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PREFACE

This collection of problems and exercises in mathematical anal-
ysis covers the maximum requirements of general courses in
higher mathematics for higher technical schools. It contains over
3,000 problems sequentially arranged in Chapters I to X covering
all branches of higher mathematics (with the exception of ana-
lytical geomelry) given in college courses. Particular attention is
given to the most important sections of the course that require
established skills (the finding of limits, differentiation techniques,
the graphing of functions, inlegration techniques, the applications
of definite integrals, series, 1he solution of difierential equations).

Since some institutes have exiended courses of malhematics,
the authors have included problems on field theory, the Fourier
method, and approximale calculalions. Experience shows that
the number of problems given in this book not only fully satisfies
the requiremen s of the student, as far as practical mas'ering of
the various sections of the course goes, but also enables the in-
structor to supply a varied choice of problems in each section
and to select problems for tesls and examinations.

Each chap.er begins with a brief theorelical introduction that
covers the basic definitions and formulas of that section of the
course. Here the most imporiant typical problems are worked out
in full. We belicve that this will greatly simplify the work of
the student. Answers are given to all compulational problems;
one aslerisk indicates that hinis to the solulion are given in
the answers, two asterisks, that the solution is given. The
problems are frequently illustrated by drawings.

This collection of problems is the result of many years of
teaching higher mathematics in the technical schools of the Soviet
Union. It includes, in addition to original problems and exam-
ples, a large number of commonly used problems.






Chapter 1
INTRCDUCTICN TO ANALYSIS

Sec. 1. Functions

1°. Real numters. Rational and irrational numbers are collectively known
as real numbers The absolute value of a real number a 1s understood to be
the nonnegative number |a| defined by the conditions' |a| =a if a =0, and
laJ=——a if a<0. The following incquality holds for all real numbers a

and b:
lat-b|<lal+]b].

2°. Definition of a function. If to every value*) of a variable x, which
belongs to some collection (set) E, there corresponds one and only one (inite
value of the quantity y, then y is said to be a function (single-valued) of x
or a dependent tartable defined on the set E, x is the argument or tndepen-
dent variable The fact that y 1s a function of x 1s expressed in brief form
by the notation y=f(x) or y=F (1), and the like

If to every value of x belonging to some set E there corresponds one or
several values of the variable y, then y is called a multiple-valued function
of x defined on E. From now on we shall use the word “function” only in
the meaning of a single-valued function, 1f not otherwise stated

3° The domain of definition of a function. The collection of values of x for
which the given function is delined 1s called the domatn of definition (or the
domain) of this function. In the simplest cases, the domain of a function s
either a closed tnterval |a, b], which is the set of real numbers x that satisfy
the inequalities a<<a << b, or anopen nterval (a.b). which :s the set of real
numbers that satisfy the incqualities a < x < b. Also possible 1s a more com-
|plex2struclure of the domain of delimition of a function (see, for 1nstance, Prob-
em 21)

Example 1. Determine the domain of definition of the function

]
v= l/xz—l )
Solution. The function is defined if
x¥—1>0,

that is, if |x| > 1. Thus, the domain of the function is a set of {wo inter-
valsi—oo <x<—1and l<x <+

4°. Inverse functions. If the equationy = f(x) may be solved uniquely for
the variable x, that is, if there is a function x=g (y) such that y =/ g )},

¢ *) Hencelorth all values will be considered as real, if not otherwise
stated.
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then the function x=g(y), or, in standard notation, y =g (x), is the inverse
of y=/(x). Obviously, g[f(x)] =x, that is, the function f(x) is the tnverse
of g(x) (and vice versa).

In {le gereral case, the equation y=f(x) cefines a multiple-valued 1n-
verse furction x=f~'(y) such that y=f{f~"'(y)] for all y that are values of
the function f(x)

Exanple 2. Cetermine the inverse of the function

y=1—2"% (1)
Solution. Solving equation (1) for x, we have
27 ¥ =1—y
and
__ log(l—y),
T iz ) @

Obviously, the domain of cefinition of the function (2) s— w0 <y<]1.

5°. Cemrposite and implicit functicns. A function y of x defined by a se-
ries of equalitiesy = f (1), whereu=@ (x), etc., is called a composite function,
or a function of a function.

A function defined by an equation not solved for the derencent variable
is called an (mplictt function. For example, the equation x*+4y*=1 defines
y as an impliait function of x.

6°. The graph of a function. A set of points (x,y) in an xy-plane, whose
coordinates are connected by the equation y=f(x), is called the graph of
the given funct:on.

1**. Prove that if a and b are real numbers then
lla|—|b]l<|a—b|<]a|+]|b|.
2. Prove the following equalities:
a) lab|=lal-|b]; <) |§|=15 (©+0)
b) |a|*=a% d) Vat=\a|.
3. Solve the inequalities:
a) |[x—1|<3; o [2x+1]|<;
b) [x+1[>2; d) |[x—1|<|x+1]).

4. Find f(—1), 10, (1), F©@), [3), f@), i = %' —6x*
+11x_"é.f( ) 10), F(1), F(2), [(3), f(4), if f(x)=x"—6x"+

5. Find [(O), F(—5 ). [(—=1 (), i if =V T

6. f(x)=arccos(logx). Find f(ll—o) , F(), fQ0).

7. The function [(x) is linear. Find this function, if f(—1)=2
and f(2) =—3.

hd
b

*) Log x is the logarithm of the number x o the base 10,
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8. Find the rational integral function f(x) of degree two, il
f0)=1, j(1)=0 and [(3)=5.
9. Given that f(4) = —2, [(5)=6. Approximate the value of
f (4, 3) if we consider the function f(x) on the inlerval 4<<x<5
linear (linear interpolation of a function).
10. Write the function
f={

0, if x<O0,
x, if x>0

as a single formula using the absolute-value sign.
Determine the domains of definition of the following functions:

1. a) y=Vx+1, 16. y=Vx—x.
AL
b) y= l/l'H'l' 17. y-—-logzii .
12. y~:4—F. 2__3
— 18. y=log L= +2
13. a) y=V ¥ —2; y=E T
b) y='x]/x2—2. 19. y=arccosﬂ—

1+x°

P VA R
e, y=V2+x—s. 20. y=arcsin(log~l%).

15. y=V:C+"—/—21—_+;;.

21. Determine the domain of definition of the function

y=Vsin2x.
22. f(x) =2x*—3x*—5x*+6x—10. Find

QW =5 F(W+F(—n] and 9(x)=5[f () —F(—2).

23. A function f(x) defined in a symmetric region —Il<<x<<l
is called even if f(—x)=f(x) and odd if f(—x)=—f(x).

Determine which of the following functions are even and which
are odd:

a) f(x)=5 (@ +a~);

b) fO)=VTItx+x—Vi—x+x5
o) fW=V &+ 4+ =05

d) f (x)=log 2=

e) f(x)=log (x+V1+x).

24. Prove that any function f(x) defined in the interval
—Il<<x<l may be represented in the forin of the sum of an
even function and an odd function.
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25. Prove that the product of two even functions or of two odd
functions is an even function, and that the product of an even
function by an odd function is an odd function.

26. A function [(x) 1s called periodic if there exists a positive
numter T (the period of the unction) such that f(x+ T)=f(x)
for all valves of x within the dcmain of definition of f(x).

Cetermine which of the follcwing functions are pertodic, and
for iLe pericdic functicns find their least period T:

a) f(x)=10sin3x, d) f(x)=sin'x;
b) f(x)=asinAx+bcosAx; e) f(x)=sin (V x).
¢) f(x)=Vtanx;
27. Express the length of the segment y=MN and the area S
of the figure AMN as a function of x=AM (Fig 1). Construct

the graphs of these functions.
D [ 28. The linear density (that is,

f mass per unit length) of a rod AB=1{
N b (Fig. 2) on the segments AC=1,,
y CD=!, and DB=1I,(l, + 1, +1,=1)
4 LA { is equal to ¢,, ¢, and g¢,, respec-
_' B
— o Py
~__ C - D B
a - z
Fig. 1 Fig. 2

tively. Express the mass m of a variable segment AM =x of this
rod as a function of x. Construct the graph of this function.
29. Find ¢ [y (x)] and $jg (x)], if ¢(x)=+" and P (x) =2%
30. Find [{f1f(lh, i F) =15
31. Find f(x+ 1), if f(x—1)=x%.
32. Let f(n) be the sum of n terms of an arithmetic progression.

Show that
f(n+3)—3f (n+2)+ 3f (n4-1)—f (n) =0.
33. Show that if

f(x)=kx-+b

and the numters x,, x,, x, form an arithmetic progression, then

the numters f(x,), f(x,) and f(x,) likewise form such a pro-
gression.
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34. Prove that if f(x) is an exponential function, that is,
[ (x)=a"(@>0), and the numters x,, x,, x, form an arithmetic
progression, then the numbers f(x,), f(x,) and f(x,) form a geo-
metric progression.
35. Let
f()=log (1%,

Show that

Fo+fo=F(EL).

14 xy

36. Let (p(.t):%(a"—{—a"‘) and w(x)=-!2-(a"—a"‘).
Show that
PE+Y)=0) Q&) +Vx)P(y)

Y49 =¢ X))+ o) V().

37. Find f(—1), F(0), F(1) if

f(x)—{ arcsinxfor—1<vr <0,
" larctanxfor0 < x 24 oo.

and

38. Determine the roots (zeros) of the region of positivity and
of the region of negativity of the function y if:

a) y=1-+ux, d) y=x*—3x;

b) y =2+ x—x%

-1 2x
c) y=1—x+x% ®) y=log 75

39. Find the inverse of the function y if:

b) y=x'—1, t2 3
0 y= T ¢) y=arctan3x.

In what regions will these inverse functions be defined?
40. Find the inverse of the function

_ I x it x<<O,
=1 X, if x>0.

41. Write the given functions as a series of equalities each
member of which contains a simple elementary function (power,
exponential, trigonometric, and the like):

a) y=(2x—5)'% c) y=logtan—§-;

b) y=2cosx; d) y =arcsin (3-),
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42, Write as a single equation the composite functions repre-
sented as a series of equalities:

a) y=u', u=sinx;
b) y=arctanu, u=Vv, v=Ilogx;
0 y={ u, .if u<O,
0, if u>0;
u=x'—1.
43. Write, explicitly, functions of y defined by the equations:
a) x*—arccos y=mx;
b) 10* 410" =10;
c) x+|y|l=2y.
Find the domains of definition of the given implicit functions.

Sec. 2. Graphs of Elementary Functions

Craphs of functions y=f(x) are mainly constructed by marking a suffi-
ciently dence net of points M;(x;, y;), where y,=f(x;)(i=0, 1, 2,...) and
by connecting the points with a line that takes account of intermediate points.
Calculations are best done by a shide rule.

Y !/7
. /y /yJ
pa ;
R

A X

Fig. 3

Graphs of the basic elementary functions (see Ap pendix VI) are readily
learned through their construction. Proceeding from the graph of

y=f(x), ()

we get the graphs of the following functions by means of simple geometric
constructions:

1) y,=—f(x) is the mirror image of the graph I' about the x-axis;

2) yp=f(—«x) is the mirror image of the graph T about the y-axis;
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3) ys=1[(x—a) Is the T graph displaced along the x-axis by an amount a;
4) y,=b+f(x) is the I' graph displaced along the y-axis by an amount b
(Fig. 3).

Example. Construct the graph of the function

=sin x—f-
y— 4 .

Solution. The desired line is a sine curve y=sinx displaced along the x-axis
to the right by an amount :—;- (Fig. 4)

Y y-sin(.r-—zr-)
NP e _
ALY i N N

Fig. 4

Construct the graphs of the following linear functions
(straight lines):

4. y==Fkx, if k=0, 1, 2, 1/2, —1, —2,

45. y=x+b0, if 6=0, 1, 2, —1, —2.

46. y=1.5x +2.

Construct the graphs of rational integral funetions of degree
two (parabolas).

47. y=ax®, if a=1, 2, 1/2, —1, —2, 0.

48. y=x"+c, il ¢=0, 1, 2, —1.

49. y=(x—x,)* ii x,=0, I, 2, —1.

50. y=y, + (x—1)%, il y,=0, 1, 2, —1.

51*. y=ax*+ bx+ec, il: 1) a=1, b=—2, ¢=3; 2) a=—2,
b=6, c=0.

52, y=2 { x—x*. Find the points ot intersection of this pa-
rabola with the x-axis.

Construct the graphs of the following rational integral func-
tions of degree above two:

53* y=x' (cubic parabola).

54. y=2+ (x— 1)

55. y=x"—3x4-2.

56, y=ux*.

57. y=2x"—x"

Construct the graphs of the following linear fractional func-
tions (hyperbolas):

1
b8*. y=—x-.
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59. y=r—.
—2
60. y=:‘+2'
61*' y=yo_}-x__'t,—x—) if x°=17 y°=—l, m=6.
%—3
62°. y=3i+2

Construct the graphs of the fractional rational functions:
63. y= x+~

64. Yy=7:71i-
65*. y=3
66. y——l,-.
67*. y= ’+1 (Witch of Agnest).

68. y—x’—+l (Newton’s serpentine).
69. y=x+.

70. y=x’+% (trident of Newton).

Construct the graphs of the irrational functions:
1%, y=l/z

72. y= v x.

73*. y=/ x* (Niele’s parabola).

74. y=+ xV'x (semicubical parabola).

75*. y=+ % V285 —x* (ellipse).

76. y=+ I{J_C_’_—Tl- (hyperbola).

71. Y= F—x-’. L
78 y=o x ]/ —; (cissoid of Diocles).
=+ xV2B5—x*.
Construct the graphs of the trigonometric functions:
80*. y=sinx. 83*. y=rcotx.
81*. y=cos x. 84*. y=sec x.
82*, y=tanux. 85*. y=-cosec x.

86. y=Asinx, if A=1, 10, 1/2, —2.
87*. y=sinnx, if n=1, 2, 3 1/2.

88. y=sin(x—¢), if ¢=0, 2 , 3;, T,
89*, y=> sin (2x—3).

ENE
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90*. y=asinx+bcosx, if a=6, b=-—-8.

91. y=sin x4-cos x. 96. y==1—2cosx.

92*. y=cos’x. 97. y= sin x-——% sin 3x.
93*. y=x+sinx, 98. y== cosx+—21-0052x.
94*. y=xsinx. 99*. y= cos -’;— .

95. y=tan’x. 100. y=+ Vsinx.

Construct the graphs of the exponential and logarithmic fune-
tions:

101 y=a*, if a=2, 5, e(e=2, 718..)%).
102*. y=log, x, if a=10, 2, ;—. e.

103*. y=sinhx, where sinh x=1;2 (e*—e~%).
104*. y=cosh x, where coshx=1/2(e* +e7%).

105*. y=tanhx, where tanhx=sci:sl;1§.

1
106. y=10~,
107*. y=e~* (probability curve).

1
108. y—2" =, 113. y=log~.
109. y=log x>, 114. y=log(— x).
110. y=log’x. 115. y=log, (1 + x).
111. y=log(log x). 116. y=log (cos x).
112. -’/=lo{14x' 117, y=2"%sin x.
Construct the graphs of the inverse trigonometric functions:
118*. y=arc sin x. 122. y=arcsin%.
119*, y=arc cos x. 123. y=arccos%.
120*. y=arctanx. 124. y= x+ arccot x.

121*. y=arccot x.
Construct the graphs of the functions:

125. y=|x|.
126, y=15 (x+]x]).
127. a) y=x|x|; b) y=log,+|x|.

128. a) y=sinx+|sinx|; b) y=sinx—|sinx|.
3—x* when |x|< .

129. y=={ '—i—l- when |x|>1.

*) About the number e see p. 22 for more details.
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130. a) y=|x], b) y=x—[x], where [x] is the inegral part
of the number x, that is, the grealest in.eger less than or equal
to x.

Construct the graphs of the following functions in the polar
coordina.e sysiem (r, ¢) (r =0):

131. r =

132*. r=£g— (spiral of Archimedes).
133*. r=¢% (logurithmic spiral).
134*. ’=% (hyperbolic spiral).
135. r=2cosy (circle).

1 . .
136. r=zne (straight line).

137. r =sec? % (parabola).

138*. r=10sin 3¢ (three-leafed rose)

139*. r=a(l +cos @) (a>0) (cardioid).

14)*, r*=a*cos2¢ (a>0) (lemniscate).

lC)ns‘.ruct the graphs of the functions represented parametri-
cally:

141*. x=1t*, y=1* (semicubical parabola).

142*. x=10 cost, y= sint (ellipse).

143*. x=10cos*¢, y=10sin’t (astroid).

144*. x=a(cost+ tsint), y=a(sint—tcost) (involute of a
circle).

145*. x="_’:t,, y=% (folium of Descartes).
146, x— a at - . .
X T y= Vi (semicircle).

147, x==2'+2-!, y=2'—2"' (branch of a hyperbola).

148. x=2cos*t, y=2sin t (segment of a straight line).

149, x=1t—1¢*, y=0-1.

150. x=a(2cost—ws2t) y=a (2 sint—sin 2f) (cardioid).
" Construct ‘the graphs of the following functions defined implic-
1ly:

151*.x* + y* =25 (circle).

152. Xy = 12 (hyperbcla).

153*. y —21 (parabola).

154. 100 —-—l (ellipse).
155. y* = x*(100— x*).

2
156*. x* 4+ y° =aqa* (astroid).
157*. x+y= 10logy.
158. x*=cosy.
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159*. Vx + 4 — " (logarithmic spiral).

160%. x*+y’—3xy=0 (folium of Descartes).

161. Derive the conversion formula from the Celsius scale (C)
to the Fahrenheit scale (F) if it is known that 0°C corresponds
to 32°F and 100°C corresponds to 212°F.

Construct the graph of the function obtained.

162. Inscribed in a triangle (base b =10, altitude A=6) is a
rectangle (Fig. 5). Express the area of the rectangle y as a func
tion of the base x.

S

¥
%

077

T
L B
I C
b | ——— (] ————]
I
Fig. 5 Fig 6

Construct the graph of this function and find its greatest
value.

163. Given a {riangle ACB with BC =a, AC=0b and a variable
angle r ACB=x (Fig. 6).

Express y=area )\ ABC as a function of x. Plot the graph
of this function and find its greatest value.

164. Give a graphic solution of the equations:

a) 2x*—bx+2=0; d) 10-*=x;
b) x*+x—1=0; e) x=14 0bsinux;
¢) logx==0.1x; f) cot x=x (0<<x< ).

165. Solve the systems of equations graphically:

a) xy=10, x+ y=7,

b) xy=6, x*+y*=13;

c) X*—x+y=4, y—2x=0;

d) ¥*+y=10, x+ y*=6;

e) y=sinx, y=cosx (0<<x<2xm).
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Sec. 3. Limits

1°. The limit of a sequence. The number a is the limit of a sequence
x., x,, ) x,,, ey OF
lim x,=a,
n >

if for any & >0 there is a number N=N (¢g) such that
lx,—a| <e when n> N.
Example 1. Show that

. 2n 41
lim =
n->w N 1 2 u)
Solution. Form the difference
2n +l_ _ 1
n+1 T oon$1
Evaluating the absolute value of this difference, we have:
2n 41 I__ 1
= B e B ®

if |
fl>?—]=N(8)

Thus, for every positive number e there will be a number N=-%-—l such

that for n > N we will have irequality (2) Consequently, the number 2 is
the limit of the sequence x,= (2n-+ 1)/(n + 1), henca, formula (1) is true.
2°. The limit of a function. We say that a function f(x) ~ A as x - a
(A and a are numbers), or
lim [(x)=A4,
X —>a
if for every € > 0 we have 6 =0 (g) > 0 such that
lf—Al<e for 0<|x—a| <.
Similarly,
lim f(x)=A,
X = ®

if [f(x)—A|<efor|x|> N (e).
The following conventional notation 1s also used:

lim f(x)=oo,
xX~>a

which means that [f (x)| > E for 0 <|x—a| < 8 (E), where E is an arbitrary
positive number
3°. One-sided limits. Il x<a and x »a, then we write conventionally
x -+ a—0; stmilarly, if x >a and x — a, then we write x - a+0. The numbers
fla—0)= lim f(x) and }(a+0)= lim f(x)
X >a--0 XxX—+>a+o0
are called, respectively, the limuit on the left of the function f(x) at the point a

and the limif on the right of the function f(x) at the point a (if these
aumbers exist).
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For the existence of the limit of a function f (x) as x —a, it is necessary
and sufficient to have the following equality:

fta—0)=f(a+0).
If the limits lim f, (x) and lim f,(x) exist, then the following theorems.
l old: X—>a X »>a
D) lim [f, (x)+ [, (0] = lim [, (x) + lim [, (x);
xX—>a Xx—>a X —»>d

2) x"—Ta[f‘ ) f2 ()] = x“mafl (x)'xli‘;nafz (x);
3) x“ma[f' X)) = x]imaf‘ (x)/z"maf’ ) i”_:"afa (x) #0).

The following two limits are frequently used:
x>0 X
and
1
o

fim (14+L) = tim 1+ 0% =e=271808 . .,
X a >0

X > ®

Example 2. Find the limits on the right and left of the function

1
f(x)=arc tan <

as x -+ 0.
Solution. We have

F(+0)=lim (arc tan-'_)=1
x> +0 X 2
and

f(—=0)= lim (alcfan%):..i

x> -0 2"

Obviously, the function f(x) in this case has no limit as x —0.

166. Prove that as n— oo the limit of the sequence
1 1

G v g2

1,
1? equal to zero. For which values of n will we have the inequal-~
ity
<o
(e is an arbitrary positive number)?

Calcula e numerically for a) e=0.1; b) e=0.01; c) e=0.001.
167. Prove that the limit of the sequence

n

n+1

X, = n=1,2, ..))
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as n—oo is unity. For which values of n>N will we have
the inequality
|x,—1[<e

(e is an arbitrary positive number)?
Find N for a) e=0.1; b) e=0.01: ¢) e=0.001,
168. Prove that
lim x*=4.
How should one choose, for a given positive number &, some
positive number 8 so that the inequality

|x*—4|<e
should follow from
[x—2]<<§?

Compute & for a) e=0.1; b) e=0.01; ¢) e=0.001.
169. Give the exact meaning of the following notations:
a) lin logx=—o0; b) lim 2= 4 o0; ¢) limf (x)=

X->»+0 X »+® X > ®
170. Find the limits of the sequences:
11 1 (— pn-t
a) 12t _5')6_3'; —'4-’ vee T) ’
4 2n
b) T' 3" 5" ' n—1" !

0 VZ Vava 1/21/2V2

d) 0.2, 0.23, 0.233, 0.2333,

Find the limits:

171. lim (——|— = n,—}— —l—n_l).

p z
naw )\l n

172. lim (n+1)(ﬂ:-s2)(n+3) .

n-»wo

173. lim [“f3+5+7n4;l--+-(2n—l)_2n;1J.
174, lim ZH=

1. lim S

176. lim (g+g+g+ ... +5).

171. lim [ —§4'§—-21—7+ +(—T:_1"l"] .

178, lim LEZ+3+.. +n'

3
n~>® n
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179. lim (V n+1—V n).

n-—-» o

. nsinnl
180. nlﬁl; T

When seckirg the limit of a ratio of two integral polynomials In x as
x — oo, it is uscful first {o divide both terms of the ratio by x", where n is
the highest degree of these polynomials.

A similar procedure is also possible in many cases for fractions contain-
ing irrational terms.

Example 1.
lim (2x—3) (3x + b) (4x—6) .
X —>® 3x’+x——-l -
3 5 6
y (2—‘) (3+3) (““7) 2.3.4
== lll]., l l = 8 =8.
X>%0 3‘}_}_2_;5
Example 2.
im X —aim Ly,
e /a0 Fre 3 1_{_5)
A3
. 1)2 . 2" —3x—4
. lin (xj'—. i86. lim ———"—r
181 l‘-’]w xhhi_l x> ® V-x"-f-l
182. lim i?—o_?)f. 187. lim _.E‘ii/:}:
X > ® X >® x_l_ X
. x?—br4-1 ) %2
8 M e 180, i
.o 2¢—x-+ 3 3/
184. lim 75 189. lim L;‘fli—‘
. (24 +3)* (Bx—2)* ¥ —
185. lim (—————.
x> x*4-5 190. lim — Vx

e 1/ x+Vx4—V—T
If P(x) and Q (x) are integral polynomials and P (¢) #0 or ( ) #0,
then the limit of the rational fraction
lim 1_)_@
t—>aQ(x)
is obtained directly.
But if P (a)=Q (e)=0, then it is advisable to cancel the binonual x=—a

out of the fraction P—(X) once or several times.

Q)
Example 3.

xt—4 = lim (x—2) (x f—2)= lim x+2
223X —3+2 x53(x—2)(x—1) x>2x—1

=4,
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, J . 2 —3
191, lim SE5. 195. lim £=242,
X = -1 x—>1
192. lim ’ﬁi;_s_xig_“_) 196. lim {f:%i_f.
X —>5 xX—>a
2 —
193. lim <ol 197, lim &EA=2
x> -1 h—>o
. x—2x . 1 3
194. "llill’m. 198. xll_l;n‘ (1—__7—1_——‘;,) .

The exrressions containing irrational terms are in many cases rational-
ized by introducing a new variable.

Example 4. Find

lim _Vl_—i-x_—_]_
x>0 Vl+x-——l
Solution. Pufting
1+x=y",
we have
lim M: lim yz l_ lim y’+y+l=_§_.
x>0 °l/1+x_1 yo>r1492—1 4,5, y+1 2
- 3 —
199. lim l/—x———l 201. lim _‘/_"__T_‘_
g1 X1 ‘ V’ ’
V‘— 8 X—>1 x —1
200. lim ===, oV =2V A+
PR x —4 202. ll_r:ll l/ ad (x—-lléx+ .

Another way of finding the limit of an irrational expression is to trans-

fer the irrational term from the numerator to the denominator, or vice versa,
from the deriominator to the numerator.

Example 5.

xsa x—a " raa—a)(Vx+ V)

-

1

; 1
= lim —— = (@a>0).
s»aVx+Va 2Va

. 2—Vx—3 . 3—V5¥x
203. 1:217 7_—49—‘ . 206- xll—f;ﬂ‘ — 5._:; .
204. lin ——51__8—-. li Vigx—Vi—x

r2e) x —2 207. ,‘T’. r ]
205. lim it 208, lim YXth—Vx

t—»li/x—[ h->o h )



Sec. &) Limits 27

209. lim AT 212. lim (VX (x + a)—x].
. — h . X>+®
h—-o . —_——
oto. lig YEZT0—Vitm—s 213 Jin (V3" —5x 46—,
. 2 __ . —_—
X3 H—dx+3 214, lin x (V¥ +1—x).
211, lim (VX fa—V %). e S
xoto 215. lin(x+ y/1—x%)

The formula
lim S7¥_y

x>0 X
i frequently used when solving the following examples. It is taken for
granted that limsinx=sina and limcos x =cos a.

X»a X—+a
Example 6.
lim sin 5x= lim {sin bx )= _
Jim =22 lim 5)=1.5=5
216, a) lim sinx . 227. a) lim xsin l
xX—>2 X =0
b) lim 22, b) lim xsin l
X—>® X—> o
. in 3 .
217. lim 222, 228. lim (1—x)tan’y .
xX—>0 X1
. sinbx
218. hm YT 229. xh_:rl cot 2xcot(——x)
sin nx :
219. ll. i ) l—sm—2—
x> 230. lim ~—
220. lim (nsm—). =
ne n 231, lim 1=2cosx
221, lim L=~ ol P
X—=>0
. sinx—sina 232, lim S8MX—cosnx,
222. jlﬂ —x:a— . X0 x2
. tanx —six
. Cosx—cosa 233. lim .
223. xh;“a—'—x:a—'_ X0 A!
. tan nx 234, [lim Y0¥
224. xllrgz Fa it 0 )
. . . arc tan 2«
25. lim SR —sinx 235. lim =gra=
h->o
.o l—x?
.y Sinx—cosx 236. lim .
226. lln}‘ PPl Xy SHITTX

x> —
.
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. x—sin2x I Viox
21 m s 239, lim 1=V
c cos%{ 240. lim Vifsinx—VT1—sinx )
238. lim s Jm ~

When taking limits of the form
lim [p (¥)]*® =C 3)
X —a

one should bear in mind that:
1) if there are final limits

lim ¢ (x)=A and lim{ (x)=B8,
xX—»>a X —a

then C=AB;
2) if lim@(x)=A#1 and lim P (x)==+ o, then the problem of finding

X -aQ -l
the limut of (3) is solved in straightforward fashion;
3) il lime(x)=1 and hmY(x)=co, then we put @(x)=1+4a(x),

X—a X +a
where a(x) - 0 as x - a and, hence,

1 lim a(x) P& lim (@ (x) —=1] ¥ (x)
C=lim {[1+a(n))® D@ @ —gr e =7 ’
X +a

where e=2.718 . . . is Napier's number.

Example 7. Find

lim (sin 2x‘) 1+%

X0 X

Solution. Here,

lim (S‘“Q")=2 and lim (14+x)=1;

X0 X x>0
hence,

lim (sln 2x)‘ +*=2| =9

x—+0 X

Example 8. Find

Solution. We have

4~
1 oo

lim X+
x»o 20+

2+-;
and

lim x*=+4o0.
x> ®
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Therefore,
lim i‘tl \x'=
x> m (2x+ 1) 0.
Example 9. Find
lim (x_—-_l\"
x»>o \ X+ l) '
Solution. We have

tim *=!_ tim

x> X4 1 [ ) 1

Transforming, as indicated above. we have

im (=12 g x—=1_ ) *_
x—bmw(x+l) x—l>mm [l+(x+l I
x+1 2x -

. ' —9 ~2y 1+x im  ——
l - —_ X > @ - -2
—:x—lan;{[‘.{-(x——i)] } =e e %,

\

In this case it is easier to find the limit without resorting to the genecral
procedure:

(-1 (=877

tim (*=1)* = tim VP L1 L S =

xso \x+1/ " xse l+—l->x - l+~l— % e
X X>® X

Generally, it is useful to remember that ’

lim ( H__;_‘)x:ek

=e

> ®
. 24+ x\* *
241. li: __) . (X
e (3"" 248. ,'L",}(x+| ) :
s x—1 \*+1 L fx—1\*+3
242. lim (5=1;) 249. lim (13)"""
2x

. 1 x+1 n

243. lim (%) 250. lim (14 %)".
sin L

x'—2-;t+3) = 251. lim (1 +sinx)*.

=0

(

( 1
245. lim("'+2 )

(

(

252**, a) lim (cosx)7:
l n X—0 .
1—2)" _ L
b) lim(cos x)* .
2 \* x>0
1+ ;) .

L
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When solving the problems that follow, it is useful to know that if the
limit limf (x) exists and is positive, then
Xx—>a

lim [Inf(x)]=In [lim f(x)].
X—a x—>a

Example 10. Prove that

lim G+ _ *)
X0 X
Solution. We have
tim WOED) _yim (1n (14 F | =Inlim (1 £ 0 F 1 —lne=1.
x>0 x x>0 X0

Formula (*) is frequently used in the solution of problems.

253. lim[In(2x+1)—In(x+2)].

X—=>®

254. lim'ﬂg-(—]—it—@—ﬂ .

X0
1 T+x -
255. lim (;ln :i’;) 260*. limn(y/a—1) (a>0).
x>0 n—+o
256. lim x|[In(x+1)—Inx]. 261. lim‘“:e”.
>+ ® X—0
257. lim €088 262. lim ="
a0 X x—>o SiNX
258*. lim&—! 263. a) lim %% ;
X—>9 X—>0
269*. limT=1 (a>0), b) lim&shi=t

(see Problems 103 and 104).
Find the' following limits that occur on one side:

264. a) lim ——t— . .
a)jim Vgt ¢ b) lim —! _,
" x40 L
b) lim —_. 14e*
x:»+cn in'f'l . ln(l+e")
265. a) lintanhx; 267. a)x lim ———
X=> =% - —
b) limtanh x, b) lim In (1 + &%) )
x>+ ® Xt @ X
* __po—N .
where tanhx=z¥;—4-_%_—;. 268. a)x“m IW;XI;
. 1 - -
266. a) ,l.l,nl. T ; b) lim lm:x[ .

X=>+0

14+e”*
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269. a) lim <=1.; 270. a) lim—i_—2—;
X—»1-0 X—>2—0
—1
b) 1 b) lim %
x)—nl-{l:‘ —1 l x)—>z+o 2

Construct the graphs of the following functions:
271**, y=Ilim (cos x).

n—»w

272*, y=1im ———-

nswm 1+x"

273. y=Iim V x* ot

a—>0

(x=0).

274. y=Ilin (arctan nx).

275. y=Ilim /1 + x" (x=0).
276. Transform the following mixed periodic fraction into
a common fraction:
a=0.13555...

Regard it as the limit of the corresponding finite fraction.
277. What will happen to the roots of the quadratic equation

ax* +bx+c=0,

if the coefficient @ approaches zero while the coefficients b and ¢
are constant, and b=40?

278. Find the limit of the interior angle of a regular n-gon
as n — oo.

279. Find the limit of the perimeters of regular n-gons inscribed
in a circle of radius R and circumscribed about it as n — oo.

2¢0. Find the limit of the sum ol the lengths of the ordinates
of the curve

Yy = e~ * cos nx,

drawn at the points x=0, 1, 2, ..., n, as n— o0,
5§1. Find the limit of the sum of the areas of the squares
constructed on the ordinates of the curve

y=2|-x

as on bases, where x=1, 2, 3, ..., n, provided that n — oo.
982. Find the limit of the perlmeter of a broken line M M,... M,
inscribed in a logarithmic spiral

r=e?



32 Introduction to Analysis [Ch. 1

(as n — oc), if the vertices of this broken line have, respectively,
the polar angles

?,=0, q>.=“7, ) (pn.___f;ﬂ.

283. A segment AB=a (Fig. 7) is divided into n equal parts,
each part serving as the base of an isosceles triangle with base
angles « =-45°. Show that the limit of the perimeter of the bro-
ken line thus formed diflers fromn the
length of AB despile the fact that in
the limit the broken line “geometrically
merges with the segment AB”. b

- a >
——o g

Fig. 7 Fig 8

284. The point C, divides a segment AB--I in hall; the
point C, divides a segment AC, in half; the point C, divides a
segment C,C, in half; the point C, divides C.C, in hall, and so
on. Determine the linuting position of the point C, when n—-ov.

285. The side a of a right triangle is divided into n equal
parts, on cach of which is constructed an inscribed rectangle
(Fig. 8). Determine the limit of the area of the step-like figure
thus formed if n— ov.

286. Find the constants £ and b from the cquation

lx.rn<kx +b——fa—f—l>=0. )

o » x¢41

What is the geometric meaning of (1)?

287*. A cerlain chemical process proceeds in such fashion
that the increase in quantity of a substance during cach interval
of time © out of the infinite sequence of intervals (tv, (i 1)7)
(=0, 1, 2, ...) is proportional to the quantity of the substance
available at the commencement of each interval and to the length
of the interval. Assuming that the quantity of substance at the
initial time is Q,, determine the quantity of substance Q{* after

the elapse of time ¢ if the increase takes place each nth part of

the time interval t=-tr-'-.

Find Q,=1inQ,

n-»e
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Sec. 4. Infinitely Small and Large Quantities

1°. Infinitely small quantities (infinitesimals). If

lima (x)=0,
xX—a
i.e., if |a(x)]<e when 0 <|x—a|<8(e), then the function a(x) is an
infinitesimal as x— a. In similar fashion we define the infinitesimal a (x)
as x —> .
The sum and product of a limited number of infinitesimals as x — qa are
also infinitesimals as x - a.
If a(x) and P (x) are infinitesimals as x—>a and
lim E_L{!—_—
x—a ﬂ (x) c.

where C is some number different from zero, then the functions @ (x) and B(x)
are called infinitesimals of the same order; but if C=0, then we say that the
function a(x) is an infinitesimal of higher order than B (x). The function
« (x) is called an infinitesimal of order n compared with the function B (x) if

lim __a_(i =
—a [
wheref0<IC[ < + oo.

1

lim a(x)__l'

x—a l'} (X) -
then the functions a (x) and B (x) are called equivalent functions as x —a:
a (x)~f (x).

For example, for x— 0 we have

sinx~x; tanx~x; In(l4x)~x
and so forth,
The sum of two infinitesimals of different orders is equivalent to the
term whose order is lower.
The limit of a ratio of two infinitesimals remains unchanged if the terms
of the ratio are replaced by equivalent quantities. By virtue of this theorem,
when taking the limit of a fraction

lim 9_(’9

x=af(x)’

where a(x) — 0 and f(x) — 0 as x—> a, we can subtract from (or add to)
the numerator or denominator infinitesimals of higher orders chosen so that
the resultant quantities should be equivalent to the original quantities.

Example 1. s = 3
3 2 4 3
i V22 VX =1
x_)olﬂ (l+2x) X—»0 2x 2

2°, Infinitely large quantities (inflnites). If for an arbitrarily large num-
ber N there exists a 8 (N) such that when 0 <|x—a| < 3§ (N) we have the

inequality
[f )| >N,
then the function f(x) is called an infinite as x—a.

2—-1900
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The definition of an infinite f(x) as x— oo is analogous. As in the case
of infinitesimals, we introduce the concept of infinites of different orders.

288. Prove that the function

sin x

f(x)———T

is an infinilesimal as x— oo. For what values of x is the ine-
quality
IfFx)<e

fulfilled if e is an arbitrary number?
Calculate for: a) e =0.1; b) e=0.01; c) e=10.001.
289. Prove that the function

fx)=1—x*

is an infinitesimal for x— 1. For what values of x is the ine-
quality
[Tx)|<e

fuliilled if e is an arbitrary positive number? Calculate numeri-
cally for: a) e=0.1; b) e=0.01; c) e=0.001.
290. Prove that the function

fx)=

1
x—2

is an infinite for x— 2. In what neighbourhoods of |x—2|<<¥§ is
the inequality
[Fx)|>N

fulfilled if N is an arbitrary positive number? ;
Find 6 if a) N=10; b) N=100;
0 ¢) N=1000.

A B 291. Determine the order of smallness
of: a) the surface of a sphere, b) the volume
of a sphere if the radius of the sphere r

| R is an infinitesimal of order one. What
3 will the orders be of the radius of the
sphere and the volume of the sphere with
0 respect to its surface?
Fie. 9 292. Let the central angle o of a cir-
18- cular sector ABO (Fig. 9) with radius R
tend to zero. Determine the orders of
the infinilesimals relative to the infinitesimal a: a) of the
chord AB; b) of the line CD; c) of the area of A ABD.




Sec. 4] Infinitely Small and Large Quantities 35

293. For x— 0 determine the orders of smallness relative to
x of the functions:

a) 2, d) 1 —cosx;

T+x e) tan x — sin x.

b) Vx—}—l/;;

o) V=V

294. Prove that the length of an infinitesimal arc of a circle
of constant radius is equivalent to the length of its chord.

295. Can we say that an infinitesimally small segment and
an infinitesimally small semicircle constructed on this segment

as a diameter are equivalent?
Using the theorem of the ratio of two infinitesimals, find

. in 3x.sin bx . Inx
296. lim Z0°XS09% 298. lim )
x->0 (x—x*)? o 1—x
arc sin 299. lim COS X —COs2x
297. lim __.Kl;f: x>0 1—COSX

x>0 In(1—x)

300. Prove that when x— 0 the quantities % and V' T+x—1

are equivalent. Using this result, demonstrate that when [x| is
small we have the approximate equality

Vitaml+3 . )
Applying formula (1), approximate the following:
a) V' 1.06; b) V0.97; ¢) V'10; d) V120

and compare the values obtained with tabular data.
301. Prove that when x — 0 we have the following approxi-
mate equalities accurate to terms of order x*:

1 .
a) m%l-—-x,

b) Va'+x=a+z, (a>0);
¢) (14+x)"~1+4+nx (n is a positive integer);
d) log (1 +x) = Mx,

where M =loge=0.43429...

Using these formulas, approximate:
1. 1. 1. 18- . .
D152 5970 3 1550 Y V'15; 6) 1.04% 6)0.93%; 7) log 1.1«
Compare the values obtained with tabular data.

2*
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302. Show that for x — oo the rational integral function
P(x)=ax"+ax""'+ ... +a, (a,0)
is an infinitely large quantity equivalent to the term of highest
degree a x".

303. Let x— oo. Taking x to be an infinite of the first order,
determine the order of growth of the functions:

a) x’x—-; 100 x — 1,000; o) m
b) 57 d) / x—2x*.

Sec. 5. Continuity of Functions

1°. Definition of continuity. A function f(x) is continuous when x=§

(or “at the point §”), if: 1) this function is defined at the point §, that is,

there exists a number f (§); 2) there exists a finite limit lim f(x); 3) this lim-
X%

it is equal to the value of the function at the point §, i.e.,

limf (x)=f (§). (1)
x>
Putting
x=E+AE,
where AE— 0, condition (1) may be rewritten as
lim Af €)= lim [f (§+ AE)—f (§)]=0. @
AE->0 A0

or the function f(x) is continuous at the point § if (and only if) at this point
to an infinitesimal increment in the argument there corresponds an infinitesi-
mal increment in the function.

If a function is continuous at every point of some region (interval, etc.),
then it is said to be continuous in this region.
Example 1. Prove that the function
' y=sinx
is continuous for every value of the argument x.
Solution. We have
Ax

, ) Ax Ax\ Sin A
Ay =sin (x 4+ Ax)—sin x = 2 sin =~ cos (x —) = 2 . axy .
Y ( 3 +3 B cos ( ¥+ 5 Ax.

Since 2

Ax

sin — Ax
}Alln-»o Ax =1 and lcos(x+ ?)l<l,

2
it follows that for any x we have
) lim Ay=0.

Ax—>0

Hence, the function sinx is continuous when — oo <x<+ ®.
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2°. Points of discontinuity of a function. We say that a function f(x)has
a_discontinuity 'at x=1x, (or at the point x;) within the domain of definition
of the function or on the boundary of this domain if there is a break in the
continuity of the function at this point.

Example 2. The function f(x)= i ! (Fig. 10a) is discontinuous

(1—x)*
when x=1. This function is not defined at the point x=1, and no matter
N | ”4
1 PR y=E()
| y(,-;)z 2—-‘——';—";
| 1 r'*'-1-—>: :
! : . 0 : 3 :}
. 1 X
. H o |
of 1 2 X =/
(a) (b)
v
1

| P
N W A7

(¢)
Fig. 10

how we choose the number f (1), the redefined function f(x) will not be con-
tinuous for x=1.
If the function f(x) has finite limits:

im f()=f(,—0) and lm f(x)=F(x+0)
X3Xo+0

X>X5=0

and not all three numbers f(x,), f (x,—0), f(x,+0) are equal, then x, is called
a discontinuity of the first kind. In particular, if

[ (xo=0)=F (x,+0),

then x, is called a removable discontinuity.
For continuity of a function f(x) at a point x,, it is necessary and suf-

ficient that
f () =f (%g=—0)=F (xo+ 0).
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Example 3. The function f(x)=s|l—:;—‘ has a discontinuity of the first kind
at x=0. Indeed, here,
f(+0)= lim 22X_ 4
x>+0 X

and

f(—0)= lim Sn*_ _
X4=0 —X

Example 4, The function y=E (x), where E (x) denotes the integral part
of the number x [i.e., E (x) isan integer that satisfies theequality x=E(x) +g¢,
where 0 < g < 1], is discontinuous (Fig. 10b) at every integral point: x=0,
+1, +£2, ..., and all the discontinuities are of the first kind.

Indeed, if n is an integer, then E (n—0)-=n—1 and E (n40)=n. At all
other points this function is, obviously, continuous,

Discontinuities of a function that are not of the first kind are called
discontinuities of the second Rind.

Infinite discontinuities also belong to discontinuities of the second kind.
These are points x, such that at least one of the one-sided limits, f (x,—0)or
f(x,+0), is equal to « (see Example 2).

Example 5. The function y=cos%t (Fig. 10c) at the point x=0 has a

'c]iiscontinuity of the second kind, since both one-sided limits are nonexistent
ere:

limcos®™ and lim cos®. |
x>=0 X X>+0 X

3°. Properties of continuous functions. When testing functions for conti-
nuity, bear in mind the following theorems:

1) the sum and product of a limited number of functions continuous in
some region is a function that is continuous in this region;

2) the quotient of two functions continuous in some region isa continuous
function for all values of the argument of this region that do not make the
divisor zero;

3) if a function f(x) is continuous in an interval (a, b), and a setof its
values is contdined in the interval (A, B), and a function @ (x) is continuous
in (A, B), then the composite function ¢ [f(x)] is continuous in (a, b).

\ A function f(x) continuous in an interval [a, b] hasthe following proper-
ties:

1) f(x) is bounded on [a, b}, i.e., there is some number M such that
Hf(x) | <M when e<<x<<¥b;

2) f (x) has a minimum and a maximum value on [a, b};

3) j(x? takes on all intermediate values between the two given values;
that is, if f(a)=A and f(f)=B (e<<a < P=<b), then no matter what the
number C between A and B, there will be at least one valuex=1y (a<y<f)
such that f (y)=C.

In particular, if f(a)f(B)<O0, then the equation

[(x)=0

has at least one real root in the interval (a, B).

304. Show that the function y=x?is continuous for any value
of the argument x.
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305. Prove that the rational integral tunction
P(x)=ax"+ax"""+... +a,

is continuous for any value of «x.
306. Prove that the rational fractional function

_ apx"+ax""'4 ... +a,
R (%) T bbb,y

is continuous for all values of x except those that make the de-
nominator zero.

307*. Prove that the function y=V¥x is continuous for x =0.
308. Prove that if the function f(x) is continuous and non-
negative in the interval (a, b), then the function

Fx)=Vf()

is likewise continuous in this interval.

309*. Prove that the function y=:cos x is continuous for any x.

310. For what values of x are the functions a) tanx and
b) cot x continuous?

311*. Show that the function y=|x| is continuous. Plot the
graph of this function.

312. Prove that the absolute value of a continuous function
is a continuous function.

313. A function is defined by the formulas

[ x*—4
—— for xz£2,

Flry={ *—2
A for x=2.

How should one choose the value of the function A=f(2) so
that the thus redefined fungtion f(x) is continuous for x=2?
Plot the graph of the function y=Ff(x).

314. The right side of the equation

fx)=1—x siﬁ%

is meaningless for x=0. How should one choose the value f(0)
so that f(x) is continuous for x=0?
315. The function
1
f (x) =arc tan —
is meaningless for x=2. Is it possible to define the value of f(2)

in such a way that the redefined function should be continuous
for x=2?
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316. The function f(x) is not defined for x=0. Define f(0)

so that f(x) is continuous for x=0, if:

a) f=SFL=1 (1 is a positive integer);

I—cosx

b) f(X)= I ’
¢) f(x)=ln(l+x)—xln(l-—-x) :

d) fr=2—

X

e) f(x)=x‘sin-:7;
f) f(x)=xcotx.

Investigate the following functions for continuity:

317. y=x’i2. 324. y=lnltan%'.
318. y=:if . 325. y=arctan% .
319. y=KZj__"4—_3 © 326. y=(1+x)arctan1_‘——)-‘-,.
820. y=|%|. 327. y=e}-l—'-.
321. a) y=sin ; 398, y=e—;’l?.
b) y=xsin—. 329, y=—o0o= .
322. y=1—. 14eivF

323. y=In(cos x).

Pal for x<<3,
y={ 2x4-1 for x>3.
331. Prove that the Dirichlet function g (x), which is zero for

330. Plot the graph of this function.

irrational x and unity for rational x, is discontinuous for every
value of x.

Investigate the following functions for continuity and construct

their graphs:

332. y=Ilim —

nsw 1+ X"

333. y=1lim (xarc tan nx).
n-»-w

(x=0).
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334. a) y=sgnx, b) y=x sgnx, c) y==sgn(sinx), where the
function sgn x is defined by the formulas:

+1, if x>0,
sgn x = 0, if x=0,
—1, if x<0.

335. a) y=x—E (x), b) y=xE (x), where E (x) is the integral
part of the number x.

336. Give an example to show that the sum of two discontin-
uous functions may be a continuous function.

337*. Let a be a regular positive fraction tending to zero
(0<<a<<1). Can we put the limit of a into the equality

E(Q4+a)=E(l—0)+1,
which is true for all values of a?
338. Show that the equation
xX—3x+1=0
has a real root in the interval (1,2). Approximate this root.
339. Prove that any polynomial P (x) of odd power has at

least one real root.
340. Prove that the equation

tanx=x

has an infinite number of real roots.



Chapter 11
DIFFERENTIATION OF FUNCTIONS

Sec. 1. Calculating Derivatives Directly
1°. Increment of the argument and increment of the function. If x and x,
are values of the argument x, and y=f(x) and y,=f(x,) are corresponding
values of the function y=f (x), then
Ax=1x,—x

is called the increment of the argument x in the interval (x, x,), and

Ay=y,—y
or
Ay=Ff(x)—f (@)= (x + Ax) —f (x) (1)
Yy
N(-Tr.yi)
Py~
Ny-r'(:z)flfl(r.y) l
A1
NN -
T 0] 7 =z I X
Fig. 11

is called the increment of the function y in the same interval (x, x,) (Fig. 11,
where Ax=MA and Ay= AN). The ratio

Ay _
Z}_tanu

is the slope of the secant MN of the graph of the function y=f(x) (Fig. 11)

and is called the mean rate of change of the function y over the inferval
(x, x4+ Ax).

Example 1. For the function

y=x*—bx+6
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calculate Ax and Ay, corresponding to a change in the argument:

a) fromx=1 to x=1.1;
b) fromx=3 to x=2

Solution. We have

a) Ax=1.1—1=0.1,
Ay=(1.12*—=5-1.14-6)—(12—5.14-6) = —0.29;
b) Ax=2—-3=—1,
Ay =(2'—5-2+6)—(3'—5.34-6) =0.

Example 2. In the case of the hyperbola y=%. find the slope of the

’ /
secant passing through the points M (3, —;-) and NS!O i)
4

" 10
Solution. Here, Ax=10—3=7 and Ay:m—%=—3%. Hence,
p=by__ 1
TAxT 0
2°, The derivative. The derivative y'.—:% of a function y=Ff(x) with re-
spect to the argument x is the limit of the ratio By when Ax approaches zero;
Ax p
that is,
y'= lim 3¢,
Ax o0 Ax

The magnitude of the derivative yields the slope of the tangent MT fo the
graph of the function y=f(x) at the point x (Fig. 11):

y =tanq.

Finding the derivative y’ is usually called differentiation of the function. The
derivative y’=f’ (x) is the rate of change of the function at the point x.
Example 3. Find the derivative of the function

y=x'.
Solution. From formula (1) we have
Ay=(x+ Ax)'—x*=2xAx -+ (Ax)*

and
Ay
-A—x__2x+ Ax.
Hence,
’ Ay -
y= lim <= lim (2x+ Ax)=20.
Ax—>o0Ax  Axoo

3°. One-sided derivatives. The expressions
fo= lim [&E+80—F()
- Ax—+-o Ax
and
f'+ (x)= lim [+ Ax)—[ (%)

Ax 40 Ax
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are called, respectivelﬁ, the left-hand or right-hand derivative of the function
f(x) at the point x. For f' (x) to exist, it is necessary and sufficient that

o =Ff, ().
Example 4 Find f_ (0) and f’, (0) of the function
f)=]x].
Solution. By the definition we have

fo@= tim B*__
Ax—>-0 Ax

" (0)= lim Léil=
£ O Ax >+0 Ax L

4°. Infinite derjvative. If at some point we have
lim [CHAD—F()_
Ax -0 Ax !

then we say that the continuous function f (x) has an infinite derivative at x.

In this case, the tangent to the graph of the function y=F(x) is perpendicu-
lar to the x-axis.

Example 5. Find f’ (0) of the function
y=y/ %
3 p—

frO)=1 Ax li !
= iim —= lim ——— =00,
Ax—o Ax Ax -0 "l/Ax"’ ®

Solution. We have

341. Find the increment of the function y= x* that corresponds
fo a change in argument:

a) fromx=1 to x, =2;

b) fromx=1 to x,=1.1;

c) fromx=1 to x,=1+h.

342. Find Ay of the function y= 3/ if:

a) x=0, Ax=0.001;

b) x=81 sz'_g;

¢) x=a, Ax=~h.

343. Why can we, for the function y=2x+43, determine the
increment Ay if all we know is the corresponding increment
Ax=5, while for the function y=x* this cannot be done?

344. Find the increment Ay and the ratio % for the func-
tions: : Ax

a) y-——(?l_—?)—, forx=1 and Ax=0.4;

b) y=Vx forx=0 and Ax = 0.0001;
¢) y=1logx for x= 100,000 and Ax ==— 90,000.
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345. Find Ay and%—% which correspond to a change in argu-
ment fromx to x-+ Ax for the functions:

a) y=ax+b; d)y= l/x,

b) y=x"; e) y=
c)y=;‘;; f)y-—lnx.
346. Find the slope of the secant to the parabola
y=2x—x*,
if the abscissas of the points of intersection are equal:
a) x,=1, x,=2;
b) x, =1, x =0.9;
c) x,=1, x, =l+h.
To what limit does the slope of the secant tend in the latter case

if h—0?

