replace all relations by constructive processes. |

The principles of the combination of relatzons are as follows:

1. In a relation scheme with several blanks it is possible to
wdentify several of these blanks. For instance, from the scheme

N(zy): x is a nephew of y
we may obtain

N(zx): z is a nephew of himself.
2. Negation. Symbol: ~. N(zy) becomes
~ N(zy): ¢ is not a nephew of y.

3. and. Symbol: & Thus N(zy) and, say, F(zy) — z is father of
y — yield the relation with three blanks

F(zy) & N(yz): z is father of ¥ and y is nephew of z.

It must be stated which blanks of the combined schemata are to
be identified. Symbolically this is indicated by choosing the
same letter for the blanks.

4. or. Symbol:v. For instance,

F(xzy) v N(yz): z is father of y or y is nephew of x.

The combination by means of ‘or’ can also be expressed in terms

of negation and the ‘and’ combination, and vice versa.'
1Leibniz employs the signs - and + for ‘and’ and ‘or’ respectively. We
deviate from his notation in order to avoid confusion with the arithmetical

operations of multiplication and addition. The formal analogy becomes apparent
in J. H. Lambert’s distributive law:

a-(b+c¢c)=(@a-b)+(a-c)
(Acta erudit. 1765, p. 441). Our use of the product sign II and summation sign =
in 6 and 7 are in agreement with Leibniz’s usage.
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5. Filling a blank by an immediately given object of the corre-
sponding category (substitution). F(I, z) means: I am father of
z. 'This is the scheme of that property with one blank x which
appertains exclusively to my children.

6. all. Symbol: II,. For instance, II,R(zy) means: all z (of the
corresponding category) are in the relation R(zy) to y.

7. some. Symbol: Z,. Thus Z,R(xy) means: there exists a y to
which z is in the relation R(zy). =, and II, are reducible to each
other in the same way with the help of negation as vand & The
presence of a prefixed symbol IT, or =, (with index z) deprives the
blank z of its capability of substitution just as much as if it had
been filled in according to 5. For the sake of these last two
principles of construction, it will always be necessary to add the
two-place relation of logical identity, z = y, to the immediately
given relations of our domain of investigation.

-[Examples. 1. Let (x1) mean: the point x lies on the line [. In
plane geometry, according to Euclid, parallelism of two lines, 1 || 7,
consists in their having no point (z) in common:

~ 2 {(zl) & (21')}

is therefore the definition of the relation [ || 7.
2. The statement that through two distinet points (z, y) there
always exists a line () would have to be written thus:

MIL((z = y) v 2 {(z]) & W) }).

3. In the domain of natural numbers, p is called a prime number
if no numbers z and y, both different from 1, exist which stand to p
in the relation z - y = p. This property of p, of being a prime num-
ber, is to be defined as follows:

LIL(z=Dvy=1v~ (@ y=p)}

Starting with the immediately given basic relations of a field of
objects we may by applying the above principles in arbitrary com-
bination obtain an unlimited array of ‘derived’ relations (among which
the basic relations will of course be counted too). In particular we
shall thus arrive at relations with only one blank, the ‘derived prop-
erties.” How such a property E(z) may serve as ‘differentia specifica’
in the sense of Aristotelian logic to demarcate a new concept within the
‘genus proximum’ of the object category to which its blank x refers,
will be sufficiently clear from the definition of ‘prime number’ in
Example 3. Among the derived propositional schemata we find,
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furthermore, those which no longer possess any blank at all, such as in
Example 2; they are the pertinent propositions of our discipline. If
we knew of each of these propositions whether or not it is true, then
we should have complete knowledge of the objects of the basic cate-
gories as far as they are connected by the basic relations. The logical
structure of a proposition of this kind can be described adequately
only by stating the manner, order, and combination, in which our
seven principles have contributed to its construction. This is a far
cry from the old doctrine, according to which a proposition must
always consist of subject, predicate, and copula. The syntax of
relations, as indicated here, offers a firm starting point for a logical
critique of language.

{ Compare, for instance, Russell’s remarks (Inéroduction to Mathe-
matical Philosophy, Chap. 16) on the definite article in non-deictic
application (such as in the proposition: the line through the distinct
points 4, B also passes through C).

A proposition is called general if it is constructed without recourse
to the fifth principle, of substitution of an immediately given object
(“this here’). A non-general proposition is called particular. (Here
one might still distinguish between the singular case, in which Prin-
ciple 5 only, and neither II, nor Z,, is used for elimination of a blank
z, and the mixed general-singular case.) An object a shows itself to
be an individual if it can be completely characterized by a pertinent
general property; that is, if without recourse to Principle 5 a property
can be constructed that applies to @ but to no other object of the same
category. Existence can be asserted only of something described by a
property in this manner, not of something merely named, it being
essential that 2, carries a blank z as an index. (This remark is of
use in a critique of the ontological proof of the existence of God.)
Within the domain of natural numbers, 1 is an individual, for it is the
only such number which does not follow upon any other. Indeed, all
natural numbers are individuals. The mystery that clings to num-
bers, the magic of numbers, may spring from this very fact, that the
intellect, in the form of the number series, creates an infinite manifold
of well distinguishable individuals. Even we enlightened scientists
can still feel it e.g. in the impenetrable law of the distribution of prime
numbers. On the other hand, it is the free constructibility and the
individual character of the numbers that qualify them for the exact
theoretical representation of reality. The very opposite holds for the
points in space. Any property derived from the basic geometric
relations without reference to individual points, lines, or planes that
applies to any one point applies to every point. This conceptual

7



MATHEMATICS

homogeneity reflects the intuitive homogeneity of space. Leibniz has
this in mind when he gives the following ‘philosophical’ definition of
similar configurations in geometry, ‘“Things are similar if they are
indistinguishable when each is observed by itself.” (Math. Schriften,
V, p. 180.) }

2. THE CONSTRUCTIVE MATHEMATICAL
DEFINITION

Aside from the combinatorial definition of derived relations, as
discussed in Section 1, mathematics has a creative definition at its
disposal, through which new ideal objects can be generated. Thus, in
plane geometry, the concept of a circle is introduced with the help of
the ternary point relation of congruence, OA = OB, which appears in
the axioms, as follows, ‘A point O and a different point A determine a
circle, the ‘circle about O through A’; that a point P lies on this circle
means that 04 = OP.” For the mathematician it is irrelevant what
circles are. It is of importance only to know in what manner a circle
may be given (namely by O and 4) and what is meant by saying that a
point P lies on the circle thus given. Only in statements of this latter
form or in statements explicitly defined on their basis does the concept
of a circle appear. Therefore the circle about O through A4 is identical
with the circle about O’ through A’ if and only if all points lying on the
first circle also lie on the second, and vice versa. The axioms of
geometry show that this criterion, which refers to the infinite manifold
of all points, may be replaced by a finite one: O’ must coincide with O,
and we must have 04’ = OA.

-[Further examples. 1. Nobody can explain what a function is, but
this is what really matters in mathematics: “A function f is given
whenever with every real number o there is associated a number b (as
for example, by the formula b = 2a + 1). b is then said to be the
value of the function f for the argument value a.” Consequently,
two functions, though defined differently, are considered the same if,
for every possible argument value a, the two corresponding function
values coincide.

2. In Euclidean geometry the ‘“ points at snfinity,” in which parallel
lines allegedly intersect, are such ideal elements added to the real
points by a creative mathematical definition. By a suitable intro-
duction of ideal points one can, more generally, extend a given limited
portion S of space, the ‘accessible’ space, so as to comprise the whole
space of projective geometry. The task is to decide through geometric
constructions within S whether two real lines, i.e. lines passing through
S, issue from the same ideal point. Such a point is defined most
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simply as the vertex of a trilateral corner (formed by three real lines).
Thus we arrive at the following definition: “ Three non-coplanar lines
a, b, ¢, any two of which are coplanar, determine an ideal point [a, b, c].
To say that a line I passes through this point means that [ is coplanar
with each of the lines @, b, ¢.”” Again this definition implies a criterion
for the coincidence of two such ideal points. To every real point p
there corresponds exactly one ideal point = such.that every line through
p passes, in the sense of our definition, through ». Thus a part of the
ideal points may be identified with the real points. (Compare Pasch,
Vorlesungen diber neuere Geometrie, 2d ed., p. 40.) According to the
same scheme, mathematics always accomplishes the extension of a
given domain of operation through the introduction of ideal elements.
Such an extension is made in order to enforce the validity of simple
laws. For example, as a consequence of the addition of the points at
infinity it is true not only that two distinct points can always be
joined by a line, but also that two distinet coplanar lines always
intersect at a point. The introduction of imaginary elements in
geometry (in order to enforce simple and universally valid theorems
on intersection of algebraic curves and surfaces) and the introduction
by Kummer of ideal numbers in number theory (in order to restore the
laws of divisibility, which at first were lost in the transition from
rational to algebraic numbers) are among the most fruitful examples
of this method of ideal elements. }

A special case is the process of definition by abstraction. A binary
relation @ = b in a domain of objects is called an equivalence (a relation
of the character of equality), if the following is universally true:

(i) a = a;

(ii) if @ = b, then b ~ a (commutativity);

(iii) if @ = b and b = ¢, then a = ¢ (transitivity).
By agreeing to consider two objects a and b as distinet if and only if
they do not satisfy the equivalence relation a = b, a new object domain
is derived by abstraction from the original one.

Ezamples and comments. 1. Similarity of geometrical figures is an
equivalence. Every'figure is attributed a certain shape, and two
figures have the same shape if and only if they are similar. In a more
philosophical mode of expression one is used to say that the concept of
shape results from that of figure by abstracting from position and
magnitude. In scientific practice the introduction of a concept thus
abstracted expresses the intention of exclusively considering invariant
properties and relations among the originally given objects. R(xy) is
invariant with respect to the equivalence =, if R(ab) always entails
R(a't’), provided o’ ~ a and b’ = b.
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2. Two sets A and B of objects (say, the persons and chairs in a
room) are said to be numerically equivalent, 4 = B, if it is possible
to pair off the elements of A with those of B (if it is possible to assign
one person to each chair, so that no chair remains vacant and no
person remains unseated). Numerical equivalence obviously is an
equivalence in the above sense. ‘Every set determines a (cardinal)
number; two sets determine the same number if and only if they are
numerically equivalent.” (This explanation can already be found in
Hume, Treatise of Human Nature, Book I, Part III, Section 1.)*> In
more careless formulation one would say that the concept of (cardinal)
number results from that of set by abstracting from the nature of the
elements of the set and merely considering their discernibility. The
objection occasionally put forward that all elements, if degraded into
mere Ones, collapse into one, is met by the above precise formulation.

{The example of number may serve to illustrate that the definition
by abstraction is a special case of the creative definition.- It is
subordinated to the latter as follows: ‘Every set A determines a
number (4). To say that an arbitrary set M consists of (4) elements
means that M and A are numerically equivalent.” Consequently the
number (A) is the same as the number (B), if every set M thatis = 4
also is = B, and vice versa. But according to the rules (ii) and (iii)
for equivalences, such is the case if and only if A = B. Finally, rule
(i) guarantees that, in particular, A itself consists of (4) elements.

3. Two integers, according to Gauss, are congruent modulo 5 if
their difference is divisible by 5. Congruence is a relation of the
character of equality. Through the corresponding abstraction we
obtain, from the integers, the congruence-integers modulo 5. Since
the operations of addition and multiplication are invariant with
respect to congruence, the result is a finite domain of only 5 elements,
within which the usual algebra can be carried on just as well as in the
infinite domain of the ordinary rational integers. We have here, for
instance, 2 4+ 4 =1, 34 = 2 (modulo5). Not only subtraction but
even division can be carried out, by virtue of the fact that 5 is a prime
number. This example is of fundamental importance for number
theory.

4. The most significant physical concepts are likewise obtained in
accordance with the scheme of mathematical abstraction. We shall
return to this in Part IT when the process of measurement is discussed.

2 The passage is worth quoting. “When two numbers are so combined, as
that the one has always an unit answering to every unit of the other, we pronounce
them equal; and it is for want of such a standard of equa,hty in extension, that
geometry can scarce be esteemed a perfect and infallible science.”
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The principle of definition by abstraction I find alluded to by
Leibniz in his fifth letter to Clarke, §47. He says there, ““Incidentally,
I have proceeded here by and large as Euclid did. The latter, since
he found himself unable to define the concept of geometrical ratio
absolutely, stipulated what was to be understood by equal ratios.”
And shortly before that, “ The mind, however, is dissatisfied with this
equality. It seeks an identity, a thing which would truly be the same,
and it imagines it to be in a manner outside of the subjects.” The
principle has shown its full importance for mathematics only in the
19th century. It was consciously formulated in all generality by
Pasch in his book quoted on p. 9 (1882), still more clearly by Frege
(Die Grundlagen der Arithmetik, Breslau 1884, Sections 63-68). Com-
pare also Helmholtz (Zihlen und Messen, 1887, Wissenschaftliche
Abhandlungen, 111, p. 377).

Beside the above-mentioned mathematical form of abstraction one
might be inclined to place another, the originary abstraction. In
looking at a flower I can mentally isolate the abstract feature of color
as such. This act of abstraction would here be primary while the
statement that two flowers have the same color ‘red’ would be based
on it; whereas in mathematical abstraction it is the equality which is
primary, while the feature with regard to which there is equality comes
second and is derived from the equality relation. But the integers of
the same congruence class modulo 5 can also be characterized by the
fact that upon division by 5 they all leave the same remainder; the
similarity of two triangles by the fact that the angles in both have
the same numerical values and corresponding sides have the same ratios.
The general procedure of constructing these remainders and these
numerical values of angles and ratios, respectively, takes the place of
the feature ‘color,’ its identical result for two integers or triangles that
of the identical ‘red’ of two flowers. Originary abstraction thus is
subordinate to mathematical abstraction. But that which is common
to all congruent triangles or to all bodies occupying the same spatial
position, I find myself unable to represent by an objective feature
(it is the latter example that Leibniz loc. cit. had in mind), but merely
by the indication: congruent to this triangle, occupying this spatial
position. Our question is connected with the problem of relativity
(Section 13), with the difference between conceptual definition and
intuitive exhibition. But in both cases alike, those of originary and of
mathematical abstraction, the transformation of a common feature
into an ideal object, e.g. of the property ‘red’ into an objectified ‘red
color,” of which the red things ‘partake,’ is an essential step (Plato’s

pédekes) ]'
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With every property E(r) which is meaningful for the objects z
of a given category we correlate a set, namely ‘the set of objects x
having the property E.” Thus we speak of the set of all even numbers,
or of the set of all points on a given line. The conception that such a
set be obtained by assembling its individual elements should by all
means be rejected. To say that we know a set means only that we are
given a property characteristic of its elements. Only in the case of
a finite set do we have, in addition to such general description, the
possibility of an individual description which would exhibit each one
of its elements. [Formally, by the way, the latter mode of description
is a special case of the former; e.g. the set consisting of three given
objects a, b, ¢ corresponds to the property of being either a or b or ¢:
(z=a)v@=>bv(=c).] It is possible that the same set is
correlated with two properties £ and E’. This happens when every
object (of our category) having the property E also has the property
E', and conversely. Hence, what is decisive for the identity of the
two sets is not the manner of their definition (in terms of the prin-
ciples enumerated in Section 1), but solely the question whether each
element of one is an element of the other and vice versa, a question
referring to a domain of existing objects and unanswerable by recourse
to the meaning alone. If the concept of set is understood in this way,
then the creative definition is seen to be nothing but the transition
from a property to a set, so that the mathematical construction of new
classes of ideal objects can quite generally be characterized as set
formation. Now there is no longer anything objectionable in describ-
ing the circle about O through A as the set of all points P whose dis-
tance from O equals OA, or the color of an object as the set of objects
having the same color, or the cardinal number 5 as the set of all those
ageregates which are numerically equivalent to the exhibited aggre-
gate of the fingers of my right hand. But it is an illusion — in which
Dedekind, Frege, and Russell indulged for a time, because they
apparently conceived of a ‘set’ after all as a collective — to think
that thereby a concrete representation of the ideal objects has been
achieved. On the contrary, it is through the principle of creative
definition that the meaning of the general set concept is elucidated as
well as safeguarded against false interpretations.

The properties employed in the creation of new abstracts ® gen-
erally depend on one or more arguments u, v, . . . , which are allowed
to vary freely within certain domains: ¢ is a function of u,v, . . . . In
the definition of a circle, for instance, the ternary point relation
OP = 0A is interpreted as a property of P (relation with one blank P)
depending on O and 4 ; the ‘circle about O through A’ is a function of
O and A. The criterion for the coincidence of two values of an
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abstract, ®(u, v, . . . ) and &/, ¢/, . . . ), refers to a totality of
existing objects. But of special importance are those cases where this
transfinite criterion can be converted by virtue of certain universally
valid facts into a finite criterion requiring recourse to the meaning of
the defining relation only. Instances are our definition of the circle
and the definitions by abstraction. Not only properties, but more
generally relations may serve to define ideal elements. If we want to
adhere to the set-theoretical terminology throughout, it will be neces-
sary to have a ‘binary set’ (R) correspond to every binary relation R;
such that (R) and (R’) are identical if, for arbitrary elements a, b, it
never happens that one of the statements R(a, b), R'(a, b) is true, the
other false. The same for ternary, quaternary, . . . relations. We
thus arrive at the following final version of the principle of creative
definition: A relation R(zy . . . /uv . . . ), whose blanks are sepa-
rated into two groups, zy . . . and uv . . . , determines an abstract
$(uv . . . ) depending on the arguments u, v, ... ; equality
duv . . . ) =dWwv . .. ) for any two sets of values of the argu-
ments, 4, v, . . . and ¥, v/, . . ., holds if and only if any objects
z, ¥, . . . of the appropriate categories which stand in the relation
R to w, v, . . . also stand in the relation B to w’, ¢/, . .., and
conversely.

3. LOGICAL INFERENCE

Having dealt with definitions we now come to proofs. If one
turns a geometrical proposition into a hypothetical statement whose
premiss. consists of all geometrical axioms, replacing mentally at the
same time any abbreviatory expressions by what they mean according
to their definitions, one will arrive at a ‘formally valid,’ ‘analytic’
proposition, the truth of which is in no way tied to the meanings of the
concepts entering into it (point, line, plane, incidence, betweenness,
congruence). The logic of inference has the task of characterizing
those propositional structures which assure the formal validity of the
proposition. Barbara, Baralipton, and so on, are of little help in this
connection. Leibniz considered the doctrine of the argumens en forme
“une espéce de Mathématique universelle, dont 'importance n’est
pas assez connue’’ (Nowveaux Essats, Libre IV, Chap. 17, §4).

That part of logic which operates exclusively with the logical con-
nectives ‘not,’ ‘and,’ ‘or’ will be referred to as finite logic, as opposed
to transfinite logic, which in addition uses the propositional operators
‘some’ (or ‘there is’) and ‘all’. The reason for this subdivision is as
follows. Suppose several pieces of chalk are lying in front of me; then
the statement ‘all these pieces of chalk are white’ is merely an abbrevi-
ation of the statement ‘this piece is white & that piece iswhite & . . .’

13
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(where each piece is being pointed at in turn). Similarly ‘there is a
red one among them’ is an abbreviation of ‘this is red v that is red
v . ... But only for a finite set, whose elements can be exhibited
individually, is such an interpretation feasible. In the case of infinite
sets, the meaning of ‘all’ and ‘some’ involves a profound problem
which touches upon the core of mathematics, the very secret of the
infinite; it will unfold itself to us in the next chapter. The situation
here may be compared to the transition from finite to infinite sums;
the meaning of the latter is tied to special conditions of convergence,
and oné may not deal with them in every respect as with finite
sums.

In the propositional calculus it is convenient to introduce, in
addition to the symbols for ‘not,’ ‘and,” ‘or,’” the symbol @ — b (read:
a implies b). It has the same meaning as ~ a v b (a does not hold or
b holds) and does not beyond that signify any deeper connection
between the propositions ¢ and .

{Incidentally two of the four symbols ~, &, v, — would suffice;
for the propositional calculus it is convenient to choose — and ~.
Nay, it is even possible to get along with one symbol, a/b, denoting the
incompatibility of the propositions @ and b (~av~2b). For, in
place of

~ a

, a—b, a&b avd
we may write

a/a, a/(b/b), (a/b)/(a/b), (a/a)/(b/b).

However, for the sake of greater lucidity, we shall here use all four
symbols. }

In a finite-logical formula the letters (propositional variables) for
which arbitrary propositions (without blanks) may be substituted are
combined by those four symbols ~, &, v, — . For example:

b—(a—0D).

There exists a general rule by which the formal validity of a formula
of this kind can be recognized. In fact, assign to each letter occurring
in the formula one of the values ‘true’ (T) or ‘false’ (F) in all possible
combinations, and determine in each instance the value of the entire
formula according to the following direction for evaluating compound
propositions:
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a | ~a a|l bl a—d ad&bd avbd
T ¥ T|T T T T
F T T|F F F T
F|T T F T
FI|F T F F

(The number of combinations to be tested, for instance, when the
formula contains 5 different propositional variables is 25.) If the
resulting value of the formula is T in every case, then the formula is
formally valid. This rule, which may be said to be based on the
law of contradiction and the law of the excluded middle (tertium non
datur), I shall call briefly the finite rule.

Example: b — (a — b).

a | b a—b |b—>(a—b)
T T T T
T F F T
F T T T
F F T T

On this level, then, it is possible to ascertain directly by a combinatorial
procedure following a fixed scheme, whether a given assertion is a
logical consequence of certain other propositions, provided premiss
and conclusion are built up of propositions a, b, . . . (whose meanings
do not matter) with the help of the four operations ~, —, &, v.

All this changes completely as soon as ‘some’ and ‘all’ (and their
concomitants, the blanks) are admitted into our formulas. Z, and
I, compel us to construct — we set up a number of formally valid
basic formulas, the logical azioms, and state a rule by which further
formally valid propositions may be obtained from formally valid
propositions. The rule is none other than the one by which logic is
applied to all theoretical sciences, namely the syllogism: if you have a
proposition A4, and a proposition A — B in which the first proposition
A reappears on the left of —, then set down the proposition B. All
propositional structures obtained from the axioms by repeated applica-~
tion of this rule are of analytic character. It is impossible, however,
to characterize descriptively the infinite manifold of these individual
structures independently of the constructive manner in which they are
generated. Hence the necessity of step by step demonstration.
Using a phrase coined by J. Fries in a somewhat different sense, one
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may speak of a ‘primordial obscurity of reason.” We do not possess
the truth, it wants to be attained by action.

{ Galileo (“Dialogo,” Opere, VII, p. 129) expresses a widely spread
view when he interprets this as the differencé between human and
divine understanding. ‘‘We proceed in step-by-step discussion from
inference to inference, whereas He conceives through mere intuition.
Thus in order to gain insight into some of the properties of the circle,
of which it, possesses infinitely many, we begin with one of the simplest;
we take it for a definition and proceed from it by means of inferences
to a second property, from this to a third, hence a fourth, and so on.
The divine intellect, on the other hand, grasps the essence of a circle
senza temporaneo discorso and thus apprehends the infinite array of its
properties.” (But intensively, i.e. as regards the objective certainty
of an individual mathematical truth, the human intellect does not
fall short of the divine intellect). }

Concerning ‘some’ and ‘all,’ 2; and II;, we may lay down, first of
all, the following two axioms, in which a(x) stands for an arbitrary
propositional scheme containing the one blank z, and ¢ for any given
object of the corresponding category:

I. Ma(z) — ale); Il a(c) — Z, a(z).

The first of these axioms tells us merely how to derive something from
a universal proposition, but fails to show how other propositions can
ever lead us to a universal proposition. The converse is true of the
second axiom.

{Everybody knows the classical example of an inference: («) all
men are mortal, (8) Caius is a man; hence (y) Cailus is mortal. Our
formalism decomposes it into several steps. Let H and M designate
the properties of being (hu)man and mortal respectively, and let ¢
designate Caius. Then

() IL(H (z) — M (2)),
in connection with I,

IL(H(z) — M(z)) — (H(c) = M(c)),
according to our syllogism rule of inference yields
H(c) — M(c).
This, together with
(8) H(e),
16
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again by the rule of inference, yields
() M(c).

— does not, of itself, involve the idea of universality; but (e) illus-
trates how it may combine with ‘all’ to form a wniversal hypothetical
statement. The grounds for the validity of a universal implication of
the form

II;(a(z) — b(z))

may of course be several. If they are solely to be found in the logical
axioms, then the symbol — expresses purely logical consequence. But
the grounds may well be of a factual nature, such as a causal relation
or some other empirically observed regularity. This remark may
suffice to clarify the question as to how the relation of cause and effect
is connected with that of logical reason and consequence. The
symbol — remains neutral with respect to all this.

The finite-logical axioms can be found listed in D. Hilbert and
P. Bernays, Grundlagen der Mathematik, 1, Berlin, 1934, p. 66. They
are of course constructed in such a manner that their formal validity
can be established by means of the ‘finite rule.” Conversely it can
be shown — but this already requires an essentially mathematical
and not altogether trivial proof — that the list of axioms is complete,
in the sense that all logical formulas containing only the symbols
~, —, &, v which are formally valid according to the ‘finite rule’ can
be obtained from these few axioms by substitution and repeated
application of the syllogism. The group of transfinite axioms, of
which we know as yet only Axioms I and II, remains in need of
supplementation.

From the syllogism rule of inference other, derived, rules of
inference may be obtained by means of the logical axioms. Indeed
every formally valid proposition of the form 4 — B (where 4 and
B are built up from the propositional variables a, b, . . . with the
help of the logical connectives), by virtue of the syllogism, leads to the
following Tule of inference: If you have a proposition of the form A4,
then you may set down the corresponding proposition of the form B.
Conversely, the syllogism also has its representative among the
logical formulas:

a— ((a—=b) = b).

And yet, since construction means action, one does not get along with
formulas alone; some practical rule of inference that tells how to
handle the formulas is needed. This is probably the truth behind the
opinion as to the normative character of logic.
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Kant’s distinction between analytic and synthetic judgments
(Critique of Pure Reason, Introduction) is so obscurely phrased as to
render a comparison with the precise concept of formal validity in
mathematical logic almost impossible. The latter concept is in
agreement, however, with Husserl’s definition (Logische Untersuchun-
gen, I, 2d ed., p. 254): ‘ Analytic laws are unconditionally universal
propositions containing no concepts other than’formal. As opposed
to the analytic laws we have their particular instances, which arise
through the introduction of material concepts or of ideas positing indi-
vidual existence. And as particular cases of laws always yield neces-
sities, so particular cases of analytic laws yield analytic necessities.”]-
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4. THE AXIOMATIC METHOD

The axiomatic method consists simply in making a complete
collection of the basic concepts as well as the basic facts from which
all concepts and theorems of a science can be derived by definition and
deduction respectively. If this is possible, then the scientific theory
in question is said to be definite according to Husserl. Such is the
case for the theory of space. Of course, from the axioms of geometry
I cannot possibly deduce the law of gravitation. Hence it was neces-
sary to explain above what is to be considered a pertinent proposition
of a given field of inquiry. Similarly the axioms of geometry fail to
disclose whether Zurich is farther from Hamburg than Paris. Though
this question deals with a geometrical relation, the relation is one
between individually exhibited locations. Thus, precisely speaking,
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what is supposed to be deducible from the axioms are the pertinent
general true propositions.

{“Buch, then, is the whole art of convincing. It is contained in
two principles: to define all notations used, and to prove everything
by replacing mentally the defined terms by their definitions.”” Thus
Pascal in a discourse de Uesprit géométrigue (Oeuvres complétes, ed.
F. Strowski, Paris (Librairie Ollendorff), I, p. 427). But this is more
easily said than done. Euclid’s Elements fail to afford a complete
solution of the problem of axiomatizing geometry. He begins with
8pou, definitions; but they are only in part definitions in our sense, the
most important among them are descriptions, indications of what is
intuitively given. Nothing else, in fact, is possible after all for the
basic geometrical concepts such as ‘point,” ‘between,’ etec.; but as
far as the deductive construction of geometry is concerned, descrip-
tions of this kind are evidently irrelevant. There follow, under the
name of airfuara, certain geometrical axioms, in particular the axiom
of parallels: Given a plane P, a line [ in P, and a point p in P not lying
on [; all lines in P which pass through p, except one, intersect [. Fin-
ally a few general axioms of magnitude: xowal évvoir. They play
their part in the development of geometry, inasmuch as certain
geometrical relations such as congruence, or equality of areas, are
tacitly assumed to satisfy these axioms. Behind them are concealed
an indefinite number of proper axioms of geometry. In later books
of the Elements the list of axioms is supplemented as the occasion
demands. Because the geometrical postulates are intuitively self-
evident and because a purely logico-deductive attitude is not natural
to the human mind, it has required great pains to compile a complete
list of geometrical axioms. ‘Non-Euclidean geometry,” established
by Bolyai and Lobatschewsky around 1830, becomes the driving force
for axiomatic research in the second half of the 19th century. The
most hidden axioms, those of order, are disclosed by Pasch around
1880. Finally, at the turn of the century, the goal is reached com-
pletely and finds its classical expression in Hilbert’s Grundlagen der
Geometrie. Hilbert arranges the axioms in five groups: the axioms of
incidence, of order (‘betweenness’), of congruence, of parallelity, and
of continuity.

The axiomatic procedure of the ancients, which aside from Euclid
was also handled by Archimedes with admirable facility, became
exemplary for the foundation of modern mechanics. It dominates
Galileo’s doctrine of uniform and uniformly accelerated motion
(““Discorsi,” 3rd and 4th days), and even more so Huyghens’ establish-
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ment of the laws of the pendulum in his Horologium oscillatorium. In
more recent times the axiomatic program was carried out completely
(outside of mathematics proper) for the statics of rigid bodies, the
space-time theory of special relativity, and other parts of physics.

An axiom system is by no means uniquely determined by the
discipline in question; rather, the choice of the basic concepts and basic
facts is arbitrary to a considerable extent. The question as to whether
it is possible to differentiate between essentially originary and essen-
tially derived notions lies beyond the competence of the mathema-
tician.®! The definition of a geometrical relation concept that was
originally chosen may with equal justification be replaced by any
criterion which, in accordance with geometrical facts, is a necessary
and sufficient condition under which the relation holds. }

An axiom system must under all circumstances be free from con-
tradictions, in which case it is called conststent; that is to say, it must
be certain that logical inference will never lead from the axioms to a
proposition @ while some other proof will yield the opposite proposi-
tion ~ a. If the axioms reflect the truth regarding some field of
objects, then, indeed, there can be no doubt as to their consistency.
But the facts do not always answer our questions as unmistakably as
might be desirable; a scientific theory rarely provides a faithful rendi-
tion of the data but is almost invariably a bold construction. There-
fore the testing for consistency is an important check; this task is
laid into the mathematician’s hands. Not indispensable but desirable
is the independence of the individual axioms of an axiom system. It
should contain no superfluous components, no statements which are
already demonstrable on the basis of the other axioms. The question
of independence is closely connected with that of consistency, for the
proposition @ is independent of a given set of axioms if and only if the
proposition ~ @ is consistent with them.

The dependence of a proposition a on other propositions A (an
axiom system) is established as soon as a concrete proof of a on the
basis of A is given. In order to establish the independence, on the
other hand, it is required to make sure that no combination of infer-
ences, however intricate, is capable of yielding the proposition a.
There are three methods at one’s disposal of reaching this goal; by
what has been said above, each of them qualifies also for proving the
consistency of an axiom system.

(1) The first method is based on the following principle: if a con-

3 Sometimes this is certainly the case; e.g. among the kinship relations, ‘child’
and ‘spouse’ are the egsentially originary ones.
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tains a new original concept, not defined in terms of those occurring in
A, then a cannot be a consequence of 4. For example: a ship is 250
feet long and 60 feet wide; how old is its captain? Only in the most
trivial cases does this simple idea accomplish our objective.

(2) The construction of a model. Objects and relations are exhibited
which, upon suitable naming, satisfy all of the propositions 4, and yet
fail to satisfy a. This method has been the most successful so far
invented.

The most famous example is furnished by the axiom of parallels.
From the beginning, even in antiquity, it was felt that it was not as
intuitively evident as the remaining axioms of geometry. Attempts
were made through the centuries to secure its standing by deducing it
from the others. Thus doubt of its actual validity and the desire to
overcome that doubt were the driving motives. The fact that all
these efforts were in vain could be looked upon as a kind of inductive
argument in favor of the independence of the axiom of parallels, just
as the failure to construct a perpetuum mobile is an inductive argu-
ment for the validity of the energy principle. Negating the axiom of
parallels amounts to the assumption that, given a point P and a line [
not passing through P, there exist in the plane determined by P and !
an infinitude of lines through P not intersecting . Therefore this is
what the constructors of non-Euclidean geometry did: they drew the
consequences of that assumption, and in doing so they found, even
though they made free use of the remaining axioms of Euclidean geome-
try, that no contradiction arose, as far as they followed the matter up.
But they could not claim security for all future. Klein was the first
to offer a Euclidean model for non-Euclidean geometry; the objects of
Euclidean geometry itself, upon an assignment of names differing from
the customary one, satisfy the non-Euclidean axioms. Let S be a
sphere in Euclidean space. The dictionary which furnishes the trans-
lation into non-Euclidean language consists of only a few words (here
characterized by quotation marks): by a ‘point’ we understand any
point in the interior of S. Several such ‘points’ are said to lie on a
‘line’ or in a ‘plane,’ and a ‘point’ is said to lie ‘between’ two others, if
they do so in the customary sense. A ‘motion’ is any collinear trans-
formation which transforms the sphere S into itself; two configurations
are ‘congruent’ if one results from the other by a ‘motion.” For any-
one who believes in the truth and thus in the consistency of Euclidean
geometry, the consistency and thus conceivability of non-Euclidean
geometry is thereby established.

The consistency of Euclidean geometry, on the other hand, can be
demonstrated quite independently of the belief in its truth and of the
intuitive content of its basic concepts. For analytic geometry, which
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can best be based on the concept of vector (see Section 12), has shown
that Buclidean geometry is but a different expression of the facts of
linear algebra, of the theory of linear equations; it has thus provided
us with a simple arithmetical model of Euclidean space. Linear
algebra accounts for the affine concepts of geometry, while the adjunc-
tion of a positive definite quadratic form that serves as the ‘metric
ground form’ leads to the metrical concepts. In algebra the number
n of variables (or ‘unknowns’) may be left indeterminate. One has
to choose n = 3 in order to get the geometry of the intuitive 3-dimen-
sional space. Arithmetic and geometry, by virtue of this correspond-
ence, are so closely interwoven that today even in pure analysis we
constantly make use of geometrical terms. Any contradiction in
geometry would at the same time show up as a contradiction in arith-
metic. This may be looked upon as a reduction, since the numbers
are to a far greater measure than the objects and relations of space a
free product of the mind and therefore transparent to the mind.

These examples indicate that the method of models need not be
restricted to those cases where the truth about the objects and relations
employed in the construction of the model is known, but that it may
serve to reduce the consistency of an axiom system A (e.g. that of
geometry) to the consistency of another, B (e.g. that of arithmetic).
This is achieved whenever the basic concepts of the system A are
defined in terms of the basic concepts of the system B in such a manner
that the axioms A become a logical consequence of the axioms B.
No attention has to be paid for this purpose to the intuitive meaning
of the basic concepts in 4 and in B; the assignment of the names given
to the basic concepts of A to certain concepts derived from B is purely
arbitrary.

More than anybody else has Hilbert, through the ingenious con-
struction of suitable arithmetical models, contributed to the clarifica-
tion of the logical relations that connect the various parts of the
geometrical system of axioms.

If we are dealing with a finite number of objects only which are
explicitly exhibited one by one and designated by symbols, we may be
able to prove consistency by stating for each single instance in terms
of the symbols whether or not the basic relations obtain. As an exam-
ple we give a combinatorial model that ensures the consistency of the
incidence axioms in plane projective geometry (which deal with the
single relation ‘point lies on line’). The model consists of seven
symbols for points, 1, 2, 3, 4, 5, 6, 7, and seven symbols for lines, I, I,
III, IV, V, VI, VII, and incidence is defined by the following table, in
which a *; say, at the crossing of row 3 and column VI indicates that
point 3 lies on line VI:
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1 II |III | IV | V | VI | VII

1 * * *
9 * * *
3 * * *
4 * * *

* * *
6 * * *
7 * * *

For example, verify from this table the axioms stating that through
any two distinct points there goes exactly one line (i.e. any two rows
contain exactly one pair of *s in the same column) and that any two
distinet lines intersect at exactly one point!

The case of a finite system of objects exhibited one by one is com-
paratively trivial. In all other cases the method of models is merely
capable of reducing the consistency of one system to that of another.
Ultimately it will become necessary to prove consistency in an absolute
way for one basic system of axioms. For the larger part of mathe-
matics and for the whole of physics this basic system deals with the
concept of real number.

(3) For the purpose of an absolute proof of consistency we have
none but the direct method at our disposal, which endeavors to show
that by following the rules of deductive inference one will never arrive
at two propositions of which one is the negation of the other. Com-
plete enumeration of the logical rules of the game is here a necessary
presupposition (compare Section 3); for only then can one apply the
method to propositions, blind against their meaning, as one applies the
rules of chess to chessmen. Only in recent years has Hilbert attacked
the problem of securing the consistency of the arithmetical axioms in
this manner. (Should a new and evidently stringent method of logical
inference be discovered and thus the set of rules of the game be aug-
mented, one would have to be prepared to see a consistency proof
conducted by the direct method become obsolete. The method of
models, on the other hand, is independent of the ‘rules of the game.’)

{ The following might serve as an analogue in chess: it is required
to see that a game of chess, no matter what the various moves, as long
as it is played in accordance with the rules, can never lead to a position
in which there are 10 queens of the same color on the board. Here
the ‘direct method’ is applicable. For it can be gathered from the
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rules of the game that no move increases the sum of the numbers of
queens and pawns of the same color. Hence, as this sum is 9 initially,
it must remain < 9. Incidentally, method (1) is a special case of the
direct method, but.it seemed to deserve special mention because of its
simplicity.

In addition to consistency and independence, the completeness of
the axioms which form the basis of a science will be required. What
is meant by that? That for every pertinent general proposition a
the question ‘does a or ~ a hold?’ be decidable by logical inference
on the basis of the axioms? Just as consistency guarantees that not
both a and ~ a can be obtained, completeness would then guarantee
that always one of them can be obtained. Completeness in this sense
would only be ensured by the establishment of such procedural rules
of proof as would lead demonstrably to a solution for every pertinent
problem. Mathematics would thereby be trivialized. But such
a philosopher’s stone has not been discovered and never will be dis-
covered. Mathematics does not consist in developing the logical
consequences of given assumptions omnilaterally, but intuition and
the life of the scientific mind pose the problems, and these cannot be
solved by mechanical rules like computing exercises. The deductive
procedure that may lead to their solution is not predesigned but has
to be discovered in each case. Analogy, experience, and an intuition
capable of integrating multifarious connections are our principal
resources in this task. As was already mentioned in Section 3, there
is no descriptive characteristic of all propositions deducible from given
premisses; we have to rely on construction. It is not feasible in prac-
tice to proceed like Swift’s scholar, whom Gulliver visits in Balnibarbi,
namely, to develop in systematic order, say according to the required
number of inferential steps, all consequences and discard the “unin-
teresting” ones; just as the great works of world literature have not
come into being by taking the twenty-six letters of the alphabet, form-
ing all ‘combinations with repetition’ up to the length 10!, and
selecting and preserving the most meaningful and beautiful among
them. ¢

Suppose we make a continuous deformation of space (as if it were
filled out with plasticine), and suppose we understand now by lines,
planes, and congruent figures such curves, surfaces, and figures as
result from real lines, real planes, and really congruent figures by this
deformation. Then evidently all the facts of geometry hold for these
newly introduced concepts. It is therefore impossible to distinguish
conceptually between the system of lines and the system of curves
resulting from them by a spatial deformation.]-
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This brings us to the idea of “somorphism, which is of fundamental
importance for epistemology. Let us assume that we have a system
T of objects (such as the points, lines, and planes of geometry) and
certain appertaining basic relations B, R/, . . .. Let there be a
second system 2, with corresponding basic relations which (though
they may have entirely different meanings) are correlated, say, by the
use of the same names, to the relations R, R/, . . . within the first
domain of objects. Then, if it is possible to state a rule by which
the elements of the system =; are paired in a mutually unique manner
with the elements of the system Z,, so that elements in Z; between
which B (or R’, . . . ) holds correspond to elements in =, between
which the relation with the same name R (or R’, . . . respectively)
holds, then the two domains are said to be zsomorphic. The correla-
tion in question is said to be an isomorphic mapping of Z; into Z..
Isomorphic domains may be said to possess the same structure. For
every pertinent true proposition about £; (whose sense can be
understood by virtue of the meanings of R, R’, . . . within Z,),
there is a corresponding and identically phrased proposition about
Ty, and conversely. Nothing can be asserted of the objects in
2. that would not be equally valid in =, Thus, for example,
Descartes’ construction of coordinates maps the space isomorphically
into the operational domain of linear algebra. These considerations
induce us to conceive of an axiom system as a logical mold (‘ Leerform’)
of possible sciences. A concrete interpretaticn is given when designata
have been exhibited for the names of the basic concepts, on the basis
of which the axioms become true propositions. One might have
thought of calling an axiom system complete if in order to fix the
meanings of the basic concepts present in them it is sufficient to require
that the axioms be valid. But this ideal of uniqueness cannot be
realized, for the result of an isomorphic mapping of a concrete inter-
pretation is surely again a concrete interpretation. Hence the final
formulation has to be as follows: an axiom system is complete, or
categorical, if any two concrete interpretations of it are necessarily
isomorphic. In this sense the categoricity of Hilbert's axiom system
of Buclidean geometry is guaranteed. Indeed it can easily be shown
that a space satisfying these axioms is isomorphic to the algebraic
model provided by Descartes’ analytic geometry.

{ A science can only determine its domain of investigation up to an
isomorphic mapping. In particular it remains quite indifferent as to
the ‘essence’ of its objects. That which distinguishes the real points
in space from number triads or other interpretations of geometry one
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can only know (kennen) by immediate intuitive perception. But
intuition is not blissful repose never to be broken, it is driven on
toward the dialectic and adventure of cognition (Erkenntnis).* It
would be folly to expect cognition to reveal to intuition some secret
essence of things hidden behind what is manifestly given by intuition.
The idea of isomorphism demarcates the self-evident insurmountable
boundary of cognition. This reflection has enlightening value, too,
for the metaphysical speculations about a world of things in themselves
behind the phenomena. For it is clear that under such a hypothesis
the absolute world must be isomorphic to the phenomenal one (where,
however, the correlation needs to be unique only in the direction thing
in itself — phenomenon); for “we are justified, when different per-
ceptions offer themselves to us, to infer that the underlying real condi-
tions are different” (Helmholtz, Wissenschaftliche Abhandlungen, II,
p. 656). Thus even if we do not know the things in themselves, still
we have just as much cognition about them as we do about the phe-
nomena. The same idea of isomorphism clarifies the problem which
Leibniz, stimulated by Hobbes’ nominalistic theory of truth, treats
in his dialogue on the connection between things and words; Leibniz
evidently wrestles with giving expression to that idea (Philosophische
Schriften, VII, pp. 190-193).

Through the disclosure of isomorphic relations it is possible to
transfer any insights gained in one field to the isomorphic field. A
service of this kind is rendered, for instance, by the principle of duality
in plane projective geometry. Its only relational concept is the
incidence of point and line (point lies on line, line passes through
point). It is possible to pair off uniquely the points and the lines in
the plane in such a manner that, whenever a point P lies on a line g,
the line p paired with P passes through the point @ paired with q.
Consequently any valid theorem of projective geometry (phrased in
terms of the directionless relation of incidence) at once becomes
another valid theorem if the words ‘point’ and ‘line’ are interchanged.
S. Lie discovered that the lines of (complex) space may be uniquely
correlated with the spheres in such a manner that intersecting lines
correspond to tangent spheres. An important part of analytic func-
tion theory, the so-called theory of uniformization, may be treated
most naturally in the language of Bolyai-Lobatschewskyan geometry.
Let an electrical network be given which consists of individual homo-

4 Unfortunately English uses the same word ‘know’ for the two meanings that
the author’s German distinguishes as kennen and erkennen, and that the Latin,
French and Greek languages express by the pairs cognoscere vs. scire, connaltre vs.
savoir, yv@dvar vs. eldévar. Our translation is inconsistent in so far as it uses the

terms cognize, cognition in contrast to know and knowledge only in places where the
distinction is essential. [Translator’s note.]
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geneous wires connecting at various branch points; if by a ‘Point’ we
understand an arbitrary current distribution, which assigns to each
(oriented) wire s the intensity I, of the electric current in s, then these
Points satisfy the laws of a Euclidean space with a center O and as
many dimensions as there are branches in the network. Here the
central point O is represented by the absence of current where every
I, vanishes, and the square of the distance of a ‘Point’ from O is
defined as the Joule heat developed by the current distribution per
unit of time. This isomorphism is of value since it correlates the
simple and important notions of geometry and the simple and impor-
tant physical notions concerning electrical circuits. For instance, the
basic problem of finding the current distribution when the various
electromotive forces in the wires s are given is identical with the
geometrical problem of finding the perpendicular projection of a Point
onto a plane. The existence of a unique solution is thereby at once
mathematically established, and a method for computing the solution
made available.]-

Pure mathematics, in the modern view, amounts to a general
hypothetico-deductive theory of relations; it develops the theory of
logical ‘molds’ without binding itself to one or the other among the
possible concrete interpretations. Concerning this formalization, as
“a point of view, without which an understanding of mathematical
methods is out of the question,” compare Husserl, Logische Unter-
suchungen, I, Sections 67-72. “The presupposition for the erection
of a general arithmetic,” Hankel declares (Theory of Complex Num-
bers, 1867, p. 10) ““is thus a purely intellectual mathematies, dissociated
from all intuition, a pure theory of forms, which has as its object not
the combination of quanta or their images, the numbers, but intellec-
tual objects, to which there may (but need not) correspond actual
objects or relations.” The axioms become zmplicit definitions of the
basic concepts occurring in them. The concepts, admittedly, retain
a certain range of indeterminacy; but the logical consequences of the
axioms are valid, no matter what concrete interpretation may be
adopted within this range. Pure mathematics acknowledges but one
condition for truth, and that an irremissible one, namely consistency.

—[Perhaps there already is an inkling of this modern view in Euelid’s
term for axioms: airfuara, postulates. Leibniz takes some decisive
steps towards the realization of a mathesis universalis in the sense here
indicated and clearly understood by him. The theory of groups
above all, that shining example of ‘““purely intellectual mathematics,”
belongs within the framework of his ars combinatoria. A finite group
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G is a system of a finite number of objects within which, in some way,
an operation is defined which generates, from two (equal or different)
elements a, b (in this order), an object ab of the system. The only
postulates, or axioms, are these:

the associative law a(bc) = (ab)c;
if @ 3 b (a different from b), then also ac 5 be, ca # ch.

From these insignificant looking assumptions springs an abundance of
profound relationships; and mathematics offers an astounding variety
of different interpretations of this simple axiom system. The group
is perhaps the most characteristic concept of the mathematics of the
19th century.

The method of implicit definition is of importance also within the
sciences themselves, and not only in the laying of their foundations.
The area of a piece, where by the latter I will understand a piece of
the plane that is bounded by line segments, satisfies the following
requirements:

(i) The area is a positive number.

(ii) If a piece is dissected into two parts by a sequence of line
segments in its interior, then the area of the whole is equal
to the sum of the areas of the parts.

(iii) Congruent pieces have the same area.

These are the really essential properties of the concept of area but
they contain no explicit definition of it. It can be shown, however,
that these requirements are consistent and that a procedure can be
devised by which every piece v is assigned a positive number J(v) as
its area which satisfies requirements (ii) and (iii). The requirements
fail to determine the concept unambiguously; they are also satisfied,
apart from J(y), by ¢ J(v), where ¢ is any positive constant inde-
pendent of . But beyond this there are no further possibilities. The
remaining arbitrariness as expressed by the factor ¢, can only be
eliminated by the exhibition of an individual piece, say, a square, and
the stipulation that it be assigned the area 1 (relativity of size). The
significance of the implicit definition within all sciences, not only
mathematics, is expounded very aptly in Schlick’s Allgemeine Erkennt-
nistheorie (Berlin, 1918, pp. 30-37). “From the viewpoint of exact
science, which strings inference after inference, a concept is indeed
nothing but that of which certain propositions may be asserted.
Thereby it should consequently also be defined.” A suitable field of
application, aside from the exact sciences, might be jurisprudence.}
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CHAPTER II

Number and Continuum, the Infinite

5. RATIONAL NUMBERS AND COMPLEX
NUMBERS

THE genetic construction of the mathematical realm of numbers takes
as its point of departure the sequence of natural numbers 1, 2,3, ....
The first step to be made is the rise from the natural numbers to the
fractions. Historically fractions owe their creation to the transition
from counting to measuring. All measuring is based on a domain of
magnitudes, such as the segments on a line. We have here (1) a rela-
tion of equality, a = b (congruence), satisfying the axioms set up for
such a relation (p. 9), and (2) an operation applicable to any two
segments a, b and producing a segment a + b. From the segment a
we obtain, say, the segment 5a by forming thesuma +a +a +a +a
with 5 terms a. This brings out the connection between counting and
measuring. This process of iteration which leads from a to 1a, 2a,
3a, . . . can be exactly explained as follows:

o) la = a;
B) if n is a natural number, then (n + 1)a results from na in
accordance with the formula
(n + 1)a = (na) + a.

Within the domain of line segments, the operation of iteration
admits of a unique inversion, partition: given a segment a and a
natural number n, there exists one and (in the sense of equality) only
one segment x such that nx = a; it is denoted by a/n. The operation
of partition may be combined with that of iteration. Thus e.g. we get
5a/3, called ‘5/3 times’ a. The fractional symbol m/n serves as the
symbol of the composite operation, so that two fractions are equal
if the two operations denoted by them lead to the same result, no
matter to what segment a they are being applied. Multiplication of
fractions is performed by carrying out one after another the operations
denoted by them. The possibility of adding fractions is due to the
fact that the operation (applied to an arbitrary segment x) that is
expressed by

(mx/n) + (m*x/n¥)
can be represented by a single fraction.
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It is unnecessary to introduce special fractions for each domain
of magnitudes. Since their laws are independent of the nature of
these magnitudes, it is more expedient to define them in purely
arithmetical terms.® This can be achieved by simply choosing as
domain of magnitudes in the above considerations the natural num-
bers themselves. The fact that in this domain a relation between
z and y, such 5z = 3y, cannot always for a given z be solved with
respect to y, does not impede the development of the theory. We thus
arrive at the following formulation: “Two natural numbers m, n
determine a fraction m/n. The statement that, of any two natural
numbers z and y, the second is m/n times the first is merely another
form of expressing the equation mz = ny.” This is a creative defini-
tion in the sense of Section 2. Two fractions m/n, m*/n* are equal
provided any numbers z, ¥y which stand in the relation mz = ny also
stand in the relation m*z = n*y, and conversely. The operational
rules for natural numbers permit one to replace this transfinite criterion,
whose phrasing seems to require a checking through of all possible
numbers z, ¥, by the following finite one:

(C) m:n* =n-m*

Hence we deal with a special case of the definition by abstraction: the
equality of the fractions m/n, m*/n* may be explained directly by
(C), after one has convinced oneself that this relation is an equivalence.
The introduction of fractions as ‘ideal elements’ can also be motivated
purely arithmetically without reference to applications. Indeed after
the numerical operations have been suitably extended to fractions it
is found that all the important arithmetical axioms remain in force.
Moreover division, the inverse operation of multiplication, can now
always be carried out while this was only exceptionally so in the
arithmetic of natural numbers.

{If the same idea is applied once again for the purpose of ensuring
the invertibility of addition, then we get from the fractions to the
rational numbers (which include 0 and the negative). (This, though,
calls for one rather serious sacrifice — the possibility of division has
to be abandoned for the divisor 0.) There are nowhere in this pro-

§ This is in line with the oldest mathematical tradition, that of the Sumerians.
Only after the discovery of the irrational did the Greeks abandon the algebraic
road and find themselves compelled to couch algebraic facts in geometric terms.
The post-classical Occident, partly stimulated by the algebraic achievements of
the Arabs, reversed this development. There was little justification, however, for
the modern viewpoint subsuming all quantities under a universal concept of num-
ber, before Dedekind gave Eudoxus’ analysis of the irrational its constructive
twist (cf. Section 7).
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cedure any logical obscurities or philosophical difficulties. A much
more serious matter is the starting point, the system of natural num-
bers, and then the irrational, the transition from the rational num-
bers to the continuum of real numbers. But once we have climbed to
this level, the further advance toward the complex and hypercomplex
numbers no longer leads past any abysses. In order to introduce the
complex numbers it is only necessary to describe how any such number
is given and how one is to operate with them. A complex number is
given by its two components; thus we might as well say that we under-
stand by a complex number any pair (e, §) of real numbers (Hamilton,
1837). We shall not set down the rules of operation here explicitly.
According to them, e = (1, 0) plays the part of unity in the complex
domain, since its multiplication by any complex number (e, 8) repro-
duces (o, B). And (0, 1) is that imaginary unit 7 which satisfies the
equation -7 = —e. The inner reason for the stipulations is again
to be seen in their extending the formal rules of computation from
real to complex numbers. Nothing remains of the mystic flavor that
was so long attached to the imaginary quantities.® From the complex
it is possible to ascend to the hypercomplex numbers with 3 or more
components. But it could be shown quite generally that, no matter
how addition and multiplication be defined in their domain, the con-
tinued validity of all rules of operation of arithmetic is unattainable.
In this respect the complex numbers denote a natural boundary for the
extension of the number concept. Yet also hypercomplex number
systems play their role in mathematics; thus the 4-component quater-
nions, which satisfy all rules of operation except the commutative
law of multiplication, are a useful tool in dealing with the rotations
of a rigid body in space.

Instead of constructing the realm of numbers genetically, arith-
metic may also be based on an axiom system. From this viewpoint
the genesis merely serves to reduce the consistency of that system to
the consistency of the axXioms governing the natural numbers. The

¢ For instance, Huyghens declares in 1674 (see Leibniz, Mathematische Schriften,
II, p. 15) with reference to a complex formula: “Il y a quelque chose de caché
la~-dedans, qui nous est incompréhensible.” Even Cauchy, in 1821, still has a
somewhat obscure idea as to the manipulation of complex quantities. But nega-
tive quantities had produced almost as many headaches at an earlier time. Refer-
ring to the rule ‘“minus times minus is plus,” Clavius says in 1612: “debilitas
humani ingenii accusanda (videtur), quod capere non potest, quo pacto id verum
esse possit.”’ Descartes, in accordance with contemporary usage, still designates
the_nega.‘nive roots of an algebraic equation as false roots. The explanation, sur-
viving in some textbooks, of 7 as that number which, when multiplied by itself,
yields —1 is of course pure nonsense as long as only the real numbers are at one’s
disposal; it merely contains the demand that the number concept be so expanded

and the sense of multiplication be so extended to the expanded number domain as
to produce the desired equation.
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axioms of arithmetic fall into two groups, the algebraic axioms and the
axioms of magnitude. The algebraic group deals with the operations
of addition and multiplication. It contains the formal rules of opera-
tion (such asa 4+ b = b 4+ a), requires the existence of a 0 and a 1 with
the properties

a+0=04+a=a, l'a=a'1=a

and the invertibility of addition and multiplication (with the excep-~
tion of division by 0). The axioms of magnitude (which do not carry
over to the domain of complex numbers) deal with the relation ¢ > b
(a greater than b). Compare the table in Hilbert’s Grundlagen der
Geometrie. }
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6. THE NATURAL NUMBERS

“The integers were created by God; all else is man-made,” is a
frequently quoted statement of Kronecker’s. In the natural numbers,
the problem of cognition presents itself to us in its simplest form.
Let us once more begin with the purely mathematical aspect.

The sequence of natural numbers commences with 1 and is gener-
ated by a process which yields from a number already obtained the
next following number; never does an earlier number recur in this
progression. A concept (a characteristic or an operation) referring to
arbitrary numbers can therefore be introduced only by complete
induction (also called mathematical induction), namely by stating
(x) what the concept means for the first number 1, and (8) how it
carries over from any number n to the next following n’ (= n 4+ 1).
Examples: The definition of na in the preceding section. The con-
cepts even and odd: («) 1 is odd; (8) ' is even or odd according as n
is odd or even. The general notion of addition a + n of two natural
numbers @ and n:

() a+1=4d; @B a+ 7 = (a+ n).

What is true of the concepts similarly holds for the proofs. To prove
that a certain theorem holds for every number one shows (o) that it
holds for 1, and (8) that it holds for n” if n is a number for which it
holds. With the help of this method of definition and of proof by
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complete induction, of inference from n to n + 1, the theory of natural
numbers can be completely built up step by step. That inference
introduces an entirely new and peculiar feature unknown to Aristo-
telian logic into the mathematical method; it is the very essence of the
art of mathematical demonstration. The first explicit mention of the
principle of complete induction seems to be with B. Pascal (1654) and
Jacob Bernoulli (1686).

In the building up of number theory by complete induction, the
succession of numbers appears as their constitutive characteristic.
They occur primarily as ordinal numbers and are distinguished only
by their position in the sequence. Justly Schopenhauer (Vierfache
Wurzel vom zureichenden Grunde, Section 38) says of this conception of
number, ‘“Every number presupposes the preceding ones as reasons
for its being: I can get to ten only through all the preceding num-
bers. . . . 7 The well-known method of counting, applied to a given
aggregate of objects, produces a certain natural. number as the number
(Anzahl) of elements in the aggregate. By virtue of the counting
process the elements of the aggregate are themselves arranged in a
sequence (first, second, third, . . . ); and a special consideration is
required to ensure the fundamental fact that the result of counting is
independent of the order. Only thus is the concept of cardinal num-
ber put on a safe basis. Compare, for instance, the treatment by
Helmholtz (Zahlen and Messen, Wissenschaftliche Abhandlungen, III,
p. 356); further L. Kronecker (Werke, III, 1, p. 249).

{The question has been argued extensively whether the concept
of cardinal, rather than ordinal, number is not the primary one. The
former, if it is to be introduced independently of an ordinal arrange-
ment, has to be defined by abstraction (as on p. 10). This definition
is not even restricted to finite sets; a theory of infinite cardinal num-
bers based thereon was developed by G. Cantor within the framework
of his general set theory. But the criterion of numerical equivalence
makes use of the possibility of pairing, which can only be ascertained
if the acts of correlation are carried out one after another in temporal
succession and the elements of the sets themselves are thereby arranged
in order. Even if one follows the road of abstraction and splits up the
act of numerical comparison of two sets by first ascribing a number to
each set and then comparing these numbers, it remains indispensable
to order each individual set itself by exhibiting its elements one by one
in temporal succession. (Such a one-by-one exhibition is necessary
anyhow if an aggregate is to be considered as concretely given; and
the numbers employed by us in everyday life concern only such
aggregates.) For this reason it seems to me unquestionable that the
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concept of ordinal number is the primary one. Modern research in
the foundations of mathematics, which has destroyed dogmatic set
theory, confirms this view.

Another point of debate is the question whether the numbers are
independent ideal objects or whether arithmetic is concerned merely
with the concrete numerical symbols ““whose shape is recognizable by
us with certainty independently of place and time, of the particular
conditions of their manufacture, and of trifling differences in their
execution” (Hilbert). Thus e.g. Helmholtz (Zéhlen und Messen, loc.
cit., p. 359): “I consider arithmetic, or the theory of pure numbers,
as a method built upon purely psychological facts, by which the con-
sistent application of a system of symbols of unlimited extent and
unlimited possibility of refinement is taught. In particular, arith-
metic investigates what different modes of combination of these
symbols (numerical operations) lead to the same result.”” Only
recently Hilbert carried this point of view consistently into effect
(compare Section 10), in a manner unassailable even by the criticism
directed against it by Frege (Grundgesetze der Arithmetik, 1893). A
succession of strokes (‘ones’) offers itself as a suitable symbol. If I
hear a sequence of tones, I put down a stroke upon hearing each one,
placing one stroke after another: ////. A second time I proceed
similarly, again obtaining a symbol consisting of a succession of
strokes. If I were immediately able to judge the equality or disparity
of the ‘shape’ of the two symbols, a numerical comparison would be
accomplished. Here the representation of the data by strokes has the
function of putting these data into a ‘normal form’ of such a kind that
a difference in shape at once indicates a difference in number. (For a
directly given whole, number is meant to describe a relation between
the whole and such parts of it as are considered as units. A difference
in the shape of two wholes does not necessarily imply a difference in
the number of units; e.g. :-: and .*. An act of assembling is said
to be the basis for determining the number of elements. It seems to
me that the application of the symbolic method of counting to a struc-
tural whole of units does not require that a mere ‘aggregate’ be
abstracted by dissolving the structural tie; nor need individually given
elements, such as successive tones, be assembled to form an aggregate.
The statement ‘there were this many tones: ////’ is quite intelligible
in itself, and it is unnecessary to search for an ‘aggregate of the tones
heard.”) The immediate recognition of equality or disparity of two
symbols consisting of successions of strokes is possible, however, for
the lowest numbers only. In general one has to proceed by using the
strokes recorded during the first sequence over again, say, by crossing
them out one by one; for this purpose it is required that the first
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sequence stays put (and does not disappear like the tones themselves).
In principle, symbols can be dispensed with for the verification of a
statement such as ‘this time there were more tones than the first
time,” provided the tones of the first sequence (which may have been
falling in pitch) can be reproduced in their temporal succession while
the second sequence is being listened to. Symbols become indispensa~-
ble only when the comparison is torn up into two number determina-
tions (‘the first time there were 4, now there are 5 tones; 5 is greater
than 47); for then part of the mental operation (‘5 is greater than 4")
is shifted onto the permanent symbols, which are at the same time
expedient for preservation and communication. Thus it is not the
comparison of numbers but the determination of numbers which is of
an essentially symbolic character. ‘There were 4 tones’ is unintelligi-
ble without reference to a symbol.

If one wants to speak, all the same, of numbers as concepts or ideal
objects, one must at any rate refrain from giving them independent
existence; their being exhausts itself in the functional role which they
play and their relations of more or less. (They certainly are not
concepts in the sense of Aristotle’s theory of abstraction.)

The employment of several digits and the positional system (de-
veloped in Mesopotamia and later consistently by the Indians for
written numbers) permit a quick decision about greater and smaller
for much larger numbers than the simple numerical symbols composed
of successive Ones; this considerable practical advantage is not one of
principle however. The basis of the number system, which in our
system is ten, is different with different cultures. The Indian, and
particularly the Buddhistic, literature revels in the possibilities of
producing and designating prodigious numbers by means of the posi-
tional gystem, that is, by combination of addition, multiplication, and
exponentiation. In spite of their fantastic aspect there is something
truly great in these efforts; the human mind for the first time senses
its full power to fly, through the use of the symbol, beyond the bound-
aries of what is attainable by intuition. Something akin we find
among the Greeks only in the latest epoch, namely, in Archimedes’
paper addressed to Gelon ““The Sand-reckoner” ; and here is manifested
the delight, not in the step by step opening-up of the infinite, but in
the rational subjugation of the unbounded.

Regarding the relation of number to space and time we may say
that time, as the form of pure consciousness, is an cssential, not an
accidental, presupposition for the mental operations on which the
sense of a numerical statement is founded. Contrary to the opinion
of some philosophers (e.g. Hobbes), this does not apply to space,
although permanent symbols having a spatial configuration are the
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most convenient means of putting down a result of counting, of storing
and communicating it, and of safeguarding the manipulation of num-
bers. Xant above all has emphasized the bond between the number
concept and time, but it would be going too far if one were to claim
arithmetic as the science of time in the same sense that geometry is the
seience of space.

With reference to two concretely given numerical symbols, m and
n, the sense of the proposition m +n = n + m can be described
without having to ‘generate’ any other numbers. It is also possible
to see that this proposition holds in any concrete situation. Some-
thing new happens, however, when I imbed the actually occurring
numerical symbols in the sequence of all possible mumbers. That
sequence is produced through a generating process according to the
principle that any given number gives rise to a new, the next following,
number by the addition of One. Here the being is projected upon the
background of the possible, of a manifold of possibilities which is pro-
duced by a fixed process and yet is open towards infinity. This is
the standpoint held by us at the beginning of the present section when
arithmetic was founded on the principle of complete induction. We
rely on it when we speak of a trillion (= 10'%) dollars. By repeated
application of definitions by complete induction we obtain from the
prime arithmetical process of changing n into n + 1 the operation of
multiplication by 10, and by performing this operation 12 times
(beginning with 1), we arrive at the desired number 10'2. The
numbers 10 and 12 can be written out in strokes; as for 10%2, this
has never been done, and yet we maintain the ‘fiction’ of such a
number. }

Thus it is already in the field of numbers that we encounter the
following basic features of constructive cognition.:

1. We ascribe to that which is given certain characters which are
not manifest in the phenomena but are arrived at as the result of
certain mental operations. It is essential that the performance of
these operations is held universally possible and that their result is
held to be uniquely determined by the given. But it is not essential
that the operations which define the character be actually carried out.

2. By the introduction of symbols the assertions are split so that
one part of the operations is shifted to the symbols and thereby made
independent of the given and its continued existence. Thereby the
free manipulation of concepts is contrasted with their application, ideas
become detached from reality and acquire a relative independence.

3. Characters are not individually exhibited as they actually occur,
but their symbols are projected on the background of an ordered mani-
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fold of possibilities which can be generated by a fixed process and is
open into infinity.

Cognition has not stopped here. The leap into the beyond occurs
when the sequence of numbers that is never complete but remains open
toward the infinite is made into a closed aggregate of objects existing
in themselves. Giving the numbers the status of ideal objects becomes
dangerous only when this is done. The belief in the absolute is
deeply implanted in our breast; no wonder, then, that mathematics
was bold and naive enough to perform that leap. Whoever accepts as
meaningful the definition ‘n is an even or odd number according as a
number z does or does not exist such that n = 2z,” which refers to the
infinite totality of all numbers (the definition of even and odd by com-
plete induction, as mentioned earlier, is a different matter), already
stands on the other shore; for him the system of numbers has become a
realm of absolute existences which is ‘not of this world’ and from
which only gleams here and there are caught and reflected in our
consciousness. The vindication of this transcendental point of view
forms the central issue of the violent dispute which has flamed up again
today over the foundations of mathematics. The issue is sympto-
matic for all knowledge and may, in the field of mathematics sooner
than elsewhere, lead to a clear decision.
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7. THE IRRATIONAL AND THE INFINITELY
SMALL

In a different form than in the sequence of integers we encounter
the infinite in the continwum, which is capable of infinite division.
Cases of special importance are the continua of time and of space.
Here we find the second open place in the above described construction
of the mathematical realm of numbers. Antiquity has bequeathed to
us two important contributions to the problem of the continuum: (a)
a far-reaching analysis of the mathematical question of how to fix a
single position in the continuum, and (b) the discovery of the philo-
sophical paradoxes which have their origin in the intuitively manifest
nature of the continuum.

{(a) The pure geometry of the Greeks, in elevating itself above
the inexactitude of the sense data, applies the idea of existence (not
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only to the natural numbers but also) to the points in space. The
discovery of the irrationality of the ratio /2 of the diagonal and
side of a square made it clear that the fractions are not the only possi-
ble quantities measuring ratios of line segments, and thus not the only
‘real numbers.” In the Platonic dialogues the deep impression can be
sensed which this mathematical discovery made upon the rising
scientific consciousness of his time. Independently of the particular
geometrical constructions which led to individual irrationalities such as
/2, Eudoxus recognized the general foundations of this phenomenon.

1. In place of the untenable commensurability he sets down the
axiom: if a and b are any two segments, then a can always be added to
itself so often that the sum na exceeds b. This means that all seg-
ments are of a comparable order of magnitude, or that there exists
neither an actually infinitely small nor an actually infinitely large in
the continuum.

2. And what is it that characterizes the individual segment ratio?
Eudoxus replies: two segment ratios, a:b and a’:b’, are equal to each
other if, for arbitrary natural numbers m and n, the fulfillment of the
condition in the first line below invariably entails the validity of the
corresponding condition in the second line:

) na > mb na = mb na < mb

(D na' > mb’ (ID) l na' = mb’ (IID) na' < mb’
Hence what is characteristic of the individual real number « is the cut
which it creates in the domain of rational numbers by dividing all
fractions m/n into three classes, those which are (I) less than o, (II)
equal to «, and (III) greater than a. The second class is either empty
or contains only a single fraction. The first axiom guarantees that no
two different segments can have the same ratio to the fixed unit seg-
ment. Euclid’s theory of proportions is likewise erected on this
foundation, while Archimedes bases on it his general method of
exhaustion.

Only in the 19th century did mathematics go beyond Eudoxus, and
settled the problem in a more definite fashion. For Eudoxus the real
number is given as the ratio of two given segments, and thus it is up
to the axioms of geometry to tell us what segment ratios exist. But in
Euclidean geometry it is not possible to construct (by means of ruler
and compass) from a given segment 1, the segment /2, which would
solve the Delian problem of duplicating the cube, or of the segment
=, which equals the circumference of a circle of diameter 1. Yet we
are convinced of their existence on the basis of continuity considera-
tions: if the edge of a cube increases from 1 to twice that size, the
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volume of the cube rises continuously from 1 to 8, hence must pass
the value 2 at some time. As for the segment =, we can approximate
it from below and from above with any degree of accuracy by the
Euclideanly constructible perimeters of regular 6-, 12-, 24, . . . sided
polygons inscribed to and circumseribed about the circle. Thus we
are turning the tables: any arbitrarily given cut in the domain of
rational numbers, that is to say, any division of all rational numbers
into three classes I, II, ITI, no matter in what way effected, determines
a real number. (The only requirements to be satisfied are the follow-
ing: neither I nor III must be empty; II contains at most one fraction;
I contains no largest, IIT no smallest fraction; any number in I is
smaller than any number in IT or III; any number in IIT is greater
than any number in I or II.) According to Dedekind (Stetigkeit und
Irrationalzahlen, 1872), we have no reason to admit only part of these
cuts as real numbers. And in geometry we then postulate (Dedekind’s
axiom) the existence of that segment which stands to the given unit
segment in the ratio determined arithmetically by the cut. Since
conversely, according to Eudoxus, the ratio of any segment a to the
unit segment determines a cut, the axiom of Dedekind guaran-
tees the completeness of the geometrical elements: the system of
points is incapable of extension, provided all axioms (including that of
Eudoxus) are maintained (Hilbert). This logical completeness
(absence of gaps) reflects the intuitive continuity among the points
in space. With Dedekind’s number concept, analysis makes itself
independent of geometry. Thereby, at last, it is in a position to
analyze continuity and to provide geometry with the means of proving
continuity theorems of the following kind: a continuous curve joining
the center of a circle to a point outside the circle meets the circum-
ference. In Euclid, the proofs of such theorems are incomplete, as
was already pointed out by Leibniz with reference to the first con-
struction occurring in Euclid, namely that of the equilateral triangle
ABC from the points A and Bj; Euclid fails to show that the circle
about 4 through B and the circle about B through A have a point in
common.

Another means of characterizing a real number, equivalent to that
of the cut, is the infinite sequence of ‘nested’ rational intervals a.b.
(n=1,238, ...), each of which lies within the preceding one, and
the length b, — a» of which converges to 0 as the index n increases
indefinitely (compare the example of 7). Since the fraction is logically
no more complicated than the natural number — it is determined by
two natural numbers, its numerator and denominator — we may
sum up the result of the historical development of Problem (a) as
follows:]-
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The individual natural numbers form the subject of number theory,
the possible sets (or the infinite sequences) of natural numbers are
the subject of the theory of the continuum.

(b) The essential character of the continuum is clearly described
in this fragment due to Anaxagoras: “Among the small there is no
smallest, but always something smaller. For what is cannot cease to
be no matter how far it is being subdivided.” The continuum is not
composed of discrete elements which are “separated from one another
as though chopped off by a hatchet.” Space is infinite not only in
the sense that it never comes to an end; but at every place it is, so to
speak, inwardly infinite, inasmuch as a point can only be fixed step-
by-step by a process of subdivision which progresses ad nfinitum.
This is in contrast with the resting and complete existence that intui-
tion ascribes to space. The ‘open’ character is communicated by the
continuous space and the continuously graded qualities to the things
of the external world. A real thing can never be given adequately,
its ‘inner horizon’ is unfolded by an infinitely continued process of
ever new and more exact experiences; it is, as emphasized by Husserl, a
limiting idea in the Kantian sense. For this reason it is impossible
to posit the real thing as existing, closed and complete in itself. The
continuum problem thus drives one toward epistemological idealism.
Leibniz, among others, testifies that it was the search for a way out of
the “labyrinth of the continuum’ which first suggested to him the
conception of space and time as orders of the phenomena. “From
the fact that a mathematical solid cannot be resolved into primal
elements it follows immediately that it is nothing real but merely an
ideal construct designating only a possibility of parts” (correspondence
Leibniz-De Volder, Leibniz, Philosophische Schriften, 1L, p. 268).

{In contrast to this nature of the continuum, Leibniz conceives the
idea of the monads, since — differently from Kant — he feels com-
pelled to give the phenomena metaphysically a foundation in a world
of absolute substances. ‘“Within the ideal or the continuum the
whole precedes the parts. . . . The parts are here only potential;
among the real [i.e. substantial] things, however, the simple precedes
the aggregates, and the parts are given actually and prior to the whole.
These considerations dispel the difficulties regarding the continuum —
diffculties which arise only when the continuum is looked upon as
something real, which posesses real parts before any such division as
we'may devise, and when matter is regarded as a substance” (letter to
Remond, Philosophische Schriften, I11, p. 622).

The impossibility of conceiving the continuum as rigid being cannot
be formulated more concisely than by Zeno’s well-known paradox of
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the race between Achilles and the tortoise. The remark that the

1 .
successive partial sums 1 — o (n=1,238, ) of the series

1 1 1
§+2—2+é‘3+

do not increase beyond all bounds but converge to 1, by which one
nowadays thinks to dispose of the paradox, is certainly relevant and
elucidating. Yet, if the segment of length 1 really consists of infinitely
many subsegments of lengths 14, 14, ¥4, . . ., as of ‘chopped-off’
wholes, then it is incompatible with the character of the infinite as the
‘incompletable’ that Achilles should have been able to traverse them
all. If one admits this possibility, then there is no reason why a
machine should not be capable of completing an infinite sequence of
distinet acts of decision within a finite amount of time; say, by supply-
ing the first result after 14 minute, the second after another }4 minute,
the third 14 minute later than the second, etc. In this way it would
be possible, provided the receptive power of the brain would function
similarly, to achieve a traversal of all natural numbers and thereby a
sure yes-or-no decision regarding any existential question about natural
numbers!

Descartes struggles with the idea that the material corpuscles of a
liquid in motion have to divide in infinttum, “or at least in indefinitum,
and that into so many parts that it is impossible to imagine one, how-
ever small, of which one would not know that it was actually sub-
divided into still smaller parts.” To him this remains a mystery,
confronted with which he takes recourse to the incomprehensibility
of the divine omnipotence. KEuler, in his ¢ Anleitung zur Naturlehre’’
(Opera postuma, 11, 1862, pp. 449-560), which in magnificent clarity
summarizes the foundations of the philosophy of nature of his time,
declares that although the bodies are infinitely divisible the statement
that every body consists of infinitely many (‘ultimate’) parts is
entirely false and is even obviously incompatible with the infinite
divisibility (Euler, op. cit.,, Chap. II, §12). In the Kantian system,
the first two antinomies of pure reason refer to the continuum.”}

Three attempts have been made in the history of thought to
conceive of the continuum as Being in itself. According to the first

" The first of these, however, is formulated misleadingly. According to the
argument presented, it is not a question of whether the world does or does not have
a temporal beginning, but whether the number of temporal moments up to the
present time is finite or infinite. In a continuously filled time, the latter will be
the case, no matter whether (by virtue of an intrinsic or extrinsic measuring
principle) it be of finite or infinite length.
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and most radical the continuum consists of countable discrete ele-
ments, atoms. With regard to maiter, this path, initiated by
Democritus in antiquity, has been followed with brilliant success in
modern physics. Plato, clearly conscious of the goal of ‘saving’ the
phenomenon by means of the idea, was the first to design a consistent
atomism with respect to space. In Islamic philosophy the atomistic
theory of space was renewed by the Mutakallimtin (see Lasswitz,
Geschichte der Atomistik, I, 1890, pp. 139-150), and in the Occident
by Giordano Bruno’s doctrine of the minimum. Hume, too, in his
space-time theory (T'reatise of Human Nature, Book I, Part II, Sec-
tion 4) transforms the vagueness of the sense data, at which he aims,
into a composition out of indivisible elements. Stimulated by
quantum theory the idea again arises today in discussions about the
foundations of physics. But so far it has always remained mere
speculation and has never achieved sufficient contact with reality.
How should one understand the metric relations in space on the basis
of this idea? If a square is built up of miniature tiles, then there are
as many tiles along the diagonal as there are aleng the side; thus the
diagonal should be equal in length to the side. Hume, consequently,
is forced to admit that the ‘“just as well as obvious” principle of com-
paring the measures of curves and surfaces by means of the number
of component elements is, in fact, useless. B. Riemann, in his inaugu-
ral lecture Uber die Hypothesen, welche der Geometrie zugrunde liegen
(1854), states the alternative ‘‘that for a discrete manifold the prin-
ciple of measurement is already contained in the concept of this
manifold, but that for a continuous one it must come from elsewhere.”

The second attempt is that of the infinitely small. This is dis-
cussed ingeniously and in detail on the first day of Galileo’s ““ Discorsi.”
Just as I can bend a straight line segment into an octagon or a thou-
sand-sided polygon, so, according to Galileo, I may also transform it
into a polygon with infinitely many infinitely small sides by simply
winding it around a circle, and thus do not have to rely on a limiting
process which never reaches the goal.?

{If a wheel is rolled off along a horizontal line, then every one of
the smaller concentric circles appears to be stretched out in the form

8 Hankel says (Zur Geschichte der Mathematik im Altertum und Mittelaller,
Leipzig, 1874): “The idea of never reaching the area of the circle, no matter how
far one might go in the sequence of polygons, although one approaches it arbitrarily
closely, strains the power of imagination to such a degree that it will tend, at all
cost, to bridge this gap extending, as it were, between reality and the ideal. Under
this psychological pressure the — infinitely small or infinitely large? —step is
taken that leads to the assertion: the circle is a polygon with infinitely many
infinitely small sides. The Ancients, however, have refrained from this step; as
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f a line & of equal length (rota Aristotelis). However, if the circular
vheel is replaced by a many-sided regular polygon, then the ‘covered’
segments along h, into which the sides of the polygon fall successively,
‘orm a disrupted line. Thus, in the case of the circular wheel, one
nust assume that h consists of an infinitely dense succession of covered
and uncovered segments. ‘‘This method,” says Galileo in the
“Discorsi” (Opere VIII, p. 93), “perhaps better than any other,
snables us to avoid many intricate labyrinths such as are encountered
in the question of cohesion in solids, mentioned before, and that of
rarefaction and contraction, without forcing upon us the objectionable
admission of empty spaces and thereby of the penetrability of bodies.
We escape all these difficulties, so it seems to me, by assuming a com-
position out of indivisibles.” If a curve consists of infinitcly many
straight ‘line elements,” then a tangent can simply be conceived as
indicating the direction of the individual line element; it joins two
‘consecutive’ points on the curve. However, he who rejects Galileo’s
hypothesis has to define the tangent at the point P of a curve as the
limiting line approached indefinitely by the secant line PP’ as the
second moving point P’ on the curve converges toward P. The dis-
cussion between Johann Bernoulli and Leibniz on this question is very
instructive. Leibniz says (Mathematische Schriften, III, p. 536),
“For if we suppose that there actually exist the segments on the line
that are to be designated by 14, 14, ¥4, . . . , and that all members of
this sequence actually exist, you conclude from this that an infinitely
small member must also exist. In my opinion, however, the assump-
tion implies nothing but the existence of any finite fraction of arbi-
trary smallness.” But Bernoulli replies (op. cit., p. 563). “If 10
members are present the 10™ necessarily exists, if 100 then necessarily
the 100™, . . . ,if therefore their number is « then the «* [infinitesi-
mal] member must exist.”” }

The limiting process was victorious. For the limst is an indis-
pensable concept, whose importance is not affected by the acceptance
or rejection of the infinitely small. But once the limit concept has
been grasped, it is seen to render the infinitely small superfluous.
Infinitesimal analysis proposes to draw conclusions by integration
from the behavior in the infinitely small, which is governed by ele-
mentary laws, to the behavior in the large; for instance, from the
universal law of attraction for two material ‘volume elements’ to the
magnitude of attraction between two arbitrarily shaped bodies with
homogeneous or non-homogeneous mass distribution. If the infinitely,

long as there were Greek geometers, they have always halted in front of the
precipice of the infinite. . . . "’
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small is not interpreted ‘potentially’ here, in the sense of the limiting
process, then the one has nothing to do with the other, the processes
in infinitesimal and in finite dimensions become independent of each
other, the tie which binds them together is cut. Here Eudoxus
undoubtedly saw right.

{Incidentally, as far as I can see, the 18th century remained far
behind the Greeks with regard to the clarify of its conception of the
infinitely small. More than one writer of this enlightened era com-
plains of the ‘incomprehensibilities of mathematics,” and vague and
incomprehensible indeed is their notion of the infinitesimal. As a mat-
ter of fact, it is not impossible to build up a consistent ‘non-Archime-
dean’ theory of quantities® in which the axiom of Eudoxus (usually
named after Archimedes) does not hold. But as was just pointed out,
such a theory fails to accomplish anything for analysis. Newton and
Leibniz seemed to have the correct view, which they formulated more
or less clearly, that the infinitesimal calculus is concerned with the
approach to zero by a limiting process. But they lack the ultimate
insight that the limiting process serves not only to determine the value
of the limit but also to establish its existence. For that reason Leibniz
is still quite unclear as to the summation of infinite series. Only
slowly does the theory of limits gain a foothold. In 1784 D’Alembert
declares emphatically in the Encyclopédze, ‘‘La théorie de la limite est
la base de la vraie métaphysique du calcul différentiel. Il ne s’agit
point, comme on le dit ordinairement, des quantités infiniment petites;
il s’agit uniquement des limites des quantités finies.”” It was left to
Cauchy, at the beginning of the 19th century, to carry these ideas out
consistently. In particular he discovers the correct criterion for the
convergence of infinite series, the condition under which a number is
generated as limiting value through an infinite process. The proof
of the criterion, however, requires that fixation of the number concept
which was later accomplished by the principle of the Dedekind cut. }

The third attempt to ‘save’ the continuum in the Platonic sense
may be seen in the modern set-theoretic foundations of analysis.
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8. SET THEORY

At a first glance it might seem as though with the limiting process
the rigid Being is definitely resolved into Becoming; as though,
thereby alone, Aristotle’s doctrine is mathematically realized which
taught that the infinite is forever being on the way and therefore
exists only Suvduer not évepyelx (potentially, not actually). This
appearance is deceptive. For the individual convergent sequence,
such as the sequence of partial sums of the Leibniz series

Y-+ —2+ ...,
which converges to /4, does not unfold itself according to a lawless
process which we have to accept blindly in order to find out what it
produces step by step; but it is fixed once and for all by a definite
law, which correlates with every natural number n the corresponding
approximate value (the n™ partial sum). A classification of the
infinitely many rational numbers into the three classes I, II, IIT of a
Dedekind cut is not made by taking one fraction after another and
assigning it to its class, but rather according to a law, namely, by
stating that all rational numbers with such and such a property are to
belong to class I. (It suffices to define class I, since the other two
classes are defined automatically along with it.) This law, or this
property, fixes the intended real number exactly.

It is said that a function f(x) is continuous at the place z = a if
f(x) converges to f(a) when the variable z approaches a. But how
is this notion of convergence defined? ‘‘For every positive e there
should exist a positive § of such a kind that, for all real numbers x
which satisfy the condition ¢ — 8§ <z <a 4+ 9§, we also have
fla) — e < f(z) < f(a) +€” Our attitude thus remains static. It is
characterized by the unlimited application of the terms ‘there exists’
and ‘all’ not only to natural numbers but also to the places in the
continuum, i.e. to the possible sequences or sets of natural numbers.
This is the essence of set theory: It considers not only the sequence of
numbers but also the totality of its subsets as a closed aggregate of
objects existing in themselves. In this sense it is based on the actually
infinite. But once this has been accepted, the vast structure of
analysis has an unshakeable firmness; it is securely founded, in all its
parts based on sound argument, exact in its concepts, without gaps
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in its proofs. It has thus gained a foundation which guarantees the
unconditional intersubjective agreement of all workers in its field.

{To be sure, considerable mathematical acumen was required
thus to establish such general facts concerning continuity as are
suggested by intuition; for instance, that a continuous function
assumes all intermediate values, that a closed planar curve without
multiple points divides its plane into two domains, or that a two-
dimensional domain cannot be mapped continuously and in a one-to-
one fashion into a three-dimensional domain. We experience again and
again with our students what assiduous training is necessary in order
to acquire that freedom from prejudice which is indispensable for a
proper understanding of these proofs and their stringency. Besides
such theorems confirming our intuition, analysis also reveals numerous
occurrences which appear to run counter to it, such as continuous
curves being everywhere without a tangent or filling out an entire
square. It was the work of the 19th century from Cauchy and Gauss
to Weierstrass to test all unproved suppositions of analysis on the
above foundation. }

The set-theoretical method has permeated not only analysis but
also the first beginning of mathematics, the theory of the natural
numbers. From the point of view of set theory, the number sequence
is a completed set N, within which a mapping n — n’ is defined that
uniquely correlates an element n’ with every element n of the set.
This very fact, the existence of a one-to-one mapping of N onto a
subset of N that is not identical with the entire N (the correlations
n — 2n or n — n? have the same effect), shows N to be an infinite set.
The finiteness of a set is established only when the impossibility of
such a mapping has been demonstrated.

{ Thus, for set theory, there is no difference in principle between
the finite and the infinite. The infinite even appears to it as the
simpler of the two (in agreement with Descartes, who maintained that
the infinite is prior to the finite [letter to Clerselier, Corr., ed. Adam
and Tannery, V, p. 356, “Or je dis que la notion que j’ai de I'infini est
en moi avant celle du fini”’; also Méditations métaphysiques, third
meditation, Oeuvres de Descartes, I, pp. 280-281]). The fact that,
in the definite sense stated, Euclid’s axiom of magnitude kai 76 8hov
pépous ueifor (“‘the whole is greater than the part”) fails to hold for an
infinite set was pointed out already by Galileo (Discorsi, Opere, VIII,
p. 79). From this, Leibniz concludes (letter to Bernoulli, Math.
Schriften, II1, p. 536) that ‘the number, or set, of all numbers entails
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a contradiction if one conceives of it as a completed whole.” Bolzano
sees in it a “paradox of the infinite” (Paradoxien des Unendlichen,
1851, §20). Dedekind, finally, elevates this fact to the status of a
definition of the infinite (Was sind und was sollen die Zahlen?, 1887). ]-

Following Dedekind, a set C of natural numbers is said to be a chain
if, for every number z contained in C, its ‘image’ 2’ = z + 1 like-
wise belongs to €. The fact that every natural number can be reached
by starting with 1, going on to its image 1’ (= 2), obtaining 2’ (= 3)
by repeating the mapping, and so on, — the idea of this ‘and so on,’
that seems logically irreducible, but constitutes the essence of the
natural number sequence, is then expressed in the form of the following
principle: Every chain which contains 1 as an element is identical with
the whole of N. Complete induction can therefore be based on the
transfinite use of the concepts ‘all’ and ‘there is’; in this way set-
theory abolishes the partition between mathematics and logic. The
investigations of Dedekind, Frege, and Russell aim at logicizing
mathematics completely.

The question as to when a natural number 7 is less than a given
number m, which common sense answers by the finite specifically
arithmetical criterion: ‘if the enumeration of the numbers from 1 to m
leads to n before m is reached,’ is decided in set theory by the following
transfinite purely logical criterion: ‘if there exists a chain containing
m but not n.” But such a thing is possible only after one has climbed
to that level of application of ‘there exists’ where this term refers to
the sets of natural numbers.

And it is for this purpose alone that we require that objectification
of sets which everyday language, strangely enough, has carried out all
along. A proposition such as ‘the rose is red’ is no longer subordinated
to the scheme ‘z is red,” having one blank, z, but to the more general
one ‘z has the property X,’ from which the proposition results by the
substitution z = rose, X = red. The words ‘has the property’ denote
a certain relation e, which may hold between the arbitrary object z and
the arbitrary property X. Ounly in this connection do we encounter
the copula e; it changes the originally bipartite proposition into a
tripartite one, x ¢ X. (The grotesque confusion of the copula with
existence and with equality is one of the saddest indications of the
dependence of philosophical speculation on accidental linguistic
forms.) The way is now open for a formal application of the defini-
tional principles 6. and 7. of Section 1 to the blank X. The introduc-
tion of the general set concept thus consists of two essentially different
steps; the first is the objectification just described, the second is the
stipulation that two properties X and Y, or the corresponding sets,
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be considered equal if all elements of X also belong to ¥, and vice
versa.

From an aggregate of individually exhibited objects we may by
selection produce all possible subsets and thus make a survey of them
one after another. But when one deals with an infinite set like &V, then
the existential absolutism for the subsets becomes still more objec-
tionable than for the elements. Since one can lay hands on such
subsets only as are determined by a characteristic property of their
elements, it is difficult to rid oneself of the feeling that a chaotic
abundance of possibilities, of sets put together haphazardly and with-
out rule or law, goes by the board. But the paradoxical character of
the elusive ‘aggregate of all possible properties of natural numbers’
can be laid bare even more precisely. Suppose we had somehow
succeeded in the demarcation of an ‘extensionally definite’ aggregate
of such properties (I shall call them properties of the first level), so
that we have the right to believe that the question ‘is there a property
of the first level of such and such a well-described kind 4 ?’ is answered
by the facts with a clear-cut yes or no. We may then speak of the
property P, which applies to a number z if and only if there exists any
property at all of the first level which appertains to 2. This property
P,4, however, according to its meaning certainly lies outside the circle
of properties of the first level; it belongs to a higher, the second level,
since it has been defined in terms of the totality of properties of the
first level. Russell formulates this insight somewhat vaguely by his
“vicious circle principle”: “No totality can contain members defined
in terms of itself.” Similarly, the third level is constructed above
the second, and so forth. Correspondingly, sets of natural numbers —
and hence real numbers — of the first, second, third, . . . levels
should be distinguished. The mode of construction of the property
P, occurs in analysis, for instance, in determining the least upper
bound of a point set on a line. The obliteration by the existential
absolutism of these differences in level, which were first brought out in
Russell’s theory of types, constitutes an unquestionable vicious circle.

{ One could escape this dilemma only if, for every property of the
second level, there existed a property of the first level equal to it (not
in meaning but) in extension. As long as the sequence of natural
numbers is accepted as an extensionally definite aggregate, one might
consider as the properties of the first level those which are generated
by the definitional principles of Section 1 from the one basic relation
‘n follows upon m.” In this case, our wish will hardly be fulfilled.
We would have the task of extending the principles of construction for
the properties of the first level in such a manner that every set of the

49



MATHEMATICS

second level demonstrably coincides with one of the first. But there
is not the slighest indication that this is possible. Russell, in order
to extricate himself from the affair, causes reason to commit hara-kiri,
by postulating the above assertion in spite of its lack of support by
any evidence (‘axiom of reducibility’). In a little book Das Konti-
nuum, published in 1918, I have tried to draw the honest consequence
and constructed a field of real numbers of the first level, within which
the most important operations of analysis can be carried out. }

In spite of its paradoxical character, the idea of absolute existence
in the domain of natural numbers and sets of natural numbers has so
far not yet led to any contradiction. G. Cantor, however, freed him-
self of all fetters and manipulated the set concept without any restric-
tion, in particular permitting the formation of the set of all subsets of
any given set. He developed a general theory of cardinal and ordinal
numbers of infinite sets. Here, at the farthest frontiers of set theory,
actual contradictions did show up. But their root can only be seen
in the boldness perpetrated from beginning in mathematics, namely, of
treating a field of constructive possibilities as a closed aggregate of
objects existing in themselves.
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9. INTUITIVE MATHEMATICS

This situation was first clearly recognized by L. E. J. Brouwer
(since 1907). He designed a system of mathematics which does not
make that leap into the beyond of which we spoke at the end of Section
6. An existential statement, such as ‘there exists an even number,’
is not considered a proposition in the proper sense that asserts a fact.
An ‘infinite logical summation’ such as is called for by a statement of
this kind (1 is even or 2 is even or 3 is even or . . . ad infinitum) is
evidently incapable of execution. ‘2 is an even number,’” this is a
real proposition (provided ‘even’ has been defined recursively as on
p. 33); ‘there exists an even niimber’ is nothing but a propositional
abstract derived from that proposition. If I consider an insight a
valuable treasure, then the propositional abstract is merely a document
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indicating the presence of a treasure without disclosing its location.
Its only value may lie in the fact that it causes me to look for the
treasure. It is a worthless piece of paper as long as it is not endorsed
by a real proposition such as ‘2 is an even number.” Whenever noth-
ing but the possibility of a construction is being asserted, we have no
meaningful proposition; only by virtue of an effective construction, an
executed proof, does an existential statement acquire meaning. In
any of the numerous existential theorems in mathematics, what is
valuable in each case is not the theorem as such but the construction
carried out in its proof; without it the theorem is an empty shadow.

{The question, put in Section 3, as to how conclusions may be
drawn from existential statements, must here be answered by denying
that possibility in principle. It can be done only after the existential
statement has been replaced by the meaningful whole from which it
was isolated as a propositional abstract. All proofs that depend on
the construction of auxiliary elements fall under this remark. On the
other hand, how do we obtain universal theorems on natural numbers?
In order to explain this by means of a very simple example, let the
number-theoretical function ¢(n) be defined by complete induction
as follows:

(@) o(1) = 1; (B) e(n)) = (e(n))".

Here, (B) represents a universal proposition, from which, in connection
with («), we may infer by complete induction that generally ¢(n) = n.
Thus the definition itself is seen to be the root of universality, and
from there it spreads by complete induction. The principle of com-~
plete induction (as an instrument of definition or inference), not
pressed into a formula but concretely applied at every step, is the true
and only power of mathematics, the mathematical prime intuition.
In this point Brouwer is in agreement with Poincaré (“‘Science et
hypothése’’). The negation of a universal proposition about numbers
would be an existential proposition; since this is void in itself, universal
propositions are incapable of negation. Even a universal statement
does not refer to a fact, it is not to be interpreted as the logical product
of infinitely many singular propositions but as a hypothetical state-
ment: if applied to a single definite given number it yields a definite
proposition. There is no occasion here for the application of a
principle of tertizum non datur (either all numbers have the property 4,
or else there exists a number with the property ~ A). The belief in
it, according to Brouwer (Jahresberichte der Deutschen Mathematiker-
Vereinigung, 28, 1920) “was caused historically by the fact that,
firstly, classical logic was abstracted from the mathematics of the
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subsets of a definite finite set [i.e. a set given by exhibition of its
elements), that, secondly, an a priori existence independent of mathe-
matics was ascribed to this logic, and that, finally, on the basis of this
supposititious apriority it was unjustifiably applied to the mathe-
matics of infinite sets.” }

In Brouwer’s analysis, the individual place in the continuum, the
real number, is to be defined not by a set but by a sequence of natural
numbers, namely, by a law which correlates with every natural num-
ber n a natural number ¢(n). (The two definitions cease to be
equivalent, as soon as the natural numbers may no longer be treated
as an extensionally definite aggregate.) How then do assertions arise
which concern, not all natural, but all real numbers, i.e. all values of a
real variable? Brouwer shows that frequently statements of this form
in traditional analysis, when correctly interpreted, simply concern the
totality of natural numbers. In cases where they do not, the notion
of sequence changes its meaning: it no longer signifies a sequence
determined by some law or other, but rather one that is created step
by step by free acts of choice, and thus necessarily remains in statu
nascendi. This ‘becoming’ selective sequence (werdende Wahlfolge)
represents the continuum, or the variable,fwhile the sequence determined
ad infinitum by a law represents the individual real number falling
into the continuum. The continuum no longer appears, to use
Leibniz’s language, as an aggregate of fixed elements but as a medium
of free ‘becoming.” Of a selective sequence n statu nascend?, naturally
only those properties can be meaningfully asserted which already
admit of a yes-or-no decision (as to whether or not the property applies
to the sequence) when the sequence has been carried to a certain point;
while the continuation of the sequence beyond this point, no matter
how it turns out, is incapable of overthrowing that decision.