347. What is the mean rate of change of the function y=x*
in the interval 1 <x<<4?

348. The law of motion of a point is s=2¢*+3¢t+5, where
the distance s is given in centimetres and the time £ is in seconds.
What is the average velocity of the point over the interval of
time from f==1 to £=2>5?

349. Find the mean rise of the curve y=2* in the interval
l<<x<5.

350. Find the mean rise of the curve y=f(x) in the interval
[x, x4 Ax].

351. What is to be understood by the rise of the curve y=f(x)
at a given point x?

352. Define: a) the mean rate of rotation; b) the instantaneous
rate of rotation.

353. A hot body placed in a medium of lower temperature
cools off. What is to be understood by: a) the mean rate of
cooling; b) the rate of cooling at a given instant?

354. What is to be understood by the rate of reaction of a sub-
stance in a chemical reaction?

355. Let m={(x) be the mass of a non-homogeneous rod over
the interval [0, x]. What is to be understood by: a) the mean
linear density of the rod on the interval [x, x + Ax]; b) the linear
density of the rod at a point x?

356. Find the ratio %% of the function y—;— at the point

x=2, il: a) Ax=1; b) Ax=0.1; ¢) Ax=0.01. What is the deriv-
ative y° when x=2?
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357**. Find the derivative of the function y=tanux.

358. Find y' = lim % of the functions:
Ax—>o0

a) y=x% ¢ y=Vx
b)y=%; d) y=cot x.

359. Calculate f' (8), if f(x)-_/

360. Find f'(0), f (1), £ (2), if f(¥)=»x(x—1)'(x—2)".

361. At what points does the derivative of the function
f (x)= x* coincide numerically with the value of the function itself,
that is, f(x)=f"(x)?

362. The law of motion of a point is s=5¢*, where the dis-
tance g is in metres and the time ¢ is in seconds. Find the speed
at £ =3.

363. Find the slope of the tangent to the curve y=0.1x*
drawn at a point with abscissa x=2.

364. Find the slope of the tangent to the curve y=sinx at
the point (x, 0).

365. Find the value of the derivative of the function f(x)=—
at the point x=ux,(x, # 0).
366*. What are the slopes of the tangents to the curves y=

and y=x' at the point of their intersection? Find the angle be
tween these tangents.

367**. Show that the following functions do not have finite
derivatives at the indicated points:

a) y=€/_x-i at x=0;
2k 41
¢) y=|cosx| at x=""—um, k=0, &1, +2,

Sec. 2. Tabular Differentiation

l° Basic rules for finding a derivative. If ¢ is a constant and u=g(x),
P (x) are functions that have derivatives, then

1) () =0; 5) (uv)’ =u u—!—v u;
2 (=1 6) (“) =24 —uvu

> (v % 0);
S wtoy=u £0; 1) (5)'=“’”' (© #0).

vl
4) (cu) =cu’;
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2°, Table of derivatives of basic functions
I. () =nx""1,

quDE3;7

I11. (sin x)’ = cos x.

(x> 0).

1V. (cos x)’ =—sinx.
V. (tan JC)'=EES—2—J—‘.
,  —1

V1. (cot x) =m

1
VII. (arcsinx)' = x|<
(aresin 8)' = =g (Ix] <D
VIIL. (arccosx)’ =—— (x| <.

=

1

a '=_____-

IX. (arc 12 x) Tre
o =1

X. (arc cot x) =ari

XI. (@)’ =a*Ina.
XII. (e¥) =e*.

X1 (Inx)’ =% (x> 0).

XIV. (1og,,x)'=xllna=‘°Lf ®>0, a>0).

XV. (sinh x)’ =cosh x.
XVI. (cosh x)’ =sinh x.

XVIIL. (tanh x)’ =§>sl_h’—x .
XVIII. (coth x)’=m—%‘.

1

XIX. (arcsinh x)' = ?=
14 x2

XX. («'H'CCOth)I='-V.—xi-_——l ('Xl) 1).

XXI1. (arc tanh x)’ =1_]_-———x—, (Jxl< ).

XXII. (arc coth x)'=x,___l (xl>1.

3°. Rule for differentiating a composite function. If y=f(4) and u=o (x),
that is, y=f [¢ ()], where the functions y and u have derivatives, then

Y=Y, U, 1))
or in other notations
dy_ dydu
dx dudx’

This rule extends to a series of any finite number of differentiable functions,
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Example 1. Find the derivative of the function

y=(x"—2x+ 3.

Solution. Putting y=u®, where u=(@x*—2x+3), by formula (1) we will
have

¥ =(u¥), (—2x+3), =5u (2x—2) =10 (x—1) (x* —2x + 3)*.

Example 2. Find the derivative of the function
y =sin® 4x.
Solution. Putting
y=u®, u=sinv; v=4x,
we find
y’ =3u?.cosv-4= 12 sin® 4x cos 4x.

Find the derivatives of the following functions (the rule for
differentiating a composite function is not used in problems
368-408).

A. Algebraic Functions

2 5

368. y=x"—4x*+ 2x—3. 375. y=3x> —2x* 4+ x~%,
369. y=-i——%x+x’—0.5x‘. 376*. y==x'}/ x".

370. y=ax® + bx+c. 377, y=at — .
y=ax'+bx+c Y i;/x, xV”
371, y="2. 318. y=212%.
 4m m+n . 2x+3
372 y=at™+bt"*", 819, Y=g 5
_ax*4b _# 2 1
374. y=" 2. 381, y=tVz
y=-+1n 81. y v
B. Inverse Circular and Trigonometric Functions
382. y=>5sinx+ 3 cos x. 386. y=arctanx+ arccot x.
383. y=tanx—cot x. 387. y=xcotx.
384, y=nitCx, 388. y= xarc sin x.

(14 x* arc tan x —x

385. y=2t sin t—(t*—2) cost. 389. y= 5
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390.
391.

392.

393.

394.
39G.

401.
402.

403.
404 y=

C. Exponential and Logarithmic Functions

y=x"-e*
y=(x—1)e*.
ex
=-x—.-_
x5
=;‘€"
f(x)=e"cos x.

Y= (x*—2x 4 2)e*.

D. Hyperbolic and

y=xsinhx,

x!
Y= oshx
y=tanh x—x.

3cothx
Inx

396.
397.

398.

399.
400.

y=e* arc sin x.

Y=tz
y=x‘lnx—£.

3
Inx

1
y=—++2 Inx—=—=.

y=Inxlogx—Inalog, x.

Inverse Hyperbolic Functions

405. y =arc tan x—arctanh x.

406. y=arc sin x arcstnh x.

407. y:ﬂf%sr‘_x_
408, y=2CU

E. Composite Functions

In problems 409 to 466, use the rule for differentiating a composite func-

tion with one intermediate argument.

Find the derivatives of the following functions:

409**. y=(1 +3x-- 5x*)*.

Solution. Denote 1+ 3x—>5x®=u; then y=u®. We have:
y:‘ = 30u?; u; =3—10x;

u,, = 30u%%+(3—10x) =30 (1 4+ 3x —5x2)*. (3 — 10x).

410.

411,
412,

413.

414.

415.
416.

ax+b\*
I~ (22
f(y)=(2a + 3by)".
y=3+2x""

1

Y=5s (21}—1)"24 2x—1)F W0Ex—1)¢"

3
y=l/l—-x’.
Y= Va + bx’.
y= (a’ll—x’ll)‘ll.
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417. y=(3—2sinx)".
Solution. y' =5 (3—2sin x)*-(3—2sin x)' =5 (3—2sin x)* (— 2cos x) =
— 10 cos x (3—2 sin x)*.

418. y=tan x——;- tan*x + % tan® x.

419. y=Veotx—Vecota. 423 y=Jt 1.
420. y=2x+5cos’ x. 424, y= ]/@_g—’_—z_ci’i_—"
421*, x=cosec’t -+-sec’ . 425. y:ngh_o%;.
422. f(X)=— rr—s

6(T—3cosx)* "

426. y=)/1+arcsinx.

427. y=V arctan x— (arc sin x)*.
428. y=5rt15n—x.

429. y=Vx&* +x.

430. y=3/2—2* +1+In*x.
431. y=sin3x +cos 5 +tanV'x.

Solution. 4’ = cos 3x-(3x)' —sin — (_x_ )' + (Vx) =3cos3x—

5
1
2 2V xcost Vix
432. y=sin (x'—5x+1)+tan—.
433. f(xj= cos (ax+P).
434. f(f)=sint sin (¢ + ).

cos? V_

1 x
——— sin

w95, =25

436. f(x)=a cot i .

437. y=— g;cos (5x’)- 2 cos &%,

438. y=arc sin 2x.

Solution. ' =..}7;:1___(__2;._? (20 = }/1—2_7;5

439. y=arc sin;‘;. 441, y=arc tan—l— .

440. | (x)=arccos V x. 442. y=arccot; 1~
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443. y="5e~*". 447. y=arccose”.
1 48, y=In(2x+7).

44. y= —.

V=g 449. y=log sin x.
445. y=x"10**. 450. y=In(1—x*).
446. f(¢)=t¢sin2', 451. y=In* x—In(Inx).
452. y=In(e* + 5 sin x— 4 arc sin x).
453. y=arctan (Inx)+ In (arc tanx).
454, y=VInx+1+In(Vx+1).

485**. y= sin®5xcos’ .
456.
457.

458.

459. y=
460.

461.

462.
463.

464.
465.
466.

467.
468.
469.

470.
471.

F. Miscellaneous Functions

X

w

15 10

Y=—Fx—3% 3x—3)) 2(x—3)*"

X.
Y=g —x¢"
Vo —2x+1
—_—
X

cVare

x3

Y=V

y=

y
y

x—1

Yy x+2°

y=x* (a 2xY)t.

__{a+bx"\™

y—(m) :
9

7/)7’+%3x?/§+3‘x Vi
VT oy—g i/ T2
4

6
+5x V.

I=5aror it T o
y=(a+x)Va—x.

y=V (x+a)(x+b) (x+oc).
=V y V7.

f)y=@t+1)(3t+2)y/ 3+2.

T2+
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1
472. x__"l/_;—ay_—_—__j"

473. y=In(VTF+e&E—1)—In(V'TF& +1).

474. y= 115 cos® x (3 cos* x—5).

475. y— (tan? x—-l)(t;nt‘a:;:l-xmtan x+1)

476. y=tan®5x. 485. y=arc sin xz-,

477. y=- sin (x"). 486. y=arc sin le+ =

478. y= sin® (). 487. y=“;l°f;_

479. y=3sinx cos’x+ sin*x. 488. y=—Vl;_arc sin <x ]/_%.) .

480. y=%tan’x—-tanx+x. 489, y=Va—x +aarcsin= .
481. y=—%%c+;cotx. 490. y=xV a* — x* +a* arc sm%

482. y=Vasin*x+pcos’x. 491. y=arcsin(l—x)+V 2x—x*.
483. y =arc sinx® 4 arccosx®.

484. y= l5(arc sinx)®arccosx.

492, y= (x——lé-) arcsin}Vx +17l/x—x’.

493. y=1In (arc sin 5x).
494. y=arc sin (Inx).

x sina
495. y-==arc tanm.
9 51211%4—4
496. y= 3 arc tan —_—
497. y=3b*arc tan ———('%b +2x) Vbx—x.
498, y-——l/2 arc cot t:/nx

499. y= Ve=.
500. y==gsin'x,

501. F (x) =(2ma™ + b)*.
502. F (t)=e¢" cos pt.

__(asin px—Pcos Br)e*
603. y= o .
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504.

505.
506.

510.

511.
512.

513.

517.

518.
519.

520.

521.
522,

y=—lﬁ —"(3 sin3x—cos 3x). g7, y= 3! %
y=x"a 508. y=In(ax’+ bx +c).
y=Vc osxaV°°” 509. y=In(x+Va*+x°).
y=x—2Vx+2In(1 +Vx)-

_ x4 VT =2y
y_ In(a+x+V2ax+x*). 5140, y=In 7%
y_ln | 515. y:lng_ll(%ﬂ
y=In osx%.

516. y=—m+lntanx.
y._x]/x a——ln(x-l—]/x —ad).

y=Inln(3—2x%).
y=5]n’(ax+b).
o Vifai4x
y=Iny—
y=—ln(x —a) + 5 In

x+a’
y==x-sin (lnx——i:—).

1 X 1 cosx
523. y=§lntan T T st
524. f(x)= l/x—’—-:—_l-—-lnl—”L—L?"l_—l.
1 =241
526, y=2arcsinax 4 (1 —arc cos 3x)*.
sin ux
1 sinfa
527. y=3t+ 5 3 cgs’ bfc
{ tan—2-+ 2—V3
528. y=—=In ——-—r.
V3 tan 5+ 2+ V3
529. y=arctanlnux.

530.
531.

532.

. 1 .
y=Inarcsinx+ 3 In*x+ arc sinlnx.

1
y=arctanin—.

__V2 ) X 1 x—1
y-—Tarctan—‘-/—é—.—i—Eln P
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14 Vsln x By
633. y= ln————— 2arctan ) sinx.
y V_+ V

534. y———lnx+l+ =-arc tan x.

x+l+
535. f(x)——-——ln(l +x)——ln(x —x+ l)+— arctan 2!

V3 V“
536. f() xarcsinx+anl_x

T
§37. y=sinh® 2x. 542. y=arccoshlnx.
538. y=e"* cosh px. 543. y= arc tanh (tan x).
639, y=tanh®2x, 544. y=arc coth (se(. Xx).
540. y=Insinh 2x. 545. y=arctanh ;= +x,
2
541. y=arcsinh%. 546. ——(x —l)arctanhx+—x
547. y= (% X' —|—%) arc sinh x-—T sV1+x.
548. Find ¢', if:
a) y=|x|;
b) y=x|x|.

Construct the graphs of the functions y and y'.

549. Find y' if
_ y=In|x| (x+0).
550. Find f' (x) if
l—x for x<<O,

f(x)={ e* for x>0.
651. Calculate f (0) if
f(x) =e* cos 3x.
Solution. [’ (x)=e~* (—3 sin 3x) —e—* cos 3x;
F (0)=e® (—3sin0)—e° cos 0 =—1.
562. f(x)=ln(1+x)+arcsin-;-. Find £ (1).
553. y=tan' 7. Find ( ax),,=,
554. Find f+(0) and f_(0) of the functions:
a) [=Vsin(&®: & [W=xsiny, x£0 fO=
b) f(x)_arcsm +x:, @) f(M=xsin+ x70; {(©)=0
o f)=—"5, x0; [(0)=

1+e*
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555. Find f(0)+ xf' (0) of the function f(x)=e""*.

556. Find f(3)4 (x—3)f (3) of the function f(x)=V1+ x.
557. Given the functions f(x)=tanx and ¢ (x)=In(1—x),

q [(0)
find PR
558. Given the functions f(x)=1—x and (p(x)=l—sin£2f,
g 2()
find 0

559. Prove that the derivative of an even function is an odd
function, and the derivative of an odd function is an even func-
tion.

560. Prove that the derivative of a periodic function is also
a periodic function.

561. Show that the function y=xe~* satisfies the equation

xy' =(1—x)y. p

562. Show that the function y=xe ¢ Satisfies the equation
xy' =(1—x"y.

563. Show that the function y=
tion xy' =y (yInx—1).

1 . o
TFiTing satisfies the equa-

G. Logarithmic Derivative

A logarithmic derivative of a function y=f(x) is the derivative of the
Jogarithm of this function; that is,
Y )
lny) ==—=-—2L
Uy ==t

Finding the derivative is sometimes simplified by first taking logs of the func-
tion.
Example. Find the derivative of the exponential function

y=u"
where u=¢@ (x) and v=1 (x).
Solution. Taking logarithms we get
Iny=vinu.
Differentiate both sides of this equation with respect fo x:

(Iny)=v'Inu+v(Inu),
or

1 1

—y'=0'l ~u

yy v nu+vuu.
whence

' ’ _v_ ’
y—y(v lnu+u u),
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or

" ___ ’ u ’
y _u°(v lnu+— u)
564. Find y', if

y=y/ % 11_*—_:: sin® x cos? x.

Solution. lny=—§—|nx+ln(l —x)—In (1 +x%)+31Insin x +2 In cos x;
1, 21 (=) 2x 1 2sinx
7Y _Ti'?+l—x-l_+x’+ssinxcosx— cosx
whence y'= 3—;——2)C—+3cotx——2tanx)
Y=Y\&%" T—x I+2 '

565. Find y’, if y=(sinx)*.
Solution. Iny=xInsinx; %y’:ln sin x + x cot x;
y’ = (sin x)* (In sin x 4 x cot x).

In the following problems find 4’ after first taking logs of the

function y={f(x):

566. y=(x+1)2x+ 1)(3x+1). 574. y=3/x.

__ (x+2 VT
567. y—m. 575. y=x .
568. y= ]/xix_:—;). 576. y=x* .
569. y=x i/x,x—_:_l 577. y=yxsinx,
=.'__£:L = 5 x)sin
570. y Vo e 578. y=(cos x)sinx,
Vx—l 1\*
6571. y=- . . Y= - .
I=VGrer Viror 0. y=(1+7)
572. y=x*. 580. y=/(arc tan x)*.
573. y=x*.

Sec. 3. The Derivatives of Functions Not Represented Explicitly

1°. The derivative of an inverse function. I a function y=Ff(x) has a

derivative y;;eo, then the derivative of the inverse function x=f=!(y) is

x__l
[ Yy
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or
de_ 1
dy dy’
dx

Example 1. Find the derivative x,, if

y=x-+Inx.
C_ I x41 p_ X
Solution. We have y, -—l+;-__ ret hence, x, =TT

2°. The derivatives of functions represented parametrically. If a function y
is related to an argument x by means of a parameter ¢,

{ =),

= (1),
then =¥

or, in other notation,

.. dy
Example 2. Find ax’ if
x=acost,
y=asin

Solution. We find Z—;‘:—-—a sint? and %—%:acos t. Whence

(_I_g!__acost

dx~  asint =—cot L.

3°. The derivative of an implicit function. If the relationship between x
and y is given in implicit form,

F(x, y)=0, 4y

then to find the derivative y;=y' in the simplest cases it is sufficient: 1) to

calculate the derivative, with respect to x, of the left side of equation (1),
taking y as a function of x; 2) to equate this derivative to zero, that is, to put

2 =0, @

and 3) to solve the resulting equation for y'.
Example 3. Find the derivative y, if
x* 4 y*—3axy =0. (6)]
Solution. Forming the derivative of the left side of (3) and equating it

to zero, we get
3x*+ 3y’ —3a (y + xy') =0,
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whence

’ x’——-ay
V==

681. Find the derivative x, if

In the following problems, find the derivative y'=g—z of the
functions y represented parametrically:
x 2t —1, [ x=acos"t,
589.
582. _t= \ y=bsin't.
=t i 90 I x=acos®f,
583. __(_t_ 690. \ y=bsin’t.
f+1 (. cos’t
, - Vecos2t’
1 t’
584 { G?I—tz) 591' __ sin® ¢
y ‘+t: ¢ - ‘/—:‘35—27 )
3at ( x=arc cos —
Ty Vit
585. __ Bat® 592. . t
Y=ixo- y ==arc sin ViTe
= = —'
586. { 2=V, 593. { x=e
Y= / t. y=e-.
x=,l/t‘+1, x=a( In tan %—{—cost—sint),
587. __t—1 594. .
y—-Vm- y=a(sint + cos ).
588. x=a(c?st+tsxn 1),
y=a(sint—1{cost).
dy .
595. Calculate i when t—-? if
x=a(t—sinf),
y=a(l—cos).
dy asin ¢ sin ¢
Solution. = =2 (I—cosf)” T—cost

a) y=3x+x%

b) y=x—l?sinx;

c) y=0.1x+e*.
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and
sini
(8)z g
dx ’="’;" l—cos%
d x=tInt,
596. Find 3/ when (=1 if Int
X Y= —t- .
.t
597. Find % when (=2 if {""e, cost,
x 4 y=¢e sint.
6598. Prove that a function y represented parametrically by the
equations
x =2t 4+ 3t%,
y=1t" 42t

satisfies the equation . .
v=(&)+2(3) -
599. When x=2 the following equation is true:
x'=2x.
Does it follow from this that

(x)" = (2%)’
when x=2?
600. Let y=1a®—x*. Is it possible to perform term-by-term
differentiation of
xl +yl —_— al")
In the examples that follow it is required to find the deriva-
tive y’=3—"; of the implicit functions y.

601. 2x—5y-+10=0. 609. acos’(x+y)=0b.

LI 610. tany=xy.
602. S4+4=1. y=xy )
603. x’+y*=ad’. 611. xy-——arctan—y-.

2 2
604. x*-xy+y*=0. 612. arctan (x+y)=x.
605. Vx+Vy=Va. 613. & =x+y.
_u
606. /X4 y =y a'. 614. Inx+e * =c.
_x—y 615. Iny+—>=c.

607. y'—x+y. y+7

. 1
608. y—0.3siny=ux. 616. arctan%=—2-ln(x'+y').
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617. Vx'—}—y’:carctan%. 618. » =y
619. Find y’ at the point M(1,1),
2y==1++ xy.

Solution. Dlﬁerentlatmg, we get 2y =y’ +3xyy Putting x=1 and
y=1, we obtain 2y'=1+43y’, whence y' =— .

620. Find the derivatives y’ of specified functions y at the
indicated points:

a) (x+y)*=27(x—y) for x=2 and y=1;

b) ye’ =e**! for x=0 and y=1;

) yf=x+In< for x=1 and y=1.

Sec. 4. Geometrical and Mechanical Applications of the Derivative

1°. Equations of the tangent and the normal. From the geometric signifi-
cance of a derivative it follows that the equation of the tangent to a curve
y=f(x) or F(x,y)=0 at a point M (x,, y,) will be

Y—Yo=1Y, (x—1x,).

where y; is the value of the derivative y’ at the point M (x,, y,). The straight

line passing through the point of tangency perpendicularly to the tangent is
called the normal to the curve. For the
normal we have the equation

x—xy+y, (Y —yo) =0.

2°. The angle between curves. The
angle between the curves
y=f, (x)
and

y=Fs(x)

at their common point M, (x,, ¥,) (Fig. 12)
Fig. 12 is the angle ® between the tangents
& MyA and MyB to these curves at the
point M,.
Using a familiar formula of analytic geometry. we get

L+ f, (xo)+fy (xo)

3°. Segments associated with the tangent and the normal in a rectangular
coordinate system. The tangent and the normal determine the following four

tanow=
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segments (Fig. 13):

t=TM is the so-called segment of the tangent,
8;=TK is the subtangent,

n=NM is the segment of the normal,
S,=KN is the subnormal.

Y|

M(z,,4%)

o' =T S K Se N X
Fig. 13

Since KM =|y,| and tan @=y,, it follows that

t=TM= %Vl-{-(y;)’l; n=NM=|yon+(y;)’|;
0

S;=TK=|%1, S,=]|u,|.
0

4°, Segments associated with the tangent and the normal in a polar sys-
tem of coordinates. If a curve is giv-
en 1n polar coordinates by the equa-
tion r=f(g), then the angle pn
formed by the tangent MT and the
radius vector r=0M (Fig. 14), is
defined by the following formula:

dp r

tanp=r =7

The tangent MT and the normal MN
at the point M together with the radi-
us vector of the point of tangency
and with the perpendicular to the
radius vector drawn through the pole Fie. 14
O determine the following four seg- 8.
ments (see Fig. 14):

t=MT is the segment of the polar tangent,
n=MN is the segment of the polar normal,
8;=0O0T is the polar subtangent,
S,=ON is the polar subnormal.
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These segments are expressed by the following formulas:

T VAT —or=_"".
I_MT‘—'I'J'V”*'(') ’ St OT l,ll’
n=MN=Vr+({'); S,=ON=|r"|.

621. What angles ¢ are formed with the x-axis by the tangents
to the curve y=x—x" at points with abscissas:
a) x=0; b) x=1/2; ¢) x=1?
Solution. We have y’'=1—2x. Whence

a) tan p=1, ¢=45° b) tan ¢=0, p=0%
¢) tan =—1, ¢=135° (Fig. 15).

622. At what angles do the sine
curves y=sinx and y= sin2x inter-
sect the axis of abscissas at the
origin?

Fig. 15 623. At what angle does the tan-
gent curve y=tanx intersect the
axis of abscissas at the origin?

624. At what angle does the curve y=e"** intersect the
straight line x=2?

625. Find the points at which the tangents to the curve
y=3x"+4x*—12x*+20 are parallel to the x-axis.

626. At what point is the tangent to the parabola

y=x'—T7x+3

parallel to the straight line 5x+4-y—3=0?

627. Find the equation of the parabola y= x*4 bx+c that is
tangent to the straight line x=y at the point (1,1).

628. Determine the slope of the tangent to the curve x*+y* —
— xy—7=0 at the point (1,2).

629. At what point of the curve y*=2x* is the tangent per-
pendicular to the straight line 4x—3y+42=0?

630. Write the equation of the tangent and the normal to the
parabola y=Vx

at the point with abscissa x=4.

Solution. We have y’=2 ! —; whence the slope of the tangent is
x

k=[y']x=,=%. Since the point of tangency has coordinates x=4, y=2, it

follows that the equation of the tangent is y—2=1/4 (x—4) or x—4y4-4=0.
Since the slope of the normal must be perpendicular,

ky=—4,
whence the equation of the normal: y—2=—4 (x—4) or 4x4y—18==0.
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631. Write the equations of the tangent and the normal to the
curve y=x"+2x*—4x—3 at the point (—2,5).
632. Find the equations of the tangent and the normal to the

curve
y=Vx—l
at the point (1,0).

633. Form the equations of the tangent and the normal to the
curves at the indicated points:
a) y=tan2x at the origin;

b) y=arc sin ’ﬁ;—l at the point of intersection with the

x-axis;

¢) y=arccos3x at the point of intersection with the y-axis;

d) y=Inx at the point of intersection with the x-axis;

e) y=e'-*" at the points of intersection with the straight
line y=1.

634. Write the equations of the tangent and the normal at the
point (2,2) to the curve

14t
x=t—,,

3 1
y_2—tz+ﬂ'

635. Write the equations of the tangent to the curve

x=tcost, y=tsint

at the origin and at the point t=%.

636. Write the equations of the tangent and the normal to the
curve x*-+y*+2x—6=0 at the point with ordinate y=3.

637. Write the equation of the tangent to the curve x*4y*—
—-2xy=0 at the point (1,1).

638. Write the equations of the tangents and the normals to
the curve y=(x—1)(x—2) (x— 3) at the points of its intersection
with the x-axis.

639. Write the equations of the tangent and the normal to the
curve y*=4x*46xy at the point (1,2).

640*. Show that the segment of the tangent to the hyperbola
xy=a® (the segment lies between the coordinate axes) is divided
in two at the point of tangency.

641. Show that in the case of the astroid x?° 4 y**=q2 the
segment of the tangent between the coordinate axes has a con-
stant value equal to a.
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642. Show that the normals to the involute of the circle
x=a(cost+tsint), y=a(sint—£cost)

are tangents to the circle x*+y*=a’.

643. Find the angle at which the parabolas y=(x—2)* and
y=-—4 +6x—x* infersect.
644. At what angle do the parabolas y=x® and y=x* inter-
sect? '

645. Show that the curves y=4x*4 2x—8 and y=x*—x+10
are tangent to each other at the point (3,34). Will we have the
same thing at (—2,4)?

646. Show that the hyperbolas

w=a*;, x*—y=2>"

intersect at a right angle.

647. Given a parabola y*=4x. At the point (1,2) evaluate the
lengths of the segments of the subtangent, subnormal, tangent,
and normal.

648. Find the length of the segment of the subtangent of the
curve y—=2* at any point of it.

649. Show that in the equilateral hyperbola x*—y*=a* the
length of the normal at any point is equal to the radius vector
of this point.

650. Show that the length of the segment of the subnormal
in the hyperbola x*—y*=a® at any point is equal to the abscissa
of this point.

651. Show that the segments of the sublangents of the ellipse

%:——}-By,—’:l and the circle x*+4y*=a*® at points with the same
abscissas are equal. What procedure of construction of the tan-
gent to the ellipse follows from this?

652. Find the length of the segment of the tangent, the nor-
mal, the subtangent, and the subnormal of the cycloid

{ x=a(l—sint),
y=a(l—cost)
at an arbitrary point {=1,.

653. Find the angle between the tangent and the radius vector
of the point of tangency in the case of the logarithmic spiral

r =ae*.

654. Find the angle between the tangent and the radius vec-

tor of the point of tangency in the case of the lemniscate
r*=a" cos 2¢.
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655. Find the lengths of the segments of the polar subtangent,
subnormal, tangent and normal, and also the angle between the
tangent and the radius vector of the point of tangency in the
case of the spiral of Archimedes

r=ag

at a point with polar angle ¢ =2mn.
656. Find the lengths of the segments of the polar subtangent,
subnormal, tangent, and normal, and also the angle between the tan-

gent and the radius vector in the hyperbolic spiral r= (’%at an

arbitrary point o=¢,; r=r,.
657. The law of motion of a point on the x-axis is

x=3f—1.

Find the velocity of the point at {,=0, ¢, =1, and {,=2 (x 1s
in centimetres and ¢ is in seconds).

658. Moving along the x-axis are two points that have the
following laws of motion: x=100+45f and x=1/2¢*, where £ =0.
With what speed are these points receding from each other at
the time of encounter (x is in centimetres and { is in seconds)?

659. The end-points of a segment AB==5 m are sliding along
the coordinate axes OX and OY (Fig. 16). A is moving at 2 m/sec.

Y
8 Y|
5
Y
{\“
o3 4 X 0 2 >
Fig. 16 Fig. 17

What is the rate of motion of B when A is at a distance 0A=3m
from the origin?

660*. The law of motion of a material point thrown up at an
angle a to the horizon with initial velocity v, (in the vertical
plane OXY in Fig. 17) is given by the formulas (air resistance is

31900
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disregarded):
gt

X=1v,tcosa, y=v,tsina—=,
where ¢ is the time and g is the acceleration of gravity. Find the
trajectory of motion and the distance covered. Also determine the
speed of motion and its direction.

661. A point is in motion along a hyperbola y=%) so that its

abscissa x increases uniformly at a rate of 1 unit per second.
What is the rate of change of its ordinate when the point passes
through (5,2)?

662. At what point of the parabola y* = 18x does the ordinate
increase at twice the rate of the abscissa?

663. One side of a rectangle, a=10 cm, is of constant length,
while the other side, b, increases at a constant rate of 4 cm/'sec.
At what rate are the diagonal of the rectangle and its area increas-
ing when 6=30 cm?

664. The radius of a sphere is increasing at a uniform rate
of 5 cmjsec. At what rate are the area of the surface of the
sphere and the volume of the sphere increasing when the radius
becomes 50 cm?

665. A point is in motion along the spiral of Archimedes

r=aqg

(a=10 cm) so that the angular velocity of rotation of its radius
vector is constant and equal to 6° per second. Determine the rate
of elongation of the radius vector r when r=25 em.

666. A nonhomogeneous rod AB is 12 cm long. The mass of a
part of it, AM, increases with the square of the distance of the
moving point, M from the end A and is 10 gm when AM=2cm.
Find the mass of the entire rod AB and the linear density at
any point M. What is the linear density of the rod at A and B?

Sec. 6. Derivatives of Higher Orders

1°. Definition of higher derivatives. A derivative of the second order, or
the second derivative, of the function y=f(x) is the derivative of its deriva.
tive; that is,

yil=(yl)l.
The second derivative may be denoted as
d? .
y', or a}y?, or f'(x).

2
If x=Ff(#) is the law of rectilinear motion of a point, then Zt—f is the accel-
eration of this motion.
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Generally, the nth derivative of afunction y=Ff(x) is the derivative of
a derivative of order (n—1). For the nth derivative we use the notation

d"y

y™, or e OF F & (x).

Example 1. Find the second derivative of the function

y=In(1—x).
Soluti el B Y = ,_:l_>’__l_.
ombon ¥y =13 ¥=\1T—x) “{—=n*"

2°, Leibniz rule. If the functions u=¢q (x) and v =19 (x) have derivatives
up to the nth order inclusive, then to evaluate the nth derivative of a prod-
uct of these functions we can use the Leibniz rule (or formula):

(@D) " = 4™y 4 g BV o7 4 "—“(rf.; D u=nv" g uom,

3°. Higher-order derivatives of functions represented parametrical.y. If

{ x=q (),

y=% ),
” 2

then the derivatives y;=dy =34

I Y=gz -+ Can successively be calculated
by the formulas

y’t-_—:—y#- R y”xx=( y;);::( y,t)‘ ) y;;x = -(if—:)—‘- and so iorth,
Xy t *e

For a second derivative we have the formula

y» _ XYy — XYy
xx ’\3
(x)

x=acost,
y=>bsint.

Example 2. Find y", if

Solution. We have

"_(bsin t)"__ b-cost b

~_-(a cost);——a si t——FCOt .
and
b ! b -1
_(""&'°°”)¢__"Tz"sm't=__ b
y'= (@costy, —asint atsin*t *

3‘
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A. Higher-Order Derivatives of Explicit Functions

In the examples that follow, find the second derivative of th

given function.

667. y=x*+4+7x"—5x +4. 671. y=In(x+Va'+x%).
X2

668. y=e*.
669. y= sin®x.

670. y=Inj/ T+«

675. Show that the

672. f(x) = (14 x*)-arctanx.
673. y= (arcsin x).
674. y=acosh i;— .

x4-2x+2
2

function y= satisfies the difler

ential equation 1+ y'*==2yy".
676. Show that the function yz%x’e" satisfies the differen

tial equation y"—2y’ 4y

=e*,

677. Show that the function y=C,e~*+ C,e~** satisfies th
equation y" +3y’ 4-2y=0 for all constants C, and C,.
678. Show that the function y=e** sinbx satisfies the equa

tion y"'—4y’ +29y=0.

679. Find y'"', if y=x"—5x"+7x—2.

680. Find ['"' (3), il [(x)=(2x—3)".

681. Find y' of the function y=In(14-x).

682. Find yV' of the function y= sin 2x.

683. Show that the function y=e~*cos x satisfies the difler

Fig. 18

ential equation y!'V 4 4y=0.

684. Find [(0), f' (0), f"(0) and [’ (O
if f(x)=e”*sinx.

685. The equation of motion of a poin
along the x-axis is

x =100 + 5¢—0.001¢°.

Find the velocity and the acceleration ¢
the point for times ¢,=0, ¢ =1, an
t,=10.

686. A point M is in motion around
circle x*4+y*=a* with constant angules
velocily . Find the law of motion of il
projection M, on the x-axis if at time ¢{=

the point is at M, (a, 0) (Fig. 18). Find the velocity and the ac
celeration of motion of M,.
What is the velocity and the acceleration of M, at the in

tial time and when it

passes through the origin?

What are the maximum values of the absolute velocity and tt
absolute acceleration of M,?
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687. Find the nth derivative of the function y=(ax+b)",

where n js a natural number.
688. Find the nth derivatives of the functions:

and b) y=Vx.

1
) y=y—:

689. Find the ath derivative of the functions:
1

a) y=sinx; €) y=11%:
b) y=cos 2x; f) y—:i; ;
c) y=e™'% g) y=sin®x;

d) y=In(14x); h) y=In(ax+0b).

690. Using the Leibniz rule, find y*, if:

a) y=x-e%; d) y='—l,i§;
b) y=x*.e7*% e) y=x"lnx.

¢) y=(1—x*cosx;
691. Find f™ (0), if f(x)=1In—

B. Iligher-Order Derivatives of Functions Represented
Parametrically and of Implicit Functions

In the following problems find 32% .

692. a) ( x=Int¢, b) [ x=arctan{, c){x=arcsint
{ =t y=In(l +1%); y=Vi-"=.

693. 2) x=acos ¢, x=a(t—sint),
y=asint, y=a(l —cost);
x=acos't, x=a((sint—fcost),
b) y=asin’f; y=a(cost +¢ sint).
X ==cos 2¢, x=arctant,
694. a 695. a) 1
== sin*¢; =7t';
x——e“’t x=Int,
_eat. b){ _ 1
y=1=7*
696. Find i x=¢'cost,
96. Fin dy“ "\ y=¢sint.
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=In(l+1),
697. Find %% for £=0, if xzt?( +)
698. Show that y (as a function of x) defined by the equa-

tions x=sint,y=aet V* 4-be-tV* for any constants a and &
satisfies the differential equation

d
( )dx’ sz:Qy'
In the following examples find y”'=%—’, .
9 x=sect, 201 x=e~t
699. ""tanl : J.—{’
x e~! cost, x=Int,
700. 702. Find ¢ Y i n
y=e'sint. dx y=t"

703. Knowing the function y=f(x), find the derivatives x",
of the inverse function x=f""(y).
704. Find v, if x¥*+y*=1.
Solution. By the rule for dlfferentlatmg a_composite functlon we have
2x+2yy’ =0; whence gy’ =— — X and Y'=— i) =___—:’x___/_

Y /x y

ree

Substituting the value of y’, we finally get:
p=—t2__ L

y® Yy’

In the following examples it i1s required to determine the
derivative y” of the function y=7f(x) represented implicitly.
705. y*=2px.
706. 4+ 4 =1.
707. y=x-arctan y.
708. Having the equation y=x+Iny, find d", and g;f,.
709. Find y" at the point (1,1) if
x* +5xy+y*—2x+y—6=0.
710. Find y” at (0,1) if
x*—xy+y'=1.
711. a) The function y is defined implicitly by the equation
42y +y'—4x+4-2y—2=0.
Find :—;—;y; at the point (1,1).

b) Find gixy_“ if x*+y'=a’
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Sec. 6. Differentials of First and Higher Orders
1°. First-order differential. The differential (first-order) of a function

y=1[(x) is the principal part of its increment, which part is linear relative
to the increment Ax=dx of the independent variable x. The differential of a

Y) N

Mzy)

0 P Q@ X
Fig. 19

function is equal to the product of its derivative by the differential of the
independent variable

dy=y’dx,
whence
, d
y =d%.

If MN is an arc of the graph of the function y=f(x) (Fig. 19), MT is the
tangent at M (x, y) and
PQ=Ax=dx,

then the increment in the ordinate of the tangent

AT =dy
and the segment AN = Ay.
Example 1. Find the increment and the differential of the function
y=3x*—x.
Solution. First method:

Ay=3(x+Ax)*—(x+ Ax) —3x*+x
or
Ay=(6x—1) Ax+3 (Ax)%.
Hence,
dy = (6x—1) Ax=(6x—1) dx.
Second method:
y =6x—1, dy=y’ dx=(6x—1)dx.

Example 2. Calculate Ay and dy of the function y=3x*—x for x=1
and Ax=0.01.

Solution. Ay=(6x—1)-Ax+3 (Ax)2=5.0.0143-(0.01)*=0.0503

and
dy=(6x—1) Ax=15.0.01=0.0500.
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2°. Principal properties of differentials.
1) dc=0, where c=const.
2) dx=Ax, where x is an independent variable.
3) d(cu)=cdu.
4) d(u + v)=du + dv.
5) d (uv)=udv-+vdu.
_vdu—udv

u
7) df (uy=F['" (u)du.
3°. Applying the differential to approximate calculations. If the increment
Ax of the argument x is small in absolute value, then the differential dy of the
function y=f(x) and the increment Ay of the function are approximately
equal:

that is,

Ay =dy,
fx+Ax)—f (x) <[ (x) Ax,

[+ Ax)=f @)+ [ (x)dx.

Example 3. By how much (approximately) does the side of a square change
if its area increases from 9 m? to 9.1 m??
Solution. If x is the area of the square and y is its side, then

y=Vx.

It is given that x=9 and Ax=0.1.
The increment Ay in the side of the square may be calculated approxi-
mately as follows:

whence

1
2V9
4°, Higher-order differentials. A second-order differential is the differential
of a first-order differential:

Ay=dy=y’' Ax= -0.1=0.016 m.

d*y =d (dy).

We similarly define the differentials of the third and higher orders.
If y=f(x) and x is an independent variable, then

d’y =y’ (dx)*,
d*y=y'"’ (dx)?,
d*y =y (dx)".
But if y=f(4), where u=¢q (x), then
d*y =y" (du)*+y' d'u,
d*y=y'"’ (du)®+3y" du-d*u+y' d®u
and so forth. (Here the primes denote derivatives with respect fo u).

_ 712. Find the increment Ay and the differential dy of the func-
tion y=>5x-+ x* for x=2 and Ax=0.001.
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713. Without calculating the derivative, find
d(1—x")
for x=1 and Ax=—

714. The area of a square S with side x is given by S=ux%.
Find the increment and the differential of this function and ex-
plain the geometric significance of the latter.

715. Give a geometric interpretation of the increment and
differcntial of the following functions:

a) the area of a circle, S=nx?

b) the volume of a cube, v=x’.

716. Show that when Ax — 0, the increment in the function
y=2%, corresponding to an increment Ax in x, is, for any x,
equivalent to the expression 2*In2 Ax.

717. For what value of x is the diflerential of the function
y = x* not cquivalent to the increment in this function as Ax —0?

718. Has the function y=|x| a differential for x=0?

719. Using the derivative, find the diflerential of the function

14 11
y=cosx for x=+ and Ax.-:gg.
720. Find the diflerential of the function

o —

2
for x=9 and Ax=—0.01l.
721. Calculate the diflerential of the function
y=tanx

for x:—;1 and Ax=]—g§.
In the following problems find the differentials of the given
functions for arbitrary values of the argument and its increment.

722. yr:ﬁ. 727. y=xInx—x.

X 1—x
723. 1 :-T_—_—;_. 728. y=lnm.
724, y=arc sin—z—. 729. r =cot @ 4-cosec ¢.
725. y=arctan§ . 730. s=arc tane'.
726. y=e"*".

731 Find dy if x*+2xy—y'=a’.
Solution. Taking advantage of the invariancy of the form of a differential,
we obtain 2x dx 42 (y dx -+ xdy)—2ydy=0
Whence
Xty dx.
x—y

dy =—
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In the following examples find the differentials of the functions
defined implicitly.
732. (x+y)-(2x+y)=1.
X

733. y=e V.
734. In}Y x*+y* =arctan % .

735. Find dy at the point (1,2), if y*—y=6x"
736. Find the approximate value of sin 31°.

Solution. Putting x=arc 30°=—2— and Ax=arc l°=i‘__ from formula (1)

180"~
(see 3°) we have sin31°=sin 30°+% cos 30°=0.500+0.017-l[-2£=0.515.

737. Replacing the increment of the function by the differen-
tial, calculate approximately:

a) cos61° d) In0.9;

b) tan 44°; e) arctan 1.08.

C) eo.l;

738. What will be the approximate increase in the volume of
a sphere if its radius R=15 cm increases by 2 mm?
739. Derive the approximate formula (for | Ax| that are small

compared to x)
S ) Ax
Vix+ax~Vx +2V.;.

Using it, approximate V5, V17, V70, V 640.
740. Derive the approximate formula

T L Av .~ 3T Ax
i/x-,'-AXN ;/x +?_d’_/_x-=’-‘

and find approximate values for /10, }/70, 3/ 200.
741. Approximate the functions:

a) y=x"—4x*4+5x4+3 for x=1.03;

b) F)=VT1+=x for x=0.2;
) f(x)= i/ i—ﬁ for x=0.1;
d) y=e'-* for x=1.05.

742. Approximate tan 45°320".
743. Find the approximate value of arc sin 0.54.
744. Approximate ;/17.
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745. Using Ohm’s law, 1=£R, show that a small change in
the current, due to a small change in the resistance, may be
found approximately by the formula

I
Al=— & AR.

746. Show that, in determining the length of the radius, a
relative error of 1°/, results in a relative error of approximately
2°/, in calculating the area of a circle and the surface of a sphere.

747. Compute d%y, if y= cos bx.

Solution. d’y=y" (dx?)=— 25 cos 5x (dx)%
748. u=)1—x, find d'u.

749. y=arccos x, find d’y.
750. y=sinxlInx, find d*y.

751. z=l%’5, find d*z.
752. z=x*¢"*, find d’z.
753. 2=, find d'z.

754. u =3 sin(2x +9), find d"u.
755, y=e*s¢sin (x sina), find d"y.

Sec. 7. Mean-Value Theorems

1°. Rolle’s theorem. If a function f(x) is continuous on the interval

a<<x<Cb, has a derivative [’ (x) at every interior point of this interval, and
f(@)=F (b),

then the argument x has at least one value & where a <§< b, such that
' (8)=0.

2°. Lagrange’s theorem. If a function f(x) is continuous on the interval
a<<x<b and has a derivative at every interior point of this interval, then

f ) —f @=(—a) [’ (§),
where a < < b.

3°. Cauchy’s theorem. If the functions f (x) and F (x) are continuous on the
interval a<<x<cb and for a< x<b have derivatives that do not vanish
simultaneously, and F (b) # F (a), then

F®O)—f(@) _['®
FO—F@ F®'

where a < § < b.

756. Show that the function f(x)=x—x' on the intervals
—l<x<0 and 0<<x <1 satisfies the Rolle theorem. Find the
appropriate values of §.



76 Differentiation of Functions [Ch. 2

Solution. The function f (x) is continuous and differentiable for all values
of x, and f(—1)=f(0)=Ff(1)=0. Hence, the Rolle theorem is applicable on
the intervals —l<<x<<0 and 0<x <1 To ﬁnd__E we form the equation
f' (x)=1—3x2=0. Whence § =— ]/%, E,= ]/é- where —1 <§, <0
and 0 < g, <1,

757. The function f(x)=f/(x—2)‘ takes on equal values

(0)=f(4)=3/4 at the end-points of the interval [0.4]. Does
he Rolle theorem hold for this function on [0.4]?
758. Does the Rolle theorem hold for the function

f(x)=tanx

f
t

on the interval [0, n]?
759. Let

fF(X)y=x(x4+1)(x+2) (x+3).
Show that the equation
) ['(x)=0
has three real roots.
760. The equation
e*=1tx

obviously has a root x=0. Show that this equation cannot have
any other real root.

761. Test whether the Lagrange theorem holds for the function
f(x)=x—x*

on the interval [—2,1] and find the appropriate intermediate
value of &.

Solution. The function f(x)=x—x® is continuous and differentiable for
all values of x, and [’ (x)=1—3x2 Whence, by the Lagrange formula, we
have f(I)—f(—2j=0—6=[1—(—2)] ' (§), that is, f (§):==—2 Hence,
1—-38*=—2 and = +1; the only suitable value is E=—1, for which the
inequality —2 < £ < | holds

762. Test the validity of the Lagrange theorem and find the

appropriate intermediate point & for the function f(x)==x*"* on
the interval [—1,1].

763. Given a segment of the parabola y=x* lying between

two points 4 (1,1) and B(3,9), find a point the tangent to which
is parallel to the chord AB.

764. Using the Lagrange theorem, prove the formula

sin (x 4 h) — sinx =h cos §,
where x<<t<<x+h.
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765. a) For the functions [(x)=x*-+2 and F(x)=x"—1 test
whether the Cauchy theorem holds on the interval [1,2] and
find &;

b) do the same with respect to f(x)=sinx and F(x)=cosx

on the interval [o, g]

Sec. 8. Taylor’s Formula

If a function f(x) is continuous and has continuous derivatives up to the
(n—1)th order inclusive on the interval a<{x<<b (or b<<x<Ca), and there
1s a finite derivative f'™ (x) at each interior point of the interval, then Tay-
lor’s formula

Lt e @4 E= D e g4

(Tn-—_—i; "=t )+( “) ™ @),

where £=a+4-0 (x—a) and 0<6<1, holds true on the interval.
In particular, when a=0 we have (Maclaurin’s formula)

fx)=F@+@x—a)f (a)+ T——

ot

PO =T @ +51 O+ " O+ + o (7= 0+ 17 @,
where £ =0x, 0<0<]1.

766. Expand the polynomial f(x)=x*—2x*+3x+5 in posi-
tive integral powers of the binomial x—2.

Solution. f' (x) =3x2—4x+3; [ (x)=6x—4&; """ (x)=6; f™ (x)=0
for n>==4. Whence

[@=1L [ @=7]"(2=8["(@2) =6.

Therefore,

— 2% 4 3x4-5=11 +(x-2)-7+(";2)-2.8+(";2)’-6

or
=20 434+ 5=114+7(x—2)+ 4 (x—2)2F (x—2)%.

767. Expand the function f(x)=e* in powers of x--1 to the
term containing (x+ 1)
Solution. /™ (x)=¢* for all n, f‘"’(—l)::ei. Hence,

(x+l)’ 411 =+
=gt D+ O S R 2 B

where £= —140 (x4 1); 0<0<1.

768. Expand the function f(x)=Inx in powers of x—1 up to
the term with (x—1).
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769. Expand f(x)=sinx in powers of x up to the term con-
taining x* and to the term containing x°.

770. Expand f(x)=¢€* in powers of x up to the term contain-
ing x"~1,
771. Show that sin(a+h) differs from
sina+hcosa
by not more than 1/2 k%
772. Determine the origin of the approximate formulas:
a) VIifam 1 fga—gx, |x|<l,

b) ¥ TFam I 45 x—gr', |x]<I

and evaluate their errors.
773. Evaluate the error in the formula

11,1

774. Due to its own weight, a heavy suspended thread lies
in a catenary line y=a cosh=. Show that for small x| the
shape of the thread is approximately expressed by the parabola

xz
y=a+y; .

775*. Show that for |x|<<a, to within (—2-)2, we have the
approximate equality

&
Y™
4

Q
+
*

Sec. 9. The L’Hospital-Bernoulli Rule for Evaluating Indeterminate Forms

1°. Evaluating the indeterminate forms% and %:—. Let the single-valued
functions f(x) and ¢ (x) be differentiable for 0<|x—a| <h; the derivative
of one of them does not vanish.

If f(x) and ¢ (x) are both infinitesimals or both infinites as x — a; that

is, if the quotient (p—(xﬁ. at x=a, is one of the indeterminate forms —g— or

3, then '
© lim £(¥) _ lim [’ (x)
¥aQ(x) *aq(x)

provided that the limit of the ratio of derivatives exists.
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The rule is also applicable when a=o0

')

T(x again yields an indeterminate form, at the point

x=a, of one of the two above-mentioned types and [’ (x) and ¢’ (x) satisfy

all the requirements that have been stated for f(x) and ¢ (x), we can then
pass to the ratio of second derivatives, etc.

However, it should be borne in mind that the limit of the ratio ﬂ-—)

may exist, whereas the ratios of the derivatives do not tend to any llmlt
(see Example 809).

2°. Other indeterminate forms. To evaluate an indeterminate form like
0.0, transform the appropriate product f, (x)-f, (x), where limf, (x) =0 and
x->a

f:(x)
limf, (x) = o0, into the quetient f'( ) (the form — (orf ) (the form ——)
x—-a

1f the quotient

fa(x ( )
In the case of the indeterminate form o — o, one should transform the
appropriate difference f; (x)—/,(x) inio the product f, (x) [l fx [1 (%) and

h(®
first evaluate the indeterminate form f2 (x); if lim fa(x )_l then we re-
f1(x) x—a F1 (%)

duce the expression to the form

l_fl (x)

h(x) 0
B — (the form F)'
f (%)

The indeterminate forms 1%, 0% o° are evaluated by first faking loga-
rithms and then finding the limit of the logarithm of the power [/, (x)]/2*
(which requires evaluating a form like 0- o).

In certain cases it is useful to combine the L'Hospital rule with the
finding of limits by elementary techniques.

Example 1. Compute

lim Inx
x-»0 cot x

)
(form ;).

Solution. Applying the L'Hospital rule we have

lim 10X _jim (nx)’ lim Sin'%

x»0Cot x x>0 (cot x)’ -0 X

We get the indeterminafe form %; however, we do not need fo use the
L’Hospital rule, since
sin x

lim sin x lim—_ sinx=1.0=0,
0 x X0

We thus finally get

lim Inx
x-»0 COt x

=0.
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Example 2. Compute

lim (—1—-—%5) (form o0 — o).

x»0 \ sin? x

Reducing to a common denominator, we get

: 1 1 . x*—sin?x 0
llm( - __—>—llm ~Tsmix (form 3).

x—>0 \ 8in? x2 x-0 X2sin?

Before applying the L'Hospital rule, we replace the denominator of the lat-
ter fraction by an equivalent infinitesimal (Ch. 1, Sec. 4) x?sin?x~x% We
obtain

1 1 sin? x

lim | — —_ = lim—_ (form _)
x—o0 \ SIiN% x  x2 X0 x4

The L’Hospital rule gives

. 1 1 . 2x—sin 2x 2—2co0s 2x
lim — — )=Ilim = lim
( sin? x xz) xl.,o 4x® X0 12x2

.
X0

Then. in elementary fashion, we find
in2
lim ( ! _.$>=lim I—cos2¢ . 2sin®x |

x—0 \ sin? x x>0  Ox2 x>0 Ox2 3°

Example 3. Compute
3

lim (cos 2):)72 (form 1%)
X—>0

Taking logarithms and applying the L'Hospital rule, we get

3
lim In (cos 2x) ** = lim 3lncos2v  _ g yjp, tan 2«
X0 X—>0 X x>0 2x

=—6

Hence, lim (cos 2x)*' e~
X—>0

| Find the indicated limits of functions in the following exam-
ples.
. e X824 x| 2
776, lim— ==

. 3x2—4x—1 1
llm_..____ —
Solution. x»1 B—Tx+6 oy 37 5 -

777, lim 28X —sinx 779. lim SoShx=1
x50 X too 1 —COSX
: 1—x

778. lim ——— . .
x1 ] _gin ¥ 780 limianx sin x .