{In accordance with intuition, Brouwer sees the essential char-
acter of the continuum, not in the relation between element and set,
but in that between part and whole. The continuum falls under the
notion of the ‘extensive whole,” which Husserl characterizes as that
“which permits a dismemberment of such a kind that the picces are
by their very nature of the same lowest species as is determined by
the undivided whole” (Logische Untersuchungen, second edition, II,
p. 267). The division scheme of the one-dimensional continuum is
best illustrated by the example of a finite line segment. By halving it,
one decomposes it into two parts, a left (10) and a right one (11); each
of the latter, by again halving them, decomposes into a left and right
one, 100, 101 and 110, 111 respectively, and so on. This process may
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be described purely combinatorially and thus furnishes the arithmeti-
cal blank-form of the open one-dimensional continuum. This must

1
AN
N
AN
AN //// N\

163 101 110 111
N NN N

be distinguished from the realization of the process for a concretely
exhibited continuum, such as the segment in space. In carrying out
its continued subdivision according to the arithmetical scheme it is
clearly irrelevant whether the two parts are always of the same length,
as long as only the fineness of the parts eventually drops below any
possible threshold of exactness. (It may even be that comparison of
length has no foundation in the nature of the given continuum.) The
process of subdivision, which in concreto can never have been carried
out except to a certain point, determines a coordinate system within
the continuum and thus makes it possible to designate the individual
points in arithmetical terms by binary fractions. Since in a concrete
continuum no exact boundaries can be set, one must imagine that the
division framework is at no stage of the procedure fixed with complete
accuracy, but that, as the subdivision continues, the earlier points
of division steadily increase in precision. Any two adjacent parts of
the * division step may be joined into a ‘division interval of the ¢
level.” The division intervals of the ¢ level overlap in such a manner
that for any approximately given number, as soon as the approxima-
tion is sufficiently accurate, a division interval of the 7™ level can be
found into which that number falls. Thus the individual real number
will have to be defined as an infinite sequence of nested division intervals
of tncreasing level.

Two real numbers «, 8 coincide if, for every value of n, the n®
interval of the sequence « and the »™ interval of the sequence 8
partially or wholly overlap; they are distinct if a number n exists for
which these two intervals are disjoint. Because of the inapplicability
of the tertium non datur to statements of this kind, Brouwer does not
recognize this as a clear-cut alternative. This view fits in well with
the character of the intuitive continuum. For there the separateness
of two places, upon moving them toward each other, slowly and in
vague gradations passes over into indiscernibility. In a continuum,
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according to Brouwer, there can be only continuous functions. The
continuum 1is not composed of parts. Thus I may well distinguish
within the continuum the sub-continuum of the positive numbers by
using only positive binary fractions in the formation of intervals and
interval sequences; but it is not true that the entire continuum is
composed of the continuum of the positive numbers, that of the nega-
tive numbers, and that of the numbers coinciding with zero, in the
sense that every number must belong to one of these three continua.
An old truth thus finds a precise mathematical formulation; one that
Aristotle (wep! drbéuwy ypapudv) expressed by saying, “That which
moves does not move by counting,” or (Physics, Bk. VIII, Ch. 8), “If
the continuous line is divided into two halves, the one dividing point
is taken for two; it is both beginning and end. But as one divides in
this manner, neither the line nor the motion are any longer continu-
ous . . . In the continuous there is indeed an unlimited number of
halves, but only in possibility, not in reality.” Compare in this con-
nection the passages quoted earlier from Leibniz's letters. The
principle comes into its own again that “nothing is separable which is
not already separate” (Gassendi).

Mathematics with Brouwer gains its highest intuitive clarity.
He succeeds in developing the beginnings of analysis in a natural
manner, all the time preserving the contact with intuition much more
closely than had been done before. It cannot be denied, however,
that in advancing to higher and more general theories the inapplica-
bility of the simple laws of classical logic eventually results in an
almost unbearable awkwardness. And the mathematician watches
with pain the larger part of his towering edifice which he believed to
be built of concrete blocks dissolve into mist before his eyes. }
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70. SYMBOLIC MATHEMATICS

Is there no way to escape such radical consequences? The resolu-
tion to make this sacrifice is doubly hard in view of the historical fact
that in set-theoretical analysis we find, in spite of the boldest and most
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elaborate combinations, complete certainty of deduction and an
obvious accord among all the results. Hilbert set for himself the
goal of saving mathematics in its entirety through the axiomatic
method. He, too, admittedly is convinced that the power of intui-
tive thought does not reach farther than was asserted by Brouwer,
that it is incapable of supporting the transfinite modes of deduction
in mathematics, and that none of the transfinite statements of mathe-
matics can be justified as being evident material truths (einsichiige
tnhaltliche Wahrheiten). What Hilbert proposes to secure is not the
truth but the consistency of traditional analysis.

For this purpose he has to formalize mathematics, including logic,
so that it becomes a game with symbols played according to fixed
rules. (The symbols are not meant to be symbols for something.)
The mathematical formulas which are made up of these symbols do
not throughout admit of a material interpretation. Along with the
meaningful propositions, ‘ideal propositions’ had to be introduced in
order to reestablish artificially the validity of the simple logical rules
that, as Brouwer had shown us, were lost in the transition to the
infinite — just as in algebraic number theory ideal numbers were
introduced in order to enforce the validity of the simple divisibility
theorems. There are four different kinds of symbols,’® which are
distinguished, like the pawns and knights in chess, by the different
rules of the game that apply to them: constants (such as 1), variables
(symbols for blanks, z, y, . . . ), one-place and many-place operations,
and ¢ntegrations. The most important one-place operations are ~
(negation), ¢ (transition from a natural number to the next following
one), and N (Na, to be read: a is a natural number). The most
important two-place operations are —, =, and . We construe all
these as operations; in particular, N is the operation which, when
applied to a, produces the proposition: ¢ is a number; = is the opera-
tion which, when applied to @ and b, produces the proposition: a equals
b. In order to arrive at a convenient general formulation of the rules

of the game, these operational symbols may consistently be written
a

in front of the terms (formulas) to which they apply, e.g. e < instead
b

of aed. Among the integrations (which are always followed by one

formula only) we have, above all, the quantifiers =,, II, and the symbol

¢; to be introduced presently; they carry one (or several) arbitrary

variables as subscripts. A prefixed integration symbol with the

10 Deviating somewhat from Hilbert’s original version, I here follow von

Neumann’s simplified formalism (Zur Hilbertschen Beweistheorie, Mathematische
Zeitschrift, 1926).
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subseript = has the effect that the variable z becomes ‘bound’ at all
places in the formula following the symbol, thus losing its capacity of
being substituted for. In the course of the development of mathe-
matics it is always possible to introduce new symbols. What a
formula is, is defined recursively: ““(a) every constant or variable by
itself is a formula; (8) from one or two (or several) formulas already
constructed a new formula is obtained by writing down respectively
a one- or two- (or several-) place symbol o of operation or a (one-place)
symbol of integration, and having it followed by the formula(s) in
question in their proper order, each written on a separate line and its
initial symbol joined to o by a dash.” The complete formula then
looks like a (parthenogenetic) genealogical tree of symbols, from which
the “grammatical structure” of the formula, i.e. the manner of its
recursive construction can be read off unambiguously. One also can
decide in this way whether a given tree-like arrangement of symbols is
or is not a formula.

{The linear arrangement, which is more convenient to print, has
to make use of parentheses if the recursive construction is to remain
uniquely recognizable. We return to the usual symbolism, which is
less systematic, whenever it is a question of merely outlining the pro-
cedure in its essential features.

It is unnecessary to worry about the fact that in the formal con-
struction the operations are applied indiscriminately to all kinds of
things. Who is afraid of such generosity may prefer to discriminate
between ‘numerical’ and ‘factual’ formulas, in accordance with the
following recursive stipulations: ‘‘(a) A constant or variable by itself,
as well as any formula beginning with ¢ or ¢, is a numerical formula;
formulas beginning with ~, —, v, &, N, =, ¢, Z,, II,, on the other
hand, are factual. (8) The symbols ¢ and N must be followed by one,
=, ¢ by two numerical formulas, while ~, e, Z,, II, must be followed
by one, —, &, v by two factual formulas!’ Similar restrictions will
then have to accompany the axiomatic rules and the syllogistic rule of
inference below.

If A(z) (as always in what follows) is an arbitrary formula con-
taining only the one ‘free’ variable z (free in the sense that it is not
bound at every place where it occurs), and if b is a ‘closed formula’
(i.e. one containing no free variables), then b may be substituted for
z in A wherever z occurs free (i.e. is not bound). The result of
this process of substitution, which thus has been described intuitively,
is again a formula; it is denoted by the abbreviating sign A (b).!*

o Here the letter_s 4, b are clearly not symbols of the game, but are used as
signs of communication that enable us to speak of formulas etc. in general. Hil-
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Formulas serving as azioms form the starting point of any proof.
Instead of individual axioms, however, we formulate general rules for
the formation of axioms. First come the axiomatic rules of finite
logie, such as

¢c— (b —¢).

It says: take any two formulas b and ¢ without free variables and
construct out of them the formula ¢ — (b — ¢); the result you may use
as an axiom. Secondly, there are the two axiom rules of equality;
they establish the connection between logic and arithmetic:

b =b.
(b =c)— (4(b) = A(0)).

Thirdly, we have specifically arithmetical rules of a finite character.
In them the constant 1 appears, which is the material starting point
of all construction:
N1.
Nb — N(ob).
(ab = a¢) = (b = ¢).
~ (eb = 1). }

Next we come to the fransfinite part. Taking for granted the alter-
native, denied by Brouwer, that either an honest man exists or all men
are dishonest, one is sure to find an Aristides of whom it can be said:
if any man be honest then Aristides is. For, in the first case, we may
choose as Aristides one of the honest, and, in the second case, any man
at all. In order to be able to construct such an Aristides, not just for
the property of honesty, but for every property, i.e. for every formula
A containing one free variable z, we invent a fictitious divine automa-
ton which produces, whenever an arbitrary property A is fed into it,
that individual e,4 which certainly possesses the property 4 provided
such an individual exists at all. ¢, is an integration symbol. (Indul-
gently following the fatal custom of employing the word ‘is’ to denote
both the copula and existence we too use the same letter e for both; but
the confusion is avoided by the variable attached as subscript to the
existential e.) If such an automaton were at our disposal, then we
would be rid of all the trouble caused by ‘some’ and ‘all.’” But the
belief in its existence is, of course, sheer nonsense. Mathematics,
however, proceeds as if it existed. This can be expressed in the form
of an axiom rule, and if the application of this rule does not lead to

bert employs the Gothic alphabet to distinguish them from the symbols proper.
Because of the aversion of the English-speaking reader to Gothic type, this prac-
tice has not been followed in our translation, although it is undoubtedly a valuable
help in keeping the issue clear.
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contradictions, then its use is legitimate in formalized mathematics.
Thus we have the following transfinite logical axiom rules:

AD) — Z; A(2); LA (x) — AD);
Z:A@) — A(ed); A(e(~A4)) = ILA().

Those stated in the second line were still omitted in Section 3; they
permit us to infer something from 2, and to infer II, from other for-
mulas. Of course, they do not offer the same service as the fictitious
automaton; for, given a formula A, they fail to reveal the identity of
ezA. Only in special circumstances may a formula such as e;4 =1
appear as the terminal formula of a proof starting with the axioms.

»[Among the arithmetical axioms, the principle of complete induc-
tion is still absent. It may be interpreted as a transfinite arithmetical
axiom rule, expressing the fact that a property appertaining to 1 and
‘handed on’ from z to oz is a property of every arbitrary number.
But, as we know, this rule becomes superfluous if it is admissible to
introduce for every property 4 a new object y, namely, the correspond-
ing set, such that the proposition ‘z is an element of y’ is equivalent
with the subsistence of A(z). If this hypothesis is formulated as an
axiom rule, it turns out that its application leads inescapably to a
contradiction — a fact tantamount to a forfeiture of the wunlimited
right of objectification. For the purposes of analysis, however, it is
sufficient to restrict the argument z to the range of natural numbers,
so that we may lay down the following narrower transfinite set-
theoretical rule:

@) 2, L{Nz — (e y) = A())},

where B = C serves as an abbreviation of (B—C) & (C— B). It
seems to be desirable, though not indispensable, for the construction
of analysis to add the axiom of definiteness, according to which two
sets of numbers are equal if they contain the same elements:

IL{Nz — ((xedb) 2 (zec))} = (b =c). }

A mathematical proof consists in manufacturing axioms by means
of the given rules — these axioms never contain free variables — and
in progressing to ever new formulas by applying the syllogistic rule
of inferencc to such axioms or to formulas already obtained. We
repeat the rule (cf. Sect. 3): Given two formulas b and b — ¢ in the
second of which the first reappears at the left of — one may pass on
to the formula ¢. To survey in advance what demonstrable formulas
will be obtained as the result of this game is impossible, mainly
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beeause the syllogism leads from two formulas b and b — ¢ to the new
formula ¢, which is shorter than the second of the premisses, so that
in the proof game shrinkage interchanges with growth.

Up to this point all is game, not knowledge. But now the game
is made the subject of investigation in what Hilbert calls metamathe-
matics, the aim being to make certain that the game will never lead
to a contradiction. Such a contradiction would arise if the actual
play of two proof games would terminate, the one with a formula b,
the other with the opposite formula ~ b. Only in order to arrive at
this one insight does Hilbert require the finite, material, meaningful
mode of thought, which cannot be pressed into any ‘axioms.” In par-
ticular, this material thinking makes use of an intuitive inference by
complete induction, such as we drew when we came to the conclusion
(Section 4) that a correctly played game of chess can never produce 10
queens of the same color.

{One of the rules of the elementary propositional calculus that
either figures among the axiomatic rules or is readily deduced from
them is

(1) ~b—(b—0),

where b and ¢ are any closed formulas. Let ¢ be an arbitrary formula
of this kind, and suppose that a certain formula b and its negation
~ b have been demonstrated. Under these circumstances, two syllo-
gistic steps lead from (1) first to b — ¢ and then to ¢. Hence in case
the formalism is known to be inconsistent, any closed formula ¢ may be
demonstrated, and thus the proof game loses all interest. Consistency
may also be defined by saying that the formula ~ (1 = 1) is not
demonstrable. }

The axiom system may be continually expanded, but it must be
shown that the consistency is not overthrown by the expansion. In
particular, definitions may be introduced in the form of new axiom
rules; e.g.

el =2, o(od) = a2b.

This applies especially to the recursive definitions of b + ¢, b ¢ and
other arithmetical operations. It can be shown once and for all that
consistency, if it prevailed before, is preserved by the addition of
axioms of this kind, that stand for simple or recursive definitions.*?

12 Tt can also be shown that once the definitional axioms for b + ¢, b - ¢ and
the corresponding operational symbols -+, - have been introduced, all other

recursively definable arithmetical operations are expressible in the formalism.
Compare e.g. Hilbert and Bernays, Grundlagen der Mathematik, vol. I, pp. 412-422,
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Regarding the natural numbers, Hilbert’s construction, in contrast
to Brouwer’s, gets along without that ‘possibility ad infinitum’ which
was described in Section 6 as the third step of constructive cognition.
For Hilbert, 10! is a transfinite symbol, which does not denote a
number of the form oo . .. ¢l. Geometry and physics may be
adjoined, as soon and insofar as they have been strictly axiomatized.
Hilbert even believes (Axiomatisches Denken, 1917), ‘“‘Every potential
subject of scientific thought, as soon as it is ripe for the formation of a
theory, is bound to fall under the axiomatic method and, therefore,
indirectly to the lot of mathematics.””!3

{As long as the transfinite components are left out of considera-
tion, the consistency proof can easily be carried out by means of a
‘valuation’ of formulas. By a precisely described recursive procedure,
every formula, according to its origin, is ascribed one of the values
T or F (true or false) in such a manner that the finite axioms obviously
get the value T and that the rules of evaluation given in Section 3 hold
for the logical combinations. Hence, as long as the transfinite s
excluded, the syllogism and thus the deductive method, remains impotent;
for a decision as to the truth or falsehood of the premiss b — ¢ is made
only after the conclusion ¢ has been evaluated.

The consistency proof can no longer be carried out along those
lines if the transfinite axiom rules are taken into consideration. This
brings out the fact that, with them, the insight into true and false
ceases. After Hilbert and P. Bernays had developed more indirect
methods, W. Ackermann and J. von Neumann in 1926 seemed to have
succeeded in establishing the consistency of ‘arithmetic,” i.e. of an
axiomatic system including the transfinite logical axioms and the
principle of complete induction, excluding however the dangerous
axiom (I) about the conversion of predicates into sets. This result
would vindicate the standpoint taken by the author in Das Kontinuum,
that one may safely treat the sequence of natural numbers as a closed
aggregate of existing objects. Justification of the same standpoint
with respect to the ‘aggregate of all possible sets of natural numbers’
would depend on extending the consistency proof to the set-theoretical
axiom rule (I); at the moment we do not see how that could be done.

13 Out of an entirely different c:,onception of mathematics, Kant (M etaphysische
Anfangsgrinde der Naturwissenschaft, Preface) comes to the conclusion “that in
every specific natural science there can be found only so much science proper as
there is mathematics present in it.”” In the same sense as Hilbert, on the other
hand, Husserl (Logische Untersuchungen, I, §71) declares with particular reference
to mathematical logic that “‘the mathematical form of treatment . . . is for all
strictly developed theories (this word taken in its true sense) the only scientific

one, thg only one that affords systematic completeness and perfection and gives
insight into all possible questions and their possible forms of solution.”
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Even in the consistency proof for arithmetic just referred to a serious
gap was later discovered. Concerning this development after 1926
and the catastrophe precipitated by an important discovery by K.
Godel in 1931, see Appendix A. But whatever the ultimate value
of Hilbert’s program, his bold enterprise can claim one merit: it has
disclosed to us the highly complicated and ticklish logical structure of
mathematics, its maze of back-connections, which result in circles of
which it cannot be gathered at a first glance whether they might not
lead to blatant contradictions.

The described symbolism evidently attacks again, in a refined
form, the task which Leibniz had set himself with his ‘“general char-
acteristic” and ars combinatoria. But is it really more than a bloodless
ghost of the old analysis that confronts us here? Hilbert’s mathe-
matics may be a pretty game with formulas, more amusing even than
chess; but what bearing does it have on cognition, since its formulas
admittedly have no material meaning by virtue of which they could
express intuitive truths? The subject of mathematical investigation,
according to Hilbert, is the concrete symbols themselves. It is
without irony, therefore, when Brouwer says (Intuiizonisme en for-
malisme, p. 7), “Op de vraag, waar de wiskundige exactheid dan wel
bestaat, antwoorden beide partijen verschillend; de intuitionist zegt:
in het menschelijk intellect, de formalist: op het papier.”” The ques-
tion why he sets up just these rules must remain unanswered by the
consistent formalist. He will have to refer us to philosophy, psy-
chology, or anthropology, so Brouwer thinks, in order to justify his
“lustgevoel van echtheitsovertuiging” and his belief that the chosen
axiom system is more suitable than any other to be projected onto the
world of experience. }

This last remark reminds us that it is the function of mathematics
to be at the service of the natural sciences. The propositions of
theoretical physics, however, certainly lack that feature which Brouwer
demands of the propositions of mathematics, namely, that each should
carry within itself its own intuitively comprehensible meaning.
Rather, what is tested by confronting theoretical physics with experi-
ence is the system as a whole. It seems that we have to differentiate
carefully between phenomenal knowledge or insight — such as is
expressed in the statement: ‘This leaf (given to me in a present act of
perception) has this green color (given to me in that same perception)’
— and theoretical construction. Knowledge furnishes truth, its organ
is ‘seeing’ in the widest sense. Though subject to error, it is essen-~
tially definitive and unalterable. Theoretical construction seems to
be bound only to one strictly formulable rational principle, that of
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concordance (compare Section 17, p. 121), which in mathematics,
where the domain of sense data remains untouched, reduces to con-
sistency; its organ is creative imagination. In connection with physics
we shall have to discuss in greater detail the question what its deter-
mining factors, besides concordance, are. Intuitive truth, though not
the ultimate criterion, will certainly not be irrelevant here. Hilbert
himself expresses the following opinion (Uber das Unendliche, Mathe-
matische Annalen, 95, p. 190), ““ The function left to the infinite . . .
is merely that of an idea — if, with Kant, one understands by an idea
a concept of reason (Vernunftbegriff) transcending all experience and
supplementing the concrete in the sense of totality.” But perhaps
this question can be answered only by pointing toward the essentially
historical nature of that life of the mind of which my own existence is
an integral but not autonomous part. It is light and darkness,
contingency and necessity, bondage and freedom, and it cannot be
expected that a symbolic construction of the world in some final form
can ever be detached from it.
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771. ON THE CHARACTER
OF MATHEMATICAL COGNITION

{From time immemorial mathematics has been looked upon as the
science of quantity, or of space and number. (Though we also find
this definition with Leibniz, the mathests thus delineated is to him but
a part of the more comprehensive ars combinatoria.) Today this view
appears much too narrow in consideration of such fields as projective
geometry or group theory. Consequently we need not worry par-
ticularly over an exact determination of what is meant by quantita-
tive. In fact, the development of mathematics itself raises doubts
as to whether quantity is a well-determined and philosophically
important category. Geometry, inasmuch as it is concerned with
real space, is no longer considered a part of pure mathematics; like
mechanics and physics, it belongs among the applications of mathe-
matics. Under the influence of the general arithmetic of hypercom-
plex numbers and later of the axiomatic investigations, of set theory
and symbolic logic, the distinction between mathematics and logic
is gradually obliterated. ‘‘Mathematics is the science which draws
necessary conclusions,” B. Peirce declares in 1870. The definition of
‘mathematics or logic’ is discussed in detail in Chapter XTI of Husserl’s
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Logische Untersuchungen (Vol. I, Die Idee der reinen Logik) and in the
last chapter of Russell’s Introduction to Mathematical Philosophy.

The crisis brought on by the set-theoretical antinomies — no
matter if one follows Brouwer’s radical intuitionism or Hilbert's
symbolism — again throws into sharper relief the peculiar character
of mathematics. Like Plato, Brouwer looks upon the two-oneness as
the root of mathematical thinking. Dit neo-intuitionisme zieht het
uiteenvallen van levensmomenten in qualitatief verschillende deelen,
die alleen gescheiden door den tijd zich weer kunnen vereenigen, als
oergebeuren in het menschelijk intellect, en het abstraheeren van dit
uiteenvallen van elken gevoelsinhoud tot de intuitie van twee-eenigheid
zonder meer, als oergebeuren van het wiskundig denken.” We have
seen how the division scheme of the one-dimensional continuum
results from ‘‘one becoming two’’!* again and again (compare the
diagram on p. 53). The integers when written in the binary system
are obtained in the same manner. Stenzel (Zahl und Gestalt bei Plato
und Aristoteles, 1924) makes it appear probable that Plato thought of
his numbers as being arranged according to this scheme; but since the
splitting of one into two here leads to larger and larger numbers, while
in the continuum we descend to smaller and smaller parts, he refers
to that two-ness as the ‘‘great-and-small.” (See, however, for a
different interpretation: H. Cherniss, The Riddle of the Early Academy,
Univ. of Calif. Press, 1945.) More appropriate for the integers is
their natural order, which Aristotle (Metaphysics A6 and M6) sets
up in opposition to Plato’s number concept. But it, too, can be
generated out of the two-oneness; starting with an undivided whole,
we separate it into an element (the 1), to be preserved as a unit, and an
undivided remainder, the latter we then separate again into an ele-
ment (2) and an undivided remainder, and so forth. (This can be
visualized as the continued chopping-off of a segment from a half-line;
time is open toward the future, but whenever we stop we find that
another segment of time has been lived through.) In this scheme, not
every part but only the last remaining part is subject to further
bipartition. }

Independently of the value attached to this last reduction of the
mathematical thought process to the two-oneness, complete induction
appears, from the intuitionist point of view, as that which prevents
mathematics from becoming one huge tautology and which confers
upon its assertions a synthetic non-analytic character. The pro-

14 Allusion to the phrase “Da wurde Eins zu Zwei” by which Nietzsche
described his Zarathustra experience in several of his poems; e.g. in ““Sils Maria’’:

“Da, plotalich, Freundin, wurde Eins zu Zwei —
— und Zarathustra ging an mir vorbei . . . ”
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cedure of complete induction is, indeed, a decisive feature throughout.
If at first it does not appear to play any part in elementary geometry
(especially in elementary projective geometry), the reason is to be
seen in the naive application of ‘some’ and ‘all’ to the points. In the
intuitionist view, this is inadmissible; the field of construction of
geometry is a continuum and hence capable of exact mathematical
treatment only after it has been spun over with a division net as
described above (compare also Section 15).

From the formalist standpoint, the transfinite component of the
axioms takes the place of complete induction and imprints its stamp
upon mathematics. The latter does not consist here of evident truths
but is bold theoretical construction, and as such the very opposite of
analytical self-evidence. The material reasoning of metamathe-
matics, on the other hand, in running over the steps of a proof, operates
by means of an intuitive inference from n to » + 1 and concerns itself
with “extra-logical, concrete objects, which can be overlooked com-
pletely in all their parts and whose exhibition, differentiation, and
succession or coordination are intuitively given along with the objects
as something neither capable nor in need of reduction to anything
else” (Hilbert). Thus Hilbert agrees with Kant — who, incidentally,
likewise emphasized the symbolic construction with concrete tokens
in algebra (Critique of Pure Reason, ed. Max Miller, p. 676, = p. 717
of the first edition, 1781) — that ‘‘mathematics possesses a content
that is secure independently of all logic and therefore can never be
based upon logic alone” (Uber das Unendliche, p. 171).

{1t should be recognized, however, that according to the Kantian
usage of the words ‘analytic’ and ‘synthetic’ at least an individual
equation such as 3 + 2 = 5 ought to be called analytic; for, as Leibniz
explained, it follows logically from the definitions

34+1=4 4+1=5 (a+D)+1=a+2

and thus “lies in the concepts’ of the numbers 3, 5 and of the opera-
tion +2. Or else what meaning did Kant connect with these symbols?
" Mathematics undoubtedly is a priori. It is not, as J. S. Mill wants
to make us believe, founded on experience, in the sense that only
repeated observations of numerical examples confer an increasing
measure of verisimilitude upon such arithmetical theorems as

m-=4n=mn-+m
that are pretended to hold for arbitrary numbers. }

A conspicuous feature of all mathematics, which makes it so
inaccessible to the layman, is the abundant use of symbols. The
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intuitionist does not consider this an essential characteristic, he sees
in them, as he does in all spoken or written language, merely a tool of
communication and of support for the memory by fixation. Not
so the formalist. He thinks of mathematics as consisting wholly of
symbols, which have no meaning verifiable in sensual or mental
intuition and which are manipulated according to fixed rules. Lan-
guage, on the other hand — for instance in the description of substitu-
tion or of the practical rule of inference, as well as in metamathematical
reasoning — serves him as a means for communicating modes of pro-
cedure and acts of meaningful thought. (Communication remains
forever exposed to the risk of misunderstanding.) ‘““In the geo-
metrical figure and, later, in the mathematical formula,” A. Speiser
says (Klassische Stiicke der Mathematik, 1925, p. 148), ‘“‘mathematics
has liberated itself from language; and one who knows the tremendous
labor put into this process and its ever-recurring surprising success,
cannot help feeling that mathematics nowadays is more efficient in its
particular sphere of the intellectual world than, say, the modern
languages in their deplorable condition of decay or even music are on
their fronts.”” In his transcendental methodology (Critique of Pure
Reason, Part II), Kant sees the essence of mathematics in the con-
struction, “Philosophical knowledge is that which reason gains from
concepts, mathematical that which it gains from the construction of
concepts” (ed. Miiller, p. 572, = p. 713 of the first edition, 1781).
Using the theorem of the sum of the angles in a triangle as an example,
he illustrates how geometrical theorems are found, not by conceptual
analysis, but by construction of suitable auxiliary points and lines.
The details of his description of the constructive procedure can no
longer be considered satisfactory today. This much is true, however,
that in the proof of a mathematical theorem it is almost always neces-
sary to go far beyond its immediate content. The reason is to be seen
in the fact emphasized before that a proof proceeding according to the
syllogistic rule of inference is not a monotonically progressing con-
struction — in contrast to a formula, whose manufacture always
advances in the same direction and whose constructive parts are
therefore preserved in the final form — but a constant change of adding
on and removing. This circumstance, together with the points 1, 2,
and 3 enumerated in Section 6 (p. 37), seem to me to give a fairly
adequate characterization of construction as opposed to pure reflection.

The stages through which research in the foundations of mathe-
matics has passed in recent times correspond to the three basic possi-
bilities of epistemological attitude. The set-theoretical approach is
the stage of naive realism which is unaware of the transition from the
given to the transcendent. Brouwer represents dealism, by demand-
ing the reduction of all truth to the intuitively given. In axiomatic
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formalism, finally, consciousness makes the attempt to ‘jump over
its own shadow,” to leave behind the stuff of the given, to represent
the franscendent — but, how could it be otherwise?, only through the
symbol. Basically, the idealist viewpoint in epistemology has been
adhered to by occidental philosophy since Descartes; nevertheless, it
has searched again and again in metaphysics for an access to the realm
of the absolute, and Kant, who meant to shoot the bolt once and for
all, was yet followed by Fichte, Schelling, and Hegel. It cannot be
denied that a theoretical desire, incomprehensible from the merely
phenomenal point of view, is alive in us which urges toward totality.
Mathematics shows that with particular clarity; but it also teaches us
that that desire can be fulfilled on one condition only, namely, that we
are satisfied with the symbol and renounce the mystical error of
expecting the transcendent ever to fall within the lighted circle of our
intuition. So far, only in mathematics and physies has symbolical-
theoretical construction gained that solidity which makes it compelling
for everyone whose mind is open to these sciences. Their philosophical
interest is primarily based on this fact.

{If in summing up a brief phrase is called for that characterizes
the life center of mathematics, one might well say: mathematics is
the science of the infinite. It was the great achievement of the Greeks
to have made the tension between the finite and the infinite fruitful
for the analysis of reality. It has been attempted here to bring out
the past and present importance of this tension — and of the attempts
to overcome it — for the history of theoretical knowledge. ““The
infinite, like no other problem, has always deeply moved the soul of
men. The infinite, like no other idea, has had a stimulating and fertile
influence upon the mind. But the infinite is also more than any other
concept, in need of clarification” (Hilbert, Uber das Unendliche).

For a survey of the various issues and problems in which mathe-
matical research is interested today, the reader may be referred to
Courant and Robbins, What is Mathematics? }
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CHAPTER III

Geometry

NowHERE do mathematies, natural sciences, and philosophy permeate
one another so intimately as in the problem of space. The presup-
positions for the discussion of this problem, inasmuch as they have
emerged from mathematical investigation, are to be briefly outlined
in this chapter.

12. NON-EUCLIDEAN, ANALYTIC,
MULTI-DIMENSIONAL, AFFINE, PROJECTIVE
GEOMETRY; THE COLOR SPACE

{Little has to be added concerning the topic of non-Euclidean
geometry to what has been said in Section 4 in connection with axio-
matics. If all remaining axioms are maintained, then there are these
three possibilities: given a point P and a line [ in a plane, with P not
on [, there are either infinitely many lines in that plane which pass
through P but do not intersect [, or just one such line, or none (known
since Klein as the ‘hyperbolic,” ‘parabolic,” and ‘elliptic’ cases respec-
tively). The sum of the angles in a triangle in these cases is respec-
tively less than, equal to, and greater than, 180°. The last-named
possibility, pointed out only toward the middle of the 19th century
by Riemann, exists only if the axioms of order are modified to the
effect that the line appears no longer as an open but as a closed curve.
Plane elliptic geometry is none other than that which holds on a sphere
in Euclidean space, except that diametrically opposite points have to
be identified. Or, in other words, while all other terms referring to
the geometry of the plane p retain their ordinary ‘Euclidean’ meaning,
the meaning of the notion of congruence is to be modified to the effect
that two configurations in p are considered ‘congruent’ if their pro-
jections from a central point O, not in p, onto a sphere about O are
congruent in the ordinary sense. The plane, in this case, has to be
enriched by the inclusion of the ‘points at infinity,” whose rays of
projection are the lines through O parallel to p. The mappings of p
which map ‘congruent’ configurations into each other can be charac-
terized, without reference to the space, as collinear transformations
that have an invariance property similar to that prevailing in the
Klein model of Bolyai-Lobatschewskyan geometry. Thus the way is
open to the development of an elliptic geometry not only in the plane
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but also in space. The true relation between the three kinds of
geometry is brought out best if the non-metrical projective space
is taken as the starting point and a ‘Cayley metric’ built into it.
According to the type of absolute conic on which this metric is based,
one or another of the three metric geometries is obtained. Klein
himself interpreted his construction in this sense, namely, as endow-
ment of projective space with a Lobatschewskyan metric, not as
construction of a model by means of metric Euclidean space. }

Analytic geometry reduces every geometrical problem to an
algebraic one. This presupposes that the number concept, by the
inclusion of fractions and irrational numbers, has acquired that width
which makes it suitable, not only for counting, but also for measuring.
The Greeks had been deterred from this step because they took the
discovery of the irrational seriously.!’® The post-classical Western
civilization, less scrupulous than they, resumed the old algebraic
traditions of the Sumerians, Indians, and Arabs. It attained to
independent achievements in geometry only after the science of space,
through Descartes’ Géoméirie (1637), became subjected to algebraic
calculus.

-[Today probably the best approach to apalytic geometry is by
means of the vector concept, following the procedure of Grassmann’s
Awusdehnungslehre. The vector calculus is a computational device
whose objects are not numbers but simple geometrical entities. A
treatment of geometry along these lines was demanded and even
partially executed by Leibniz in his work De analist situs and his
design for a geometrical characteristic (Mathematische Schriften, V,
p. 178, and II, p. 20), which belong within the framework of his
“universal characteristic.”” The translations, or parallel displace-
ments, of space are called vectors. A point A is mapped by a trans-

lation a into a point Aa = B, the ‘endpoint of the vector a laid off
from A. Conversely, if 4, B are any two points in space, there

exists one and only one translation 4 which carries 4 into B. Among
the translations we have the ‘identity,” under which all points remain
fixed; this is the vector 0. Translations can be combmed they form

8 group; the effect of carrying out first one translation, a ‘ohen another

b is the same as that of a single translation, the resultant a -+ b The
number concept enters geometry through the process of iteration of a

15 Descartes speaks of the ‘“misgivings of the Ancients rega.rdmg the use of
terms of arithmetic in geometry, which can only have had their origin in a lack of
understanding concerning the connection between these two disciplines.”
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translation o (consisting in adding o arbitrarily often to itself; compare
the beginning of Section 5). Starting with a point 4 and repeating

the same step @ again and again, one obtains the skeleton of a line,
namely, a sequence of equidistant points beginning with A. The line
itself results, so to speak, by continuous iteration of the same infinitely
small translation. By partition (as in Section 5) we contrive to apply

not only integral but also fractional multipliers X to the vector Z, and
the continuity requirement finally removes the restriction to rational
numbers. Thus arises an axiomatic construction of geometry (strietly
speaking, of affine geometry, in which only parallel line segments can
be measured against one another) that presupposes the fully formed
concept of real number — into which the entire analysis of continuity
is thrown — and uses as the only basic geometric concepts ‘point’
and ‘vector.” Three basic operations connect these objects: (1) two

— —

ectors a, b generate a thlrd vector, @ + b (2) a number X and a vector
a generate the vector xa (3) a point A and a vector a generate a point
Aa. The axioms referring to these operations form a system that,
also in logical respect, is of a much more transparent and homogeneous
structure than the purely geometrical axioms of Euclid or Hilbert.
Indeed, they determine, as has already been pointed out in Section 4,
nothing other than the operational field of linear algebra. They
reveal a wonderful harmony between the given on one hand and
reason on the other. Moreover the simplest derived geometrical
concepts, to which here belong especially the line and the plane,
correspond to those which suggest themselves most naturally from
the logical standpomt All vectors z which are obtained from two

given ones, 61 and es, through the formula

1 T = 181 -+ T,
with arbitrary numerical coefficient 1, x2, form a ‘linear vector manifold
of dimension 2.7 For the sake of the uniqueness of the representation

(1) it is assumed here that ;;, ¢, are linearly independent, i.e. that
the expression on the right furnishes the vector 0 only if 2, and z, are

both equal to 0. If all these vectors 2 are laid off from a fixed initial

point O, then the endpoints 0:0 = P form a ‘linear point manifold of
dimension 2,’ or a plane. The coordinate system here consists of the

point O and the two linearly independent vectors e;, ez. Relative to
these, the point P is characterized by its ‘ coordinates’ 1, z2. Similarly
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linear vector manifolds and linear point manifolds of dimensions
1,2, 3, ... (line, plane, . . . ) may be introduced.}

Only here do we meet the concept of dimension. In real space
we cannot go beyond the third dimension; there exist 3, but no more,
linearly independent vectors. Measured against the transparent
lawfulness that finds its expression in our axiom system, this dimension
number 3 appears as a contingent feature. We might just as well
replace the number 3 by any number n of dimensions, by postulating
that there be n, but no more, linearly independent vectors. A coordi-
nate system for the space then consists of an initial point O and n such
vectors. Forn = 1, 2, 3 we thus obtain respectively the geometry of
the line, of the plane, and of space. Only on the basis of the notion
of an n-dimensional geometry to which this formalization leads in a
cogent manner does the problem of the number of dimensions become
meaningful: What inner peculiarities distinguish the case n = 3
among all others? If God, in creating the world, chose to make space
3-dimensional, can a ‘reasonable’ explanation of this fact be given by
disclosing such peculiarities?

{If all vectors are laid off from a fixed initial point, it is seen that
the geometry of vectors is identical with the (affine) geometry of a
point space provided with an absolute center 0. If one identifies
any two non-vanishing vectors resulting from one another through
multiplication by a number, i.e. if one considers as elements the rays
through O, the n~dimensional affine vector geometry becomes the
(n — 1)-dimensional projective geometry (of the family of rays through
0).

The projective geometry holds in the space of the perceptively
given color qualities of colored light. (The manifold of the objective
physical colors has infinitely many dimensions; of these, the normal
non-colorblind eye produces a 2-dimensional ‘projection,” a huge
manifold of physically different colors giving the same color impres-
sion.) If two colors of definite intensity are composed (mixed), the
result is a new definite color of a definite intensity. The various
intensities of one color may be compared with one another, so that, after
a unit intensity has been chosen, every intensity can be measured by
a number (iterated composition of a color of unit intensity with itself
producing a scale of intensities without change of the color quality).
The intensities of two different color qualities, on the other hand, are
incommensurable. Thus the colors with their various qualities and
intensities fulfill the axioms of vector geometry if addition is inter-
preted as mixing; consequently, projective geometry applies to the
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color qualities. All colors resulting from the mixing of three basic
colors A4, B, € form the ‘triangle’ ABC. The color space turns out to
be 2-dimensional, by virtue of the fact that three basic colors suffice to
produce all colors by mixing, or at least that the entire color field can
be composed of such color triangles. For the real colors fill out only a
restricted section of the entire projective plane. But it can, by the
procedure described in Section 2, be extended ideally into a full pro-
jective plane; ideal colors must be chosen as the basic colors 4, B, C
if the field of real colors is to fall entirely within the triangle ABC. In
the projective color plane, the pure spectral colors lie on a curve whose
extremities come very close together and are connected by purple.
Epistemologically it is not without interest that in addition to ordinary
space there exists quite another domain of intuitively given entities,
namely the colors, which forms a continuum capable of geometric
treatment. |

REFERENCES

F. Kuein, Uber die sogennante nicht-euklidische Geometrie, Gesammelte mathe-
matische Abhandlungen, I, Berlin, 1921, pp. 254-305, 311-350.

O. VeBLEN and J. W. YouNg, Projective Geometry, 2 Vols., New York, 1910-1918.

H. WeYL, Raum Zeit Materie, fifth edition, Berlin, 1923; Sections 1-4.

H. vox HeumuOLTZ, Handbuch der physiologischen Optik, 3 Vols., third edition,
Hamburg and Leipzig, 1909-11; Section 20.

713. THE PROBLEM OF RELATIVITY

Our knowledge stands under the norm of objectivity. He who
believes in Euclidean geometry will say that all points in space are
objectively alike, and that so are all possible directions. However,
Newton seems to have thought that space has an absolute center.
Epicurus certainly thought that the vertical is objectively distin-
guishable from all other directions. He gives as his reason that all
bodies when left to themselves move in one and the same direction.
Hence the statement that a line is vertical is elliptic or incomplete,
the complete statement behind it being something like this: the line
has the direction of gravity at the point P. Thus the gravitational
field, which we know to depend on the material content of the world,
enters into the complete proposition as a contingent factor, and also
an individually exhibited point P on which we lay our finger by a
demonstrative act such as is expressed in words like ‘I,” ‘here,” ‘now,’
‘this.” Only if we are sure that the truth of the complete statement,
is not affected by free variation of the contingent factors and of those
that are individually exhibited (here the gravitational field and the
point P) have we a right to omit these factors from the statement
and still to claim objective significance for it. Epicurus’s belief is
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shattered as soon as it is realized that the direction of gravity is
different in Princeton and in Calcutta, and that it can also be changed
by a redistribution of matter. Without claiming to give a mechani-
cally applicable criterion, our description bears out the essential fact
that objectivity is an issue decidable on the ground of experience only.
It also accounts for the two main sources of the error so often com-
mitted in the history of knowledge, that of mistaking a statement for
objective that is not: (1) one overlooked certain relevant circumstan-
tial factors on which the meaning of the statement depends although
they are not mentioned explicitly in its elliptic form, (2) though these
factors were recognized, one did not investigate carefully enough
whether or not the truth of the statement is affected by their variation.
It is no wonder then that at several phases in the course of the history
of science the realm of that which is considered objective has shrunk.

Whereas the philosophical question of objectivity is not easy to
answer in a clear and definite fashion, we know exactly what-the ade-
quate mathematical concepts are for the formulation of this idea.
Let us start with a completely axiomatized science like Kuclidean
geometry. For simplicity’s sake we assume only one fundamental
category, the points of space. According to Hilbert the fundamental
relations that enter into the axioms would then be (1) the ternary
relation: three points lie on a straight line, (2) the relation: (three
distinet points 4, B, C lie on a straight line and) B lies between 4
and C; (3) the relation: four points lie in a plane; (4) the relation of
congruence AB = CD between two pairs of points AB and CD.
What we are going to say applies to any domain of objects the axioms
of which deal with a few basic relations. Without prejudicing what
the objects are we may call them points and thus speak of the domain
as the point-field.

In Section 4 the notion of isomorphic mapping was introduced.
We now consider the special case when our domain of objects is
mapped not upon another domain but upon itself, and thus arrive
at the notion of automorphizsm: an automorphism is a one-to-one
mapping p — p’ of the point-field into itself which leaves the basic
relations undisturbed; i.e. whenever points a, b, . . . satisfy the
basic relation R(ab . . . ) then the points a’, ¥/, . . . into which
a, b, . . . are carried over by the mapping satisfy the same relation,
and vice versa. In other words R(ab . . . ) implies R(a'd’ . . . ),
and R(a’d’ ... ) implies R(adb . . . ). A mapping ¢ carrics cvery
point of the point-field into a point p’ = po. The simplest mapping is
the identity : carrying every point p into p itself. Two mappings o:
p — p’ and 7: p' — p'’ may be carried out one after the other and then
give rise to a new mapping or: p — p'’. A mappingo:p — p’ is one-to-
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one if it has an inverse ¢—! that carries p’ back into p:oo™! = ¢~ = 4.
Then ¢! is also one-to-one. The identity is a one-to-one mapping;
and if ¢ and 7 are, so is o7, its inverse being r~!¢~1. The word trans-
formation will be used as a synonym for one-to-one mapping. The
fundamental fact about the automorphisms is that they form a group.
This means the following three things: (1) the identity is an auto-
morphism; (2) if ¢ is an automorphism, then ¢! is; (3) if ¢ and r are
automorphisms, then or is. These three facts are an immediate
consequence of the definition.

A figure F in its widest sense, or a configuration of points, is nothing
but a point-set; F is given if for every point p it is determined whether
or not it belongs to F. A ternary relation R(zyz) between points is
invariant with respect to a given transformation o: p — p’ and its
inverse p’ — p if R(abc) always implies R(a’b’¢’) and vice versa. We
can now say in precise terms what is meant by the objective equality
or ‘indiscernibility’ of all points in Euclidean space. It means that,
given any two points p; and p,, there is always an automorphism
carrying po into p;. Two figures F and F’ are similar if one can be
carried into the other by an automorphism. That is now our inter-
pretation of Leibniz’s definition of similar figures as figures that are
indiscernible if each is considered by itself. The three postulates
for a group simply state that each figure is similar to itself and that
similarity is symmetric and transitive (see the axioms for equivalence
on p. 9). A point relation is said to be objective if it is invariant
with respect to every automorphism. In this sense the basic relations
are objective, and so is any relation logically defined in terms of them
by means of the principles enumerated in Section 2, provided no use
is made of Principle 5 permitting a blank to be filled out by an indi-
vidually exhibited point. (Whether every objective relation may be
so defined raises a question of logical completeness which is as unlikely
to be answerable as the corresponding question of completeness for the
axioms in the form whether every true universal statement about
points can be deduced from the axioms.)

When our task is to investigate the real space, neither the axioms
nor the basic relations are given to us. On the contrary: in our
attempt to axiomatize geometry we select as our basic relations some
of the point relations of which we are convinced that they have an
objective significance (for instance Epicurus would have included
the basic relation: 4, B lie on a vertical; Euclid did not). Hence in
order to do justice to the real state of affairs we shall have to invert
the order in the development of our ideas. We start with a group T
of transformations. It describes, as it were, to what degree our point
field is homogeneous. Once the group is given we know what like-
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ness or similarity means — namely two figures are similar (or alike, or
equivalent) that arise from each other by a transformation of I'—,
and also under what condition a relation is objective, namely if it is
invariant with respect to all transformations of I'. It is in this sense
that Felix Klein in his famous Erlanger Program (1872) promulgated
the conception that a geometry is determined by a group of trans-
formations. The question of axiomatizing this geometry is now
relegated to the background. (As a first step it would require the
finding of a few objective relations R, Ra, . . . such that the group
of all transformations leaving R;, Rs . . . invariant is not larger
than T but coincides with I'.) While we need not close our eyes to the
fact that objective relations can be logically constructed from other
such relations, we refrain from making a distinction between basic
and derived. We are equally interested in all invariant relations.