2 T x5 X—sinx
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. 2x—2tlanx T
781, lim ¥ A= 20% z
x’% 1 4-cos 4x 785. lim x
X—>0 cot__;
782. lim ttaa:Sxx * ln(512n mx)
P 786. lim Trsmx
2 " X0 nsinx
. e i
783. lim —. 787. lim (1— cos x) cot x.
Y>> 1 X >0
. nx
784. llm 7_— .
X->% X
Solution. lim (I —cos x) cot x=1lim (I-C?S 2 COS X __ jjgy (1—COS )1
X0 X0 sl x x>0 s x
= lim sin v __
x-»0COS ¥
788. lim (1 —x)tan iy 792. lim x" sin ﬁ, n>0.
X-»1 2 X% X
789. limarc sin x cot x. 793. iminxin(x—1).
X—>0 ¥—>1
. . 1
790. lim (x"e™ %), n>0. 794. lim (A_-—\T—ll'l_\>
r—0 X »1 °
791. lim x sin 3— .
1> X
Solution. lim (- — .1\ fim ¥Inx—x+1_
x->1\r—1 Inx x» (x—1)1In
1
. x--;-;_ln,\-—l 01 < 1
= lim ————— =lim = lim i T =9-
X-»1 -—— I X ->1 O ¥>1___ —_—
Ina+ x(,\ 1) >1nx erl A+x2
. 1 5
795. lim <x—3—m>'
796. lim L 13 — | .
1] 2(1—=V %) 3(1—[/.\‘)
797 lim (J—~—n—) .
. g\cotx 2cosx
>
798. limx~*,
x>0
Solution. We  have x*=y; Iny=xlInx: limlny=limxlnx=
x>0 X0

1

In x x
= lim—~ = lim— =0, whence limy=1, that 1s, lma* =1,
x>0 x0_ X0 x40
X X
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1 1
799. lim x*. 804. limx'-=.
X—>+ @ -1
] tan’:—x
800. lim x4+1n x, 805. lim(tan’%) .
X0 X1
1
801. lim x®inx, 806. lim (cot x)I" *,
X0 x X0
802. lim(1—x)™=. 807. lim(l)"‘"".
X-1 X0
1
803. lim (1 + x*)*. 808. lim (cot x)%in =,
X0 X0
809. Prove that the limits of
i x* sin—’l‘
a) xl-rI: sin x =0;

. X—sinx
b) j_‘,‘ﬂ x+sinx 1

cannot be found by the L'Hospital-Bernoulli rule. Find these
limits directly.

Fig. 20

810*. Show that the area of a circular segment with minor

central angle a, which has a chord AB=b and CD=h (Fig. 20), is
approximately

bh

w| o

S~

with an arbitrarily small relative error when a—0.



Chapter 111

THE EXTREMA OF A FUNCTION AND THE GEOMETRIC
APPLICATIONS OF A DERIVATIVE

Sec. 1. The Extrema of a Function of One Argument

_ 1° Increase and decrease of tunctions. Thc¢ lunction y=f(x) is called
increasing (decreasing) on some interval if, fo. any points x;, and x, which
belong to this interval, from the inequality x,<x, we get the inequality [ (x,)<
<f(x,) (Fig 2la) [f(x)>}(x,) (Fig. 216)]. 11 f(x) is continuous on the
interval [a, 6] and [ (x)>0 [f (x)<O0) for a< .<b, then [ (1) increases (de-
creases) on the interval [a. b).

l
Y
Y ] ,
y=flx) y=~f(z) 4 I
|
lz) flz;) |
fi, flz,) !
Ul I, Iz X 0 I, Iz X ] } N
(a) (b) 0
Fig. 21 Fig. 22

In the simplest cascs, the domain of definition of f(x) may be subdivid-
ed into a finite number of intervals of increase and decrease of the func-
tion (intervals of monotonicity). These intervals are bounded by ciitic~’
points x [where f'(x)=0 or f’(x) does not exist].

Example 1. Test the following function for increase and decrease:

y=x>*—2x+45.
Solution. We find the derivative
Yy =2x—2=2x—1).
Whence y’=0 for x=1. On a number scale we get two intervals of monot-
onicity: (—eo, 1) and (1, 4+ ). From (1) we have: 1) if —o<x<l, then
y’'<0, and, hence, the function f(x) decreases in the interval (— o, 1); 2)

if 1<x<< 4 o, then y’>0, and, hence, the function f(x) increases in the in-
terval (1, 4+ ) (Fig. 22).
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Example 2. Determine the intervals of increase and decrease of the func-
tion
|

y=x+2 '
Solution. Here, x=—2 is a discontinuity of the function and ¢'=

= _(_x_—'}l——W<0 for x#—2. Hence, the function y decreases in the intervals

—0<x<—2 and —2<x< 4 .
Example 3. Test the following function for increase or decrease:

— 1 5 1 3
y-——-s—x —3- X%,
Solution Here,
Y =xt—x 2)
Solving the equation x*—x*=0, we find the points x;=—1, x,=0, x,=1

at which the derivative y' vanishes. Since y’ can change sign only when
passing through points at which it vanishes or becomes discontinuous (in the
given case, y’ has no discontinuities), the derivative in each of the intervals
(—o, —1), (—1, 0), (0,1) and (1, + o) retains its sign; for this reason, the
function under investigation is monotonic in each of these intervals. To
determine in which of the indicated intervals the function increases and in
which it decreases, one has to determine the sign of the derivative in each
of the intervals. To determine what the sign of y’ is in the interval (— oo,
—1), it is sufficient to determine the sign of y’ at some point of the inter-
val; for example, taking x=—2, we get from (2) y'=12>0, hence, 4'>0 n
the interval (—oo, —1) and the function in this interval increases Similar-
ly, we find that y'<0 in the interval (—1, 0) (as a check, we can take

xz_%—), y'<0 in the interval (0,1)

Y r\ (here, we can use x=1/2) and y'>0 in the
=fiz) | interval (1, + o).

y=flz) Thus, the function being tested in-

£ creases in the interval (— o, —1), decreases

/:Z‘,) in the interval (—1, 1) and again increases
. in the interval (1, 4 o0).

2°. Extremum of a function. If there

frx,) exists a two-sided neighbourhood of a point

xo such that for every point x#x, of this

0 I I neighbourhood we have the inequality

(Y 1 f(x)>f (x,), then the point x, is called the

Fig 23 minimum point of the function y==f(x),

g while the number f(x,) is called the muni-

mum of the function y=f(x). Similarly, if

for any point xsx, of some neighbourhood of the point x,, the inequality

[(x)<f(x) is fulfilled, then x, is called the maximum point of the function

f(x), and f(x,) is the maximum of the function (Fig. 23). The minimum

point or maximum point of a function is its extremal point (bending point),

and the minimum or maximum of a function is called the extremum of the

function. If x, is an extremal point of the function f(x), then [’ (x;)=0, or

f' (x,) does not exist (necessary condition for the existence of an extremum).

The converse is not true: points at which /' (x)=0, or f’(x), does not exist

(critical points) are not necessarily extremal points of the function f(x),

] |
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The sufficient conditions for the existence and absence of an extremum of a
continuous function f (x) are given by the following rules:

1. If there exists a neighbourhood (x,—3&, x,+98) of a critical point x,
such that f" (x)>0 for x,—0<x<x, and f' (x)<0 for x,<x<x,+8, then x, is
the maximum point of the function f(x); and if f’'(x)<0 for x,—O8<x<x,
and f' (x)>0 for x,<x<x,+ 0, then x, is the minimum point of the function
f(x).

Finally, if there is some positive number § such that f’(x) retains its
sign unchanged for 0<|x—x, |<0, then x, is not an extremal point of the
function f (x).

2. If f'(x)=0 and [’"(x,)<0, then x, is the maximum point;
if ['(x)=0 and [’ (x,)>0, then x, is the minimum point; but if f' (x,)=0,
f" (xg) =0, and f"’’ (x,)#0, then the point x, is not an extremal point.

More generally: let the first of the derivatives (not equal to zero at the
point x,) of the function f(x) be of the order k. Then, if & is even, the
point x, 1s an extremal point, namely, the maximum point, if f® (x,)<0;
and it is the minimum point, if f® (x)>0 But if % 1s odd, then x, is not
«n extremal point.

Example 4. Find the extrema of the function

y=2x+3 /.
Solution. Find the derivative
22
i’/x ‘J/x‘
Equating the derivative y’ to zero, we get:
V s+ 1=0.

y =2+ V x+1). 3)

Whence, we find the critical point x;==—1. From formula (3) we have: if
x= — . -h, where h 1s a sufficienlly small positive number, then y’>0; but
if x==—1+4h, then y’<0*). Hence, x,=—1 1s the maximum point of the

function gy, and ymax = 1.

Equating the denominator of the expression of 4’ in (3) to zero, we get

3/~ _ .

x=Y
whence we find the second critical point of the function x,=0, where there
1s no derivative y' For x:=—h, we obviously have ¢’'<0; for x=~h we have
y'>0. Consequently, x,==0 is the mimumum point of the function gy, and
ymin=0 (F1g. 24). It is also possible to test the behaviour of the function

at the point x=—1 by means of the second derivative
2
Y=———.
3x f/ X
Here, <0 for x,= —1 and, hence, x, = —1 is the maximum point of the
function.

3°, Greatest and least values. The least (greatest) value of a continuous
function f(x) on a given interval [a, b] is attained either at the critical
points of the function or at the end-points of the interval [a, b].

*) If 1t is difficult to determine the sign of the derivative y’, one can
calculate arithmetically by taking for & a sufficiently small positive number.



86 Extrema and the Geometric Applications of a Derivative [Ch. 8

Example 5. Find the greatest and least values of the function

y=x3—3x+3

on the interval —1'/,<x<<2'/,.
Solution. Since

Yy =3x*—3,
it follows that the critical points of the function y are x,=—1 and x,=1.
Y
~ - -
118
Yl
|
I
I
!
I
! I
I
|
cmemsn——— i —
-1 0 X 1 21—7
z
Fig. 24 Fig. w

Comparing the values of the function at these points and the values of the
function at the end-points of the given interval

1 1 1 1
v—D=5 5=ty —13) =45 v(25)=17.

we conclude (Fig. 25) that the function attains its least value, m=1, at
the point x=1 (at the minimum point), and the greatest value M= 118l
at the point x=2'/, (at the right-hand end-point of the interval).

Determine the intervals of decrease and increase of the func-
tions:

811. y=1—4x—x" 1

812, y— (x—2)". 816. y=G—y -
813. y=(x+4) x
814. y=x*(x—3). 817. Y= "x—16"

X
8. y=7=5- 818. y=(x—3))x.
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819. y=5— x. 823. y=2e'-*%,
820. y=ux + sinx. 824. y=2x_‘-a_
821, y=xlInx. e*

822. y=arcsin(l +x). 826. y=+-

Test the following functions for extrema:

826. y==x*44x4-6.

Solution. We find the derivative of the given function, y'=2x44.
Equating y' to zero, we get the critical value of the argument x= —2.
Since y'<0 when x<—2, and y'>0 when x>—2, it follows that x=—2 is
the minimum point of the function, and ymin=2. We get the same result
by utilizing the sign of the second derivative at the critical point y”=2>0.

827. y=2+4x—x*.

828. y=x'—3x*43x 2.

829. y=2x"+3x*— 12x+35.

Solution. We find the derivative
y' =6x*46x—12=6 (x*4+x—2).

Equating the derivative y' to zero, we get the critical points x,= —2
and x,=1. To determine the nature of the extremum, we calculate the
second derivative y'==6(2x+1). Since ¥ (—2)<0, it follows that x,= —2
is the maximum point of the function y, and ymax=25. Similarly, we have
Y’ (1)>0; therefore, x,=1 is the minimum point of the function y and
Ymin= —2.

830. y=x*(x— 12)%.

840. y=2cos = +3cos= .
831, y=x(x—1) (x—2)". y g T9¢083

832. y=x,—":_-§. 841, y=x—In(l+x).
833. y=£§ifli?. 842. y=xInx.

834. y=(—)f:-2¥_—x)- 843. y=xIn'x.

835. y‘=ml_‘6_“x_=)' 844. y=cosh x.

836. y=ﬁ' 845. y=xe*.

837. y =?l7xf_~:—4' 846. y— x'e".

838. y=}/ @ —1). 847. y==.

839. y=2 sin 2x + sin 4x. 848. y=x—arctan x.

Determine the least and greatest values of the functions on the
indicated intervals (if the interval is not given, determine the



88 Extrema and the Geometric Applications of a Derivative [Ch. 8

greatest and least values of the function throughout the domain
of definition).

849, y=inJ-C_x"‘ 853. y=x" on the interval [—1,3].
850. y=1x(10—x). 854. y=2x"4-3x*—12x+1
851. y=sin*x +cos*x. a) on the interval [—1,6];

b) on the interval [—10,12].
852. y=arccos x.

855. Show that for positive values of x we have the inequality
X -+ % =2,

856. Determine the coefficients p and g of the quadratic tri-
nomial y=x*-+px-+q so that this trinomial should have a min-
imum y=3 when x=1. Explain the result in geometrical terms.

857. Prove the inequality

e*>1-+x when x 0.
Solution. Consider the function
f (x)=e*—(1+4x).

11»{“ the usual way we find that this function has a single minimum f (0)=0.
ence,

f(x)>Ff(0) when x #0,
and so ¢* >1+x when x#0,

as we set out to prove.

Prove the inéqual ities:

858. x—%a <sinx<<x when x>0.
859. cosx > 1——’—‘2: when x=0.
860. x-——f;<ln(l+x)<x when x>0.

861. Separate a given positive number a into two summands
such that their product is the greatest possible.

862. Bend a piece of wire of length [/ into a rectangle so that
the area of the latter is greatest.

863. What right triangle of given perimeter 2p has the great-
est area?

864. It is required to build a rectangular playground so that
it should have a wire net on three sides and a long stone wall
on the fourth. What is the optimum (in the sense of area) shape
of the playground if / metres of wire netting are available?
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865. It is required to make an open rectangular box of greatest
capacity out of a square sheet of cardboard with side a by cutting
squares at each of the angles and bending up the ends of the
resulting cross-like figure.

866. An open tank with a square base must have a capacity
of v litres. What size will it be if the least amount of tin is used?

867. Which cylinder of a given volume has the least overall
surface?

868. In agiven sphere inscribe a cylinder with the greatest volume.

869. In a given sphere inscribe a cylinder having the greatest
lateral surface.

870. In a given sphere inscribe a cone with the greatest volume.

871. Inscribe in a given sphere a right circular cone with the
greatest lateral surface.

872. About a given cylinder circumscribe a right cone of least
volume (the planes and centres of their circular bases coincide).

873. Which of the comnes circumscribed about a given sphere
has the least volume?

874. A sheet of tin of width a has to be bent into an open
cylindrical channel (Fig. 26). What should the central angle ¢ be
so that the channel will have maximum capacity?

D c

A\ 0
VAR RN e d

|
]
a A B M
Fig. 26 Fig. 27

875. Out of a circular sheet cut a sector such that when made
into a funnel it will have the greatest possible capacity.

876. An open vessel consists of a cylinder with a hemisphere
at the bottom; the walls are of constant thickness. What will the
dimensions of the vessel be if a minimum of material is used for
a given capacity?

877. Determine the least height h=0B of the door of a ver-
tical tower ABCD so that this door can pass a rigid rod MN of
length [, the end of which, M, slides along a horizontal straight
iine AB. The width of the tower is d <</ (Fig. 27).
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878. A point M, (x,, y,) lies in the first quadrant of a coordi-
nate plane. Draw a straight line through this point so that the
triangle which it forms with the positive semi-axes is of least area.

879. Inscribe in a given ellipse a rectangle of largest area with
sides parallel to the axes of the ellipse.

880. Inscribe a rectangle of maximum area in a segment of
the parabola y*=2px cut off by the straight line x=2a.

881. On the curve Yy=1rn find a point at which the tangent

forms with the x-axis the greatest (in absolute value) angle.

882. A messenger leaving A on one side of a river has to get
to B on the other side. Knowing that the velocity along the bank
is & times that on the water, determine the angle at which the
messenger has to cross the river so as to reach B in the shortest
possible time. The width of the river is A and the distance be-
tween A and B along the bank is d.

883. On a straight line AB=a connecting two sources of light A
(of intensity p) and B (of intensity g¢), find the point M that
receives least light (the intensity of illumination is inversely pro-
portional to the square of the distance from the light source).

884. A lamp is suspended above the centre of a round table
of radius r. At what distance should the lamp be above the table
so that an object on the edge of the table will get the greatest
illumination? (The intensity of illumination is directly proportion-
al to the cosine of the angle of incidence of the light rays and
is inversely proportional to the square of the distance from the
light source.)

885. It is required to cut a beam of rectangular cross-section
ont of a round log of diameter d. What should the width x and

the height y be of this cross-section

2 so that the beam will offer maximum
. resistance a) to compression and b) to

é p bending?
Y x Note. The resistance of a beam to compres-
44 B sion is proportional to the area of its cross-
4=~ a—-% section, to bending—to the product of the
width of the cross-section by the square of

Q its height.

Fig. 2 886. A homogeneous rod AB, which

can rotate about a point A (Fig. 28),

is carrying a load Q kilograms at a distance of a cm from A

and is held in equilibrium by a vertical force P applied to the

free end B of the rod. A linear centimetre of the rod weighs

q kilograms. Determine the length of the rod x so that the force P
should be least, and find P,.
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887*. The centres of three elastic spheres A, B, C are situated
on a single straight line. Sphere A of mass M moving with ve-
locity v strikes B, which, having acquired a certain velocity,
strikes C of mass m. What mass should B have so that C will
have the greatest possible velocity?

888. N identical electric cells can be formed into a battery
in diflerent ways by combining n cells in series and then combin-

ing the resulting groups (the number of groups is % in par-

allel. The current supplied by this battery is given by the formula

[— Nné&
" NR+-n2r’

where & is the electromotive force of one cell, r is its internal
resistance, and R is its external resistance.

For what value of n will the battery produce the greatest
current?

889. Determine the diameter y of a circular opening in the
body of a dam for which the discharge of water per second Q

will be greatest, if Q=cy V' h—y, where h is the depth of the
lowest point of the opening (4 and the empirical coefficient ¢ are
constant).

890. If x,, x,, ..., x, are the results of measurements of equal
precision of a quantity x, then its most probable value will be
that for which the sum of the squares of the errors

n

o= (x—x;)

i=1

is of least value (the principle of least squares).
Prove that the most probable value of x is the arithmetic mean
of the measurements.

Sec. 2. The Direction of Concavity. Points of Inflection

1°. The concavity of the graph of a function. We say that the graph of a
differentiable function y=f§x) is concave down in the interval (a,b) [concave
up in the interval (a,,b,)] if for a <x < b the arc of the curve is below (or
for @, < x < b, above) the tangent drawn at any point of the interval (a,b)
or of the interval (a,,b,)] (Fig. 29). A sufficient condition for the concavity
downwards (upwards) of a graph y=f(x) is that the following inequality be-
fulfilled in the appropriate interval:

F'(x) <0 [f" (x) >0).
2°. Points of inflection. A point [x,, f(x,)] at which the direction of con-

cavity gt' the graph of some function cilanges is called a point of inflection
(Fig. 29).
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For the abscissa of the point of inflection x, of the graph of a function
y=f(x) there is no second derivative [’ (xs)=0 or f’(x,). Points at which
" (x)=0 or f”(x) does not exist are called critical points of the second kind.
The critical point of the second kind x, is the abscissa of the point of inflec-
tion if f”(x) retains constant signs in the intervals x,—8 <x <x, and

%, < ¥ < xo+98, where 8 is some posi-

Y tive number; provided these signs are

| opposite. And it is not a point of

inflection if the signs of [’ (x) are the

#(z) same in the above-indicated intervals.

y= Example 1. Determine the inter-

vals of concavity and convexity and

also the points of inflection of the
Gaussian curve

|
|
|
|
|
b

[ |
I l ' ' y=e—x2-
| I |
i [ . Solution. We have
0 a z, aq b X Yy =—2xe"%
d
Fig. 29 an

Y=4x2—2) e~ %

Equating the second derivative y° to zero, we find the critical points of tHe
second kind

X ————l— and «x =L
1 V‘i' !—V§"

These points divide the number scale — o < x<4 o into three intervals:
1 (—o, x), II(x,, x,), and 111 (x,, + ). The signs of 4 will be, respec-

14
Y
1
1L 11
2 2
& & r— - Y
vz V2
Fig. 30 Fig. 31
tively, 4+, —, + (this is obvious if, for example, we take one Point in each

of the intervals and substitute the correspondinlg values of x into y") Therefore:
1
1) the curve is concave up when —o0< x < — —= and —= < x <+ c0; 2) the
p V3 V3 )

1 1 +1 1
curve 1s concave down when——= < x < —==. The points { ——, ——= ) are
V2 V2 P ( Ve Ve )

points of inflection (Fi%. 30).

It will be noted that due to the symmetry of the Gaussian curve about
the y-axis, it would be sufficient to investigate the sign of the concavity of
this curve on the semiaxis 0 < x < 4 o alone.
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Example 2. Find the points of inflection of the graph of the function

y=Vx+2.
Solution. We have:
5

2 ) —2
Y=—5((+2 =—g—. 1
9 9/ x+2° D
1t is obvious that y’ does not vanish anywhere.
Equating to zero the denominator of the fraction on the right of (1), we
find that 4" does not exist for x=—2. Since 4" > 0 for x <—2 and y"<0 for
x> —2, it follows that (—2,0) is the point of inflection (Fig. 31). The tan-

gent at this point is parallel to the axis of ordinates, since the first derivative y’
is infimte at x=—2.

Find the intervals of concavity and the points of inflection
of the graphs of the following functions:

891. y=x"—6x"+12x + 4. 896. y=cos x.

892. y=(x+1)% 897. y=x—sinux.
893. y=—7. 898. y=x'Inx.

894. y=)ﬁT2. 899. y=arctanx—ux.
895. y =/ 4x—2x. 900. y=(1 4 x*)€".

Sec. 3. Asymptotes

1°. Definition. If a point (x,y) is in continuous motion along a curve
y—f(x) in such a way that at least one of its coordinates approaches infinity
(and at the same time the distance of the point from somie straight line tends
{o zero), then this straight line is called an asymptote of the curve.
2°. Vertical asymptotes. If there is a number a such that
lim f (v)= £ o0,

X—->a

then the straight line x=a is an asymptote (vertical asymptote).
3° Inclined asymptotes. If there are limits

x>+ X
and

lim [f (x)—kyx] =b,,
x>+ ®

then the straight line y=~k,x4-b, will be an asymptote (a right inclined
asymptote or, when k, =0, a right horizontal asymptote).
If there are limits

lim M:k,

v X



94 Extrema and the Geometric Applications of a Derivative [Ch. 3

and
lim [f (x)—kyx] =b,,
X->=-®

then the straight line y==~k,x+b, is an asymptote (a left inclined asymptote

or, when k,=0, a left horizontal asymptote). The graph of the function y=f (x)

(we assume the function is single-valued) cannot have more than one right

(inclined or horizontal) and more than one left (inclined or horizontal) asymptote.
Example 1. Find the asymptotes of the curve

xz
yeo

Solution. Equating the denominator to zero, we get two vertical asymp-
lotes:

x=—1 and x=1,

We seek the inclined asymptotes. For x — +- oo we obtain

2
k= lim L= lim ———==1
xs>+o X xs+mv ]/x’— 1
2 2 __
b= lim (y—x)=1lim X—X—V-x———le,
X+ % x>+ o YV e—1

vy

\\-
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0

Fig. 32

hence, the straight line y=x is the right asymptote. Similarly, when x — — oo,
we have

ky= lim L=—y;
X=X
by= lim (y+x)=0.
@®

x—>=

Thus, the left asymptote is y= —x (Fig. 32). Testing a curve for asymp-
totes is simplified if we take into consideration the symmetry of the curve.
Example 2. Find the asymptotes of the curve

y=x+Inx.
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Solution. Since

lim y= —oo,
x->+0

the straight line x=0 is a vertical asymptote (lower). Let us now test the
curvsvonll]y for the inclined right asymptote (since x > 0).
e have:

b= lim (y—x)= lim lnx=o0.
x>+ ® X>+®

Hence, there is no inclined asymptote.

If a curve is represented by the parametric equations x=¢ (¢), y="1 (¢),
then we first test to find out whether there are any values of the parameter ¢
for which one of the functions ¢ () or ¥ (f) becomes infinite, while the other
remains finite. When ¢ (f;)=o0 and ¥ (f{;)=c, the curve has a horizontal
asymptote y=c. When Y ({))=c and @ (f{)=c, the curve has a vertical
asymptote x=c.

I @ ty)=1 ({)) =0 and

im YO _p. 1 — -
tl—l>nt1°¢(t) ks :hTt[nw(t) ko =5

then the curve has an inclined asymptote y==Fkx—+b.

If the curve is represented by a polar equation r=f(¢), then we can
find its asymptotes by the preceding rule after transforming the equation of
the curve to the parametric form by the formulas x=r cos@=f(¢) cos ¢;
y=rsin p=f (¢) sin ¢.

Find the asymptotes of the following curves:

1 x?
901. y———(x—__—Q)—,. 908. y—-x—2+77ﬁ.
902. y=x*TZ.{'T——3' 909. y=e-xz+2.
903. y=);é4—. 910. y=ﬁ".
x® 1
904 y=577 - 911. y=e*.
905. y=V ¥ —1. 012, y="L1,
906. y':Tf;—Ta‘ 913. y=In(l4-x).
907. y=1—;—:—%-1_. 914, x=t¢;, y=t+42arctant.

915. Find the asymptote of the hyperbolic spiral r=—-:-)-.
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Sec. 4. Graphing Functions by Characteristic Points

In constructing the graph of a function, first find its domain of definition
and then determine the behaviour of the function on the boundary of this
domain. It is also useful to note any peculiarities of the function (if there
are any), such as symmetry, periodicity, constancy of sign, monotonicity, etc.

Then find any points of discontinuity, bending points, points of inflection,
asymptotes, etc. These elements help to determine the general nature of the
graph of the function and to obtain a mathematically correct outline of it.

Example 1. Construct the graph of the function

_ x
a1
Solution. a) The function exists everywhere except at the points x= 41.
The function is odd, and therefore the graph is symmetric about the point
0 (0, 0). This simplifies construction of the graph
b) The discontinuities are x=—1 and x=1; and lim y=4 o and
x—>140
lim y= 4 oo; hence, the straight lines x= 41 are vertical asymptotes of the
X>=140
graph.
c) We seck inclined asymptotes, and find
Y

k= lim ==0,
x>+w X

b= lim y=o00,
X>+®

thus, there is no right asymptote. From the symmetry of the curve it follows
that there is no left-hand asymptote either.

d) We find the critical points of the first and second kinds, that is,
oints at which the first (or, respectively, the second) derivative of the given
unction vanishes or does not exist.

We have: |,
’=_ﬁ__ (])
[} S:l’/(x—z——_—lT"
, y = 2x (9—x?) ) @

9i’/(x2—1)7

The derivatives y’ and y” are nonexistent only at x= 41, that is, only at
points where the function y itself does not exist; and so the critical points
are only those at which y’ and y” vanish.

From (1) and (2) it follows that

y'=0 when x=+ V3;
y"=0 when x=0 and x= 43.

Thus, y’ retains a constant sign in each of the intervals (—o, — V3 )s
(—V3, —1), (=1, 1,0, ¥3) and (V3, + ), and y"—in each of the
intervals (—o, —3), (—3, —1), (—1, 0), (0, 1), (1, 3) and (3, + o).

To determine the signs of y’ (or, respectively, y”) 1n each of the indicated
intervals, it is sufficient to determine the sign of 4’ (or y”) at some one point
of each of these intervals.
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It is convenient to tabulate the results of such an investigation (Table I),
calculating also the ordinates of the characteristic points of the graph of the
function. It will be noted that due to the oddness of the function y, it is
enough to calculate only for x=0; the left-hand half of the graph is con-
structed by the principle of odd symmetry.

Table 1
p 0 ©, 1) 1|, V3V 3=1.73[(V3,3) 3 |3 +w)
V3_,.
y 0 — + o0 4 3—5::1.37 + 1.5 -+
. non-
Yy - - exist - 0 + + +
" non-
Y B - exist + + + 0 -
i Function Function Function | pgint | Function
Con- p?)';m decreases, |pyccon-| decreases, Min. increases; g increases;
clu- | nfec- | &raph s Inuit | graph s point graph inflec- |, . gf&[’h
s10ns tion concave ! concave 1S (oncave tion is concave
down up up down

e) Using the results of the investigation, we construct the graph of the
function (Fig 33).

4_1900
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Example 2. Graph the function
Inx

X

Solution. a) The domain of definition of the function is 0 < x <+ .
b) There are no discontinuities in the domain of definition, but as we
approach the boundary point (x=0) of the domain of definition we have
limy=1lim Inx__ o
x>0 x>0 X

Hence, the straight line x=0 (ordinate axis) is a vertical asymptote.
c) We seek the right asymptote (there is no left asymptote, since x can-
not tend to — oo):

k= lim Y —q;

X>+® X

b= lim y=0.

X >+ ®

The right asymptote is the axis of abscissas: y=0.
d) We find the critical points; and have

, l—Inx
y=—pg—>
, 2lnx—3
!/=—},—";

¢’ and y" exist at all points of the domain of definition of the function and
y'=0 when Inx=1, that is, when x=e¢;
=0 when lnx:%, that is, when x=¢%2
We form a table, including the characteristic points (Table II). In addition
to the characteristic points it is useful to find the points of intersection of

Yy

1 lnz
="z
4 D
0 1 € ez X
Fig. 34

the curve with the coordinate axes. Putting y=0, we find x=1 (the point
of intersection of the curve with the axis of abscissas); the curve does not
intersect the axis of ordinates

e) Utilizing the results of investigation, we construct the graph of the
tunction (Fig. 34).
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Graph the following functions and determine for each function
fits domain of definition, discontinuities, extremal points, inter-
vals of increase and decrease, points of inflection of its graph,
the direction of concavity, and also the asymptotes.

916. y=x"—3x" 939. y=y/ x+1—}/ x—1.
017, y=t¥'==" 940. y=3/ (x+4°'—y —4*
' 9 941. y=y/ (x—2)* 4/ (x—4)}
918, y=(x—1) (x+2). 042. yz—‘/—:——;
019, y = B—=2(x+4) 8
WA y : 943, y=—o—.
(x*— 5)* X Vx’—‘l
920. y= . x
195 944, y=2—.
021, y=2242 VI
x4_f__3—l 945. Y= X
022, y=""3. ) V (x—2y
946. y=xe™”".
023, y="12 Y 2y
A 947. y=(a+-—)e“.
924, y=x*'+4+ = -
X 948' y=eax—x —14'
925. y=}F‘_3, 949. y=(2+ 1) e~ "
926. y 28 950. y=2|x|—x"
x4¥—4 951 _Inx
927. y—_‘—‘m' * y_ﬁ'
4x—12 XX
928. =(;T2)2 952. y= 2xln -
029, y=—. 953. y=r3-
954. y=(x+ 1)In*(x 4 1).
930. y= oz
* gz"(i—l4). 55- y=ln(x2—‘1)"i—;'2-?l,
X
931. y="=3 956. y—In Vx=+x-1—1
932. y=V x+Vi—x. 957. y=In(l +-e~%).
933. y=V8+x—V8—x. 958. y=1In (e—i——l).
934. y=xVx+ 3. 929. y=sinx+ cosx.
035. y=V ¥ 3% 960. y=sin x+ 232,
936, y— Y T—7 961. y=cosx—cos®x,

937. y=y/1—x. 962. y=sin’ :c + cos’ x.

038. y=2x+2—3/ (xr ). 963 V=g
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964. y=—sm—xn—. 976. y = arc cosh (x +i).
" X
sin <x+T) sinx

965. y = sinx-sin 2x. 071 y=ens. _

966. y = cos x-cos 2x. 978. y=earcsinV'x,

967. y=x+ sinx. . 979. y=earctanx

968. y=arcsin(1—)/¥). 98, y—Insinx.

9, y="7208 = (__1)

969. y Ve 981. y=Intan 79"

970. y=2x—tanx. 982. y=Inx—arc tanx.

971. y=xarctanx.
983. y=rcos x—In cos x.

1
972. y=xarctan - when x50 gg4

and y=0 when x=0. 98
973. y=x—2arccot x. 5

9 986. y=x~.
974. y=5-+arc tan x. 1

975. y=Insinx. 987. y=x*.

A good exercise is to graph the functions indicated in Exam-
ples 826-848.

Construct the graphs of the following functions represented
parametrically.

988. x=1*— 2t y=:1" 42t

989. x-—--a\os t{, y=a smt (a>0).

990. x=te', y=te!

991, x=(+{e !, y= ot + e~

992. x=a (sinht—t), y=a(cosht{—1) (a>0).

. y=arctan(Inx).
. y=arcsinln (x* +1).

Sec. 5. Differential of an Arc. Curvature
1°. Differential of an arc. The differential of an arc s of a plane curve

represented by an cquation in Cartesian coordinates x and y is expressed by
the formula

ds = Y (dx)* F (dy)%
here, if the equation of the curve is of the form

a) y=f(x), then ds = 1/l+(g%>2dx,
b) x=/,(y). then ds= ]/H(Z—;)z'iy;
c) x=9¢ (), y=9P (f), then ds= l/(g_;)’_'_(dy) dt;

VFirF? x~l/F' +F,,‘d,
)] 7T

d) F(x, y)=0, then ds=
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Denoting by a the angle formed by the tangent (1n the direction of
increasing arc of the curve s) with the positive x-direction, we get

cosa—d—'—
T ds’
sin a:gdijs.

In polar coordinates,
- ) 2
ds=V @ T doy = l/rl<%%) dg

Denoting by P the angle between the radius vector of the point of the
curve and the tangent to the curve at this point, we have

cosﬁz%,
sinﬁr:rg(si) .

2°, Curvature of a curve. The curvature K of a curve at one of 1its
points M is the limit of the ratio of the angle belween the positive direc-
tions of the tangents at the points M and N of the curve (angle of contin-
S’
gence) to the length of the arc MN-=As when V— M (Fig. 35), that s,
Au_ du

K= lim 2222
AS >0 As dS ’

where a 1s the angle between the positive directions of the tangent at the
powmnt M and the x-axis.

YA

5 @ +4a _
- 0 / X

Fig. 35

The radius of curvature R is the reciprocal of the absolute value of the

curvature, i. e.,
1

TIKI
=—!-, where a is the radius of the circle) and the straight

R

The circle
line (K=0y are lines of constant curvature.



Sec 5] Differential of an Arc. Curvature 103

We have the following formulas for computing the curvature in rectan-
gular coordinates (accurate to within the sign):
1) if the curve is given by an equation explicitly, y=f (x), then

=—————-y M
(14 g2y
2) 1f the curve 1s given by an equation implicitly, F(x, y)==0, then

Fxx ny Fx
F!/X F!/!/ F.l/

F, F, 0

X y

K=—rm——7—:
(sz +_Fy2) 2

3) if the curve is represented by equations in parametric form, x=¢(¢),
y=1 (¢), then
xy
lX" _u"‘

ISR
where
dx dy d*x d*y
' l=__ —_ n=‘_._
¥=F V=@ Y=ar V=g
In polar coordinates, when the curve is given by the equation r=f(p),
we have

2t —rr
GRS
where
dr d*r
Y =2t
r T and Fre

3°. Circle of curvature. The circle of curvature (or osculating circle) of a
curve at the point M 1s the limiting position of a circle drawn through M
and {wo other points of the curve, P and Q, as P— M and Q —> M.

The radius of the circle of curvature is equal to the radius of curvature,
and the centre of the circle of curvature (the centre of curvature) lies on the
normal to the curve drawn at the point M in the direction of concavity of
the curve,

The coordinates X and Y of the centre of curvature of the curve are
computed from the formulas

' 2 2
X=x_y(1l_#_)' y=y+%§’__

The evolute of a curve is the locus of the centres of curvature of the
curve.

If in the formulas for determining the coordinates of the centre of curva-
ture we regard X and Y as the current coordinates of a point of the evo-
lute, then these formulas yield parametric equations of the evolute with
parameter x or y (or f, if the curve itself is represented by equations in
parametric form)

Example 1. Find the equation of the evolute of the parabola y=x*
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. 14 6x2 Y
Solution. X=—4x%, Y= 5 - Eliminating the parameter x, we find
1 X \z2/*
the equation of the evolute in explicit form, Y=—2—+3 (T) .

The tnvolute of a curve is a curve for which the given curve is an
evolute.
The normal MC of the involute T, is a tangent to the evolute T,; the

length of the arc EE, of the evolute is equal to the corresponding increment

in the radius of curvature CC,-=M,C,— MC;
that is why the involute I, is also called the
C” evolvent of the curve T, obtained by unwinding
a taut thread wound onto I, (Fig. 36). To each
evolute there corresponds an infinitude of invo-
lutes, which are related to different initial
lengths of thread.

4°. Vertices of a curve. The vertex of a curve
is a point of the curve at which the curvature
has a maximum or a minimum. To determine
the vertices of a curve, we form the expression
of the curvature K and find its extremal points.
In place of the curvature K we can take the

radius of curvature R-——'—II< and secek its extremal

points if the computations are simpler in this case.
Fig. 36 Example 2. Find the vertex of the catenary

y=a cosh -2— (a > 0).

Solution. Since y'=sinh% and y"=% cosh%, it follows that K=

=—_-—1—-— and, hence, Rzacosh’%. We have —d-g_—.smh?,%. Equating

acosh? X dx
a
. ... dR . x
the derivative v to zero, we get smh2-;=0, whence we find the sole
2
critical point x=Q Computing the second derivative %’f— and putting into
. d’R 2 x 2
it the value x=0, we get it x=0—3C05h27 f—0"Ta > 0. Therefore,

x=0 is the minimum point of the radius of curvature (or of the maximum
of curvature) of the catenary. The vertex of the catenary y=acosh% is,
thus, the point A4 (0, a).

Find the diflerential of the arc, and also the cosine and sine

of the angle formed, with the positive x-direction, by the tangent
{o each of the following curves:

993. x: + y: =a® (circle).
994. 4% =1 (ellipse).
995 y*=2px (parabola),
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996. x2/3 + y2/*=q?* (astroid).
997. y=acosh —z— (catenary).

998. x=a(t—sin¢); y=a(l—cost) (cycloid).

999. x=acos't, y=asin’t (astroid).

Find the diflerential of the arc, and also the cosine or sine
of the angle formed by the radius vector and the tangent to each
of the following curves:

1000. r==a¢ (spiral of Archimedes).

1001. r=% (hyperbolic spiral).

1002. r=a sec’% (parabola).

1003. r=acos? % (cardioid).

1004. r =a® (logarithmic spiral).

1005. r*=a’ cos 2¢ (lemniscate).

Compute the curvature of the given curves at the indicated
points:

1006. y=x*—4x*—18x* at the coordinate origin.

1007. x*+xy+y*=3 at the point (1, 1).

1008. 22,-—{—‘;:—::1 at the vertices A (a, 0) and B (0, b).

1009. x=1*, y=1> at the point (1, 1).

1010. r*=2a® cos 2¢ at the vertices g =0 and ¢ =m=.

1011. At what point of the parabola #*=8x is the curvature
equal to 0.128?

1012. Find the vertex of the curve y=e*.

Find the radii of curvature (at any point) of the given lines:

1013. y=x* (cubic parabola).

1014, 547 1 (ellipse).

2 Iny

1015, x=%—5.

1016. x=acos’f; y=asin®¢ (astroid).

1017. x=a(cost 4 tsint); y=a(sint—igost) involute of a
circle).

1018. r=ac*® (logarithmic spiral).

1019. r=a (1l +cos¢) (cardioid).

1020. Find the least value of the radius of curvature of the
parabola y*=2px.

1021. Prove that the radius of curvature of the catenary

y=acosh% is equal {o a segment of the normal.

Compute the coordinates of the centre of curvature of the
given curves at the indicated points:
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1022, xy=1 at the point (I, 1).
1023. ay*=x* at the point (a, a).
Write the equations of the circles of curvature of the given
curves at the indicated points:
1024, y=x*—6x4 10 at the point (3, 1).
1025. y=¢* at the point (0, 1).
Find the evolutes of the curves:
1026. y*=2px (parabola).
1027. %4-%;:1 (ellipse).
1028. Prove that the evolute of the cycloid
x=a(t—sint), y=a(l—cost)
is a displaced cycloid.
1029. Prove that the evolute of the logarithmic spiral
r = qaeke
is also a logarithmic spiral with the same pole.
1030. Show that the curve (lthe involute of a circle)

x=a(cost+tsint), y=a(sint—1fcost)

is the nvolute of the circle x=acost;, y=asint.



Chapter IV
INDEFINITE INTEGRALS

Sec. 1. Direct Integration

1°. Basic rules of integration.
1) If F'(x)==f (1), then

{Fydx=F ) tc,

where C is an arbitrary constant.
2) SAf (x)dx:-A \ f(x)ydx, wherc A is a constant quantity.

3 (@ rav-(@dee( 700 dr.
4) 1f Sf(x) dx ~F () --C and u—q (v), then

S i () du — F (u) -4 C.

In particular,
g‘f(u.\ i by dx -%F(ax 1 b) {-C  (a::0).

2°, Table of standard integrals.

£) "d A“-l-x '(‘
L. S Ve G AL
1. S‘q_f———:lnlx]{ C
J ox
dx 1 v 1 4
111, Sm—z«nrctan— {-C-_———-arccotvf{—c (a #0).
dx 1
WV Ve m nlx—ia‘-‘_c (@ #0).
dx 1 a+r
S-m 2(1 In +C ((1150)

V. g.-—‘_i—ﬁ:_-——-lnlx—l-l/-x’-l-al"l—c (a # 0).
J Vxi+a

A4

dx LoX _ X
—‘/—az—;—x—z_ arc sin —E—{—C———arccos?-}-c (e >0).
x

VII. Sa"d--_z%-l—c (a > 0); Se"dx:e”-{—c.
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VIIL. \ sinxdx=—cosx+4C.

)
IX. S osxdx_sinx+C

X c052 =tan x4-C.
dx
X1. szx——-cotx—i-c.
xn (& i ! tx|4C.
i =In|cosec x—cot x|+
dx
X111 Eos_x=ln tan<7+—4—)‘+C=ln]tan,«+secx|+C.

XIV. Ssinhxdx:cosllx+C.
XV. Scoshxdx::sinhx-{-c.

XVI. g—d"—x=tanhx+ C.

cosh?
dx
XVII. Sm—-—cothx—i-c.
Example 1.

S (ax?+ bx+c¢) dx= S ax?dx - g bx dx - S cdx=
=aszdx—|-bSxdx-i—chx:‘a%a—-kb’f—:-{-cx+c,

Applying the basic rules 1, 2, 3 and the formulas of integra-
tion, find the following mtegrals

1031. § 5atecdx. 1040. 5 ks '}“_2*2’ dx.
. ) ' I
1032. { (6x* +8x+3) dx. 1041, j(x L
1033. § x(x+ @) (x + 0)dx. VV 1
. 1042, j( L=V,
1034. { @+ bx*)? dx. Var
1035. { V/ 2px dx. 143, {2,
1036. 517"/% 1044. szdxw‘
X -
1-n dx___
1037. y(nx)*n_dx. 1045. Vit

1038. j(ai_-—-x—z—ydx. 1046. .

1039, ((VF+1) (r—V B 1), 1047, | L2ES VIR
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1048*. a) S tan® x dx; 1049. a) Scot.’ xdx;
b) Stanh’xdx. b) Scoth’xdx.
1050. S3”e"dx.

3°. Integration under the sign of the differential. Rule 4 considerably
expands the table of standard integrals: by virtue of this rule the table of
integrals holds true irrespective of whether the variable of integration is an
independent variable or a differentiable function.

Example 2.

j%:%j (5x—2) T d (Ex—2) =

1
- oz
Y P P UL {2~

5

+e=2V&E=icc,

S
wl»—-( . | =

1
2
where we put u=5x—2. We took advantage of Rule 4 and tabular integral L.
xdx 17 d (x?) 1 -

. —_— = —_— = | o 4 .

Example 3 Vits 25 l/H-(x’)’ ) n(x+Vl+x)+C
We implied u=x? and usc was made of Rule 4 and tabular integral V.
Example 4. Sx"e"“ dx == TIS—S eld (¥ = %e"’—l—C by virtue of Rule 4 and

tabular integral VIL
In examples 2, 3, and 4 we reduced the given integral to the following
form before making use of a tabular integral:

S[((p () ¢ () dx=S[(u) du, where u=gq (x).

This type of transformation is called infegration under the differential sign.
Some common transformations of differentials, which were used in Exam-
ples 2 and 3, are:

a) dx::-}l-d(ax-l b) (as#0); b) xdx=-;—d(x2) and so on.

Using the basic rules and formulas of integration, find the following in-
tegrals:

adx ax+b
10510+ {25 1055. Sm_*_ﬁdx.
¢ 2.\'-[-3 x2+1
1052%%. | 5=V dx. 1056. Sx_l dx.
11— X2 4-5x+4-7
1053. { 3= dx. 1057. { T2 g,

xdx x4
054, 2% 1058, (£t ay,
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1059. { 2 )dx.
1060*. S()C—_T_T)zdx

1061. j ”"-‘/

1062. S Va— bxdx.

1063*.
1064. j watx.
1065. ﬁ
1066. (&
dx
1067. (a4 b)— (a—b) x?
O<b<a).
2
1068. \ o~ dx.
)
¥ ;
1069. Sm,dx.
1070. [ £200y,
dx
|07|.§ =
d
1072. ( V7__’.‘__5x, .
1073. (225 dw.
1074. g-x;-_i%dx.
3x+4-1
1075. [ 2tdx
1076. % dx.
1077. | 3%

Integrals [Ch.
x dx
1078. S? 5
ax--b
1079. Smd
1080, | X%
5\ Va—x
1081. SH’fx, dx.
.2 dx
1082. Y X
¢ V ‘G'—l
' arc sin x
1083. | )/ 2 xdx.
are tan%
1084. ype dx.
X — Vnc tan 2x
1085. g e dx.
1086. Yl/ de
I+t VIt
1087. { ae="* dx.
1088. { 4*-**dx.
1089. { (¢! —e")at.
x _x\?®
1090. S(e“ +e “) dx.
1001. {0 4y,
na2x_l
1092.} V= dx.
1003. { e="+ xdy
1094. § -7 dx
r
.4
1095. S% dx
Vx dx
1096. 55 -
e*
1097. Se,,__‘dx.
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1098. {e* )/ a—be* dx. 1119. { tan xdv.
1 X
1099. S(ea -’rl)’ eddx. 1120. Scotxdx.
. dr t121. {cot Zpdv.
troo*. { 2.
) 1122.5 i
a X x
1101. Sl+ —_ tan )
oy X
1102, Sx--e-:b-vdx- 1123, gtan Ve
1103 Ve’_df., 1124. {xcot (& + 1) dx.
' [—ett’ S
1104. Ssin (a+ bx)dx. 12s. Ssinxcosx‘
D X . X
1105. 5 COS-VA-:—Z(I)C. 1126. S(‘OSU Sin TI_ dx.
1106. S(cos ax - sin ax)* dx. 1127. Ssm 6x cos 6x dx.
» _ Cos ax
1107. \ Cos x%: . 128. Ssm’m dx
. * sin 3x
1129.
1108. Ssin (1gx)dg. S:3-|—ws.iv
1130, | iy,
1109*. Ssm xdx. jl/cosu—smz.\' ¢
1110*. Scos’xdx. 1131. SVI-};&cosxx sin 2x dx.
: . * 3 sec? - dx.
11t. Sﬁ ¢ (ax | b)dx. 132 St:;n SeC g dx
N tan x
1112, Scot2 axdx. 1133. 5 oty U
v dx 2
1113. . 2
. t
Ssmé 1134, Scfm, X dx.
~ dx .
4, | ———MMM— . 1 4-sin 3x
H SBL'()s(Sr—%) 1135. S cos? 3x dx.
dx ‘ 1136. (cos a:m{-::n ax) dx.
1115. Ssm(ux—}—b)' g
1116. chs(:);" 137. Sbissiotx&c
117, { xsin (1 —x*) dx. 1138. S (2 sinh 5x—3 cosh 5x) dx.

1 2 .13
1118. j(m"‘l)dx. 1139. SSlnh xdx.
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1140. (& 1143.  tanh xdx.
14 (& 1144. ( coth xdx.
dx
2. § ot
Find the indefinite integrals:
1145. { x /5= dx. 1163.§ Z_,
¥—1 COos —
1146. Sm dx. ::/ ;1+‘nx
1147. 5";;_{—5“. 1164. j———x dx
1148. Sxe""dx. 1165. 5“3" Vx—1 Vji
3— Varax
1149. ——5':—_;—"&. IIGG.S:ICTMXZ
1150. Sf*]’ dx. 1167. S‘e"""'"""{]x:n\(zl-kxz)-%ld
C dx .
1151, | —=. sin x —cos x
j Ve 1168. Smdx
1152. i:;':s);dx <,_si,,7x_§>*
tan 3x —cot 3x 1169. X~ 7 27 dx.
1153. S--———Sm <ol dix. -t
dx
1154 \ . 1170. S;,izdx.
1155. (—i&dx. (42
Vit x—2 n71. (O3,
X dx
1156. S‘( 2% - 1>2x=+1' 1172, Se“"’xsm2xdx.
1157. a"“*uosxdx 1173. (2=3
1156, S S. V4—3x=dx
° f e (555
1159, {72 R
J ©J (a4-b) + (0« —b) x*
1160. Stan axdx. O<b<a).
X
1161. Ssm X dx. 1176. Ve%;_,jdx

V4— tan? x singxcosax "’

1162. —Sic_ii_if{:. 1177. S dx



Sec. 2] Integration by Substitution 113

2mt sec x tan x
dt. .
1178. {'sin (%7 +o,) 1185. f}/seczx_H x
1179, \ ————. cos 2x
Sx(4—]nzx) 1186. Sm
arCC05§‘ dx
180, ) e dr. 1187. Sm
. —tan x 2 . 1 21
1181 Se. sec® xdx 1185 Sl/n(x}h:_/; + )dx.
1182. (%dx.
V'z“““‘" 1189. Sx’ cos (x* + 3)dx.
1183. SmZxcosix” tanha
Ssm X cos 1190. (i;nzlx dx.

1184, |dresmx4x
g Viee ©

Sec. 2. Integration by Substitution

1°. Change of variable in an indefinite integral. Putting

x=q ().

where ¢ is a new variable and ¢ is a continuously differentiable function, we
will have:

(Feax= oo wa )

The attempt is made to choose the function ¢ in such a way that the right
side of (1) becomes more convenient for integration.

Example 1. Find

S x VA—:f dx.

Solution. It is natural to put t= Vx—l.whcncex::t‘—{—l and dx =2t dt.
Hence,

Sx deng (241)1-2t dt =2 S (B +12) dt =
3

priotc=2 1) +2 -t e

I

.
1
cn[ o

Sometimes substitutions of the form

u=q(x)
are used.

Suppose we succeeded in transforming the integrand f(x)dx to the form

f (x) dx=g (u) du, where u=g (x).
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If S g (u) du is known, that is,
(ewau=rw+e,
then
(rea=Flowi+c.

Actually, we have already made use of this method in Sec. i,3°.
Examples 2, 3, 4 (Sec. 1) may be solved as follows:

Example 2. 4 =5x—2; du=>5dx; dx——- du.

1
dx | de  1u® DR
m=377=3z+c_31/5x—-2+c.
2
du

Example 3. u=x% du=2xdx; xdx—:.—z-.

xdv
— =1 1 2)+C= \ 2 14 x4 C.
§V1+x‘ §V1+z’ n(u+ VT+ad)+ n (2 VI+4) +
du

Example 4, u=x% du=23x*dx; x?dx= 5 -
1 1 I
2,%3 — u _ ] _ X8
Sxe dx——3Se du———3e +C_-§-e +C.

2°, Trigonometric substitutions.
1) If an integral contains the radical Va®—=x%, the usual thing 1s to put
x=asint; whence

. Vaz-—x==acost.

2) If an integral contains the radical Vxr—a?, we put x—=u-sect,
whence

l/x’-—azzatan t.
3) If an integral contains the radical }V 1®+a?, we put x=atan(; whence
Vx’-}-a’:asect.

It should be noted that trigonometric substitutions do not always turn
out to be advantageous.

It is sometimes more convenient to make use of hyperbolic substitutions,
which are similar to trigonometric substilutions (see Example 1209).

s For more details about trigonometric and hyperbolic substitutions, see
ec. 9.