{If Newton were right in ascribing to space an absolute center O,
the true group I'y of automorphisms would consist of those transforma-
tions of the Fuclidean group I' of automorphisms which leave O fixed;
Newton’s Iy is a subgroup of Euclid’s T. On the other hand, in
studying Euclidean geometry we may be primarily interested in such
properties as are invariant with respect to all affine or all projective
transformations. (The affine and the projective transformations of a
plane are those that result from carrying out one after the other any
number of parallel projections or central projections respectively.)
The groups I'" and T'/ of these transformations are wider than I'; more
precisely, T' is part of I, and I part of T"’. The importance of affine
and projective geometry for the theory of perspective is obvious. One
sees how helpful Klein’s point of view proves in surveying, and bring-
ing to light the mutual relationship of, various kinds of geometries such
as are either suggested by the nature of things or spring from arbitrary
but logically useful abstraction. (Klein had a predecessor in Mobius
who stressed the group-theoretical viewpoint for a number of special
types of geometries.) The widest group of automorphisms one can
possibly envisage for a continuum consists of all continuous transforma-
tions; the corresponding geometry is called topology. It was a lucky
chance for the development of mathematics that the relativity problem
was first tackled, not for the continuous point space, but for a system
consisting of a finite number of distinet objects, namely the system of
the roots of an algebraic equation with rational coeflicients (Galois
theory). This circumstance has greatly benefited the exactness of the
relevant concepts. The objective relations are here those which can
be constructed by means of the four basic operations of algebra
(addition, subtraction, multiplication, division), in other words the
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algebraic relations with rational coefficients. This sort of problems
gave rise to a general theory, not only of transformation groups, but
also of abstract groups. }

Having explained automorphism we now come to a second phase
of the relativity problem. How is it possible to assign to the points
of a point-field marks or labels which could serve for their identification
or distinction? The labels are supposed to be self-created, distinctive
and always reproducible symbols, such as names, numbers (or number
triples z, v, 2, etc.). Only after this has been accomplished can one
think of representing the spectacle of the actually given world by con-
struction in a field of symbols. All knowledge, while it starts with
intuitive description, tends toward symbolic construction. No serious
difficulty is encountered as long as one deals with a domain consisting
of a finite number of points only, which can be ‘called up’ one after the
other. The problem becomes a serious one when the point-field is
infinite, in particular when it is a continuum. A conceptual fixation
of points by labels of the above-described nature that would enable one
to reconstruct any point when it has been lost, is here possible only
in relation to a coordinate system, or frame of reference, that has to be
exhibited by an individual demonstrative act. The objectification,
by elimination of the ego and its immediate life of intuition, does not
fully succeed, and the coordinate system remains as the necessary
residue of the ego-extinction.'® It is good to remember here that in
practice two- or three-dimensional point-sets are usually given by actu-
ally putting a body or a figure drawn with pencil on paper before our
eyes, and not by a logico-arithmetical construction of set-defining prop-
erties. It took a long time for mathematics before it had acquired
the constructive tools to cope with the complexity and variety of such
intuitively given figures. But once it had reached that stage the
superiority of its symbolic methods became evident.

{Take as an example the points on aline. The coordinate system
consists here of a point O and a unit segment OF, or of two distinet
points O, E. When this frame of reference is given, any point P can
be characterized by its abscissa z, the number measuring the length
OP with OF as the unit yardstick (z is positive for points lying on the
same side of O as E, negative for points on the opposite side). Any

16 Against the establishment of an essential difference between conceptual
determination and intuitive exhibition, the objection might be raised that even
the objective geometrical relations upon which the conceptual determination is
based require intuitive exhibition. But these are a few isolated relational con-
cepts, while the points themselves form a continuum. I am inclined to admit that
this fact alone constitutes the essential difference.
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two frames of reference, OF and O'E’, are objectively alike, for there is
exactly one automorphism (similarity) that maps O into 0’ and E
into E’. Hence by exhibiting an individual coordinate system no
more is exhibited than is absolutely necessary. The field for the
symbol z consists of all real numbers. Relative to a given coordinate
system the correspondence P < z is a one-to-one mapping of the
point-field onto the variability range of the symbol. The coordinates
z and z’ of the same arbitrary point in two coordinate systems are
connected by a relation x = az’ + b where a # 0 and b are two con-
stants characteristic of the relative position of the two coordinate
systems. }

With this example in mind, one will be able to understand the
following general description. A class Z of frames of reference f is
supposed to be given. The class as such should be objectively dis-
tinguished; i.e. if { belongs to it, so does any similar frame fo = {
arising from f by an automorphism ¢. But the class is supposed to
contain no more elements than this requirement makes absolutely
necessary, i.e. any two frames f, {’ of the class are similar. Moreover
an objective rule A is supposed to be given by which each point p
with respect to any frame f of the class Z determines a definite (repro-
ducible) symbol z = A(p; f) as its coordinate. For a given f the
correspondence p = z between points p and symbols z is one-to-one.
That z is objectively determined by p and { means that

(1) A(p; f) = A(po; fo)

for any automorphism .

From these conditions there flow the following consequences.
Let ¢ be an automorphism p — p’ of the point-field and f be a fixed
frame of class . The coordinates x of p and 2’ of p’ in this frame are
connected by a transformation S, =’ = xS, which represents the
automorphism ¢ in terms of f. To the identity ¢ = « there corresponds
the identity S8 = I; o' and or are represented by S—* and ST if S and
T represent ¢ and r. In this sense the transformations S correspond-
ing to the several ¢ of I' form a group G that is isomorphic with T.
G is nothing but the representation of I' in terms of f. Take, on the
other hand, a fixed frame f of our class £ and an arbitrary frame
f’ = fo that arises from { by the automorphism ¢. I maintain that
the coordinates z, ' of the same arbitrary point with respect to f and
f’ are connected by the equation z = 2’S. Indeed, denote the arbi-
trary point by pe instead of p; we then have x = A(ps; f) and, because
of (1),

z' = A(po; fo) = A(p; 1),
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and thus our assertion follows. The group G that represents I' in
terms of f must be independent of {. Indeed, representation of T by
two different groups G, G* in terms of the two similar frames f and
f* would constitute an objective difference between f and f*, which is
impossible. It is easy to verify this explicitly. Let f* = fy, where
v is an automorphism. Moreover, let z and =’ be the coordinates of
an arbitrary point p and its image p’ = pe with respect to f, and ¥y
and y with respect to {*. The transformations representing v and

o in terms of { may be called C and S. Write the equation ' = xS in
(8)
the more suggestive form z — z’. After what has been said, we then

have the following diagram

()

z—z
@1 (e,
y vy

Hence the transformation that leads from y to ¥’ and thus represents
o in terms of the frame f* is §* = CSC-!. With S also CSC-! = §*
is in the group G, and vice versa: 8§ = C~1S*C.

As long as the points could not be characterized conceptually, the
transformations of the point field could not be either, and it was thus
perhaps not perfectly clear what was meant by saying that the group of
automorphisms is known or given. A stage has now been reached
where this last shadow of obscurity disappears. Every point is
replaced by its coordinate x (with respect to a fixed frame), and thus
the group I’ of automorphisms ¢ appears as a group G of transforma-
tions S. The individual transformation S carrying z into =’ = 28,
is a reproducible symbol like any individual value of . But while
the coordinate z is not only dependent on p but also on f, the group G
is independent of f and hence free from anything in need of individual
exhibition. To fulfill the demand of objectivity we construct an image
of the world in symbols. The pure mathematician will say: Given a
group G of transformations in a field of symbols, a geometry is
established by agreeing to study, and consider as objective, only such
relations in that field as are invariant under the transformations of G.

{ A last remark of a purely logical nature concerns the frames. It
is quite legitimate to regard as the frame of reference f the coordinate
assignment p — z = f(p) itself established by f. This seems even
preferable if one has to be prepared for a group of automorphisms so
wide as to comprise all continuous transformations. The symbol f is
then simply a token for the function f whose argument ranges over the
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points p and whose value is an element « in the field of symbols. If
o:p — p’ is any transformation, then the transformed function f’ = fo
will be defined by the equation f'(p’) = f(p) for p’ = pes, or f'(p)
= f(pe~1). When we write 2 = A(p; f) for x = f(p) then A stands
for the universal logical operator ‘value of’; + = A(p; f) means: x
is the value of the function f for the argument p. }
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74. CONGRUENCE AND SIMILARITY.
LEFT AND RIGHT

There is no doubt that the conviction which Euclidean geometry
carries for us is essentially due to our familiarity with the handling of
that sort of bodies which we call rigid and of which it can be said that
they remain the same under varying conditions. The portions of
space which such a solid fills in two of its positions are called congruent.
Measurement depends on rigid bodies to the same degree as counting
does on the use of concrete number symbols. (About the physical
foundation of geometry cf. also Sections 16 and 18.) Once geometry
has been abstracted from the behavior of actual bodies that are
approximately rigid it provides a standard for the physical investiga~-
tion of all bodies, and we can judge how far a given body realizes the
ideal of rigidity. This process is not essentially different from the one
by which a scale of temperature is first based on the behavior of actual
gases and then reduced to the ‘ideal gas scale’ by postulating the exact
validity of such laws as are approximately satisfied by the existing
gases. Since places on a rigid body can be tagged, congruence is a
point-by-point mapping of the two congruent volumes ¥V and ¥V’. The
notion of congruence at first is relative to a given rigid body b. Its
factual independence of b is one of our most fundamental experiences.
Indeed, let V, V' be two portions of space filled by the solid b in two
of its positions. Let b* be another solid that fits into V'; then it may
be so moved as to fill ¥’. Since one may extend a rigid body so as to
cover any given point, the mapping ¥V — V' can be extended to the
whole space. The congruent mappings of space form a group A* of
transformations which we call the group of Euclidean motions. Once
this group is known, congruent volumes may be defined as portions
of space that can be carried into each other by a transformation S of
At. The facts suggest an interpretation according to which the
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group AT of congruent mappings expresses an intrinsic structure of
space itself; a structure stamped by space on all spatial objects.

If this view is correct, congruence should be made the one and only
basic concept of geometry. Let us first investigate what the conse-
quences of this conception of geometry are for the automorphisms of
space (stmzlarities). We know quite generally that once the basic
relational concepts of a geometry are fixed the group I' of automor-
phisms is also fixed. In our case the criterion for an automorphism
C is this: C as well as C—! must transform any pair of congruent por-
tions of space vy, v, into a congruent pair. Consider the pair v3, vy
arising from vy, v, by the transformation C. Let S be the motion that

(9)

Uy — Ve
91 1(C)
vf 3

carries v, into .. As the above diagram indicates, v; goes
into v, by the mapping C-'SC. Hence the criterion demands that
the transformations C~'SC and CSC-! should belong to At when-
ever S does. A transformation C is said to commute with a given
group A of transformations if C—1SC and CSC-! are in A whenever
Sis. The transformations commuting with A form a group called the
normalizer of A. This group necessarily contains A as a subgroup, be
it that A is identical with its normalizer or a proper part of it. Our
analysis can now be summarized thus: The group T of similarities is the
normalizer of the group A+ of motions. Hence congruent figures are
necessarily similar. The converse need not be true. Indeed, since
At happens to be a proper subgroup of its normalizer there exist
gimilar figures in Euclidean space which are not congruent; as for
instance a body and its mirror image, or a building and a small scale
model of it.

Let us now invert the procedure and follow Klein by starting with
a given group T of automorphisms. Take a subgroup A of T' and
declare two figures to be A-equivalent if one is carried into the other
by a transformation of A. Under what circumstances has this relation
of A-equivalence objective significance? If and only if A-equiva-
lent figures are carried into A-equivalent figures by every transforma-
tion C of T, or in other words, if every element C of I' commutes with
A. In that case the mathematician says that A is an invariant sub-
group of I'. Hence A-equivalence is an objective relation provided A
is an invariant subgroup of I'. For instance, the parallel displace-
ments form an invariant subgroup of the group of Euclidean similari-
ties; and indeed the relation || between two figures arising from each
other by parallel displacement is clearly of objective geometric sig-
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nificance — although our language lacks a suggestive word for it.
The normalizer of the group of parallel displacements consists of all
affine transformations; hence affine geometry may be based on the one
relation || between figures. Or, still more simple, the subgroup con-
sisting of the identity only is an invariant subgroup, and indeed the
relation of identity between two figures is of objective significance.
(There is none that has a better claim to objectivity, owing to the
fact that the identity is contained in every possible group I' of trans-
formations.) The smaller the group A the larger its normalizer, and
thus the wider the gap between congruence and similarity; or more
precisely, if A’ is a subgroup of A then the normalizer I of A’ contains
the normalizer T' of A. The normalizer of an invariant subgroup
A of T always comprises I'. A geometry whose group of automor-
phisms is T' can be based on the objective relation of A-equivalence
alone, provided the normalizer of A is not larger than T but coincides

with T'.

{A last remark will conclude this analysis. Space is a continuum,
and when we speak of any transformation in space it is reasonable to
interpret this as meaning any continuous transformation. We indi-
cate by € the group of those transformations that are taken into
account at all; in the case of a continuum this would be the group of
all continuous transformations. By putting this explicitly in evidence
our definition of normalizer may be repeated as follows. Given a
subgroup A of the group @; those elements of @ that commute with A
constitute the normalizer T'of A. In this form the notion of normalizer
makes sense even for abstract groups @ and A.

Kant speaks about the divergence between congruent and similar
in Prolegomena, §13, and claims that by no single concept, but only
by pointing to our left and right hand, and thus depending directly
on intuition [Anschauung] can we make comprehensible the difference
between similar yet incongruent objects (such as oppositely wound
snails)’’; and in his opinion only transcendental idealism offers a solu-
tion for this riddle. No doubt the meaning of congruence is based on
spatial intuition, but so is similarity. Kant seems to aim at some
subtler point, but just this point is one which can be completely
clarified by an analysis in terms of a group I' and its invariant sub-
groups A, or of a group A and its normalizer I'. Whenever A is a
proper invariant subgroup of I', the notions of congruence = A-equiva-~
lence and similarity = I-equivalence do not coincide although the
former is of objective significance (= I'-invariant). The phenomenon
about which Kant wonders can thus be most satisfactorily subsumed
under general and abstract ‘concepts.” }
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Whoever raises congruence to the rank of the only basic relation of
geometry is obliged to develop geometry from this one notion. Several
ways are open to accomplish this. A deeper insight than by the
elementary approach in the style of Euclid’s axioms would be gained
if one succeeded in formulating the fundamental facts of geometry as
simple axioms concerning the group A+t of Euclidean motions. Fol-
lowing Ueberweg, Helmholtz first carried out this program with sur-
prising success in his essay ‘‘ Ueber die Tatsachen, die der Geometrie
zugrunde liegen.” Later S. Lie, who established a general theory of
transformation groups, resumed the problem with his more powerful
mathematical tools and generalized it from 3 to n dimensions. The
Euclidean group of motions A* turns out to be almost completely
characterized by the fact that it permits the rigid body that measure
of free mobility with which we are familiar by experience. In more
exact terms: it is possible by suitable congruent mappings to carry
any point into any other, and, if a point is kept fixed, to carry any line
direction at that point into any other at the same point; furthermore,
if a point and line direction are kept fixed, it is possible to carry by
congruent mapping any surface direction through them into any other
such direction, and so forth, up to the (n — 1)-dimensional direction
elements. If, on the other hand, a point and a line direction through
it, and a surface direction through the latter, and so forth, up to an
(n — 1)-dimensional direction element, are given, then there exists no
congruent mapping besides the identity under which this system of
incident elements remains fixed. We just said that this axiom almost
completely characterizes the Euclidean group of motions. In fact one
thus obtains the group of congruent transformations of a slightly
more general space, namely of a projective space endowed with a
Cayley metric. That group contains a numerically indeterminate
parameter \, the constant space curvature, of which nothing but the
sign is essential. According as X\ is positive, zero, or negative, the
resulting space is of the elliptic, parabolic (i.e. Euclidean), or hyper-
bolic type. These then are the only homogeneous spaces, in which all
points are equivalent, likewise all directions at a point, and so on.

-[It is hard to talk intelligently about these problems without an
exact description of the Euclidean groups I' and A* before our eyes. A
Cartesian frame of reference in three-dimensional Euclidean space
consists of a pomt 0, the origin, and three mutually perpendicular
vectors e1, 62, ea of equal length. The coordinates z1, z2, x5 of a point
P are defined by

0—]—3 =x1;:+1‘232+.'1‘3?3-
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Relative to such a frame a similarity mapping the point (21, zz, 3) into
the point (2, #5, ) is represented by a linear transformation

ey 8: di=a+auwi+ Famx. @C=1,2,---,n)
with constant coefficients a;, ax that satisfy the following condition:
(@, — a)?+ -+ - + (@, — a.)? is a constant positive multiple
aof 224 - - - + 22 (Here the number n of dimensions has been

left indeterminate.) The similarity is ‘non-enlarging’ and called an
orthogonal transformation if @ = 1. The orthogonal transformations
form an invariant subgroup A of I'. The condition mentioned above
as one satisfied by every similarity implies the equation d* = a" for
the determinant d of the ax. Hence an orthogonal transformation
is either of signature + (d = +1) or of signature — (d = —1). The
orthogonal transformations of signature -+ form the group A* of
Euclidean motions. A* is a subgroup of A of index 2, i.e., if S, 8; are
any two transformations of A of signature — then 878, has the sig-
nature +. (The fundamental fact of the distinction of left and right:
two screws oppositely winding to a given screw turn in the same sense.)
It makes little difference whether we claim AT or A as the group of
congruent mappings. Assume we decide in favor of the larger group
A. Then the continuous motion of a rigid body would be represented
by an orthogonal transformation S(f) depending continuously on the
time parameter ¢ and reducing to the identity I at the initial moment
t = 0. Since the determinant of S(t) is capable of the two values +1
and —1 only, since it equals +1 at the beginning ¢ = 0 and varies
continuously with £, it must always remain equal to +-1. Hence even
if we had admitted arbitrary orthogonal transformations, the require-
ment of continuity for S(f) automatically eliminates those of signa-
ture —; a rigid body could go over into its mirror image only by a
discontinuous jump.

A far deeper aspect of the group A than that of describing the
mobility of rigid bodies is revealed by its role as the group of automor-
phisms of the physical world. In physics we have to consider not only
points but also various types of physical quantities, velocity, force,
electromagnetic field strength, etec. But it is a fact that relative
to a Cartesian frame, not only points but all physical quantities
can be represented by numbers; e.g. a force by its components f;
(z=1,2, - - - n), an electromagnetic field strength by a set of skew-
symmetric components Fiy = — Fy;, ete. And under the influence of
any orthogonal mapping 8, (1), of the points of space they undergo a
related transformation that is uniquely determined by S; e.g. the
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force components transform according to the equations

F=Yeh GA=1,2---, ),

A

the components of the electromagnetic field strength according to the
rule

:k = zai%akﬂF)\u @k Np=1,2 """ ,n),

Ay

etc. All the laws of nature are invariant under the transformation
thus induced by the group A. It is not true however that they are
invariant under all similarities, although it seems so on a certain level
of natural phenomena. But the facts of atomism teach us that
length is not relative but absolute. The atomic constants of charge and
mass of the electron and Planck’s quantum of action A fix an absolute
standard of length, that through the wave lengths of spectral lines is
also made available for practical measurements. Thus we no longer
depend on the preservation of the platinum-iridium meter bar that is
kept in the vaults of the Comité International des Poids et Mesures in
Paris. We now prescribe the absolute length 1 for the basic vectors
of a Cartesian frame of reference. The orthogonal transformations
of signature — must be included in A. For there is no indication in
the laws of nature of an intrinsic difference between left and right.
Now it is clear why a body all of whose places undergo a transforma-
tion S(¢) of the group A depending continuously on the time parameter
t and whose physical characteristics change accordingly, has a perfectly
good claim to say of himself: I have remained physically the same
during my motion.

{The extensive medium of the external world is one of time as well
as space. How time is included as a fourth coordinate in the above
scheme will be discussed in Section 16. It was in preparation for this
step that we left the number n of dimensions indeterminate. For
physics the case n = 4 is even more important than n = 3. At
present however we shall limit ourselves to space. }

We summarize: The group of physical automorphisms in space is
the group A of orthogonal transformations. The group of geometric
automorphisms, by virtue of the very meaning of this term, is the
normalizer I' of A. It is larger than A, inasmuch as it includes the
dilatations z; = ax; with any constant @ > 0. This divergence
between A and I' proves conclusively that physics can never be reduced
to geometry as Descartes had hoped.
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{Left and right. Were I to name the most fundamental mathe-
matical facts I should probably begin with the fact (F:) that the count-
ing of a set of elements leads to the same number in whatever order
one picks up its elements, and mention as a second the fact (¥2) that
among the permutations of n (> 2) things one can distinguish the
even and the odd ones. The even permutations form a subgroup of
index 2 within the group of all permutations. The first fact lies at
the bottom of the geometric notion of dimensionality, the second of
that of ‘sense.’” Consider affine vector geometry. A basis for its

— —_
vectors consists of n vectorse,, . . . , e, such that every vector can be

uniquely expressed as a linear combination ze, + - -+ + :v,,-e_;, and
the theorem of the invariance of dimensionality states that every basis
necessarily consists of the same number n of vectors. This assertion
clearly implies the fact (¥,); for by any regrouping of the basic vectors
one passes to a new basis. Vice versa, the theorem of invariance is an
algebraic proposition easily deduced from the fact (F:) in conjunction
with the rule for addition and multiplication of numbers. Any
arrangement of n given linearly independent vectors fixes a ‘sense,’
and two arrangements fix the same sense provided they arise from each
other by an even permutation (definition by abstraction). An odd
permutation changes the sense into its opposite. That is clearly the
combinatorial root of the distinction between left and right. Again, in
combination with the basic operations of affine vector geometry (addi-
tion of vectors, multiplication of a vector by a number) it leads to a

comparison of sense for any two basese;, . . . , ¢, and e_"f, ey, ;;":.
When one expresses the vectors e* in terms of the vectors e,
e_,-’; =auer+t * °° + Guién
the coefficients ay; have a non-vanishing determinant. The senses of
the two bases are the same or opposite according to whether the
determinant is positive or negative. But the definition of a determi-
nant is based on the distinction between even and odd permutations!
Kant finds the clue to the riddle of left and right in transcendental
idealism. The mathematician sees behind it the combinatorial fact
of the distinction of even and odd permutations. The clash between
the philosopher’s and the mathematician’s quest for the roots of the
phenomena which the world presents to us can hardly be illustrated
more strikingly. }

15. RIEMANN’S POINT OF VIEW. TOPOLOGY

The notions of dimensionality and sense are not restricted to metric
Euclidean or affine space. They apply to continuous manifolds in
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general. Riemann was the first to analyze mathematically the general
concept of an n-dimensional manifold. A sufficiently small neighbor-
hood of an arbitrary point in an n-dimensional manifold may be
mapped one-to-one and continuously upon a region of the n-dimen-
sional number space, the points of the latter being the n-tuples of real

numbers (£, %2, . . . , Z»). Any one-to-one transformation of the
coordinates

yi=¢'i(xh'°':xﬂ) (i=1;---:m);

o = Y(yy, . - ., Ym) k=1...,n

yields a new coordinate assignment suitable for the representation of
the same neighborhood. Is m necessarily equal to »n? This is the
question of the topological invariance of dimensionality.

{Let P = (z, - -+, @) be a given point and P* = (x; + dz,
*, n + dz.) any point infinitely near to P. If the transformation
functions are differentiable then the components (dx;, . . . , dza) of

all infinitesimal vectors PP* issuing from P transform according to
linear formulas

(1) dy = ) aa-doy, doe = ) b~ d
k i

the coefficients as, by of which depend on the point P but not on P*.
(Infinitesimal quantities may be avoided by introducing an imaginary
time r and letting a point move in the manifold according to an arbi-
trary law x, = 2x(r). Suppose the point passes P at the moment
7 = 0; its velocity at that moment will be a vector at P with the z-com-
ponents wi = (dzx/dr)r=o. The y-components », of the same velocity
are related to the z-components by the equations (1),

v; = zaik Uk, Ur = z bri Vs,
5

k

which hold for all possible velocities in P.) But these linear trans-
formations can be inverse to each other only if m = n and the deter-
minant of the a;, the so-called Jacobian, is different from zero. Only
such ‘differentiable’ transformations of the coordinates are now
admitted at all to the totality Q. Under these circumstances one
speaks of a differentiable manifold. As the Jacobian varies con-
tinuously with P, it is either positive throughout the region covered
by the two coordinate assignments, or negative throughout. We give
the transformation the signature -+ in the first case, — in the second.
Hence a ‘sense’ can be fixed over the whole region. One sees that both
dimensionality and sense derive from the fact that affine geometry
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holds in the infinitely small. While topology has succeeded fairly well
in mastering continuity, we do not yet understand the inner meaning
of the restriction to differentiable manifolds. Perhaps one day physics
will be able to discard it. At present it seems indispensable since
the laws of transformation of most physical quantities are intimately
connected with that of the differentials dz., (1). }

Inépired by Gauss's theory of curved surfaces, Riemann assumed
that Euclidean geometry holds in the infinitely small. Then the

square of the length ds of the infinitesimal vector PP* with the com-
ponents dx; will be expressed by a positive quadratic form

(2) ds? = z Jix d:c,- dxk
ik

of the dx;. Its coefficients gy are independent of the vector PP* with
the components dz; but will in general depend on the point P with the
coordinates z; and be continuous functions of these coordinates. It is
clear from the invariant significance of ds* how the components g:x of
the ‘metric field’ will transform under transition to a new coordinate
system 3. The metric of a 3-dimensional Riemann space of this kind
imposes itself upon any surface lying in it, which is thereby branded
as a 2-dimensional Riemann space. For a 3-dimensional Iluclidean
space, however, it is not true that every surface in it is a 2-dimensional
Euclidean space; rather, all possible 2-dimensional Riemann spaces
occur as subspaces of a Euclidean 3-space. Thus in Euclid’s geometry
the space appears as something much more special (namely, non-
curved) than the possible surfaces in it, while Riemann’s space concept
has just the right degree of generality to do away with this discrepancy.

As the true lawfulness of nature, according to Leibniz’s continuity
principle, finds its expression in laws of nearby action, connecting only
the values of physical quantities at space-time points in the immediate
vicinity of one another, so the basic relations of geometry should con-
cern only infinitely closely adjacent points (‘near-geometry’ as opposed
to ‘far-geometry’). Only in the infinitely small may we expect to
encounter the elementary and uniform laws, hence the world must be
comprehended through its behavior in the infinitely small.

If one requires the space to be metrically homogeneous — and a
space that can serve as ‘form of phenomensa’ is necessarily homogen-
eous — then one is thrown back at once from the Riemannian to the
classical space concept, to which Helmholtz’s postulates for the group
of motions lead. But Riemann had an entirely different conception
of the nature and origin of the metrical properties of space. For him
the metric field is not given rigidly once and for all, but is causally
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connected with matter and thus changes with the latter. He considers
the metric not as part of the static homogeneous form of phenomena,
but of their ever-changing material content. Riemann asks for the
inner reason of the metrical relationships in space, and having dis-
tinguished (in the words quoted on p. 43) between the cases of discrete
and continuous manifolds, he continues, ‘‘ Therefore, either the reality
on which our space is based must form a discrete manifold, or else the
reason for the metrical relationships is to be looked for externally in
binding forces acting upon it.”” The metric field makes itself felt
through the physical effects which it has upon rigid bodies, upon light
rays, and all events in nature, and these effects alone permit us to
ascertain the quantitative state of the metric field. But whatever
acts must suffer too; it must itself be something real and cannot be
enthroned in unattackable ‘geometric’ rigidity above the forces of
matter. Thereby, in spite of the non-homogeneity of the metric
field, the free mobility of bodies without changes in measure is regained,
since a body in motion will ‘take along’ the metric field that is gen-
erated or deformed by it. Einstein, after having extended space by
the inclusion of time to the full four-dimensional medium of the
external world, has developed Riemann’s idea into a detailed physical
theory of gravitation and, in particular, has ascertained the laws accord-
ing to which matter acts upon the metric field.

Riemann and Einstein maintain that the group of — geometric or
physical — automorphisms coincides with the totality € of all differen-
tiable transformations. In this respect their theories differ radically
from the standpoint expounded in the previous section. Their prin-
ciple of general relativity is acceptable only after inserting the metric
field among the physical quantities that act upon, and are reacted
upon by, matter. Nevertheless Euclidean geometry is preserved
for the infinitesimal neighborhood of any given point P,. For it is a
mathematical fact that for all line elements at a given point P, the
metric equation (2) takes on the special form

ds? = dal +dzi + - - - +dal

if appropriate coordinates z; are chosen for the neighborhood of P,.
In this form there is no room for any indeterminacy, and we may
therefore say that the nature of the metric is the same at every point.
But the coordinate system in which the metrical law assumes this
fixed standard form and which, as we shall say, is characteristic for the
orientation of the metric is in general different from place to place.
We use an analogous phrase in Euclidean geometry when we say that
all cubes (of given size) are of the same nature and differ only by their
orientation. The nature of the metric is one, and is absolutely given;
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only the mutual orientation in the various points is capable of con-
tinuous changes and dependent upon matter. Euclidean space may
be compared to a crystal, built up of uniform unchangeable atoms in
the regular and rigid unchangeable arrangement of a lattice; Rieman-
nian space to a liquid, consisting of the same indiscernible unchange-
able atoms, whose arrangement and orientation, however, are mobile
and yielding to forces acting upon them.

Perhaps this is brought out better by a different formulation of
Riemann’s conception, which has become indispensable in quantum
physics when the quantities characterizing a spinning electron are
to be fitted into general relativity theory. From the above illustration
by velocities it is clear what is meant by the body of tangent vectors
(velocities) at P. They form an n-dimensional vector space. The

>
coordinate assignment P — z, determines a vector basis e, . . . , ¢,

in this tangent vector space V(P) at P such that wies + - - - + u, e,
is the vector with the z-components w;. Assuming that the vector
space at P bears a Euclidean metric (with an absolute standard of
length) we can introduce in it a local Cartesian frame of reference
f = f(P) consisting of » mutually perpendicular vectors of length 1.
The arbitrariness in the choice of this frame is expressed by the
group A, of Euclidean rotations. That group consists of all linear
transformations

S: z;;=zag.,z, B,y=1...,n)

Y

for which
z'12+ PR +z;2=zf+ PR _i_z:

Here the variables 25 designate the components of an arbitrary vector
of V(P) with respect to the Cartesian frame f. The numerical values

es B=1,---,n) of the components of each of the vectors ZZ
(t=1,- -, n) with respect to f describe the embedment of the
frame f into space. Thus the n? quantities e;, which depend on the
choice of the coordinates z; as well as on the Cartesian frame f(P) at
P and are functions of P, now serve to characterize the metric field.
Riemann’s gi; are easily computed to have the values

Gir = €néry + ° * * + Cin€pn.

Only after coordinates z; and a Cartesian frame {(P) at each point P
have been chosen can all physical quantities be represented by num-
bers. The laws of nature are invariant (1) with respect to arbitrary
transformations of the coordinates z;, and (2) with respect to a rota-
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tion S of the frame f(P) that may depend in an arbitrary (continuous)
manner on the point P. Hence there is this double invariance, the
one described by the group € of all transformations of the coordinates
z;, the other by an element of the group A, that can vary arbitrarily
with the position P.

What has happened in the transition from special to general
relativity theory is obviously this. The physical automorphisms
forming the group A as described in the previous section have been
split into their translatory and rotatory parts. The group of transla-
tions has been replaced by that of all possible transformations of the
coordinates, whereas the rotations have remained Euclidean rotations
but are now tied to a center P and must be allowed to vary freely while
the center P moves over the manifold. Space, the extensive medium
of the material world, is clearly the seat of the group @ of coordinate
transformations; but the group A, seems to have its origin in the ulti-
mate elementary particles of matter. The quantities e; thus mediate
between matter and space.

{The question arises for what inner reasons nature has picked
Ao among all possible groups of homogeneous linear transformations.
One answer is provided by Helmholtz’s theory, according to which
Ao is completely characterized by the axiom of free mobility: Any
incident set ¢ of 1-, 2-, . . . (n — 1)-dimensional directions can be
carried into any other such set by a transformation of A, while those
transformations of A, that leave a given set ¢ of incident directions
fixed form a subgroup containing .two elements only (namely the
identity and the reflection in o). However, this characterization
carries less conviction now where the group can no longer be inter-
preted as describing the mobility of a rigid body. (Moreover it
breaks down for the Lorentz group, which in the four-dimensional
world takes the place of the orthogonal group in 3-space.)

The group A, could be considered as an abstract group of which
various representations by linear transformations are characteristic
for various physical quantities; e.g. the representation A, by orthogonal
transformations itself for the vectors, a certain ‘tensor’ representation
for the electromagnetic field strength, and a very remarkable one, the
so-called spinor representation, for the electronic wave ﬁeld.]-

Topology. In general a coordinate assignment covers only part of
a given continuous manifold. The ‘coordinate’ (zi, . . . , Za) is &
symbol consisting of real numbers. The continuum of real numbers
can be thought of as created by iterated bipartition. In order to
account for the nature of a manifold as a whole, topology had to
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develop combinatorial schemes of a more general nature. By this
combinatorial approach it also got rid of the restriction to differen-~
tiable manifolds.

In order to subject a continuum to mathematical treatment it is
necessary to assume that it is divided up into ‘elementary pieces’ and
that this division is constantly refined by repeated subdivision accord-
ing to a fixed scheme (which in the one-dimensional case consists in
the bipartition of each elementary segment). The effect is that the
continuum is spun over with a subdivision net of increasing density.
Thus, properly speaking, every continuum has its own arithmetical
scheme which is already completely determined by the combinatorial
description of the manner in which the individual elementary pieces
of the initial division border on each other; we call this the ‘topological
skeleton’ of the manifold. The introduction of numbers as coordi-
nates by reference to the particular division scheme of the open one-
dimensional continuum is an act of violence whose only practical
vindication is the special calculatory manageability of the ordinary
number continuum with its four basic operations. The topological
skeleton determines the connectivity of the manifold in the large. It
is an important but difficult mathematical question to decide when
two such skeletons are equivalent, i.e. when they represent two differ-
ent ways of decomposition of the same continuum into elementary
pieces. In the case of an n-dimensional closed manifold, the skeleton
consists of a finite number of elements of rank 0, 1,2, . . . , n (vertices,
edges, . . . ); these elements are to be represented by arbitrary
symbols. An element of the 7 rank is bounded by certain elements of
rank ¢ — 1, and the skeleton is completely described by telling which
element is bounded by which. The requirements such a skeleton has
to meet, the properties which it possesses, and the question of equiva-
lence constitute the subject of combinatorial topology.

{Topology has the pecularity that questions belonging in its
domain may under certain circumstances be decidable, even though
the continua to which they are addressed may not be given exactly but
only vaguely, as is always the case in reality. For instance, the
topological skeleton of an undamaged brick is recognizable with
certainty. Or an endless thread, which determines only approxi-
mately a curve in the exact sense of geometry, is definitely either
knotted or not. Whenever the possible cases form a discrete mani-
fold, an individual case can be fixed with absolute accuracy. Thus
the rational analysis of continua proceeds in three steps: (1) mor-
phology, which operates with vaguely circumscribed types of forms;
(2) topology, which, guided by conspicuous singularities or even in
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free construction, places into the manifold a vaguely localized but
combinatorially exactly determined skeleton; and (3) geometry proper,
whose ideal structures could only be carried with exactness into a real
continuum after this has been spun over with & subdivision net of a
fineness increasing ad infinstum. (Such geometrical properties of
configurations in the continuum as are independent of the arbitrariness
involved in the construction of the subdivision net may be conceived
as based on a structural field spread over the continuum after the
fashion of the metric field.) The significance which the idealizing
geometry has for reality, in spite of the evident impossibility of ful-
filling the above requirement for its application, will be discussed in
Part II. The three steps described reveal the sensual-categorical
ambivalence of geometry, which caused Plato to assign to geometrical
configurations an intermediate position between ideas and Sensory
objects. For a more careful phenomenological analysis of the con-
trast between vagueness and exactness and of the limit concept, the
reader may be referred to the work by O. Becker quoted at the end of
Section 9. Carrying out the subdivision of the topological skeleton
according to a fixed scheme implies the assumption that in dealing
with a concretely given continuum we were not in error as to the
topological character of the pieces generated by the first division.
That is to say, we disregard the possibility that a more detailed
scrutiny of a surface might disclose that, what we had considered an
elementary piece, in reality has tiny handles attached to it which
change the connectivity character of the piece, and that a microscope
of ever greater magnification would reveal ever new topological com-
plications of this type, ad infinitum.

The Riemann point of view allows, also for real space, topological
conditions entirely different from those realized by Euclidean space.
I believe that only on the basis of the freer and more general concep-
tion of geometry which had been brought out by the development of
mathematics during the last century, and with an open mind for the
imaginative possibilities which it has revealed, can a philosophically
fruitful attack upon the space problem be undertaken. }
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CHAPTER I

Space and Time, the Transcendental
External World

716. THE STRUCTURE OF SPACE AND TIME
IN THEIR PHYSICAL EFFECTIVENESS
THE possible space-time locations or world-points form a four-dimen-
sional continuum. Only to spatio-temporal coincidence and imme-
diate spatio-temporal proximity can we assign an intuitively evident
meaning. A definite structure is already ascribed to the four-dimen-

sional extensive medium of the external world if one believes in a
severance of the universe in the sense that it is objectively significant

?

p——
\- E \//t'cant
ANIZAAN _ |

Figure 1. Graphic representation of stratification and fibration of the world.
World line g of uniform translation. Light cone K.

<
S

to say of any two different events, narrowly confined in space-time,
that they are happening at the same place (at different times) or at the
same time (at different places). All simultaneous world-points form
a three-dimensional stratum, all world-points of equal location a one-
dimensional fiber. According to this view we may describe the struc-
ture of the world as possessing a stratification whose layers are
traversed by fibers. (Through each world-point runs one stratum and
one fiber; any one fiber intersects a stratum in but a single world-
point.) Let us, for the sake of graphical representation, drop one of
the spatial dimensions, thus concerning ourselves merely with the
happenings on a surface, more particularly a plane. Let us represent
the latter by a horizontal plane E and lay off the time ¢ in the direction
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perpendicular to it. Then we are able to draw a picture of the world
in intuitive space; a picture in which the layers of simultaneous world-
points all appear as horizontal planes while the fibers of equally
located world-points are represented by vertical straight lines.

One attributes furthermore to time and space a metrical structure
by assuming that equality of time intervals and congruence of spatial
configurations have an objective meaning. The statements of
Euclidean geometry describe the spatial structure in greater detail.
If in our graphical image segments of equal length on the perpendicular
time axis correspond to equal time intervals, then the graphical time
table of the motion of a body travelling with uniform speed along a
straight line will be an inclined straight line. On this world-line lie
those, and only those, space-time places which are occupied by the
body in the course of its history. The world-lines of bodies at rest are
vertical straight lines. Two bodies will meet if their world-lines
intersect in some space-time point.

The conceptual separation of its structure from the underlying
amorphous continuum, the recognition that space as such is merely
the medium of ‘contact,” is already indicated in the Aristotelian idea
of space. Lobatschewsky says (Urkunden zur Geschichte der nichteu-
klidischen Geometrie, ed. by Engel and Stickel, I, p. 83), “Contact
forms the differentiating feature of bodies, and to it they owe the
name of geometric bodies, inasmuch as we concern ourselves with this
property alone to the exclusion of all others, be they essential or
accidental.” However, this thought is here expressed not for space-
time but for space alone. Whatever the inner reason of the world
structure may be, all laws of nature show that it influences in the most
trenchant manner the course of physical events. Among its mani-
festations we find the behavior of rigid bodies and of clocks; the uni-
form straight-line motion of a body which is free from all outside
influences; the straightness of a light ray in empty space (used when
sighting); the propagation in concentric spheres or circles of a light
or sound wave, or of a wave in water, etc. It is our task to recognize
this structure through these its physical effects. How can we, so we
must agk, ascertain objectively the equi-locality or the simultaneity
of events, the equality of time intervals and the congruence of spatial
configurations?

Concerning the first part of the question we note that the theory
of the relativity of motion has always been opposed to the dogma of
absolute space. Aristotle designates location (véros) as the relation
of one body to the bodies of its vicinity. Descartes (Principia, Chap.
II) defines motion as ““transportation of a portion of matter or a body
from the neighborhood of those bodies which are in immediate contact
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with the former and which are considered at rest into the neighborhood
of other bodies.” A penetrating discussion of the relativity of location
is given by Locke (Enquiry concerning Human Understanding, Book
IT, Chap. 13, Sections 7-10). Galileo illustrates it rather neatly with
the example of the scribe who makes his notes aboard a moving vessel
and who will therefore draw with his quill ‘in reality,” i.e. relatively
to the earth, a smooth slightly undulating line extending from Venice
to Alexandrette (Dialogo, Opere VII, p. 198). In his controversy with
Clarke (and Newton), Leibniz defends with all thoroughness, also in
logico-epistemological respects, the relativity of location in space. On
that occasion (Leibniz's fifth letter to Clarke, §47) he uses the happy
illustration of positions in a family tree.

{Also of importance is the argumentation of Leibniz in his third
letter, §5. “Under the assumption that space be something in itself,
that it be more than merely the order of bodies among themselves, it is
impossible to give a reason why God should have put the bodies
(without tampering with their mutual distances and relative positions)
just at this particular place and not somewhere else; for instance, why
He should not have arranged everything in the opposite order by
turning East and West about. If, on the other hand, space is nothing
more than just the order and relation of things, if without the bodies
it is nothing at all except the possibility of assigning locations to them,
then the two states supposed above, the actual one and its transposi-
tion, are in no way different from each other. Their apparent differ-
ence is solely a consequence of our chimerical assumption of the reality
of space in itself. In fact, however, each of them would be the same
as the other since the two are completely indistinguishable, and there~
fore it is a quite inadmissible question to ask why one state was pre-
ferred to the other.”* In contrast, Newton, the absolutist, considers
motion a proof for the creation of the world out of God’s arbitrary
will; for otherwise it would be inexplicable why matter moves in this
rather than in any other direction (Preface to the second edition of

1 Compare with this the statement of Kant concerning left and right which was
quoted at the end of Sec. 14, p. 80. Kant has been interpreted as follows: If the
first creative act of God had been the forming of a left hand, then this hand, at
the time even when it could be compared to nothing else, would already have
possessed that definite character of the left one (in contrast to the right one) which
can only intuitively but never conceptually be apprehended. This is incorrect, as
Leibniz points out, if we intend this to mean that something else would have hap-
pened had God created a ‘right’ hand first, rather than a ‘left’ hand. One must
follow the process of the world’s genesis further in order to uncover a difference:
Had God, rather than making first a left and then a right hand, begun by making a
right one and proceeded to form another right one, then He would have changed

the plan of the universe not in the first but in the second act, by bringing forth a
hand which was equally rather than oppositely oriented to the first-created one.

97



NATURAL SCIENCE

Principia by Cotes, ed. Cajori, p. XXXII, and Principia, ed. Cajori,
p. 546). Leibniz is prevented by his theology from burdening God
with such decisions as lack ‘sufficient reason.’ }

The body of reference upon which we rely with good reason most
of the time in our daily lives when we speak of rest and motion is the
‘“well-founded permanent earth.”’? For practical purposes this choice,
suggested to us as a matter of course, is by far the most expedient.
Only a sovereign imagination, breaking the bonds of sensuous appear-
ance and freely constructing in space, could disengage itself from it.
Thus Anaxagoras projected the conical shadow of the earth into space
and deduced from the eclipses and the phases of the moon the correct
spatial arrangement of the earth, the sun, the moon, and the stars;
in the ‘Moon’s face’ he recognized the effect of her mountains’
shadows. Following the same method the Pythagoreans arrived at
the hypothesis of the motion of the earth. In conscious opposition to
the Pythagorean and Platonic spirit of a prior: mathematical con-
struction, Aristotle returned to the geocentric system. At the same
time it is a definite religious attitude toward the universe that finds
expression in reserving for the earth, the dwelling place of mankind, an
absolute prerogative among all other bodies of reference. It is the
attempt to uphold within the realm of objective reality the idealistic
position, according to which I am the center of the world disclosed to
me. But here where the recognition of the thou is required of the ego
and the ego has to be extended so as to include the whole of mankind,
the idealistic position of necessity takes on a historical and cosmo-
theo-logical character. This is the reason why the book of Coper-
nicus became a turning point of world conception; and in this direction
Bruno drew the conclusions with stormy enthusiasm. The supreme
act of redemption by the Son of God, crucifixion and resurrection, no
longer the unique pivot of world history but the hurried small-town
performance of a road show repeated from star to star — this blas-
phemy displays perhaps in the most pregnant manner the religiously
precarious aspect of a theory which dislodges the earth from the center
of the world. (Bruno had to pay for it at the stake.) “The state-
ment, found equally with Kepler, Galileo, and Descartes, that it be
foolish to think of the purpose of the universe as lying in man,” says
Dilthey (Der entwicklungsgeschichtliche Pantheismus, Gesammelte
Schriften, 11, third ed., 1923, p. 353), “ consummates a complete change
in the interpretation of the world. As these thinkers were led to an
immanent teleology finding its expression in the harmony and beauty

? “Die wohlgegriindete dauernde Erde,” quotation from Goethe, Grenzen der
Menschheit, verse 3.
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of the universe, the character of the hitherto prevailing Christian
religiosity was changed.” And Goethe, in his Geschichte der Farben-
lehre (3° Abteilung, 2 Zwischenbetrachtung), “Perhaps never before
has a greater demand on mankind been made; for what did not go up
in smoke with this acknowledgment: a second paradise, a world of
innocence, of poetry and piety, the testimony of the senses, the con-
viction of a poetical-religious faith. Small wonder then that one did
not want to let go of all this, that one opposed in every conceivable
manner a theory which involved for him who accepted it the right and
the challenge of a hitherto unknown, nay undreamed-of, freedom of
thought and elevation of mind.”

From the viewpoint of the relativity of motion there can be no
quarrel as to the truth or falsity of the Copernican system. It is
merely that the laws of planetary motion become much simpler if this
motion is described as relative to the sun instead of relative to the
earth.

{Newton bases the development of his mechanics in the Principia
upon the ideas of absolute time, absolute space, and absolute motion.
‘“ Absolute, true, and mathematical time, of itself, and from its own
nature, flows equably without relation to anything external. . . .
Absolute space, in its own nature, without relation to anything exter-
nal, remains always similar and immovable. . . . Absolute motion is
the translation of a body from one absolute place into another.”
(Principia, ed. Cajori, Scholium following the Definitions, I, II and
IV, pp. 6-7.) As a kinematic differentiation of the various possible
states of motion of a body is undeniably impossible, Newton strives
to distinguish the state of rest among all possible states of motion
dynamaically, on the basis of phenomena such as the centrifugal forces.
“The causes by which true and relative motion are distinguished, one
from the other, are the forces impressed upon bodies to generate
motion. . . . It is indeed a matter of great difficulty to discover, and
effectually to distinguish, the true motions of particular bodies from
the apparent; because the parts of that immovable space, in which
those motions dre performed, do by no means come under the observa-
tion of our senses. Yet the thing is not altogether desperate; for we
have some arguments to guide us, partly from the apparent motions,
which are the differences of the true motions; partly from the forces,
which are the causes and effects of the true motions. For instance, if
two globes; kept at a given distance one from the other by means of a
cord that connects them, were revolved about their common center
of gravity, we might, from the tension of the cord, discover the
endeavor of the globes to recede from the axis of their motion, and

99



NATURAL SCIENCE

from thence we might compute the quantity of their circular motions.
. . . But how we are to obtain the true motions from their causes,
effects, and apparent differences, and the converse, shall be explained
more at large in the following treatise. For to this end it was that I
composed it.” (Principia, ed. Cajori, pp. 10 and 12.)