Example 5. Find

V x2+ld
o X,
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dt
cos2t
‘gyx’—{—ldx__fl/'tanzl-}-l dt __fsectcns’t dt
x2 .

fan?t cos2t sin2 ¢ cos2 A

dt sin? ¢ 4-cos? ¢
._S sinZ{ cos ! _S sin {-cos ¢ di = cos t + S snei ¢

::lnItant—{-secll—-——l——l—Czln|tant»- Vl-{-tan’tl—

Solution. Put x=tan¢. Therefore, dx=

_Vijtant L C=tn |t VETT|— Vx A

tant

1191. Applying the indicated substitutions, find the following
integrals:

1
D [ty =

)S%' x=—1Int,
9) S x(0x* -3)dx, O5x*--3={,
d) s Ad‘-—:, f.—:‘/’x ! l;

R

cos xdx

- {=. sinx.
¢) ) Vl+>m’ ’

Applying suitable substitutions, find the following integrals:

1192. S\(2x-} 1197. \(H‘/tlsi:) dx.
1193. ‘ 1:‘/\ o8 \mdx.
vV |

1194, |

J; Vz”” 199, | SELd

N COs v

1195. { Ve*—x'
1196. In 2x dx 1200%. dv

In4xx ° xlfl—i—.\"

Applying trigonometric subslitutions, find the following in-
tegrals:

1201. j—’fiﬂ— 1203. S'V_’E:fdx.
Vi—x X
x*dx « ( dx
1202, flf =, 1204*. 5_——\ =
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"Verl 1206* 5 dx
1205. S—x“d"- 206*. | .

1207. {1V 1—+ dx.
1208. Evaluate the integral

" dx
S Vx(1—x
by means of the substitution x= sin®*¢.
1209. Find
S Va'Fx*dx,

by applying the hyperbolic substitution x=asinh¢.

Solution. Wehave: V& + =V a? +a? sinh? t=a cosh t and dx=a cosh ?dt.
Whence

S 14 a”—l—x’dx:Sacosh t-acoshtdt=

. 2
—a S coshztdt=a253(ﬂlgt—_H-dt=% (% sinh 2t+t)+C=

2
_,_:‘12_ (sinh ¢ cosh ¢t 4 ¢)4-C.
Since
T 2
sinh =2, cosht= Z_a_i‘_x_
a a

and
2 ) 42
¢! =cosh t +sinh ¢ ="-'.__*;Vz;li

we finally get
_ 2 e
5‘ dex=% Va2+a=+% In(x+ Vai+ £ +C,,
2
where C,:C—%— Ina is a new arbitrary constant,

1210. Find
x*dx
sz_az ’

putting x=acosht.

Sec. 3. Integration by Parts

A formula for integration by parts. If u=¢(x) and v=1 (x) are differen-
tiable functions, then

Sudv:uv—S v du.
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Example 1. Find

lenxdx.
. dx x?
Putting u=Inx, dv=xdx, we have du=7, v="73 Whence
x? ?dx
lenxdx———Q—lnx—‘S‘—Q—?=—ln t-——{—C

Sometimes, to reduce a given integral to tabular form, one has to apply the

fcrmula of integration by parts several times. In certain cases, integration

by parts yields an equation from which the desired integral is determined.
Example 2. Find

S e* cos x dx.
We have

S e* cosxdx= S e*d (sin x) = e* sin x—g e sin x dx = ¢* sin x 4-
-+ S e* d (cos x)==e* sin x 4 e* cos .\'—S e* cos xdx.
Hence,

S e* cos x dx=:¢* sin x4 e* cos x— S e* cos x dx,
whence

X
S e¥ cos vdx== 8‘7 (sin x4-cos x)+C.

Applying the formula of integration by parts, find the following
integrals:

1211, {Inxdx. 1221. { x sin x cos xd
1212. Sarctzmxdx. 1222* S (x*45x+6) cos 2x dx.
1213. Sarc sin xdx. 1223. S *Inxdx.

1214. stinxdx. 1224. Sl *xdx.

1215. chos 3x dx., 1225. Sl;_

1216. Sgdr 1226. SVL_dx

1217. Sx-?"‘dx. 1227. Sx arctan xdx.
1218**. Sx’ e’ dx. 1228. Sxarc sin x dx.

1219*. S(x’—2x+5)e"‘dx. 1229. S In(x+V1+x%)dx.

_2 xdx
1220%, § %4 dy. t230. {255
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1231. S"SC:S" . 1234. { ™ sinbxdx.
1232. Se sin x dx. 1235. Ssin (Inx) dx.

1233. S 3% cos x dx.

Applying various methods, find the following integrals:

1236. Sxe""zdx. 1246. {"'“‘“ acsin V¥,
V l—x
1237. (" *dx. 1247. { xtan® 2xdx.
1238. { (' —2x1-3)Inxdx. 1248, g“‘;ﬁ
1239. len :dex 1249. Scos (In x) dx.
2
1240. S“:cz dx. 1250**. Smdx.
In (In x) dx
r2a1. [ =2, 1251 (o
1242, Sx’ arctan 3x dx. 1252%. SVaz—xﬂdx.
1243. { x (arctan )" dx. 1253*. VAT 2 dx.
1244. | (arc sin x)* dx. « (_xide
S Flr(, sin x ) 1254 S Vg_‘z
¢ arc st
1245. S P dx.

Sec. 4. Standard Integrals Containing a Quadratic Trinomial

1°. Integrals of the form
mx+n d.
ax®+bx+c

The principal calculation procedure is to reduce the quadratic trinomial to
the form

ax?+bx+c=a(x4 k)2 41, (nH
where k£ and [/ are constants. To perform the transformations in (1), it is
best to take the perfect square out of the quadratic trinomial. The follo-
wing substitution may also be used:
2ax+b=t.

If m=0, then, reducing the quadratic trinomial to the form (1), we get
the tabular mtegrals IIT or IV (see Table).
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Example 1.
S dx 1 dx _
2x=—5x+7—’2‘g R 5 25 7 25\
(" -2'7"+1—6>+(?‘m)
? d<x—--5—> x—E
=1 4) 11 et C—
=3 — 35 2+3l_2-]/ﬁdrc an V_+ =
( 4 16 4 3
=2 arctan +C
Va V“

If ms# 0, then from the numerator we can take the derivative 2ax+4b
out of the quadratic trinomial

S me-+n SQ (2ax - b) {-(n—-%)
ax? -+ bx—{-cdx ax?+4bx+c¢ dx=

m : mb

=%lnlax’+b.\+c,+(n——g

) atiere

and thus we arrive at the integral discussed above.

Example 2.
‘ 2x—1)—
x—1 S 2 2 1 2 __
S\z_.\,_ld'\'“ v —1 d\w-‘zln]x —_x—1|—
» I
d(x——)
‘ 2 ! ! 2—1—V'3
—_ | ———" =5 In|¥—x—1]|— In C.
Qs Iy =ovE ey vt
1Y, 2 4

mx+n

l/u.\’+b.v+c
are similar to those analyzed above. The integral is finally reduced to tabu-
lar integral V, if a>0, and VI, if ¢ <0.

2°. Integrals of the form 5 dx. The methods of calculation

Example 3.
dx 1 4x—3

dx = arc sin +C.
V? 1-3x— ‘Zx2 Vz l/ — 3\ V-f 5
16 ( T)

Example 4.
. x+3 1 2x 42 dx 2S dx -
5 Vx’+2x+2 2)Veteate V xF1)yr+1
=Ve+2t2+2In(x+14 V¥ +2x+2)+0.
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dx
(mx+ n) Vax’—{-bx-{—c )

1
mx+n

3°. Integrals of the formj By means of thein-

verse substitution

these integrals are reduced to integrals of the form 2°,
Example 5. Find

S‘ dx
G+ V E+T
Solution. We put

x+l=—:—.
whence it
dX'——F'.
We have:
. dt
e _ L I I S
G+ ¥V e+l 1 1/'1 T Vi=2irar
J T (T—l> +1
= 1 dt _ 1 In +l/tz £+ ‘_'_
— P e— S z — —_—
N7y
2 r
+C=__——]_lnll—x+l/2(xz+l)l+c

x+1

4°, Integrals of the form S Vax2+bx+cdr. By taking the perfect square

out of the quadratic trinomial, the given integral is reduced to one of the
following two basic integrals (see examples 1252 and 1253):

) S Vaz—x?dx=% l/az-—xz-i—g; arc sin —:—+C;
(a > 0);
2) S Vt+a dx:% ViitrAa +:;— In|x+ VFfAa|+cC.

Example 6.
S VI—2x—xtdy= S Vi—(+0td(1+x=
=1—2{-x VYV 1—2x—x? +arc sin V__-i—C

Find the following integrals:
1255. S——-— 1257, | 2%

x242x 45" * S3x2—-x+l'

xdx

1256. §x=+2x 1258. g———x,_mm.
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3x—2 dx
1259. S;‘z‘m dx. 1269. 5‘;—7;;—;:———— .x_____.l R
(Xfl)z 0 " dx
1260. P 1270. (—~———~x__]) V.'ﬁ__‘————z_2.
x*dx . » dx
1261. sm EU N e et
1262. ’.-——,A——‘.—. 1272. SV—x'-{—‘ZX-{-JdX.
V 2 +3x—2x2 1273 S_ V y
dx 273. x—x2dx
1263. ng:—:x_
' d 1274. S Vo—x—=xtdr
1264. S*—*"_.
Ve tprra 1275, ( 24
* 3x—6 ") —4x* 43
1265. j vt 1976, [ cos x ;
9% — 8 ' jsmzx—ﬁsmx—kw uh
1266. __?f;— --dx. B e*dx
Vica—e 1277. \Vl s
|267. 5 - _z_x_.:_:d’t. S A da
‘Vs):i—zx Fl 1278. \ e
1268. 5-———f:.: . ' In xdr
e V= 1279. 5 xVIi—1inx—In?«

Sec. 5. Integration of Rational Functions

1°. The method of undeiermined coefficients. Integration of a rational
funclion, after taking out the whole part, reduces to integration of the proper
raltonal fraction

P (x)
7w’ @

where P (x) and Q (x) are integral polynomnals, and the degree of the nume-
rator P (x) is lower than that of the denominator Q (x).
If

Q (x)=(x—a)*. . .(x—D"

where a, ..., ! are real distinct roots of the polynomial Q(x), and a, ..
A are natural numbers (root multiplicities), then decomposition of (1) into
partial fractions is justified:

P _ A,

o ST S

x__,-l-( l)’+ +( i 2

To calculate the undetermined coefficients A,, A,, ..., both sides of the
identity (2) are reduced to an integral form, and then the coefficients of
like powers of the variable x are equaled (first method). These coeffi-
cients may likewise be determined by putting {in equation (2) or 1n an equi-
valent equation] x equal to suitably chosen numbers (second method).
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Example 1. Find

xdx =7
S(x—l) (12
Solution. We have:

_x A B, B
=D x+D2 x—1 "x+1 " x+1D2"
Whence
x=A(x+1)24B, (x—1) (x+ 1+ B, (x—1). ®)
a) First method of determining the coefficients. We rewrite identity (3) in

the form x= (A4 4+ B,)x*+ (24+ B,) x+(A—B,—B,) Equating the coeffici-
ents of identical powers of x, we get:

0=A+B; 1=24+8B,, 0=A—B,—B,.
1 1 1
A=—4—'. Bl——'——4‘. B,-—i.

b) Second method of determining the coefficients. Putting x=1 in identity
(3), we will have:

Whence

1=A.4, i.e, A=,
Putting x=—1, we get:

—1=—B,.2, i.c.,, B,=1,
Further, putting x=0, we will have:

0=A--B,—8B,,
or B=A—B,=-—".
Hence,

1 dx 1 dx 1 de

ST T )T e

1

| 1
=7 In| x—1 ,_I In|x+1]|— 2(x+l)+(‘_
1 x—1
—sernTE!n x+l,+c'
Example 2. Find
‘ dx —7
Sx’—-2x2+x'_
Solution. We have:
1 1 A B C
e =T x Tx=i T E=1)y
and
=4 (x—1)2+ Bx(x—1)4-Cx. (4)

When solving this example it is advisable to combine the two methods
of determining coefficients. Applying the second method, we put x=0 in
identity (4). We get 1=A. Then, putting x=1, we get 1=C. Further, app-
lying the first method, we equate the coefficients of x* in identity (4) and

get:
0=A+8B, i.e., B=—1,
A=1, B=—1, and C=1.

Hence,
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Consequently,
dx dx 1
I= _x__Sx—l S(X —ln]x{——lnlx—l|—-—l—rC

If the polynomial Q (x) has complex roots a 4 b of multiplicity &, then
partial fractions of the form

_Ax+B, Apx 4 By 6)
Atpx4q 0 T (4 px )
will enter into the expansion (2). llere,

X2+ px+g=[x—(a-}-1b)] [x—(a—1D)]

and A,, B,, .., Ag, B, are undetermined coefficients which are determined
by the methods given above For k=:=1, the fraction (5) 1s integrated direct-
ly; for B>1, use is made of the reduction method; here, 1t is first ani-

sable to represent the quadratic trinomial x* 4 px-+ ¢ in the form ( x4+ -g-)\ +

p? . P
+ 9= and make the substitution ,\—}-—2—-_2.

x+1 ]
S(\”I4AI5)‘ ’

A D (x+2)P41

then, pulting x--2-:2, we get

IR zdz _‘&l_:{_—ﬂ—zz _
*S(Z‘Fl)’ S(Z P 5 24 1) dz=

Example 3. Find

Solution. Since

- S"-r-‘zd— |- ‘
Y (z~-' 251 ) I 5 2@+ T 2E ) T
—-dr¢ tanz—. — z__ »]-—1— arc tan z | !
‘ pEE Ty AT T ET)
1 - v+4-3 1 .
-5 arc tanz4-C = =T v E) 4\_{_5)-——2—ulc tan (x4-2)+-C.

2°. The Ostrogradsky method. If Q (1) has multiple roots, then

P (x) X (v) S"Y(\)
de==2~ % dx, 6
&Q( Gw )G ©
where Q, (x) is the greatest common divisor of the polynomial Q (x) and its
derivative Q' (x);
Q: (0 =Q (1):Q, (x);
X (x) and Y (x) are polynomials with undelermined coefficients, whose degrees
are, respectively, less by umty than those of Q, (x) and Q,(x).
The undetermined coefficients of the polynomuials X (x) and Y (x) are
computed by differentiating the identity (6).

Example 4. Find
S‘ dx
(*—1)"
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Solution.

dx _ Ax*+4+Bx4-C Dx*+ Ex-+F
S(x’~l)’_ x®—1 +S ®—1 dx
Differentiating this identity, we get
1 (2Ax+B)(x#*—1)—3x* (Ax’-l—Bx-}—C)_,_Dx”-l—Ex—}—F
B—=1)? (x3—1)2 x»—1

1 =(2Ax+ B) (x*—1)—3x2 (Ax*+ Bx+ C) + (Dx*4 Ex--F) (x*—1).
Equating the coefficients of the respective degrees of x, we will have:
D=0; E—A=0; F—2B=0; D+4+3C=0; E+4+24A=0; B+4F=—1;

whence

A=0; B=—v; C=0; D=0; E=0; F=—2
and, consequently,
d« 1 x 2 dx 7
F—=Nn2~ T3 =1 3)F¥r—1 @

To compute the integral on the right of (7), we decompose the fraction
into partial fractions:

1 L +Mx+N
2—1 x—1"x24x+1"

1
x»—1

that is,
I=L(x4+x+D+Mx(x—D+N(x—1). (€))

Putting x=1, we get L=§.

Equating the coefficients of identical degrees of x on the right and left
.of (8), we find
L+-M=0;, L—N=1,
or

1 2
M=-—-§. N=—§.
Thereiore,
S dx __1_ dx 1 x+2 dy—=
2*—=1"3 x—l—§Sx=+x+l x=
_ 1 TR 1 2x 4- 1
=3 In| x—1] 6 ln(x’-l—x—}—l)—ﬁarc tan V3 +C
and
dx x 1, x*+4+x+1 2 2x+ 1
S(x’—l)z__S(x’—l)-l_Em Gy +3 V.E_arctan ﬁ+c.
Find the following integrals:
dx dx
1280. S(x+a) (x+0b)° 1282, S(x—i— D(x+2)(x+3)°
x*=5c¢+9 2¢2 4-41x— 91
1281 |G, 1283. { = b g dr
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5x3 42 dx
1284, Sx———,_sﬂ, . 1293. g TR TS
dx dv
1285. | o5 1204. (5.
1286. { X—L . 1205. {25
xt—6x14 12¢24-6 dx
1287. S—f—exw ot dx., 1296. S»—‘ﬁw—xw .
5v*+6x+9 d
1288. (;‘iTt;‘(i_—H-)—zdx. 1297. ’(I—_}'XXT)Z .
x2—8x4-7 . 3x+45
1289. Smd’c. 1298. Smdx
2x—3 dx
1290. S(xz T 1200, | s -
x4-x+1 x*41
1291. Sw,H) dx. 1300. S(x,_4x+5
1202, {72 dx.
Applying Ostrogradsky’s method, find the following integrals:
pply
dx
1301. Smﬂ)" 1303. S(x g
dx X —22%24-2
1302. Sm . 1304. ) (_-*Q*de.
Applying different procedures, find the inlegrals:
X dx
1305. Sﬁm—)dx. 1310*, Sm
P X d
1306, | i dx. B |
x2—x 414 dx
1307. Sa:md"- 1312. y(vz v +2) (¢ 2+ 5)
dy X2
1308. Sm 1313. S(( L
dx
1809, | s 1314, {2
Sec. 6. Int2grating Certain Irrational Functions
1°. Integrals of the f.rm
2y Py
ax+b\a ax+b\a,
SR [x. (cx+d) , (m) , ...]dx. (1

where R is a rational function and p,, q,, p,, q, are whole numbers.
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Integrals of form (1) are found by the substitution
ax-}-b
cx+d-

where n is the least common multiple of the numbers g,, q,, ...
Example 1. Find

n

( dx -
3 Vo—1— /21"

Solution. The substitution 22 —1=2' leads to an integral of the form

dx [ 22%2 _ 2dz
Vox—1—/2v—1 ) #—2? z—1

=2S(2+l—|—2—:j) dz =(z+4+1)*+2Injz—1|+C=

=(1+ “/E'—_{)=-|-ln({/2x—1—l)2+c.

Find the integrals:

1315. g—’f—_—_dx. 1321, (Y% dx
. Vx—1 x+42
1316, | = 1322 dx
' \ v/ axtbr e VT

1317. —— 1323.

|

‘ |

Vv |
1318. \n I/ﬁ%ﬁ 1324. S VFT_ d.

§ f

1319. T dx. 1325.

1300, | VEFI+2
(D2 —=ViFI

2°. Integrals of the form

Py
j‘ Vaxz bx—}-cdx' @

where P, (x) is a polynomial of degree n
Put

f——“‘—-—P"(X) 5= Quoy () Vad T o oA | ceme—, @
Vax’-}-bx—}-c =Qu- (%) +bx+c+ j‘ o rbrfec (3)

where Q,_,(x) is a polynomial of degree (n—1) with undetermined coeffi-
cients and A is a number.

The coefficients of the polynomial Q,_, (x) and the number A are found
by differentiating identity (3).
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Example 2.
4x?
j‘ Vx’+4dx-—5 V-+ ad = ,
—_— X
— 3 2 2 _
=(Ax*+ Bx?+Cx+ D) V x*+ 4 +x5 Ve
Whence
VA g8t C) VAT Ay BB C D) A

Vxrtd Vi1 Virad

Multiplying by ¥V x*+4 and equating the coefficients of identical degrees of
x, we obtain
B=-0; c:%; D=0; A=—2

Hence,

Y i ddi=" +2" Viid—21in(x+ Vx¥i)4cC.

3°. Integrals of the form

S(x—u)” l/a\’—i—b\ lrc )

They are reduced to integrals of the form (2) by the substitution:

A—a
Find the integrals:

e 1329, (_*‘“
1326. _S V\z—x Vs Ve—1’

dr

327. | —====dx. 1330, \ —m8m—r——.
1327 jl/l—xzdx s (x+ 1) Varfox

x° S o
328, | 5 —=dx. 1331, | ———=dx.
1328 ,s‘l/l-i—xzdx ,\XV«\'Z-—X-}-I X
4°, Integrals of the binomial differentials

S X" (g - be™yP dx, 5

where m, n and p are rational numbers.
Chebyshevs conditions. The integral (5) can be expressed in terms of a
finite combination of elementary functions only in the following three cases:
1) if p is a whole number;

2) if —— m—{ is a whole number. Here, we make the substitution a+ bx" =
=29, where s is the denominator of the fraction p;
3) if m+-1
n
ax~ "4 b=2%,

+p is a whole number. Here, use is made of the substitution
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Example 3. Find
3 4/
S]//l . l/" dx=1
43 '
1 +1
, R R S T
Solution. Here, m=-—yz; n= Y Vp= T = T =2, Hence,
4
we have here Case 2 integrability.
The substitution
1
I4x* =22

yields x=(2*—1)%; dx=122%(2*—1)*dz Therefore,

2\l 23 (P — 1)
1_3’ (H—x‘)’ x=125-—(z(:__—1)2-dz=
=12S(z‘—z’) dz :1722’—32‘+C,
where z=i/l+ f/_x—.
Find the integrals:

-2 3 dx
1332, { (14257 * dx, 1335. s TR

1333 j dx 1336. S dx S
N T 5
ZARE @+’
1337. | dx

1334 S\x‘ V1+x2. 5 V‘;{ V1+ 4/;‘_

Sec. 7. Integrating Trigonometric Functions
1°. Integrals of the form
S sin"xcos"xdx =1, ,, (1)
where m and n are integers.
1) If m=2k-+1 is an odd positive number, then we put
Iy n=— S sin?® x cos™ xd (cos x) = ——S (1 —cos? x)* cos” xd (cos x).
We do the same if n is an odd positive number.

Example 1.
S sin' x cos’x dx = S sin'® x (1 —sin? x) d (sin x) =

sin'' x sm” X
+C.

=T
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2) If m and n are even positive numbers, then the integrand (1) is trans-
formed by means of the formulas

sln’x=§(1—cos 2x), cos’x=2l(l+cos2x),

sin x cos x= % sin 2x.

Example 2. S cos? 3x sin? 3x dx = S (cos 3x sin 3x)? sin® 3x dx =
2 —_—
=S sin” 6x 1 —cos b dx =% S (sin® 6x — sin? 6x cos 6x) dx =

1 l—cos12x _ ., .
§S<——2———--—-_-sm 6xc056x)dx—-

1 sinl2¢x 1 .
8 (5——24—“—'@5]{1 Gx)-{—C.

3) If m=—p and n=— v are integral negative numbers of identical
parity, then

dx
1 = \ —————=\ cosec* xsec*~2xd (tan x) =
m, n st x cos’ x ( )
n

B+v_,
. 1 _C(1tanx) 3
_S(l+ Gﬁ"—;) (1 4 tan? x) R d(tanx)_ —Wd (tan x).

In particular, the following integrals reduce to this case

A n
S sin® x 24! an cos“

s
p X B in” il
sin 5 cos sin <x+ 2)

Cosi x —Ssecz xd (tan A)——S(l +tan?x) d (tan x)=
=lanx+§tan’x+C.

=1 dx =1 R P
Example 4. ‘S‘sm’ 2,S — X3 Stan o sect Gdv=
sin? -3- cos

Example 3. S

VN 2] eeXg=2 - X 2
8 X sec 2dx 8S[tan 2—]— x+

tan 0}

zi
3 1
-Han%] d(tan%):;[— x+2ln an—l+ ]—}-C.
2tan®*= 5

5-1900
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4) Integrals of the form \ tan™ xdx (or \ cot”xdx), where m is an in-
fegral positive number, are evaluated by the formula
tan® x=sectx—1

(or, respectively, cot? x=cosec? x—1).
p

. . . tan'x .
Example 5. \ tanxdx= \ tan? x (sectx—1) dx= 3~ tan?x dx=

3 3
tanx (sec'x—l)dx—tml x—tanx+x+C
3

5) In the general case, integrals I, of the form (1) are evaluated by
means of reduction formulas that are usually derived by integration by parts.

2 l
Example 6. d': =S sin x+.cos
cos® x cos
= sin x sln x dx sinx - cosx
cosx 2 cos’ costx cosx
sin x
=50tz T ? In|tanx+secx|4C.

Find the integrals:

1338. § cos® xdx. 1352. S .

1339. { sin® xdx. ey
1340. Ssin‘xcos’xdx. 1353. sz;—ir(%)sTT)dx
1341. S sin® % cos® %dx. 1354. Ss;’ix ,

1342. S:frf:—:dx. 1355. Ssec‘ 4xdx.

1343. { sin® xdx. 1356. { tan*5x dx.

1344. Ssinfxcos’xdx. 1357. Scot’xdx.

1345. Ssin’xcos‘xdx. 1358. Scot‘xdx

1346. Scos°3xdx. 1359. S(tan —+tan )dx.
1347. (&, 1360. § x sin® «*dx.
1348. (&, 1361. (oo dx.

1349, [t 1362.  sin®x J/cosxdx.
1350, (2. 1363. fﬁf—ﬁs——x

dx
1351. Sm 1364. yﬂm
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2°, ([ntegrals of the form S sin mx cos nxdx, S sin mx. sin nx dx and

S cos mx cos nxdx. In these cases the following formulas are used:
1) sin mx cos nx= —é— [sin (m + n) x +sin (m—n) x];
2) sin mx sin nx=5l [cos (m —n) x—cos (m + n) x];
3) cos mxcos nx=—;- [cos (m—n) x +-cos (m + n) x].
Example 7. S sin 9xsin x dx =S T‘Z' [cos 8x —cos 10x] dx =

—l sin 8x—-—1- sin 10x +C.

16 2
Find the integrals:
1365. S sin 3x cosS5xdx. 1369. S cos(ax + b)cos(ax—>b)dx.
1366. { sin10xsin15xde. 1370 { sin ot sin (ot +g) dt.
1367. Scos 2 cos idx. 1371, Scosxcos’ 3xdx.
1368. S sin & sin dx 1372. S sin x sin 2x sin 3x dx.

°, Integrals of the form
S R (sin x, cos x) dx, Q)

where R is a rational function.
1) By means of substitution

tanTz—-—t
whence
. 2t —12 2dt
smx=‘+t,, cosv—-l_H,, dx:l—-r—t”

integrals of form (2) are reduced to integrals of rational functions by the
new variable ¢.
Example 8. Find p
X

14 sin x4 cos X

Solution. Putting tan —g—=t, we will have
2dt

1412

2 1—

+l

=Inj14¢|+C=In

= l+t l+fan-—l+C.

t

+

s‘
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2) 1f we have the identity

R (—sinx, —cosx)= R (sinx, cosx),

then we can use the substitution tan x=t¢ to reduce the integral (2) fo a

rational form.
Here,

sinx =

and

x=arc tant, dx=

Example 9. Find

dx
1+4sin? x

Solution. Putting

tanx=t¢, sin*x=

we will have
dt

t
Viza O

1
Vit
dt
e
=1 @)
2 dt
U o

I= 2
S“+“)(‘+1—ﬂ;t—=

V_

1+2t=—;/7

arctan(tV2)+C V_

d 1 atve) _
j1+(tlf‘5)’_

arctan (¥ 2 tanx)+C.

We note that the integral (3) is evaluated faster if the numerator and
denominator of the fraction are first divided by cos®x.
In individual cases, it is useful to apply artificial procedures (see, for

example, 1379).

Find the integrals:

1373. S3+5 cos x °

1374. Ssmx-i—cosx
1375.5‘ COSX_ 1.

1+4cos x

1376. Sl UL

sin x

dx

1377. SS —4sinx47cosx*
x

1378. scosx+23111x+3

3sinx42cosx
* %
1379**. 2sinx+3cosxd

1380. S H'ta"xdx.

dx
1381*, T 3cos's '

dx
* —_—
1382*. 3sin2x 4 5cos?x
dx
*
1383*. S sin? x - 3sin xcos x—cos? x

dx
*
1384*, Ssln’x—55iﬂxc°sx ’

1385. S (-l-s"‘—" dx.

cos x)*

sin 2x
1386. Sl-{—sm’ dx.

1387. S—M—dx.

cos? x +sin4 x
Cos x
1388. S sin? x—6 sin x5 dx.

dx
1389*, S(Q_sln x) (3—sinx) *

1390*. SM dx.

14 sinx—cos x
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Sec. 8. Integration of Hyperbolic Functions
Integration of hyperbolic functions is completely analogous to the inte-

gration of trigonometric functions.
The following basic formulas should be remembered:

1) cosh? x—sinh?*x=1;

2) sinh? x= —;—(cosh 2x—1);
3) cosh? x= % (cosh 2x + 1);
4) sinh x cosh x=—21— sinh 2x.

Example 1. Find

S cosh? x dx.
Solution. We have

Scosh’ X dx=S-;— (cosh 2x41) dx=%sinh 2x+%x+C.

Example 2. Find
S cosh?® x dx.
Solution. We have

S cosh® x dx= S cosh® xd (sinh x)= S (14sinh2x) d (sinh x) =

==sinh x+smh ad +C.

Find the integrals:
1391. S sinh® x dx. 1397. S tanh® x dx.
1392. { coshx dx. 1398. { coth* xdu.
1393. Ssinh’xcoshxdx. 1399. S‘m .

. dx
1394. S sinh® x cosh® x dx. 1400. Sm .

dx dx
1395. Ssmhx coshzx * 1401*. tanhx—1°
sinh x dx

1396. Ssmh’xuosh’ : 1402. SVW )

Sec. 9. Using Trigonometric and Hyperbolic Substitutions for Finding
Integrals of the Form

S R (x, V ax*+4bx+c)dx, (%))

where R is a rational function,
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Transforming the quadratic trinomial ax?*+4bx+c¢ into a sum or difference
of squares, the integral (1) becomes reducible to one of the following types
of integrals:

1) S R (2, Vm® =2 dz;
2) S R (z, Vmi¥2Y)dz;
3) SR @ VZE—m?) da.

The latter integrals are, respectively, taken by means of substitutions:

1) z=msint or z=m tanh¢,
2) 2=mtant or z=msinh ¢,
3) z=msect or z=m cosh {.

Example 1. Find

5‘ dx =1
+12Vetoa+2
Solution. We have

X424 2=(x4+1)2+1.
Putting x+ 1=tan z, we then have dx=sec?*zdz and
dx __ (" _sec*zdz _ (cosz
I= G+ Ve r1 tan*zsecz'—Ssin*z

1 _VXyxt2
sin z C= x+1 +C.
Example 2. Find

Solution. We have

Putting _
x+,2l=—1{2—3 sinh¢ and dx=—V;- cosh ¢ dt,
we get
V3 . 1) V3 Ve
= 5(-—5— sinh { — 5 —2—cosh t. ) cosh ¢t dt =
i
=3 }8 3 jsinht cosh’tdt—%jcosh’tdt:
_ 3V 3cosh*t 3 /1 . 1
=8 —-3———-8—(—2- sinh ¢ cosh 1-{-? t) + C.
Since
sinht=i_(x+ l—) , cosht=—2—- Vx’-}-x-}-l
] V3 2 V3
an

t=In (x+ %-{- Vx=+x+1)+ln %,
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we finally have
3
l——(x'+x+1)’ ( +%) Viafz+i-

3 S
g " (e+ g+ VFFEFT) +
Find the integrals:

1403. (V' 3—2x—rdx. 1409. { V@ —6x—7dx.
1404, §V2+x dx. 1410. § (e x4+ 1)7 dr.

X dx
4 dx. a1. S
1405. 5V9+x’ ¥ 1 f(x—l)lfx=—3x+2
1406. { V¥ —2x+2dx. 1412. S——"L—

(' —2x+5)*

1407. § V¥ —4 dx. 1413. &

U+ Vi=at'
408. * 1 xdx. .
1408. (V¥ T xdx 1414. j(l_x,) =
Sec. 10. Integration of Various Transcendental Functions
Find the integrals:

1415. § (¢ +1)? e . 1421. SE_"%_;‘%

1416. Sx’ cos® 3x dx. 1422, -‘—/Tf__?—_ﬁ .

1417. stinxcos?xdx. 1423. Sx In l'*-"’dx

1418. { & sin® xdx. 1424. {1n* (x + VT F 2 dw.
1419. Se" sin x sin 3x dx. 1425, Sxarccos (5x—2) dx.
1420. Sxe" cos x dx. 1426. Ssinxsinhxdx.

Sec. 11. Using Reduction Formulas
Derive the reduction formulas for the following integrals:

1427. | ..S(x, o find 1, and I,
1428, 1,,=S sin"xdx; find /I, and /,,
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1429. [, = g &, find 1, and I,
1430. I,={ x"e*dx; find I,

Sec. 12. Miscellaneous Examples on Integration

1431. 1448. xdx
5216‘ 4x+9° §(1+x2)1/“1“:?
x—5 xdx
1432, {250 d 1449, SVI_W_XQ.
1433. [ —X— de. 1450. (=FL gy,
Htxtg (4 1)?
dx * dx
1434, Sx———(x, 75 1451*. S EES Tyt
X 2
1435. Sm . 1452. S l/ x*—9dx.
dx pr—p
1436. CERHrEE 1453. SVx dt4x dx.
1454. f-:
1437. S(x,+2), . xVxr+x41
2 <
1438. Sm 1455. SxV; +2x+ 2dx.
xdx 1456. S
1439. S(m x‘l/x’—l
. 3—4x dx
P i 1457. | ———.
10, [, e
(VX417 1458. (%
1441. ——'—F——‘dx. 5 ij/l—{—x’
dx 5x
]44 . gy ————— .

2 ny=+x+1 1459. | -2 dx.
1443. Sl—Vli?x dx. 1460. Scos‘xdx.
1444 1461. { e

y(f/"“ﬁ- 2 1462. 5@‘”‘
241 sin%x :
1445. V——,—x_*, X. sin® x
(Ax2—2x+1) 1463. ?/ : dx.
1446. f___. cos™x
V5—x+ Vi—x 1464. Scosec‘ 5x dx.

1447. 5 X dx. sin? x
Vir=1y 1465. Sm dx,



Sec. 12] Miscellaneous Examples on Integration 137
1466. S sin (% —x)sin(%t- + x) dx.  1484. S sinh x cosh x dx.
1467. Stan' (g#}) dx 1485. %?‘dx.
1468, st 1486. Sﬁf’%“x—"fg%dx.
1469, (2. 1487. [ 5 dx.

1470. Scos”x+2sin :iosx+2 sin® x 1488. S;z_xéi_f‘z‘e_x .

1471
1472.

1473.

1474.

1475.
1476.

1477.
1478.
1479.
1480.
1481.
1482,
1483.

dx
' Ssinxsin 2 °

dx
(2+4cos x) (3+cos x) °

sec?x
dx
J Vtax12x+4tan x+1
cos ax
Vu’+ sin? ax
x dx
cos?3x

S xsin®*x dx.

S (sin x+ cos x)* *
5 (tan x+ l) sin? x

1489.
1490.

1491.

1492,
1493.
1494.

1495.

1496.
1497.
1498.
1499.
1500.

ex
Se”‘— 65 113 9%

X

S et ldx.
E+1)*

2x
§ =g s

§ (r—1)10-% dx.
Ve T ldx.

S t
Sarc an,\
J

arc sin —dt

Scos(h1x)dx.

{ (x*—3x) sin 5x dx.
S x arc tan(2x+3)dx.
S arc sinV x dx.
S[x]dx.



Chapter V
DEFINITE INTEGRALS

Sec. 1. The Definite Integral as the Limit of a Sum

1°, Integral sum. Let a function f(x) be defined on an interval a<<x<Cb,
and a=x,<x; < ... <x,=>b is an arbitrary partition of this interval into
n subintervals (Fig. 37). A sum of the form

S,= ) FE)Ax;, m
i=o0
where

<E<x4y AXi=Xi4,—xp
i=0,12 ... (n—=1),

is called the integral sum of the function f(x) on [a, b]. Geometrically, S
is the algebraic area of a step-like figure (see Fig. 37).

'l 74

n

"
A B
* Y,
X 2
0 0=5,80% VA [0 Ep-y 2=t ) %
01 ] 10 X
Fig. 37 Fig. 38

2°, The definite integral. The limit of the sum S,, provided that the
number of subdivisions n tends to infinity, and the largest of them, Ax;,
to zero, is called the definite integral of the function f(x) within the limits
from x=a to x=b; that is,

n-1 b
im 3 fE) A= e dr. @
a

max Ax; >0 ;=
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If the function f(x) is continuous on {a, b], it is integrable on [a, b]; i.e.,
the limit of (2) exists and is independent of the mode of partition of the
interval of integration [a, b] into subintervals and is independent of the
choice of points &; in these subintervals. Geometrically, the definite integral
(2) is the algebraic sum of the areas of the figures that make up the curvilin-
ear trapezoid aABb, in which the areas of the parts located above the x-axis
are plus, those below the x-axis, minus (Fig. 37).

The definitiens of integral sum and definite integral are naturally gen-
eralized to the case of an interval [a, b], where a > b.

Example 1. Form the integral sum S, for the function

Fl)=1+x

on the interval [1,10] by dividing the interval into n equal parts and choos.
ing points §£l that coincide with the left end-points of the subintervals
Wha

(% ;4] t is the lim S, equal to?
n—» o .
Solution. Here, Ax,=lon_l=% and E,-=x[=x,,+iAx,-=l+97‘. Whence

E)=1+1 +?,%=2+97i. Hence (Fig. 38),

n-1 n-1
~ 9\ 9 18 81
Su=2f @) =3 (245 ) = n s O+ 14 +n—1)=
i=o i=o0
. 8la(n—l)_ o 8/ 1\ _.1 8
=18+ 5 2 —18+2(1—7)—58?—2—n,
lim S,--58 L
n-> o 2

Example 2. Find the area bounded by an arc of the parabola y==x?, the
x-axis, and the ordinates x=0, and x=a (a > 0).
Solution. Partition the base a into n equal %

parts Ax=%. Choosing the value of the func-

tion at the beginning of each subinterval, we will
have

a\? a\?
smsne()om (5]
al? y=-z*
vn=[(0=1£]
A
The areas of the rectangles are obtained by mul- ¢ 7
tiplying each y, by the base Ax=—:— (Fig. 39). ° a
Summing, we get the area of the step-like figure Fig. 39
2
SF%('Z‘) (142843 +... +(r—1).

Using the formula for the sum of the squares of integers,

3 pont D@t
6 »

k=1
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we find
__an(n—1)(@2n—1)

Sn 6n?

and, passing to the limit, we obtain

S= lim S,= lim &#=Dn@2n=1) _a
n->o " n—-o 6n? —3'

Evaluate the following definite integrals, regarding them as the
limits of appropriate integral sums:

b
1501, {dx. 1503. § xdx.
a

T 10
1502. { (v, +gt)dt, 1504. { 2% dx.
[} ]

8
v, and g are constant. 1505*. S x* dx.
1

1506*. Find the area of a curvilinear trapezoid bounded by
the hyperbola

1
y=?»

by two ordinates: x=a and x=b (0<<a<<b), and the x-axis.
1507*. Find

(/')k

f(x)=\ sintdt.

]

Sec. 2. Evaluating Definite Integrals by Means of Indefinite Integrals

1°. A definite integral with variable upper limit. If a function f(¢) is
continuous on an interval [a, b], then the function

X

Flx) = S F(t) dt

a
is the antiderivative of the function f(x); that is,
F' (x)=f(x) for a<x<b.
2° The Newton-Leibniz formula. If F’ (x)=/ (x), then

[
(fwax=F@©)—F o).
a
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The antiderivative F (x) is computed by finding the indefinite integral
Sf(x)dx:F(x)—i—C.
Example 1. Find the integral

{ wax
" -1
Solution. sﬂdx=% :l_%'__(____s)l_)'=48%_
-1
1508. Let
b
l=§% (b>a>1)
Find a
dl dl
1) -d_(i’ 2) az-

Find the derivatives of the following functions:

X

1509. F(x)={Intdt (x>0). 1511. F(x)={e-"at.

0 Vx
1510. F(x)={ VT . 1512. /= § cos(t*)dt (x>0).

X

1513. Find the points of the extremum of :he function

X
y:S%d! in the region x>0.

]

Applying the Newton-Leibniz formula, find the integrafs:
1 dx X .
1514, {25 1516, _Sxe dt.

-1 X
1515. ( &, 1517, {rcossat.
0

Using definite integrals, find the limits of the sums:
t518*. lim (G+mt ... +55).

n-o n*
. 1 1 1
1519**, n]inl (m+m+ ...+m).

o 1P4-2P4 . 40P
1520. lim =T (p>0).
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Evaluate the integrals:

2
1521. { (x'—2x+3)dx.

1522. § (V2x+ /%) dx.

o

4 —
1523. S“fy!fy dy.
3

[J
1524. {Vx—2dx.

3
dx
1525- _—2_5‘/___*?—_5—,; .
3

1 o

1526.

1527. S x dx

1528.

o
>

1530.

x
1
|
&
-+
N

]
.
)
.
1529. OS-____
J

N
“

1531.

Q
N

b

15632. \ sec*ada.

,3&/:5': Oy

1533.

e
&

>
I
k.

]
1534. S

1535.

1536.

1537.

1538.

15639.

1540.

1541.

1542,
1543.

1544.

1545.

dx
Votrdx—n'

e
s
+||&
=Y

° °L/1u|: °L/:.l= °

®C—
=
5| &
b3

|

cot* ¢ do.

e afae—u|n

&

cosh2x °

C’;E‘ Cemu ©
]

—
3
~

§ sinh®x dx.
']
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Sec. 3. Improper Integrals

1°. Integrals of unbounded functions. If a function f(x) is not bounded
in any neighbourhood of a point ¢ of an interval [a, 8] and is continuous
for assx <c¢ and ¢ < x < b, then by definition we put

b c-e b
Sf(x)dx: lim S f(x)dx+ lim S f (x) dx. )
a e ~»>0 a €—>0c+e

1f the limits’ on the right side of (1) exist and are finite, the improper inte-
gral is called convergent, otherwise it is divergent. When c=a or c=b, th:
definition is correspondingly simplified.

If there is a continuous function F(x) on [a, b] such that F'(x)=f(x)
when x s ¢ (generalized antiderivative), then

b
(f = dx=F ) —F (@. @

a
b

If |f(x)]<F(x) when a<<x<b and SF(x) dx converges, then the in-

a
tegral (1) also converges (comparison test).

If f(x)=0 and llm f(x) Je—=x|"=A# 0, A#0, i.e, f(x)~|—c:'41|7
when x — ¢, then 1) for m<1 the integral (1) converges, 2) for m>=1 the
integral (1) diverges.

2°, Integrals with infinite limits. If the function f(x) is continuous when
a<<x < o, then we assume

® b
§reoae= tim §feode @)
a - a

and depending on whether there is a finite limit or not on the right of (3),
the respective integral is called convergent or divergent.
Similarly,

Sf(x)dx—- lim Sf(x)dx and Sf(x)dx: lim Sf(x)dx

b->+a>a

-4
If |f(x)|<F(x) and the integral SF(x)dx converges, then the infe-

gral (3) converges as well,
If f(x)=0 and lim f(x) xm=A#w, A#0, e, f(x)~4—,, when

x— oo, then 1) for m>l the integral (3) converges, 2) for m< 1 the inte-
gral (3) diverges,
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Example 1.
g d 4 1 1
dx x X . :
el =4 1 — = lim __—l) lim (—-—l):oo
sz elir»no S‘ x'+e~>mo x? el->o(3 +e—>o €
-1 -1 e
and the integral diverges.
Example 2.
¢ 4 Y4
X x n
——= lim S—: lim (arc tan b—arc tan0)=—.
14-x2 b—»mo 1+ x2 b-»ao( ) 2
[}
Example 3. Test the convergence of the probabulity integral
S e~ **dx. @)
[}

Solution. We put
-] 1 -]
S e~ dx= S e *tdy+ S e~ * dx.
[ [} 1

The first of the two integrals on the right is not an improper integral, while
the second one converges, since e~x*<<e~* when x =1 and

® b

Se""dx: lim Se""dx: lim (—e~t4e~Ny=e '}
s b—»eoI bs>®

hence, the integral (4) converges.
Example 4. Test the following integral for convergence:

®»
S dx )
-7-’= .
v V41
Solution. When x — + o, we have
1

1 1 _

- l 1,
Vel ]/x'(1+;1;) . ]/147‘ T

Since the integral
®
S‘ dx
3
1T

converges, our integral (5) likewise converges.
Example 5. Test for convergence the elliptic integral

.I

Sz dx )
J Y1i—¢a
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Solution. The point of discontinuity of the integrand is x=1. Applying
the Lagrange formula we get

1 1 1 1
T—x —x). 3 L
Vi-s -/(l %) 45 (1—x* 2}

where x < x, < 1. Hence, for x— 1 we have
1

1 1 1 )4
VI—X‘ 2 (l—x *
Since the integral
1 1

1 ry
J (=) =
o
converges, the given integral (6) converges as well.

Evaluate the improper integrals (or establish their divergence):

1552,

klh.
| i

xIntx

1 ®
dx dx
546, (-2 9. (&,
154 §Vx 155 _Sm Eo
2 ®
dx dx
1547. (5. 1555. | .
-1 -0
1 ®
1548. (5. 1556. { sinxdx
0
° 1
3 p T p
X X
1549, {20 1657. { -
0 [
1
; d & d
X X
1550 § —-Z 1658. | oir-
[} [}
1551. Si’i"- 1559. Sx‘l’:x @>1).
1 a
1

1560. S & @>1).

Eud

2
1553. 1561. { cot xdx.
(]

=8
Y&
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T 4
e~ * dx (k>0). 1565. 57+i1’
1]

1
dx. 1566. {2
[}

Test the convergence of the following integralss

dx
1567. th 1571. 07=_7;
dx dx
1568, S Fry-a A S Tn
0 dx e slnx
1569. _:S:Wﬁ. 1573. ‘El_ dx
2
1570. SVs
X

1574*. Prove that the Euler integral of the fiist kind (beta-
function)

1

B(p, q)={ =" (1—x)?~ dx

converges when p>0 and ¢>0.
1575*. Prove that the Euler integral of the second kind (gam-
ma-function)

®

I'(p)= S xP~'e=*dx
[
converges for p>0.

Sec. 4. Change of Variable in a Definite Integral

If a function f(x) is continuous over assx<<b and x=¢ (¢) is a function
continuous together with its denvatweép (t) over a <t << P, Where a=¢ (a)
and b=¢ (p), and f [ (t)] is defined and continuous onthe interval e <<t<p,
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then
b B
(rmar={remiewa

Example 1. Find

S x YV at—x2dx (a >0).
']

Solution. We put
x=asint;

dx=acost dt.

X
Thent:arcsm-a— and, consequently, we can take a=arcsin0=0,

f = arc sin l==—2- Therefore, we shall have
il

a 2
S ¥V at—xtdx= S a*sin?t{ V a*—a?sin®tacost df =
0 1)

n b n

) 2 T

a a?
=a S sin’tcos’tdt_TS in? 2t d1=?5‘(l—cos4!)dt=
[} [} )]

z
2
nat

=——6—.

at 1
=3 (t—_T sin4t)

1576. Can the substitution x=cos¢ be made in the integral

S“Vl —x*dx?

Transform the following definite integrals by means of the
indicated substitutions:

n

1577. x+ ldx, x=2{—1. .
SV 1580. S f(x)dx, x=arctant.

1
dx
1578. ,  x=sint.
S Vice® =% 1581, For the integral
—_ b
2
. Sfwdx (0>a)
dx . @
1579. SVX’_H, = sinh {.
Y
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indicate an integral linear substitution
x=at+8,

as a result of which the limits of integration would be 0 and 1,
respectively.

Applying the indicated substitutions, evaluate the following
integrals:

4
1582. Sl—f’i—: x=1
0 + *
¢ w—2% .
1583. : m x—2=2%
Ine
1584. SVe"—ldx, eF—1=2"
g‘ d
t t
1585. S3+2cost, tan L =2
i'v
1586. Sl - tanx=1.

Evaluate the following integrals by means of appropriate
substitutions:

1587. V1—xt Vea—1
§—T dx. 1589. S x+3 dx.

Vx “-1 ( dx
1588. S 1590. Sz?TV_s}'“ﬁ
Evaluate the integrals:

a
dx 3

1591, SMTTTsi‘_ﬂ 1593. SVax——x dx.
1592. S(l + e 1594, SS 3cosx*

1595. Prove that if f(x) is an even function, then

Sa f(x)dx=2§f(x)dx.

-q 9
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But if f(x) is an odd function, then

S f(x)dx=0.
-a
1596. Show that

® o

e—"’dx=2we""’dx= E:_—’idx.
feedemsfeear- ]

-

1597. Show that

n
1 2
dx sin x
—_— \ —=dx.
arc cos x x
[] (]

1598. Show that

f(sinx)dx= \ f(cos x)dx.

°L/')u|=
Cean|y

Sec. b. Integration by Parts

If the functions u(x) and v (x) are continuously differenfiable on the
interval [a, b}, then

b b b
S u (%) v (x) dx =u (x) v (%) —S v (%) &’ (x) dx. )
a a a

Applying the formula for integration by parts, evaluate the
following integrals:

1599. S xcos xdx. 1603. S xe~*dx.

1600. Slnxdx. 1604. Se-"" cosbxdx (a>0).
; o

1601. S xe**dx. 1605. S e-sinbxdx (@>0).
l;l [}

1602. § ¢* sinxdx.
[
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1606**. Show that for the gamma-function (see Example 1575)
the following reduction formula holds true:

F(p+1)=pl'() ((@P>0).

From this derive that T' (n4+1)=nl, if n is a natural number.
1607. Show that for the integral
n

T
2

l,= Ssin”xdx= S cos” xdx
[} [}

the reduction formula
—1
1n= nT [n-z

holds true.

Find I, if n is a natural number. Using the formula obtained,
evaluate /, and /.

1608. Applying repeated integration by parts, evaluate the
inlegral (see Example 1574)

B(p, g)={ """ (1—x)+=dx,

where p and g are positive integers.
1609*. Express the following integral in terms of B (beta-
function):

Inm=\ sin” x cos" xdx,

e Y|

if m and n are nonnegative integers.

Sec. 6. Mean-Value Theorem
1°. Evaluation of integrals. If f(x) <<F (x) for a<<x<b, then
b b
Sf(x) dx<SF(x) dx. )
a a
If f(x) and @ (x) are continuous for a<Cx<<b and, besides, @ (x) =0, then
b b b
mSw(x)dngf(x)w(x)dx<MScp(x)dx, 2)
a a

a

where m is the smallest and M is the largest value of the function f (x) on
the interval [a, 0].



Sec. 6] Mean-Value T heorem 15t

In particular, if @ (x)=1, then
b
mb—a)< S fx)de< M (b—a). 3)

a

The inequalities (2) and (3) may be replaced, respectively, by their equiva-
ent equalities:
b

b
(rmewde=1© [ owar
a a
and

b
{1 ae=1® 6—a,

where ¢ and § are certain numbers lying between a and b.
Example 1. Evaluate the integral

]/ 1+—sm’xdx

Solution. Since 0 <<sin?x<< 1, we have
n n E)

1.7 < I <191,

N
o!/:"l

that is,

2°. The mean value of a function. The number

is called the mean value of the function f(x) on the inferval a<<x<b.

1610*. Determine the signs of the integrals without evaluating
them:

a) § x*dx; ) Swdx.

F1
b) S x cos x dx;
']
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1611, Determine (without evaluating) which of the following
integrals is greater:

a) i']/l——]——? dx or § dx;
b) S x*sin*xdx or § x sin*x dx;
c) § e¥dx or § e*dx.

Find the mean values of the functions on the indicated inter-
vals:

1612, f(x)=x*, O<<x<l.
1613. f(x)=a+bcosx, — A< X7
1614. f(x)=sin’x, I<x<m.
1615. f(x)—sin‘x, I<sx<m.

1616. Prove that ] bet ~067 d—~
rove tha S V ies between - an 73

& 0.70. Find the exact value of this integral.

Evaluate the integrals:

n
1617. § ViTxdx. 1620*. { x}/Tanx.
] ,-‘-0
13 dx ’sinx
1618. ST—JC'. 1621. S—x—dx.
L

;M
dx
1619. S10+3cosx'
)
1622, Integrating by parts, prove that

2001

0< S cosxd <100:;

100t
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Sec. 7. The Areas of Plane Figures

1°. Area in rectangular coordinates. If a continuous curve is defined in
rectangular coordinates by the equation y=f(x) [f(x)=0], the area of the
curvilinear trapezoid bounded by this curve, by two vertical lines at the

Y 4 d

0 a gl 1 3 X

Fig. 40 Fig. 41
points x=a and x=b and by a segment of the x-axis a<x<<b (Fig. 40),
is given by the formula b
s={feoax 1y
a

2
Example 1, Compute the area bounded by the parabola y=x—, the
straight lines x=1 and ¥x=3, and the x-axis (Fig. 41). 2

Yy

Fig. 42

Solution. The sought-for area is expressed by the integral

3
2
S=(%gp=gl
S2dx 43.
1
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Example 2. Evaluate the area bounded by the curve x=2—y—y* and
the y-axis (Fig. 42).