Newton’s belief in absolute space is theologically influenced.
Thus he says of God in his Opticks that ‘““in infinite space, as it were
in his Sensory, [He] sees the things themselves intimately, and thor-
oughly perceives them, and comprehends them wholly by their imme-
diate presence to himself” (ed. Whittaker, p. 370). Newton adopts
here the theology of Henry More. For More, space is the first and
authentic witness for the verity and necessity of ‘‘immaterial natures”;
in its properties he rediscovers the characteristics of the divine sub-
stance; space is the link between the latter and the individual objects.
The nature of the world structure, that it consists of a fibration, is
thus laid down by Newton in terms of an a prior: metaphysical idea.
But the actual course of the fibration in the real world has to be ascer-
tained through its effects upon observable real phenomena. That is
his scientific program. Incidentally, Newton does not succeed in
mastering the problem completely. He accomplishes only the
dynamic separation of uniform translation as the pure inertial motion
of a body uninfluenced by external forces, from the other states of
motion; but he does not succeed in isolating the state of rest among
these translations. In this he must fail on account of the so-called
spectal relativity principle, which is satisfied by the laws of Newtonian
mechanics and whose validity for all natural phenomena has been
confirmed today by a series of the most exact experiments: In the
cabin of a ship sailing a straight course with uniform speed all events
will take place in the same manner as if the vessel were at rest; given
any event in nature, the one which arises from it by imparting to all
participating bodies a uniform translation is equally possible. The
principle has been developed by Galileo in his “Dialogo” (Opere,
VII, pp. 212-214) in clear and lucid manner. Newton at this point
resorts to a hypothesis unfounded in experience and a dialectical dodge
which strike a discordant note in the midst of the magnificent and
cogent inductive development of his system of the world in the
third book of the Principia. The hypothesis states that the universe
has a center and that this center is at rest. The common center of
gravity of the solar system, like that of any system of bodies not sub-
jected to external forces, moves uniformly along a straight line; thus
he concludes correctly from the mechanical laws. And now we read
(Principia, ed. Cajori, p. 419), ““ . . . but if that center moved, the
center of the world would move also, against the hypothesis,” no
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attempt whatever being made to give a reason for this identification
of the center of gravity of the planetary system with the hypothetical
stationary center of the world (unless it be in the consideration that
the stationary center ought to be a point, constructible on the basis of
material events, whose motion according to the laws of mechanics is a
uniform transla,tion).]-

The experiences which prove the dynamic inequivalence of differ-
ent states of motion teach us that the world bears a structure. But
in the concept of absolute space this inertial structure is evidently not
sized up correctly; the dividing line does not lie between rest and
motion but between uniform translation and accelerated motion.
Referring to the graphical representation described above we can say
that it is in the world as it is in space: straight lines can be objectively
distinguished from curves, but in the family of all straight lines one
can single out the ‘vertical’ ones only by a convention based on
individual exhibition.

And what about the stratification, the concept of simultaneity?
The trust placed in its objective significance rests on the fact that
everybody considers as a matter of course the events he observes as
happening at the moment of their observation. In this manner I
extend my time to the whole world which enters my field of vision.
Although this naive opinion lost its basis through the discovery that
light has a finite velocity of propagation, there yet remained (beyond
the reluctance to abandon a prejudice once held) some reason for
adhering to that belief. In our graphical representation the hori-
zontal plane passing through a world point O separates past and future
ag seen from 0. ‘Past’ and ‘future,” what is the reality behind these
words? By shooting bullets from O in all possible directions with all
possible velocities I can only hit those world points which are later
than O; I cannot shoot into the past. Likewise any event happening
at O has influence only upon the events at later world points; the past
cannot be changed. That is to say, the stratification has a causal
meaning; it determines the causal connection of the world. This was
recognized by Leibniz, who explains in his ““Initia rerum mathemati-
carum metaphysica” (Math. Schriften VII, p. 18), “If of two elements
which are not simultaneous one comprehends the cause of the other,
then the former is considered as preceding, the latter as succeeding.”
A simple method of instantaneously transferring time from one place
A to another place B consists in giving a jerk to the end 4 of a rigid
rod extending from A to B; the jerk observed at B is simultaneous
with the one given at A.

But in regard to the causal structure of the world the modern
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development of physics has led to an essential correction. Let the
segment representing one second on the {-axis of our graphical diagram
be of the same length as the segment on the horizontal plane E repre-
senting the distance covered by a light ray in one second. A light
signal issuing from O and spreading in all directions with the same
velceity ¢ will be received at all those world points which lie on the
surface of a vertical circular cone with vertex at O and a vertex angle
of 90°. According to Einstein’s spectal theory of relativity, the ‘light
cone,” consisting of the above surface and its prolongation backward
beyond O, rather than the horizontal plane through O, accomplishes
the separation of the world into past and future. No effect is propa-
gated at a greater speed than that of light (including the jerk given
to a rigid rod for the purpose of transferring time); the velocity of any
body remains of necessity below ¢. This is an inevitable consequence
of the principle of special relativity and the fact that the light cone

Figure 2. Causal structure. Light cone K, life line L.

issuing from O depends on O alone and not upon the state, in particular
the state of motion, of the light source which emits the signal at O.
(Unfortunately the somewhat inadequate phrase ‘constancy of the
velocity of light’ has been chosen to describe the latter fact.)

If I am at O, then O will divide my life line, that is the world line
of my body, into two parts, past and future; in this respect nothing has
been changed. But the situation is different as far as my relation to
the world is concerned. In the interior of the forward part of the
cone are found all those world points upon which my doings at O are
of influence, in its exterior all those events which lie closed behind me,
about which nothing can be done any more; the front cone compre-
hends my active future. In the interior of the backward part of the
cone, on the other hand, are located all those events of which I either
was a witness or of which I might have received some message; only
these events might possibly have influenced me at all; it is the domain
of my passive past. The two regions, active future and passive past,
do not border on each other without a gap as had been the case accord-
ing to the older conception.

{It is our task, moreover, to describe in physical terms how to
ascertain the equality of time intervals and the congruence of material
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bodies. A clock is a closed material system which will return to
exactly the same state S in which it found itself at some earlier
instant. Let us assume the principle of causality, which asserts that the
state of a system at any moment uniquely determines its entire history.
Then the same process, the same cyclic sequence of states, leading
from S to 8 will be repeated again and again, and each of these periods
has by definition the same duration. What is measured in this way
is the ‘proper time’ of the clock; it can be directly employed for all
events occurring along the world line of the clock. Helmholtz says
(Zéhlen und Messen, Wrissenschaftliche Abhandlungen, III, p. 379),
‘““Measurement of time presupposes that we have found physical
processes, repeating themselves under equal conditions and in invaria-
bly the same manner such that if they are begun at the same instant
(it would be more correct to say ‘in contiguous space-time points’)
they also end simultaneously; such as days, the strokes of a pendulum,
the running-down of sand- or water-clocks. The justification for the
assumption of invariable duration rests on the circumstance that all
different methods of measuring time, if carefully executed, always lead
to concordant results.” Concerning the empirical determination of
spatial congruence he says on another occasion (Wissenschaftliche
Abhandlungen, 11, p. 648), “I call two spatial magnitudes physically
equivalent if under equal conditions and in equal intervals of time the
same physical events can occur within them. The process which,
with appropriate caution, is employed most frequently to determine
the physical equivalence of spatial magnitudes is the transfer of rigid
bodies such as compasses and rulers from one place to another.” The
physical geometry founded on this concept of physically observable
congruence is considered by Helmholtz to be an empirical science, in
fact ‘““‘the first and most perfect of the natural sciences.” Speaking
of this physical geometry in his inaugural lecture, Riemann points out
what may conceivably become of major significance in the physics of
the future, that ‘‘the empirical concepts upon which the spatial metric
is based, the concepts of the rigid body and of the light ray, cease to be
valid in the domain of the infinitely small.” As a matter of fact it
can be shown that the metrical structure of the world is already fully
determined by its inertial and causal structure, that therefore mensura-
tion need not depend on clocks and rigid bodies but that light signals
and mass points moving under the influence of inertia alone will
suffice.

A three-dimensional continuum when referred in some way to
coordinates zo, x1, *2 is thereby mapped upon the three-dimensional
number space, i.e. upon the continuum of all number triples. Using
a more familiar mode of expression, we shall replace the number space
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by the three-dimensional intuitive space equipped with a Cartesian
coordinate system. It does little harm that, in applying the pro-
cedure to the four-dimensional world, we shall have to deprive it in
imagination of one of its dimensions. A two-dimensional example is
provided by the planar geographical maps. On a Mercator map, for
instance, I find that San Francisco, the southernmost point of Green-
land, and the North Cape, lie on a straight line, but I am not surprised
to discover that on an orthographic map of the northern hemisphere
this fails to be the case. Likewise a certain mapping of the world
serves as the basis for the application of the customary geometrical-
kinematical terms, with the z,-axis being interpreted as the axis of
time. (For instance, we shall say of a body that it is at rest if its
world line is a vertical straight line, i.e. a line along which z;, xs, 2 ave
constant and merely z, varies.) Only such relations will have objec-
tive meaning as are independent of the mapping chosen and there-
fore remain invariant under arbitrary deformations of the map. Such
a relation is, for instance, the intersection of two world lines. If
we wish to characterize a special mapping or a special class of map-
pings, we must do so in terms of the real physical events and of the
structure revealed in them. That is the content of the postulate of
general relativity. According to the special theory of relativity, it is
possible in particular to construct a map of the world such that (1) the
world line of each mass point which is subject to no external forces
appears as a straight line, and (2) the light cone issuing from an
arbitrary world point is represented by a circular cone with vertical
axis and a vertex angle of 90°. In this theory the inertial and causal
structure and hence also the metrical structure of the world have the
character of rigidity, they are absolutely fixed once and for all. It is
impossible objectively, without resorting to individual exhibition, to
make a narrower selection from among the ‘normal mappings’ satisfy-
ing the above conditions (1) and (2).}

The discrepancy between the kinematical and the dynamical
analyses of motion calls for a solution. Huyghens, as we know from
his letters, endeavored to carry through the viewpoint of the equiva-
lence of all states of motion even in their dynamical aspect; an attempt
in this direction has been preserved in his posthumous papers (reprinted
in Jahresberichte der Deutschen Mathematiker-Vereinigung, Vol. 29,
1920, p. 136). In our days Mach undertook the same thing in his
Mechanik (seventh ed., 1912). He would see in the polar flattening
of the earth an effect of its rotation relative to the fixed stars; the
fixed stars are to hold and to carry with them the plane of Foucault’s
pendulum. Leibniz, on the other hand, however determinedly he
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rejects Newton’s metaphysics of space, holding firmly to the opinion
that space is nothing more than ‘“‘the mere order of things among
themselves,” evidently agrees with Newton’s mechanical program to
separate true from apparent motion by dynamical criteria. (Compare
the letter to Huyghens dated June 12/22, 1694, Math. Schriften, 11, p.
184, and the explanation in In. rerum math. metaph., Math. Schriften,
VII, p. 20: “We say that an object moves if it changes its position and
if in addition the cause of this change lies within the object itself.””)
Euler (Theoria motus, 1765, especially §81) also is of the opinion that
the principle of the relativity of motion, evident as it may be to our
reason, has to be abandoned in the face of dynamical experiences.
With some good will one may read into Kant’s exposition in the
Metaphysische Anfangsgrinde a correct formulation of the problem,
but they certainly throw no light on its solution.

Incidentally, without a world structure the concept of relative
motion of several bodies has, as the postulate of general relativity
shows, no more foundation than the concept of absolute motion of a
single body. Let us imagine the four-dimensional world as a mass of
plasticine traversed by individual fibers, the world lines of the material
particles. Except for the condition that no two world lines intersect,
their pattern may be arbitrarily given. The plasticine can then be
continuously deformed so that not only one but all fibers become
vertical straight lines. Thus no solution of the problem is possible as
long as in adherence to the tendencies of Huyghens and Mach one
disregards the structure of the world. But once the inertial struc-
ture of the world is accepted as the cause for the dynamical inequiva-
lence of motions, we recognize clearly why the situation appeared so
unsatisfactory. We were asked to believe that something producing
such enormous effects as inertia — for instance, when in combat with
the molecular forces it rends the cars of two colliding trains —is a
rigid geometrical property of the world, fixed once and for all. Leibniz
(opposing Descartes) has emphatically stressed the dynamic character
of inertia as a tendency to resist deflecting forces; for instance, in a
letter to de Volder (Philosophische Schrifien, 11, p. 170) he writes,
“Tt is one thing if something merely retains its state until some event
happens to change it — a circumstance which may occur if the subject
is completely indifferent with respect to either state; it is another thing
and signifies much more if the subject is not indifferent but possesses
a power, an inclination as it were, to retain its state and to resist the
causes of change.” Hence the solution is attained as soon as we dare
to acknowledge the inertial structure as a real thing that not only exerts
effects upon matter but in turn suffers such effects. This step was taken
by Riemann as early as the middle of the nineteenth century regarding
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the metrical structure of space; for indeed the inertial and the metrical
structures of the world are so intimately connected (the metric after
all determines the straight lines) that the metrical field will of necessity
become flexible as soon as the inertial field is deprived of its geometric
rigidity.

Einstein rediscovered this idea independently of Riemann, com-
pleting it by an important insight that rendered it physically fruitful.
From the equality of inertial mass and weight — before him an enig-
matic fact well-established but not understood — he concluded that,
in the dualism of force and inertia, gravitation has to be put on the side
of inertia rather than on the side of force. The phenomena of gravita-
tion thus divulge the flexibility of the field of inertia, or, as I prefer to
call it, the ‘guiding field,” and its dependence on matter. The splitting
of the unified guiding field into a homogeneous part obeying Galileo’s
law of inertia and a much weaker deviation called gravitation, which
surrounds the individual stars, cannot be accomplished in an absolute
manner but is relative to a system of coordinates. The laws replacing
Newton’s law of attraction and governing the action of matter upon
the field of inertia follow conclusively from this conception. Their
consequences have been fully confirmed by experience.

{The guiding field is (very slightly) disturbed by matter, just
as the surface of a lake is disturbed by the steamships cruising on it;
it will go over into the undisturbed state described by the special
theory of relativity when all matter disappears, as the surface of the
lake becomes a smooth homogeneous plane when the ships ride at
anchor. Although Einstein, too, flirts with that idea of Mach’s, it is
impossible, according to an earlier remark, to eliminate the field of
inertia, or the ‘ether,” as an independent power from the natural
phenomena. It is not the stars that guide the plane of Foucault’s
pendulum, but the joint motion of both — of Foucault’s pendulum
and of the star compass formed by the light rays reaching the terres-
trial observer from the stars —is due to the overwhelming power of
the ether in its interaction with matter. The old conception, separat-
ing inertia and gravitation in an absolute fashion, erred only in this
point, that it saw in the actual position of all water particles of the
lake, to return to our illustration, the resultant of a unique state of
rest and a displacement caused by the cruising steamers. This is
incorrect; indeed, as the water comes to rest at night when all ships
ride at anchor, we shall undoubtedly have the same ‘ qualitative state’
as in the morning before the ships got under way, the unruffled plane
surface; but the ‘material state’ which is concealed behind this, i.e.
the location of the various water particles, may have shifted com-
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pletely. This does not contradict the principle of sufficient reason
which calls for a uniquely determined state of equilibrium in the lake.
For if all water particles are alike, the two states S and S’ of the lake
which arise from one another by having the particles interchange their
locations in some arbitrary fashion are not different from each other if
either is considered by itself. Only after ‘a coordinate system has
been introduced,” meaning in this case that numbers have been
assigned to the particles, which introduce artificial differences among
them and adhere to them during their motion, only then will it be
meaningful to speak of the two material states S and S’ as such (cf.
Appendix B). In truth, however, it is not the individual material
state S, the arrangement, which one can lay hands on, but only the
permutation, that is the transition from the material state S to S’.
This should be compared with the previously quoted remarks of
Leibniz regarding the relativity of location (p. 97).

The group A, of the Euclidean rotations (see Section 15) in the
three-dimensional space has now been replaced by the so-called Lorentz
group. It consists of all homogeneous linear transformations

7= Za,-k 2 (¢, k=0,1,23)
k

which leave the indefinite quadratic form —z; + 2} + 23 + 2; invari-
ant. For each such transformation the absolute values of the coeffi-
cient a = ao and of the determinant d of the 3 X 3 coefficients
ax (3, k=1, 2, 3) are >1. We ascribe to the transformation the
temporal signature 4+ or — according to whether ¢ > 1 or a < —1;
in the same manner the sign of d determines the spatial signature.
The Lorentz transformations of temporal signature + form a sub-
group of index 2 of the total group, and so do the transformations of
spatial signature +. Their common part is contained in each of them
again as a subgroup of index 2. The transformations of temporal
signature — interchange past and future, those of spatial signature —
interchange left and right. The most fundamental experiences of our
life seem to indicate that A, should be limited to the Lorentz trans-
formations with temporal signature 4+ (but include those of spatial
signature —). But physics has found it rather hard to decide this
question (cf. Section 23, C). A third signature, the topological sig-
nature, attaches to the coordinate transformation and is determined
by the sign of its Jacobian. }

With the ‘general theory of relativity’ we may sum up the final
result of the historical development of the structural problem of space
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and time as follows: The world is a four-dimensional Riemannian space.
There is associated with every line element, issuing from the point P
with the coordinates zq, 21, 72, 23 and connecting it with the infinitely
closely adjacent point P’ = (z; + dz;), a numerical measure

3
ds? = E G A dzxy. (gzk = gki)
k=0

which is independent of the arbitrary coordinate system employed.
The coefficients ¢ix depend on the coordinates zo, 1, s, %3 of P but
not on the dz;. The metric ground form on the right is not positive-
definite but possesses one negative dimension; i.e. in an appropriate
coordinate system at the point P it assumes the universal normal form

ds? = —da? + dz? + dzj + dxj.

In consequence of this circumstance, the ‘light cone at P,” containing
all line elements emanating from P that make ds* equal to zero,
separates a domain of active future for P from a domain of passive
past. The metric ground form determines, in a manner readily
describable in detail, the behavior of clocks and rulers, it defines the
light cones in their entire extension, and it separates the world lines of
purely inertial motion (traced, for instance, by the planets) from the
totality of all possible world lines. Its coefficients, the continuous
functions gu (o, 1, T3, 3), describe, in terms of the chosen coordinate
system, the metrical field or the ‘state of the ether,” which interacts
with matter.

When raising the question about the total extent of the universe one
must distinguish between the purely topological and the metrical
aspects. The transition from the Aristotelian world system, enclosed
in a crystal sphere and rotating about a center, to the indifferent
expanse of the infinite Euclidean space, uncentered and populated by
stars throughout, was welcomed by Bruno as a mighty emancipation.
Nevertheless the Aristotelian space (the interior of the crystal sphere)
differs only in its metrical relations, not topologically, from the
infinite one. The infinite Euclidean space leads to absurdities if we
assume that the masses are on the whole uniformly distributed
throughout the universe and that Newton’s law of attraction is valid.
Even though the gravitational force of a constant mass decreases with
the inverse square of the distance, the far-off masses would then be so
predominant in the entire gravitational effect that the total force
exerted upon any one star would remain completely indeterminate.
It is possible, however, that space is finite and yet unbounded; indeed
it may be a closed manifold, like the two-dimensional surface of a
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sphere. It is an appealing interpretation of A. Speiser’s (Klasstsche
Stiicke der Mathematik, 1925, p. 53) that Dante, without denying the
validity of Aristotle’s conception of perceptive space, assumes the
real space of creation (of which the former is but an image) to be
closed rather than bounded. The radii emanating from the center of
the earth, the seat of Satan, converge toward an opposite pole, the
source of divine force. The force of the personal God must radiate
from a center, it cannot embrace the world sphere reposing in spatial
quiescence like the ‘“unmoved primal mover” of Aristotle (compare
Divina Comedia, Paradiso, beginning with the 28" Canto). When
Einstein tried, in the framework of his theory of gravitation, to carry
through Mach’s principle, he constructed a static universe U, with a
closed three-dimensional space in which matter is evenly distributed;
the total mass in the world determines the volume of the space.
Einstein’s space, of course, in contrast to that of Dante, lacks a pair
of distinguished opposite poles. It is as homogeneous as Euclid’s
space. U, results as a possible solution of the laws of gravitation,
provided they are made to include the so-called cosmological term
which introduces a universal constant a of the dimension of a distance
(and of the order of magnitude of the ‘world radius’).

Dropping two of its spatial dimensions we may picture U, as the
surface of a straight vertical cylinder of radius a and of infinite extent
in both directions. This shows that U, bas two separate ‘fringes,’
that of infinitely remote past and that of infinitely remote future, and
in this topological sense U, extends from eternity to eternity. With
the same reduction of dimensions the map of the universe U, of the
common Euclid-Bruno conception, i.e. of an empty world whose
metrical structure is described by special relativity, is a vertical plane,
and it therefore has but one connected fringe. It is this topological
difference between U, and U, (two fringes as opposed to one fringe)
to which in the last analysis the terms closed and open space allude.

{In Einstein’s cosmology the metrical relations are such that the
light cone issuing from a world point is folded back upon itself an
infinite number of times. An observer should therefore see infinitely
many images of a star (unless they are washed out by rarefied clouding
media in interstellar space or by diffraction), showing him the star
in states between which an ‘eon’ has elapsed, the time needed by
the light to travel around the sphere of the world. The present
would be shot through with the ghosts of the long ago. Moreover
the solution is unstable. Yet de Sitter found that the laws of gravita-
tion also admit the possibility of a mass-free world extending from
eternity to eternity in which the domain of the future emanating from
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a world point does not overlap with itself. The systematic shift of
the spectral lines of the most remote celestial objects, the spiral
nebulas, to the red side of the spectrum has been interpreted in terms
of an expanding universe, of which de Sitter’s construction provides
the simplest model (Weyl, Friedmann, Lemaitre, H. P. Robertson,
and others). For a one thus obtains a value ~ 10* cm. Incidentally
the behavior of every world satisfying certain natural homogeneity
conditions in the large (whether it is void or carries mass) follows this
model asymptotically when, in the process of expansion, the world
radius becomes essentially larger than a. (Compare also Section
23 C.) The postulate that for each world point O the two world
domains of active future and passive past are disjoint (not only in the
immediate vicinity of O but in their entire extent) rules out the possi-
bility of a world which is closed in its spatial as well as its temporal
dimensions. In such a world, that which happened once would,
to the tradition handed down from generation to generation, appear
as an eternal recurrence of the same events (Nietzsche’s ‘ewige
Wiederkunft’). }
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77. SUBFJECT AND OBFECT (THE SCIENTIFIC
IMPLICATIONS OF EPISTEMOLOGY)

The doctrine of the subjectivity of sense qualities has been inti-
mately connected with the progress of science ever since Democritus
laid down the principle, “Sweet and bitter, cold and warm, as well as
the colors, all these things exist but in opinion and not in reality
(véuw, ob ploet)’’; what really exists are unchangeable particles, atoms,
which move in empty space. Also Plato (Theaetetus, 156¢) holds that
“properties such as hard, warm, and whatever their names may be,
are nothing in themselves,” but arise in the encounter of ‘“motions”
originating in the subject and in the object. Reality is pure activity;
only in the ‘‘image,” in the consciousness suspended between the
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motions is suffering. Galileo may be mentioned as another witness,
““White or red, bitter or sweet, noisy or silent, fragrant or malodorous,
are names for certain effects upon the sense organs.”” He holds that
they can no more be ascribed to the external objects than the titilla-
tion or the pain which might be felt when things are touched. A
detailed discussion of this is given in the final sections of Descartes’
Principia and in his T'raité de la Lumiére (the theory of optical percep-
tion is indebted to him for important advances), likewise in Locke’s
Enguiry Concerning Human Understanding (Book II, Chap. 8, §§15~
22). The subjectivity of sense qualities must be maintained in two
regards, one philosophical, the other scientific. In the first place, such
a quality by its very nature can only be given in our consciousness
through sensation. One sees in it either an inherent attribute of
sensation itself or, upon deeper analysis, an entity belonging to the
intentional object which the act of consciousness puts before me. But
it remains manifestly incomprehensible how quality disjoint from
consciousness can be attributed as a property as such to a thing as
such. This is the fundamental tenet of epistemological idealism. In
the second place, the qualities in which the objects of the outer world
garb themselves for me do not depend on the objects alone. They also
depend quite essentially upon the concomitant physical circumstances,
for instance, in the case of color, on illumination and on the nature
of the medium between the object and my eye, and furthermore upon
myself, on my own psycho-physical organization. My sense of vision
does not grasp the objects where they are; rather, what I see is deter-
mined by the condition of the optical field in its zone of contact with
my sensuous body (the retina). These are scientific facts which even
the realist cannot deny. How differently the world would appear to
our vision if the human eye were sensitive to other wave lengths or if
the physiological processes on the retina were to transform the infinite-
dimensional realm of composite physically different colors not merely
into a two-dimensional but into a three- or four-dimensional manifold!

{To Locke we are indebted for the classical distinction of ‘sec-
ondary’ and ‘primary’ qualities; the primary ones are the spatio-
temporal properties of bodies — extension, shape, and motion.
Democritus, Descartes, and Locke held them to be objective. Locke
expresses himself as follows: “ The ideas of primary qualities of bodies
are resemblances of them, and their patterns do really exist in the
bodies themselves; but the ideas produced in us by the secondary
qualities have no resemblance of them at all” (op. cit., Book I, Chap.
8, beginning of §15). Although Descartes teaches that between an
actual occurrence and its perception (sound wave and tone, for
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instance) there is no more resemblance than between a thing and its
name, he yet maintains that the ideas concerning space have objective
validity because in contrast to the qualities we recognize them clearly
and distinetly. And a fundamental principle of his epistemology
claims that whatever we comprehend in such a way is true. In sup-
port of this principle, however, he has to appeal to the veracity of God,
who does not want to deceive us. Obviously one cannot do without
the idea of such a God who guarantees truth, once one has grasped the
principle of idealism and yet insists on building up the real world out of
certain elements of consciousness that for one reason or another seem
particularly trustworthy. ‘He is the bridge . . . between the lonely,
wayward and isolated thinking, which is certain only to its own
selfawareness, and the external world. The attempt turned out some-
what naive, but still one sees how keenly Cartesius measured out the
grave of philosophy. It is strange, though, how he uses the dear God
as the ladder to climb out of it. Yet even his contemporaries did not
let him get over the edge”’ (quotation from Georg Biichner’s philosoph-
ical notes, G. Biichner, Werke, Inselverlag Leipzig, 1922, pp.
268-269). Hobbes in his treatise De Corpore starts with a fictitious
annihilation of the universe (similar to Husserl’s “epoché”) in order to
let it rise again by a step-by-step construction from reason. But
even he uses as building material the general notions which form the
residue of experience, in particular those of space and time. This
viewpoint has its counterpart in the physics of Galileo, Newton, and
Huyghens; for here all occurrences in the world are constructed as
intuitively conceived motions of particles in intuitive space. Hence
an absolute Euclidean space is needed as a standing medium into which
the orbits of motion are traced. Well-known is Galileo’s pronounce-
ment in the ‘‘Saggiatore” (Opere, VI, p. 232), ‘“The true philosophy
is written in that great book of nature (questo grandissimo libro, 10
dico Uuniverso) which lies ever open before our eyes but which no one
can read unless he has first learned to understand the language and to
know the characters in which it is written. It is written in mathe-
matical language, and the characters are triangles, circles, and other
geometric figures.” }

Leibniz seems to have been the first to push forward to a more
radical conception: “Concerning the bodies I am able to prove that
not only light, color, heat, and the like, but motion, shape, and
extension too are only apparent qualities” (Philos. Schriften, VII,
p. 322). Also Berkeley and Hume are to be named here. For
d’Alembert, the justification for using the ‘“‘residue of experience’’ in
the construction of the objective world no longer lies in the clarity and
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distinctness of the ideas involved as it did for Descartes, but exclusively
in the practical success of this method. According to Kant, space
and time are merely forms of our intuition. Stumpf (Uber den
psychologischen Ursprung der Rawmvorstellung, 1873, p. 22) finds it
impossible to imagine the atoms as spatial bodies without color, whose
play of motion only engenders those oscillations of the ether which are
the carriers of color by virtue of their wave lengths; for no more than
color without spatial extension could space (according to Berkeley’s
and Hume’s doctrine) be imagined without the raiment of some
quality of color. Intuitive space and intuitive time are thus hardly
the adequate medium in which physics is to construct the external
world. No less than the sense qualities must the intuitions of space
and time be relinquished as its building material; they must be
replaced by a four-dimensional continuum in the abstract arithmetical
sense. Whereas for Huyghens colors were ‘in reality’ oscillations of
the ether, they now appear merely as mathematical functions of
periodic character depending on four variables that as coordinates
represent the medium of space-time. What remains is ultimately a
symbolic construction of exactly the same kind as that which Hilbert
carries through in mathematics.

The distillation of this objective world, capable only of representa-
tion by symbols, from what is immediately given to my intuition,
takes place in different steps, the progression from level to level being
enforced by the fact that what exists on one level will reveal itself as
the mere apparition of a higher reality, the reality of the next level.
A typical example of this is furnished by a body whose solid shape
constitutes itself as the common source of its various perspective
views. This would not happen unless the point from which it is
viewed could be varied and unless the different viewpoints actually
taken present themselves as instances of an infinite continuum of
possibilities laid out within us. We shall return to this in the next
section. A systematic scientific explanation, however, will reverse
the order; it will erect the world of symbols as a realm by itself and
then, skipping all intermediate levels, attempt to describe the rela-
tion that holds between the symbols representing objective conditions
on the one hand and the corresponding data of consciousness on the
other.

{Thus perspective teaches us to derive the optical image from the
solid shape of a body and from the observer’s location relative to the
body. A physical example, taken from among the upper levels, is
the constitution of the concepts ‘electric field’ and ‘electric field
strength.” We find that in the space between charged conductors a
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weakly charged ‘test particle’ experiences a certain force F = F(P)
when put at a given place P. Well determined as to size and direc-
tion, the force turns out to be the same whenever the test particle is
brought back to the same place P. Employing various test particles
we find that the force depends on the latter, yet in such a manner that

-F—:(P) may be split up into two factors:
F(P) = ¢- E(P),

where the vectorial factor E(P), the ‘electric field strength,’ is a point
function independent of the state of the test particle, while the scalar
factor e, the ‘charge’ of the test particle, is determined exclusively
by the inner state of the particle, depending neither on its position nor
on the conductors, and is thus found to be the same no matter into
what electric field we may place the particle. Here we start from the
force as the given thing; but the facts outlined lead us to conceive
of an electric field, mathematically described by the vectorial point

function E(P), which surrounds the conductors and which exists, no
matter whether the force it exerts on a test particle be ascertained or not.
The test particle serves merely to render the field accessible to obser-
vation and measurement. The complete analogy with the case of

perspective is obvious. The field E here corresponds to the object
there, the test particle to the observer, its charge to his position; the
force exerted by the field upon the test particle and changing according
to the charge of the particle corresponds to the two-dimensional aspect
offered by the solid object to the observer and depending on the

observer’s standpoint. Now the equation F = ¢ - E is no longer to

be looked upon as a definition of E but as a law of nature (to be cor-
rected if circumstances warrant it) determining the ponderomotoric

force which an electric field E exerts on a point charge e. Light,
according to Maxwell’s theory, is nothing but a rapidly alternating
electromagnetic field; in our eyes, therefore, we have a sense organ
capable of apprehending electric fields in another manner than by
their ponderomotoric effects. A systematic presentation will intro-

duce E, the electric field strength, in a purely ‘symbolic’ way without
explanations and then lay down the laws it satisfies. (for instance, that
the line integral of E extended over a closed curve in space is zero) as
well as the laws according to which ponderomotoric forces are con-
nected with it. If forces are considered observable, the link between
our symbols and experience will thus have been established. }
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One may say that only in the general theory of relativity did
physies succeed in emancipating itself completely from intuitive space
and time as means for the construction of the objective world. In the
framework of this theory (which by the way includes all previously
adopted standpoints either as particular or as limiting cases), the
relation of subject and object may be illustrated by means of a typical
example, the observation of two or more stars. By way of simplifica-
tion we assume the apprehending consciousness to be a point eye whose
world line may be called B. Let the observation take place at the
moment O of its life. The construction is to be carried out in the
four-dimensional number space, only for the sake of readier intelligi-
bility we shall use a geometrical diagram instead. Let 2 be the world
lines of two stars. The rearward light cone K issuing from O will
meet each of the two star lines 2 in a single point, and the world lines

Figure 3. Data on which observation of angular distance of two stars depends.

A of the light signals which arrive at O from the stars join these points
to O on the cone K. With the help of a construction, describable in
purely arithmetical terms, it is possible to determine from these data
the numerical measure of the angle ¢ under which the stars will appear
to the observer at 0. This construction is invariant, that is, of such a
kind as to lead to the same numerical measure ¢ if, after an arbitrary
deformation of the entire picture, it is carried out anew on the deformed
image according to the same prescription. And everything is con-
tained in it — the dependence of the angle on the stars themselves, on
the metrical field extending between the stars, on the observer’s
position in the world (spatial perspective), and on his state of motion
(i.e. on the direction with which the line B passes through O; this is the
velocity perspective, known under the name of aberration). The
angles ¢ between any two stars of a constellation determine the objec-
tively indescribable, only intuitively experienced, visual shape of the
constellation, which appears under the equally indescribable assump-
tion that I myself am the point eye at 0. If they coincide with those

115



NATURAL SCIENCE

of a second constellation, then both constellations at the moment O
appear to be of equal, otherwise of different, shapes.

The objective world simply s, it does not happen. Only to the
gaze of my consciousness, crawling upward along the life line of my
body, does a section of this world come to life as a fleeting image in
space which continuously changes in time.

{An important role in the construction of the angles ¢ is played
by the ‘splitting’ of the world into space and time carried out at every
moment O of my consciousness. Objectively this is to be described
as follows: If eq, 1, s, €5 are the components of a vector indicating the
direction of B at O, then my immediate spatial vicinity will be spanned
by the totality of all line elements (dzo, dz1, dzs, dzs) issuing from O
which are orthogonal to e, i.e. which satisfy the equation

3
z girdzicer = 0, gir = gu(0).}

1,k=0

Thus the objective state of affairs contains all that is necessary to
account for the subjective appearances. There is no difference in
our experiences to which there does not correspond a difference in the
underlying objective situation (a difference, moreover, which is
invariant under arbitrary coordinate transformations). It comprises
as a matter of course the body of the ego as a physical object. The
immediate experience is subjective and absolute. However hazy it
may be, it is given in its very haziness thus and not otherwise. The
objective world, on the other hand, with which we reckon continually
in our daily lives and which the natural sciences attempt to crystallize
by methods representing the consistent development of those criteria
by which we experience reality in our natural everyday attitude —
this objective world is of necessity relative; it can be represented by
definite things (numbers or other symbols) only after a system of
coordinates has been arbitrarily carried into the world. It seems to
me that this pair of opposites, subjective-absolute and objective-
relative, contains one of the most fundamental epistemological
insights which can be gleaned from science. Whoever desires the
absolute must take the subjectivity and egocentricity into the bargain;
whoever feels drawn toward the objective faces the problem of rela-
tivity. This thought is vividly and beautifully developed in the intro-
duction of Born’s book on relativity theory, quoted earlier.

Within the natural sciences the conflicting philosophies of idealism
and realism signify principles of method which do not contradict each
other. We construct through science an objective world which, in

116



SPACE AND TIME

order to explain the sense data, must satisfy the following fundamental
principle that was already mentioned on p. 26: A difference in the
perceptions offering themselves to us ts always founded on a difference in
the real conditions (Helmholtz). Lambert, in his Photometria (1760),
enunciates as an axiom the following special case: ““ An appearance is
the same whenever the same eye is affected in the same way.” Here
the natural sciences proceed realistically.

{For as long as I do not go beyond what is given, or more exactly,
what is given at the moment, there is no need for the substructure of an
objective world. Even if I include memory and in principle acknowl-
edge it as valid testimony, if I furthermore accept as data the con-
tents of the consciousness of others on equal terms with my own, thus
opening myself to the mystery of intersubjective communication, I
would still not have to proceed as we actually do, but might ask
instead for the ‘transformations’ which mediate between the images
of the several consciousnesses. Such a presentation would fit in with
Leibniz’s monadology. Instead of constructing the perspective view
which a given body offers from a given point of observation, or con-
versely constructing the body from several perspective images, as it is
done in photogrammetry, we might eliminate the body and formulate
the problem directly as follows: let 4, B, C each represent a conscious-
ness bound to a point body, and let K be a solid contained in their
field of vision. The task is to describe the lawful geometrical con-
nections between the three images which each one of the three persons
A, B, C receives of K and of the locations of the other two persons.
This procedure would be more unwieldy; in fact, it would be bound to
fail on account of the limitations and gaps in any single consciousness
as compared to the complete real world. At any rate, there can be
no doubt that in this respect science proceeds in tune with a realistic
attitude. }

On the other hand science concedes to idealism that its objective
reality is not given but to be constructed (nicht gegeben, sondern
aufgegeben), and that it cannot be constructed absolutely but only
in relation to an arbitrarily assumed coordinate system and in mere
symbols. Above all the central thought of idealism comes into its
own in the converse of the above fundamental principle: the objective
image of the world may not admit of any diversities which cannot manifest
themselves in some diversity of perceptions; an existence which as a
madtter of principle is entirely inaccessible to perception is not admitted.
Leibniz says concerning the fiction of absolute motion (Leibniz's fifth
letter to Clarke, §52): “I reply that motion is indeed indepeundent of
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actual observation, but not of the possibility of observation altogether.
Motion exists only where a change accessible to observation takes
place. If this change is not ascertainable by any observation then it
does not exist.” To be sure, many physically different colors will
produce the same sensation of red; but if one sends all these various
reds through the same prism, then the physical differences will mani-
fest themselves in the perceptible differences between the streaks of
colored light emerging from the prism. The prism, so to speak,
unfolds the hidden differences to our senses. A difference which
can in no way be broken down for our perception is non-existent.
This is of great importance as a methodical principle of theoretical

construction.

{The formula customarily given (Schwarzschild formula) for
the metrical field surrounding a mass, such as the sun, can be inter-
preted as follows, if the coordinates occurring in it are taken to stand

L.
Reality

Figure 4. Schematic representation of a theory with a redundant part Z.

for a mapping of the real space into a Euclidean one: ‘(I) In reality
Euclidean geometry holds. But the spherically symmetric field of
gravity surrounding the mass center O acts upon rigid bodies in such a
fashion that a radially directed rod at P is foreshortened in the ratio
/1T = 2a/r:1 (where r = OP and a is a constant determined by the
mass), while a rod perpendicular to OP remains unchanged.” Rods
after all are known to change their length with changing temperatures,
why should they not react in a similar way to a gravitational field?
But in making use of a certain other coordinate system one arrives at
the following description: ‘(II) In reality Euclidean geometry holds.
But the rod at P, no matter what its direction, will be changed in the
ratio (1 + a/2r)%:1 by the field of gravitation.” Both descriptions
express the same factual situation. To every possible coordinate
system there corresponds a corrective prescription salvaging Euclidean
geometry. Yet one is as good as the other. Each introduces into the
factual state of affairs an arbitrary element which has no perceptually
confirmable consequences and which therefore must be eliminated.
And it can be eliminated by employing, with Einstein, none but the
physical geometry as it is defined by the direct comparison of measur-
ingrods. (That geometry is, of course, not the Euclidean one.) Each
of the two theories can, if properly formulated, be split into two parts:
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the theory (E) of Einstein, and an addition (Z) which is neither con-
nected with (E) nor touching on reality and which must therefore be
shed (compare the schematic diagram in Figure 4).

In Bohr’s model of the hydrogen atom the period of the emitted
light has nothing to do with the time in which the electron completes a
revolution around the nucleus. Though it explains the spectrum as
satisfactorily as could be wished, this lack of observable data corres-
ponding to the period of revolution of the electron is felt as a disturb-
ing feature which ought to be removed. In order to clarify the idea
of relativity, Poincaré once set up the fiction that overnight, while all
consciousness was asleep, the world with all its bodies in it, including
my own, had been magnified in a definite ratio; awake again, neither
I nor anyone else would notice the change in any way. In the face of
such an event science makes common cause with the idealist; for what
on earth could be meant under such circumstances by the statement
that the world was magnified? A difference may be posited only
where the assumption of equality would conflict with the principle
that equals under equal conditions (especially equal objective char-
acteristics, location, and motion, of the observer) will be perceived as
equal® (and with the principle of causality).

Between the real world and the given there is a correspondence, a
mapping in the mathematical sense. Yet, while on one side there is
the one, quantitatively determined, objective world, we have on the
other not only what is actually given at the moment but also the
possible perceptions (perhaps remembered, or expected in response to
definite intentions of will) of an ego; and further there enter into this
correspondence, besides the unique objective state of the world, the
possible objective states of this perceiving ego (world line of its body,
etc.). Helmholtz sets up the principle of the ‘‘empiristic view”
(Phystologische Optik, 111, p. 433): “The sensations are signs to our
consciouness, and it is the task of our intelligence to learn to under-
stand their meaning.”” In this one may agree with Helmholtz as he
means it and yet be of the opinion with Husserl that the spatial object
which I see, notwithstanding all its transcendency, is perceived as
such bodily in its concreteness (Husserl, Ideen zu einer reinen Phéno-
menologie, in his Jahrbuch fir Philosophie, Vol. 1, 1913, pp. 75, 79);
for within the concrete unity of perception the data of sensation are
animated by ‘interpretations,” and only in union with them do they
perform the ‘function of representation’ and help to constitute what
we call ‘the appearance of’ color, shape, etc. A dog approaching

3 This principle cannot be taken as a definition of objective equality but only
as an implicit requirement, because the concept of equality occurs in it twice:
equals under equal conditions. . . .
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another dog will see and smell ‘a fellow dog,” an integrated whole that
is more than a ‘bundle of sensations.’” We merely describe here one
of the levels through which the process of constitution of the external
world will pass. And there is no denying that the definite manner in
which a thing is bodily put before me by means of those animating
functions will be directed by a multitude of previous experiences.
For how else should we describe this than by saying that “we always
imagine such objects to be present in our field of vision as must be
present in order to bring about the given impression under ordinary
normal conditions for the use of our eyes” (Helmholtz, Phystologische
Optik, 111, p. 4). Helmholtz speaks here of ‘“‘unconscious inferences.”’
This sounds somewhat questionable; yet he stresses explicitly that only
in their result do they resemble inferences, more accurately inferences
by analogy, although the underlying psychic acts probably are quite
different from acts of conscious inference and although their effects
cannot be annulled by better knowledge. The sense impression of a
mirror image, or of a broken rod immersed in water, or of the rainbow,
does not deceive; only the bodily object which, as Husserl says, is put
before me by this impression is an error. What truly exists can be
ascertained only by taking into consideration all sensuous signs, which
in the examples adduced above will soon reveal the prevalence of
‘abnormal’ conditions. Only imagine our eyes to be sensitive to light
whose wave length is of the order of magnitude of the atomic distances
in solids; how difficult it would then become for us to interpret the
optical ‘signs’ (the Laue interference patterns)! In the ultimate
description of the connection between appearance and reality one
therefore does better to ignore all intermediary levels of constitution. }

And what significance does this objective world, representable only
in symbols, have for the everyday life of man, taking place as it does
in the sphere of integrated data of perceptions? Helmholtz answers
(op. cit., p. 18), “Once we have learned to read those symbols cor-
rectly we shall be able with their help to design our actions so that
they yield the desired result, namely, that the expected new sensa-
tions will arise. A different comparison between conceptions and
things not only does not exist in reality — all schools agree on this
point — but a different manner of comparison is inconceivable and
would be devoid of meaning. . . . Thus such a presentation (Vorstel-
lung) of a single individual body is indeed already a concept (Begriff)
which comprises an infinite number of intuitions in temporal sequence
all of which can be derived from it.# The presentation of a single

“In agreement with a number of philosophers writing in English the term
presentation has been chosen here as the equivalent of Kant’s and Helmholtz’s
Vorstellung and Locke’s idea. [Translator’s note.]
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individual table that I carry within ‘me is correct and accurate if I
am able to derive from it correctly and accurately the semsations I
shall experience when I bring my eyes or my hands into this or that
definite position with respect to the table. What other kind of
similarity there can subsist between such a presentation and the
object represented by it I cannot comprehend” (op. cit., p. 26). In
the same sense, Leibniz remarks concerning the Cartesian principles
(Philosophische Schriften, IV, p. 356), “Of the sense data we cannot
know more, nor do we have to require more, than that they are in
agreement with each other as well as with the indisputable dictates
of reason and that thus to a certain extent the future may be predicted
from the past. To search for a truth or reality other than thus
vouched for would be futile — the sceptic may not demand, the
dogmatist not promise more.” Or Husserl (Ideen, p. 311), ‘“To the
essence of a thing-noema there belong ideal possibilities of unlimited
development of concordant intuitions that follow, moreover, prescribed
directions of determinate type.” But in the erection of empirical
reality discrepancies will occur which will force us to make ‘“correc-
tions.” Owing to its empirical character cognition of reality must of
necessity pass through errors. ‘What is given never implies material
existence as certain and necessary but merely as presumptive reality.
This means that it can always happen that the further course of
experience will force one to abandon what with good empirical justi-
fication had earlier been posited.” (Husserl, Ideen, p. 86.) It
might well be within the range of possibility that in the moving pic-
ture of perceptions every beginning of concordance would irreparably
““explode.” In that case the attempt to harmonize them according to
principles of reason would fail, and no real world would be constituted.

The requirements which emerge from our discussion for a correct
theory of the course of the world may be formulated as follows:

1. Concordance. The definite value which a quantity occurring in
the theory assumes in a certain individual case will be determined
from the empirical data on the basis of the theoretically posited con-
nections. Every such determination has to yield the same result. Thus
all determinations of the electronic charge e, that follow from observa-
tions in combination with the laws established by physical theory,
lead to the same value of e (within the accuracy of the observations).
Not infrequently a (relatively) direct observation of the quantity in
question (for instance, of the location of a comet among the stars at a
certain moment) is compared with a computation on the basis of other
observations (for instance, the location at the desired moment com-
puted according 1o Newton’s theory from the locations on previous
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days). The demand of concordance implies consistency,® yet trans-
cends the latter in that it brings the theory in contact with experience.

2. It must in principle always be possible to determine on the
basis of observational data the cefinite value which a quantity occur-
ring in the theory will have in a given individual case. This expresses
the postulate that the theory, in its explanation of the phenomena,
must not contain redundant parts.

Hume attempted to uphold with inexorable consistency the view-
point that the given is the whole of reality. Since it became apparent
through him that this viewpoint fails completely in the explanation
of those cognitive positions which play a basic role in everyday life
and in science, he was indeed the first to reveal the problem of reality
in its full difficulty. Reason in its function of constituting reality is
described by him as the faculty of imagination. With complete
sincerity he confesses the irreconcilable conflict between thought and
life, into which he finds himself thrown. To carry his approach
through is as impossible as to found arithmetic on nothing but the
concretely existing numerals. The positivism of a Mach or Avenarius
appears to me merely as a less consistent renewal of Hume's attempt;
for in their systems theoretical hypostases, strictly avoided by Hume,
play once more a considerable role. But then we are back in the
midst of theoretical construction, which supplements the given in the
interest of totality, and we are no longer forced to use sense data as
our building material. Kant’s transcendental idealism reestablished
the insights already gained by Leibniz. The content of this Section
may be considered as an elucidation of Kant’s concept of reality as
““that which is connected with perception according to laws.” He
advances beyond Leibniz in transmuting the old metaphysical onto-
logical concepts of substance and causality into methodical principles
for the construction of empirical reality.

{In the part on logic we had insisted that existence could not be
stated about something exhibited, that the logical symbol Z. carries
an index x which refers to a blank. This seems to be contradicted by
a proposition such as ‘this chair is real.’” But the assertion of real
existence contains either, idealistically interpreted, the prediction of a
nmultitude of concordant impressions expected in response to certain
intentions of will, or, realistically interpreted, the statement that a
thing z exists which stands in a certain metaphysical relation to the
given chair phenomenon.

5 Indeed in an inconsistent theory the formula ¢ = 2¢ would be deducible, and
hence the actual value e as well as 2¢ for the electronic charge could be derived
from such a theory in combination with the observational data.
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Concerning the problem of realism versus idealism we find a
striking analogue in geometry, which has a factual connection with it
in so far as in the objective world the coordinate system is, as it were,
the residue of the annihilation of the ego. As in Section 12, we con-

-
sider vectors x in a plane and represent them in terms of a basis con-

sisting of two linearly independent vectors ;;, ;;, thus:; = 8;1 + 52:;2
(compare D 69) The numbers £, £, which are uniquely determined

by z and el, eg, are called the coordinates of z with respect to the basis

(61, ez). We construe the vectors in our plane as analogues of the
objects in the real world, bases as analogues of real observers, the
numbers as analogues of subjective phenomena, and thus speak in
our analogy of the pair of coordmates (&4, &) as the ‘appearance of the

obJect z for the observer (el, ez) > For the geometric vector plane we
can construct an algebraic model, defining a vector z as a pair of
numbers (zi1, ) and the operations of adding two vectors z, ¥ and of

multiplying a vector ; by a number « as follows:
(Tyy, 2) + (Y, ¥2) = @1+ Y1, T2 + ¥2), a2y, 22) = (az1, axs).

Calling the numbers zi, z, the absolute coordinates of ; = (x1, Z2)

and 7; = (1, 0), 72 = (0, 1) the absolute basis in our model, we realize
at once that the absolute coordinates of a vector are its relative
coordinates with respect to the absolute basis. Transition from the
geometric vector space, in which all bases are equally admissible, to
its algebraic model is effected by assigning, as it were, to an arbitrarily
chosen basis the role of absolute basis. On the other hand, the indi-
vidual character of the various bases in the model can be extinguished
and all bases put on an equal footing by ascribing objective significance
only to such properties and relations as are definable in terms of the
two fundamental operations, or, what is the same, as are invariant
under arbitrary linear coordinate transformations. The relation of a
vector to its absolute coordinates is not objective, but is a special case

of the objective relation prevailing between a vector z, a basis (e, es),

and the coordinates £, £; of z relative to (e, e;). Our analogy assumes
that only the realm of numbers (the appearances) but not the geo-
metrical space (the things themselves) is open to our intuition.
Hence the model is the world of my phenomena and the absolute basis
is that distinguished observer ‘I’ who claims that all phenomena are
as they appear to him: on this level, object, observer and appearance
all belong to the same world of phenomena, linked however by rela-
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tions among which we can distinguish the ‘objective’ or invariant
ones. Real observer and real object, I, thou, and the external world
arise, so to speak, in unison and correlation with one another by sub-
jecting the sphere of ‘algebraic appearances’ to the viewpoint of
invariance. On this issue our theory bears out Leibniz (compare, for
instance, Nouveauz Essais, Libre IV, Chap. 11) as opposed to Des-
cartes, who through his ““cogito ergo sum’’ assigns to the reality of the
ego a precedence in principle over the reality of the external world.
The analogy renders the fact readily intelligible that the unique ‘I’ of
pure consciousness, the source of meaning, appears under the viewpoint
of objectivity as but a single subject among many of its kind.

Yet in truth, the absolute subject, I, remains forever unique, not-
withstanding the objective equivalence of the various subjects. This
is in agreement with the facts as I find them. On purely cognitive
grounds conscientalism is irrefutable, it can be carried through com-
pletely. But for all this the recognition of the ‘thou’ is demanded of
me not only in the sense that in my thinking I yield to the abstract
norm of ‘objectivity,” but in an absolute sense: Thou art for thyself
once more what I am for myself, conscious-existing carrier of the world
of phenomena. This step can be taken in our analogy only if we
pass from the algebraic model of affine vector geometry to its axio-
matic description, where the concepts of a vector and of the two
fundamental operations enter as undefined terms. In the axiomatic
system it is no longer necessary to enforce the equivalence of all

coordinates by abstraction, for in it a definite pair of vectors (e, es)
can be distinguished only by an individual act of exhibition. Pattern
and source of any such demonstrative act is the word ‘I’ Thus
axiomatics reveals itself once again (compare p. 66) as the method
of a purified realism which posits a transcendental world but is content
to recreate it in symbols.

The postulation of the ego, of the ‘thou,” and of the external world
is without influence upon the cognitive treatment of reality. It is a
matter of metaphysics, not a judgment but an act of acknowledgment
or belief (as Fichte emphasizes in his treatise Uber die Bestimmung des
Menschen). Yet this belief is the soul of all knowledge. From the
metaphysico-realistic viewpoint, however, egohood remains an
enigma. Leibniz (Metaphysische Abhandlung, Philosophische Schrif-
ten, IV, pp. 454-455) believed that he had resolved the conflict of
human freedom and divine predestination by letting God (for suffi-
cient reasons) assign existence to certain of the infinitely many possi-
bilities, for instance to the beings Judas and Peter, whose substantial
nature determines their entire fate. This solution may objectively
be sufficient, but it is shattered by the desperate outcry of Judas,
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“Why did I have to be Judas?”’ The impossibility of an objective
formulation of this question is apparent. Therefore no answer in the
form of an objective insight can ensue. Knowledge is incapable of
harmonizing the luminous ego with the dark erring human being that
is cast out into an individual fate.

Postulation of the external world does not guarantee that such
a world will rise from the phenomena through the cognitive work of
reason which attempts to create concordance. For this to take place
it is necessary that the world be governed throughout by simple
elementary laws. Thus the mere positing of the external world does
not really explain what it was meant to explain, the question of the
reality of the world mingles inseparably with the question of the
reason for its lawful mathematical harmony. The latter clearly
points in another direction of transcendency than that of a trans-
cendental world; towards the origin rather than the product. Thus
the ultimate answer lies beyond all knowledge, in God alone; emanat-
ing from him, the light of consciousness, its own origin hidden from it,
grasps itself in self-penetration, divided and suspended between sub-
ject and object, between meaning and being.}

18. THE PROBLEM OF SPACE

{A. OriGIN OF THE PRESENTATION OF SPACE. A detailed
investigation into the psychological origin of the presentation of space
was not undertaken until the 19th century. The sense regions which
contribute above all to the constitution of space are the visual and
tactile impressions. Bain added to these the sensations of motion and
the muscular feelings.

A single eye sees the qualities spread out in a two-dimensional
field of vision. The latter is two-dimensional because it is dissected
by any one-dimensional curve which runs through it. It is a basic
physiological fact that the place in the field of vision at which we
localize a visual impression is determined by the portion of the retina
that is stimulated. We have here a one-to-one continuous ‘mapping’
in the mathematical sense. The places in the field of vision are con-
tinuously connected in the same way as the places on the retina to
which they correspond. J. Miiller, the originator of the law of the
specific sense energies, even says (Zur vergleichenden Physiologie des
Gesichtssinnes, p. 54), “In any field of vision, the retina sees only itself
in its spatial extension during a state of affection. It perceives itself
as spatially dark when the eye is at rest and completely closed.” A
great step forward is marked by Helmholtz’s Physiologische Optik, as
he no longer speaks of identity but of correspondence. The same
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remark clarifies the famous problem as to why things are seen upright
(in the objective space, the image on the retina is turned through 180°
as compared to the original). If we confront the ‘objective’ space on
one side and my intuitive space on the other, and if we assume both
to bear a Euclidean metrical structure, then the utmost in faithfulness
that could be demanded of the correspondence between objective
thing and its image given in my intuition is an isomorphic (or similar)
mapping in the sense defined in Section 4. Such an isomorphism
would mean that all geometrical characteristics of the thing, describ-
able in terms of the metrical concepts of objective space, are reflected
in geometrical characteristics of the image expressed in terms of the
synonymous metrical concepts of intuitive space. But it is nonsensi-
cal to ask questions which would be meaningful only if the thing as
well as its image were located in the same space.

The field of vision has indeed a metrical structure; the resting eye
undoubtedly is capable of apprehending something like shape, which
here appears as a quality of what is seen, and of distinguishing different
shapes. Such shape, however, is similar neither to the thing seen nor
to the objective image produced on the retina. (The deformation
with respect to the configuration formed by the rays of vision is
described by Helmholtz in Physiologische Optik, I1I, pp. 151-153.)
A more detailed shaping and partial correction of this metrical struc-
ture is achieved through the movements of the eyes; if a shift in the
direction of my glance has the effect of changing image I into image
II (i.e., objectively, if the same portion of the retina stimulated prior
to the movement by the visual impression I is stimulated after the
movement by the visual impression II), then I and II are mutually
congruent. Consequently, in the domain of ocular movements, shape
is no longer a given quality but a concept obtained by abstraction
from the relation of congruence (compare Section 2).

Lotze demands the existence of ‘local signs’ on the basis of his
physiological principle ‘“that only the qualities of sensation may be
considered as directly perceptible and intellectually differentiable”
(Wagners Handwirterbuch der Physiologie, 111, Section 1, 1846, p. 183)
and that from these qualities the mind has to build up the presentation
of spatial extension. The local signs are sensations whose qualitative
gradations form the basis of the different locations in the field of vision.
He has attempted to characterize them more precisely as impulses to
move the eyes so as to bring the place in question into the center of the
field of vision, and the feelings in the ocular muscles that would aceom-
pany such a movement. But here that is taken as basic which itself
calls for a basis. For the eye at rest has its continuously spread field
of vision, independently of the ocular movements, which belong to the
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next higher level in the constitution of space. An attempt by Wundt
to stamp color gradations as local signs is better passed over in silence.
Helmholtz, though accepting Lotze’s thesis, admits that the local signs
are qualitates occultae. In view of the indissoluble connection between
color and extension in the field of vision, Lotze’s thesis leads to the
problem (cf. Poincaré, La valeur de la science, ed. Flammarion, p. 91)
of explaining how the one sensation can split up into the two com-
ponents of color and extension — how, in other words, it is possible
that'two sensations of the same red produced at two different points
P, @ of the retina should have a close affinity which is absent in the
case of a red at P and a green at Q. But if one understands well the
punctiform character of a simple sensation, one will hardly be inclined
to consider that which gives the red its extensiveness again as a con-
tinuously graded sensation, but will acknowledge with Kant and
Fichte (Bestimmung des Menschen, ed. Medicus, III, p. 326): “I am
originally not only sentient but also intuiting.” There ¢s something
for me only inasmuch as a continuum of quality covers a (temporal
or spatio-temporal) continuum of extension. This conceded, sensa-
tions as local signs become redundant.

How about the visual impressions of rest and motion? When I
glance up and down I have the impression that the things in my field
of vision stay at rest, although their images are produced at varying
places of the retina. But this is true only when the ocular movement
is produced voluntarily by the motor apparatus of the eye. Thus it
is here not a question of the muscular feelings connected with the
ocular movement but of the voluntary intentions. There exists an
original impression of rest and motion (change). A4 thing gives the
impression of being at rest, if its retina tmage does not shift about and if at
the same time no ocular movements are intended. Between the dis-
placements of the retina image and the voluntary intentions directing
the ocular movements there exists a system of compensations which
experience apparently has developed to considerable refinement. The
task is simplified by a circumstance known as Listing’s law. It states
that the eye cannot be voluntarily rotated while fixing a definite point
in the field of vision, but that any one such point determines (except
for minute fluctuations) only one corresponding position of the eye.
Thereby the three degrees of freedom of the eye ball are reduced to
two. The possibility of turning freely the direction of sight in response
to the will is made use of when certain changes in the field of vision are
‘interpreted’ as motions.

The immediate impression of rest may not be invoked as ‘testi-
mony of the senses’ for a refutation of the physical theory of
relativity. For we saw that the objective ‘explanation’ of this phe-
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nomenon (which after all can only consist in exhibiting an objective
difference where a difference exists among intuitive data) takes
recourse only to the idea of relative motion of physical entities cover-
ing each other (displacement of the image on the retina) and to the
dynamical concept of motion (voluntary intentions, which, through mus-
cular forces, cause the eye ball to deviate from its natural movement
as it is conditioned by the field of inertia and by the eye’s imbedded-
ness into the human body). The same holds for the motory sensations
of our body; they do not tell of ‘absolute motion’ but are invari-
ably sensations of acceleration, indicating that the body or part of it is
torn_out of its natural inertial motion and registering the ensuing
dynamical disturbances.

The optical perception of depth, as Wheatstone has shown strik-
ingly by the stereoscope, is closely tied up with binocular vision. (In
addition, sensations produced by the accommodation effort come into
play.) The positions in the fields of vision of the two eyes are in
one-to-one correspondence, with the effect that the images formed at
corresponding places are seen as one. The stereoscopic apperception
of depth depends on the disagreement between the two images, which
results when the same color quality and in particular the same con-
tours do not appear at corresponding places of the two fields of vision.
The details form a matter of dispute between two rival theories, a
“nativistic”’ theory, represented especially by Hering, and the
“empiristic” theory of Helmholtz. The former places all responsi-
bility on the sensations, maintains that the stimulation of correspond-
ing points on the two retinas, e.g. of the two retinal foveas, produces a
simple sensation, and ascribes to the places on the retina, in addition
to local signs indicating direction, a depth value modifying the sensa-
tion. Helmholtz’s theory, on the other hand, considers optical depth
as the result of a constitutive process. Only the latter theory is easily
reconcilable with the facts. Yet it must be added, in the sense of the
nativistic theory, that with the dimension of depth something new and
original emerges. With its help the material of the two preceding
levels — the two-dimensional purely visual field and the field of ocular
movement — serves to constitute the centered three-dimensional space
in which the body of the ego finds its position, though still the dis-
tinguished position of the center. (On the two previous levels we
evidently do not yet have such a body-ego.) In the case of the
(involuntary or voluntary) ‘reversal’ of the perspective interpretation
of a plane figure (compare, for instance, Helmholtz, Physiologische
Optik, 111, p. 239), the ‘animating’ or ‘integrating’ function which
converts the figure in the field of vision into the appearance of an
object hit by the visual ray in centered space is felt particularly
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clearly. It is on this level, too, that the tie-up with the localization
field of the sense of touch and of the movements of limbs occurs. The
grasping for the seen object is constantly used as a control in the
pertinent psychological experiments on vision. Husserl emphasizes
that “all these facts, allegedly mere contingencies of spatial intuition
that are alien to the ‘true,” ‘objective’ space, reveal themselves,
except for minor empirical particularities, as essential necessities”
(Ideen, p. 315); and in this sense O. Becker has given a more detailed
phenomenological description of the constitutive levels of spatiality.

By walking toward the indefinitely far horizon of the centered
space and by the displacements connected therewith, by the feeling
of the free possibility of bodily movement in response to voluntary
intentions, the homogeneous space arises from the centered one.
Only at this stage the body becomes an equal among other spatial
objects, and we become capable of adopting in imagination someone
else’s standpoint. Only this space can be conceived as being one and
the same for several subjects; it is the presupposition for the construc-
tion of the intersubjective world. And thus the ascertainment of the
orientation of objects in it is capable of intersubjective control and
correction.

As opposed to Aristotle, who held that space is an alodnrov kowvéy,
Berkeley has taken the view that there are only distinet sense spaces.
Stumpf (op. cit., p. 287) objects to this by asking, “Are we to believe
that also the duration of a tactile sensation and that of a visual sensa-
tion are heterogeneous contents?”’ Berkeley may be right in that the
pre-spatial localization fields (of the first and second levels) are
separate ones for the senses of touch and vision. But beginning with
the third level it can only be a question of one space, which compre-
hends the sense data of touch as well as vision. Thus space becomes
the connecting link between the various sense domains. Bain's
association theory of space aims at bringing out this function of it.
In more precise form, such a theory has been developed by Poincaré.
He first distinguishes qualitative changes and motions by pointing out
that the latter can be reversed by a movement of the ego-body, which
betrays itself by voluntary intentions and accompanying kinesthetic
sensations (La valeur de la science, Chap. IV, §§1-4). He then
attempts to set up criteria for the coincidence of two points in space
arrived at by different series of kinesthetic sensations and voluntary
intentions; and finally he investigates the ‘mapping’ upon one another
— usually interpreted as identification — of the spaces appertaining
to different sense organs (for instance, to the two finger-tips, or to
the visual sense of the left eye and the tactile sense of the right thumb).
According to this view, the statement that the sense of vision, but not
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that of touch, reaches into the distance merely brings out the fact that
two places in the space of any sense organ must be coincident if they
correspond to two coincident places in the space of a tactile organ;
while to two non-coincident places in a tactile space there may corres-
pond two coincident places in the visual space. J. S. Mill accepted
Bain’s view, except that his presentation of space is not made up of
Bain’s sensations and their associations but emerges from them by
creative synthesis (‘psychic chemistry’). All these theories ignore
the undeniable data on the lowest levels of constitution that do not
possess the character of sensations, such as juxtaposition in the pure
field of vision. }

B. Tet Essexce or SpaceE. The penetration of the This (here-
now) and the Thus is the general form of consciousness. A thing
exists only in the indissoluble unity of intuition and sensation, through
the superimposition of continuous extension and continuous quality.
Phenomenologically it is impossible to go beyond this. If, meta-
physically, with Plato, one lets the passive consciousness spring from
the encounter of two ‘motions,” one originating with the ego, the other
with the object, then one will tend to relegate quality to the sphere
of the object, extension to that of the ego (and not vice versa, since
extension is the qualitatively undifferentiated field of free possibilities,
while the concrete variety resides in the qualities). “Translucent
penetrable space pervious to sight and thrust, that purest image of my
knowledge (Wissen),”’” so Fichte says (Werke, ed. Medicus, III, p.
325), “is not seen but intuited, and in it my seeing itself is intuited.
The light is not without but within me, and I myself am the light.”
But the manner in which this intuition as an integrating force pene-
trates the sense data and utilizes their material is largely conditioned
by experience.

The fact that both constituents, extension and quality, are bound to
each other is the root of Aristotle’s thesis of the impossibility of empty
space. Thus Hume interprets it (Treatise, Book 1, Part IT) (in which
connection it must be remembered that the spatial — or, more exactly,
the spatio-temporal — separation is a fact as immediately ascertain-
able as spatio-temporal contact). But only through a metabasis eis
allo genos can this essential epistemological fact be turned about into
an assertion concerning substantial-physical events, leading to such
conclusions as Descartes drew (and which were ridiculed by Hume),
namely, that the walls of a box would have to touch if the latter were
pumped empty. Leibniz denies emptiness on grounds connected with
the perfection of the world and the principle of sufficient reason. He
explains the fact that space is bound to the sensuous qualities by
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denoting space, together with time, as the order of the phenomena.
Stumpf (op. cit., pp. 15, 26) objects, “When we distinguish different
orders, we have to acknowledge in each case a specific absolute content
with respect to which the order takes place,” and consequently he
asserts that ‘‘space denotes, rather, that positive absolute content
upon which order is based.” He demands that positional relations
between points in space must be founded in a ‘position’ of the indi-
vidual points severally, and by adopting this logical principle of the
self-insufficiency of relations (which he may have taken over from
F. Brentano, Zur Lehre von Raum und Zeit, Kant-Studien, XXVTI) he
bars himself from an understanding of the relativity of position.

Since the mere Here is nothing by itself that might differ from any
other Here, space is the principium individuationis. It makes the
existence of numerically different things possible which are equal in
every respect. That is why Kant contradistinguishes it as the form
of intustion from ‘‘the matter of phenomena, i.e. that which corre-
sponds to sensation.” Here lies the root of the concepts of similarity
and congruence. Leibniz infers from this the ideality of space and
time; for they violate the principle of the identity of indiscernibles,
which — along with Spinoza — he postulates as necessary in the
domain of substances (namely as a consequence of the principle of
sufficient reason).

The dual nature of reality accounts for the fact that we cannot
design a theoretical image of being except upon the background of the
posstble. Thus the four-dimensional continuum of space and time is
the field of the a prior: existing possibilities of coincidences. That is
why Leibniz calls the ‘abstract space the order of all positions assumed
to be possible” and adds that ‘consequently it is something ideal”
(Leibniz’s fifth letter to Clarke, §104).

{If we state the distance of the earth from the sun in yards, this
statement acquires a meaning verifiable through what is given only
if a rigid ladder, on which a scale has been marked off by means of a
movable yardstick, is placed with one end upon the earth and with the
other against the sun. The physically clearest realization of a rigid
body is the crystal. If coordinates are to have an immediately
ascertainable meaning, we must imagine the whole world to be filled
out by & crystal. Among the motions of the crystal lattice that carry
it into itself (covering motions) we can distinguish the translations by
their peculiar properties; the covering translations can be used (by
actually carrying out the translative motions) to introduce number
triples as coordinates for the atoms of the lattice, and these can then
be employed as position marks in the entire space. But that ladder
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joining the earth and the sun is non-existent, its mensuration by a
rigid yard stick is not actually carried out. Similarly the ‘coordinate
crystal’ fails to exist and the covering translations are not carried out.
Indeed their ideality is essential, for their existence would produce real
forces which would influence the course of world events. As to the
structure discussed in Section 16, we may assert only the possibility
of ascertaining it from events producible by the experimenter’s free
interference. The geometrical statements, therefore, are merely ideal
determinations, which taken in individual isolation lack any meaning
verifiable by what is given. Only here and there does the entire
network of ideal determinations touch upon experienced reality, and
at these points of contact it must ‘check.” That, expressed in the
most general terms, may well be called the geometrical method. “It
must be admitted that he who undertakes to deal with questions of
natural sciences without the help of geometry is attempting the
unfeasible,” Galileo says (Dialogo, Opere, VII, p. 229). Enemies of
this method are, on the one hand, the empiricists, because any aprioris-
tic construction is a thorn in their flesh; they fondly imagine it to be
possible to grasp reality as a thing of one stratum, as it were, without
aprioristic ingredients, by a purely descriptive approach (Bacon versus
Galileo, Hume versus Kant, Mach versus Einstein). On the other
hand, out of hatred for the freedom, the open field of geometrical con-
struction, those metaphysicians oppose the method who build up a
rigid dialectical world of concepts as the true reality (Hegel versus
Newton). From both angles Aristotle (versus Archytas-Plato) is the
great anti-mathematician. }

C. A Priorr or A Posterior1i? The belief in the aprioristic
character of geometrical cognition, in particular of Euclidean geometry,
had taken deep roots in former times. Thus Kepler says (in his
famous letter to Galileo, April 1610; Galileo, Opere, X, p. 338), ““The
science of space is unique and eternal and is reflected out of the spirit
of God. That men may partake of it is one of the reasons why man is
called the image of God.” Leibniz has tried to show that the geo-
metrical truths are analytic. With respect to geometry Kant raises
the problem of the Critique of Pure Reason: How are synthetic judg-
ments ¢ priori possible? And he believes that he has answered this
question for geometry by his thesis that space is pure non-empirical
intuition. “That in which sensations are merely arranged, and by
which they are susceptible of assuming a certain order, cannot itself be
sensation; hence indeed the matter of all phenomena is given to us
a posteriori only, while its form must lie ready a préor? in the mind and
therefore must be capable of investigation independently of all
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sensation. . . . Hence our explanation alone renders comprehensible
the possibility of geometry as synthetic knowledge e prior:.”” This
certainty is shaken by the development of non-Euclidean geometry.

-[Proclus already, in his commentary on Euclid, sounded a warn-
ing in connection with the axiom of parallels not to make undue use of
intuitive evidence. Gauss writes to Olbers (1817, Werke, VIII, p.
177), “I am coming more and more to the conviction that the necessity
of our geometry cannot be demonstrated, at least neither by, nor for,
the human intellect. Perhaps in some other life we may arrive at
other insights into the nature of space that are at present inaccessible
to us. Until such time geometry should be ranked, not with arith-
metie, which is purely aprioristic, but with mechanics.” Or, in 1830,
to Bessel (op. cit., p. 201), “We must admit humbly that, while the
number is a product of our intellect alone, space has a reality beyond
our mind whose rules we cannot completely prescribe.” }

Helmholtz shows that the two parts of the Kantian doctrine of
space, namely, (¢) that space is pure form of intuition, and (¢2) that
the science of space, Euclidean geometry, holds a prior:, are not so
closely connected that (72) follows from (Z). He is willing to accept
(7) as a correct expression of the state of affairs; but nothing can be
inferred from that, according to him, beyond the fact that all things
of the external world have spatial extension. In accord with Riemann
he points out the empirical physical content of geometry and refers
to Newton, who in the introduction to Principie had declared, ‘“ There-
fore geometry is founded in mechanical practice, and is nothing but
that part of universal mechanics which accurately proposes and
demonstrates the art of measuring.”” If there were, aside from the
“physical equivalence” of spatial quantities (cf. p. 103), an equality
given by immediate transcendental intuition, then the agreement of
the two concepts could after all be only a matter of experience, while
in the case of conflict the transcendental equality ‘‘would be degraded
to the level of a sense illusion, i.e. an objectively false semblance”
(Helmholtz, Wissenschaftliche Abhandlungen, II, p. 654). Against
the argument that non-Euclidean geometry is devoid of intuitivity
(Anschaulichkeit), he sets up a definition of intuitivity. The latter
consists, he says, in ‘“the complete imaginability of those sense
impressions which the object would produce in us according to the
known laws of our sense organs under any conceivable observational
conditions and by which it would differ from other similar objects.”
We may refer to the description given in Section 17 of the relation
between the objective world and its subjective image as conceived by
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the point eye moving along a world line. Against the argument
that an attempted experimental test of geometry always involves
physical statements about the behavior of rigid bodies and light rays
it may be pointed out that the individual laws of physics no more than
those of geometry admit of an experiential check if each is considered
by itself, but that a constructive theory can only be put to the test
as a whole.

Under the influence of modern mathematical axiomatic investiga-
tions one has come to distinguish the ‘mathematical space,” whose
laws are logical consequences of arbitrarily assumed axioms, from the
‘physical space,’ the ordering scheme of the real things, which enters
as an integral component into the theoretical construction of the world.
With regard to this distinction Einstein says (Geometrie und Erfahrung,
p. 8), ‘“As far as the propositions of mathematics refer to reality they
are not certain, and in so far as they are certain they do not refer to
reality.”” The general philosophical development, on the other hand,
has since taken a course that led to a split of Kant’s judgments a
priori into two directions. On the one hand, there are the non-
empirical laws (Wesensgesetze), which express the manner in which
data and strata of consciousness are founded upon each other, but do
not claim to involve statements of fact; this line of pursuit culminated
in Husserl’s phenomenology, in which the a prior? is much richer than
in the Xantian system. On the other hand, principles of theoretical
construction are formulated, which according to the most extreme
point of view (Poincaré) rest on pure convention.

After what has been said in Part I we need not enter here into a
detailed discussion of the general mathematics of continua and of the
more important structures with which they can be endowed. In the
case of physical space it is possible to counterdistinguish aprioristic
and aposterioristic features in a certain objective sense without, like
Kant, referring to their cognitive source or their cognitive character.
In fact, according to the Riemann-Einstein view, we may contrast the
one absolutely given Euclidean-Pythagorean nature of the metric,
which does not participate in the irradicable vagueness of that which
occupies a variable place on a continuous scale, with the mutual
orientation of the metrics in the various points, i.e. the quantitative
course of the metrical field; the latter is accidental, dependent on the
distribution of matter, ever-changing, and ascertainable only approxi-
mately and with the help of immediate intuitive reference to reality.
Thus the general theory of relativity does not altogether deny that
there is in this sense something aprioristic to the structure of the
extensive medium of the external world, but the line between a prior:
and a posteriori is drawn at a different place. (To be exact, this
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juxtaposition, or separation, must be understood as meaning — as
always in cases of this kind — that the aprioristic factor can be isolated
from the whole without thereby exhausting the latter; there is no
residue of purely a posterior: character, however, that would be left
after the first part has been ‘subtracted’ from the whole.) Among the
aprioristic features of the world, beside and above the one nature of
the metrical field, there is the topological connectivity, which is fixed
once and for all, especially the dimension number 4. The quantitative
course of the metrical field obeys exact natural laws, namely, the
Einstein laws of gravitation, which resemble the Maxwell laws of the
electromagnetic field. Within the a posterior: one has thus to make
vet another distinction, between what is necessitated by natural law
and what even under their rule remains free and thus appears as
contingent. The binary gradation is replaced by a ternary one.

-[In addition to the physical space one may acknowledge the
existence of a space of entuition and maintain that its metrical struc-
ture of necessity satisfies Euclidean geometry. This view does not
contradict physics, in so far as physics adheres to the Euclidean
quality of the infinitely small neighborhood of a point O (at which the
ego happens to be at the moment). For the angles which are formed
by the spatial directions of the light beams issuing from the various
stars and striking the point eye do indeed fulfil the laws of spherical
trigonometry in Euclidean space. But then it must be admitted
that the relation of the intuitive to the physical space becomes the
vaguer the farther one departs from the ego center. The intuitive
space may be likened to a tangent plane touching a curved surface
(the physical space) at a point O; in the immediate vicinity of O the
two coincide, but the larger the distance from O the more arbitrary
will the one-to-one correspondence between plane and surface become
that one tries to establish by continuing the relation of coincidence
near O. This does not mean that the intuitive space as such must
necessarily be of a vague character. The intuitive space after all does
not overcome the discrepancy created by binocular sight by vacillation
or compromise (provided extreme circumstances, or attention directed
toward the visual perceptions as such, do not cause a contest between
the fields of vision to break out) but is intuitively of unobscured
clarity, though in the objective construction the state of affairs can
only be represented as a compromise. }

Regarding the aprioristic features of space the task arises to under-
stand on rational grounds the peculiarities that give them their dis-
tinctive position within the range of the more general possibilities

135



NATURAL SCIENCE

revealed by formalized mathematics. Thus there are three different
possibilities as to the nature of a four-dimensional Riemann manifold,
according as its fundamental metrical form possesses 0, 1, or 2 negative
dimensions. If the world corresponded to the case 0, no propagation
of effects from a world point O would be possible, while in the case of
2, past and future would be melted into one world domain. Thus it
can be argued that the middle case of 1 negative dimension is realized
by the metrical field of the real world because of the necessity of a
causal structure by virtue of which an ego may be actively and pas-
sively connected with the world in such a manner as to separate past
from future, what is known from what is planned. Likewise it must
be asked in connection with n-dimensional Euclidean or Riemannian
geometry, which resulted by cogent formalization from the three-
dimensional one (Section 12), what inner reasons there are for the
distinction of the case n = 3 realized by the actual space. Aristotle
gave several answers to this, which still move in the sphere of mythical
thought. Galileo discusses and rejects them at the beginning of his
“ Dialogo.”” The solution which he himself proposes is merely a clearer
formulation of the problem but is no answer. The best chances for
success seem to me to lie in theoretical physical construction.® Thus
it can be shown by means of the wave equation of light (which can be
immediately extended to n dimensions) that only in a space of an odd
number of dimensions is the extinction of a candle followed by com-
plete darkness about the candle (within a radius that increases as
rapidly as light travels). This, at least, shows up an important inner
difference regarding the propagation of effects between even and odd
numbers of dimensions. Those particularly simple and harmonious
laws which Maxwell had developed for the electromagnetic field in
empty space are invariant with respect to an arbitrary change of the
standard unit length at every world point, provided the world is four-~
dimensional. This principle of ‘gauge invariance’ holds for no other
number of dimensions.

{The group structure of the Euclidean group of rotations (which
still dominates the metrical nature of the world even if the Riemann-
Einstein infinitesimal geometry is adopted) is decidedly different for
the various numbers of dimensions. This circumstance suggests
that the mathematical and physical laws may cease to be indifferent
to the number of dimensions on some deeper level that has hardly
been touched by the physics of today. There is thus good reason

¢ One blushes at the thought of the naive geometrical blunders committed again
and again in an attempt to solve this deep problem. A recent example of this can
be found in Natorp’s Logische Grundlagen der exakten Wissenschaften, pp. 303 ff.
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to hope that our problem will one day find a cogent solution along such
lines. An attempt to make the three-dimensionality of space com-
prehensible through its role in the constitution of the external world
for the consciousness was made by Bolzano (Abhandlungen der Boh-
mischen Gesellschaft der Wissenschaften, 1843). A more recent attack
by O. Becker in the same direction is less absurd, but still far from
satisfactory.

A way to understand the Pythagorean nature of the metric (which
finds its expression in the Euclidean group of rotations) exactly
through the separation of a priors and a posterior: has been pointed out
by the author. Only in the case of this particular group does the
contingent quantitative distribution of the metrical field, however
that distribution is chosen within the framework of its a prior: fixed
nature, uniquely determine the infinitesimal translation, the non-
rotational progression from a point into the world. This assertion
involves a rather deep group-theoretical theorem which was proved
by the author. The space problem, thus solved, plays a similar part
within the Riemann-Einstein theory as the Helmholtz-Lie problem
(Section 14) plays for the rigid Euclidean space. It may be that the
postulate of the unique determination of ‘straight progression’ can be
justified on the basis of the requirements posed by the phenomenologi-
cal constitution of space. Becker persists in attempting to base the
significance for intuitive space of the Euclidean group of rotations
upon Helmholtz’s postulate of free mobility. If in agreement with a
remark made in Section 15 the transformation group A, in 3 or 4
dimensions is considered as representation of an abstract group, then
more emphasis should be placed on the distinctive features of the
structure of this abstract group than on the special concrete repre-
sentation Ao }
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CHAPTER II

Methodolog y

19. MEASURING

THE opinion that cognitive connections can be found in the real
world only in so far as qualitative determinations are reduced to quan-
titative ones, which asserted itself in modern times in opposition to
Aristotle’s philosophy, has assumed fundamental importance for
natural science. This is Kepler’s succinet formulation, ‘Ut oculus ad
colores, auris ad sonos, ita mens hominis non ad quaevis sed ad quanta
intelligenda condita est.” The standard of our knowledge is found
in its approximation to the ‘‘nudae quantitates.” Galileo enunciates
the principle, ‘‘to measure what is measurable and to try to render
measurable what is not so as yet.” A splendid illustration of the
second part of this postulate is his invention of the thermometer.

But what does the process of measuring consist in? Let us take
tnert mass as an example.

According to Galileo the same inert mass is attributed to two bodies
if neither overruns the other when they are driven against each other
with equal velocities (they may be imagined to stick to each other
upon colliding). This is a definition by abstraction. The physically
defined equality of mass is a relation of the character of equality (see
Section 2), as can be confirmed by experience. Experiment must
show, in addition, that equality is independent of the attendant eir-
cumstances of the defining process, such as the speed of collision.
Equality, this first requisite of all mensuration, usually carries with
it the relation of ‘smaller’ and ‘larger.”’ In our case: that body has
the larger mass which, at equal speeds, overruns the other. Finally
a process of addition must be given; in the case of masses this consists
simply in joining the two bodies. By assuming certain axioms con-
cerning these fundamental concepts (which Helmholtz for instance
discusses in his repeatedly quoted essay on Zdhlen und Messen) one
can establish a measuring scale which characterizes every value of the
quantity in question by a number. It may be necessary to fix arbi-
trarily a certain unit of measure (herein lies a new component of relativ-
ity, and this is actually the case with line-segments and masses, for
example) ; while under other circumstances a natural unit of measure
exists, like the complete rotation (360°) in the realm of angles. From
a practical viewpoint the unit must fulfill the requirement that it be
reproducible everywhere and at all times as accurately as possible.
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A type of quantities different from the ‘additive’ quantities just
characterized are the absolute and material constants that occur in such
functional relations between additive quantities as are accepted as
laws of nature. In this category belongs the coefficient of refraction
n, whose significance is evinced by Snell’s law of refraction: the sine
of the angle of incidence equals n times the angle of refraction (the
two angles are the additive quantities put in relationship to each other
by this law). Helmholtz calls constants of this sort “intensive”’
quantities, in contrast with the additive or extensive quantities.
In particular all numerical valuations of properties are intensive
quantities.

{A good example is the measuring of temperature. Bodies have
equal temperature if they produce no change in each other when in
contact. It is by no means a self-evident fact, but one to be confirmed
through experience, that when 4 and B, and B and C, possess equal
temperature, A and C also have equal temperature. An addition that
would lead to a definite measuring scale does not exist in the field of
temperatures. Yet on the basis of the experience that bodies of
unequal temperature cause changes of length between one another, one
proceeded to define temperature by means of the length of a standard
body which is brought into contact with the body to be measured.
This determination of the temperature is always reproducible and
independent of past history, while to our sense of temperature a body
of physically constant temperature feels warm or cold, according to
the degree of warmth to which our skin was exposed immediately
before. Wood and iron of equal temperature feel different to the
touch — when warm, iron feels warmer; when cold, iron feels colder.
The external conductivity of heat is a codeterminant for theresultant
sensation. The objective concept of temperature is thus pretty far
removed from the sense data of heat perception. The temperature
scale is dependent on the choice of the standard body. At least all
gases, however, react approximately alike, and their behavior can be
deseribed within relatively small errors by a simple law, which in turn
is laid down as characteristic for an ‘ideal gas.” But only by deriving
from the ideal-gas law the so-called second theorem of thermody-
namics, which holds for all bodies, did it become possible to reaiize in
an unambiguous way the temperature scale of the ideal-gas thermo-
meter. The absolute temperature is characterized, aside from the state-
ment that bodies of equal temperature have the same temperature
value T, by the following law: the integral of d@Q/T over any cycle of
virtual states is zero. Here T is the temperature of the individual
state o and dQ the infinitesimal increment of heat that takes place in
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passing on from ¢ to the next state along the cycle. The heat is
measured as energy and thus an additive quantity. Consequently
the temperature T’ is an intensive quantity in the Helmholtz sense.
Its definition is an implicit one and as such presupposes the validity of
certain natural laws. It leaves arbitrary only the unit of measure,
but not the zero point. T is by necessity always positive, and there
exists an absolute zero point of temperature. (On defining as 100°
the difference between the boiling and freezing temperatures of water
under atmospheric pressure these temperatures turn out to be 373°
and 273° respectively in the absolute thermodynamic scale.)

The laws of ‘mechanical similarity,” of which Galileo speaks
on the second day of his ‘“Discorsi,”’ are based on the relativity of
quantitative determinations in regard to arbitrarily chosen standards.
These laws make it possible to use small models in order to study real
events, just as the proportion of the sides of a triangle whose angles
are known can be found from a small model. If, in a problem of float-
ing or flying, the viscosity of the medium (water or air) must be taken
into account, then, when changing over to the model, the medium
must generally be replaced by one whose viscosity is changed accord-
ing to the size of the model. Yet the physical laws of similarity have
their limits. Thus, according to the set-up of the special theory of
relativity, only one arbitrary unit of length for time and space remains,
the velocity of light ¢ becoming the absolute standard of velocity.
However, the existence of an absolute unit for velocities is no more
extraordinary in relativity theory than the existence of an absolute
angular unit in geometry. It is merely a consequence of the metrical
structure of the four-dimensional world. If the gravitational constant
is added, there remains just one unit for all physical mensuration that
has to be chosen arbitrarily, say the time unit of the second. Thus
far one can get without taking the atomistic structure of matter into
consideration. As for the atomic theory and the absolute constants
of nature to be obtained from the atomic laws, see Section 22 E
(p. 184) and Appendix F.}

The theory of mensuration involves the question of how it is possi-
ble to determine quantities much more accurately than the differentiating
capactty of our senses permits. What good is it to differentiate between
two shades of yellow (such as the yellows of the two adjacent D-lines
in the sodium spectrum), if they are sensually indiscernible? A simple
example is the exact determination of the duration of a pendulum
oscillation: one waits for, say, 1,000 oscillations and divides the entire
time by 1,000. The accuracy has thus been increased a thousandfold
compared to that obtainable by observing a single oscillation. To be
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sure, a theoretical assumption has been made here; namely, that all
single oscillations are of equal duration. For the intuitionist, who
respects the limits of sensory accuracy and does not want to transgress
them a thousand times, this assumption is just as meaningless as
the indirectly obtained assertion concerning the duration of a single
oscillation. Yet the assumption can be confirmed to some extent by
observing that the ratio of the duration of m successive oscillations to
that of n oscillations (m and n being large integers) is m:n, of course
within the limits of accuracy of direct observation. (The test is
carried out with several series of oscillations picked at random.) In
general the situation is as follows: By virtue of the exact laws of the
basic theory, the quantity = to be determined is functionally dependent
on several others. By observing the latter, one can arrive at con-
clusions regarding the value of 2 by which z can be determined more
exactly than by direct observation. The basic theories are confirmed
if within the expected margin of error all indirect methods for the
determination of z lead to the same result. In particular, a fact is
determined the more exactly the further its causal consequences
continue to develop in time. A deviation in direction of two missiles
which at first may not be noticeable eventually leads to the most
obvious difference; one hits the mark and the other misses. It must
be remembered, however, that any such indirect quantitative deter-
mination and any establishment of a difference not manifest to the
senses is possible only on the basis of theories. Their verification takes
place by testing them in all their numerical consequences and finding
that they yield concordant results. (Otherwise the observations
enforce modification of the theory.)

{In this field belong all the indirect methods of experimental
physics, beginning with the simplest tools — the vernier, the mirror
reflections for the measurement of small deviations, the rotating
mirrors which help to resolve the sound-generating vibrations of
lcminous bodies, the microscope — up to the experimental and instru-
mental refinements of modern atomic research that aim at making the
single atomic particle visible through its effects. Mach, in the chapter
““Das physische Experiment und seine Leitmotive” in Erkenntnis und
Irrtum (1905), makes an interesting survey of, and an attempt to
organize, the various methodical principles involved. Here is a wide
field for the inventiveness of the experimenter. }

Even if the opinion can thus be justified that the world is far more
accurate than it appears to the senses, or even that it is absolutely
accurate, nevertheless this absolutely accurate state could only be
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ascertained by me as the observer if I waited for the resulting develop-
ments till the end of time (as well as for the perfection of theoretical
physics which has to provide the exact laws). Complete accuracy is
therefore a limiting idea and by no means immediately given. Leib-
niz’s thought of preestablished harmony — which he himself illus-
trates by the example of two entirely independent clocks that are
synchronous, not because they exert a regulating influence upon each
other but because they are identically constructed — contradicts,
therefore, the nature of the continuum. In his Treatise, Hume states
that the refinement of mensuration is based on repeated mutual cor-
rection, but that ‘“the notion of any correction beyond what we have
instruments and art to make is & mere fiction of the mind, and useless
as well as incomprehensible” (Book I, Part II, Section 4). Even so
one can understand the necessity and expedience of exact mathe-
matics: the exact theory provides the framework for approximate
verifications. If, for example, we adopt Euclidean geometry as the
theory of space, then, with the theorem that the diagonal of a square
is to the side as v/2:1, we are prepared for all future refinements in
direct or indirect methods of mensuration; it will lead us again and
again to new predictions (approximative in character) or to ever finer
criteria by which to check the standard measuring bodies as to whether
they satisfy the ideal assumptions of Euclidean geometry up to the
degree of accuracy attainable at each step.

{Recently the Danish geometer Hjelmslev has espoused a purely
approximative geometry (Abhandlungen des Mathematischen Seminars
der Unaversitit Hamburg, Vol. 2, p. 1), with the same arguments as
Hume, who remarked, ‘‘Our ideas seem to give a perfect assurance,
that no two right lines can have a common segment; but if we consider
these ideas, we shall find, that they always suppose a sensible inclina~
tion of the two lines, and that where the angle they form is extremely
small, we have no standard of right line so precise as to assure us of the
truth of the proposition’ (T'reatise, Book I, Part III, Section 1). But
when Hjelmslev continues by formulating the Pythagorean theorem
thus, “In a right triangle, numbers can be assigned to the sides in such
a manner that the square of the number assigned to the hypotenuse is
equal to the sum of the squares of the numbers assigned to the other
sides,” then one can already see the tendency to reduce the range of
indeterminacy of directly observed measurements by declaring the
functional relationship enunciated in the ordinary theorem of Pythag-
oras to be an inviolable exact law. If one keeps in mind that the
same segment which here functions as the hypotenuse may be a con-
stituent in infinitely more figures, with whose remaining parts it is
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linked by similar functional relations, one reaches that concept of an
exact theory which dominates constructive physics. Hjelmslev,
incidentally, is far too concerned with figures drawn on a blackboard
and is apt to forget that geometry must also serve as an ideal basis for
astronomy and atomic physies. Constructive science can sustain
the intuitionism of Brouwer; but the sensualism of Hume and Hjelms-
lev — which on principle would recognize as real only the immediately
given, without being able to carry this through —is deadly for
science. }

Measuring, as we have considered it up to now, was based on the
fact that in many cases physical quantities are subject to the notions
of equality and addition with their characteristic axioms, by virtue
of which their values are projected on a numerical scale. “Thus,”
says Maxwell (Scientific Papers, I, p. 156), “all the mathematical
sciences are founded on relations between physical laws and laws of
numbers.” However important the particular way discussed here of
introducing numerical symbols into natural science may be, it seems
nevertheless not to be the decisive feature of quantitative apalysis.
If a basis for an arithmetical differentiation of the individual places
in a continuum is created by spreading a division net over the con-
tinuum, with a wide margin of freedom in all its steps of refinement
and sharpening (though bound by a fixed combinatorial scheme), then
the procedure is different and much looser, as it were, than it is in the
case of mensuration proper. Moreover, the measuring of many
physical observables (which are not scalar but vector or ‘tensor’
quantities, such as the metrical field) is possible only relative to a
coordinate system thus arbitrarily introduced into the world. This
free insertion of coordinates and that mensuration based on the addi-
tion of equal elements may be typical for the different levels on which
the two methods are applied: the first to the form, the latter to the
content of the world. However, the only decisive feature of all
measurements is, it seems, symbolic representation; even numbers are
in no way the only usable symbols. Measurement permits things
(relative to the assumed measuring basis) to be presented conceptually,
by means of symbols. If a part of the infinite Euclidean plane is
materialized by a flat metal disc, we can at first fix places within the
domain of the metal disc only, using material markings on the disc
that are qualitatively different and permanently recognizable. But
once two rectangular axes and a unit length have been scratched onto
the disc, then we are not only able (‘ideally’ and on the basis of a
theory concerning the behavior of rigid measuring rods) to spread over
it an arbitrarily fine net of well-characterized locations by means of
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coordinate assignments, but this indirect method enables us to put
such ideal ‘numerical marks’ even beyond the boundaries of the disc.
It is thus that we use the earth as a basis to plumb the sidereal space.
Finally, in carrying out measurements there is a tendency to reduce
the immediate sensory observations, which of course can never be
eliminated, to the safest and most exact among them, namely spatio-
temporal coincidences (in particular, one tries to do without the sub-
jective comparison of colors and light intensities). Any mensuration
should ultimately ascertain, so one wishes, whether a mark on one
scale (a movable pointer or such) coincides with a certain mark on
another scale. In the case of an astronomical observation the reading
of the graduating circle is done in just that way, while the training of
the instrument on a star utilizes a coincidence modified by the inter-
calation of light, namely the ‘coincidence’ of star and cross threads.

20. FORMATION OF CONCEPTS

Dilthey, in his essay on the autonomy of thought in the 17th
century (Gesammelte Schriften, 1I, third ed., 1923) describes the
development of mechanics up to Galileo. ‘Galileo came, and with
him there followed an actual analysis of nature, after more than two
thousand years of mere description and consideration of form in
nature, that had culminated in Copernicus’s picture of the world.”
For this analysis it is decisive to isolate simple occurrences within the
complexity of facts, and to dissect the course of the world into simple
recurrent elements. Bacon already devised the formula ‘‘dissecare
naturam.” ‘“Only the mathematicians contrived to reach certainty
and evidence, because they started with the easiest and simplest”
(Descartes, De Methodo). In no small measure is the strength of
natural science based upon its renunciation of designing a ‘system
of nature’ in one draft, its condescension to deal with the small
individual problems and its boundless patience in submitting them to a
detailed analysis. Descartes himself still sinned heavily against his
own methodical remark. Galileo’s superiority over him in the field
of natural science is partly attributable to the fact that Galileo, in his
research into the laws of falling bodies, strictly exercised that “‘restraint
which proves the master.”?

We can distinguish the following phases of dissection into simple
elements, the first three of which still belong to the pre-scientific stage.

{1. Dissection of the three-dimensional spatial reality into single
partial systems (bodies or things), each forming an intuitive spatially

74Jn der Beschrinkung zeigt sich erst der Meister” is a familiar line from
Goethe’s sonnet Natur und Kunst.
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isolated and relatively constant unit. In its behavior each is con-
sidered as independent of the others, unless progressive analysis calls
for corrections. Closely connected with this is the dissection of the
four-dimensional spatio-temporal reality into single isolated events
that form natural intuitive units.

2. The conception of an intuitively experienced event as having
come about by spatio-temporal coincidence and amalgamation of
several simple phenomena (each of which would produce other percep-
tions than the phenomenon as a whole if the others were ‘erased’ or
replaced by ‘normal conditions’; e.g. the sun setting behind a gold-
edged cloud).