Solution. Here, the roles of the coordinate axes are changed and so the
sought-for area is expressed by the integral

1
S= S(z—y—y')dy=4 5
—2

where the limits of integration y, =—2 and y,=1 are found as the ordinates
of the points of intersection of the curve with the y-axis.

Fig. 44 Fig. 45

In the more general case, if the area S is bounded by two continuous
curves y= [, (x) and y=F,(x) and by two vertical lines x=a and x=b, where
Fi (%) <[ (x) when a<<x<Cb (Fig. 43), we will then have:

b
S= S [F2 () —Fi(x)] dx. @

Example 3. Evaluate the area S contained between the curves

y=2—x* and y*=x? 3)

(Fig. 44).
Solution. Solving the set of equations (3) simultaneously, we find the
limits of integration: x;=—1 and x,=1. By virtue of formula (2), we obtain

1
=l @e—n—lyde=[0,_% _3,7\' _o2
S S( x*—x'ln)dx (2x 35 )_, 21.
-1

Ii the curve is defined by equations in parametric form x=gq(#), y=Y(t,
then the area of the curvilinear trapezoid bounded by this curve, by twg
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vertical lines (x=a and x=»5), and by a segment of the x-axis is expressed
by the integral ,
2
s={vmre @mat,

t

where ¢, and ¢, are determined from the equations
a=@(t,) and b=¢q(t,) [P({)=0 on the interval [¢,, ¢,]].
Example 4. Find the area of the ellipse (Fig. 45) by using its paramelric
equations
x=acost,
y=bsint.

Solution. Due to the symmetry, it is sufficient to compute the area of a
quadrant and then multiply the result by four. If in the equation x=acos?

we first put x=0 and then x=a, we get the limits of integration t,:% and

t,=0. Therefore,
n

1
3

2
s=(bsina(—sint dt=ab5 sint dt =™
0

4

sl —,

and, hence, S =mab.

2°, The area in polar coordinates. If a curve is defined in polar coordi-
nates bv the equation r==f (¢), then the area of the sector AOB (Fig. 46),
bounded by an arc of the curve, and by two radius vectors OA and OB,

Fig. 46 Fig. 47

which correspond to the values @,=a and ¢,=f, is expressed by the
integral

S =\ [[(®)}*de.

N —
R

Example 5. Find the area contained inside Bernoulli’s lemniscafe
r*=a*cos 2¢ (Fig. 47).
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Solution. By virtue of the symmetry of the curve we determine first one
quadrant of the sought-for area:

1 1
75=3

T
4
[]

=%
4 L]

e —ye|a

L]
atcos 29 do =52- [l- sin 2q>]

Whence S=at.

1623. Compute the area bounded by the parabola y=4x—x*
and the x-axis.

1624. Compute the area bounded by the curve y=Inx, the
x-axis and the straight line x=e.

1625*. Find the area bounded by the curve y=x (x—1) (x—2)
and the x-axis.

1626. Find the area bounded by the curve y*=x, the straight
line y=1 and the vertical line x==8.

1627. Compute the area bounded by a single half-wave of the
sinusoidal curve y= sinx and the x-axis.

1628. Compute the area contained between the curve y=tanx,

the x-axis and the straight line x=—§ .

1629. Find the area contained between the hyperbola xy=m?,
the vertical lines x=a and x=3a (a>0) and the x-axis.
1630. Find the area contained between the witch of Agnesi

8
Y=g7a and the x-axis.

1631 Compute the area of the figure bounded by the curve
y=-x°, the straight line y=8 and the y-axis.

1632. Find the area bounded by the parabolas y*=2px and
x=2
16% Evaluate the area bounded by the parabola y=2x—x*
and the straight line y=—x.

1634. Compute the area of a segment cut off by the straight
line y=3—2x from the parabola y=x".

1635. Compute the area contained between the parabolas y=x*,

x2

y=3 and the straight line y=2x«.

1636. Compute the area contained between the parabolas
y=x—32 and y=4-—%x’.

1637. Compute the area containedz between the witch of
Agnesi y—m and the parabola y=%.

1638. Compute the area bounded by the curves y=e*, ya=g=*
and the straight line x=1.
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1639. Find the area of the figure bounded by the hyperbola
:—,——%;:1 and the straight line x=2a.

1640*. Find the entire area bounded by the astroid

2 2 2
x! +y! =q 3 .
1641. Find the area between the catenary

X
y=acosh—a-,

the y-axis and the straight line y=2%(e’—|— 1).

1642, Find the area bounded by the curve a*y*=x* (a*—x%).
1643. Compute the area contained within the curve

(5 +(1)F=1

1644. Find the area between the equilateral hyperbola x*—y* =
=0, the x-axis and the diameter passing through the point (5,4).

1645. Find the area between the curve =%, the x-axis,
and the ordinate x=1 (x> 1).

1646*. Find the area bounded by the cissoid y’=2a’i_x
and its asymptote x=2a (a>0).

1647*. Find the area between the strophoid y’:x("“a)z and

2a—x
its asymptote (a>0).
1648. Compute the area of the two parls into which the
circle x*-+y*=-8 is divided by the parabola y* = 2x.
1649. Compute the arca contained between the circle x* + 4* =16
and the parabola x*=12(y—1).
1650. Find the area contained within the astroid

x=acos’t; y=>bsin’t.

1651. Find the area bounded by the x-axis and one arc of
the cycloid

{ x=a(t—sint),

y=a(l—cos{).
1652. Find the area bounded by one branch of the trochoid
ot 0<b=<a

and a tangent to it at its lower points.
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1653. Find the area bounded by the cardioid

{ x=a (2 cos t—cos 2f),
y=a(2sint—sin 2f).

1654*. Find the area of the loop of the folium of Descartes

3at | 3at?

=rre YSrse

1655*, Find the entire area of the cardioid r=a (1 + cos ).
1656*. Find the area contained between the first and second
turns of Archimedes’ spiral, r=ag
(Fig. 48).

1657. Find the area of one of the
leaves of the curve r=a cos2¢.

1658. Find the entire area bound-
ed by the curve r*=a® sin 4.

1659*. Find the area bounded by
the curve r=asin 3¢.

1660. Find the area bounded by
Pascal’s limagon

Fig. 48 r=2+cosq.
1661. Find the area bounded by the parabola r=a sec* %
and the two half-lines (p=f;— and q>=é;-.
1662. Find the area of the ellipse r=m (e D).

1663. Find the area bounded by the curve r=2acos3¢ and
lying outside the circle r=a.
1664*. Find the area bounded by the curve x*+ y*=x*+ 4%

Sec. 8. The Arc Length of a Curve

1°. The arc length in rectangular coordinates. The arc length s of a curve
y=Ff(x) contained between two points with abscissas x=a and x=0b is

b
s={ vria.
a
Example 1. Find the length of the astroid x*/®4 y*®=g%* (Fig, 49).
Solution. Differentiating the equation of the astroid, we get
_l/ll’

xlll'

'
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For this reason, we have for thz arc length of a quarter of the astroid:

) a — a 4 3
- AN (N P
T s—Sl/l—{- o dx—S A dx= 5 @

[ o
Whence s=6a.

2°, The arc length of a curve represented parametrically. If a curve is
represented by equations in parametric form, x=¢q (¢) and y =y (f), then the
arc length s of the curve is

L
S=S V‘x',g_,r_ylg dt,
L

where ¢, and ¢, are values of the parameter that correspond to the extremities
of the arc.

~

Fig 49 Fig. 50

Example 2. Find the length of one arc of the cycloid (Fig. 50)
x=a(t—sint),
y=a (l—cost).
Solution. We have %‘:a(l—cos t) and Z—“f:asint. Therefore,
2 27
s:S Va’(l—cost)’+a’sin'tdt=2aS siné—dl:Sa.
[]

)

The limits of integration ¢, =0 and t,=2n correspond to the extreme poinfs
of the arc of the cycloid.

If a curve is defined by the equation r=f (@) in polar coordinates, then
the arc length s is

B
o= Vg,
a

v;lhere a and P are the values of the polar angle at the extreme points of
the arc.
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Example 3. Find the length of the entire curve r=asin® - q> (Fig. 51)
The entire curve is described by a point as ¢ ranges from 0 to 3n

0 P
X
i
a
Fig. 51
Solution. We have r'=a sin’—csf- cos %—)-, therefore the enfire arc length of

the curve is
m
s—f ]/az sin® (P +a?sin® %cos= 2 dtp—aj sin? - (P dp = Sm

[}

1665. Compute the arc length of the semicubical parabola
y'=x from the coordinate origin to the point x=4.

1666*. Find the length of the catenary y-—acosh— from the

vertex A (0 a) to the point B (b,h).

136t7 Comlpute the arc length of the parabola y=2}x from
x=0 to x=

1668. Find the arc length of the curve y=e* lying between
the points (0,1) and (1,e).

1669. Find the arc length of the curve y=Inx from x=)3
to x= V8.

1670. Find the arc length of the curve y=arcsin(e~*) from
x=0 to x=1.

1671. Compute the arc length of the curve x=Insecy, lying
between y=0 and y=%—.

1672. Find the arc length of the curve x=71—y’——;—lny from
y=1to y=e.
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1673. Find the length of the right branch of the tractrix

x=V &=y 4aln|tt ey Va

lfromy atoy=06(0<b<a).

1674. Find the length of the closed part of the. curve 9ay*=
= x (x— 32)*.

1675. Find the length of the curve y=ln(coth %) from x=a
to x=b O<<a<<h).

1676*. Find the arc length of the involute of the circle

x=a(cost+1sint), 3 B
y=a(sint—tcost) } from t=0 to t=T.

1677. Find the length of the evolute of the ellipse

c? 2. ¢ . s 2 2 2
x=-—cos’t; y=--sin’t (c =a'—b%).

1678. Find the length of the curve

x=a(2cost—cos 2¢),
y=a (2 sin ¢ —sin 2f).

1679. Find the length of the first turn of Archimedes’ spiral
r=ag

1680 Find the entire length of the cardioid r =a(l 4 cosg).

1681. Fmd the arc length of that part of the parabola
r =asec’ 2 which is cut off by a vertical line passing through
the pole.

1682. Find the length of the hyperbolic spiral r¢=1 from the
point (2.'/,) to the point ('/,,2).

1683. Find the arc length of the logarithmic spxra] r=aemo,
lying inside the circle r=a.

1684. Find the arc length of the curve ¢= (r-}- ) from
r=1to r=3.

Sec. 9. Volumes of Solids

1°, The volume of a solid of revolution. The volumes of solids formed by
the revolution of a curvilinear trapezoid [bounded by the curve y&f(x), the
x-axis and two vertical lines x=a and x=0b] about the x- and 'y-axes are

6 — 1900
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expressed, respectively, by the formulas:

b b
1) Vg=n S ytdx; 2) Vy=2n S xy dx *).
a a

Example 1. Compute the volumes of solids formed by the revolution of a
figure bounded by a single lobe of the sinusoidal curve y=sinx and by the
segment 0<Cx<<m of the x-axis about: a) the x-axis and b) the y-axis.

Solution.

EL nz
a) VX-—-nSsin’xdx-:—2— H
0

L4

b) Vy=2n S x sin x dx=2r (—x cos x - sin x)T = 2n?.
o

The volume of a solid formed by revolution about the y-axis of a figure
bounded by the curve x=g (y), the y-axis and by two parallel lines y=c and
y=d, may be determined from the formula

d
Vy=n S xtdy,

c

obtaidned from formula (1), given above, by interchanging the coordinates
x and y.

If the curve is defined in a different form (parametrically, in polar coor-
dinates, etc.), then in the foregoing formulas we must change the variable of
integration in appropriate fashion.

In the more general case, the volumes of solids formed by the revolution
about the x- and y-axes of a figure bounded by the curves y,=f, (x) and y,=f, (x)

[where f, (x)<<f,(x)], and the straight lines x=a and x=b are, respectively,
equal to

b
Vy=n{ (13—} dx
and ‘
b
Vy=2n S X (y2—4,) dx.
a

Example 2. Find the volume of a torus formed by the rotation of the
circle x4 (y—b)*=a® (b=a) about the x-axis (Fig. 52).

*) The solid is formed by the revolution, about the y-axis, of a curvilinear
trapezoid bounded by the curve y=f(x) and the straight lines x=a, x=0b,
and y=0. For a volume element we take the volume of that part of the solid
formed by revolving about the y-axis a rectangle with sides y and dx at a
dlstance: from the y-axis. Then the volume element dVyp=2mnxydx, whence

Vy=2n S xy dx,
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Solution. We have

yy=b— Va'—xi and y,=b+ Vai—x.
Therefore,
g -

ve=n { 10+ VE=Pr—0—Va—ryldx=

—-a

a
= 4nb S Va@—xtdx=2n%a%
-a

(the latter integral is taken by the substitution x =asint).

The volume of a solid obtained by the rofation, about the polar axis, of a
sector formed by an arc of the curve r=F(p) and by two radius vectors
¢ =0, p=f may be computed from the formula

B

Vp=%-nSr' sin @pd @.
a

This same formula is conveniently used when seeking the volume obtained
by the rotation, about the polar axis, of some closed curve defined in polar
coordinates.

Example 3. Determine the volume formed by the rotation of the curve
r=asin2¢ about the polar axis.

Solution.

n

2
Vp=2-§- n\ risin q>drp=%na’S sit® 2¢ sin @ dgp =
(|}

sin® @ cos® p dp = 76015 na.

2,
—§ﬂa

GQ/‘;nla oc,auia

ﬂ.
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2°, Computing the volumes of solids from known cross-sections. If S=3S (x)
Is the cross-sectional area cut off by a plane perpendicular to some straight
line (which we lake to be the x-axis) at a point with abscissa x, then the
volume of the solid is

V==§ S (x) dx,

Xy

where x, and x, are the abscissas of the extreme cross-sections of the solid.

Example 4. D2termine the volume of a wedge cut off a circular cylinder
by a plane passing through the diameter of the base and inclined to the base
at an angle a. The radius of the base is R (Fig. 53).

Solution. For the x-axis wa take the diamoter of the base along which
the cutting plane intersects the base, and for the y-axis we take the diameter
of the base perpendicular to it. The equation of the circumference of the base
is x*+y*=R2

The area of the section ABC at a distance x from the origin O is
S (x)=area A ABC=—; AB-BC=—;~yy tana =% tana. Therefore, the sought-

2
for volume of the wedge is

R R
V=2-—é—S y? tanudx=tanaS (R’—x’)dx=%tanaR‘.
[} L)

1685. Find the volume of a solid formed by rotation, about
the x-axis, of an area bounded by the x-axis and the parabola
y=ax—x'(a>0).

1686. Find t’he vglume of an ellipsoid formed by the rotation
of the ellipse -+ 4, =1 about the x-axis.

1687. Find the volume of a solid formed by the rotation, about
the x-axis, of an area bounded by the catenary y=acosh%, the

x-axis, and the straight lines x= +-a.

1688. Find the volume of a solid formed by the rotation, about
the x-axis, of the curve y==sin*x in the inlerval between x=0
and x=m.

1689. Find the volume of a solid formed by the rotation, about
the x-axis, of an area bounded by the semicubical parabola y* = x?,
the x-axis, and the straight line x=1.

1690. Find the volume of a solid formed by the rotation of
the same area (as in Problem 1689) about the y-axis.

1691. Find..the volumes of ihe solids formed by the rotation
of an area bounded by the lines y=e*, x=0, y=0 about: a) the
x-axis and b) the y-axis.

1692. Find the volume of a solid formed by the rotation, about

the y-axis, of that part of the parabola y*=4ax which is cut off
by the straight line x=a.
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1693. Find the volume of a solid formed by the rotation, about
the straight line x=a, of that part of the parabola y* =4ax which
is cut off by this line.

1694. Find the volume of a solid formed by the rotation, about
the straight line y=—p, of a figure bounded by the parabola

y' =2px and the straight line x=% .

1695. Find the volume of a solid formed by the rotation, about
the x-axis, of the area contained between the parabolas y=x
and y=}x.

1696. Find the volume of a solid formed by the rotation,
about the x-axis, of a loop of the curve (x—4a)y* =ax(x—32)
(a>0).

1697. Find the volume of a solid generated by the rotation

of the cyssoid y* = *_x about its asymplote x=2a.

2a

1698. Find the volume of a paraboloid of revolution whose
base has radius R and whose altitude is H.

1699. A right parabolic segment whose base is 2a and altitude &
is in rotation about the base. Delermine the volume of the result-
ing solid of revolution (Cavalieri’s “lemon”).

1700. Show that the volume of a part cut by the plane x=2a
off a solid formed by the rotation of the equilateral hyperbola
x*—y* =a' about the x-axis is equal to the volume of a sphere
of radius a.

1701. Find the volume of a solid formed by the rotation of a
figure bounded by one arc of the cycloid x=a (f—sint),
y=a(l-—cos!) and the x-axis, about: a) the x-axis, b) the y-axis,
and c) the axis of symmelry of the figure.

1702. Find the volume of a solid formed by the rotation of
the astroid x=acos’{, y=0b sin®¢ about the y-axis.

1703. Find the volume of a solid obtained by rotating the
cardioid r=a (1 4 cos ¢) about the polar axis.

1704. Find the volume of a solid formed by rotation of the
curve r=acos’¢ about the polar axis.

1705. Find the volume of an obelisk whose parallel bases are
rectangles with sides A, B and a, b, and the altitude is A.

1706. Find the volume of a right elliptic cone whose base is
an ellipse with semi-axes a and b, and altitude h.

1707. On the chords of the astroid x%s 4 y's=a, which are
parallel to the x-axis, are constructed squares whose sides are
equal to the lengths of the chords and whose planes are perpen-
dicular to the xy-plane. Find tHe volume of the solid formed by
these squares.
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1708. A circle undergoing deformation is moving so that one
of the points of its circumference lies on the y-axis, the centre

describes an ellipse ;—:+§;=1, and the plane of the circle is

perpendicular to the xy-plane. Find the volume of the solid
generated by the circle.

1709. The plane of a moving triangle remains perpendicular
to the stationary diameter of a circle of radius a. The base of
the triangle is a chord of the circle, while its vertex slides along
a straight line parallel to the stationary diameter at a distance A
from the plane of the circle. Find the volume of the solid (called
a conoid) formed by the motion of this triangle from one end of
the diameter to the other.

1710. Find the volume of the solid bounded by the cylinders
x*4-2=a® and y* - 2*=a’.

1711. Find tzle vc:lume of the segment cut off from the ellip-
tic paraboloid 3—4-55=x by the plane x=a.

1712, Find the VO]UI’TIE o’f the solid bounded by the hyperbo-
loid of one sheet l%-'ri’T—zT:l and the planes z=0 and z=Ah.

1713. Find the volume of the ellipsoid &+ +2% =1.

Sec. 10. The Area of a Surface of Revolution

The area of a surface formed by the rotation, about the x-axis, of an
arc of the curve y=f (x) between the points x=a and x=b, is expressed by
the formula b

b
SX:ZnSy%dx:m gy Vitytdx (1
a u

(ds is the differential ol the arc of the curve).

"Fig. 54 Fig. 55

If the equation of the curve is represented differently, the area of the
surface Sy is cbtained from formula (1) by an appropriate change of variables.
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Example 1. Find the area of a surface formed by' rotation, about the
x-axis, of a loop of the curve 9y2=x (3—x)? (Fig. 54).
Solution. For the upper part of the curve, when 0<<x<{3, we have

y=—:ls-(3— x) V' %. Whence the differential of the arc ds=;:}l_
mula (1) the area of the surface *

dx. From for-

| — x+41
S:2n5 —3—(3-—x) sz V;dx-zsn.

0

Example 2. Find the area of a surface formed by the rotation of one are
of the cycloid x=a (t—sint); y=a(l—cos¢) about its axis of symmetry
(Fig. 55).

gSolution. The desired surface is formed by rotation of the arc 0A about
the straight line AB, the cquation of which is x=ma. Taking y as the inde-
pendent variable and noting that the axis of rotation
AB is displaced relative to the y-axis a distance ma, we
will have Yl A

20
ds
8 =2nS (nra—x) @y dy.
0

Passing to the variable f, we obtain
t

S 2:15 (na—at +asin t) V(dt) +(7!> dt =
°

I
L |
=2nS (na—at+aslnt)2asin%dt= |
[}
n L

==4na’S (nsin-%-—tsm—;——{—sinlsin ?t) dt = Fig. 56

S|
5
~

[

=4na? [—2ncos —‘,;—+2t cos —;——4sin é——i—%sin‘—é—]?:t}n(n—%) at,

1714. The dimensions of a parabolic mirror AOB are indicated
in Fig. 56. It is required to find the area of its surface.

1715. Find the area of the surface of a spindle obtained by
rotation of a lobe of the sinusoidal curve y=sinx about the
X-axis.

1716. Find the area of the surface formed by the rotation of
a part of the tangential curve y=tanx from x=0 to x=—},
about the x-axis.

1717. Find the area of the surface formed by rotation, about
the x-axis, of an arc of the curve y=e-*, from x=0 to x =00,
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1718. Find the area of the surface (called a catenoid) formed

by the rotation of a calenary y==acosh% about the x-axis from
x=0 to x=a.

1719. Find the area of the surface of rotation of the astroid
X" 4 y'" =a’" about the y-axis.

1720. Find the area of the surface of rotation of the curve
x=—}y’———é—lny about the x-axis from y=1 to y=e.

1721*, Find the surface of a torus formed by rotation of the
circle x*+4 (y— b)* =a® about the x-axis (b>a).
1722. Find the area of the surface formed by rotation of the

ellipse g:—{—[;—”:=l about: 1) the x-axis, 2) the y-axis (a>b).

1723. Find the area of the surface formed by rotation of one
arc of the cycloid x =a(f—sin¢) and y=a (1 —cos ¢) about: a) the
x-axis, b) the y-axis, c¢) the tangent to the cycloid at its highest
point.

1724, Find the area of the surface formed by rotation, about
the x-axis, of the cardioid

x=a (2 cos t—cos 2t),
Yy =a (2 sin t—sin 2f).

1725. Determine the area of the surface formed by the rotation
of the lemniscate r*=aqa*cos 2¢ about the polar axis.

1726. Determine the area of the surface formed by the rotation
of the cardioid 7 =2a (1 4+ cos ¢) about the polar axis.

Sec. 11. Moments. Centres of Gravity. Guldin’s Thecrems

1°. Static moment. The static moment relative to the l-axis of a material
point Ad having mass m and at a distance d from thz [-axis is the quantity
M,=m .

The static moment relative to the /-axis of a system of n material roints

with masses m,, m,, ..., m, lying in the plane of the axis and at distances
d,, d, ..., d, is the sum

n
Ml:lz md;, )]
=1

where the distances of points lying on one side of the I-axis have the plus
sign, those on the other side have the minus sign. In a similar manner we
define the static moment of a system of roints relative to a plane.

If the masses continuously fill the line or figure of the xy-plane, then the
static moments My and My about the x- and y-axes are expressed (respective-

ly) as integrals and not as the sums (1). For the cases of geometric figures,
the density is considered equal to unity,
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In particular: 1) for the curve x=ux(s); y=y(s), whaere the parameter s
Is the arc length, we have
L L

Mx=Sy(s)ds; My-——Sx(s)ds @

(ds= V dx)*+ (dy)? is the differential of the arc);

4
v {
b f
; X

Fig. 57 Fig. 58

2) for a plane figure bounded by tha curve y=y (x), the x-axis and two
vertical lines x=a and y=»5, we obtain

b b
l »
Mx=3gylyldx; My=3leldx. 3
a a
Example 1. Find the static moments about the x- and y-axes of a triangle
bounded by the straight lines: %-}-%::1, x=0, y=0 (Fig. 57)

/ g
Solution. Here, y=10 Kl —-Z—) . Applyirg formula (3), we obtain

and
c o X ah
My:bS Xk]—;)d&: —6—.
°

2°. Moment of inertia. The moment of inertia, about an [-axis, of a mafe.
rial point of mass m al a distance d from tha {l-axis, 1s the number /, =md*

The moment of wnertia, about an [-axis, of a system of a material points
with masses m;, m,, ..., m, 1s the sum

n
I"—'— 2: m‘-d:v
i=1
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where d,, d,..., d, are the distances of the points from the [-axis. In the
case of a continuous mass, we get an appropriate integral in place of a sum.

Example 2. Find the moment of inertia of a triangle with base b and
altitude h about its base.

Solution. For the base of the triangle we take the x-axis, for its altitude,
the y-axis (Fig 58).

Divide the triangle into infinitely narrow horizontal strips of width dy,
which play the role of elementary masses dm. Utilizing the similarity of
triangles, we obtain

h

dm=»b —;—y dy
and
dl y=y*dm= % y: (h—y)dy.
Whence

h
lx.—_—% S & (h—y) dy=1l2 bis.
[\]

3°. Centre of gravity. The coordinates of the centre of gravity of a plane
figure (arc or area) of mass M are computed from the formulas
- M

=W YT
where My and My are the static moments of the mass. In the case of geomet-
ric figures, the mass M is numerically equal to the corresponding arc or area.
For the coordinates of the centre of gravity (x, y) of an arc of the plane

curve y=f (x) (a<<x<Cb), connecting the points Ala, f(a)] and B{b, f(b)],
we have

B b B b
Sxds Sx V14 (y')2dx Syds Sy l/l—i—(y’)”dx
A a A a

= : G=A___

v 8

=% b :
{ VITwrer { VIFwra

The coordinates of the centre of gravity (x, y) of the curvilinear trapezoid
a<<x<<b, 0 y=<f(x) may be computed from the formulas

b b
l 2
Sxydx —2—Sy dx
a a
S ’

= S , y =

|

b
where S= S ydx is the area of the figure.

a
There are similar formulas for the coordinates of the centre of gravity of
a volume.

Example 8. Find the centre of gravity of an a f th ici
4 yt=a% (y=0) (Fig. 59). g y rc of the semicircle
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Solution. We have
y= V&tx_i' Yy = .
a?—x?
and
—_— dx
ds = V1T () dx == —mt
+ () Va0
Whence
a d
’ ax
My == 5 xds—= ( Va’—x’dv:o'
Ya Za
a a d
‘ aax
My= gvyds s Vae—y? Vo = 2a?,
Za Za
' adx
M— g Vi na.
—-a
Hence,
2
x=0; y= X

4°. Guldin’s theorems.

Theorem 1. The area of a surface obtained by the rotation of an arc of

a plane curve about some axis lying

in the same plane as the curve and not

intersecting it is equal to the product of the length of the curve by the
circumference of the circle described by the centre of gravity of the arc of

the curve.

Theorem 2. The volume of a solid obtained by rotation of a plane figure

about some axis lying in the plane
equal to the product of the area of

of the figure and not intersecting it is
this figure by the circumference of the

circle described by the centre of gravity of the figure.

Y

[

!
ds

0 C(Z,5)

-a

0
Fi

1727. Find the static mome
a segment of the straight line

g. 59

nts about the coordinate axes of

X Yy
ate=L

lying between the axes.
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1728. Find the static moments of a rectangle, with sides a and b,
about its sides.

1729. Find the static moments, about the x- and y-axes, and
the coordinates of the cen!re of gravity of a triangle bounded by
the siraight lines x + y=a, x=0, and y=0.

1730. Find the static moments, about the x- and y-axes, and
the coordinates of the centre of gravity of an arc of the astroid

2
x* 4y
lying in the first quadrant.

1731. Find the static moment of the circle

2
s —q*®

r=2asin¢
about the polar axis.

1732. Find the coordinates of the centre of gravity of an arc
of the catenary

X
y=acosh;—

from x=—a to x=a.

1733. Find the centre of gravity of an arc of a circle of radius a
subtending an angle 2a.

1734. Find the coordinates of the centre of gravity of the arc
of onec arch of the cycloid
x=a(t—sin?); y=a(l—cosi).
1735. Find the coordinates of the centre of gravity of an area

2 2
bounded by the ellipse -2—,—1— %zl and the coordinate axes (x =0,
y=0).
1736. Find the coordinates of the centre of gravity of an area
bounded by the curves

y:x” y= l//;.

1737. Find the coordinates of the centre of gravity of an area
bounded by the first arch oi the cycloid

x=a(t—sin(), y=a(l —cost)
and the x-axis.
1738**. Find the centre of gravity of a hemisphere of radius a
lying above the xy-plane with centre at the origin.

1739**. Find the centre of gravity ol a homogeneous right
circular cone with base radius r and allitude &.

1740**. Find the centre of eravity of a homogeneous hemi-

sphere of radius a lying above the xy-plane with centre at the
origin.
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1741. Find the moment of inertia of a circle of radius a about
its diame'er.

1742, Find the moments of inertia of a rectangle with sides
a and b about its sides.

1743. Find the moment of inertia of a right parabolic segment
with base 2b and altilude & about its axis of symmetry.

1744. Find the moments of inertia of the area of the ellipse

X2y . ..
Fty=1 about its principal axes.

1745**. Find the polar moment of inertia of a circular ring
with radii R, and R, (R,<R,), that is, the moment of inerlia
about the axis passing through the centre of the ring and perpen-
dicular to its plane.

1746**, Find the moment of inertia of a homogeneous right
circular cone with base radius R and altitude H about its axis.

1747**, Find the moment of inertia of a homogeneous sphere
of radius a and of mass M about its diameter.

1748. Find the surtace and volume of a torus obtained by
rotating a circle of radius a about an axis lying in its plane
and at a distance b (b >a) from ils centre.

1749. a) Delermine the position of the centre of gravity of
2 2 2

an arc of the astroid x* -+ y* =a* lying in the first quadrant.

b) Find the ccn rc of gravity of an area bounded by the curves
y*=2px and x*=2py.

1750**, a) Fmd the centre of gravily of a semicircle using
Guldin’s theorem.

b) Prove by Guldin’s theorem that the centre of gravity of
a triangle is distant from its base by one third of its altitude

Sec. 12. Applying Definite [ntegrals to the Solution of Physical Problems

1°. The path traversed by a point. If a point 1s 1n motion along some
curve ard the absolute value of the velocity o=} (¢) is a2 known function of
the time ¢, then the path {raversed by the point in an interval of time
[t L] is
ty
= S f () dt.
t

Example 1. The velocity of a point is
0=0.11* mjcec.

Find the path s covered by the point in the interval of time T =10 sec follow-
ing the commeacement ol motion. What is the mean velocity f motion
during this interval?
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Solution. We have:

10 e
=S0.1t'dt=0.l T = 250 metres
0
[

and

Umean = —;T= 25 m|sec.

2°, The work of a force. If a variable force X =] (x) acts in the direction
of the x-axis, then the work of this force over an interval [x,, x,] is

A=?f(x)dx.

Example 2, What work has to be performed to stretch a spring 6 cm, if
a force of 1 kgf stretches it by 1 cm?

Solution, According to Hook’s law the force X kgf stretching the spring
by x, is equal to X =kx, where k is a proportionality constant.

Putting x=0.01 m and X =1 kgf, we get £=100 and, hence, X =100x.

Whence the sought-for work is

0.06 0.06
A= SlOOxdx:BOx‘ =0.18 kgm
1] (1]

3°. Kinetic energy. The kinetic energy of a malerial point of mass m and
velocity v is defined as

_muv?
==
The kinetic energy of a system of n material points with masses
m,, my, ..., m, having respective velocities v,, v,, ..., v,, is equal to

=1

mv}
5

(1)

To compute the kinetic energy of a solid, the latter is appropriately parti-
tioned into elementary particles (which play the part of material points); then
by summing the kinetic energies of these particles we get, in the limit, an
integral in place of the sum (1).

Example 3. Find the kinetic energy of a homogeneous circular cylinder
of density 8 with base radius R and altitude h rotating about its axis with
angular velocity .

Solution, For the elementary mass dm we take the mass of a hollow

cylinder of altitude h with inner radius r and wall thickness dr (Fig. 60).
We have:

dm = 2xr -hd dr.

Since the linear velocity of the mass dm Is equal to v=ro, the elementary
kinetic energy is
2
dl(=$=m'm=h6 dr.
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Whence

R
K=n0%hd S r’dr=-’£’)%&‘ﬁ .
[1]

4°, Pressure of a liquid. To compute the force of liguid pressure we use
Pascal’s law, which states that the force of pressure of a liquid on an area S
at a depth of immersion h is

p=vhS,

where y is the specific weight of the liquid.

X
dr “ r

Fig. 60 Fig 61

Example 4. Find the force of pressure experienced by a semicircle of
radius r submerged vertically in water so that its diameter is flush with the
water surface (Fig 61).

Solution, We partition the area of the semicircle into elements—strips
parallel to the surface of the water. The area of one such element (ignoring
higher-order infinitesimals) located at a distance A from the surface is

ds=2xdh =2 YV r*— R dh.
The pressure experienced by this clement is
dP=vyhds=2yh | r*—h3dh,

where y is the specific weight of the water equal to unity.
Whence the entire pressure is

r - 2 —3_ r 2
p=2{nyr=Ran=—Z¢'—m7 | =3r.
0

o

1751. The velocity of a body thrown vertically upwards with
initial velocity v, (air resistance neglected), is given by the
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formula
v=0,—gt,

where £ is the time that elapses and g is the acceleration of grav-
ity. At what dislance from the iniiial position will the body
be in ¢ seconds from the time it is thrown?

1752. The velocity of a body thrown vertically upwards with

initial velocity v, (air resistance allowed for) is given by the
formula

v=c-tan(—§t+arctan %’),

where ¢ is the time, g is the acceleration of gravity, and c is
a constant. Find the altitude reached by the body.

1753. A point on the x-axis performs harmonic oscillations
about the coordinale origin; its velocity is given by the formula

U =0, COS 0f,

where ¢ is the time and v,, ® are constants.

Find the law of oscillation of a point if when #=0 it had
an abscissa x=0. What is the mean value of the absolute magni-
tude of the velocity of the point during one cycle?

1754. The velocity of motion of a point is v=¢e="°" m;/sec.
Find the path covered by the point from the commencement of
motion to full stop.

1755. A rocket rises vertically upwards. Considering that when
the rocket thrust is constant, the acceleration due to decreasing

weight of the rocket increases by the law jza—é-b—t (a— bt >0),

find the velocity at any instant of time ¢, if the initial velocity
is zero. Find the altitude reached at timz t=1¢,.

1756*. Calculate the work that has {o be done to pump the
waler out of a vertical cylindrical barrel with base radius R and
allitude H.

1757. Calculate the work that has to be done in order to pump
the water out of a conical vessel with vertex downwards, the
radius of the base of which is R and the altitude H.

1758. Calculate the work to be done in order to pump water
out of a semispherical boiler of radius R=10 m.

1759. Calculate the work nesded to pump oil out of a tank
through an upper opening (the tank has the shape of a cylinder
with horizontal axis) if the specific weight of the oil is y, the
length of the tank H and the radius of the base R.

1760**. What work has to be done to raise a body of massm
from the earth’s surface (radius R) to an altitude h? What is
the work if the body is removed to infinity?
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1761**. Two elecliric charges e, =100 CGSE-and e, =200 CGSE
lie on the x-axis at points x,=0 and x, =1 cm, respectively.
Whalloworka will be done if the second charge is moved to point
x,=10 cm:

1762**. A cvlinder with a movable piston of diameter D =20 cm
and length (=80 cm is filled with steam at a pressure
p =10 kgf cm*. What work must be done to halve the volume of
the sleam with temperature kept constant (isothermic process)?

1763**. De'ermine the work performed in the adiabatic expan-
sion of air (having inifial volume v,=1 m® and pressure
p,=1 kgfjcm®) to volume v,=10 m?®

1764**. A vertical shaft of weight P and ip
radius a resls on a bearing AB (Fig. 62). ‘
The frictional force belween a small part o
of the base of the shaft and the surface of r\@
the support in contact with it is F=ppo,
where p=-const is the pressure of the shaft
on the surface of the support referred to
unit area of the support, while p is the coef- 7
ficient of friction. Find the work done by the %,{ 7T /
fricftional force during one revolution of the W/D///A
shaft.

1765**. Calculate the kinetic energy of a Fig. 62
disk of mass M and radius R rotating with
angular velocity o about an axis that passes through its centre
perpendicular to its plane.

1766. Calculate the kinetic encrgy of a right circular cone of
mass M rotaling with angular velocity ® about its axis, if the
radius of the base of the cone is R and the altitude is H.

1767*. What work has to be don> to stop an iron sphere of
radius R =2 me'res rotating with angular velocity o =1,000 rpm
about its diameter? (Specific weight of iron, y=7.8 gcm’.)

1768. A verlical trianzle with base 6 and altitude & is sub-
merged vertex downwards in waler so that its base is on the
surface of the waler. Find the pressure of the water.

1769. A vertical dam has the shipa of a {rapezoid. Calculate
the water pressure on the dam if we know that the upper base
a=70 m, the lower base 6=50 m, and the height A=20 m.

1770. Find the pressure of a liquid, whose spacific weight is vy,
on a vertical ellipse (with axes 2a and 2b) whose centre is sub-
merged in the liquid to a distance A&, while the major axis 2a
of the ellipse is parallel to the level of the liquid (h =b).

1771. Find the water pressure on a verlical circular cone
with radius of base R and altitude H submarged in wa'er verlex
downwards so that ils base is on the surface of the waier.

20~
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Miscellaneous Problems

1772, Find the mass of a rod of length /=100 cm if the linear
density of the rod at a distance x cm from one of its ends is

§=2+0.001 x* g/cm.

1773. According to empirical data the specific thermal capacity
of water at a temperature °C (0 << f<<100° is

c=0.9983—5.184x 10"°¢£+6.912x 10~" 2,

What quantity of heat has to be expended to heat 1 g of water
from 0°C to 100°C?

1774. The wind exeris a uniform pressure p g/cm® on a door
of width b cm and height A cm. Find the moment of the pressure
of the wind striving to turn the door on its hinges.

1775. What is the force of attraction of a material rod of
length / and mass M on a material point of mass m lying on
a siraight line with the rod at a distance a from one of its ends?

1776**. In the case of steady-state laminar flow of a liquid
through a pipe of circular cross-section of radius a, the velocity
of flow v at a point distant r from the axis of the pipe is given
by the formula

P 2,
U—4p[(a r)’

where p is the pressure difference at the ends of the pipe, p is
the coefficient of viscosity, and [ is the length of the pipe.
Determine the discharge of liquid Q (that is, the quantity of
liquid flowing through a cross-section of the pipe in unit time).

1777*. The conditions are the same as in Problem 1776, but
the pipe has a rectangular cross-section, and the base a is great
compared with the altitude 2b. Here the rate of flow v at a point
M (x,y) is defined by the formula

U=2—ﬁ—,[b’—(b—y)’]-

Determine the discharge of liquid Q.

1778**, In studies of the dynamic qualities of an automobile,
use is frequently made of special types of diagrams: the veloci-
ties v are laid off on the x-axis, and the reciprocals of correspond-
ing accelerations a, on the y-axis. Show that the area S bounded
by an arc of this graph, by two ordinates v=v, and v=v,, and
by the x-axis is numerically equal to the time needed to increase
the velocity of motion of the automobile from v, to v, (accelera-
tion time).
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1779. A horizontal beam of length [ is in-equilibrium due to
a downward vertical load uniformly distributed over the length

of the beam, and of support reactions A and B A=B=—g—> ,

directed vertically upwards. Find the bending moment M, in
a cross-section x, that is, the moment about the point P with
abscissa x of all forces acting on the portion of the beam AP.

1780. A horizontal beam of length [ is in equilibrium due to
support reactions A and B and a load distributed along the
length of the beam with intensity g=kx, where x is the distance
from the left support and % is a constant factor. Find the bend-
ing moment M, in cross-section x.

Note. The intensity of load distribution is the load (force) referred to
unit length.

1781*. Find the quantity of heat released by an alternating
sinusoidal current

I=1sin (?t——q))

during a cycle T in a conductor with resistance R.



Chapter VI
FUNCTICNS OF SEVERAL VARIABLES

Sec. 1. Pasic Notiens

1°. The concept of a function of several variables. Functional notation.
A variable quantity 2z is called a single-valued function of two variables x,
y, if to each set of their values (x, ¢) in a given range there corresponds a
unique value of z The variables x and y are called arguments or independent
variubles. The functional relation is denoted by

Z=f (xv y)-

Similarly, we define functions of three or more arguments.

Fxample 1. Express the volume of a cone V as a function of its gen-
eratrix x and of its base radius y

- Solution. From geometry we know that the volume of a cone is

V== ayh,

1
3
where A is the altitude of the cone. But A= Vx‘-—y’. Hence,

71 | Z-flzy) V=gt VI,

N

This is the desired functional relation.
The value of the function z=f(x.y) at a
point P (a.b), that is, when x==a and y=»b,

| is denoted by [ (a,b) or [(P) Generally speak-

IZ ing, the gceometric representation of a func-

0 w tion like z=f(x,y) in a rectangular coordi-

| Y nate system X, Y, Z is a surface (Fig. 63).

lP{z,y) Example 2. Find [ (2, —3) and } (l, %—) it
X 24P
Fig. 63 Feg) ==

Solution. Substituting r=92 and y= —3, we find

92 __93)2
2, _d)=z_j;(._.ﬂ,= __l_:‘,.'
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Putting x=1 and replacing y by %, we will have

N A
(- g
X

that is, f(l. %):f(x. 9).

2°. Domain of deflnition of a functien. By the domain of definition of a
function 2= f(x, y) we understand a set of points (x, y) in an xy-plane in
which the given function is defined (that is to say, in which 1t takes on def-
inite real values) In the simplest cases, the domain of definition of a func-
tion is a finite or infinite part of the xy-plane bounded by one or several
curves (the boundary of the domain).

Simnlarly, for a function of three variables u=f(x, y, 2) the domain of
definition of the function 1s a volume in ayz-space.

Example 3. Find the domain of definition of the function

1
Vi—xz—y*

Solution. The function has real values if 4—x*—y? >0 or x2{ ¢ < 4.
The latter incquality is satisfied by the ccordinates of points lying inside a
circle of radius 2 with centre at the coordinate origin. The domain of defi-
nition ol the function is the interior of the circle (Fig 64).

2=

Yy
.
—— 0 —
- 2 X
Fig. 64 Fig 65

Example 4. Find the domain of definition of the function
z=arcsin —;- +Viy

Solution. The first term of the function 1s defined for —l<%<l or
—2<<x<<2. The second term has real values if xy=0, i.e., 1n two cases:
when { ;Zg or when { ;23 . The domain of definition of the entire
function is shown in Fig. 60 and includes the boundaries of the domain.
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3°. Level lines and level surfaces of a function. The level line of a func-
tion z=f(x, y) is a line f(x, y)=C (in an xy-plane) at the points of which
the function takes on one and the same value z=C (usually labelled in
drawings).
The level surface of a function of three arguments u=f(x, y, 2) is a sur-
face f(x, y, 2)=C, at the points of which the function takes on a constant
value u=C.
Yy Example 5. Construct the level lines of
the function z=x%y.
Solution. The equation of the level lines

has the form x*y=C or _y=;€i .

Putting C=0, + 1, +£2, ..., we get a family
of level lines (Fig. 66).

1782, Express the volume V of a
regular tetragonal pyramid as a func-
tion of its altitude x and lateral edge y.

1783. Express the lateral surface S
of a regular hexagonal truncated pyra-

Fig. 66 mid as a function of the sides x and y
of the bases and the altitude z.
1784. Find f(1/2, 3), f(1, —1), if

f(x, y)=xy+§.

. 1 1 1 .
1785 Find @, (=% —y), s 7) faee
fo =25
1786. Find the values assumed by the function
f(xv y)=1+x’—'y
at points of the parabola y=x*, and construct the graph of the
function
F@x)=Ff(x, £).
1787. Find the value of the function

X427+ gt
=
—x—y

at points of the circle x* 4 y* =R".
1788*. Determine f(x), if

F(4) =125 > 0).

1789*. Find f(x, y) if
fx+y, x—y)=xy+y'.
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1790*. Let z=Vy+f(/ x—1). Determine the functions f and
2 if z=x when y=1.

1791**. Let z=xf(%). Determine the functions f and z if
2=V 1+y"* when x=1.

1792. Find and sketch the domains of definition of the fol-
lowing functions:

a) 2=V 1—x"— f; i) z=Vysinx;

b) z=14+V —(x—p); ) z=In(x"+y)

¢) z=In(x+y); k) z=arctang %

d) z=x+-arccos y; : +xy

?) z:Vl_..x;_{_Vl__yl; l) z=x_2:—*‘1—/21;

)z=arcsm—;, m) z._.l_/__T_;

g) z=V ¥ —4+Vi—g, SR

h =V Ty @F—r—p) M Tty
(@>0); 0) z/sin (x* 4.

1793. Find the domains of the following functions of three
arguments:

a) u=V;+V§+V’E; €) u=arc sin x+ arc sin y 4 arc sin z;
b) u=1In (xyz): d) u=V1T—x"—y'—2Z.

1794. Construct the level lines of the given functions and de-
lermine the character of the surfaces depicted by these functions:

a) z=x+y;  d) 2=V, 9 z=%;
b 2=#4y @ e=(ltxtyh  hz=ck;
Q) z=x—y’ ) z=l—lx|—yl i) z=zs.

1795. Find the level lines of the following functions:
a) z=In@"+y);, d) z=f(y—ax);
b) z=arc sinxy; e) z=f(l).
) 2=f (Vx" + v);

X
1796. Find the level surfaces of the functions of three inde-
pendent variables:

a) u=x+y-z;

b) u=x'+y* +2%
) u=x4 y—2~.
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Sec. 2. Continuity

1°. The limit of a function. A number A is called the limit of a function
2z=f(x, y) as the point P’(x, y) approaches the point P (a. b). if for any
e > 0 there is a 0 > 0 such that when 0 < o < 8, where p= V(x-—a)’-l—(_;—b)‘
is the distance between P and P’, we have the inequality

If(x, p—Al<e.
In this case we write

lim f(x, y)=A

xX—=a

y—+b

2°, Continuity and points of discontinuity. A function z=f (x, y) is called
continuous at a point P (a, b) if

lim f(x, y)=f(a, b).
piey

A function that is continuous at all points of a given range is called
continuous over this range

A function [ (x, y) may cease to be continuous either at separate points
(isolated point of discontinutly) or at points that form one or several lines
(lines of discontinuity) or (at times) more complex geometric objects.

Example 1. Find the discontinuities of the Iunction

xy+1

=),2—y .

Solution. The function wnH be me=aningless il the denominator becomes
zero. But x*—y =0 or y=x? is the equation of a parabola Hence, the given
function has for its discontinuity the parabola y=x2

1797*. Find the following limits of functions:

1 smxl
a) lim(x*+¢y*)sin—; «¢) lin :
)x—-bﬂ( J) J' )X—PO X—>0 +y
R y-»>2 y—>0
. +vy . Yy x2 —-r/
b) lim 2% . d) lim ( = f) lin .
)x-)wxz_*_yz' )x—-m x) ) x-.o +Jz
Y »>® y—-k y—>0

1798. Test the following function for continuity:

| VI=x"—4 when x* +4* <1,
I 9 { 0 when x* +y* > 1.

1799. Find points of discontinuity of the functions:

PR N | .
a) z=InVx+y; o 2=

1 1
b) Z=c—5 d)z—cosU
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1800*, Show that the function

2+y2

z={ ;—2—’&— when x*+¢* =40,
0 when x=y=0

is continuous with respect to each of the variables x and y sepa-
rately, but is not continuous at the point (0, 0) with respect to
these variables together.

Sec. 3. Partial Derivatives

1°, Definition of a partial derivative. If 2=Ff (x, y), then assuming, for
example, y constant, we get the derivative

0z (x4 Ax, p)—f (x, .
3}=A‘:r—n’of tAyx f(x y)=,x(x' o),

which is called the partial derivafive of the function z with respect to the
variable x. In similar fashion we define and denote the partial derivative of
the function z with respect to the variable y It is obvious that to find partial
derivatives, one can use the ordinary formulas of differentiation.

Example 1. Find the partial derivatives of the function

z=lntani.
Y

Solution, Regarding y as constant, we get
02 1 1

9z _ LI
y

tan X cos? X
Y Yy

2

ysin2—x.
[}

Similarly, holding x constant, we will have

9z 1 1 ( x) 2
= . -5 == .
% tan > cos? X y y? sing-x
Y '} u

Example 2. Find the partial derivatives of the following function of three

arguments: W 102 263y 4 245,
Solution, gi; =3xy2z 42,
3-3=2x'yz—-3.
%:x'y’+ 1.

2°. Euler’s theorem. A function f(x, y)Is called a homo ;eneous function of
degree n if for every real factor £ we have the equality

[ (kx, ky) == k" (x, 1)



186

Functions of Several Variables [Ch. 6

A rational integral function will be homogeneous if all its terms are of one
and the same degree.

The following relationship holds for a homogeneous differentiable function
.of degree n (Euler’s theorem):

Find

xfy (5, )+ o, (x, ) =nf (x, y).
the partial derivatives of the following functions:

1801. z=x"+ y*—3axy. 1808. z=
_x—y 4
1802. z=37,- 1809, z=¢"" *.
=l . — H xg_yz
1803. z Y 1810. z=arcsin ]/x,—ﬂq
2 2
1804. z=Vx*—y". 1811. z—lnsm;;'
1805, z=——r— . , Y
Vatry 1812, u={(xy)°.
1806. z=In(x+ V& F4%). 1813, u=27.
1807. z2=arc tan% .

1814.
1815.

Find f,(2, 1) and f,(2, 1) if f(x,4) = ]/xy+§.
Find fr(1,2,0), f,(1,20), f.(1, 2, 0) if
[(x, y, 2)=In(xy +2).

Verify Euler’s theorem on homogeneous functions in Exam-
ples 1816 to 1819:

1816. f(x, y)= Ax*+2Bxy—Cy*. 1818. f(x, Y) =35
. e 5
1817. ’=x=_fr‘“=' 1819. f(x,y)=In<
1820. Find a( 12, where r =V X+ + 2%
ox
1821, Calculate ,ay 3,, vif x=rcosq and y=rsing.
or Wp
1822. Show ihat x —}—y‘3 =2, if z=In(x* +xy+y)
1823. Show that x +ya __xy—{—z, if z—xy+xe"
1824. Show that a +6y+02=0’ if u=(@x—y)(y—2)(@—x).
1825. Show that 3-+ay+;,-  if u=x+ =L,
1826. Find z=2z(x, y), it & al

y Y
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1827. Find z==2(x, y) knowing that
0z _x*+y°

ox x

1828. Through the point M (1, 2, 6) of a surface z=2x*+44*
are drawn planes parallel to the coordinate surfaces XOZ and
YOZ. Determine the angles formed with the coordinate axes by
the tangent lines (to the resulting cross-sections) drawn at their
common point M.

1829. The area of a trapezoid with bases a and b and alti-

tude h is equal to S="'/,(a+-b)h. Find g—f, g—‘:, g% and, using

the drawing, determine their geometrical meaning.
1830*. Show that the function

and 2 (x, y)=siny when x=1.

2 . .
f(x: y) = ' ;’—{_x—yyi , if x*--y*5%£0,
0’ i{ x:yzo,

has partial derivatives fy(x, ) and f,(x, y) at the point (0, 0),
although it is discontinuous at this point. Construct the geomet-
ric image of this function near the point (0, 0).

Sec. 4. Total Differential of a Function

1°. Total increment of a function. The {ofal increment of a function
z=[(x, y) is the difference

Az =Af (x, y)-=f(x4-Ax, y+ Ay)—[ (x, y).

2°, The total differential of a function. The fotal (or exact) differential of
a function z=f(x, y) is the principal part of the total increment Az, which
is linear with respect to the increments in the arguments Ax and Ay.

The difference between the total increment and the total differential of
the function is an infinitesimal of higher order compared with g= ¥V Ax*+ Ay%.

A function definitely has a total differential if its partial derivatives are
continuous. If a function has a total differential, then it is called differen-
tiable. The differentials of independent variables coincide with their incre-
ments, that is, dx=Ax and dy=Ay. The total differential of the function
z=f(x, y) is computed by the formula

0z 0z
dz —é;dx-}—éy dy.

Similarly, the total differential of a function of three arguments u=f(x,y, z)
is computed from the formula

ou Ju du
’a;dx—f‘a dy+52 dz.

Example 1. For the function

f e g)=x*+xy—y
find the total increment and the total differential.

du=
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Solution. f(x+ Ax, y+ Ay)=(x+ Ax)*+ (x4 Ax) (y + Ay)—(y + Ay)*;
Af (%, ) ==[(t+ Ax)* + (x + Ax) (y + Ay)— (¥ + Ay)*]| — (¥* + xy—y*) =
=2 Ax+ Ax2 4+ x- Ay + y-Ax + Ax- Ay —2y-Ay— Ay* =
=[(2x+ y) Ax+ (x—2y) Ay} + (Ax* 4 Ax- Ay— Ay?).
Here, the expression df = (2x+y) Ax+ (x—2y) Ay is the total differential of
the function, while (Ax2+4 Ax-Ay—Ay?) is an infinitesimal of higher order
compared with ¥V Ax2{ A2
Example 2. Find the total differential of the function

z=Vx=+y’.
. 0z x .0z oy
Solution. e V;’+—!/" 3y Vﬁ_ﬁ-yi

! det-ydy
dz= X dx- - - dy =% .
Viare Ve Viig

3°. Applying the total diffcrential of a function to approximate calculations,
For sufficien'ly small |Ax| and | Ay| and, hence, for sufficiently small

e=V A.2+ Ay?, we have for a differentiable function z=f (x, y) the approx-
imate equality Az==dz or

0z 02
Az =~ a’:v Ax +'a—-y Ay.