3. Apperception of the ‘being-so,” bringing out the characteristic
features (self-insufficient parts) of the phenomena. Upon this pro-
cedure is based the grouping together of similar things, the subordina-
tion under concepts, in one word: classification. Such classification
will correct itself as the wealth of our experience increases. It will
thus learn to distinguish better and better the truly essential from the
inessential and progress to the formation of more and more ‘natural’
classes. A concept is the more essential the more connotations it
entails according to the evidence of experience, namely the more
characteristics not contained in the concept itself are empirically
found to be common to the objects falling under the concept.

4. We are not satisfied with intuitively isolable elements but inter-
pret a series of properties which always appear together as an indication
of a concealed something. This leads to hypothetical elements, such
as atoms, forces, electro-magnetic field, etc. Moreover, we learn to
interpret not only the observable properties but also the reactions
that occur if one system is brought together with another as manifes-
tations of such hypothetical elements and of their intensive and
quantitative values. (Reactions instigated at will are the essence of
experiments.) Finally, we do not hesitate to dissect hypothetically
even the intuitively simple, e.g. the white sunlight into the colors of
the spectrum, or the acceleration of a planet into the partial accelera-
tions brought about by the sun and the other planets. It is evident
that along with the dissection the synthetic principles also have to be
established according to which the elements unite into a whole (e.g.
formation of the resultant of forces). }

Starting everywhere with the simplest, we find, among the recur-
ring elements thus obtained and the variations of their values, con~
stant lawful relationships which can be quantitatively explored and
expressed by mathematical functions. What is decisive is this: the
farther the analysis progresses, the more detailed the observations
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become and the finer the elements into which we dissect the phe-
nomena, the simpler — and not the more complicated, as might be
expected — become the basic laws, and the more completely and
accurately do they explain the factual course of events. And only by
way of this analysis do the right constructive concepts evolve which
serve to describe objective nature; they are bound up throughout
with definite facts and valid natural laws.

-[Wha.t is it that compels us in physics to think of the uniform
white color as something composite? It is the causal law, asserting
that equals, under equal conditions, produce equal reactions. It
requires that two colors, which to the senses appear as the same white,
contain ‘hidden’ differences, since, upon passage through the same
prism, they yield different spectra. (In principle, what happens here
is no different from the case of two spherical balls of identical appear-
ance but different inertia and weight, one of which when cut open is
seen to contain & core of gray lead.) It will be found that the variety
hidden in the white light can be described most expediently in terms
of the spectrum and its intensity distribution. At first the apparatus
used in the reaction, the prism with its special properties, will get
mixed in, and it will be necessary by varying the form and substance
of the prism to learn to separate the two influences. In this way one
will arrive at the wave-length scale of spectral colors, which is inde-
pendent of the prism. In the earlier example of the ponderomotoric
force suffered by a test particle in a field generated by charged con-
ductors, we have explained in detail how such a separation can be
effected. Polarized light of a certain spectral color and intensity, on
the other hand, proves to be something simple, because its behav-
ior in all reactions is completely determined by the characteristics
mentioned. }

A typical example of the formation of physical concepts is Galileo’s
mass concept. We mentioned above the criterion of mass equality.
Here the concept of momentum appears as prior to that of mass. Two
bodies moving toward each other (each undergoing uniform transla-
tion in accordance with the law of inertia) have oppositely equal
momenta if neither overruns the other upon collision. We repeat
Galileo’s criterion by saying that two bodies have the same mass if,
at equal velocities, they possess equal momenta. We are thus dealing
with a constructive concept in the sense of the description on p. 37.
Instead of, or besides, purely intellectual manipulations in the realm
of numbers, we have here, in the material sphere, real (or at least
really possible) experiments, the results of which are used for the
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numerical determination of characteristics. This is a step of great
importance. After matter was stripped of all sensory qualities, it
seemed at first as though only geometrical properties could be attrib-
uted to it. In this respect Descartes was wholly consistent. But
it now appears that other numerical characteristics of bodies can be
gathered from the laws to which changes of motion in a reaction are
submitted. Thus the sphere of properly mechanical and physical
concepts is opened up beyond geometry and kinematics. Basically
Galileo’s definition of mass implies the law of momentum: “ An isolated

—

body (moving uniformly) has a certain momentum, I = mv, which

is a vector having the same direction as the velocity ». The sum of
the momenta of the individual bodies of an isolated system prior to a
reaction is the same as after the reaction.” By subjecting the observed
motions to this law, it is possible to obtain data for the numerical
evaluation of the ratios of the masses m of the individual bodies before
and after the reaction. Constructive natural science has the general
task of assigning to the objects such constructive quantitative characteristics
(dependent only on the object though not necessarily directly
observable) as will make their behavior, under circumstances described
by characteristics of the same kind, completely determinate and predictable
on the basts of the natural laws. The implicit definition of character-
istics is tied to these laws. In this way science complies with the
postulate (which fails to be satisfied if nothing but sensory qualities
are admitted) that “all changes which bodies undergo have their
cause in the nature and the qualities of the bodies themselves’’ (Euler,
Anleitung zur Naturlehre, Chap. I, §2, Opera postuma, 11, 1862). The
fact that we do not find but enforce the general principles of natural
knowledge was particularly emphasized by the conventionalism of
H. Poincaré.

Turning to the temporal analysis of the process of reaction, and

considering that for an isolated body % the momentum I is constant

in time, we take the change of this quantity per unit of time, dI/dt,
called force, as a measure of the effect which other bodies ki, ks, . . .
bave upon k. Indeed Newton recognized that the force is composed
additively (according to the parallelogram law of vector addition) of
individual forces exerted upon k by each of the bodies &, ks . . .,
and that this occurs in such a manner that, for example, the force
exerted by k; on k at a certain moment depends solely on the condi-
tion of these two bodies (location and velocity) at that instant. This
is the real meaning of the decomposition of the one force into several
component forces. Looking at these facts one cannot escape the
conclusion that the definition ‘force = time-derivative of momentum’
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does not reflect the nature of force adequately but that the real state
of affairs is the other way round: force is the expression of an inde-
pendent power that connects the bodies according to their inner nature
and their relative position and motion, and that power causes the
change of momentum with time. Thus the living metaphysical inter-
pretation conforms to the theoretical construction. Through the basic
mechanical law of motion, physics is given the task of exploring the
forces operating among bodies in their dependence on position, motion,
and inner condition. The latter will enter the laws of force by way of
numbers characteristic of the inner state of the reacting bodies, like the
electrical charge in the case of Coulomb’s law of electrostatic attrac-
tion and repulsion. Thus the concept of force becomes a source of
new measurable physical characteristics of matter.

While the metaphysical conception of nature is modified by the
results of theoretical construction, which should find in that conception
a suggestive and fruitful expression, there usually is already at the
bottom of concrete research a preconceived idea that is in happy
consonance with the facts. In the process of motion Galileo sees the
dynamic intensity, the driving push, the impetus or momentum.
Motion to him depends on the struggle of two tendencies, inertia and
force, force that deflects the body from the path dictated by inertia.
Mass is the dynamic coefficient according to which inertia resists the
deflecting force. With reference to Galileo, Goethe remarked in his
Geschichte der Farbenlehre (Section 4, Galileo Galilei): “In science all
depends on what is called an aper¢u, on a recognition of what is at the
bottom of the phenomena. And such a recognition is infinitely fruit-
ful.” Given the right basic aspect, the right basic concepts will
emerge in the course of detailed research conducted under its guidance.

{In his book Substanzbegriff wund Funktionsbegriff (1910) E.
Cassirer has endeavoured to show that the formation of concepts in
mathematics and physics in no way corresponds to Aristotle’s logical
scheme. In plane analytic geometry an ellipse is defined by its
equation, by setting a positive quadratic form of the coordinates equal
to unity. The individual ellipse is obtained by substituting specific
values for the coefficients of the quadratic form (which vary over a
predetermined range, namely the continuum of real numbers). We
cannot agree with Cassirer’s remark that in this procedure the more
general concept is the richer; for the properties of the individual ellipse
depend, in addition to the general form of the equation, on the specific
values of the coefficients. It is true, though, that the special cases
are obtained from the general one by assigning definite values to the
‘variables’ — within a range which is completely given or open to free
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construction. Aristotle ascends from the single object to the concept
by isolating individual features of the object and by ‘‘abstracting”
from everything else. Thus every other object which exhibits those
same features falls under the same concept, or into the same class. In
this procedure (as in descriptive botany or zoology) only the really
existing objects are concerned, and classes are formed preferably in
such manner that, according to the testimony of experience, the con-
cepts entail as many ‘ connotations’ as possible. In the mathematical-
physical or ‘functional’ formation of concepts, on the other hand, no
abstraction takes place, but we make certain individual features
variable that are capable of continuous gradation (such as the coeffi-
cients of the quadratic form in the case of the ellipse), and the concept
does not extend to all actual, but to all possible objects thus obtainable.
“The possibility of arbitrary refinement, the easy survey and the
facility in handling a whole continuum of cases with the assurance of
completeness,” according to Mach (Prinzipien der Wdrmelehre, third
ed., 1919, p. 459), “warrant the preference placed on such quantitative
constructions.” In this connection it is essential, though, that the
continuum is not a closed aggregate but a field of determinations open
to infinity; for otherwise we would return after all to the Aristotelian
scheme of characteristic features (““a set of points (z, ¥) is an ellipse if
numbers a, b, ¢ exist such that all points of the set and no others satisfy
the equation ax® + 2bzy + cy? = 1”). Thus the individual objects
falling under the functional concept have to be generated, and the
question whether a given object falls under it must not be asked in the
expectation that the ‘facts as they are’ will necessarily answer with a
clear-cut yes or no.

By means of the Platonic diagram on p. 53, which is identical
with the division net of the one-dimensional continuum, Plato assigns
their places to all beings by proceeding from the general to the specific
by bipartition (diaeresis). This scheme, as well as the Platonic
conception of ideas as numbers based on it, is not so far removed from
the modern mathematico-physical conception of the world as might
appear at a first glance. The former would merely have to be modified
to the extent that firstly some but not all of the levels and divisions —
as Plato maintains (dissection of the sacrificial animal, Phaedrus,
265c; Politicus, 287¢) — are prescribed by the facts and capable of
exact execution (for this possibility ceases whenever a uniform con-
nected continuum is present); and secondly that the process continues
ad infinitum and the individual thing appears but at the horizon as a
limiting idea. It is characteristic of Aristotle that he reverses this
diagram and begins at the bottom, with the individual beings, while
Plato starts with the ‘one.’
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In particular, the concepts obtained by mathematical abstraction
in accordance with the rule given at the end of Section 2 are of ‘func-
tional’ nature. }

21. FORMATION OF THEORIES

The constructive character of the natural sciences has become
obvious through what has been said above. Individual scientific
statements cannot be ascribed an intuitively verifiable meaning, but
truth forms a system that can be tested only in its entirety. Hobbes
developed the view (English Works, VII, pp. 183 ff.) that we cognize
with certainty only in those sciences which construct their objects
on the basis of the structural conditions resting within the cognizant
subject. Reality, to him, does not reside in the images of conscious-
ness but in that content of theirs that makes a construction of objects
possible. In contrast with the mere cognitio he sees in this synthetic
process of generating the phenomenon from its origin the scientia in
the strict sense. This, he claims, takes place within the natural
sciences as far as mathematical deduction reaches. ‘‘Thus the
sovereign consciousness of the autonomy of the human intellect and
its power over the physical things,” Dilthey says (Gesammelie Schriften,
II, p. 260), “was definitely established by the great discoveries of
Copernicus, Kepler, and Galileo, and the accompanying theory of the
construction of nature by logico-mathematical elements of conscious-
ness given a prior: became the dominant conviction of the most
progressive minds.”” In modern physics the building material is no
longer the elements of consciousness abstracted from reality, but
purely ‘arithmetical’ symbols. Dingler (Die Grundlagen der Physik,
p. 305, 1923) in fact defines physics as that scientific domain in which
the principle of symbolic construction is carried through completely.
But, coupled with aprioristic construction, we have experience and the
analysis of experience by the experiment. ‘‘The scientific imagination
of man was regulated by the strict methods which subjected the possi-
bilities that lay in mathematical thinking to experience, experiment,
and confirmation by facts. . . . The results thus obtained have made
possible a regular and connected progress in scientific research by the
common efforts of the various countries. It may be said that now
only did human reason become a unified force working concordantly
within the various civilized nations. The most difficult work of the
human mind on this planet was accomplished by this regulation of
scientific imagination, which subordinated itself to experience.”
(Dilthey, Der entwicklungsgeschichtliche Pantheismus, op. cit., 1I,
p. 346.)
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-[Let us illustrate what has just been said by the theory of electro-
magnetic phenomena. Since we only want to bring out the essentials,
it may be permissible in order to spare the reader the difficulties of
relativistic physics to assume the velocity of propagation as infinite.
We suppose that there are elementary material quanta to which fixed
masses and charges are attached once and for all. Position and
velocity of these electrons at a moment ¢ uniquely determine the
electromagnetic field by virtue of certain generating laws. This
field, in accordance with further laws, is connected with spatially
distributed momentum and energy, and exerts, by virtue of the flux
of momentum, certain ponderomotoric forces upon the generating
electrons. The force, finally, produces the acceleration of the elec-
trons, according to the fundamental law of mechanics; but velocity
and acceleration give us the change in position and velocity during
the next time interval dt, thus determining from position and velocity
at the time ¢ these same data at the time ¢ 4+ df. By iterating this
infinitesimal transition ¢ — ¢ + dt again and again the entire motion
is obtained through the mathematical process of integration. Only
this complete theoretical context, in which also geometry plays its
obvious part, is capable of an experimental test; and even this only
under the idealizing assumption that the motion of the electrons is
what we are able to observe directly. An individual law taken out of
this theoretical context, however, hangs in the air. Thus, in the last
analysis, all parts of physics and geometry grow together into one
indivisible unit.

For the same reasons a theory develops by way of continual cor-
rection, as it is driven on by the ever-growing richness and precision of
experience. ‘‘Thus the progress of science is dependent upon science
itself, it is an extension and not a creation’ (Enriques, Problems of
Science, translated by Royce, Chicago and London, 1914, Chap. III,
§37, p. 165). When the Kepler-Newton theory of planetary motion
was established by observation, each event was tacitly assumed to
take place at the instant of its perception. Only later, Roemer dis-
covered the finite velocity of propagation of light through the apparent
deviations of the motion of the Jupiter satellites from the motion
required by theory. Thus a theory is employed (instantaneous

" propagation of light) which is later proved to be false. But the
assumption of its rough correctness (together with other premisses
taken from experience) leads to the recognition of its finer inaccuracy
and to its correction. But without the preliminary assumption not
even the first step could have been taken. Newton’s fourth rule for
the study of nature refers to this (Principia, ed. F. Cajori, p. 400):
“In experimental philosophy we are to look upon propositions inferred
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by general induction from phenomena as accurately or very nearly
true, notwithstanding any contrary hypotheses that may be imagined,
till such time as other phenomena occur, by which they may either
be made more accurate, or liable to exceptions.” }

To facilitate the task of the theorist, the experimenter endeavours
to arrange the experiment in such a way that it is most sensitive to one
law and as insensitive as possible to all others that play a part, namely
by dampening the influence of such circumstances as are governed
by the latter. This accounts, among other things, for the tedious
efforts involved in screening off all kinds of ‘sources of error.” All
the same, the influence of certain elements such as the metrical
field can never be eliminated. If a fact is in discord with the entire
theoretical stock of science, it is finally left to the theorist to find the
place where the theory is to be modified. It is hardly possible to
formulate general rules for this, nor for the relative weight with which
the known facts should bear upon the theoretical interpretation; this
must be left to the discretion of the genius. Thus the general theory
of relativity came about because Einstein realized the fundamental
nature and the particular import of one fact, the identity of heavy
and inert mass. The possibility must not be rejected that several
different constructions might be suitable to explain our perceptions; in
this recognition of the ‘ambiguity of truth,” Hobbes and D’Alembert
preceded the modern positivists. In an address on the occasion of
Max Planck’s sixtieth birthday in 1918, Einstein described the real
epistemological situation with great justice as follows: ¢ The historical
development has shown that among the imaginable theoretical con-
structions there is invariably one that proves to be unquestionably
superior to all others. Nobody who really goes into the matter will
deny that the world of perceptions determines the theoretical system
in a virtually unambiguous manner, although no logical way leads to
the principles of the theory.”

At any given stage of the theoretical construction there exists a
hierarchy of laws, inasmuch as different degrees of stability are ascribed
to the different laws. Certain ones among them are adhered to as
principles with great tenacity. For a long time the laws of Euclidean
geometry were held to be sacrosanct. The principles of the conserva~-
tion of energy and momentum are of comparable, if not higher, sta~
bility. It is certain that a considerable portion of the theoretical
system can be maintained in the face of any experiences as long as
modifications of the remainder are permitted. Thus in the practice
of scientific research the clear-cut division into a priori and a posteriors
in the Kantian sense is absent, and in its place we have a rich scale of
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gradations of stability. It is the simple form and the instinctively
convincing character of a law, together with its decisive significance
for an extensive domain of facts, which gives it the rank of a principle.
For instance, the convincing and simple law of inertia, which at first
appears to be sufficiently confirmed by our experiences regarding
motions relative to the earth, is maintained even when more refined
experiences (Foucault’s pendulum experiment) contradict it, by
resorting to the ‘subterfuge’ of claiming the law not for motions
relative to the earth but for an ‘absolute motion’ that is to be deter-
mined from the phenomena. The law of momentum is based on
the ‘evident’ fact that a system of bodies, originally at rest, cannot be
set into a progressive translatory motion under its own force; more
exactly, interior reactions of an isolated system of bodies at rest are
incapable of imparting to a portion of the system a common uniform
translatory motion while the remainder stays put. When we are
laughing at Miinchhausen’s tale of having extricated himself from the
swamps by his own pigtail, we betray our intuitive knowledge of that
fact. Further examples are the rule for the composition of velocities,
taken for granted almost unnoticedly by Galileo (Discorsi, 4th day),
and the energy principle.

{In the special form stating that the bodies of a system in a homo-
geneous gravitational field cannot lift themselves under their own
force to a higher level, the latter is employed by Galileo and Stevin to
derive the law of the inclined plane, by Huyghens to reduce the com-
pound to the ‘mathematical’ pendulum (Horologium oscillatorium,
1673). Huyghens already conceived the general idea of the energy
principle. He says (op. cit., p. 95), “If only the inventors of new
machines, who vainly endeavor to build a perpetuum mobile, would
follow this hypothesis [!] of mine, they would soon recognize their
error and would see that their goal is wholly unattainable.” Leibniz
reads the energy principle into the formula ‘“causa aequat effectum”
and considers it a special consequence of the principle of sufficient
reason required by the ‘“logic of quantity’’; he bases on it his measure
of the ‘“force vive.” Much greater weight than by a single confirming
experiment is carried by a universal negative experience of the type,
‘This will never happen, whatever the circumstances.” Thus the
snergy principle is supported by the failure of all attempts at con-
strueting a perpetuum mobile; and of the same character are the
principles of relativity theory, the special relativity principle and the
orinciple of the ‘constancy of the velocity of light.” Attacking
scholastic philosophy, Newton says (Opticks, ed. Whittaker, pp. 401—
102), “To tell us that every Species of Things is endow’d with an
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occult specifick Quality by which it acts and produces manifest Effects,
is to tell us nothing: But to derive two or three general Principles of
Motion from Phenomena, and afterwards to tell us how the Properties
and Actions of all corporeal Things follow from those manifest Prin-
ciples, would be a very great step in Philosophy, though the Causes of
those Principles were not yet discover’d.”}

Simplicity is considered as sigillum vers. *‘Nature loves simplicity
and unity,” Kepler says (Opera, ed. Frisch, I, p. 113). The same
principle is formulated by Aristotle as follows (De coelo, I, 4, 217a):
““At deus et natura nihil prorsus faciunt frustra,” and it is held as an
axiom: “frustra fit per plura quod potest fieri per pauciora.” Galileo,
on the third day of the “Discorsi,” reconstructs the chain of thoughts
which led him to the laws of falling bodies (Opere, VIII, p. 197):
‘““When, therefore, I observe a stone initially at rest falling from a
considerable height and gradually acquiring new increments of speed,
why should I not believe that such increases come about in the
simplest, the most plausible way? On close scrutiny we shall find
that no increase is simpler than that which occurs in always equal
amounts.” He goes on to formulate the definition of uniformly
accelerated motion, develops its consequences regardless of experience,
and then finds them, as far as he can observe them with the means at
his disposal, confirmed for the ‘naturally accelerated’ motion of falling
bodies. Among Newton’s rules for the study of nature, the first is to
the effect that no more causes of natural things should be admitted
“than such as are both true and sufficient to explain their appear-
ances. . . . For Nature is pleased with simplicity, and affects not the
pomp of superfluous causes.”” What matters is not that the absolutely
simplest principles be established (as Dingler demands in his Grund-
lagen der Physik) — for then the world, for instance, would have to be
attributed one dimension rather than four — but rather that the whole
breadth of up-to-date experience be taken into account and that the
explanation be sought which is simplest relative to the known phe-
nomena. It often happens that for some partial domain an explana-
tion A is simpler than B; but while A becomes increasingly complicated
as the circle of experience widens, the same does not apply to B, with
the result that eventually B emerges as the superior theory. Fur-
thermore the required simplicity is not necessarily the obvious one,
but we must let nature train us to recognize the true inner simplicity.

{The problem of simplicity is of central importance for the
epistemology of the natural sciences. Since the concept of simplicity
appears to be so inaccessible to objective formulation, it has been
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attempted to reduce it to that of probability, which has already been
incorporated to a large extent into mathematical thought. If, for
example, 20 corresponding pairs of values (z, y) of a functional con-
nection y = f(z), with the accuracy to be expected, lie on a straight
line when plotted in a rectangular coordinate system, then a strict
natural law will be surmised to the effect that y depends linearly on z.
And this because of the simplicity of the straight line, or also because
it would be so extremely ¢mprobable for the 20 points of observation to
lie (nearly) on a straight line if the law in question were a different
one. If one nowuses the straight line for inter- and extra-polation, one
arrives at predictions which go beyond the content of the observations.
However, this analysis is open to criticism. Certainly functions
y = f(x) could be defined mathematically in many ways that are
satisfied by the 20 observational data; among them such as will deviate
considerably from a straight line. For each of these one might claim
that it would be extremely improbable for the 20 observational points
to comply with it if it did not represent the true law. It is thus
essential, after all, that the function, or rather the class of functions,
be held ready by mathematics a priori because of its mathematical
simplicity. Here the class of functions must not depend on as many
parameters as there are observations to be satisfied (e.g. the class of
linear functions f(x) = az + b depends only on two parameters a, b,
whose values may be fitted to the observational data). An important
confirmation of the theory is obtained if it remains in accord with the
facts which it was intended to explain even after the observational
accuracy has been improved (and the number of observational points
increased). An outstanding example is Euclidean geometry, which
was proved by geodetic and astronomical precision measurements to
be much more exactly valid than could have been conjectured on the
basis of the experiences which had led to its erection. But this is far
from being the only example of such a confirmation of the principle of
simplicity. There is an abundance of similar cases in physics. Con-
versely it is a sure sign of being on the wrong scent if one’s theory
suffers the fate of the epicycles of Ptolemy whose number had to be
increased every time the accuracy of observation improved. The
three laws of Kepler were much simpler and yet agreed noticeably
better with the observations than the most complicated system of
epicycles that had been dreamed up.” But Kepler’s astronomical dis-
covery would have been impossible without the Greek geometer’s
preceding discovery of the ellipses as a mathematically simple class of
curves. Newton’s law of attraction, especially in its formulation as a
nearby action law, again is simpler than the Keplerian theory of plan-
etary motion. The latter can be regained from the former if nothing
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but the attractive force of the sun is taken into consideration, while the
‘perturbations’ coming from the remaining planets are disregarded.
And again, a splendid confirmation of Newton’s ‘Tieferlegung’ of the
theoretical foundation must be seen in the perfection with which the
perturbations computed on the basis of his law have checked with
innumerable observations, the accuracy of which has again been
enormously improved since the time of Tycho Brahe. It should be
added that the law of gravitation proved to be valid even outside the
circle of experiences for which it had originally been designed, namely,
for the motion of double stars about each other.

If experience has suggested a hypothesis, it is necessary to develop
its consequences deductively, always with a view to inferring state-
ments which are amenable to experimental test. Huyghens describes
the method in the introduction to his Traté de la lumiére (written in
1678, published in 1690): it differs greatly from geometry, he says,
““because here the principles are confirmed by inferences drawn from
them. . . . Itisnevertheless possible to achieve a degree of probability
which often is hardly inferior to a strict proof. In fact, this is the
case if the consequences arrived at under the assumption of these
principles are in perfect accordance with the phenomena known from
experience; especially if their number is large, and all the more if new
phenomena are designed and predicted that follow from those assump-
tions and if it is found that the result agrees with our expectation.”
He thus finds his wave theory of light confirmed by the discovery of
the law of the double refraction of calcite. This is too complicated
to be found purely empirically; but if the simplest assumption is made
with regard to the propagation of light waves in calcite beyond that
of a spherical wave, laws of refraction are obtained that are in accord
with experience. It must be put down as a success of a theory if it
reduces the complicated dependencies among directly observable
quantities to simple relations among the fundamental quantities of
the theory. Galileo’s discovery of the law of falling bodies is based
on & similar procedure.

“The essential function of a hypothesis,”’ according to Mach
(Erkenninis und Irrtum, p. 237), “ consists in the guidance it affords to
new observations and experiments, by which our conjecture is either
confirmed, refuted, or modified, by which —in short — our experi-
ence is broadened.” ““The seafarer, in whose imagination the objects
thrown up by the ocean upon the beach create a vivid picture of the
distant land, sets out to find that land. Whether his search will
succeed or not, whether in place of the expected Indian or Chinese
coast he discovers a new one, at any rate his experience has been
widened” (op. cit., p. 231).
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For Galileo, Huyghens, and Newton, the deductive part still plays
. mouch greater role than in modern times. Galileo is no less proud
f the ‘““abundance of theorems which flow from a single principle”
han of the discovery of this principle itself (end of the third day of the
‘Discorsi”). The empirical attitude in physics has been accentuated
rogressively. The first great inroad was made by the discovery of
lectricity. }

Closely connected with the concept of simplicity is the category of
verfection. It plays a considerable part not only as a methodical but
Uso as an explanatory principle in Aristotelian philosophy. Thus
Aristotle attributes the indestructibility and unalterability of the
ieavenly bodies to their perfect spherical form. Criticizing him,
salileo remarks in his “Dialogo,”” firstly, that from this point of view
\ deviation from the exact spherical shape by as much as a hair’s
rreadth would be as inadmissible as one of the size of a mountain range.
dis sense of continuity revolts against the idea that, in nature, which
sermits no absolutely exact measurements, the exact value of a con-
sinuous quantity should confer properties upon the bearer that are
rasically different from those corresponding to nearby values no matter
10w close. Secondly he points out that even, say, a tetrahedron
sontains a sphere and that consequently only the residual corners of
she tetrahedron could be destructible (although spheres may be
nscribed to them too). He thus proves strikingly that for a property
such as indestructibility it is not the geometrical form that matters
>ut only the boundary surface across which the physical quantities
in this case the material density) undergo a discontinuous jump and
which thereby may become the seat of special surface forces. (In
‘act, such capillary forces play a role in imparting spherical form to
'ain drops.) We here witness more clearly than anywhere else in the
‘Dialogue” the radical change in the interpretation of nature brought
wbout by Galileian as opposed to Aristotelian thinking. Character-
stic for Galileo’s attitude is his exuberant praise of changeability in
sontrast to that crystalline perfection (Dialogo, Opere, VII, pp. 83-84);
1e points to the blossoming flower as something incomparably more
nagnificent than Aristotle’s celestial bodies in their aloofness from all
‘hanges. In Kepler’s work considerations of perfection still occupy
v good deal of space. He is concerned with the “rank of the earth.”
3eing convinced of the perfection of the circle, he has to go through
v hard struggle before he gives up, as Brahe’s measurements force him
o do, the circular orbit of Mars. At first he still clings to static con-
eptions; he sees the harmony of the planetary system expressed in
he regular Platonic solids. Only with effort he wins through to a
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more dynamic interpretation of the world. Even Galileo, at a remark-
able place in the ‘“Dialogue,” succumbs to the magic of deriving an
explanation from geometrical perfection, when he bases upon the latter
the circular (not straight!) path of purely inertial motion. But on
the whole he has already completed the turn-about much more
decisively than Kepler. He seeks perfection no longer in the fixed
configurations and in the individual objects but in the dynamic rela-
tionships, the natural laws (which leave a large amount of play to
contingency). The notion of perfection is to him no longer a factual
constituent of the theory, but it has become a heuristic principle, a
belief which stimulates research. “Xepler, Galileo, and Bruno,” says
Dilthey,. ‘“share with the ancient Pythagoreans the belief in a uni-
verse ordered by most perfect and rational mathematical laws and in
divine reason as the source of the rational in nature, to which at the
same time human reason is related.”” On the long path of experience
during the succeeding centuries this belief has always found new and
surprising partial fulfilments, the most beautiful perhaps in Maxwell’s
theory of the electromagnetic field in empty space. But again and
again nature still proved itself to be superior to the human mind and
compelled it to shatter a picture held final prematurely in favor of
a more profound harmony.

Two strict requirements, according to Section 19, have to be made
of any theory: (¢) concordance, which implies consistency, (i) the
absence of redundant purely dogmatic constituents, which are without
influence upon observable phenomena. Furthermore, the principle
of sufficient reason must never be violated. In simple cases it may
lead, as a principle of symmetry, to the establishment of definite laws.
Thus it is used by Archimedes when he bases his theory of the lever on
the theorem that equal weights attached to equally long arms of a
lever are in equilibrium. The entire configuration, including the
gravitational direction, is transformed into itself by reflection with
respect to the plane perpendicular to the horizontal lever at the point
of support. The notion of spatial similarity is the basis of the con-
clusion. If a configuration of masses and forces, or a state uniquely
determining the subsequent course of events, is mapped into itself by
a similarity transformation, then the events must also be invariant
with respect to this transformation. For this reason the lever cannot
lean to one side under the condition described above. In conjunction
with the general mechanical axiom that a balanced system remains in
equilibrium if a balanced partial system is split off, Archimedes then
derives from that special case the general law of the lever.

The same train of thoughts leads to the theorem that equal bodies
have equal inertial masses; i.e. if they are propelled against each other
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with oppositely equal velocities, neither overruns the other. If this
should happen nevertheless with two bodies of equal appearance, we
infer a hidden inner difference. Although under unfavorable ecir-
cumstances it might admittedly reveal itself only in the difference in
mass, it would at any rate cause us to search for other differences in
the physical behavior of the bodies. Frequently the principle of
sufficient reason has been relied on to prove the law of inertia by
inferring from it that the state of a body left to itself must remain
unchanged. But what is meant by ‘state’? Scholasticism inter-
preted it as position and thus believed that a body must remain at a
standstill if not subjected to any outside inlluences. Galileo, on the
other hand, construes it as velocity, both in magnitude and direction.
Evidently only experience can decide which opinion is right. It must
also inform us, in the cases mentioned above, of the ‘relevant,” the
determining circumstances. The argument of Leibniz in his con-
troversy with Clarke and Newton over the relativity of motion (p. 97)
is a typical example of the application of the principle of sufficient
reason. Undoubtedly, however, its import as a source of factual
truths has been grossly overestimated by Leibniz.

{Mach, who fights the a priori, the endeavour to turn, as he says,
“the instinctive in science into a new mysticism and to hold it infalli-
ble,”’ points out in his Mechanik (seventh ed., 1912, p. 27) that ‘““aven
instinctive insights of such great logical force as the symmetry principle
employed by Archimedes may be misleading. Many a reader may
remember the intellectial shock at learning for the first time that a
magnetic needle lying in the magnetic meridian can be deflected from
the meridian by & current running paralle] to the needle.” However,
the principle of symmetry is satisfied if we assume that a reflection
with respeet to the plane in which current and needle lie maps the
current into itself, but interchanges the north and south poles of the
magnet. Admittedly this view is possible only because positive and
negative magnetism are inseparable and of equal nature. We form a
theoretical conception of the nature of magnetism — namely that it is
caused by molecular cyclic electric currents perpendicular to the
needle — by which those facts are deprived of their astounding charac-
ter, nay become necessities.]-

Another guide of the theorist is the principle of continuity, first
formulated in general terms by Leibniz. It rests upon the impossi-
bility of proper division of a uniform continuum. It is scientifically
unsound to exclude, as Euclid does, the null angle and the straight
angle from the notion of an angle. Rest is not contradictory to
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motion, but a limiting or special case of motion. Leibniz says that by
virtue of that principle ‘“the law of bodies at rest is, so to speak, only
a special case of the general rule for bodies in motion, the law of
equality a special case of inequality, the law for the rectilinear a sub-~
species of the law for the curvilinear,”” and he calls manifolds “homo-
genous if one can be transformed into the other by a continuous
change” (Initia rerum Mathematicarum metaphysica, Mathematische
Schriften, VII, pp. 25, 20). By means of the lex continui he disproves
the laws of impact which had been laid down by Descartes but for-
mulated differently for a whole series of different cases. In deriving
the law of inertia Galileo (Dialogo, Opere VII, pp. 171/174) starts
with the fall of a body on an inclined plane, for which he knows the law,
and then lets the inclination against the horizontal decrease to zero;
inertial motion thus is the limit of falling motion. This origin makes
it understandable why Galileo, as it seems, recognized the law of
inertia in its classical form as true only for motions perpendicular to
the direction of gravity (an opinion with which one can agree in a sense
from the point of view of general relativity theory). Mach (Mechanik,
p. 131) gives the following directive: ¢“ After having reached an opinion
for a special case, one gradually modifies the circumstances of this
case in one’s imagination as far as possible, and in so doing tries to
stick to the original opinion as closely as one can. There is no pro-
cedure which leads more safely and with greater mental economy to
the simplest interpretation of all natural events.” On the other hand,
in order to test an overall view tentatively adopted, it is common
practice in mathematics and physics to examine limiting and special
cages for which the results are pretty obvious.

The principle of analogy is closely akin to that of continuity.
Newton formulates it in the second of his rules concerning the study
of nature (Principia, ed. Cajori, p. 398): “Therefore to the same
natural effects we must, as far as possible, assign the same causes.”
We meet the principle of analogy in perhaps its most significant
application in the establishment of the atomic theory. The mechani-
cal laws, which had been derived from the behavior of ordinary visible
bodies and had been most precisely confirmed by the planets, are
carried over to atoms. One anticipates that the facts may later
enforce corrections, but without this preliminary adoption of the
mechanical laws no beginning of atomic research is thinkable. Even
the most recent quantum mechanics of atoms, which deviates so
radically from tradition as to renounce any kind of a spatial picture of
the atomic events, still is based on the old mechanical laws in their
most transparent form, namely the Hamiltonian equations. H. A.
Lorentz arrived at the fundamental electromagnetic laws of the theory
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of electrons by taking the phenomenological Maxwell equations, which
had been derived from observation and with which the electrical engi-
neer works, and crossing out all quantities in which the influence of
matter manifests itself in the form of material constants, such as con-
ductivity, electrical polarization and magnetization. Under the
assumption that the true ‘microscopic’ electromagnetic field obeys
these simplified harmonic laws, in conjunction with certain ideas on
the atomic structure of matter, he was able to obtain once more the
old phenomenological laws for the macroscopic field by identifying
the macroscopic field quantities with certain average values of the
microscopic field quantities.

{The exact laws of nature must not contain any material con-
stants; the latter should be derived from those laws on the basis of the
atomie structure of the material under investigation. Since the
phenomenological laws are apt to fail wherever the finer internal
structure of matter is relevant, the atomic theory must at the same
time disclose the limits of their validity and yield the atomic laws
which, beyond these limits, take the place of the macroscopic laws.
Thus Maxwell had assumed that the electric polarization is propor-
tional to the field strength. This is correct for static and for slowly
changing fields, and even for the fields of wireless telegraphy which
carry out more than a million oscillations per second. But in the
domain of the much more rapid optical oscillations we encounter the
new phenomenon of dispersion; the proportionality factor taken as
constant by Maxwell — that is, the constant of dielectricity, which
equals the square of the coefficient of refraction — turns out to be
dependent on the frequency of oscillation, and this according to laws
which are closely connected with the atomic structure of the refracting
medium and can only thus be understood. (In particular, charge and
mass of an electron enter the dispersion formula in such a manner that
one can derive from optical observations a definite value for their
ratio.)]-

What is the ultimate purpose of forming theories? H. Hertz
describes the process as follows in his Prinzipien der Mechanik (p. 1):
“We form images or symbols of the external objects; the manner in
which we form them is such that the logically necessary (denknot-
wendigen) consequences of the images are invariably the images of
materially necessary (naturnotwendigen) consequences of the corre-
sponding objects.” In the 19th century under the influence of
sceptical epistemology it had become the fashion, especially among
British physicists, to search only for images, for analogies covering

162



METHODOLOGY

narrowly circumscribed domains of facts, and to construct mechanical
models which rendered certain features of the phenomena in question
but which could not possibly be taken seriously as ‘explanations.’
One suffered no longer from the ‘delusion’ of having to explore a
uniquely determined reality. But the procedure proved to be singu-
larly sterile as long as the only deliberate aim was the design of images
and models. To Maxwell the physical analogies were expedients
that avoid the disadvantages of a purely mathematical theory (which
obscures the empirically important consequences) and of a physical
hypothesis proper (which is apt to blind one to the facts).

-[“ By a physical analogy,” he says, ‘I mean that partial similarity
between the laws of one science and those of another which makes each
of them illustrate the other.” He mentions the analogy between
gravitation and the stationary heat distribution in a2 medium — an
analogy based on the fact that the Laplace equation holds for both
processes — and confronts it with the analogy between light and the
oscillations of an elastic medium. The latter ““extends much farther,
but, though its importance and fruitfulness cannot be over-estimated,
we must recollect that it is founded only on a resemblance in form
between the laws of light and those of vibrations. By stripping it of
its physical dress and reducing it to a theory of ‘transverse alterna-
tions,” we might obtain a system of truth strictly founded on observa-
tion, but probably deficient both in the vividness of its conceptions and
the fertility of its method.” (Maxwell, Scientific Papers, I, p. 156.)
The example, especially in view of the further development of the
theory of light inaugurated by Maxwell himself, very suitably illus-
trates the advantage of this standpoint, namely of affording protection
against dogmatism. }

Mach speaks of a progressive “adaptation of thoughts to facts.”
The justification for the formation of theories he sees in the ensuing
economy of comprehending and communicating facts and procedures
(cf. Mechanik, Introduction). Others have adhered to the belief that
reason is here at work, reason which strives according to immanent
principles to construct symbolically its correlate, transcendent reality.
Without this belief science, to them, seems an empty shell. But all
are of one opinion as to the ultimate goal, the prediction of events.
In how far do the economic principles or principles of reason, by which
a theory comes about, guarantee the fulfilment of its predictions?
This is a last fact, which points beyond knowledge — Hume's prob-
lem: the trust in induction, if it is to be justified, can only be justified
by the principle of induction itself. But trust in the world and in
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oneself is in no need of justification; it is the natural attitude of the
mind’s life, especially as it manifests itself in thetic acts of reason.

Kant, in his transcendental logic, made the attempt to ascertain
by a systematic procedure the aprioristic principles for the construc-
tion of empirical reality. His work deserves credit for elevating into
philosophical consciousness the conception of reality which dominated
the sciences since Galileo, for liberating it from the metaphysical
ballast with which it was still loaded down by the Leibnizian system,
and for safeguarding it against Hume’s brand of sensualism that had
grown out of the natural sciences. Yet the natural scientist will find
it difficult to be satisfied with his attempt. What was stated by Kant
is not nearly sufficient and is tied too closely to the particular form of
contemporary physics; on the other hand it contains superfluous com-
ponents, which got in only through the rigid logical schematism of
“the great Chinese from Konigsberg”® and his peculiar predilection
for trichotomy. The ideas of substance and causality, to which the
last section of this book is devoted, emerge as the really useful nucleus.
Besides the two ‘“analogies of experience,” which refer to them, Kant
places a third that deals with community (Wechselwirkung). It is pre-
ceded by the “Axioms of Intuition” (“All intuitions are extensive
quantities”) and the ‘“Anticipations of Perception” (“In all phe-
nomena, sensation, and the Real which corresponds to it in the object,
has an intensive quantity, that is, a degree”’). He follows up the
first three groups by the ‘Postulates of Empirical Thought,” which
refer to the concepts of possibility, existence, and necessity. Kant’s
problem, for the solution of which a few fragments have been assem-
bled here, remains open for the future, presumably as an infinite task.
Kant, however, considered metaphysics, particularly as it strives for
the solution of this problem, as ‘“the only one of all sciences which,
through a small but united effort, may count on such completion in a
short time, so that nothing will remain to posterity” (Preface to the
Critique of Pure Reason, ed. M. Miiller, p. XXV).
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CHAPTER III

The Physical Picture of the World

22. MATTER

A. Tre SussTanckE THEORY OoF Marrer. The 17th and 18th
centuries are dominated by what I should like to call the substantial
conception of matter. The bodily thing contains an immutable sub-
stantial nucleus: it is the carrier of the changing sensory qualities that
are inherent in the thing for our perception, but is itself unaffected by
all these changes; ‘“the continued body,” Locke says, ‘“that considered
in any instant of its existence is the same with itself” (Enquiry con-
cerning Human Understanding, second book, Chap. 27, §3). Because
of this constancy, the changing sensuous phenomena must be effects on
our sense organs caused by the motions of the substantial elements.
The basic features of this conception go back to Democritus. In
grandiose abstraction from sensory appearance he assumes as the only
differentiation, from which all variety springs, the absolute distinction
between the “empty” and the ‘“‘full’”’ — the u# 8v of empty space as
opposed to the maurhipes év of matter. That is the ultimate explana-
tory principle for the phenomena. At the beginning of the 17th cen-
tury this theory of Democritus was revived by Gassendi. But also
Galileo declares: ““The variety exhibited by a body in its appearances
is based on dislocation of its parts without any gains or losses. . . .
Matter 1s unchangeable and always the same, since it represents an eternal
and necessary form of being.”’ The decisive feature in this concept of
substantial matter is that in principle the same substantial place can
be recognized at any moment in the course of the history of a bodily
system; it preserves its identity in time. The scientific justification
of the concept, therefore, will depend on the development of exact
methods by which in practice to follow a substantial place within the
flux of movement. The four-dimensional world continuum appears
dissolved into individual world lines, the world lines of the individual
substantial places. This was the salient point whenever in physics
a substantial medium was hypothetically introduced as the ‘carrier’
of certain phenomena, e.g. the ether in the mechanical theory of light.
Thereby the possibility of objective differentiation between rest and
motion of a body relatively to that medium was obtained.

But in a completely homogeneous substance without any quality,
the recognition of the same place is as impossible as that of the same
point in homogeneous space. For this reason Democritus’s idea
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necessarily leads to atomism and to the recognition of empiy space.
It is also their atomic constitution that explains the different density
of bodies, their capacity of rarefaction and condensation — namely
by a mixture of atoms and empty space in changing proportions of
volume. A body occupies a certain portion of space; the total volume
of that part of it that is ‘covered’ by atoms is to be set down as the
mass of the body. The space which is required here is the Euclidean
space with its rigid metrical structure and its ‘far-geometric’ relations.
For all possible changes in the world must be temporal changes of
spatial relations among the distant atoms. The atoms are tndiwisible
and rigid, that is, they remain perpetually congruent with themselves.
Moreover, they are impenetrable; the portions of space occupied by two
atoms never overlap. Solidity, which includes impenetrability and
rigidity, has been emphatically described, especially by Gassendi and
Locke, as the basic feature of matter; as opposed to Descartes, in whose
corpuscular theory the elementary bodies deform and pulverize one

Figure 5. Atom consisting of two separate parts.
another. Solidity must not be construed as the sensory property of
hardness, for this would amount to excepting the qualities of the tac-
tual sense from the subjectivity of sense qualities. Nor must it be
construed dynamically as a firmness based on mutual forces of the
substantial places. It is, according to its definition, an abstract geo-
metrical property. The elastic firmness of the visible bodies is
founded on this absolute property of the atoms. This point of view
is defended by Huyghens, the mechanic, who thinks geometric-kine-
matically and in terms of principles, in his exchange of letters with
Leibniz, the metaphysician, who thinks intuitive-dynamically. To
be sure Huyghens himself speaks of a resistance against breakage or
compression. But these terms, chosen for their greater expressiveness,
must not be misunderstood; for “one must,”’ as he says, ‘“‘assume this
resistance to be infinite, as it would seem absurd to ascribe to it a
certain degree, say equal to that of a diamond or of iron; for no reason
could be found for this in matter of which nothing but extension is
presupposed. The hypothesis of infinite firmness therefore seems to
me very necessary, and I fail to understand why you find it so strange,
as if it introduced a permanent miracle.” Possibly Huyghens would
have understood the objections of Leibniz more easily if he had realized
the following consequence of his ‘substantial’ viewpoint: even if the
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shape of an atom were not a connected portion of space, as indicated
in Figure 5, it would always have to remain congruent to itself because
of its geometric rigidity, the ‘square’ part would not be freely movable
with respect to the ‘circular’ part; for ‘God has willed’ that this whole
be a unit.

Regarding the shape of the atoms the spherical form is generally
preferred as being the simplest. But protuberances in the form of
hooks are also in vogue, by means of which the atoms supposedly cling
to one another when they combine to form a solid body breakable only
by force. The ideal solution would be an atomic shape of such a kind
that all points in it are geometrically indistinguishable. For then we
would have, on the one hand, the possibility of observing an atom as a
whole during its motion, and, on the other, the impossibility of con-
sidering parts of the atom as remaining identical with themselves.
The sphere is evidently chosen as the closest approximation to this
ideal.

A mechanical atomistic explanation of the phenomena, reducing
all processes to the motion of substantial particles, requires that the
laws of motion of the atoms are known. First of all it must be ascer-
tained how an atom moves freely when other atoms do not prevent
it from penetrating into the adjacent portions of space. Secondly it
is necessary to find out what effects the atoms exert upon one another,
how their motions are modified when, in the state of contact, they are
in one another’s way. Epicurus considers the downward fall as
free motion. Since Galileo, the fall in the field of gravitation is, of
course, replaced by uniform translation in accordance with the law of
inertia. Atoms act upon one another by ‘émpaci’ The latter,
however, is not understood dynamically, the statement means nothing
but that the movement of two atoms after their collision is determined
by their movement before. Huyghens succeeded in establishing the
relevant principles; they are the laws of conservation of energy and
momentum, which are fundamental to the whole of physics. They
determine the motion uniquely in conjunction with the assumption
that an exchange of momentum occurs only in the direction perpendi-
cular to the common tangent plane of the colliding atoms. “Thus
the whole of natural science consists in showing in what state the
bodies were when this or that change took place, and that, on account
of their impenetrability, just that change had to take place which
actually occurred” (Euler, Anleitung zur Naturlehre, Chap. VI, §50).

This is the mechanical picture of the world in its pure form. Euler
(0p. cit., Chaps. 1-6) mentions as the fundamental properties of matter:
extension, mobility, inertia, and impenetrability. In the concluding
considerations of his Opticks, Newton says, ‘“All these things being
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consider’d, it seems probable to me, that God in the beginning form’d
Matter in solid, massy, hard, impenetrable, moveable Particles, of
such Sizes and Figures, and with such other Properties, and in such
Proportion to Space, as most conduced to the End for which he formed
them; and that these primitive Particles being Solids, are incom-
parably harder than any porous bodies compounded of them; even
so very hard, as never to wear or break in pieces; no ordinary Power
being able to divide what God himself made one in the first Creation.
. . . And therefore, that Nature may be lasting, the Changes of
corporeal Things are to be placed only in the various Separations and
new Associations and Motions of these permanent Particles.”

Through Huyghens the atomistic substance theory had attained
that degree of precision which made strict conclusions possible. As
can be shown by statistical methods, spherical atoms of equal size
which move according to the laws established by him form a body
that has all the properties which we empirically associate with a gas.
The manifestations of heat are due to the lively movements of the
atoms. Huyghens' theory, however, has been incapable of going
beyond the explanation of the gaseous state, and even in this respect
it failed in one decisive point. For it was possible to derive from
observation in combination with the mechanical theory rather reliable
values for the magnitude of the radii as well as for the inert masses of
atoms, which enter into the expressions for energy and momentum;
and it transpired that for the various chemical elements the atomic
masses are far from proportional to the atomic volumes. This shat-
tered the basic conception of one matter, the conception of 2 homo-
geneous dough of substance out of which the Creator, with the help
of a set of baking moulds, at the beginning of time had carved the
little atom cakes, and had then given them absolute rigidity and sent
them off into space with varying initial momenta. The mass ratios
however, proved to be in accordance with the relative atomic weights,
as derived from the actual quantitative analysis of innumerable chemi-
cal compounds. The law of multiple proportions, on which the atom-
istic interpretation of the findings of chemistry is based, was for a
long time by far the most convincing empirical proof for the atomic
constitution of matter.

B. Marrer anp Fiewp. Erarr. Beginning with Newton, dy-
namic conceptions enter the physics of substance. The main impetus
to this development was given by his discovery of gravitation. At the
place quoted above, at the end of his Opticks, he continues as follows:
“It seems to me farther, that these Particles have not only a Vis
inertiae, accompanied with such passive Laws of Motion as naturally
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result from that Force, but also that they are moved by certain active
Principles, such as is that of Gravity, and that which causes Fermen-
tation, and the Cohesion of Bodies. These Principles I consider, not
as occult Qualities, supposed to result from the specifick Forms of
Things, but, as general Laws of Nature, by which the Things them-
selves are form’d.” Until the most recent times, various hybrid
combinations of substance and dynamics were developed, but gradually
the constructive dynamic properties of matter displaced its substantial
ones and rendered them superfluous.

{Fundamentally, mass has already been introduced by Galileo as a
dynamic coefficient appearing in the law of momentum; yet, along
with it, the definition of mass as ‘quantum of matter’ stubbornly
persists. Hardness and impenetrability of the atoms get replaced by
the repulsive force with which they interact and by the law according
to which this force depends on distance. Newton repudiates.the hook-
shaped atoms as an explanation which explains nothing and continues,
I had rather infer from their Cohesion, that their Particles attract one
another by some Force, which in immediate Contact is exceeding
strong, at small distances performs the chemical Operations above-
mention’d, and reaches not far from the Particles with any sensible
Effect” (Opticks, ed. Whittaker, p. 389). The atoms become “‘ centers
of force.” Boscovich, Cauchy, and Ampére clearly profess the view
that the centers are points in the strict sense. Kant in his Meta-
physische Anfangsgriinde der Naturwissenschaft constructs matter out
of the equilibrium of attractive and repulsive forces. The purely
mechanical interpretation of nature is replaced by the physics of
central forces.® Berzelius first conceives the idea that the chemical
affinity is of an electrical nature. Today we have succeeded to a
considerable extent in explaining the structure of bodies and their
elastic, thermic, electrical, magnetic, optical, and chemical behavior
on the basis of the forces acting among the atoms. This applies in
particular to the two extreme states of matter, the gaseous and the
crystalline.

Modern physics speaks of the radius of an electron and ascribes
to it a value of the order of magnitude 10~!% ¢em. This number, how-

¢ In opposition to Kant it must be said, though, that a decomposition of the
uniform central force into two partial forces would be purely arbitrary unless the
laws determining the two components in terms of distance each contained a
parameter (‘attractive’ and ‘repulsive’ mass) which varied independently from
one body to another. Thus electrical and gravitational force are separable because
charge is not determined by mass. But since Kant only speaks of a single mass
density (= intensity of fulness), supposedly arising from the equilibrium of
repulsive and attractive force, his theory of matter hangs in the air.
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ever, must be interpreted as the distance (entering into Coulomb’s
law of force) up to which two electrons approach each other if one is
propelled against the other with a velocity comparable to that of
light. }

With Newton, gravitation still appears as an instantaneous action
into distance. When only nearby action is considered admissible,
ether theories of gravitation arise, which at first however are still
under the pressure of the purely mechanical interpretation of nature.
Of course Newton too was aware of the difficulty, but declined to ““frame
hypotheses” about the cause of gravitation. (Apparently he thought
of a non-material transmission by virtue of a ‘spiritual substance’ or
of the all-penetrating space filled with the omnipresence of God.) The
difficulty was overcome by physical means after Faraday had devel-
oped the idea of a field for the electric phenomena. Maxwell found
that the field propagates from the centers of excitation not instan-
taneously but with the velocity of light. Nearby action laws, in the
form of differential equations, connect the physical quantities char-
acteristic of matter and field, namely charge and current densities
and electrical and magnetic field strengths. The force, which with
Newton is not an activity determined by and emanating from a single
body % but a bond between two bodies k& and &’ which join hands across
an abyss, is split up into an activity of k& (excitation of the field deter-
mined by % alone) and a suffering of &’ (temporal change of its momen-
tum caused by that field). Between them the expanse of the field is
spread out according to laws of its own of the utmost simplicity and
harmony. The field transmits momentum as well as energy from one
body to another; a radiating body not only loses energy, but as it
radiates light in one direction it recoils in the opposite direction. In
the field we therefore have spatially localized energy and momentum.
The scalar densities and the components of the vectorial current
densities of energy and momentum can be computed by means of
simple laws from the two field strengths. The ponderomotoric effect
of bodies upon one another is due to an exchange of field energy and
momentum against kinetic energy and momentum of matter and
vice versa; the increase or decrease in time of total energy or total
momentum of any part ¥V of the field is compensated by the current
of energy or momentum going through the surface of V. If we deter-
mine the center of energy of a portion of space containing both matter
and radiation, in the same way as we determine the center of gravity
(mass center) of a ‘ponderable’ body, it turns out that the total

momentum I contained in this portion has the same direction as the
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velocity » of the center of energy. If we set I = mv, the propor-
tionality factor m may well again be called the inert mass. It is con-
nected with the energy E by the universal relation m = E/c?, where ¢
is the velocity of light. A portion of a field such as the radiation in
empty space enclosed by a massless shell (Hohlraumstrahlung)
possesses inert mass like an ordinary body. Thus the strength with
which a body, in the face of diverting forces, persists on its natural
course as prescribed by the field of inertia depends on the energy
compressed in the body. The mass of the electron certainly derives
in part from the accompanying electromagnetic field. Or even com~
pletely? Since all physically important properties of an elementary
material particle, as we have seen, belong to the surrounding field
rather than the substantial nucleus at the field center, the question
becomes inevitable whether the existence of such a nucleus is not a
presumption that may be completely dispensed with.

This question is answered in the affirmative by the field theory
of matter. According to the latter a material particle such as an
electron is merely a small domain of the electrical field within which
the field strength assumes enormously high values, indicating that a
comparatively huge field energy is concentrated in a very small space.
Such an energy knot, which by no means is clearly delineated against
the remaining field, propagates through empty space like a water
wave across the surface of a lake; there is no such thing as one and the
same substance of which the electron consists at all times. Just as
the velocity of a water wave is not a substantial but a phase velocity,
so the velocity with which an electron moves is only the velocity of an
ideal ‘center of energy,” constructed out of the field distribution.
According to this view, there exists but one kind of natural law,
namely, field laws of the same transparent nature as Maxwell had
established for the electromagnetic field. The obscure problem of
laws of interaction between matter and field does not arise. This
conception of the world can hardly be described as dynamical any
more, since the field is neither generated by nor acting upon an agent
separate from the field, but following its own laws is in a quiet con-
tinuous flow. It is of the essence of the continuum. Even the atomic
nuclei and the electrons are not ultimate unchangeable elements that
are pushed back and forth by natural forces acting upon them, but
they are themselves spread out continuously and are subject to fine
fluent changes.

{On the basis of rather convincing general considerations, G.
Mie in 1912 pointed out a way of modifying the Maxwell equations
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in such a manner that they might possibly solve the problem of matter,
by explaining why the field possesses a granular structure and why the
knots of energy remain intact in spite of the back-and-forth flux of
energy and momentum. The Maxwell equations will not do because
they imply that the negative charges compressed in an electron
explode; to guarantee their coherence in spite of Coulomb’s repulsive
forces was the only service still required of the substance by H. A.
Lorentz’s theory of electrons. The preservation of the energy knots
must result from the fact that the modified field laws admit only of one
state of field equilibrium — or of a few between which there is no con-
tinuous transition (static, spherically symmetric solutions of the field
equations). The field laws should thus permit us to compute in
advance charge and mass of the electron and the atomic weights of the
various chemical elements in existence. And the same fact, rather
than the contrast of substance and field, would be the reason why we
may decompose the energy or inert mass of a compound body (approxi-
mately) into the non-resolvable energy of its last elementary constit-
uents and the resolvable energy of their mutual bond.

Besides the electromagnetic field, we have the metric or gravita-
tional field as discussed in Section 16. The task of merging both into
one unit arises. It has recently been attacked in different ways by
Weyl, Kaluza, Eddington, and Einstein. At a certain stage of the
development it did not seem preposterous to hope that all physical
phenomena could be reduced to a simple universal field law (in the
form of a Hamiltonian principle).]

Geometry unites organically with the field theory; space is not
opposed to things (as it is in the substance theory) like an empty
vessel into which they are placed and which endows them with far-
geometrical relationships. No empty space exists here; the assump-
tion that the field omit a portion of the space is absurd. Just as in
intuitive space extension and quality are tied to each other, so, in the
field theory, the state quantities of the field or the field structure on
the one hand, and its spatio-temporal medium, the structureless four-
dimensional continuum on the other, depend on one another. If the
latter is referred to coordinates, the state quantities appear as func-
tions of the coordinates. But the concept of independent variable is
correlative to that of function; as far as the range of existence of a
function extends, so far the domain of variability of its arguments.
(It should be noted here that the validity of the equation E = 0 in
some portion of space does not mean that the electrical field E is
interrupted in that portion, but merely that it is in the ‘state of rest’
there, which fits continuously into all other possible states.)
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{Concerning the substance contained in a box, one may well ask
what will happen when it is pumped out. The field, however, cannot
be pumped out. Leibniz must have had something like this in mind
when he refused to acknowledge the experiments of Guericke and
Torricelli as proof for the existence of a vacuum, though he did so
with the, at least in its wording, questionable argument that ‘‘the
glass has minute pores through which the radiation of light and of the
magnet and other very tiny particles [!] can penetrate” (Leibniz’s
fifth letter to Clarke, §34).}

While according to Democritus the distinetion of full and empty
forms the basis of substance theory, any field theory is founded on
certain state quantities spread out in the four-dimensional space-time
continuum. The laws of motion of the substance are replaced by
differential equations (of simple build) in which, apart from the values
of the state quantities at an arbitrary place, the derivatives of the
latter with respect to the four world-coordinates appear. These are
the field laws, which, in view of their objective significance, must be
independent of the choice of the coordinate system.

The explanation of ponderomotoric effects through the propagation
of energy and momentum in a continuous field arose in closest contact
with experience, and today this conception permeates the whole of
physies. It seems scarcely probable that this factor will again dis-
appear one day from the description of nature, closely as it is tied
up with the space-time continuum and its metrical structure. On
the other hand, the pure field theory is hypothesis and program;
in spite of its highly attractive features, the great hopes it once
raised, and its development by men like D. Hilbert, M. Born, and
others, it has remained in the limbo of speculative physics. But
its discussion led to investigations from which the fortunate result
emerged (Weyl, Einstein and Infeld) that the decisive facts con-
cerning the interaction of the discrete material particles and the
continuous field can be accounted for without commitment to any
premature hypothesis about the inner structure of the particles. Pro-
ceeding in this way we reestablish the duality of field and matter.
Their connection is a dynamic one; matter excites the field, the field
acts upon matter. If less attention is paid to the connecting medium
of the field, then matter and force appear as the interdependent
constituents of the world. Helmholtz formulates this viewpoint
as follows: ““Science considers the objects of the external world accord-
ing to two kinds of abstraction: on the one hand, according to their
mere being, irrespective of their effects on other objects or on our
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sense organs; as such, it calls them matter.” On the other hand,
we attribute to matter the capacity to act, for only through its effects
do we know it. “Pure matter would be irrelevant for the rest of
nature, because it could never cause a change in it or in our sense
organs. Pure force would be something which should be there, and
yet is not because being-there we describe as matter.” F. A. Lange,
in his Geschichte des Materialismus, takes a more critical view of matter
and describes it as “the uncomprehended or incomprehensible residue
of our analysis.”

We saw that the Newtonian physics is entirely dominated by this
dualism. The classical philosopher of the dynamical conception of
the world, however, is Leibniz. To him, what is real in motion does
not lie in the change of position as such, but in the moving force.
“La substance est un étre capable d’action, une force primitive” — trans-
spatial and immaterial. ““For not all truths relating to the world of
bodies can be derived from merely arithmetical and geometrical
axioms, that is, from axioms of larger and smaller, of shape and posi-
tion,” he says in eriticism of Descartes (Mathematische Schriften, VI,
p. 2413 “but others must be added concerning cause and effect, activity
and passivity, in order to give an account of the order of things.”
The ultimate element is the monad, an indecomposable unit without
extension, from which the foree bursts forth as a transcendental power.
Only with regard to the distribution of the monads in space, which
itself is merely a phaenomenon bene fundatum, is the body described
as an extended agent. Pure activity, however, is all; preestablished
harmony takes the place of such reciprocal effects as we think are
carried by the field from particle to particle. Fichte, too, recognizes,
apart from the sensation of qualities and the intuition of extension,
active thought that, connecting them both, posits the thing as a force
and thereby as the cause of my being affected (Bestimmung des
Menschen, Werke, ed. Medicus, 111, pp. 332, 333). Experiences of
fundamental character seem to speak very distinctly in favor of
another kind of causality than would fit into the framework of field
theory, namely, that the field if left to itself would remain in a homo-
geneous state of rest and that something alien to it, matter, is the
‘spirit of unrest’ that excites it. Our voluntary acting must primarily
always attack matter. The field is an extensive medium which
transfers effects from one body to another by virtue of its structure
expressed in the field laws.

Without making any assumptions about the inner structure of a-
particle we may derive its dynamically relevant properties from the
local field around it. For instance, the field-generating or active
charge of a particle may be defined as the flux which the electric field
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sends through a tiny imaginary shell surrounding the particle. The
latter describes a narrow channel of one-dimensionally infinite exten-
sion in the four-dimensional world. Qutside these channels we apply
the classical field laws in empty space. For historical reasons pres-
ently to be explained these differential equations that treat of no other
state quantities than the electromagnetic and gravitation potentials
are called the laws of ether. It is irrelevant whether the particle is an
actual singularity of the field or covers a small region where the laws
of ether are suspended (and unknown laws take their place). The
local field is uniquely determined by the particle, at least as far as the
nature of the field is concerned, i.e. such characteristics of it as are
invariant under coordinate transformations. In this respect the
‘monad’ preserves its pure activity and independence of anything
extraneous. The particle suffers reactions from the field merely as
far as its orientation, the embedment of the local field into the external
field, is concerned. Indeed the mechanical laws of motion follow
from the fact that the individual field of the electron must fit into the
field distribution outside the particle that obeys the field laws of ether.
Thus we can understand that charge and mass, which excite the field,
at the same time appear in passive function and determine the inten-
sity of the effect which a given field exerts upon the particle. It is no
longer the energy content but the flux of the gravitational field
which a particle sends through an enveloping shell that accounts for
heavy mass and thus also, according to general relativity theory, for
inert mass.

{The strength of this ether theory lies in its sober noncommittal atti-
tude; it studies matter by its effects without attempting to penetrate
into its interior. Speculation is tempted to fill the ‘lacuna’ left by
the particle. Pure field theory of matter does it in one way; another
is suggested by general relativity theory, for the latter makes it
possible to entertain the hypothesis that the grooves of the elementary
particles are bottomless, without forcing one to conceive of the particles
as actual singularities in the space-time manifold. (I speak here of the
channels in the four-dimensional world as if they were grooves in a
two-dimensional surface.) Indeed general relativity does not prescribe
the topology of the world, and it may therefore happen that the world
has unattainable ‘fringes’ not only toward the infinite but also
inwardly. Inline with Leibniz’s ideas, the material particle, although
imbedded in a spatial environment from which its field effects take
their start, would itself then be a monad existing beyond space and
time. Hence one may not say, ‘Here is a charge,” but only, ‘This
closed surface within the field surrounds a charge.” The inner fringes
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would be the geometrico-physical basis for the splitting of the world
into space and time which takes place within our consciousness, tied
as it is to a material body.

Schelling, partially under tie influence of Leibniz, has expressed
ideas which vaguely anticipate this development. ‘‘Thus there ought
to be discernible in experience something,”’ he says on p. 21 of his
“Erster Entwurf der Naturphilosophie” (1799; Samtliche Werke, 111,
p. 21, Cotta, 1858) “which, without being in space, would be principle
of all spatiality.” This “natural monad” is not itself matter but
action, “for which there is no measure but its own product.” Based
on the thesis that ‘“the striving of all original tendencies is toward the
filling of space,” he then arrives at the construction of a shapeless
fluid — which we today would replace by the field. }

The naive substance theory has been followed in history by the
much more refined ether theory of matter, of which we count the pure
field theory and the monadic theory as two hypothetic variants.
Here is the place to sketch in a few strokes the history of the ether
concept. It can be traced back to stoic philosophy. During the epoch
following Galileo the ether appears as the substantial carrier of light
and gravitation, so with Huyghens and Euler. The state quantities
characteristic of the ether as well as of any substance are ‘density’ and
‘velocity.” Since it rests as a whole and is only excited into minute
oscillations, it can serve at the same time to support Newton’s meta-~
physical concept of absolute space by a physical (though hypothetical)
reality. Then, as the optical phenomena subordinate themselves as a
partial domain t6 the electromagnetic ones and the conception of
electromagnetic field is developed by Faraday and Maxwell, the ether
is divested of its substantio-physical character, and nothing remains
but the absolute space as the medium of electromagnetic field states.
It is no longer subject to excitation by matter but has become a rigid
geometric entity. As a third step it is shown by the special relativity
theory that the spatio-temporal structure is described incorrectly by
the notion of absolute space. Not the state of rest, but the states of
uniform translation form an objectively distinguished class of motions,
and this puts an end to the substantial ether. Finally, and fourthly,
the general relativity theory re-endows this metric world structure
with the capacity of reacting to the forces of matter. Thus, in a sense,
the circle is closed. Since the electromagnetic field is evidently of the
same nature as the metrical field which among other things causes the
gravitational phenomena, ‘ether’ has now become synonymous with
‘field,” in the sense of a unified electromagnetic and metrical field in
empty space. The state of the ether is known if, with reference to a
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coordinate system, the quantitative distribution of the electromagnetic
field components and the Einsteinian gravitational potentials g;; are
given by mathematical formulas. If the ether has thus regained its
physical nature, nevertheless the state quantities characteristic of it
have changed completely from what they were at the beginning of the
development when it entered the scene as a substantial medium.

C. HrstoricaAL CONNECTIONS, IN PARTICULAR WITH THE META-
PHYSICAL CONCEPT OF SUBSTANCE. The relation of matter to the
concept of substance is clearly evidenced by the way in which Kant
in the first edition of the Critique of Pure Reason formulates the first
analogy of experience, the ‘Principle of Permanence’: * All phenomena
contain the permanent [substance] as the object itself, and the change-
able as its determination only, that is, as a mode in which the object
exists.” In the comments he says, “A philosopher was asked: ‘How
much does smoke weigh?’ He replied: ‘Deduct from the weight of
the wood burnt the weight of the remaining ashes, and you get the
weight of the smoke.” He was therefore convinced that even in the
fire matter [substance] does not perish but that its form only suffers a
change.” The reference to quantitative measurement is even more
stressed in the second edition: “In all changes of the phenomena the
substance is permanent, and its quantum is neither increased nor
diminished in nature.” In the example quoted, the weight is assumed
proportional to the quantum, but no indication is given of the
principle according to which matter is to be measured. In this form
the thesis of the indestructibility of matter was introduced by Lavoisier
into chemistry. Wherever the individual substantial places ecan no
longer be traced, transmittability is the criterion of substantiality.
A measure of quantity must be found according to which the trans-
mitted quantum does not change. In this sense energy may also be
looked upon as substance (hypothesis of a heat substance), although
there can be no question of tracing a single ‘energy place’ through the
course of events. Hobbes considers incorporeal substance a word
without meaning.

Yet the idea of substance is not so closely tied to that of physical
matter as might appear from these quotations. It has its origin in
the logic and metaphysics of Aristotle, and is used in a metaphysical
sense by Descartes, Spinoza, and Leibniz. Today we find it difficult
to grasp its meaning. Descartes defines (Principia, Part I, §51):
“By substance we cannot understand anything but a thing which
exists in such a manner that it requires no other thing for its existence.”
He then modifies the definition so that “created substances” also fall
under it, by saying that “they require nothing for their existence but
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the assistance of God.” Aristotelian philosophy considers matter
(8N, Td brokelyevov) as the determinable, in contrast to the determining
form (eldos). Matter is possibility of becoming formed. In a
production process of several stages its matter appears ‘more
formed’ at each step, and thereby the range of possibilities for further
forming becomes more restricted. And at the same time matter, the
component of merely potential rather than actual being, shrinks more
and more. Substantiality is ascribed to the forms rather than to
matter. The forms push matter from potentiality to actuality;
the transition itself takes place in ‘movement.” Natural science as
conceived by Galileo had first of all to subdue this metaphysies of
substantial forms. Leibniz reintroduced them through his monads,
yet without wishing thereby to abandon the new ‘mechanical’ way of
explanation. ‘“However much I stand on the side of scholasticism in
the general and, so to speak, metaphysical explanation of the principles
of the physical world, I am, on the other hand, the most radical
adherent of the corpuscular philosophy with regard to the explanation
of particular phenomena” (to Arnauld, Philosophische Schrifien, 11,
p- 58). “My opinion thus is to the effect that bodies, which are
commonly considered substances, are nothing but real phenomena and
are as unsubstantial as a mock sun or a rainbow. . . . The monad
alone is substance” (to de Volder, Philosophische Schriften, 11, p. 262).
Admittedly “there are no material particles in which monads are not
present” (to Bernoulli, Mathematische Schriften, I1I, p. 538). “It
does not matter whether we denote this principle as ‘form,’ as ‘évren-
éxex,” or as ‘force.’”” The essence of the monad he sees in the law.
“That a certain law persists that includes all future states of the
subject which we conceive asidentical, this fact constitutes the identity
of substance”” (to de Volder, Philosophische Schriften, 11, p. 264). That
puts him beyond Aristotle. Most characteristic for a philosophy of
nature is probably the point at which it lets the Heraclitean flux “sich
zum Starren waffnen’:'® Aristotle in the immanent substantial forms,
Plato in the transcendental ideas, modern natural science, like Leibniz,
in the law. At the end of Newton’s Principia (ed. Cajori, p. 547),
immediately after his declaration that it suffices to know the laws of
gravity and that he has no intention of devising a hypothesis as to the
cause of these properties, we find the following strange words: “ And
now we might add something concerning a certain most subtle spirit

10 (?’)ne of Goethe's inimitable phrases, taken from the poem *‘Eins und Alles,”
verse 3@

“Und umazuschaffen das Geschafine,
damit sich’s nicht zum Starren waffne,

wirkt ewiges, lebendiges Tun.”
[ Translator’s note.]
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which pervades and lies hid in all gross bodies; by the force and action
of which spirit the particles of bodies attract one another at near
distances, and cohere, if contiguous; ete.”

Descartes subscribed to the doctrine, to which Plato also inclined,?
that spatial extension is the proper substance of bodies. It fits well
within the framework of the field theory, provided the contrast
between substance and accident is construed as that between ‘this’
and ‘thus.’ The ‘this,” which can only be given by individual exhibi-
tion but not by qualitative characterization, is here not a hidden carrier
to which the qualities are inherent; it is the here-now, the individual
spatio-temporal position. To use Hilbert’s term, the description of
the world according to the field theory consists of the here-thus rela-
tions — the here being represented by the space-time coordinates, the
thus by the state quantities. If the latter are given as functions of the
former, then the course of the world is completely known.

-[Descartes’ concept of motion seems to presuppose a substance
(in the sense of Part A of this Section) which can be followed through
its motion. His physics is corpuscular theory, but his corpuscles may
not leave any empty spaces between one another and thus must grind
and deform one another. Only his helplessness in the face of the
continuum causes him to think of the discontinuities along the separat-
ing surfaces as essential for comprehending the motion. In fact, he
has as the carrier of motion a fluidum which fills space continuously.
For this fluidum one could, if one wished and as was actually done in
later theories of matter, assume the laws of incompressible non-viscous
liquids, with the modification that the dynamical variable of pressure
should be eliminated from the hydrodynamical equations. This
causes no difficulties. Once this is done, the substantial medium can
also be discarded. One merely abstains from interpreting the

vectorial state quantity v with which the differential equations deal
as velocity of a substance. Thus if Descartes’s basic idea is carried
through consistently, a field theory results. As soon as the transition
has been made from a moving substance to the spatio-temporally
distributed field which no longer requires a material carrier, such
theories suggested by hydrodynamics cease to have any intuitive advant-
age over Maxwell’s field theory, which bases the choice of the state
quantities to be employed on experience rather than on speculation.

11 Compare Timaeus, 48 E ff.: Between the ‘“‘eternal pattern’ and its ‘“imita-
tion’’ in reality, which he had distinguished earlier, it would be necessary to place
something which ““is the recipient and, in a manner the nurse, of all generation.”
This third, “which like a plastic mass lies in readiness to take the imprint of any-
thing,” is space: inaccessible to the senses, not subject to perdition, but granting a
place to all that comes into being.
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Two of the most important roots of the concept of subsiance seem
to be the following: (4) the thing of the external world, which is fitted
as a stable factor into our world of causes and effects and which in spite
of varying appearances and aspects remains the same or undergoes a
familiar slow change; (2¢) I, who am conscious of my identity through-
out the flow of my life with its everchanging kaleidoscopic experiences.
(Cf. Leibniz, Philos. Schriften, VI, p. 502: “Since I now see that other
beings too may have the right to say ‘I, or that one may say it for
them, I understand what is generally meant by substance.”) Des-
cartes, for the first time, clearly formulated the philosophical problem
as to what ‘“‘the wax itself” is (end of second meditation), which is
different from anything within the domain of senses and remains the
same in spite of any changes which taste, smell, sight or feeling may
convey to me. And he finds that this cannot be in my imagination,
but that I can only apprehend it by thinking. More eritical are
Locke’s remarks about ‘‘our idea of substance in general” (Enquiry
concerning Human Understanding, second book, Chap. 23, §2). Hume
considers it altogether a misconception: ‘“Our propension to confound
identity with relation is so great, that we are apt to imagine something
unknown and mysterious, connecting the parts, beside their relation”
(Treatise of Human Nature, Book I, Part IV, sect. 6), “ . . . which
view of things . . . obliges the imagination to feign an unknown
something, or origenal substance and matter as a principle of union or
cohesion among these qualities, and as what may give the compound
object a title to be called one thing, notwithstanding its diversity and
composition” (zbid., sect. 3). }

D. ConservaTioN THEOREMS. In view of the present state of
physics, those who want to retain an aprioristic principle of conserva-
tion are liable to cling to the principle of conservation of energy.
According to the special theory of relativity, energy is one, namely the
temporal, component of an invariant objective entity, a four-vector
whose spatial projection is momentum. The conservation theorems
of energy and momentum therefore belong together inseparably.

{ The momentum of a body moving with the velocity —;had been

equaled to mv and, with Galileo, we had called m the inert mass. The
question arises how this inert mass depends on the velocity of the body
if the velocity changes while the internal state — as judged by an
accompanying observer undergoing the same motion — remains the
same. The answer can be obtained from the special relativity prin-
ciple, but differs according to what the eausal structure of the world is
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assumed to be. If, in line with the old view, the structure consists in a
stratification ¢ = const., then the mass is independent of velocity.
If however, as unquestionably is the case, it is described by the light
cones, then we have

Mg

Vo =

where v is the absolute value of the velocity, ¢ is the velocity of light,
and the ‘mass factor’ m, is independent of the velocity. On the basis
of the relativity principle, the theorem of the conservation of energy
follows from the law of momentum, and the energy of a body turns
out to be E = mc? If, for instance, the energy content E of a body is
increased by heating, its inert mass m increases proportionally. Not
only a massive body but also a gas, consisting of whirling molecules,
and even an arbitrary portion of a field possesses a certain energy E

m =

-
and a certain momentum I. And again the laws
— —
I =muv, E = me

hold, provided we understand by v the velocity of the energy center.
Energy appears here as the absolute energy level of a portion of
space at a given moment. It is uniquely determined by the physical
state prevalent in that portion of space.]-

The phenomenological law of energy, as it has historically emerged
independently of the conservation principle for momentum, deals
only with the difference of such energy levels, i.e., with the energy
value attaching to the change from one physical state to another,
Z — 7', of a given fixed system of bodies. The energy value E of
the transition Z — Z’ depends on the initial and terminal states,
Z and Z’, in such a manner that

EZ—-Z)Y+ EZ —Z") = E(Z—Z")

always holds. Leibniz proved the energy law on the basis of the
axiom causa aequat effectum, by transforming every mechanical change
of state, the cause, into a ‘standard effect’ with but one degree of
freedom, namely, the lifting of a given weight. The lifting height
is then taken as measure of the energy. Leibniz's idea really strikes
at the root of the energy principle. And it will carry over to all
natural phenomena as soon as the lifted weight is replaced, say, by a
water calorimeter. (This generalization, however, was not conceived
before the middle of the 19th century.) Indeed a non-mechanical
change of state may not always be transformable into a mechanical
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effect such as the lifting of a weight, but it is always transformable into
the heating or cooling of a given standard body. The empirical facts
on which the energy law is based may thus be formulated as follows:
Let S be any system of bodies in which the interaction of its parts
as well as the effect of arbitrary other bodies has brought about a
change of state V. By connecting S with a water calorimeter at rest
and with suitable auxiliary bodies we can undo this change of state in
such a manner that the auxiliary bodies emerge from the process in the
same state and that only the calorimeter has undergone a change of
temperature (fact A;). If the heating (or cooling) of the calorimeter
has consumed w calories, i.e. if the temperature of w cem. of water
under atmospheric pressure has risen from 15°C to 16°C (or if the
temperature of —w cem. has fallen from 16°C to 15°C in case w is
negative), then w is the energy measure of the change V. The same
value w is obtained no matter through what processes that transfor-
mation is brought about or what auxiliary bodies are employed
(fact As).

{By virtue of the relativity principle this leads to the following
consequences: (z) With every body there is associated a number m,
dependent only on its internal state, such that the energy value of an
arbitrary change of state of that body equals the difference of the
values of
mMoc?

Vet = vt

for the initial and terminal states. (Here, the energy differences
associated with changes of state again lead to absolute energy levels
of states.) (¢) Beside the energy law we have the law of momentum,
the momentum being given by the following expression:

E =

g mog
I \/m.}

In a systematic treatment the energy law, of course, has nothing
to do any longer with the assumption that any change of state can be
transformed into a change of temperature of the standard body.
In the framework of general relativity theory, the conservation
theorems for energy and momentum are closely connected with the
invariance of the field laws under arbitrary coordinate transformations.
Their validity is largely independent of the particular form of the field

laws of interaction. Even so, no aprioristic command would prevent
physics from abandoming the strict validity of the conservation laws
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if that should become necessary under the pressure of new empirical
discoveries. (This actually happened recently in a theory of Bohr
and Slater, which however was soon abandoned again.)

{The derivation of the energy principle is somewhat surprising
inasmuch as from the sole assumption that there is something conser-
vative the measure of this something, namely the energy, is obtained.
The explanation is that the basic empirical fact A; implies the assertion
that there is altogether only one quantity in nature for which the con-
servation principle can hold, as long as we are concerned with changes
of a given system of bodies. But the law of momentum, which follows
from the energy law itself, gives that assertion the lie. Yet we are
able to understand in retrospect why Aj, in spite of not being strictly
valid, is found to be confirmed within the limits of accuracy attainable
in experience — because of the earth, whose mass is vastly in excess
of that of the reacting bodies. For in reversing a given change of
state V that involves an increase of momentum in a preassigned direc-
tion, one can transmit that increase to the earth, which serves as the
resting body of reference for terrestrial experiments. If a bullet is
shot horizontally into a mountain we do not see what becomes of the
lost momentum; experience in this case appears to invalidate the law
of momentum. What we observe, is that the loss of ‘kinetic’ energy
due to the deceleration of the bullet is transformed into thermic
energy. Rigorously speaking, even the latter does not represent the
full equivalent, for there is in addition the hidden kinetic energy
associated with the transition of the earth from rest to the small speed
imparted to it by the impact. However this kinetic energy is negligi-
ble to the same degree as is the mass of the bullet in comparison to that
of the earth.

Another quantity for which a conservation law holds is the electric
charge. According to the theory of electrons, charge is bound to
matter, and consequently the assumption that the change V takes place
in a fixed system of bodies excludes electrical discharging and recharg-
ing if rigorously interpreted. And this restriction is actually neces-
sary for A; to be valid.]-

Field physics extends the conservation laws of energy and momen-
tum to radiation and thus liberates them from any tie to a definite
system of bodies. Instead it must take into consideration the energy
entering and leaving a given bounded portion of space by assuming an
energy current (just as one needs an electrical current in addition to
electrical charge). If a spatial domain D is divided into partial
domains, D; and D,, the total electrical charge contained in D equals
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the sum of the charges contained in D; and D, (law of addition). The
same holds for energy and momentum. There is a difference, though,
from the atomistic viewpoint, inasmuch as the field spread out between
the elementary particles is free from charge but not from energy-
momentum. The ‘mass factor’ (the ‘length’ of the four-dimensional
energy-momentum vector) is neither dependent on the choice of
coordinates, like energy, nor capable of both signs + and —, like
electrical charge. Rather it is invariant and always positive. Never-
theless it is unsuitable as a measure of quantity because it fails to
satisfy the law of addition. (Just as the length of a side in a triangle
is not equal to but less than the sum of the lengths of the other sides,
the mass factor of a domain D is greater than the sum of the mass
factors of D; and D..)

E. Aromism. The atomic theory originally arose from pure
speculation in answer to certain epistemological requirements. Chem-
istry, which gave it a firm foundation and a strong empirical support
by the law of multiple proportions, was interpreted atomistically by
Dalton. The atoms of a chemical element must be all equal, for
otherwise the constancy of the physical properties of the element would
be incomprehensible. Within such a swarm of equal atoms, the
identity of an atom and its discernability from other atoms cannot be
warranted by its particular internal properties and the particular laws
holding for them, as Leibniz had maintained with regard to the monads,
but only by the continuity of motion together with the spatial separa-
tion of the atoms. Does it not in this respect resemble the ego, which
also is able to maintain its identity as an individual and its distinctness
from other egos no matter whether the total of its experience is com-
pletely like that of the others?

From the standpoint of a consistent substantial theory of matter
there is no reason to see why, among the infinite continuous manifold
of substantial spheres with all possible radii, just those few discrete
possibilities are realized which correspond to the chemical elements;
the mass however should be determined by the radius. We have seen
before that experience is completely at variance with this requirement.
The ether theory, on the other hand, imposes no restriction upon
charge e and mass m of a body; here there is no collision with experi-
ence. Yet again it remains unexplained why of all these possibilities
but a few are realized for the elementary particles. Only the pure field
theory holds out some hope that it might be able to explain this basic
fact. For it could happen that its (non-linear) field laws were such as
to possess no more than a discrete number of regular static spherically
symmetric solutions.
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It is now sure that no fruitful attack on the problem could have
been made before the discovery of the electron. Here the physicists,
going beyond chemistry, had laid hands on an elementary unit of
matter which is the same in all chemically different substances and
occurs freely in the form of cathode rays. The ‘periodic system of
elements’ had previously pointed, though with a somewhat vague
gesture, toward a uniform structure of the various chemical atoms.
But now physics entered into its golden era of atomic research. Dur-
ing the last half century it has provided a thorough and brilliant corro-
boration for the basic tenets of atomism and penetrated into ever
deeper layers of the strange atomic world. To begin with, all its
methods led with increasing accuracy to the same values of the charge
and mass of an electron. Only through this concordance has atomis-
tics become a well-founded physical theory. Gradually indirect
methods have been replaced by more and more direct ones. Thus
the Brownian motion of small suspended particles demonstrates
directly to our senses the presence of a molecular thermic motion.
Through ingeniously arranged experiments one has succeeded in
isolating the effects of individual atomic events. Of the greatest
consequence was the discovery of what we now consider the most
fundamental atomic constant, Planck’s quantum of action h. It first
disclosed its existence in the thermodynamics of radiation, hence by a
statistic effect depending on the disorderly cooperation of a huge
number of atomic events. Planck saw himself forced to assume,
contrary to classical physics, that a linear oscillator emits light of fre-
quency » not during its continuous oscillation but by a discontinuous
‘jump’ in which it loses the energy h». Niels Bohr applied this prin-
ciple to the electrons in an individual atom. By letting the frequencies
thus obtained ‘correspond’ to the frequencies derived from the classical
theory of radiation he got an approximate rule for the computation
of the atomic energy levels. Thus the key was manufactured that
unlocked the secret of the amazing regularities governing the series of
the spectral lines which are emitted by radiating atoms and molecules.
The success was most striking in the simplest case, that of the hydro-
gen atom. ‘‘Our spectral series, dominated as they are by integral
quantum numbers,” says Sommerfeld (Die Bedeutung der Réntgen-
strahlen fiir die heutige Physik, Munich, 1925, p. 11) “correspond, in a
sense, to the ancient triad of the lyre, from which the Pythagoreans
2500 years ago inferred the harmony of the natural phenomena; and
our quanta remind us of the role which the Pythagorean doctrine
seems to have ascribed to the integers, not merely as attributes, but
as the real essence of physical phenomena.” Thus we see a new
quantum physics emerge of which the old classical laws are a limiting
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case, in the same sense as Einstein’s relativistic mechanic passes into
Newton’s mechanic when ¢, the velocity of light, tends to .

The old dream of the unity of all matter had certainly come a great
step nearer to fulfillment by the discovery of the electron. But the
positively charged nucleus of the atom about which the negatively
charged electrons revolve like the planets around the sun still seemed
to be a particle with a constitution of its own for each individual
chemical element. It is a prior: clear that beside the negative electron
at least one positive brick is needed for the construction of all atoms.
The execution of this idea of building up matter from two ultimate
elementary units, the electron and the proton, presupposes of course
that they are able to enter into a variety of combines that are held
together by strong forces and react outwardly like solid atomic spheres.
Hence sheer substance without force would never do.

-[The proton is identified with the nucleus of hydrogen. The
various chemical elements differ from one another by the charges of
their nuclei, which are integral multiples ne of ¢, where —e denotes the
charge of the electron. If the atom is in an electrically neutral state
(‘non-ionized’), the factor =, called the order of the atom, coincides
with the number of electrons revolving around the nucleus. There
is no gap in the sequence of the orders of the various elements: n = 1,
hydrogen; n = 2, helium; n = 3, lithium; ... . Elements may
change into one another by nuclear emission or absorption of elemen-
tary particles. In the radioactive elements, which thus betray their
instability, this process goes on spontaneously, but by bombardment
with elementary particles of sufficient energy all sorts of artificial
nuclear transmutations have been effected. Aston found that also the
masses of the atomic nuclei are, at least to a considerable approxima-
tion, integral multiples of the mass of the proton. If this did not
become apparent in the atomic weights obtained by chemistry, the
reason is to be seen in the fact that different atomic structures may
belong to the same order number (‘isotopes’), and that what chemists
used to consider as a pure element frequently turns out to be a mixture
of isotopes of different atomic weights; for these cannot be segregated
by ordinary chemical means. These findings seem to corroborate
the assumption of only two elementary particles, and indeed in 1926
there was no clear evidence of any other. But since then new elemen-
tary particles have made their appearance, and we now have a whole
gamut: electrons, positrons, protons, neutrons, neutrinos and mesons
of several kinds. Their charges are zero or +e, but quantum theory
has not yet succeeded in reducing their masses to the mass of the elec-
tron or in explaining the several particles as different quantum states of
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one universal particle. In particular, the atomic nuclei seem to
consist of densely packed protons and neutrons (two particles which
have equal or nearly equal ma.sses).]-

The composttion of the material world out of one or a few units, exisi-
ing in a huge number of completely alike specimens, must surely be looked
upon as one of the most fundamental features in the nature of the uni-
verse; and one that is most profoundly in need of interpretation.

{While this remains a task for the future there is a decisive
progress to record in quantum mechanics which occurred while the
Ms of this book was in preparation.!? W. Heisenberg succeeded in
replacing the correspondence principle, a somewhat vague and flexible
prescription that could never claim the rank of a theory and in its
working had become more and more ambiguous and unsatisfactory,
by a complete, simple, and consistent formulation of the quantum
mechanies of arbitrary atomic systems or, what is the same, by a
definite rule for the computation of its energy levels. In making the
necessary modifications of classical mechanics Heisenberg was guided
by a universal principle that had been abstracted from the vast
empirical material of spectroscopy, the so-called combination prin-
ciple of spectral lines. Even so the result compels us to abandon any
spatio-temporal picture of the atomic processes. Many facts, as
Bohr explains in a beautiful and generally informative article on
Atomic Theory and Mechanics (Naturwissenschaften, 1926, p. 1;
English version in Aiomic Theory and the Description of Nature,
Cambridge, 1938) have driven him and other physicists to the con-
viction ““that, in the general problem of quantum theory, one is faced
not with a modification of the mechanical and electrodynamical
theories describable in terms of the usual physical concepts, but with
an essential failure of the pictures in space and time on which the
description of natural phenomgna has hitherto been based.” In
particular the new quantum mechanics avoids the discrepancy men-
tioned on p. 119 between the frequencies of revolution of the electrons
in an atom and the observed frequencies of the emitted spectral lines.
While Heisenberg arrives at this new mechanics by a modification of
the formal rules of computation, Schrédinger, with an entirely different
viewpoint, independently reached mathematically equivalent results,
his theory being based on an idea which replaces the movement of
the mechanical system by a wave process. This wave process,
which may be considered purely fictitious, is not itself observable, but
the phenomena observable in the mechanical system are derived from

1280 written in 1926!
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it by means of a ‘projection’ based on statistical principles. While
the motion of the eleciron is thus assumed to be supported by an
electronic wave, the optical waves which obey Maxwell’s electro-
magnetic field equations regulate the statistical behavior of the ‘light
quanta’ (photons). The idea of a light quantum of definite energy
and momentum had already been conceived in the compromise between
classical and quantum physics prevalent prior to 1925 (Einstein, 1905).
It served to account for the corpuscular nature of light as evidenced by
the photoelectric effect, as well as for its wave nature as manifested in
diffraction and interference. }

Thus it seems clear that quantum physics cannot posit matter and
ether as the basic polarity underlying all phenomena, as the ether
theory had done. Light is not only ether wave but also corpuscle, an
electron is not only a corpuscle but also a wave. It depends on the
conerete situation of their observation, on the instruments we train on
them, whether photons or electrons reveal themselves to us as ether
waves of definite frequencies or as corpuscles that hit here or there.
Bohr has coined the word complementarity for this basic feature of the
new quantum mechanics that in a sense replaces the old polarity of
matter and force. After the previous approaches by the substance
and then by the ether conception, the problem of matter now appears
to have entered an entirely new stage of its historical development.

More complete information about quantum physics is contained in
Appendix C.
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23. CAUSALITY (LAW, CHANCE, FREEDOM)

A. Causavity anp Law. Although the relation of cause and
effect dominates our theoretical knowledge as well as our practical
dealings with reality, there still is considerable difficulty in bringing out
quite clearly those aspects of the causal law which actually bear on
scientific research. In the first edition of the Critique of Pure Reason
Kant says, “Everything that happens |begins to be], presupposes
something upon which it follows according to a rule.” This second
analogy of experience he supplements by a third, however: ““All sub-
stances, insofar as they are coexistent, stand in complete community,
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that is affect each other reciprocally.” Hume was the first to analyze
in detail the category of causality, which until then had been used
uncritically in physics and metaphysics. He found in the first place
that objects or processes which are considered causes or effects of
others are spatio-temporally contiguous with these. This is the
principle of nearby action. Any remote effect must be due to a con-
tinuous transmission of effects. The question ‘Why?’ requires the
insertion of a continuous causal chain without gaps. Temporally the
transmission ‘cause — effect’ runs parallel to the relation ‘past —
future.” Furthermore, it is alleged that a ‘necessary connection’ must
exist between both. But if we define, “Of two successive events 4
and B, A is the cause of B if it is impossible that A takes place without
B taking place subsequently,” we are saying something that has no
empirically verifiable meaning. For how should we recognize the
required necessity, since after all we have only one world, and in it
B just follows A. Hume therefore replaces the necessary by constant
connection, by one that recurs under all circumstances. But even so,
nothing is gained at first, since a concretely given event happens only
once. Thus it is necessary to add continuity requirements, to the
effect that sufficiently like causes lead to nearly like effects, and that
bodies and events which are too remote have no noticeable influence,
and so on. The phenomena must be subordinated under concepts,
collected into classes according to typical characteristics. The causal
relation does not hold between individual events but between classes
of events. Above all —and this is a point which still escaped
Hume — it is necessary to isolate generally valid connections by
decomposing the unique course of the world (as described in Section
20) into recurrent elements which are capable only of a gradation
representable by a few numerical characteristics.

When they are subjected to measurement it should appear that
simple exact functional relations obtain among them that can be
ascertained once and for all. The natural law thus takes the place
of causation. If several quantities @, b, ¢ are connected by a functional
relation, the values of @ and b may determine the value of ¢; but the
same law may also be construed in the sense that the quantity a is
determined by b and ¢. Thus the functional relation, unlike the causal,
is indifferent to the distinction between determining and determined
quantities. The abandonment of the metaphysical quest for the cause
in favor of the scientific quest for the law is preached by all great
scientists. The discovery of the laws of fall by Galileo is the first
great example. He himself says (Discorsi, third day, Opere, VII, p.
202), “It does not seem expedient to me now to investigate what may
be the cause of acceleration,” the chief concern must be to explore the
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law according to which acceleration takes place. Or Newton: ‘“But
hitherto I have not been able to discover the cause of those properties
of gravity from phenomena, and I frame no hypotheses . . . To us
it is enough that gravity does really exist, and act according to the
laws which we have explained, and abundantly serves to account for
all the motions of the celestial bodies, and of our sea’’ (end of Principia,
8rd ed.). According to the teachings of d’Alembert and Lagrange,
dynamics does not require any laws which reach beyond its own domain
to the causes of the physical phenomena and the essence of those
causes; it is self-sufficient as a description of the regularities of the
phenomena. In recent times Mach has fought with particular vigor
against the “fetishism’ of the concept of causation.

This may be the place where a few remarks on the relation between
form (Gestalt) and law may be inserted. Kepler still saw the rational-
ity of the world in the form of the planetary system, which he asso-
ciated with the Platonic solids, and thus with certain ideal configura-
tions that are geometrically distinguished a priors. The idea of forms
and their types plays an important part in biology (systematic mor-
phology), though here in close connection with the teleological notion
of organic function. But the idea has not disappeared entirely from
inorganic natural science, crystallography providing the most brilliant
example of an exact morphological system. The laws of dynamics,
since they are laws of nearby action, are of a continuous infinitesimal
character; they, rather than the forms, are considered as original in
physics today. Typical configurations come about, however, when
these laws admit of certain discrete solutions of special character, such
as static or periodic solutions. As for more detailed comments on
form and constitution and their relation to law and evolution, espe-
cially regarding the problems of biology, the reader may be referred
to Appendix F.

{The idea of functional law, to which science seems to reduce
causality, is not altogether unproblematic. Twice in its history
physics believed that it had overcome in principle the decomposition of
the world into individual systems (individual events and their ele-
ments, which after all are only approximately isolated from one
another) and had grasped the world as “a whole in which all is
interwoven.”’** The physics of central forces and later the pure field
physics seemed for a moment to have reached that goal. Causal
law here took the following form: the derivatives with respect to time
of the state quantities at a world point are mathematical functions of

13 ““Wie alles sich zum Ganzen webt,” Faust’s m