Example 3. The altitude of a'cone is H=30cm, the radius of the base
R=10cm. How will the volume of the cone change, if we increase H by
3 mm and diminish R by 1 mm?

Solution. The volume of the cone is V=-;—nR’H. The change in volume
we replace approximately by the differential

AV == dV = % @RH dR+ R* dH) =
= ‘3 71 (—2:10-30-0.1 4 100-0.3) = — 105 == —31.4 cm?.

Example 4. Compute 1.02%°! approximately.

Solution. We consider the function z-==xY. The desired number may be
considered the increased value of this function when x=1, y=3, Ax=0.02,
Ay=0.01. The initial value of the function z=13=1,

Az=~dz=yxY "' Ax+xY Inx Ay=3.1.0.0241.1n1.0.01 =0.06.
Hence, 1.02%°' =1+ 0.06=1.06.

1831. For the function f(x, y)=x*y find the total increment
and the total difierential at the point (1, 2); compare them if

a) Ax=1, Ay=2; b) Ax=0.1, Ay=0.2.

1832. Show that for the functions u and v of several (for
example, two) variables the ordinary rules of differentiation holds

a) d(u—f—:)=duud-l{t-fv;d0b) d(uv)=udv+uvdu,

v?
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Find the total differentials of the following functions:

1833. z=x'+y"—3xy. 1841. z=Intan £,
1834. z=ux%". x
Xyt 1842. Find df (1, 1), if
1835. z =574 . :
. 2y 2 f(x-!/)=“‘£
1836. z=sin’x 4 cos’y. y
1837. z=yx’. 1843. u=xyz.
1838. z =I1n(x* 4 y?). 1844. u = x* +y* + 2%
, B i X\
1839. f(x,y)_—.ln(l-l-?), 1845. u_(xy-}-y),
1840. z=arctan %{ 1846. u=arctanx-z—z.

x 1847. Find df (3, 4, 5) if
+arc tan—y—.

f(x' Y, 2)= VA-———__'%-?’- .

1848. One side of a rectangle is a=10 cm, the other b =24 cm,
How will a diagonal [ of the rectangle change if the side a is
increased by 4 mm and b is shortened by 1 mm? Approximate
the change and compare it with the exact value.

1849. A closed box with outer dimecnsions 10 cm, 8 cm,
and 6 cm is made of 2-mm-thick plywood. Approximate the
volume of material used in making the box.

1850*. The central angle of a circular sector is 80°; it is desired
to reduce it by 1°. By how much should the radius of the sector
be increased so that the area will remain unchanged, if the orig-
inal leng:h of the radius is 20 cm?

1851. Approximate:

a) (1.02)* (0.97)% b) V(4.05) +(2.93)%;

c) sin32°.cos59° (when converting degrees into radius and
calculaling sin60° take three significant figures; round off the
last digit).

1852. Show that the relative error of a product is approxima-
tely equal to the sum of the relative errors of the factors.

1853. Mcasurements of a triangle ABC yielded the following
data: side a=100m+2m. side 6b=200m+3m, angle
C=60°+1° To whal degree of accuracy can we compute the
side ¢?

1854. The oscillation period T of a pendulum is computed
from the formula

r—T
T=2n V ‘—-E ’
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where | is the length of the pendulum and g is the acceleration
of gravily. Find the error, when determining T, obtained as a
result of small errors Al=a and Ag=p in measuring [ and g.

1855. The distance between the points P, (x,, y,» and P (x, y)
is equal to @, while the angle formed by the vector P,P with
the x-axis is . By how much will the angle a change if the
point P (P, is fixed) moves to P,(x+dx, y-+dy)?

Sec. 5. Differentiation of Composite Functions

1°. The case of one independent variable. If 2=/ (x, y) is a differentiable
function of the arguments x and y, which in turn are differentiable functions
of an independent variable £,

x=¢ (), y=vp (1),

then the derivative of the composite function z=f [¢ (f), V (¢)] may be com-
puted from the formula

dz _0dzdx  Odzdy
af oxdt tagai - (0
In particular, if ¢t coincides with one of the arguments, for instance x,
then the “total” derivative of the function z with respect to x will be:

dz_ 0z  dzdy ©
dx ox ' dydx®
Example 1. Find Z—; if
2=¢%%+2Y, where x=cost, y=12,
Solution. From formula (1) we have:
%=eax+zy.3(__smt)+eax+zy.2.2t=eax+=y(4t—3sin t).—:e"os”m(u._:;gmt).

0z .. d2
Fp and the total derivative e il

z=¢"*Y, where y=¢ (x).

Example 2. Find the partial derivative

Solution. gi:_ye"y.
From formula (2) we obtain

%Fye"" + 1 @' (x).

2°. The case of several independent variables. If z is a composite function of
several independent variables, for instance, z=f(x,y), where x=¢ (u,v),
y=% (4, v) (4 and v are independent variables), then the partial derivatives z
with respect to 4 and v are expressed as

0z _020x 020y
m—-aai—a—ya 3)
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and 3 5
z _0z0x 020y
3 x0T aydu - )
In all the cases considered the following formula holds:
0z 0z

(the invariance property of a total differential).

. 2z F 2
Example 3. Find Er and 3 , if

z=[(x, y), where x=uv, y=_z .

Solution. Applying formulas (3) and (4), we get:

% o oot f, ()~

and
0z

S =feln g u—f,(x 9
Example 4. Show that the function z=¢ (x®4 y?) satisfies the equation
Yox dy
Solution. The function ¢ depends on x and y via the intermediate argu-
ment x®4y*=1t, therefore,

0z dzot
= =0 () 2

=0.

and dz 3t
gz__ 2OL_ 2y 2
y_dtay——q) (x*4 4% 2y.

Substituting the partial derivatives into the left-hand side of the equa-
1i3n, weaget
Y G G =4O (64 22 () 2y =299’ () 2y @' (5" + 4 =0,
that is, the function z satisfies the given equation.

. dz .
1856. Find T if

z=2=, where x=e¢!, y=Int.

@|x

. du .
1857. Find ar if

u=1In sin —=, where x= 3, y=Ve+1.
Vy
1858. Find 9¢ if
u=uxyz, where x=¢'+1, y=Int¢, z=tant.
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1859.

u=7xf—4_y—’, where x=R cost, y=R sint, z=H.

1861.

1862.

1863.

1864.

1865.

1866.

then

1867.

1868.

where f

du

Find = if

dz

a}lf

z2=1u" where u==sinx, v=cosx.

. 0z dz .,
Find 3 and i if
z=arc tan% and y=x".

0z

. dz .
Find b and I if

z=x", where y=0¢ (x).
0z dz .
o and 3 if
2=f (4, v), where u=x"—y*, v=e",

. 0z
Find o @

Find

dz .
l’lda—;} if
z==arctani, where x=usinv, y=ucosv.
0z

. 0z .
Find M and 3 if

z2=f(u), where u=xy+=";.
Show that if
u=®0(x"+y*+ 2*), where x=R cos ¢ cos P,
y=Rcosgsiny, z=Rsing,

ou ou
an—O and = =0.
Find 3¢ if
X

u=f(x, y, 2), where y=q(x), z=9(x, y).

Show that if
z=[(x+ay),
is a diflerentiable function, then
dz 0z

@=a5)—‘.
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1869. Show that the function

w=f(u, v),
where u=x-+af, v=y-+ bt satisfy the equation
Jw 6w

ot —%ox +b ay '
1870. Show that the function

2=y (x'—y)
satisfies the equation ,13;‘*‘; g—; i, .

1871. Show that the function
2=xy+xq>(%)

satisfies the equation x 4 Jdl =xy + 2.
1872. Show that the functnon

z—e”tp( e:‘)

satisfies the equation (x’—y”)é-{-xya—;:xyz.

1873. The side of a rectangle x =20 m increases at the rate
of 5 m/sec, the other side y=30 m decreases at 4 m/sec. What
is the rate of change of the perimeter and the area of the rect-
angle?

1874. The equations of motion of a material point are

x=t, y=1* z=1>

What is the rate of recession of this point from the coordinate
origin?

1875. Two boats start out from A at one time; one moves
northwards, the other in a northeasterly direction. Their veloci-
ties are respectively 20 km/hr and 40 km/hr. At what rate does
the distance between them increase?

Sec. 6. Derivative in a Given Direction and the Gradient of a Function

1°. The derivative of a function in a given*direction. The derivative of a
function 2=f(x, y) in a given direction = PP, is

92 _ im [(P1)—F(P)
PP 0 P,P '

7- 1900
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where f(P) and f (P,) are values of the function at the points P and P,
If the function z is differentiable, then the following formula holds: °

dz 0z 0z
o cos a +0—y sina, 1

where a is the angle formed by the vector  with the x-axis (Fig. 67).

Y| P (z,4,)
. .
) a
P(iy B
0 X
Fig. 67

In similar fashion we define the derivative in a given direction 7 for a
function of three arguments u=f(x, y, z). In this case

ou du ou ou
31 =3, 0% ¢ +@cosﬁ +5;cosy, (2)

where a, B, y are the angles between the direction / and the corresponding
coordinate axes. The directional derivative characterises the rate of change
of the function in the given direction.

Example 1. Find the derivative of the function 2=2x>—34? at the point
P (1, 0) in a direction that makes a 120° angle with the x-axis.

Solution. Find the partial derivatives of the given function and their

values at the point P:
0z 0z
PP (a—x),r‘*'

0z 0z
9= ~% (O—y)P =0.

€OS 0. =COS 120°=-——%- .

Here,

sin @ =sin l20°=_V§§ .
Applying formula (1), we get

92_,(_1\,,.V3
=t (-g)ro s

The minus sign indicates that the function diminishes at the given point and
in the given direction.

2°. The gradient of a function. The gradient of a function z=[(x, y) 1s
-a vector whose projections on the coordinate axes are the corresponding par-
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tial derivatives of the given function:
0z 0z
gl‘ad2=5;i+ggj. 3)

The derivative of the given function in the direction  is connected with
the gradient of the function by the following formula:

0z
3= pro ji grad z.

That is, the derivative in a given direction is equal to the projection of the
gradient of the function on the direction of differentiation.

The gradient of a function at each point is directed along the normal to
the corresponding level line of the function. The direction of the gradient of
the function at a given point is the direction of the maximum rate of increase

of the function at this point, th#¥t is, when I=grad z the derivative% takes
on its greatest value, equal to

0z\? 0z\?
V(&) ()
In similar fashion we define the gradient of a function of three variables,
u=f(x y, 2)
ou, Ou ou
grad u.—.;)—ci—kagj—}—a—zk. 4
The gradient of a function of three variables at each point is directed along
the normal to the level surface passing through this point.

Example 2. Find and construct the gradient of the function z=x% at
the point P (1, 1).

Fig. 68

Solution. Compute the partial derivatives and their values at the poinf P.

0z . 0z .
a=2xy, (FX)P-—2'

Hence, grad z=2¢j (Fig. 68).
7*
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1876. Find the derivative of the function z=x*—xy—2¢
at the point P(l1, 2) in the direction that produces an angle
of 60° with the x-axis.

1877. Find the derivative of the function z = x*—2x%y + xy* + 1
at the point M (1, 2) in the direction from this point to the
point N (4, 6).

1878. Find the derivative of the function z=ln1/x’+y’ at
the point P (1, 1) in the direction of the bisector of the first
quadrantal angle.

1879. Find the derivative of the function u=x*—3yz+5 at
the point M (1, 2, —1) in the direction that forms identical
angles with all the coordinate axes.

1880. Find the derivative of the function u=xy yz + 2x at
the point M (2, 1, 3) in the direction from this point to the
point N (5, 5, 15).

1881. Find the derivative of the function u=In (e* 4 & -+ ¢%)
at the origin in the direction which forms with the coordinate
axes x, y, z the angles «, B, vy, respectively.

1882. The point at which the derivative of a function in any
direction is zero is called the stationary point of this function.
Find the stationary points of the following functions:

a) z=x"+xy+y'—4x—2y,
b) z==x*4 y*—3xy,
c) u=2y*+ 2" —xy—yz+2x.

1883. Show that the derivative of the function z=%’ taken

at any point of the ellipse 2x*4-y*=C* along the normal to the
ellipse is equal to zero.
1884. Find grad z at the point (2, 1) if

2=x'4+y*— 3xy.
1885. Find grad z at the point (5, 3) if

z=Vx’——y’.

1886. Find grad u at the point (1, 2, 3), if u=uxy2.
1887. Find the magnitude and direction of grad u at the
point (2, —2, 1) if

u=x'+4y*- 2%
1888. Find the angle belween the gradients of the [unction
z=In<L at the points A(1/2, 1/4) and B(l, 1).
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1889. Find the steepest slope of the surface
2=x"+4y4"
at the point (2, 1, 8).
1890. Construct a vector field of the gradient of the following
functions:
a) z=x+y: ¢) z=x"+y4

b) 2=XY, d) u:—VT*:i:y’_ﬁ"

Sec. 7. Higher-Order Derivatives and Differentials

1°. Higher-order partial derivatives. The second partial derivatives of a
function z=f(x, y) are the partial derivatives of its first partial derivatives.
For second derivatives we use the notations

d( z\ 02
5}(5;>=5x—,=ixx(& )

0 [0z Pz
@(a?)zcﬁa_yﬁf"!/ (x, y) and so forth.

Derivatives of order higher than second are similarly defined and denoted.

If the partial derivatives to be evaluated are continuous, then the result
of repealed differentiation is independent of the order in which the differentia-
tion s performed.

Example 1. Find the second partial derivatives of the function

x
z=arctan — ,
1}

Solution. First find the first partial derivatives:
0z 1 1 y

0x l_'—f:g y afyte
0_2__1_( _"_)_ _x
oy 2\ T )T Tyt
y el y
Now differentiate a second time:

w5 ()=~

ox? "‘a_x x:+yz _‘_(xz+yz)x'

o2 40 X 2y

Tﬁ“@<—x‘+y’)‘(x‘+y’)"

J'z _2( y )_l'<x'+y=>—2y~y_ B —y

oxdy oy \¥+g)  (E+y)r )

We note that the so-called “mixed” partial derivative may be found in a
different way, namely:
%2 0% o( x )_ L4 p?)—2xx  X—y*

ToyoxTox\ Ty AT
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2°, Higher-order differentials. The second differential of a function
z2=f(x, y) is the differential of the differential (first-order) of this function:
d?z=d (d2)
We similarly define the differentials of a function z of order higher than
two, for instance:
d*z=d (d*z)
and, generally,
dPz=d (d""'2).

If z=f(x, y), where x and y are independent variables, then the second
differential of the function z is computed from the formula

0%z 0%z 0%z
2y =" 2 2
dz_axzdx +26_xay dx dy +0y=dy‘ 8
Generally, the following symbolic formula holds true:
a 0\"
n, ___ .
d z—(dxa-—x—i-dya—y) FH
it is formally expanded by the binomial law.

If z=f(x, y), where the arguments x and y are functions of one or sev-
eral independent variables, then

0%z 0%z 0%z 02 0z
2, o2 dx? ’ oz ;e 2
dz:‘ax= dx +2axayd,\dy +6y’ dy +axdx+ayd"’y. 2)

If x and y are independent variables, then d?x=0, d?%y=0, and formula (2)
becomes identical with formula (1).

Example 2. Find the total differentials of the first and second orders of
the function

2=2x"—3xy—y>.
Solution. First method. We have

0z 0z
-a;_.‘lx—By, ‘_3.71= —3x—2y.

Therefore,
6z=g-Z dx+ g_z dy = (4x— 3y) dx—(3x + 2y) dy.
ox dy :
Further we have

0% 0% 0%z

d—x:=4, W:— N @2=—2'

whence it follows that
0%z %z 0%z
d?z = e dx? 42 %0y dx dy +@g dy* =4dx*—6 dx dy—2 dy?.
Second method. Differentiating we find
dz=4x dx—3 (y dx + x dy)—2y dy = (4x—3y) dx— (3x 4 2y) dy.

Differentiating again and remembering that dx and dy are not dependent on
x and y, we get

d’z = (4dx— 3dy) dx— (3dx 4 2dy) dy =4dx*—6dx dy—2dy*.
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. 022 02z 92
1891. Find R gx—ag. a?, if

Fa—
Z=CI/F+F'

1892, Find 22, %2 92

dxt’ 0xdy’ oy*

z=In(x*+ y).

1893. Find 2% if

. ax 0y

2=V 2%y + 4.

. 0%z .

1894. Flnd m lf
z—arctan ty
—xy°

1895. Find 27, if

r=Vx+y+2.

1896. Find all second partial derivatives of th
u=xy-+yz+ zx.

1897. Find if

ox dJ 0z
u=x"y2".

1898. Find o a 5 if
2 = sin (xy).
1899. Find f,_ (0, 0), f;,(0, 0), [ (0, 0) if

f(x P=1+0"1+y"

9%z .
1900. Show that axoj =350 if

z=arc sin ]/x;y .
X
0%z
ay dy 0x if
2=x".
1902*. Show that for the function

1901. Show that

2__ 2
f (e, ) =x9 5

e function
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[provided that f(0, 0)=0] we have

F2,0, O)=—1, F, (0, O)= +1.

o on ¥

0x?’ dx 0y’ dy*
Z=f(ur v):

1903. Find if
where u=x’—|—y”, v=xy.

1904. Find 24 if u=f(x, y, 2),
where z=g¢ (x, ).

. 022 0% 0%
1905. Find ax2’ mg‘/, 5;2

z=[(u, v), where u=¢q(x, y), v=Vy(x, y).
1906. Show that the function

u=arctan

if

¥
X
satisfies the Laplace equation
ou , 0'u
W""&F:O‘
1907. Show that the function
1

u=1n7,

where r=V (x—a)' + (y—0b)?, satisfies the Laplace equation
Fu | u
1908. Show that the function
u(x, t)=A sin (art + @) sin Ax
salisfies the equation of oscillations of a string

Qz_u = q? @.
ot2 ox%*

1909. Show that the function

_(x=X0)*+(y—yo)+ (2= 2,)*
aa3t

“o b5 0= Gy

(where x,, y,, 2z, a are constants) satisfies the equation of heat

conduction

—=q°( =—

du 2 (0% , 0%u 9%
ai I 3-y=+a‘z?)
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1910. Show that the function
u=q(x—at)+ (x4 at),

where ¢ and 1 are arbitrary twice differentiable functions, satis-
fies the equation of oscillations of a string

Pu_ a0
otz dx’

1911. Show that the function
_ y Y
= (2) ()
satisfies the equation

,62 2 0%2
X oat2 yaxaﬂLJ 3y

1912. Show that the function
u=q>(xy)+l/x—y\b(%)

satisfies the equation

=0.

x*g_i:: J’%" 0.
1913 Show that the function z={f[x - ¢ (y)] satisfies the equa-
fion 0 aet
dxOxdy Oyox®"
1914. Find u—=u(x, y) if
=0,

1915. Delermine the form of the function u=u(x, y), which
satisfies the equation

0%u

W=O'
1916. Find d% if

z=e",
1917. Find d*u if

u=xyz.

1918. Find d*z if
z2=¢(t), where t =x*-4*

1919. Find dz and d*z if

X
z=u" where u==-,v=uxy.
Y
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1920. Find d*z if
z=f(u, v), where u=ax, v=by,
1921. Find d*z if
z=[(u, v), where u=uxe’, v=ye*.
1922. Find d*2 if
z2=¢"cosy.
1923. Find the third differential of the function
2=xcosy-+ysinx.
Determine all third partial derivatives.
1924. Find df (1, 2) and d*f (1, 2) if
[, )=x*4+xy+y*—4Inx—101Iny.
1925. Find d*f (0, 0, 0) if
f(x, y, 2)=x"+42y* 4 32*—2xy + 4x2 + 2y2.

Sec. 8. Integration of Total Differentials

1°, The condition for a total differential. For an expression P (x, y)dx-}-
+Q (x, y)dy, where the functions P (x, y) and Q (x, y) are continuous in a
simply connected region D to%ether with their first partial derivatives, to be
(in D) the total differential of some function u (x, y), it is necessary and suf-
ficient that

0Q P

ox oy’
Example 1. Make sure that the expression
' (2x+y) dx+ (x+24) dy
is a total differential of some function, and find that function.

Solution. In the given case, P=2x+4y, Q=x+ 2y. Therefore,
=1, and, hence,

0Q_op_
ax "oy
2x+y)dx+ (x+ 2y) dy =d. ——a—udx-l—él—‘d
Y Y) ay = “‘ax g Y,
where u is the desired function.
It is given that g;=Qx+y; therefore,

u={ 24y dr=xr1 2+ ).

Buf on the other hand %:x+q}’(y)=x+2y, whence @' (y) =2y, ¢ (y) =y*+C
and
u=x4xy+y*+C.

(2x+y) de+ (x4 2) dy=d (x*+ 2y +y*+C).

Finally we have
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2°, The case of three variables. Similarly, the expression
P(x, y, 2)dx+Q(x, y, 2)dy+R (x, y, 2)dz,

where P(x, y, 2), Q(x, y, 2), R(x, y, 2) are, together with their first partial
derivatives, continuous functions of the variables x, y and 2, is the total
differential of some function u (x, y, 2) if and only if the following conditions

are fulfilled:
0Q__0P 0R__0Q 9P _dR
ox 0y 'dy 0z dz 0x°
Example 2, Be sure that the expression

(3x24-3y—1)dx+ (22-+3x) dy + (2y2 4-1) dz

is the total differential of some function, and find that function.

Solution. Here, P=3x*4-3y—1, Q=2243x, R=2yz41. We esfablish
the fact that

9Q_0P ., OR_3Q_, 9P_0R

ox oy T 02T ox
and, hence,

du du d
(3x24-3y —N)dx (224 3x) dy + (2yz + 1) dz=du = &dx+d—y dy-i-b—l-:dz,

where « is the sought-for function.
We have s
u

—_—— 2 —
3 3x24-3y—1,
hence,

u= S Bx2 4+ 3y—1)dx=x*+3xy—x+¢ (y, 2).

On the other hand,

Ou__ dp__ ,
g—y 0¥+a—y—2 +3Y,
u
5% =0 =2yz+1,
whence g—z):z’ and g—;p=2yz+l. The problem reduces fo finding the function

of two variables ¢ (y, 2) whose partial derivatives are known and the condi-
tion for total differential is fulfilled.
We find @:
o = 2dy=pz +v (2,
g ,
ST =2yz+ ' () =2y2+1,
VY (@)=1, $(9)=2+C,
that is, @ (y, ©)=y2z*+2+4C. And finally,

u=x'+43y—x+yz*+24-C,
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Having convinced yourself that the expressions given below
are total differentials of certain functions, find these functions.

1926. ydx+xdy.
1927. (cos x+ 3x*y) dx+ (' —y*) dy.
1928. (x+2y)dx+ydy

(4922
2 2% —
1929. ;‘,‘_:y”, dx— F =4 dy.

1 X
1930. 7 dx——;; dy.
x Yy
. ———d —=Z—dy.
1931 Vs x+Vx’+y’ Y
1932. Determine the constants a and 4 in such @ manner that
the expression

(ax® + 2xy + y*) dx—(x* 1 2xy + by?) dy
oy

should be a total differential of some function z, and find that
function.
Convince yourself that the expressions given below are total
differentials of some functions and find these functions.
1933. 2x+-y+2)dx+ (x+2y+2)dy+ (x-+ y + 22) dz.
1934. (3x*+-2y* +32) dx -+ (4xy + 2y —2) dy + (3x —y—2) d=.
1935. (2xyz—3y*z - 8xy* +2)dx +
+ (x*z2—6xyz + 8x*y +- 1) dy - (x*y—3xy* -} 3) dz.
1 z 1 x 1 ]
1936. (7“—;‘) dx I— (_2-—?> dy+ (Y——ZT) dZ
1937, “4xtydvtzdz
Vitytz
1938*. Given the projections of a force on the coordinate axes

—__Y - M
X_(x+y)” Y (x+y)2’

where A is a constant. What must the coefficient A be for the force
to have a potential?
1939. What condition must the function f(x, y) satisfy for the

expression
f(x, y) (dx+dy)

to be a total differential?
1940. Find the function u if

du= [ (xy) (y dx + x dy).
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Sec. 9. Differentiation of Implicit Functions

1°, The case of one independent variable. If the equation f(x, y)=0, where
[ (x, y) is a differentiable function of the variables x and y, defines y as a
function of x, then the derivative of this implicitly defined function, provided

that f; (x, y) #0, may be found from the formula
dy__ f,’c x, 9)
™y

Higher-order derivatives are found by successive differentiation of formula

dy d¥y
dx and I if
(*+y°) —3(x*+y*) +1=0.

Solution. Denoting the left-hand side of this equation by f (x, y), we find
the partial derivatives

Folt, y) =3 (x+y2)? 20— 3+ 2x = 6x [(¥2 4 y*)2 —1],
fr(x, §) =3 (x2+ y?)?- 2y —3-2y =6y [(x* + y2)*—1].

Whence, applying formula (1), we get

0

Example 1. Find

dy__ f;(x.y)_ 6x [(+422—1] «x

de fo ey Tey ity =1 "y -

To find the second derivative, differentiate with respect to x the first deriva-
tive which we have found, taking into consideration the fact that y is a func-
tion of x*

1 l—-tdﬁ ~v( x)
dit/__g X\ _ y— dxm_y ! y ___y=+x’
det dx y) v ¥ oy

2°, The case of several independent variables. Similarly, if the equation
F(x, y, 2)==0, where F(x, y, 2) is a differentiable function of the variables
x, y and z, defines z as a function of the independent variables x and y and

F'z (x, 4, 2) # 0, then the partial derivatives of this implicitly represented

function can, generally speaking, be found from the formulas
oz Fexoy.2 e F,lx 42
o0 Fx,y. % Fix,y 2

Here is another way of finding the derivatives of the function z: differenti-
ating the equation F(x, y, 2)=0, we find

@

ggdx+?)—1;dy+g—§dz=0.
Whence it is possible to determine dz, and, therefore,
0z 0z
% and PR
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(E and 93
0x dy

x2—2y%* 432 —yz+y=0.

Solution. First method. Denoting the left side of this equation by F (x, y, 2),
we find the partial derivatives

Example 2. Find if

Fx(x' Y, 2)=2x1 Fy(xl Y, 2)=_4y—‘2+1» Fz (x: Y, 2)::62_.’/'
Applying formulas (2), we get
0z Fo(x, y, 2) %% 0z F,(x, v, 2) _ l—4y—e

% " Flmg o &=y W  Fox g2 62—

Second method. Differentiating the given equation, we obtain
2x dx—4y dy +62dz—ydz—zdy+du=0.

Whence we determine dz, that is, the total differential of the implicit func-
tion:
:_2xdx+(1—4y—z)dy

dz y—62

Comparing with the formula dz:Z—)zcdx+g—;dy, we see that

0z 2 0z 1—4y—2
ox y—6z ' dy  y—62
3°. A system of implicit functions. If a system of two equations

{ F(x, y, u, v)=0,
G(x, y, u, v)=0

defines u and v as functions of the variables x and y and the Jacobian

OF oF
D(F, G) |dudv
D@, v)~|2696|*
ou dv
then the differentials of these functions (and hence their partial derivatives
as well) may be found from the following set of equations

oF oF OF OF
3G 96 ®

oG G
(—.’; dx+a—y dy—-l——a-ﬁ du-!-a; dU—-O-
Example 3. The equations
utv=x+y, xutyv=1

define u and v as functions of x and y; find gu Ou dv d ‘_72

5x,ay.aan ay.
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Solution. First method. Differentiating both equations with respect to x,
we obtain

ax Tax="

u dv
* -ty 5.=0,
whence
ou uty 0v_u+x

0x  x—y’' 0x x—y

Similarly we find
@E__v-{-y Jv_v+x

dy x—y' 0y x—y'

Second method. By differentiation we find {wo equations that connect the
differentials of all four variables:
du+dv=dx 4 dy,
xdu+tudx+ydv+vdy=Q.
Solving this system for the differentials du and dv, we obtain

du— W tyded-(w+ y)dy do =@t dx+ @ +x)dy .
X—y xX—y

Whence
Ou__ _udy d_u _u+ty
ox x—y ' dy  x—y
Jdu _u+tx du_v+x

x x—y' 0y x—y°

’

4°, Parametric representation of a function. If a function 2z of the varia-
bles x and y is represented parametrically by the equations

x=x(u, v), y=y(u, v), 2=2(u, v)
and
Ox Ox
D(x, y)__ dudv|
Dw o |yl ”"
du dv

then the differential of this function may be found from the following system
of equations

ox ax
dx — 6—12 du - ‘—)—
dy = du + 6_/ d “)
dz = Ou du-{

Knowing the differential dz==p dx-+¢dy, we find the partial derivatives
0z 0z
=P and -d_y; .
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Example 4. The function z of the arguments x and y is defined by the

equations

x=u+v, y=u+4v? z=ud40v? (uzv).
- 0z 0z
Find a;and 3

Solution. First method. By differentiation we find three equations that
connect the differentials of all five variables:
dx=du+dv,
{ dy=2udu+2vdv,
dz=3u?du+ 3vidv.
From the first two equations we determine du and dv:

_ 2vudx—dy _dy—2udx
du = 2(v—u) "’ dv = 2(v—u) *

Eubstituting into the third equation the values of du and dv just found, we
ave:

2u dx__dy dy—-2u dx
— 2,2 2 =
dz=3u 20— +3v 2 (0—a)
6uv (u—v)de+3 (v —uddy . 3
= S 0—0) _—3uvdx+2 (u+v)dy.
Whence

0z 0z 3
Ec= —3uv, a—y——z- (u—l—v).

Second method. From the third given equation we can find
0z, ,0u ,00, 0z ., ,0u , 0V
67—-314 a—x+30 'a;, a——-y—Su a~y+30 5!—/. (5)
Differentiate the first two equations first with respect to x and then with
respect to y:

ou Ov ou  Ov

l—a-'x'l-b—x, 0_0—y+7y'
ou du ou dv
0—2ua+203;, 1—2u@+20 ;’I.

From the first system we find
Ou v do u

O v—a’ Ox u—v"
From the second system we find
ou 1 v 1

0. 0
—; and ‘i into formula (5), we obtain

Substituting the expressions 3

0z _,, U s U
5;—314 v—u+3v u_u_—Suv,
1

0z 1 3
.2—(0———1-‘—)=? (u-|- U).

— 2-—_—_ o
3 3u 2(u_u)—l—30z
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1941. Let y be a function of x defined by the equation

!

Find%, d—zif and ‘ﬂ,’
x’ dx dx
1942, y is a function defined by the equation
X4+y'+-2axy=0 (@>1).

Show that ——O and explain the result obtained.

1943. Find ;—ig ify=1-+y*.

1944. Find Z—i and d—z—f if y=x+1ny.
. dy d?y .

1945. Find (d_x>z=, and (dx’)x llf

X—2xy+y*+x+y—2=0.

Taking advantage of the results obtained, show approximately
the portions of the given curve in the neighbourhood of the point
x=1.

1946. The funclion y is defined by the equation

InV¥*4-y*=aarcian % (a+0).

. dy
Find = I and dx,

1947. Find ¢ dx 4 and -—2 if
I 4+xy—In (e -+e *)=0.

1948. The function z of the variables x and y is defined by
the equation
£ 4-20°+2°—3xyz— 2y +3=0.

Find 5}3 and 5—
y

1949. Find a— and 92
X

% if
xcosy-+ycosz+zcosx=1.
1950. The function z is defined by the equation
B+ y—2"—xy=0.

Fmd and for the system of values x=—1, y=0, z=1.
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0z 0%2 0%2 0% .
1951. Fin da’dy ox,,axay ay if

F+b—‘+c—’= 1.

1952. f(x, y, 2)=0. Show that g;gzgi —1.

1953. z=9¢(x, y), where y is a function of x defined by the
equation Y (x, y)=0. Find E'x‘

1954. Find dz and d%z, if

¥4y +28=a".

1955. z is a function of the variables x and y defined by the

equation
2x* +2y* 4 2 —8xz2—2z+8=0,

Find dz and d*z for the values x=2, y=0, z==1.

1956. Find dz and d’z, if In z=x+y +2—1. What are the

first- and second-order derivatives of the function 2?
1957. Let the function z be defined by the equation

x*+y*+ 2" =@ (ax+ by +c2),

where ¢ is an arbitrary differentiable function and a, b, ¢ are
constants. Show that

0z 0z
(cy—b2) 5, T (@z—cx) = bx—ay.
1958. Show that the function z defined by the equation
F(x—az, y—b2)=0,

where F is an arbitrary differentiable funclion of two arguments,
satisfies the equation

0z 02
1959. F(; ) 0. Show that x&% +y0 =z.

1960. Show that the function z defined by the equation
y=x¢ (2) + ¢ (2) satisfies the equation

0%z (0z\2 020z 0%z | 0%z (0z\2
5 () —2 5y avos e (32) O
1961. The functions y and 2 of the independent variable x are

defined by a system of equations x* +y*—2* =0, x* 4 2y* + 32* =4.

dy dz dy d*z _ .
Find =, R r i for x=1, y=0, z=1.
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1962. The functions y and z of the independent variable x are
defined by the following system of equations:
xyz=a, x+y+z=>=.
Find dy, dz, d*y, d*z.
1963. The funclions « and v of the independent variables x and y
arc defined implicitly by the system of equations
u=x-y, uv=y.
Calculate
ou Ou 0 Q% 0u dv dv 9 dv 0%
ox’ 5-[/, b_;'zr m!iv a_!/'z) ox’ E’v oz’ ax_ayv a—y_i
for x=0, y=1.
1964. The functions « and v of the independent variables x
and y are defined implicitly by the system of equations

utv=x, u—yv=0.

Find du, dv, d*u, d*v.
1965. The functions « and v of the variables x and y are
defined implicitly by the system of equations
x=0(u,v), y=vy(u, v).
- ou Ou OJv dv
Find g 5!-/, P 5"‘/.
1966. a) Find Z—i and % if x=ucosv, y=usinv, 2=cv.

@1
b) Find g—; and % ,ifx=u+4+v, y=u—v, z==uv.
¢) Find dz, if x=¢€"*", y=¢€""", z=uv.
1967. z= F(r, ¢) where r and ¢ are functions of the variables
x and y defined by the system of equations
X=rcos@, y=rsin¢.
. 402 0z
Find o and 7R

1968. Regarding z as a function of x and g, find g—; and gf/, if

x=acos@cosy, y==>bsingcosyp, z=csiny.

Sec. 10. Change of Variables

When changing variables in differential expressions, the derivatives in
them should be expressed in terms of other derivatives by the rules of differ-
entiation of a ccmposite function.
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1°. Change of variables in expressions containing ordinary derivatives.
Example 1. Transform the equation
d?y dy  a*

7 —_— —_— Y =

x dx’+2xdx+x2y 0
putting x=%

Solution. Express the derivatives of y with respect to x in terms of the

derivatives of y with respect to £. We have

dy  dy
dy_dl __dl __.dy
dx dx 1 dt’
dt TE
a (&)
d?y ddy_dta_ dy | ,d ) oy, . d%
o= ,(d_x)_ dx <2t T | (=t =282 4t el

dt
Substituting the expressions of the derivatives just found into the given
ejuation and replacing x by ti , we get
1 +t + 2. 1 — = )—i-azty =0
t2 dt’ t

d!
E% ba’y=0,

or

Example 2. Transform the equation

d’y (dy dy
x&?.'_ E\t) “dx =0,
taking y for the argument and x for the function.

Solution. Express the derivatives of y with respect to x in termns of the
derivatives of x with respect to y.

dy_ 1.
=g

dy_d /1 d dy_ _ dy* 1 _ dy?
dxt dx(dx> dy( >dx (Q:)' dx—'_<41)a
dy dy dy dy dy

Substituting these expressions of the derivatives into the given equation, we
will have

d%x
Jowl a1
| (dx) +(dx) i =Y

dy dy) dy
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or, finally,
d*x dx\?2
a1+ () o
Example 3. Transform the equation
dy _x+y

dx  x—y

by passing to the polar coordinates
X=rcos ¢, y=rsing. M
Solution. Considering r as a function of ¢, from formula (1) we have
dx=cos @ dr—r sin pdp, dy=sin@dr+ rcosqdey,
whence

.o dr X
dy__sincpdr+rcosq>d(p_smq>d_(p_[ reose

dx cosqdr—rsmedp

Cos @ g—;—r sin @

Putting into the given equation the expressions for x, y, and g% , we will have

. dr .
smcp&?P—f—rwsq) _rcos@-rsing
cos ¢ Z%,"' sin @ rcos @—rsin @

or, after simplifications,
@,
deo
2° Change of variables in expressions containing partial derivatives.
Example 4. Take the equation of oscillations of a string
0%u 0%u

a—;:a’a\fz (@a#0)

and change it to the new independent variables a and B, where o =x—at,
B==x+at.

Solution. Let us express the partial derivativesof « with respect to x and ¢
in terms of the partial derivatives of u with respect to @ and B. Applying
the formulas for differentiating a composite function

Ou_Ouda  Oudp Ou_ Ouda  Oudp
9t dadf 'Op dl ' Ox Oa dx ' A dx’

we get
du Ou ou  (du du
0—t-=(ﬁ(—a)+_éﬁa—a(b—ﬁ_0a>'
du Ou du

du  Ou
a=£.l+aﬁ'l=&i+(¥‘ .
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Differentiate again using the same formulas:
u 0 (Ou 0 (0u\ du 0[3
o =a(5)=5(5) 5+ ()%
d’u  0%u 0%u 0%u
—“(m‘a—az“ O+ (5~ sea5)
0%u 62
(0(1."‘ aa af 0{3’) !

B2 05()2-
B (-
=gat? 6agﬁ+aﬁl:

Substituting into the given equation, we will have

0%u 0%u | 0u ®u
(602 20a05+5;3‘=) (dq,’+ aaaﬁ+a;?,2)

or 5
u
0aaﬂ'—0'
Example 5. Transform the equation A’ +y —-=z’, taking u=vx, v=

_—_-%——x— for the new independent vanables, and w—%—i for the new

function.

Solution. Let us express the partial denvatlvesg— and aym terms of the
Jw

partial derivatives %ﬂ and 30 To do this, differentiate the given relation-
ships between the old and new variables:

du=dx, dv=‘i_':_%, dw = g_:_‘_‘;i_:.
On the other hand, s 5
w w
dw-ﬁ du +5;d
Therefore, s ) J
w w x dz
mdll-{—b—ad =;§—?
. 0 dx d dx d
w x dy x dz
au +6v (x’ ?) PP
Whence

1 dw 1 Jdw

and, consequently,
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and
9z_2 0w
oy y*dv -’
Substituting these expressions into the given equation, we get
1 dw 1 dw Jw
2,2 (2 9W 1 ow Jw
¥z (x' du x’60)+zzav 2
or 5
w
=
1969. Transform the equation
z‘!ﬂ/_ dy _
X dx,+2xd—x+y—0,
putting x=e'.
1970. Transform the equation
2y 4%y dy _
(1—x )dT,—x E_O,
putting x=cost.
|4
I
M
»
?
0 T X
IFig 69

1971 Transform the following equations, taking y as the ar-
gument:
d dy\2
a) fa+ 2 (Z)' =0
dy d’y A
b)azﬁ*?’(a‘;z) —0.
1972. The tangent of the angle p formed by the tangent line
MT and the radius vector OM of the point of tangency (Fig. 69)
is expressed as follows:
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Transform this expression by passing to polar coordinates:
X=rcosg, y=rsing.

1973. Express, in the polar coordinates x=rcos¢, y=rsing,
the formula of the curvature of the curve

¥y
K=trveyre -

1974. Transform the following equation to new independent
variables u and v:

0z 0z
Yo *5=0

if u=x, v=x"+y".

1975. Transform the following equation to new independent
variables u and v:

02 0z
xa}'}‘!/@_‘Z—‘O,

if u=x, v=%.
1976. Transiorm the Laplace equation
ou
dx2 -+ oyt =0

to the polar coordinates
xX=rcos¢p, y=rsing,
1977. Transform the equation

,02 2 0%2
X dx’ —Y @?—'0,
putting u=xy and v=2=,

1978. Transform the equation
0z 0z
Y~ gy=WU—2z
by introducing new independent variables
u=f+f,v=i+§

and the new function w=Inz—(x4y).
1979. Transform the equation

0%z 0%

oxt 6x6y+6y =0,

taking u=x+y, v=% for the new independent variables and
w==< for the new function.
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1980. Transform the equation
0%z
6x’+ 0% dy I—dy =0,

putting u=x-+y, v=x—y, w=xy—=z, where w=w(u, v).

Sec. 11. The Tangent Plane and the Normal to a Surface

1°. The equations of a tangent plane and a normal for the case of explic-
it representation of a surface. The tangent plane to a surface at a point M
(point of tangency) is a plane in which lie all the tangents at the point M to
various curves drawn on the surface through this point.

The normal to the surface is the perpendicular to the tangent plane at the
point of tangency

If the equation of a surface, in a rectangular coordinate system, 1s given
in explicit form, z=f(x, y), where f (x, y) is a diflerentiable function, then
the equation of the tangent plane at the point M (x,, y,, 2,) of the surface is

Z'—Zo:f,; (Xos Yo) (X'_xo)’*‘f,', (x0, Yo) (Y —yy). (1

Here, z,=f (x,, o) and X, Y, Z are the current coordinates of the point of
the tangent plane.
The equations of the normal are of the form

X—xy _ Y=y, _Z—2 @
Fro g (ke 17

where X, Y, Z are the current coordinates of the point of the normal.
Example 1. erte the equations of the tangent plane and the normal to

the surface z_——_/ at the point M (2, —1,1).

Solution. Let us lind the partial derivatives of the given function and
their values at the point M

dz_x (E) =2
ox_ ox/ /M 7

0z 0 (az)
== —J, 3, =
cy oy /M

Whence, applying formulas (1) and (2), we will have 2—1_2(x——2)+2(1/ + 1)
or 2x-|-2y—z—1==0 which is the equation of the tangent plane and pi

2

_y+l +1 = 1
2T =1
2°, Equations of the tangent plane and the normal for the case of implic-

it representation of a surface. When the equation of a surface is represented
implicitly,

which is the equation of the normal.

F (x) Y, Z)=0,
and F (x,, Yo 20)=0, the corresponding equations will have the form

F;’; (X0, Yor 20) (X—xo)‘i‘F,,, (¥0» Yor 20) (Y —yo) 'f'F; (Xor Yor 20) (Z—20) =0 (3)
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which is the equation of the tangent plane, and
X—x __ Y=y __ Z—2
F; (%0 Yor 20) F;, (%o, Yo» 2) F; (X0, Yor 2)

@

which are the equations of the normal.

Example 2. Write the equations of the tangent plane and the normal to
the surface 3xyz—2*=a® at a point for which x=0, y=a.

Solution. Find the z-coordinate of the point of tangency, putting x=0,
y=a into the equation of the surface: —2z*=a®, whence z=—a. Thus, the
point of tangency is M (0, a, —a). .

Denoting by F (x, y, 2) the left-hand side of the equation, we find the
partial derivatives and their values at the point M:

F;=3yz, (F;)M= —3a?,
F,=3xz, (F,)m=0,
F,=3xy—32", (F)m= —3a".
Applying formulas (3) and (4), we get
—3a® (x—0)+0(y—a)—3a®(z+a)=0
or x4-z4a=0, which is the equation of the tangent plane,

—a z2+4a

o F=Sa— = which are the equations of the normal.

—| %
<

1981. Write the equation of the tangent plane and the equa-
tions of the normal to the following surfaces at the indicated
points:

a) to -the paraboloid of revolution z=x*+4y* at the point

b) to the cone %4——%’!——%:0 at the point (4, 3, 4);

c) to the sphere x*+4y*+42°=2Rz at the point (R cosa,
Rsina, R).

1982. At what point of the ellipsoid

x! u! z!
atmEta=]

does the normal to it form equal angles with the coordinate axes?
1983. Planes perpendicular to the x- and y-axes are drawn
through the point M (3, 4, 12) of the sphere x*+y4* -4 2* =169.
Write the equation of the plane passing through the tangents to
the obtained sections at their common point M.
1984. Show that the equation of the tangent plane to the
central surface (of order two)

ax® + by’ +c2* =~k
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at the point M (x,, y,, 2,) has the form
axx+byy -+ czz==k.

1985. Draw to the surface x*+2y* 4-32° =21 tangent planes
parallel to the plane x-4y+- 62——0

1986. Draw to the ellnpsond St b,—|—c7—l a tangent plane

which cuts off equal segments on the coordinate axes.

1987. On the surface x*-y* —2' —2x=0 find points at which
the tangent planes are parallel to the coordinate planes.

1988. Prove that the tangent planes to the surface xyz=m’
form a tetrahedron of constant volume with the planes of the
coordinates.

1989. Show that the tangent planes o the surface Vx+Vy+

-+ ¥V z=Va cut off, on the coordinate axes, segments whose sumn
is constant.

1990. Show that the cone —2—}-% z: and the sphere

R (R AT

c

are tangent at the points (0, = b, ¢).

1991. The angle between the tangent planes drawn to given
surfaces at a point under consideration is called the angle between
fwo surfaces at the point of their intersection.

At what angle does the cylinder x*-+¢y*=R? and the sphere

(x—R)* - ¢* +2°==R? intersect at the point M(R R Vs 0)'-‘

1992. Surfaces are called orthogonal if they mtersect at right
angles at each point of the line of their intersection.

Show that the surfaces x*+y'+42*=r* (sphere), y=xtang
(plane), and 2* = (x*+ y*)tan*¢ (cone), which are the coordinate
surfaces of the spherical coordinates r, ¢, P, are mutually ortho-
gonal.

1993. Show that all the planes tangent {o the conical surface

z=:xf (-‘;—) at the point M (x,, y,, z,), where x, -+ 0, pass through

the coordinate origin.
1994*. Find the projections of the ellipsoid

L4yt —xy—1=0

on the coordinate planes.
1995. Prove that the normal at any poini of the surface of

revolution z=f(}/ x*+4*) (f' + 0) intersect the axis of rotation.
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Sec. 12. Taylor’s Formula for a Function of Several Variables

Let a function f(x, y) have continuous partial derivatives of all orders
up to the (n+1) th inclusive in the neighbourhood of a point (a, b). Then
Taylor’s formula will hold in the neighbourhood under consideration:

Fe, =T (@ B+ [Fy @, B r—a)+ ), (@, b) G— b)) +
+% [Frx (@, b) (x—a)*+2fy, (a, b) (x—a) (y—b) + [, (@, b) (y—B)*) 4- ..
0
ot [e— =0 ] @ DR 0, )
where

0 0 |n+1
Ry, )= [w—a gt =05 Ha+0 w—a), b+0w—b)

©0<B<l).

1
n+ D!

In other notation, . 1
flth, g+ R)=1 0, 9+ (A, (e )+ kfy (0 )] 55 1F, (, 9) -+

. " i a a7l
+2hkEy, (6, D)+ R (o b (gt h | T 0

1 ad dln+1 ] ) i .
+m [ha+k5;] f(«\ »}-Bh. y—* Ok), (..))

or
1
AF (x, )= df (3, )+ 57 4 (6 )+ ..

1 n - 1 ni . . .
et oy df y)+(n+1)!d f(x-k0h; y4-0k)y  (3)

The particular case of formula (1), when a=b=0, is called Maclaurin’s
formula.

Similar formulas hold for functions of three and a larger number of
variables.

Example. Find the increment obtained by the function f(x, y)==2*—
—-2y;+2xy when passing from the values x=1, y=2 to the values x,-=1-}- 1,
1 =2+4k.
Y Solution. The desired increment may be found by applying formula (2).
First calculate the successive partial derivatives and their values at the
given point (I, 2):

F (%, 4)=3x2+3y, fr(l, 2)=3.143.2=9,

[, (%, 4)=—647+3x,  f,(1,29=—6.443.1=—2I,
Fre (%, 4) =6, fer(1, 2)=6-1=6,

Fry (. )=3, F(l, 2=3,

foy x y)=—12y, [0, 9= —12.2=—24,
Tyrx (X, 4) =86, fordl, 2)=6,
Py (%2 ) =0, Frtl, 2)=0,
Freyy 6 9)=0, Frgy(1s 29=0,

Fogy 6 9)=—12, f(l, 2= —12.
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All subsequent derivatives are identically zero. Putting these results
into formula (2), we obtain:

AT (e, )= F (1, 24 R)— 1 (1, D=1y (A9 4k (—21)] +
1

5 [A%-6 -} 2nk-3 4 k* (—24)] +3l! [h?-G 4 3h%k-0+-3hk2.04 k® (—12)] =

=9h—21k - 3h*+ 3hk — 12k* 4 h® — 2k3,

_'.

1996. Expand f(x+ h, y+ k) in a series of positive integral
powers of h and k if

f(x, y)=ax® - 2bxy -+ cy*.

1997. Expand the function f[(x, y)=—x"+2xy+ 3y*—6x —
— 2y—4 by Taylor’s formula in the neighbourhood of the point
(—2,1).

1998. Find the increment received by the function f(x, y)=
= x*y when passing from the values x=1, y=1 to

x,=14h, y, =14k

1999. Expand the function f(x, y, 2)=x*-+y' + 2" + 2xy—yz —
—4x —3y—z--4 by Taylor’s formula in the neighbourhood of
the point (1, 1, 1).

2000. Expaud f(x : h, y+ k, 2+ ) in a series of positive in-
tegral powers of h, &k, and [, if

f(x, 4, 2)=x" 1 y* 4 2 —2xy —2xz—2y2.

2001. Expand the following function in a Maclaurin’s series
up to terms of the third order inclusive:

f(x, y)=e*siny.

2002. Expand the following function in a Maclaurin’s series
up to terms of order four inclusive:

f (x, ) == cos x cos y.

2003. Expand the following function in a Taylor’s series in
the neighbourhood of the point (1, 1) up to terms of order two
inclusive:

[(x, y) =y~
2004. Expand the following function in a Taylor's series in

the neighbourhood of the point (1,—1) up to terms of order
three inclusive:

f(xv !/) =e**,
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2005. Derive approximate formulas (accurate to second-order
terms in @ and B) for the expressions

Lta, g 1/(l_+a)"‘-2%(l+ﬁ)"’

a) arctan T—p

if |a| and |P| are small compared with unity.
2006*. Using Taylor’s formulas up to second-order terms,
approximate

a) V1.03; 7/0.98; b) (0.95)2-01,

2007. z is an implicit function of x and y defined by the
equation z®*—2xz+y=0, which takes on the value z=1 for x=1
and y=1. Write several terms of the expansion of the function
z in increasing powers of the differences x—1 and y—1.

Sec. 13. The Extremum of a Function of Several Variables

1°. Definition of an extremum of a function. We say that a function
f(x, y) has a maximum (mintmum) f(a, b) at the point P (a, b), :f for all
points P’ (x, y) different from P in a sufficiently small neighbourhood of P
the inequality f (a, b) > f(x, y) [or, accordingly, f(a, b) < f(x, y)] is fulfilled.
The generic term for maximum and minimum of a function is extremum.
In similar fashion we define the extremum of a function of three or more
variables.

2°. Necessary conditions for an extremum. The points at which a diffe-
rentiable function f(x, y) may attain an extremum (so-called stationary points)
are found by solving the following system of equations:

fr @ 9)=0, [, (x,4)-0 (

(necessary conditions for an extremum). System (1) is equivalent to a single
equation, df(x, yY)=0. In the general case, at the point of the extremum
P (a, b). the function f(x, y), or df (a, b)=0, or df (a, b) does not exist.

3°. Sufficient conditions for an extremum. Let P (a, b) be a stationary
point of the function f(x, y), that is, df (a, b) =0. Then: a) if 4%f(a, b) <0
for dx®-4-dy* > 0, then [(a, b) is the maximum of the function f(x, y); b) if
d*f (a, b) > O for dx®*+dy* >0, then f(a, b) is the mintmum of the function
f(x, )i ©) if d*f (a, b) changes sign, then f (a, b) 1s not an extremum of f (v, y).

The foregoing conditions are equivalent to the following: let f; (a, b)-=

=f; ‘a, b)=0 and A:f;x (a, b), B:—_'f;y (a, b), C:—f;!j (a, b). We form the
discriminant
A=AC—B2

Then: 1) if A>0, then the function has an extremum at the point
P (a, b), namely a maximum, if A< 0 (or C <0), and a minimum, 1f A >0
(or C>0); 2) if A<O0, then there is no extremum at P (a, b); 3) if A==0,
then the question of an extremum of the function at P (a, 6) remains open
(which is to say, it requires further investigation).

4°. The case of a function of many variables. For a function of three or
more variables, the necessary conditions for the existence of an extremum
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are similar to conditions (1), while the sufficient conditions are analogous to
the conditions a), b), and c) 3°.
Example 1. Test the following function for an extremum:

z2=x%+43xy*— 15x— 12y.

Solution. Find the partial derivatives and form a system of equations (1):

%:3.\:2+3y‘-——15=0; g;:ﬁxy—l‘Z:O
or
x4 y*—5=0,
{ xy—2=0.

Solving the system we get four stationary points:
Py1, 2 Py 1) Py(—1,—2): P,(—2,—1).
Let us find the second derivatives

0%z 0%z 0%z
a;',aﬁ.\', ax—o'y—ﬁy, aTJz-—Gx

and form the discriminant A= AC— B? for each stationary point.

2 2
1) For the pont P;: A= (g:)P =6, B___(ai; ) =12, C=<%5:)P -

=6, A=AC—B*=36—144 < 0. Thus, there is no extremum at the point P,.

2) For the point P,: A-=12, B=6, C=12; A=144—36 >0, A > 0. AtP,
the function has a minimum. This minimum 1s equal to the value of the
function for 1.-2, y=:1"

Zmin 8 4+6—30—12= —

3) For the point Py: A=:—6, B==—12, C== —6; A=36—144 < 0. There
is no extremum.

4) For the point P A= —12,B=—6,C=—12; A=144—-36>0, A <.
At the point P, the function has a maximum equal to zp,y=—8—6+4-30+4
4-12.-28

5°. Conditional extremum. In the simplest case, the conditional extremum
of a function f(x, y) 1s a maximum or minimum of this function which is
attained on the condition that its arguments are related by the equation
¢ (x, y) =0 (coupling equation). To find the conditional extremum of a func-
tion ]I(x, y), given the relationship ¢ (x, ) =0 we forin the so-called Lagrange
function

Fx, )=, 9 +Ao(x, y),
where A is an undetermined multiplier, and we seek the ordinary extremum

of this auxiliary function. The necessary conditions for the extremum reduce
to a system of three equations:

dF of

0x+
aF_a/ olp_ @
o oyt =0

‘P(x»!/)“

with three unknowns x, y, A, from which it is, generally speaking, possible
to deterine these unknowns.
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The question of the existence and character of a conditional extremum is
solved on the basis of a study of the sign of the second differential of the
Lagrange function:

2
d*F (x, y) =%—;— dxt+2

0*F
Ox dy

for the given system of values of x, y, A obtained from (2) or the condition
that dx and dy are related by the equation

0%F
dxdy+ W dy?

0_(2 dp 2 42
% dx-{—@dy——o (dx®+4-dy? # 0).

Namely, the function f(x, y) has a conditional maximum, if d’F <0, and a
conditional minimum, if d*F > 0. As a particular case, if the discriminant A
of the function F(x, y) at a stationary point is positive, then at this point
there is a conditional maximum of the function f(x, y), if A <0 (or C <0),
and a conditional minimum, if A >0 (or C > 0)

In similar fashion we find the conditional extremum of a function of
three or more variables provided there is one or several coupling equations
(the number of which, however, niust be less than the number of the variables)
Here, we have to introduce into the Lagrange function as many undetermined
multipliers factors as there are coupling equations.

Example 2. Find the extremum of the function

z2=6—4x—3y
provided the variables x and y satisfy the equation
-yt =1

Solution. Geometrically, the problem reduces to finding the greatest and
least values of the z-coordinate ofpthe plane z=6—4v—3y for points of its
intersection with the cylinder »2+y2=1

We form the Lagrange function

F(x, y)=6—4x—3y--2 (*+y*—1).

oF o) . .
We have o—t=-—4+2),x, (—5:—3-{-27@. The necessary conditions yield the
following system of equations:

— 44 2Ax =0,
{ —3+2\y =0,
Btyr=1.
Solving this system we find
5 4 3
7"1—".2. x;=€, .’/1=§'-
and
5 4 3
)"2’—"‘?' xz=—g‘v !/2':'_3'
Since
0%F 0°F 0%F
= Gy =0 g

it follows that
d*F =2M\ (dx® 4 dy?).
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Ifl:% , x:% and y=—g— , then d®F >0, and, consequently, the function
has a conditional minimum at this point. If A=— —g— , X=— —;— and y=—% .

then d*F <0, and, consequently, the function at this point has a conditional
maximum.

Thus,
16 9
zmax=6+‘5“+g‘=“v
16 9
Zmin =6—g—g =1

6°. Greatest and smallest values of a function. A function thaf is diffe-
rentiable in a limited closed region attains
its greatest (smallest) value either at a sta-
tionary point or at a point of the boundary
of the region.

Example 3. Determine the greatest and
smallest values of the function

Y
(-3,0) (‘EI’”) 0

17X
z=x+y'—xy+x+y 3 "2,
in the region ("E "
x<0, y<0, x-+y=—3
Solution. The indicated region is a tri-
angle (Fig. 70).
1) Let us find the stationary points:
Z,=2—y {1=0,
[ ze=20—yt Fig. 70
IUEQy—X-’{— 1=0;
whence x-=— 1, y=—1; and we get the point M (—1, —1)
At M the value of the function zp=-—1 1t is not absolutely nccessary

to test for an extremum
2) Let us investigate the function on the boundaries of the region.
When x —0 we have z=y*+4y, and the problem reduces to seeking the
greatest and smallest values of this funclion of one argument on the interval
—3<<y<<0. Investigaling, we find that (zy);_,=6 at the point (0, —3);

(Zsm)v=o:—7i- at the pomnt (0, —/,)
When y==0 we get z=x*4-x. Similarly, we find that (z;,),_,=6 at the
point (—3, 0); (zsm)y=o=._ ‘:_ at the point (—1/,, 0)
When x-Fy=—3 or y=—3—x we will have z=23x2+49x 4 6. Similarly
3 . 3 3
we find that (zm)esy=—s=— at the point (_.2_, _?) ¢ Ggrdery _v=6

metres coincides with (zg)e_o and (2ge)y-,. On the straight line x+4y=-—3
we could test the function for a condifyional extremum without reducing to
a function of one argument.

3) Correlating all the values obtained of the function 2z, we conclude
that z,, =6 at the points (0, —3) and (=3, 0); zsn=—1 at the stationary
point "M.

8—-1900
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Test for maximum and minimum the following functions of
two variables:

2008. z=(x—1)* 4-24*.

2009. z=(x—1)*—2¢4".

2010. z=x*+xy+y* —2x—y.

2011, z=x"y* (6—x—y) (x>0, y>0).
2012, z=x*4y*—2x* +4xy—24°.

2013. z=uxy ]/l ——Ex:———%:-.
2014. z=1—(x*+y*)".
2015. z=(x*+y*) e ¥+,
14+x—y
2016. z =m___7_'_._——l:'!'/; .
Find the extrema of the following functions of three variables:
2017. u=x*+y*"+2*—xy+x—22.

2 2 2
2018. u=x+;’—x+fy~+7(x>o, y>0, 2>0).

Find the extrema of the following implicitly represented func-
tions:

2019*. x*+y*+2*—2x+44y—62—11=0.

2020, x°'—y'—3x+4y+2'+2—8=0.

Determine the conditional extrema of the following functions:

2021. z=uxy for x+y=1.
2022, z=x+2y for x*+y* =5.
2023. z=x*+4 for —’é——l—%:l.

2024, z=cos*x+}-cos*y for y—x=—2—.
2025. u=x—2y+22 for X*4+y*+2*=9.
2026, u=x'+y +2  for 4L L —1@>b>c>0)

2027, u=xy’2’ for x+y+2z2=12(x>0,y>0,2>0).
2028. u=xyz provided x-+y+2z=>5, xy+yz+2zx=8.
2029. Prove the inequality

X+y+2 ;/36:/—2,
if x=0, y=0, 2=0.

Hint: Seek the maximum of the function u=xyz provided x+y-+2=S.
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2030. Determine the greatest value of the function z=1+4 x4 2y
in the regions: a) x=0, y=0, x+y<sl;, b) x=0, y<0,
x—y<l.

2031. Determine the greatest and smallest values of the func-
tions a) z=x%y and b) 2=x*—y* in the region x* +y*<1.

2032. Determine the greatest and smallest values of the func-

tion z=sinx-}siny-+sin(x+y) in the region O<x<g.
o<y<3.

2033. Determine the greatest and smallest values of the func-
tion z= x4y’ —3xy in the region 0<<x <2, —l<y<2.

Sec. 14. Finding the Greatest and Smallest Values of Functions

Example 1. It is required to break up a positive number a into three
nonnegative numbers so that their product should be the greatest possible.

Solution. Let the desired numbers be x, y, a—x—y. We seek the maxi-
mum of the function f(x, y)=xy (a—x—y).

According to the problem, the function f(x, y) is considered inside a
closed triangle x>0, y=0, x4y <<a (Fig. 71),

Y
N (0,a)

Solving the system of equations

{ felx, ) =y(a—2x—py) =0,
f, (%, y)=x(a—x—2y)=0,

we will have the unique stationary point (%—, %— for the interior of the

triangle. Let us test the sufficiency conditions. We have

fect® 9)=—2y, [, (x, y)=a—2x—2y, [, (x, y)=—2x.
8!
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Consequently,
" )
A=fxx('%, %‘)="‘3‘a
" a a 1
B=fxy('3—. g‘)='—’3‘aa

c= f,,J(S, ‘;) — 24 and
A=AC—B*>0, A<O.

And so at (-g- %—) the function reaches a maximum. Since f(x, y)=0 on

the contour of the triangle, this maximum will be the greatest value which

is to say that the product w1ll be greatest, if x—y—a—x—-J=-§ , and the
greatest value is equal to ?7—

Note The ploblem can also be solved by the methods of a conditional
extremum, by seeking the maximum of the function u=xyz on the condition
that x4y +2=a.

2034. From among all rectangular parallelepipeds with a
given volume V, find the one whose total surface is the least.

2035. For what dimensions does an open rectangular bathtub
of a given capacity V have the smallest surface?

2036. Of all triangles of a given perimeter 2p, find the one
that has the greatest area.

2037. Find a rectangular parallelepiped of a given surface S
with greatest volume.

2038. Represent a positive number a in the form of a product of
four positive factors which have the least possible sum.

2039. Find a point M (x, y), on an xy-plane, the sum of
the squares of the distances of which from three straight lines
(x=0, y=0, x—y+1=0) is the least possible.

2040. Find a triangle of a given perimeter 2p, which, upon
being revolved about one of its sides, generates a solid of
greatest volume.

2041. Given in a plane are three material points P, (x,, y,),
P,(x,, vy,), P,(x,. y,) with masses m,, m,, m,. For what position
of the point P(x y) will the quadratic moment (the moment of
inertia) of the given system of points relative to the point P
(i.e., the sum m P P*+m,P,P* 4+ m,P,P*) be the least?

2042. Draw a plane through the point M (a, b, ¢) to form
a tetrahedron of least volume with the planes of the coordinates.

2043. Inscribe in an ellipsoid a rectangular parallelepiped of
greatest volume.

2044. Determine the outer dimensions of an open box with a
given wall thickness 8 and capacity (internal) V so thal the
smallest quantity of material is used to make it.
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2045. At what point of the ellipse
x! yz
=t =1

does the tangent line to it form with the coordinate axes a ftri-
angle of smallest area?
2046*. Find the axes of the ellipse

5x* + 8xy + 5y* =9.

2047. Inscribe in a given sphere a cylinder having the
greatest total surface.

2048. The beds of two rivers (in a certain region) approxi-
mately represent a parabola y = x* and a straight line x —y—2=0.
It is required to connect these rivers by a straight canal of least
length. Through what points will it pass?

2049. FFind the shortest distance from the point M (1, 2, 3)
to the siraight line

y 2

d 2
I~ =32

2050*. The points A and B are situated in different optical
media separated by a straight line (Fig. 72). The velocity of

A

al al | B
A
| p B,
P\ 16 Y 7~
| ! At | € B1
B
Fig. 72 Fig. 73

light in the first medium is v,, in the second, v,. Applying the
FFermat principle, according {o which a light ray is propagated
along a line AMB which requires the lcast time to cover, derive
the law of refraction of light rays.

2051. Using the Fermat principle, derive the law of refllection
of a light ray from a plane in a homogeneous medium (Fig. 73).

2052*%. If a current / flows in an electric circuit containing a
resistance R, then the quantity of heat released in unit time is
proportional to /*R. Determine how {o divide the current [ into
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currents I,, I,, I, by means of three wires, whose resistances are
R,, R,, R,, so that the generation of heat would be the least
possible?

Sec. 15. Singular Points of Plane Curves

1°. Definition of a singular point. A point M (x, y,) of a plane curve
féx, y)=0 is called a singular point if its coordinates satisfy three equations
at once:

f(%0r 40)=0, f; (%or %0)=0, f;/ (%, 4o)=0.

2°, Basic types of singular points. At a singular point M (x, y,), let the
second derivatives

A= foy (%0, Yo,
B Sf;y (X¢» Yo
C=Tyy (%o %)

be not all equal to zero and
A=AC—B?,
then:
a) if A>0, then M is an isolated point (Fig. 74);
b) if A <0, then M is a node (double point) (Fig. 75);
c) if A=0, then M is either a cusp of the first kind (Fig. 76) or of the
second kind (Fig. 77), or an isolated point, or a tacnode (Fig. 78).

Fig. 74 Fig. 75

When solving the problems of this section it is always necessary to draw
the curves.

Example 1. Show that the curve y*=ax?+x® has a node if a>0; an
isolated point if @ < 0; a cusp of the first kind if a=0.

Solution. Here, f(x, y)=ax®*+x*—y? Let us find the partial derivati-
ves and equate them to zero:

fr (2, §) =2ax+43x2=0,
f, (x, y)=—2y=0,
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This system has two solutions: O (0, 0) and N(—-%a, 0):but the

coordinates of the point N do not satlsfy the equatxon of the given curve.
Hence, there is a unique singular point O

Ly ok

Fig. 76 Fig. 77 Fig. 78

Let us find the second derivatives and their values at the point O:

f”xx(xl y)=2a+6xv A=2‘1,

f:_](x ./) B=0)
iyq(x J)—"_2 C""2v
A=AC—B*=—4a.
Y
I
Y a=0
a0 -
a<g ;
_9 0> X
—
0 £ 0 X
Fig. 79 Fig. 80 Fig. 8l

Hence,

if a>0, then A <0 and the point O is a node (Fig. 79);

if a<0, then A>0 and O is an isolated point (Fig. 80);

if a==0, then A=0. The equation of the curve in this case will be
yi=x or y=+ Vs g y=exists only when x=>=0; the curve is symmetric
about the x-axis, which is a tangent. Hence, the pomt M is a cusp of the
first kind (Fig. 81).
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Determine the character of the singular points of the follo-
wing curves:

2053. y*=—x* 4-x°%

2054. (y—x*)*=x".

2055. a'y* =a’x*—x°.

2056. x*y*—x*—y* =0.

2057. x*+y'—3axy=0 (folium of Descartes).

2058. y* (a—x)=x" (cissoid).

2059. (x*+ y*)' =a® (x* —y*®) (lemniscate).

2060. (a+x)y*'=(a—x)x* (strophoid).

2061. (x*+4*) (x—a)*=0b*x* (a>0, b>0) (conchoid).
Consider three cases:

1) a>b, 2) a=b, 3) a<b.

2062. Determine the change in characler of the singular point

of the curve y*=(x—a)(x—b) (x—c¢) depending on the values of
a, b, c(as< b<c are real).

Sec. 16. Envelope

1°. Definition of an envelope. The envelope of a family of plane curves
is a curve (or a set of several curves) which is tangent to all lines of the
given family, and at each point is tangent to some line of the given family.
2°. Equations of an envelope. If a family of curves

f(x, y, @)=0

dependent on a single variable parameter a has an envelope, then the para-
metric equations of the latter are found from the system of equations

{ f(x g, a)=0,

fo (x, g, ®)=0. t

Eliminating the parameter @ from the system (1), we get an equation of
the form

D(X, y)=0 (2)

It should be pointed out that the formally obtained curve (2) (the so-
called “discriminant curve”) may contain, in addition to an envelope (if
there is ome), a locus of singular points of the given family, which locus 1s
not part of the envelope of this family,

When solving the problems of this section it is advisable to make
drawings.

Example. Find the envelope of the family of curves

xcos o+ ysina—p=0(p=const, p > 0).
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Solution. The given family of curves depends on the parameter a. Form
the system of equations (1):

{ xcosa+ysina—p=0,
—xsina-4-ycosa=0.

Solving the system for x and y, we obtain parametric equations of the
envelope
xX=pcosa, y=psina.

Squaring both equations and adding, we eliminate the parameter a:
x! 'i' ”2=p!'

|

e
I
J

Fig. 82

Thus, the envelope of this family of straight lines is a circle of radius p
with centre at the origin. This particular family of straight lines is a family
of tangent lines to this circle (Fig. 82).

2063. Find the envelope of the family of circles
(x—a)! +y’=% .
2064. Find the envelope of the family of straight lines

y=kx+g

(k is a variable parameter).
2065. Find the envelope of a family of circles of the same
radius R whose centres lie on the x-axis.
2066. Find a curve which forms an envelope of a section
of length | when its end-points slide along the coordinate axes.
2067. Find the envelope of a family of straight lines that
form with the coordinate axes a triangle of constant area S.
2068. Find the envelope of ellipses of constani area S whose
axes of symmetry coincide,
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2069. Investigate the character of the “discriminant curves”
of families of the following lines (C is a constant parameter):

a) cubic parabolas y= (x—C)*;
b) semicubical parabolas y* = (x—C)%
c) Neile parabolas y* = (x—C)?*;
d) strophoids (a+x) (y—C)* =x* (a—x).
Y
17)

0 X
Fig. 83

2070. The equation of the trajectory of a shell fired from a
point O with initial velocity v, at an angle a to the horizon
(air resistance disregarded) is

g’

y=xtana——="—,
y 2vlcos? o

Taking the angle o as the parameter, find the envelope of all
trajectories of the shell located in one and the same vertical
plane (“safety parabola”) (Fig. 83).

Sec. 17. Arc Length of a Space Curve

The differential of an arc of a space curve in rectangular Cartesian coor-
dinates is equal to

ds= l/¢1x2—|~¢1_r/2 +dz2,
wheref x, y, 2z are the current coordinates of a point of the curve.
I
x=x(t), y=y{), z=2z(¢t)

are parametric equations of the space curve, then the arc length of a section
of it from t=¢, to t=¢, is

- VT T«
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In Problems 2071-2076 find the arc length of the curve:

2071, x=t, y=1=*, z=2;—' from t=0 to t=2.

2072. x=2cost, y=2sint, z=
2073. x=¢e'cost, y=e'sint, z
2074. y=—’§-, z=—x‘;— from x=0 to x=6.

2075. x*=3y, 2xy=9z from the point 0(0,0,0) to M (3, 3, 2).
2076. y=aarcsin-’i, z=%ln Zi; from the point 0(0, 0, 0)

to the point M (x,, y,, 2,)-

2077. The position of a point for any time ¢ (¢ >0) is defined
by the equations

| e

t fromt=0to t=mx
t

I a

e’ from ¢=0 toarbitrary ¢.

x=2t, y=Int, z=1.

Find the mean velocity of motion between times { =1 and £ =10,

Sec. 18. The Vector Function of a Scalar Argument

1°. The derivative of the vector function of a scalar argument. The vector
function a=a (t) may be defined by specifying three scalar functions a,(¢),
a, () and a, (t), whlch are its projections on the coordinate axes:

a=a;()i+a,(t)j+a; )k

The derivative of the vector function a=a (t) with respect to the scalar
argument ¢ is a new vector function defined by the equality

da _ . a(t+AH)—a(l) da,,(t) da (t) da, (t)
T i+ k.

J+

The modulus of the derivative of the vector function is

da | -'/ dax>' (dq,,)* (daz )'
o= (W tar) T\ )
The end-point of the variable of the radius vector r=r(t) describes in space

the curve
r=x({)i+y ) j+z()k,
which is called the hodograph of the vector r.
The derivative ar is a vector, tangent to the hodograph at the corre-

dt
sponding point; here,

& |~
where s is the arc length of the hodograph reckoned from some initial point,

For example, I-‘% 1= 1.
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Zt =19 is the velocity vector of the

= is the acceleration vector of the

If the parameter £ is the time, then

d’r dv

extremity of the vector 7, and P rTa

extremity of the vector r.
2°. Basic rules for differentiating the vector function of a scalar argument.

da , db dc
b Tu‘ @+b—O=Zr+ta —ar’

da
(ma)-—m-— where m is a constant scalar;

2 dt dat ’

3) dt (pa)-— dt a+cp dt , where @ (¢) is a scalar function of ¢;
4 dt (ab)= G- dt b+a Z? '

5) dt (axb)= \<b+ XZ? ;

6) d—,a[cp(t)]=§§',—- d9

7) aﬂ*o if | a]=const.

Example 1. The radius vector of a moving point is at any instant of
{ime defined by the equation

r=1—4£3j43t%. (1
Determine the trajectory of motion, the velocity and acceleration.
Solution. From (1) we have:
x=1, y=-—442 2z=31%.

Eliminating the time f, we find that the trajectory of motion is a straight
line:

r—=l_y _ 2
0 —4 3°
From equation (1), differentiating, we find the velocity
dr
-&t—_—Stj—i—Gtk
and the acceleration
dr
dtz——8]+ 6k.

The magnitude of the velocity is
|4 =V EsrF =011,
We note that the acceleration is constant and 1s

Z——Z =V (=8)+ 62= 0.
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2078. Show that the vector equation r—r =(r,—r,)¢,
where r, and r, are radius vectors of two given pomts is the
equa’non of a straxght line.

2079. Determine which lines are hodographs of the following
vector functions:

a) r=at+c; ¢) r=acost-+bsint;
b) r=at*-+bt; d) r=acosht-bsinht,

where @, b, and ¢ are constant vectors; the vectors @ and b
are perpendicular to each other.

2080. Find the derivative vector-function of the function
a(t)=a(t)a° (), where a(¢) is a scalar function, while a°(¢)
is a unit vector, for cases when the vector a(f) varies: 1) in
length only, 2) in direction only, 3) in length and in direction
(general case). Interpret geometrically the results obtained.

2081. Using the rules of differentiating a vector function with
respect to a scalar argument, derive a formula for differentiating
a mixed product of three vector functions a, b, and c.

2082. Find the derivative, with respect to the parameter ¢,
of the volume of a parallelepiped constructed on three vectors:

a=I1-+4tj+ 1’k
b=2ti—j+ t'k;
c=—"ti-+-t'j+ k.
2083. The equation of motion is
r==3i{cost--4jsint,
where f is the time. Determine the trajectory of motion, the

velocity and the acceleration. Construct the trajectory of motion
and the vectors of velocity and acceleration for times, ¢=0,

tM:—”L and ¢ =
2084 The equatlon of motion is
r=2icost+2jsint + 3kf.

Dctermine the trajectory of motion, the velocity and the accel-
eration. What are the magnitudes of velocity and acceleration

and what directions have they for time £=0 and t—-—?
2085. The equation of motion is

r = i cos a cos wf 4 jsin a cos of + & sin o?,
where o and o are constants and ¢ is the time. Determine the

trajectory of motion and the magnitudes and directions of the
velocity and the acceleration.
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2086. The equation of motion of a shell (neglecting air re-
sistance) is
2

r= vot—%t- k,

where v, {v,,, U,,, U,,} is the initial velocity. Find the velocity
and the acceleration at any instant of time.

2087. Prove that if a point is in motion along the parabola
y=-’f—l—, =0 in such a manner that the projection of velocity

. . dx
on the x-axis remains constant (7”—

=const), then the accelera-
tion remains constant as well.
2088. A point lying on the thread of a screw being screwed

into a beam describes the spiral

x=acos0, y=asinb, z=~ho,

where 0 is the turning angle of the screw, a is the radius of the
screw, and & is the height of rise in a rotation of onc radian.
Determine the velocity of the point.

2089. Find the velocity of a point on the circumierence of a
wheel of radius a rotating with constant angular velocity o so
that its centre moves in a straight line with constant velocity v,.

Sec. 19. The Natural Trihedron of a Space Curve

At any nomsingular point M (x, y, z) of a space curve r=r(f) it is pos-
sible to construct a natural trihedron consisting of three mutually perpen-
dicular planes (Fig. 84):

, L. dr d*r
1) osculating plane MM,M,, containing the vectors w7l and Pk
2) normal plane MM, M,, which is perpendicular to the vector dr and

dt
3) rectifying plane MM,M,, which is perpendicular to the first two planes.

At the intersection we obtain three straight lines;

1) the tangent MM,; 2) the principal normal MM,; 3) the bunormal MM,,
all of which are defined by the appropriate vectors:

1) 1'=%'Z'- (the vector of the tangent line);

2
2) B=%xg-z§ (the vector of the binormal);

3) N=BXT (the vector of the principal normal);
The corresponding unit vectors
T BN

= PR YT
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may be computed from the formulas

.
T=-4L' v=_ds_.- ﬂ—"XV
ds ' dv |’ - ’
_ds—l

If X, Y, Z are the current coordinates of the point of the tangent, then
the equations of the tangent have the form

X—x_Y—y Z—:2
T, =T, T, 0

Rectifying Normal
plane

Osculating
M
Fig. 84
where Tx——%tx-; T_‘,=—Z~':/—, T,=%— ; from the condition of perpendicularity
of the line and the plane we get an equation of the normal plane:
Te(X=x)4-Ty (Y =)+ T,(Z—2)=0. 2

If in equations (1) and (2), we replace Ty, Ty, T, by By, B,, B, and N,,
N,, N, we get the equations of the binorma{ and the principal normal and,
réspectively, the osculating plane and the rectifying plane.
Example 1. Find the basic unit vectors v, v and B of the curve
x=t, y=12 z=1¢°
at the point =1,
Write the equations of the tangent, the principal normal and the binor-
mal at this point.
Solution. We have
r=ti4-tY -+ t*k
and d
_a;i=i+2tj+3t=k,
d'r

Si=2J+6tk,
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Whence, when t=1, we get

T=%=i+2j+3k;

2 ijk
=%§-><%= 1 2 3|=6i—6j+2k;
026
i j ok
N=BXT=|6 —6 2|=—22i—16j4 18k.
1 2 3
Consequently,
= i+2j+3k _ 3i—3j+k v —11{—8j+ 9%
ovna Vi V 266 '

Since for t=1 we have x=1, y=1, 2=1, it follows that
x—1_ y—1_ 2—1

1 2 3
are the equations of the tangent,

x—1_ y—1_ 2z2—1
3 T =3 1
are the equations of the binormal and
x—1_y—1_z—1
—11 -8 "9
are the equations of the principal normal.
If a space curve is represented as an intersection of two surfaces

F(x' y' z)=0l G(xY y1 2)201

. 2
then in place of the vectors % and 37: we can take the vectors dr {dx, dy, dz}

and d’r {d%x, d%, d’z}; and one of the variables x, y, z may be considered
independent and we can put its second differential equal to zero.
Example 2. Write the equation of the osculating plane of the circle

X4y+2=6, x+yt2-=0 ®

at 1ts point M (1, 1, —2).

Solution. Differentiating the system (3) and considering x an independent
variable, we will have

xdx+4ydy+2dz=0,
dx+4dy+dz=0
and
dx®+dyt+ydiy+dz* 4 2d?2 =0,
d*y+-d?*z=0,
Putting x=1, y=1, 2:=—2, we get
dy=—dx; dz=0;

2—-___2. 2. 2__2_ 2
d’y= 3dx, dz-3dx.
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Hence, the osculating plane is defined by the vectors

{dx, —dx, 0} and {0, —--g—dx’, %dx’}
or
{1, =1, 0} and {0, —1, 1}.

Whence the normal vector of the osculating plane is

i jk
B=[1 —1 0|=—i—j—k
0 —1 1

and, therefore, its equation is
—lx—1—(y—1)—(2+2)=0,
that is,
x+y+2=0,
as it should be, since our curve is located in this plane.

2090. Find the basic unit vectors v, v, f§ of the curve
x==1—cost, y=sint, z=t

at the point t=—g—.

2091. Find the unit vectors of the tangent and the principal
normal of the conic spiral

r=e'(icost+jsint -k)

at an arbitrary point. Determine the angles that these lines make
with the z-axis.
2092. Find the basic unit vectors v, v, p of the curve

y=x, z=2
at the point x=2.
2093. For the screw line

x=acost, y=asint, z=>"bt

wrile the equations of the straight lines that form a natural
trihedron at an arbitrary point of the line. Determine the direc-
tion cosines of the tangent line and the principal normal.

2094. Write the equations of the planes that form the natural
trihedron of the curve

x* - yz +22=6, x:_yz 422 =4

at one of its points M (1, 1, 2).

2095. Form the equations ot the tangent line, the normal
plane and the osculating plane of the curve x=¢, y=¢, z=¢
al the point M (2, 4, 8).
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2096. Form the equations of the tangent, principal normal,
and binormal at an arbitrary point of the curve

t (M t*
¥=7 V=3 =3

Find the points at which the tangent to this curve is parallel
to the plane x+3y+4 22— 10=0.

2097. Form equations of the tangent, the osculating plane,
the principal normal and the binormal of the curve

t2
x=t, y=—I, 2=

at the point #=2. Compute the direction cosines of the binormal
at this point.

2098. Write the equations of the tangent and the normal
plane to the following curves:

a) x=Rcos*t, y=R sintcost, z=R sint for t=5;—-;
b) z=x*+y*, x=y at the point (I, 1, 2);

¢) #+y*+22=25, x+2=>5 at the point (2, 213, 3).

2099 Find the equation of the normal plane to the curve
2=x*—y*, y=x at the coordinate origin.

2100. Find the equation of the osculating plane to the curve
x=el, y=e-!, 2=t} 2 at the point £=0.

2101. Find the equations of the osculating plane to the curves:

a) x*+y*+2°=9, £*—y*=3 at the point (2, 1, 2);

b) x* =4y, x’=24z at the point (6, 9, 9);

¢) ¥ +2*=a’, y* +2*=>" at any point of the curve (x,, y,, z,).

2102. Form the equations of the osculating plane, the principal
normal and the binormal to the curve
y*==x, x*==z at the point (1, 1, 1).
2103. Form the equations of the osculating plane, the princi-
pal normal and the binormal to the conical screw-line x =1 cos¢,

y=tsint, z=>0¢t at the origin. Find the unit vectors of the
tangent, the principal normal, and the binormal at the origin.

Sec. 20. Curvature and Torsion of a Space Curve

1°. Curvature. By the curvature of a curve at a point M we mecan the
number
Lo lim -2

K=ﬁ T As»o0 As '
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where @ is the angle of turn of the tangent line (angle of contingence) on a
segment of the curve MN, As is the arc length of this segment of the curve,
R is called the radius of curvature. 1f a curve is defined by the equation
r=r(s), where s is the arc length, then

1 dr
7=\l
For the case of a general parametric representation of the curve we have
dr_dr
1 |d@t¥ae
T=TE 0
df

2°, Torsion. By forsion (second curvature) of a curve at a point M we
mean the number

1 . 0
= —= lim ——

T Q0 Asoo As’
where 0 is the angle of turn of the binor‘rllal (angle of contingence of the
second kind) on the segment of the curve M.N. The (}uantity Q is called the
radius of torsion or the radius of second curvature. 1 r=r(s), then
drd’rd'r
dsds*ds?

dp

where the minus sign is taken when the vectors is and v have the same

b2

direction, and the plus sign, when not the same.
If r=r(t), where ¢ is an arbitrary parameter, then

dr d*r d°r
1 _ didf* di’
o (o, Eny ®
dt ” de?
Example 1. Find the curvature and the torsion of the screw-line
r=1lacost- jasint 4k bt (a>0).

Solution. We have

g=—-iasint+jacost+kb.
“ii—;;=——lacost—jasint.
%:-—lasint—jacost.
Whence "
%X%= __ismt ajcost b|=iabsint—jabcost+ak

—acost —asint 0
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and '
drdirdty |—@SiNE  acostd

alt.g—t:g_t’;= —acost —asint 0|=a%.
asint —acost 0

Hence, on the basis of formulas (1) and (2), we get

l__a Vaz+b’_ a
R (a243)°h a0

and
1 a b
¢ @ (@b aibt
Thus, for a screw-line, the curvature and torsion are constants.
3° Frenet formulas:

G_v o dv__ T B d__ v
ds" R’ ds= R "' ds— ¢°

g dp v

2104. Prove that if the curvature at all points of a line is
zero, then the line is a straight line.

2105. Prove that if the torsion at all points of a curve is zero,
then the curve is a plane curve.

2106. Prove that the curve

x=14+3t4+21%, y=2—2¢ 58, z=1—1*

is a plane curve; find the plane in which it lies.

2107. Compute the curvature of the following curves:

a) x=cost, y=sint, z=cosh ¢ at the point {=0;

b) ¥*—y*-{- 22 =1, y* —2x+42=0 at the point (1, 1, 1).

2108. Compute the curvature and torsion at any point of the
curves:

a) x=e'cost, y=e'sint, z=e¢';

b) x=acosh ¢, y=asinht, z=at (hyperbolic screw-line).

2109. Find the radii of curvature and torsion at an arbitrary
point (x, y, 2) of the curves:

a) x*=2ay, x'=6a’z;

b) x*=3p’y, 2xz=p*.

2110. Prove that the tangential and normal components of
acceleration @ are expressed by the formulas
_dv _v
=a® W=3F

where v is lhe velocity, R is the radius of curvature of the
trajectory, ¥ and v are unit vectors of the tangent and principal
normal to the curve,

wr v,
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2111. A point is in uniform motion along a screw-line r =
= dacost-}-jasint+ btk with velocity v. Compute its accelera-
tion w.

2112, The equation of motion is

r=ti+tj+ 'k
Determine, at times f=0 and f=1: 1) the curvature of the

trajectory and 2) the tangential and normal components of the
acceleration.



Chapter VII
MULTIPLE AND LINE INTEGRALS

Sec. 1. The Double Integral in Rectangular Coordinates

1°. Direct computation of double integrals. The double integral of a con-
tinuous function f(x, y) over a bounded closed region S is the limit of the
corresponding two-dimensional integral sum

(fo paxay= tim  FFF (i ve) Axi Ao, M
(S) max Ax;—»>o0 ¢ k
max Ay, >0

where Ax;=x;4,—X%;, AYp=Yyr+,—Yr and the sum is extended over those
values of i and & for which the points (x;, y,) belong to S.

2°, Setting up the limits of integration in a double integral. We dis-
tinguish two basic types of region of integration.

g

Fig. 86

1) The region of integration S (Fig. 85) is bounded on the left and right
by the straight lines x=x, and x=x, (¥, > x,), from below and from above
by the continuous curves y=¢, (x) (AB) and y =g, (x) (CD) (@, (x) = ¢, (x)].
each of which intersects the vertical x= X (x, << X « x,) at only one point (see
Fig. 85). In the region S, the variable x varies from x, to x,, while the va.
riable y (for x constant) varies from y, =@, (x) t0 y;= @, (x). The integral (1) may
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be computed by reducing to an iterated integral by the formula

(§7e dy=x§dx °’§x’f(x. v dy,
(S) X o (%
@a (0)

where x is held constant when calculating S f(x, y)dy.

4 (x)

2) The region of integration S is bounded from below and from above
by the straight lines y=y, and y=y,(y, >y,), and from the left and the
right by the continuous curves x =1, (y) (AB) and x =, (y) (CD) [¥, (¥) == ¥, (¥)],
each %fﬁwhich intersects the parallel y=Y (y, <Y <y,) at only one point
(Fig. 86).

As before, we have

2 ¥ (4
{§ree y)dxay:”gdy Smf(x. ) dr,
S) v "W

¥, (1)
here, in the integral S f(x, y)dx we consider y constant.

¥ ()

If the region of integration does not belong to any of the above-discussed
types, then an attempt is made to break it up into parts, each of which does
belong to one of these two types.

Example 1. Evaluate the integral

1 1

Izgdxg(x-i-y)dy.
0 v

Solution.

= (o eg) [T [ (er2) (4 3)

Example 2. Determine the limits of integration of the integral

S fx, y)dxdy
)
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if the region of integration S (Fig. 87) is bounded by the hyperbola y* —x*=1
and by two straight lines x=2 and x=—2 (we have in view the region con-
taining the coordinate origin).

Solution. The region of integration ABCD (Fig. 87) is bounded by the
straight lines x =—2 and x=2 and by two branches of the hyperbola

Y= Vi+x and y-——Vl +x2;
that is, it belongs to the first type. We have:

2 Virxd
(Srwpardy=§ax § fe o
(S) -2 _Vitx
Evaluate the following iterated integrals:
3 1]
2113. S S(x’+2y)dx. 2117, (dy { (xv-+29)dx
0 0 -3 Yy -4
: 2N a
2114 Sd S(x+y, 2118. {do { rar.
1 0 asing
1 ! 2d ,: 3 cos @
x*dy
2115-de51+y=- 2119. (do { r*sin*qar.
0 (1) 14 [

2
1 Vi-x?

2120. { dx S Vi=xr— dy.
0 0

Write the equations of curves bounding regions over which the

following dduble integrals are extended, and draw these regions:
2 2-y

2 X
2116. de Xdy

2121. de S f(x, y)dx. 2124. Sadngxf(x, y) dy.
3 X“-:AD_I 3 ;m‘
2122, gdxg f(x, y)dy. 2125. gdx { e v dy.
2123. dewgy f(x, y)dx. 2126. dex§2 f(x, v)dy.
Y

Set up the limits of integration in one order and then in the
other in the double integral

§§7x pdrdy
(S)

for the indicaled regions S.
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c 2127. S is a rectangle with vertices 0 (0, 0), A(2, 0), B(2, 1),
0, 1).

2128. S is a triangle with vertices 0 (0, 0), A (1, 0), B(1, 1).

2129. S is a trapezoid with vertices O (0, 0), 4 (2, 0), B(1, 1),
c©, ).

2130. S is a parallelogram with vertices A(l, 2), B(2, 4),
C2, 7), D(1, 5).

2131. S is a circular sector OAB with centre at the point
0 (0, 0), whose arc end-points are A (1, 1) and B(---1, 1) (Fig. 88).

B(-11) Al41)

0 "X
Fip 88

2132. S is a night parabolic segment AOB bounded by the
parabola BOA and a segment of the straight line BA connecting
the points B(—1, 2) and A (1, 2) (Fig. 89).

2133. S is a circular ring bounded by circles with radii r=1
and R==2 and with common centre 0 (0, 0).

2134. S is bounded by the hyperbola y*—x* =1 and the circle

x* | y* =9 (the region containing the origin is meant).

2135. Set up the limils of integration in the double integral
(0 pdedy
(S
if the region S is defined by the inequalilies
a) x:0; y=0; x-fy<sl; d)yyr:x x=—1; y<l;

b) £*-y®<a’ e) yssx<<y-+ 2a;
0 < I<<y<a.

Change the order of integration in the following double integrals:

1 12x x

2136. { dx { f(x, y)dy. 2137. Sldef(x, y) dy.

0 3x3 2%
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a Va-x

1 1-y
2138. (dx { f(x, yay. 2141 fdy § fon pde

a?-x? 0 ~Vi-2
T
a Vix-x3 1 Vi-i2
2130. {axr  { f(v, pay. 2192 {dy § F(x, p)dx.
s .
2a Vaax
2140. gdx { e gy
0 V2ax-x?

-]
<

: x R VRE-®
2143. S de f(x, y)dy+ S dx S f(x, y)dy.
() [\] RVz—

2
1 sin x

2144. de Sf(x, y) dy.

o

Evaluate the following double integrals:
2145, SSxdxdy, where S is a triangle with vertices O (0, 0),

)
A(1, 1), and B(0, 1).

Y
. Y
B(02)
S B(G1) A(1,1)
c(qg1)
ol 472,0')—} a X
Fig. 90 Fig. 91

2146. SSxdxdy, where the region of integration Sis bounded

()
by the straight line passing through the points A (2, 0), B(0, 2)
and by the arc of a circle with centre at the point C (0, 1), and
radius 1 (Fig. 90).
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2147. ”V dXdy g where S is a part of a circle of radius

a with centre at 0(0 0) lying in the first quadrant.
2148, SSVx —y*dxdy, where S is a triangle with vertices
(S
0(0,0), A(l, —1), and B(l, 1).
2149. SSny—y dxdy, where S is a triangle with vertices
0@, 0, A (10 1), and B(l, 1).

2150. SS e3dxdy, where S is a curvilinear triangle 0AB bound-
(S)

ed by the parabola y*=x and the straight lines x=0, y=1
(Fig. 91).

2151. SS%‘%‘;—'{, where S is a parabolic segment bounded by

the parabola y=§ and the straight line y=x.

2152. Compute the integrals and draw the regions over which they
extend:

n 1+C0s x _Jl
H . 2 3 CO8 y
a) 0Sd,\c § y* sinxdy; 0 S dy S Jx' sint ydx.
n 0

When solving Problems 21563 to 2157 it is abvisable to make
the drawings first.

2153. Evaluate the double integral

S K xy* dxdy,
)

if S is a region bounded by the parabola y* =2px and the straight
line x=p.
2154*. Evaluate the double integral

S S xydxdy,
S

extended over the region S, which is bounded by the x-axis
and an upper semicircle (x—2) +y=1.



252 Multiple and Line Integrals [Ch. 7

2155. Evaluate the double integral
dx dy
yf V2a—x’

(S)

where S is the area of a circle of radius a, which circle is tan-
gent to the coordinate axes and lies in the first quadrant.
2156*. Evaluate the double integral

(§ydxay,
(S)
where the region S is bounded by the axis of abscissas and an
arc of the cycloid
x=R (t —sint),
y=R (1 —cos ).
2157. Evaluate the double integral

S S xydxdy,
)

in which the region of integration S is bounded by the coordi-
nate axes and an arc of the astroid

x=Rcos’t, y=R sin’¢ (0<t<g—>.

2158. Find the mean value of the function f(x, y) = xy* in the
region S{0<<x<<1, O0<y<<l1}.

Hint. The mean value of a function f(x, y) in the region S is the number

T=5 (e aray
)

2159. Find the mean value of the square of the distance of
a point M (x, y) of the circle (x —a)’+y* < R*? from the coordi-
nate origin.

Sec. 2. Change of Variables in a Double Integral

1°, Double integral in polar coordinates. In a double integral, when passing
from rectangular coordinates (x, y) to polar coordinates (r, ¢), which are
connected with rectangular coordinates by the relations
X=rCos @, y=rsing,
we have the formula

SSf(x, y)dxdy:SS(rcos&p, rsin @) r dr de, 0
(S) (S)
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If the region of integration (S) is bounded by the half-lines r=a and
r=Pf(a<P) and the curves r=r,(p) and r=r,(p), where r,(p) and
ry (@) [7y (@) << r, ()] are single-valued functions on the interval a« <@ <,
then the double integral may be evalualed by the formula

B it
SSF(q), r)rdrd(p———gdq) S F(g, r)rdr,
(S) a ry (@)
r2 (@)
where F (¢, ry={f(rcos ¢, rsin@). In evaluating the integral S F(p, nnrdr
(o))

we hold the quantity ¢ constant.

If the region of integration does not belong to one of the kinds that has
been examined, it is broken up into parts, each of which is a region of a
given type.

2°. Double integral in curvilinear coordinates. In the more general case,
if in the double integral

SSf(x, y) dxdy
Sy

it is required to pass from the variables x, y to the variables «, v, which
are connected with x, y by the continuous and differentiable relationships

x=q (4, v), Y=y (1, v)

that establish a one-to-one (and, in both directions, continuous) correspondence
between the points of the region S of the xy-plane and the points of some
region S’ of the UV-plane, and if the Jacoban

ox dy

1__[_)‘(.\', y) du du
D(u, v) |0x dy

dv dv

retains a constant sign in the region S, then the formmula

SS [ (x, y)dr dy::SS fle(u, v), (u, v)]ITdudv
(s) (s")
holds true
The limits of the new integral are determined from general rules on the
basis of the type of region S’
Example 1. In passing to polar coordinates, evaluate

SS V\——x’—gﬁ dx dy,
(S)
where the region S is a circle of radius R=1 with centre at the coordinate
origin (Fig 92).
Solution. Pulting x —=rcos@, y==rsin @, we obtain:

V‘l —xt—yt= Vl — (r cos @)% — (rsin @)* = Vl —r
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Since the coordinate r in the region S varies from 0 to 1 for any ¢, and ¢
varies from 0 to 2x, it follows that

2n 1
SS Vi—x—y dxdy=S d(ps r Vl-r’dr=—§— .
(S) 0 0

Pass to polar coordinates r and ¢ and set up the limits of
integration with respect to the new variables in the following
integrals:

1 1 2 X
2160. S dx S f(x, y)dy. 2161. S dx Sf V¥4 dy.
[1] () [} 0
2162, ({7 (x, y)dray,
)
where S is a triangle bounded by the straight lines y=x, y=—x,
y=1.

2163. §dx§f(%)dy.

2164. SSf(x, y)dxdy, where S is bounded by the lemniscate
S

& +y) =a* (x* — ).

Fig. 92 Fig. 93
2165. Passing to polar coordinates, calculate the double inte
gral
SS ydxdy,
S

where S is a semicircle of diameter a with centre at the poin
C(3, 0) (Fig. 93).
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2166. Passing to polar coordinates, evaluate the double inte-
gral

§§ 0 +y) ey,
(S)

extended over a region bounded by the circle x*+4-y*=2ax.
2167. Passing fo polar coordinates, evaluate the double in-
tegral

SS Va —x*—y*dxdy,
(S)

where the region of integration S is a semicircle of radius @ with

centre at the coordinate origin and lying above the x-axis.
2168. Evaluate the double integral of a function f(r, ¢)=r

over a region bounded by the cardioid r=a(l +cos¢) and the

circle r=a. (This is a region that does not contain a pole.)
2169. Passing to polar coordinates, evaluate

a Vai-ga
de S V¥ y4dy.

[} 0

2170. Passing to polar coordinates, evaluate

{ SVa—s—y dxay,

S)
where the region S is a loop of the lemniscate
@ +y) =a'(x*—y’) (x=0).
2171*, Evaluate the double integral
Yg ]/l ——a;— dxdy,
(s)

extended over the region S bounded by the ellipse ’;—:+y§,=l by
passing to generalized polar coordinates:

X —rcosq, L=rsin
a"‘ (p' b— (P'

2172%, Transform
c Bx

§ax§fex pay

0

(O<a<pP and ¢>0) by introducing new variables u=x+y,
uv=y.
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2173*%, Change the variables u=x-+4y, v=x—y in the integral

S dx S f(x, y)dy.

0 ]

2174**, Evaluate the double integral
S S dx dy,
(s)

where S is a region bounded by the curve

xz yz 2 xz y
(zﬂLTﬁ) =F e

Hint. Make the substitution
x=arcos@, y=brsing,

Sec. 3. Computing Areas
1°. Area in rectangular coordinates. The area of a plane region S is

S =S S dx dy.
)
If the region S is defined by the inequalities a<<x<<b, @ () <y <<V (¥),

then
b Y(x
S = S dx S dy.
a @ (%)
2°. Area in polar coordinates. If a region S in polar coordinales r and ¢
is defined by the inequalities a <o <P, f(9)<<r<<F(¢), then

B F(9)
S=SSrd(pdr= S do S rdr.
(S) a [ (9)
2175. Construct regions whose areas are expressed by the in-
{egrals

2 x+2 a Vaiz 2
a) dx \ dy; Db) \dy dx.

{ax fa §

-1 x?

Evaluate these areas and change the order of integration.
2176. Construct regions whose areas are expressed dy the in-

tegrals

arc tanz 8sec @ —’: a (1+cos @)
a) do S rdr; b) S de S rdr.
n i -5 a
2

4

Compute these areas.
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2177. Compute the area bounded by the straight lines x=y,
x=2y, x+y=a, x+3y=a(a=>0).

2178. Compute the area lying above the x-axis and bounded
by this axis, the parabola y* =4ax, and the straight line x-y=3a.

2179*. Compute the area bounded by the ellipse

(Y—x)+x =1
2180. Find the area bounded by the parabolas
=10x-}-25 and y*=—6x + 9.

2181. Passing to polar coordinates, find the area bounded by

the lines
4y=2x, X-t+y*=4x, y=x, y=0.

2182. Find the area bounded by the straight line r cosp=1
and the circle r=2. (The area is not to contain a pole.)

2183. Find the area bounded by the curves

r=a(l-+cos¢) and r=acos ¢ (a>0).

2184. Find the area bounded by the line

x2 !/2 2 _ x2 ”2
<7+3>“T—o-

2185%. Find the area bounded by the ellipse
(x—2y + 3)* -+ (3x - 4y—1)* = 100.

2186. Find the area of a curvilinear quadrangle bounded by
the arcs of lhe parabolas x*=ay, x*=0by, yY=o0x, yY'=pp0<
<a<<b, 0<<a<<P).

Hint. Introduce the new variables u and v, and put

X=uy, y*==vx.

2187. Find the area of a curvilinear quadrangle bounded by
the arcs of the curves ¢ =ax, y*=0x, xy=a, xy=p0<<a<<b,
0<a<<P).

Hint. Introduce the new variables u and v, and put

xy=u, y*=ux,

9 —1900
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Sec. 4. Ccmputing Volumes

The volume V of a cylindrotd bounded above by a continuous surface
z=1{(x, y), below by the pléne 2=0, and on the sides by a right cylindrical
surface, which cuts out of the xy-plane a region S (Fig. 94), is equal to

% =S S } (x, y) dx dy.
S)

2188. Use a double integral to express the volume of a pyra-
mid with vertices 0(0,0 0), A(1,0,0), B(1,1,0) and C(0, 0, 1)
(Fig. 95). Set up the limits of integration.

z l z

clo,0,1)

Fig. 94 Fig. 9

In Problems 2189 to 2192 sketch the solid whose volume is
expressed by the given double integral:

1 1-x 2 Vi-xt
2189. de S(l—x—y)dy. 2191, de S (1—x)dy.
02 20—1 02 20
2190. (ax (@ —x—pay. 2192 (ax (@ —x—yp)ay.
2193. §ketcl'; the solid whose volun;e isz:a;cprcssed by the in-
a Varix

tegral S dx S YV a* — 2 —y*dy; reason geometrically to find the

value (;f thisointegral.
2194. Find the volume of a solid bounded by the elliptical

paraboloid z=2x*+y*+ 1, the plane x+y=1, and the coordi-
naie planes.

21¢5. A solid is bounded by a hyperbolic paraboloid z=x*—y*
and the planes y=0, z=0, x=1. Compute ils volume.
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2196. A solid is bounded by the cylinder x* +2*=a* and the
planes y=0, z=0, y=x. Compute its volume.

Find the volumeas bounded by the following surfaces:

2197. az=y*, x* +y* =", 2=0.

2198. y=Vx, y=2Vx, x+2=6, z=0.
2199, z=x*+y*, y=x*, y=1, z=0.

2200. x +y+4-2=a, 3x +y=a, %x+y=a, y=0, 2=0.

2 2

2201 S4+5=1, y=2x y=0, z=0.

2202, x* +y*=2ax, z=ax, z=0x (a>f).

In Problems 2203 to 2211 use polar and generalized polar
coordinales.

2203. Find the entire volume enclosed between the cylinder
x*+y*=d® and the hyperboloid x* 4+ ¢y*—2*=—a>.

2204. Find the entire volume contained between the cone
2(x* + y¥)—2*=0 and the hyperboloid x* + y*—2* =—a’.

2205. Find the volume bounded by the suriaces 2az=x*+ y*,
x* i —2t=a®, z=0.

2206. Determine the volume of the ellipsoid

=

2207. Find the volume of a solid bounded by the paraboloid
2az=x* 4 y* and the sphere x* 4 y* + 2* =3a*. (The volume lying
inside the paraboloid is meant.)

2208. Compute 1he volume of a solid bounded by the xy-plane,
the cylinder x*+ y* =2ax, and the cone x*+ y*=2°.

2209. Compule the volume of a solid bounded by the xy-plane,
the surface z=ae- ®*+¥9, and the cylinder x* + y* = R".

2210. Compute the volume of a solid bounded by the xy-plane,

the paraboloid z—-—z—} bz’ and the cylinder 2+; 2—

2211. In what ratlo does the hyperboloid x*+4y*—2*=a?
divide the volume of the sphere x* + y° + 2* << 3a°?

2212*, Find the volume of a solid bounded by the surfaces
2=x+y, xy=1, xy=2, y=x, y=2x, 2=0x>0, y=>0).

Sec. 5. Computing the Areas of Surfaces

The area ¢ of a smooth single-valued surface z=f (x, y), whose projection
on the xy-plane is the region S, is equal to

[V TG

9.
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2213. Find the area of that part of the plane %—{- %—{—Ci =1

which lies between the coordinate planes.

2214. Find the area of that part of the surface of the cylin-
der x*+4 y*=R? (2 =0) which lics between the planes z=mx and
2=nx(m>n>0).

2215*%, Compute the area of that part of the surface of the
cone x*—y*=2" which is situated in the first octant and is
bounded by the plane y+z=a.

2216. Compule the area of that part of the surface of the
cylinder x*4 4y =ax which is cut out of it by the sphere
x4y 2 =at.

2217. Compute the area of that part of thze 5121rface of the
sphere x*+ y*+ 2*=a® cut out by the surface %,—}—":)——2: 1.

2218. Compute the area of that part of the surface of the
paraboloid y?+ z* =2ax which lies belween the cylinder y*=ax
and the plane x=a.

2219. Compute the area of that part of the surface of the
cylinder x*+ y®=2ax which lies between the xy-plane and the
cone x*-}y*=2>

2220*, Compute the area of that part of the surface ot the
cone x*—y* =2* which lies inside the cylinder x*-+ y*=2ax.

2221%, Prove that the areas of the parts of the surfaces of the
paraboloids x*+ y*=2az and x*—y*=2az cut out by the cylin-
der x*-}-y*=R*® are of equivalent size.

2222% A sphere of radius a is cut by two circular cylinders
whose base diameters are equal to the radius of the sphere and
which are tangent to each other along one of the diamelers of the
sphere. Find the volume and thc area of the surface of the re-
maining part of the sphere.

2223* An opening with square base whose side is equal
to a 1s cut out of a sphere of radius a. The axis of the opening
coincides with the diameter of the sphere. Find the area of the
surface of the sphere cut out by the opening.

2224*, Compute the area of that part of the helicoid

z=carctan% which lies in the first octant between the cylin-
ders x*4-y*=a® and x*4y* =02,

Sec. 6. Applications of the Double Integral in Mechanics

1°. The mass and static moments of a lamina. If S 1s a region in an
xy-plane occupied by a lamina, and @ (x, y) 1s the surface density of the
lamina at the point (x, y), then the mass M of the lamina and iis static
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moments My and My relative to the x- and y-axes are expressed by the
double integrals
M=S S e (x, y)dxdy, Mx=S S yo (x, y) dx dy,
(S) (S)
My==S S xQ (x, y)dx dy. (1)
(S)

If the lamina is homogeneous, then @ (x, y) =const.

2°. The coordinates of the centre of gravity of a lamina. If C(x, y) is the
centre of gravity of a lamina, then

-_My -—_My

=wmc YT me
where M is the mass of the lamina and My, My are its static moments rela-
tive to the coordinate axes(see 1°). If the lamina is homogeneous, then in
formulas (1) we can put g=1.

3°. The moments of inertia of a lamina. The moments of inertia oi a
lamina relative to the x- and y-axes are, respectively, equal to

1x=S S y*e(x, y)dxdy, Ily= S S xQ (x, y) dxdy. @
(S) (S)

The moment of inertia of a lamina relative to the origin is

IO:S S Kty (x, y)dedy=1Ix+1y. A3)
(S)

Putting o (x, ¥)=1 in formulas (2) and (3), we get the geometric moments of
inertia of a plane figure.

2225. Find the mass of a circular lamina of radius R if the
density is proportional to the distance of a point from the centre
and is equal to & at the edge of the lamina.

2226. A lamina has the shape of a right triangle with legs
OB=a and 0A==0, and its density at any point is equal to the
distance of the point from the leg OA. Find the stalic moments
of the lamina relative to the legs OA and OB.

2227, Compute the coordinates of the centre of gravity of the
area OmAnO (Fig. 96), which is bounded by the curve y=sinx
and the straight line OA that passes through the coordinate origin

and the vertex A ; 1) of a sine curve.

2228. Find the coordinates of the centre of gravity of an area
bounded by the cardioid r=a(l + cos ).

2229. Find the coordinates of the ccntre of gravity of a cir-
cular sector of radius a with angle at the vertex 2o (Fig. 97).

2230. Compute the coordinates of the centre of gravity of an
area bounded by the parabolas y*=4x +4 and y*=—2x 4.

2231. Compute the moment of inerlia of a triangle bounded
by the straight linesx+y=2, x=2, y=2 relative to the x-axis.
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2232. Find the moment of inertia of an annulus with diame-
ters d and D (d <D): a) relative to its centre, and b) relative to
its diameter.

2233. Compute the moment of inertia of a square with side a
relative to the axis passing through its veriex perpendicularly to
the plane of the square.

2234*. Cormpute the moment of inertia of a segment cut off
the parabola y*=ax by the straight line x=a relative to the
straight line y=—a.

Yy

|

Fig. 96

2235*, Compute the moment of inertia of an area bounded by
the hyperbola xy=4 and the straight line x--y=0>5 relative to
the straight line x=y.

2236*, In a square lamina with side a, the density is propor-
tional to the distance from one of its vertices. Compute the mo-
ment of inertia of the lamina relative to the side that passes
through this veriex.

2237. Find the moment of in2rtia of the cardioid r =a (1 4 cos ¢)
relative to the pole.

2238. Compute the moment of inertia of the area of the lem-
niscale r* =2a®cos2¢ relative to the axis perpendicular to its
plane in the pole.

2239*. Computle the moment of inertia of a homogeneous lamina
bounded by one arc of the cycloid x=a(t—sin¢), y=a(l—cos¢)
and the x-axis, relative to the x-axis.

Sec. 7. Triple Integrals

1°. Triple integrals in rectangular coordinates. The triple integral of the

function f(x, y, z) extended over the region V is the limit of the corre-
sponding threefold iterated sum:

X, ¢, 2)dxdy dz=1lim Xiy Y1 25) Ax; Ay Az,
S§Si( ) ymmmtzlzgf(.y, 4) Ax; Ay Az,
maxAv;«»o
max Azg - 0
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Evaluation of a triple integral reduces to thz successive computiation of the
three ordinary (on2fold iterated) integrals or to the computation of one
double and one sinzle integral.

Example 1. Compute

I == S § S ’y?zdx dydz,

where the region V is defined by the inequalities
I<x<l], Oy<x, O<<z<<xy.
Solution. We have

1 x xy 1 x xy
' 2
l=§dxgdy5 x’y"'zdz:deEx’y’% dy=
[ ('l ] ] ] 0

Example 2. Evaluate

2 3 ,
S(§)S x*dxdydz

. Cox? Y 2
extended over the volume of the ellipsoid — +4- 5 C—2=l.

Solution. @
a a
S s sz dxdydz = S x2dx S g dydz = S xzsy,dx,
) “a 3] “a

2 2 .2
where S, 1s the area of the ellipse %E+—Zc—2:l—i\‘)—2,x=const, and is equal to

T T x*
S, =mb ]/ I——c ]/ l—:l—zf—-nbc( 1_55) .

We therefore finally get

a
g x*dxdydz=mnbc l x’( 1—-5-2 dv—i na*be
N yaz= at) " 15 ’
(V) -a

2°. Change of variables in a triple integral. If in the triple integral

S S Si(x, Yy, 2)dxdydz
W)

it is required to pass from th2 variables x, y, z to the variables «, v, w,
which are connected with x, y, z by the relations x=¢ (4, v, w), y=V (4, v, w),
2=y (u, v, w), where the functions @, P, y are:

1) continuous together with their paitial first derivatives;

2) in one-to-one (ind, 1n both directions, continuius) correspondence be-
tween the poirts of the region of integration V ol xyz-space and the points of
some region V' of UVW-space;
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3) the functional determinant (Jacobian) of these functions
05 0x ox
du v 0w
j=Dxy.2) | oydy 9y
" D(u,v,w) | du v dw
0 02 0z
du dv ow
retains a constant sign in the region V, then we can make use of the for-
mula

(§§ 1y aavayaz=

)
=S S S flo(u, v, w), $(u, v, w), X(u, v,w)|/!|dudodw.
(v
Z Z
M(r,,h) M(r¢,4)
g z
h
0 - 0 i -
Y T ¥
¢ 7 7
X X
Fig. 98 Fig. 99

In particular,
1) for cylindrical coordinates r, ¢, h (Fig. 98), where
x=rcos¢p, y==rsing, z=h,
we get [/ =r;
2) for spherical coordinates ¢, v, r (¢ is the longitude, 1 the latitude,
r the radius vector) (Fig. 99), where
x=rcosPcosq, y=rcospsing, z=rsiny,

we have [ ==r%cos.
Example 3. Passing to spherical coordinates, compute

S S S VX +y*+ 22 dxdydez,
W)

where V is a sphere of radius R.
Solution. For a sphere, the ranges of the spherical coordinates ¢ (longi-
tude), ¢ (latitude), and r (radius vector) will be

0<gp<2n, —12<1p<—;—, 0<r<<R.
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We therefore have

|a

2%

SS S Vm;-i_-z_idxdydzzs

R
dlp g rricosPdr=nR*4,
%) 0

NI. e L

3°, Applications of triple integrals. The volume of a region of three-dimen-

sional xyz-space is
V::S S S dxdydz.
(V)
The rnass of a solid occupying the region V is
M == S S y (v, y, 2) dxdydz,
V)

where vy (x, y, 2) is the density of the body at the point (x, y, 2).
The static moments of the body relative to the coordinate planes are

Myy ::S S S vy (x, y, 2)zdxdydz,
Myz = SWS) S Y (%, U, 2)adx dy dz;
Mzyx = S(‘S)S Y(x, y, 2) ydxdydz.

V)
The coordinates of the centre of gravity are
_‘___/”VZ ___’”ZX ___/HX)’
EWMOYTT™M O PTTM

If the solid is homogeneous, then we can put y(x, y, 2)=1 in the for-
mulas for the coordinates of the centre of gravity.
The moments of inertia relative to the coordinate axes are

e={ § S +mve v 2axdyan

)

y={§ S @ty v narayas
W)

1= { § et v v 2 dray gz,
(V)

Putting v (x, ¥, 2)=1 in these formulas, we get the geometric momenis
of inertia of the body.

A. Evaluating triple integrals
Set up the limits of integration in the triple integral
S S S,‘(x, y, 2)dxdydz

V)
for the indicated regions V.
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2240. V is a tetrahedron bounded by the planes
x+y+z=1, x=0, y=0, z=0.
2241. V is a cylinder bounded by the surfaces
*+y =R z=0, z=H.

2242%. V is a cone bounded by the surfaces

ot 2
PR
2243. V is a volume bounded by the surfaces

z2=1—x*—y*, z=0.

Z2=¢C.

Compute the following integrals:

2244, S dXS dy S"m_%—ﬁ .

2 2V'x 1/@
2245, de S dy S xdz.

a VZ*-—x' V:’—f’—y’

2246, gdx | dy j .
. . % P—xi— i
0 0

1-x 1-x-y

2247. §dx { ay S xyzda.
9 )

2248. Evaluate
SS‘S‘ __dxdydz
(xt+y+z+1)°
where V is the region ol integration bounded by the coordinate

planes and the plane x+y+z=1.
2249. Evaluate

S S S(x+ y+2) dxdydez,
W

where V (the region of integration) is the common part of the
paraboloid 2a: = x* + y* and the sphere x*+ y*+ 2* <3a’.
2250. Evaluate

S S Sz’ dxdydz.

(1%]

where V (region of integration) 1s the common part of the
spheres x* +y* +2*<R* and ¥’ +4* +2°<2Rz
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2251. Evaluate
SSS 2dxdydz,

(V)
where V is a volume bounded by the plane z=0 and the upper
half of the ellipsoid ;4 -+ =1.
2252. Evaluate
2 2 2
SVS(%?-F%?--%)dxdydz,

V)
. . . ) CLox? P 22
where V is the inlerior of the ellipsoid TF+—bT+'c7=l'
2253. Evaluate

SSS 2dxdydz,
(9)
where V (the region of integration) is bounded by the cone
2’—;[,?;:():2 Fy®) and {he plane z=h.
2254. Passing to cylindrical coordinates, evaluate
Sgg dxdydz,
{

where V is a region bounded by the surfaces x*+uy* 4 2 =2Rz,
x*- y*=2* and countamning the point (0,0, R).
2255. Lvaluaie
2 Var-xt a
S dx S dy S 2V ¥+ i de,

first {ransforming it o cylindrical coordinates.
2256. Evaluate

2r Varx=a2 Varicxicya
S dx g dy S dz,
o ~Varx-xt 0

first transforming it to cylindrical coordinates.
2257. Evaluale

R VRi-x3 VR’—:V'-y‘
de S dy S (x*-+y*) dz,

“R  _yRim o

first transforming it to spherical coordinates.
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2258. Passing to spherical coordinates, evaluate the integral

SSS VX ¥+ 2dxdydz,

W)
where V is the interior of the sphere x* -|4* +2* <<«x.

B. Computing volumes by means of triple integrals

2259. Use a triple integral to compute the volume of a solid
bounded by the surfaces

y* =4a*—3ax, y’=ax, z=+h.

2260**. Compute the volume of that part of the cylinder
x* + y* = 2ax which is contained between the paraboloid * 4 y* = 2az
and the xy-plane.

2261*. Compute the volume of a solid bounded by the sphere
x* 41 +2*=a* and the cone 2*=x*+y* (external to the cone).

2262*, Compute the volume of a solid bounded by the sphere
x*4+y* +2°=4 and the paraboloid x*+y*=3z (internal to the
paraboloid).

2263. Compute the volume of a solid bounded by the xy-plane,
the cylinder x*+4y*=ax and the sphere x*+44* + 2* =a® (internal
to the cylinder).

2264. Compute the volume of a solid bounded by the paraboloid

%:-+-z—:—=2 % and the plane x-=a.

C. Applications of triple integrals
\ to mechanics and physics

2265. Find the mass M of a rec-
tangular parallelepiped 0 <<x=Ca,
0<<y<bh, 0<z<c, if the den-

/ sity at the point (x, y, 2) is

e(x, ¥, )=x-+y+z.
X 2266. Out of an octant of the
sphere  x*+y'+2<<c’, x=0,
Fig. 100 y=0, 2=0 cut a solid OABC
bounded by the coordinate planes

and the plane =+ =1 (a<<¢, b<c) (Fig. 100). Find the mass
of this body if the density at each point (x, y, 2) is equal to
the z-coordinate of the point.

2267*. In a solid which has the shape of a hemisphere
4y +2°<<a’, 2=0, the density varies in proportion to the

)
o)
<]
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distance of the point from the centre. Find the centre of gravity
of the solid.

2268. Find the centre of gravity of a solid bounded by the
paraboloid y* +22*=4x and the plane x=2.

2269*. Find the moment of inertia of a circular cylinder,
whose altitude is & and the radius of the base is a, relative to
the axis which serves as the diameter of the base of the cylinder.

2270*. Find the moment of inertia of a circular cona
(altitude, h, radius of base, a, and density ) relative to
the diameter of the basc.

2271**. Find the force of attraction exerled by a homogeneous
cone of allitude A and vertex angle « (in axial cross-section) on
a material point containing unit mass and located at its vertex.

2272**, Show that the force of attraction exerted by a homo-
geneous sphere on an exlernal material point does not change if
the entire mass of the sphere is concentrated at its centre.

Sec. 8. Improper Integrals Dependent on a Parameter.
Improper Multiple Integrals

1°. Differentiation with respect to a parameter. In the case of certain
restrictions imposed on the functions f(x, @), f, (¥, ) and on the correspond-
g improper integrals we have the Letbniz rule

o [

Ei% S fx, aydex= S f; (x, a)dx.

a "l

Example 1. By differentiating with respect to a parameter, evaluate
°°. e—»xx2__e-;,xl
S—X—-—-—dx (@>0, B >0).

0

Solution. Let
n

-ax’___ —ax!
Se___e__ dv=F (a, B).
Then 0
OF (@ B [ 1 T
O\ B\ eV e — o= 2% | o
oa S,\e dx 20Le 55"
0 [\)
Whence F (o, B) ::——12— Ina4C (B). To find C(B), we put a=f in the latter

equation. We have 0=—-—2— In B+ C (f).
Whence C(ﬂ):%ln f. Hence,

Fo,pl=—glnatginp=tinl,



270 Multiple and Line Integrals [Ch. 7

2°, Improper double and triple integrals.

a) An infinite region. If a function f(x, y) is continuous in an unbounded
region S, then we put

ng(x, y) dx dy= lim SS f(x, v) dxdy, m
) > Sia)

where o is a finite region lying entirely within S, where ¢ — S significs that
we expand the region ¢ by an arbitrary law so that any point of S should
enter it and remain in it. If there is a limit on the right and if it does not
depend on the choice of the region o, then the corresponding improper inte-
gral 1s called convergent, otherwise it is divergent.

If the integrand f(x, ) is nonnegative [f(x, y)=0], then for the con-
vergence of an 1mypioper integral it is necessary and sufficient for the limit
on the right of (1) lo exist at lcast for one system of regions o that exhaust
the region §.

b) A discontinuous function. If a function f(x, y) is everywhere contin-
uous in a bounded closed region S, except the point P (a, b), then we put

(§ren pavay=1im ({7 g aray, @
& >0 v,
(S) (58)

where S, is a region obtained from S by eliminating a small region of dia
meter € that contains the roint P. If (2) has a limit that does not depend
on the tyre of small regions elimirated from S, the improper integral under
consideration is called convergent, othcrwise it is divergent.

If f(x, ¥) =0, then the Limit on the right of (2) is not dependent on the
type of rcgions eliminated from S; for instance, such reg:ons may be circles

of radius ; with centre at P.

The concept of improper double integrals is readily extended to the case
of triple integrals.

Example 2. Test for convergence

dx dy
’ (3)
2 Y4
(Ss§ 2+
where S is the entire xy-plane,

Solution. Let o be a circle of radius @ with centre at the coordinate
origin. Passing to polar coordinates for p # 1, we have

;. Q
_ dx dy _ rdr
”“’"SS(IM’H*)P".S W\ T
) ° )

14
1 (14r2y1=P
= #5270 do= 1 1+ ey-r—

[
If p<1, then lim I (0)=1lim J/ (6)= oo and the integral diverges. But if p > I,
ag—s Q-

then lim I (0)=
Q> @ P

il and the integral converges. For p=1 we have
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m

Q
I ()= Sd rdr

¢ 14-r2
L] 0
diverges.

Thus," the integral (3) converges for p > 1.

2273. Find [’ (x), if

fx)= S e~ dy (x > 0).

x

2274. Prove that the function

+ o

/A
“=Verum @

satisfies the Laplace equation

0%u | 0%u

=nln(l4+¢?; lim I(c)=ow, that is, the integral
0> ®

2275. The Laplace transformation F (p) for the function f(¢)

is defined by the formula
F(p)={e-"f () dt.

Find F(p), if: a) f()=1 b) f()=e*; ¢)
d) f(#)=cospt.
2276. Taking advantage of the formula
Sx""dx=%(n >0),

compute the integral
1

S x*~nxdx.

2277*. Using the formula

®

Se-”’ dt =—:; (p>0),

evaluate the integral

tte-rt dt.

Cem8

f(t)=sinft;
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Applying diflerentiation with respect to a parameter, evaluate
the following integrals:

2W&Sfiiiwxm>op>m

2279. =77 Sin mxdx (@>0, p=>0).

8§ =8 °
Y
1
o
®

* arc tan ax
d

2280. —}W X.

CC

ln(l ux)

81.
22 Ve

=dx (Ja|<<).

_ax Sin I.’)x

2282,

("a

dx (a=0).

°cc-—8 01’1_

Evaluate the following improper integrals:

2283.

S8

@x
dee"”-’/)dy.

0

I

)

X x

2284, S dy S eV dx.

2285. S ‘jxkyz, where S is a region defined by the inequali-
§
ties x=1, j>x
”%*S”STﬁﬁTﬁFw>m
0

2287. The Euler-Poisson integral defined by the formula

= S e~*'dx may also be written in the form I=Sc‘ll’dy. Eval-
[ 0

uate / by multiplying these formulas and then passing to polar
coordinates.

2288. Evaluate

mi on [- < d
édxsdyS(x’+y’-iz’+l)*'
0 0 0
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Test for convergence the improper double integrals:

2289**, SS InVx 44 dxdy, where S is a circle ¥*+y*<<1.
()

2290. gS(dXdJ,,, where S is a region defined by the ine-

quality x? -i y>=1 (“exterior” of the circle).

* dxdt/ .
2291*, 1/(" e where S is a square |[x| <1, |y|<<1

dxdydz . . .
2292, SSS PR where V is a region defined by the

inequality x +y*-+ 2 =1 (“exterior” of a sphere).

Sec. 9. Line Integrals

1°. Line integrals of the first type. Let f(x, y) be a continuous function
and y=¢ (x) [a<< v << b] be the equation of some smooth curve C.
Let us construct a system of points M, (x;, y,) (i=0, 1, 2, ..., n) that

break up the curve C into elementary arcs M,_,M;=As; and let us form the
n

integral sum S, = Zf(x,, ¥,) As,. The himit of this sum, when n - o and

max As; -+ 0, 1s called a line integral of the first type

lim 2 fxi y;) As;= S f(x, y)ds

n—»®;_ P

(ds 1s the arc differential) and is evaluated from the formula
b
(1o pas= e ¢ () VTF@ @R dx.
C a

In the case of parametric representation of the curve C: x=¢ (1),
y=9 () la<t<<P], we have

B
{16 0 ds=( @ venVeTmFeT @,
Cc

a

Also considered are line integrals of the first type of functions of three
variables f (x, y, 2) taken along a space curve. These integrals are evaluated
in like fashion A line integral of the first type does not depend on the direc-
tion of the path of integration; if the integrand [ is interpreted as a linear
density of the curve of integration C, then this integral represents the mass
of the curve C,
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Example 1. Evaluate the line integral

{cturas,
c
where C is the contour of the triangle ABO with vertices A (1, 0), B(0, 1),
and O (0, 0) (Fig 101).
Solution. Here, the equation AB is y=1—x, the equation OB is x=0,
and the equation OA 1s y=0. We therefore have

fetnds= (utnds+ (erpdst (arpas=
c AB Bo 0A
=S] V-idx—l—glydy—}-sixdx: V3241,
[1) 1] 0

2°. Line integrals of the second type. If P(x, y) and Q (x, y) are contin-
uous functions and y=@ (1) 1s a smooth curve C that runs from a to b as

Y
B
0 .
A X
Fig. 101

x varies, then the corresponding line integral of the second type is expressed
as follows:

. b
(P paxtQ pdy= (1P o)+ (0 Q 0 9L,
Cc a
In the more general case when the curve C is represented parametrically:
x=0(t), y=y (), where { varies from a to B, we have
B
(P paxteu nay+ (PO v O+Q @M, v v el ar.
C a
Similar formulas hold for a line integral of the second type taken over a
space curve.

A line integral of the second type changes sign when the direction of the
path of integration ts reversed. This integral may be interpreted mechanically

as the work of an appropriate variable force {P(x, y), Qx, y)} along the
curve of integration C

Example 2. Evaluate the line integral

Swm+f@.
C
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where C is the upper half of the ellipse x=a cost, y=>b sint traverssd
clockwise,

Solution. We have
o

S y? dx+x’dy=g (6% sin? £ -(—asin t) +-a®cos® t-bcos (] dt =
C n 0 [

= —ab? g‘ sin® £ df +a%b S cos® { dt = % ab®.

n 1]
3°. The case of a total differential. If the intesrand of a line integral
of the second type is a total differential of some single-valued function
U=U((x, y), that is, P (x, y)dx+ Q (x, y) dy =dU (x, y), then this line integral

1s not dependent on the path of integration and we have the Newton-Leibniz
formula

(X3, ¥2)
P(x, dx+Q (x, y)dy=U (x5, y)—U (v,, yy), )

(%,. ¥)

where (x,, y,) ts the initial and (x,, y.) is the terminal point of the path
In particular, if the contour of integration C 1s closed, then

{ P e 9 dx4-Qx pdy=0 @
C

If 1) the contour of integration C is contained entirely within some
simply-connected regioa S and 2) the functions P (x. y) and Q (x, y) tocether
with their partial derivatives of the first order are continuous in S, then a
necessary and sufficient coiditionr for the existence of the function U is the
identical fullilment (1n S) of the equality

3Q_oP
3x — oy @)

(see integration of total differentials) If conditions one and two are not ful-
filled, the presence of condition (3) does not guarantee the cxistence of a
single-valued tunction U, and formulas (1) and (2) may prove wrong (see
Problem 23:2) We give a method of finding a function U (x, u) from its
total diflerential based on the use of line integrals (which is yet arother
method of integrating a total dilferential). For the contour of integration C
let us take a broken line P,P,M (Fig 102), where P, (x,. y,) is a fixed foint
and M (x, y) 1s a variable point. Then along P,P, we have y=y, and dy =0,
and along P;,M we have dx=0 We get:

(x. y)
Ut —U 5 )= § Plx n)dr+Qex ndy=
(%4, Yo) x vy
= S P(x, y,) dx+g Q (x, y)dy.
Xy Vo
Similarly, integrating with respect to P,P,M, we have

y x
Vs )—U o s = Qo g+ { P s, p)ax.
Vo Xy
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Example 3. (4x42y)dx+ (2x—6y) dy=dU. Find U.
Solution. Let x,=0, y,=0. Then

x 14

Ux, y)= S 4x dx—l—S (25 —6y) dy 4 C = 242 + 20y — 3y> + C
0 0
or

v x
U, y)= S —6y dy+ S (4x 4-2¢) dx + C= —3y*+2x*+ 3xy -} C,

0 [}

where C=U (0, 0) is an arbitrary constant.

Y,

Fig. 102

4°, Green’s formula for a plane. If C is the boundary of a region S and
the functions P (x, y) and Q (x, y) are continuous together with their first-
order partial derivatives in the closed region S--C, then Green's formula holds:

9§de+Qdy=SS (%-%{’) dx dy,
[ S)

here the circulation about the contour C is chosen so that the region S should
remain to the left.
5°. Applications of line integrals.’) An area bounded by the closed contour C is

S=—‘¢‘ydx=.¢‘xdy
[4

C

(the direction of circulation of the confour is chosen counterclockwise).
The fo lowing formula for area is more convenient for application:

=1 _1 y
S—E—f(xdy—ydx)—-—z—fx’d (-;)

2) The work of a force, having projections X=X (x, y, 2), Y=Y (x, y, 2),
Z=17(x, y, 2) (or, accordingly, the work of a force field), along a path Cis
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expressed by the integral
A= S Xdx+Y dy+Zde.
c

If the force has a potential, i.e., if there exists a function U=U (x, y, 2)
(a potential function or a force function) such that

oU ou oU
o= dy =Y. 5 =2
then the work, irrespective of the shape of the path C, is equal to
(X3 U2, 2,) (%2 U, 22)
A= S Xdx+Ydy--Zdz—= S dU =U (x, 4y, 2)—U (2, y, 2,),

(¢ Uy 24) (€, Wi 2y)

where (v, y,, 2,) is the initial and (x,, y,, 2,) is the terminal point of the path.

A. Line Integrals of the First Type
Evaluate the following line integrals:

2293. Sxy ds, where C is the contour of the square |x|+|y|=a
c
(a>0).
2294, § Ve where C is a segment of the straight line
X2y i
connectmg the pomts 0(©, 0) and A(1, 2).

2295. SXst where C is a quarter of the ellipse g—:-i-%;:l

lying in the first quadrant.
2296. SJ ‘ds, where C is the first arc of the cycloid x =a (f —sin 1),

——a(l—cos 1).
2297. SVx +y*ds, where C is an arc of the involute of the

C
circle x=-a(cost {-¢tsinf), y=a(sint—tcost) |0t < 2n].

2298, S(x2 -+ y*)*ds, where C is an arc of the logarithmic spi-
C

ral r =ae™® (m > 0) from the point A (0, @) to the point O (— o0, 0).
2299, S(x—}—y) ds, where C is the right-hand loop of the lem-
C
niscate r*=a® cos 2¢.
2300. S(x l-y)ds, where C is an arc of the curve x=¢,
c

y=%’i_2, = 0<t{=<Il].
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ds
2301. \ 5¥—5—5,
§ﬁ+w+ﬁ

x=acost, y=asint, z2=>t.
2302. Sl/2y2 -2*ds, where C is the circle x*+y*+2*=a’,
C

where C is the first turn of the screw-line

x=y.
2303*. Find the area of the lateral surface of the parabolic
cylinder y=—z—x’ bounded by the planes 2=0, x=0, z=x, y=6.

2304. Find the arc length of the conic screw-line C x = ae' cost,
y=ae' sint, z=ae' from the point O (0, 0, 0) to the point 4 (a, 0, a).
, 2305. Determine the mass of the contour of the ellipse
-’;—,+%=1, if the linear density ot it at each point M (x, y) is
equal to |y|.
2306. Find the mass of the first turn of the screw-line x =a cos ¢,

y=asint, z=>5bt, il the density at each point is equal to the
radius vector of this point.

2307. Determine the coordinates of the centre of gravity of
a half-arc of the cycloid

x=a(t—sint), y=a(l—cost) [0<<?<nm].
2308. Find the moment of inertia, about the z-axis, of the
first turn of the screw-line x=acost, y=asint, z=>0f.
2309. With what force will a mass M distribuled with uni-

form density over the circle x* -+ y*=a® z=0, act on a massm
located at the point A (0, 0, b)?

B. Line Integrals of the Second Type
Evaluate the following line integrals:

2310. S (x*—2xy) dx - (2xy - y*) dy, where AB is an arc of the
AB

parabola y=x* from the point A(l, 1) to the point B (2, 4).
2311, S(Qa——y)dx {-xdy, where C is an arc of the first

C
arch of the cycloid
x=a(t—sint), y=a(l —cos{)
which arc runs in the direction of increasing parameter ¢.

2312. S 2xydx—x*dy taken along diflerent paths emanating

OA
from the coordinate origin O (0, 0) and terminating at the point
A2, 1) (Fig..103):
a) the straight line OmA,;
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b) the parabola OnA, the axis of symmetry of which is the
y-axis;

c) the parabola OpA, the axis of symmetry of which s the
x-axis;

d) the broken line OBA,;

e) the broken line OCA.

2313. S 2xy dx + x*dy as in Problem 2312.

0A
2314*. ¢ LY iﬁ;;ﬁ_”)d!’ taken along the circle x* + y*=a?
counterclockwise.
Y
(o) V A(2,1)
X
0 B(2,0)

Fig. 103

2315. Sj dx + x*dy, where C is the upper half of the ellipse

x==acost, y=>bsint traced clockwise.

2316. § cosy dx—sin xdy taken along the segment AB of the
AB

bisector of the second quadrantal angle, if the abscissa of the
point A is 2 and the ordinate of B s 2.

2317. 99“’(”;:1:/* Wl d =2 di) - \pere € s the right-hand loop o1 the
lemniscate r* =a®cos 2¢ traced counterclockwise.

2318. Evaluate the line integrals with respect to expressions.
which are total diflerentials:

(2, 38) (s, ) (1, 1)
a) S xdy -+ ydx, D) S xdx+ydy, c) S (x+y) (dx +dy),
(-1, 2) (0, 1) (0, 0)

(2, 1)

d) \ M (along a path that does not intersect the

(.2
x-axis),
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x, y)

dx+dy .
e) S T (along a path that does not intersect the

()

2 2

straight line x-}y=0),
(X2, ¥2)

D § ewdetvwady

(X4 ¥v)

2319. Find the antiderivative functions of the integrands and
evaluate the integrals:
(s, 0)

) § 4y det 657 —5y") dy,
(=2, —1)
(1, 0)

b) S x‘:z—z)‘fx (the integration path does not intersect the
(0, —1)

stralght lme y=1x),
(x+2y) dx+ydy

©) “Sl) (x+y)?
the stréight line y=— x),

0" (rimt 1)t ()

(0, 0)
2320. Compute

(the integration path does not intersect

| = xdx+ ydy
Vitety'
taken clockwise along the quarter of the ellipse Z—Z+'{;=1 that

lies in the first quadrant.
2321. Show that if f(u) is a continuous function and C is a
closed piecewise-smooth contour, then

éﬁf(x“ry’) (xdx+ydy) =

2322. Find the antiderivative function U if:
a) du=(2x+3y)dx + (3x—4y) dy;

b) du = (3x*—2xy + y*) dx — (x* —2xy + 3y*) dy;
¢) du=e*V[(1+ x+y)dx+ (1 —x—y)dyl];

__ dx dy
9 du=t e
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Evaluate the line integrals taken along thé following space
curves:
2323. S(y——~z)dx+(z—x)dy+(x—y)dz, where C is a turn
¢

of the screw-line I xX=acost,
y=asint,
Z——‘bt,

corresponding to the variation of the parameter ¢ from 0 to 2.
2324. ﬁydx -+zdy-}xdz, where C is the circle
C

I X=Rcosacost,
y=Rcosasint,
l z=R sina (a=const),

traced in the direction of increasing parameter.

2325. Sxydx~-H/zdy+zxdz, where OA is an arc of the
oA
circle
¥yt 4-22=2Rx, z2=1x,

situated on the side of the xz-plane where y>0.
2326. Evaluate the line infegrals of the total differentials:

(8, 4, 8)
a) S xdx-+ydy—zdz,

(1, 0, —3)
(a, b, ¢)

b) S yzdx-+zxdy--xydz,
(1, 1, 1)
(s, 3, 5)

xdr 'f,” dy —i«_z_d_g

ViEryiz '
(0, 0, 0)

1
(x. s }7/)
d yzdx -t 2vdy - xydz
) xyz

c)

(the integration path is situated

(1, 1, 1)
in the first octant).
C. Green's Formula

2327. Using Green’s formula, transform the line integral

I=$VET g detylxy+In @+ Vit dy,
C

where the contour C bounds the region S.
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2328. Applying Green’s formula, evaluate
1=9§2(x‘+y‘)dx+(x +y)*dy,
Cc

where C is the contour of a triangle (traced in the positive direc-

tion) with verlices at the points A (1, 1), B(2, 2) and C(l1, 3).

Verify the result oblained by computing the integral directly.
2329. Applying Green’s formula, evaluale the inicgral

55 —x*ydx + xy* dy,
c
where C is the circle x* +y*=R? traced counterclockwise.

2330. A parabola AmB, whose axis is the y-axis and whose
chord is AnB, is drawn through the points A (1, 0) and B (2, 3).
Find f (x+y)dx—(x—y)dy directly and by applying Green’s

AmBnA
formula.

2331. Find S e [y*dx + (1 + xy)dy), if the points A and B
AmB
lie on the x-axis, while the area, bounded by the integration
path AmB aud the segment AB, is equal to S.

2332*. Evaluate 9?’%’;—3’2‘15. Consider two cases:
4 Y

C
a) when the origin is outside the contour C,

b) when the contour encircles the origin n times.
2333**, Show that if C is a closed curve, then

_95 cos (X, n)ds=0,
C

where s is the arc length and n is the outer normal.
2334. Applying Green’s formula, find the value of the integral

1 :56 [x cos (X, n)-+ysin(X, n)ds,
Cc

where ds is the differential of the arc and n is the outer normal to
the contour C.

2335*. Evaluate the integral
dx—dy
4ox+y
taken along the contour of a square with vertices at the points

A(1,0). B(,1),C(—1, 0) and D (0, —1), provided the contour
is tracea counterclockwice.
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D. Applications of the Line Integral

Evaluate the areas of figures bounded by the following curves:

2336. The ellipse x=acost, y=0b sint.

2337. The astroid x=acos*{, y =asin’¢.

2338. The cardioid x=a (2cos{--cos2f), y=a (2sint—
sin 2¢).

2339*. A loop of the folium of Descartes x’+y’—3axy =0
(a>0).

2340. The curve (x-+y)’ =axy.

2341*. A circle of radius r is rolling without sliding along a

fixed circle of radius R and outside it. Assuming that I; is an

integer, find the area bounded by the curve (epicycloid) described
by some point of the moving circle. Analyze the particular case
of r=R (cardioid).

2342*. A circle of radius r is rolling without sliding along

a fixed circle of radius R and inside it. Assuming that 8’— is an

integer, find the area bounded by the curve (hypocycloid) de-
scribed by some point of the moving circle. Analyze the particular

case when r='% (astroid).

2343. A field is generated by a force of constant magnitude F
in the positive x-direction Find the work that the tield does
when a material point traces clockwise a quarier of the circle
x*+y* =R’ lying in the first quadrant.

2344. Find the work done by the force of gravity when
a material point of mass m is moved irom position A (x,, y,, 2}
to position B(x,, y,, z,) (the z-axis is directed vertically up-
wards).

2345. Find the work done by an elastic force directed towards
the coordinate origin f the magnitude of the force is proportion-
al to the distance of the point from the origin and il the point
of application of the force traces counterclockwise a quarter of

. x2 oyl . . .
the ellipse ;,+b,=l lying in the first quadrant.

2346. Find the potential function of a force R{X, Y, Z}
and determine the work done by the force over a given path if:

a) X=0, Y=0 Z=—mg (force of gravity) and the mate-
rial point is moved from position A4 (x,, y,, 2,) to position
B (%, Us 2,);

b) X=—£:—;E, Y——=—}¥. Z-——-——%lf-. where p=const and

r=Vx*'+ y* +2* (Newton attractive force) and the material point
moves from position A (a, b, ¢) to infinity;
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) X=—k’x, Y=—Fk'"Y, Z=—Fk’2, where k=const (elastic
force), and the initial point of the path is located on the sphere
x* +y* +2* =R?, while the terminal point is located on the sphere
X+ +22=rr*(R>r).

Sec. 10. Surface Integrals

1°. Surface integral of the first type. Let f(x, y, z) be a continuous
function and z==¢ (x, y) a smooth surface S.
The surface integral of the first type is the limit of the integral sum

n
(10 y ads=1im X, g 2) A,
S n-»>oi=1

where AS; is the area of the ith element of the surface S, the point (x;, y,,
z;) belongs to this element, and the maximum diameter of elements of par-
tition tends to zero.

The value of this integral is not dependent on the choice of side of the
surface S over which the integration is performed.

If a projection o of the surface S on the xy-plane is single-valued, that
is, every straight line parallel to the z-axis intersects the surface S at only
one point, then the appropriate surface integral of the first type may be
calculated from the formula

(i v aas=0rte m 0w o Viter o +a, o dedy.
S (o)

Example 1. Compute the surface integral
(§etytaas,
S

where S is thelsurface of the cube 0<x<1, 0y, 0<<z << 1.
Let us compute the sum of the surface integrals over the upper edge of
the cube (z=1) and over the lower edge of the cube (z=0):

§§ (x+y+4 1) dxdy+ §§ (x-i—y)dxdy=§§(2x—{—2y—l— 1) dx dy=3.
00 00 00

The desired surface integral is obviously three times greater and equal to

SS (x4 y+2)dS=09.
S

2°, Surface integral of the second type. If P=P (x, y, 2), Q=Q (x, y, 2),
R=R (x, y, z) are continuous functions and S* is a side of the smooth sur-
face S characterized by the direction of the normal n {cosa, cos B, cos y}, then
the corresponding surface integral of the second lype is expressed as follows:

SS Pdydz+4 Qdzdx+ R dx dy= S (Pcosa+ Qcos B+ R cos y) dS.
S+ S
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When we pass to the other side, S™, of the surface, this integral re-
verses sign.

If the surface S is represented implicitly, F (x, y, 2)=0, then the direc-
tion cosines of the normal of this surface are determined from the formulas

COSG“-‘-'O*F COos —'—1-(211 Cos —‘LOF
=pax Sb=pg CSVY=p15

dF \2 JF \? OF \?
p=xV (5)+ (%) + (%)
and the choice of sign before the radical should be brought into agreement
with the side of the surface S.
3°. Stokes’ formula. If the functions P=P(x, y, 2), Q=Q (x, y, 2),

R=R (x, y, 2) are continuously differentiable and C is a closed contour bound-
ing a two-sided surface S, we then have the Stokes’ formula

§PM+Q@+Ra:

s (B ens () ]

where cosa, cos B, cosy are the direction cosines of the normal to the sur-
face S, and the direction of the normal is defined so that on the side of the
normal the contour S is traced counterclockwise (in a right-handed coordinate
system).

Evaluate the following surface integrals of the first type:

2347. SS (¥* 4+ y*)dS, where S is the sphere »* 4 y* --2* =a.
S

wlere

2348. SSVx’ 4-y*dS where S is the lateral surface of the
S

cone 1\:7 -} Z—Z—Z, =0 [0<<2z=C)].
Evaluate the following surface integrals of the second type:
2349. SSyz¢Iydz+xz¢1z dx - xy dxdy, where S is the external
side of thég surface of a tetrahedron bounded by the planes x=0,
y=0, 2=0, x-}y-z=a.
2350. ngdxdy, where S is the external side of the cllipsoid
s

S fasen
2351. SS xtdydz 4-y*dzdx +2* dxdy, where S is the external
S

side of the surface of the hemisphere x* +y*+2*=a*(2=0).

2352, Find the mass ot the surface of the cube 0 <x <1,
0<y<l, 0<<z<], if the surface density at the point M (x, y, 2)
is equal to xya.
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2353. Determine the coordinates of the centre of gravity of a
homogeneous parabolic envelope az=x* + y* (0 <z<<a).
2354. Find the moment of inertia of a part of the lateral

surface of the cone z=V x* +4*[0<<z<<h] about the z-axis.
2355. Applying Stokes’ formula, transform the integrals:

a) 45 (¥ — y2) dx + (y* —2x) dy + (2* — xy) dz;
c
b) fydx-i—zdy-}-xdz.
c
Applying Stokes’ formula, find the given integrals and verify
the results by direct calculations:
2356. f,f(y +2)dx + (2 + x)dy + (x + y) dz, where C is the circle
C
L4y+2t=a, x+yt+z=0.
2357. f (y—2)dx -+ (z—x)dy + (x—y) dz, where C is the ellipse
b
4y'=1, x+z=1.
2358. fxdx—i—(x-i-y)dy—i—(x-i—y-f—z)dz, where C is the curve
¢

x=asint, y=acost, z=a(sint+cost)[0<{=<2m].
2359. ¢‘ Y dx+ 2°dy -+ x*dz, where ABCA is the contour of

ABCA
/\ ABC with vertices A(a, 0,0), B(0, a, 0), C(0, 0, a).
2360. In what case is the line integral

1=§de+Qdy+Rdz
c
over any closed contour C equal to zero?

Sec. 11. The Ostrogradsky-Gauss Formula

If S isaclosed smooth surface bounding the volume V,and P =P (x, y, 2),
Q=0Q (x, 4,2, R=R(x, y, z) are functions that are continuous together with

th-ir first partial derivatives in the closed region V, then we have the Ostro-
gradsky-Gauss formula

35 (Pcosa+ Qcos B+ Rcosy) dS=5‘S‘S ((‘;—xp-i—g—yg +g—z@) dxdydz,
S 1%)

where ccsa, cos f, cosy are the direction cosines of the outer normal to the
surface S

Applying the Ostrogradsky-Gauss formula, transform the fol-
lowing surface integrals over the closed surfaces S bounding the
\
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solume V (cosa, cosf, cosy are direction cosines of the outer
1ormal to the surface S).

2361. SS xydxdy +yzdydz--zxdzdx.
S

2362. SS x*dydz + y* dzdx + 2* dx dy.
S

2363. chpsaﬂmsﬁ“c””ds.
s

Vetyss
2364. SS (3—‘; cosa +g“7 cosf + %—': cos y) ds.
s [

Using the Ostrogradsky-Gauss formula, compute the following
surface integrals:

2565. ng’dydz—i—y'dzdx—i-z’dxdy, where S is the external

s
side of the surface of the cube 0 <x<ta, O0<y<e, 0<<z<a.
2366. “ xdydz+ydzdx -+ zdxdy, where S is the external side

S
of a pyramid bounded by the surfaces x4-y-+2=a, x=0,y=0,
z=-0.

2367. SS x*dydz-\-y*dzdx =2"dxdy, where S is the external
S
side of the sphere x* - y*4- 2% = qa®.
2368 \S (x*cosa-i y*cosP --2°cosy)dS, where S is the exter-

S
nal total surface of the cone

2 2

A y 2
a 'a‘z‘——b—,'=0 [0<Z<b]

2369. Prove that if S is a closed surface and [ is any fixed
direction, then

Sgcos (r2, 1) dS==0,

where n is the outer normal to the surface S.

2370. Prove that the volume of the solid V bounded by the
surface S is equal to

V=-.§SS (xcosa+ ycosp+ zcosy)dsS,
S

where cosc, cosf, cosy are the direction cosines of the outer
normal to the surface S.
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Sec. 12. Fundamentals of Field Theory

1°. Scalar and vector fields. A scalar field is defined by the scalar function
of the point u=f(P)=f(x, y, 2), where P (x, y, z) is a point of space. The
sunifdaces f(x, y, 2)=C, where C=const, are called level surfaces of the scalar
field.

A vector field is defined by the vector function of the point a=a (P)=
=a (r), where P is a point of space and r=xi+ yj+ zk is the radius vector
of the point P. In coordinate form, @ =ayi+a,j+a,k, where a,==a,(x,y, 2),
ay=ay,(x, y, 2), and a,=a, (1, y, 2) are projections of the vector a on the
coordinate axes. The vector lines (force lines, flow lines) of a vector field are
found from the following system of differential equations

ax_dy_ds
a; a, a,

A scalar or vector field that does not depend on the time ¢ is called
stationary; if it depends on the time, it is called nonstationary.
2°, Gradient. The vector
ou ou ., aou .,
grad U (P)=5- 1+ 50 j+ 5, k=VU,

(7] (7] aJ . . . .
where V:—-i&—}—ja—y—*-kas is the Hamiltonian operator (del, or nabla), is

called the gradient of the field U==f (P) at the given point P (cl. Ch. VI, Sec. 6).
The gradient is in the direction of the normal n to the level surface at the
roint P and in the direction of increasing function U, and has length equal
to

U _ ”(@ =+<gg T U\
on ox dy \5?) :
If the direction is given by the unit vector Z{cosa, cosp, cos v}, then

ou _au au au
07—-gradU-l—grad,U_$ cosa+a?cos§+d—z—cosy

'

(the derivative of the function U in the direction /).
3°. Divergence and rotation. The divergence of a vector field @ (P)=a,i I
a

. . .y _Oug  da,  da, .
+ayj+ak is the scalar dlva——a—l-a\;-}- P =Y a.
The rotation (curl) of a vector field a(P):axi-}-ayj—}—azk is the vector
__( 0a, ?f’_;_;) Oa, Oa, da, Oag\,
mta_<d_y_az ‘+(az‘5;)f+ w oy ) k=VXe

4°, Flux of a vector. The flux of a vector field a (P) through a surface S
in a direction defined by the unit vector of the normal n {cosa, cos B, cos vy}
to the surface S is the integral

SS an dS=SS a, dS=SS (aycosa-t-a, cos f{a,cosy)dS.
S S S

If S is a closed surface bounding a volume V, and n is a unit vector of the
outer normal to the surface S, then the Ostrogradsky-Gauss formula holds,
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which in vector form is

(g)a,,dS=SSS div a dx dy dz.

V)

5°, Circulation of a vector, the work of a field. The line infegrai of the
vector a along the curve C is defined by the formula

Sadr::Sasds=Saxdx+any+azdz (¢))
C C C

and represents the work done by the field a along the curve C (a; is the
projection of the vector @ on the tangent to C).

If C is closed, then the line integral (1) is called the circulution of the
vector field a around the contour C.

1f the closed curve C bounds a two-sided surface S, then Stokes’ formula
holds, which in vector form has the form

?a dr= SSS nrotads,

where n is the vector of the normal to the surface S; the direction of the
vector should be chosen so that for an observer looking in the directionofn
the circulation of the contour C should be counterclockwise in a right-handed
coordinate system.

6;. Potential and solenoidal flelds. The vector field a(r) is called poten-
tial i

a=grad U,
where U ==f (r) is a scalar function (the potenfiul of the field).
For the potentiality of a field a, given in a simply-connected domain,

it is necessary and sufficient that it be nonrotational, that is, rota=0. In
that case there exists a potential U defined by the equation

dU=aydx+-a,dy+a,dz.

If the potential U is a single-valued function, then S adr = U (B)—U (A);
AB

in particular, the circulation of the vector a is equal to zero:‘¢‘adr=0.

C

A vector field a(r) is called solenoidal if at each point of the field div
a=0; in this case the flux of the vector through any closed surface is zero.

If the field is at the same time potential and solenoidal, then div (grad U) =0
and the potential function U is harmonic; that is, it satisfies the Laplace

ti oy L oU LU =0, or AU=0, where A A A th
equa nonax, +0y’ +6z’ =0, =0, where A=y _d,\'+6y’+0z’ is the
Laplacian operator

2371. Determine the level surfaces of the scalar field U=f(r),
where 7=} x*+ y*+2*. What will the level surfaces be of a field
U= F(g), where o=} x*+y*?

10—1900
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2372. Determine the level surfaces ot the scalar field

U =arc sin

4
Vet

2373. Show that straight lines parallel to a vector ¢ are the
vector lines of a vector field @ (P)=¢, where ¢ is a constant
vector.

2374. Find the vector lines of the field @ = — oyi -+ wxj, where o
is a constant.

2375. Derive the formulas:

a) grad (C,U+C,V)=C,gradU+C,gradV, where C, and C,
are constants;

b) grad (UV)=Ugrad V + V grad U;

c) grad(U‘)=2légra((iiéJ; U radV

d) grad (%)= era Ve LS

e) grad ¢ (U)=¢’ (U)grad U.

2376. Find the magnitude and the direction of the gradient
of the field U=x'+y'+2°—3xyz at the point A (2, 1, 1). Deter-
mine at what points the gradient of the field is perpendicular to
the z-axis and at what points it is equal to zero.

2377. Evaluate grad U, if U is equal, respectively, to: a) r,

b) rty o)+, &) F() =V Ty T 2.
2378. Find the gradient of the scalar field U =cr, where ¢ is

a constant vector. What will the level surfaces be of this field,
and what will their position be relative to the vector ¢?

2379. Find the derivative of the function U_—:Zz;—i—i—:-{—z; at a

given point P(x, y, 2) in the direction of the radius vector r of
this point. 'In what case will this derivative be equal to the
magnitude of the gradient?

2380. Find the derivative of the function U=% in the di-

rection of I{cosa, cosP, cosy}. In what case will this derivative
be equal to zero?

2381. Derive the formulas:

a) div(C,a,+C,a,)=C,diva,+C,diva,, where C, and C, are
constants;

b) div(Uc)=gradU-c, where ¢ is a constant vector;

¢) div(Ua)=grad U-a+ U diva.

2382. Evaluate div (%)

2383. Find div a for the central vector field a(P)=f(r)§ )
where r =V x*F4* + 2%
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2384. Derive the formulas:

a) rot(C,a,+C,a,)=C, rota, 4-C,rot @,, where C, and C, are
constants; ’

b) rot (Uc)=grad U-c, where ¢ is a constant vector;

¢) rot (Ua)=grad U-a + U rot a.

2385. Evaluate the divergence and the rotation of the vector
a i a is, respectively, equal to: a) r; b) rc and c) f(r) ¢, where ¢
is a constant vector.

2386. Find the divergence and rotation of the field of linear
velocities of the points of a solid rotating counterclockwise with
constant angular velocity  about the z-axis.

2387. Evaluate the rotation of a field of linear velocities
v?=0-r of the pointsof a body rotating with constant angular
velocity @ about some axis passing through the coordinate origin.

2388. Evaluate the divergence and rotation of the gradient of
the scalar field U.

2389. Prove that div (rot a) =0.

2390. Using the Ostrogradsky-Gauss theorem, prove that the
flux of the vector a=r through a closed surface bounding an
arbitrary volume v is equal to three {imes the volume.

2391. Find the flux of the vector r through the total surface
of the cylinder x*+y*<<R? 0<<z<H.

2392. Find the flux of the vector a =x%i +¢y°j+2°k through:

a) the lateral surface of the cone "‘2[%”2< ;—2, 0<<z<<H; D) the
total surface of the cone.

2393*. Evaluate the divergence and the flux of an attractive
mr

force F=-——;; of a point of mass m, located at the coordinate
origin, through an arbitrary closed surface surrounding this point.

2394. Evaluate the line integral of a vector r around one
turn of the screw-line x=Rcos?; y=R sint; z=hf from (=0
to { =2m.

2395. Using Stokes’ theorem, evaluate the circulation of the
vector @ = x*y*i 4- j+ zk along the circumference x* + y*=R? 2=0,
taking the hemisphere z=VR’——x’-y’ for the surface.

2396. Show that if a force F is central, that is, it is directed
towards a fixed point 0 and depends only on the distance r from
this point: F=f(r)r, where f(r) is a single-valued continuous
function, then the field is a potential field. Find the potential U
of the field.

2397. Find the potential U of a gravitational field generated
by a material point of mass m located at the origin of coordi-

nates: a=—;r. Show that the potential U satisfies the Laplace
equation AU =0,
10*
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2398. Find out whether the given vector field has a potential U,
and find U if the potential exists:

a) a=(bx'y—4xy)i+ (3x*—2y) j;
b) a=yzi+ 2xj+ xyk;
c) a=y+2)i+(x+2)j+(x+y)k.

2399. Prove that the central space field a=f(r)r will be so-

lenoidal only when f(r)=;k,—, where k is constant.

2400. Will the vector field a=r (cxr) be solenoidal (where ¢
15 a constant vector)?



Chapter VIII
SERIES

Sec. 1. Number Series

1°. Fundamental concepts. A number series

an (1)

Ms

a+a,+4...+a,+...=

1

]

n
is called convergent if its partial sum

S,,=a|+a,+...+a,,

has a finite limit as n —. 0. The quantity S= lim S, is then called the sum
n—-> o

of the series, while the number
Rp=8—Sp=ap41+0y4,+...

is called the remainder of the series. If the limit lim S,, does not exist (or is

n-> o

infinite), the series is then called divergent.

If a series converges, then lim a,=0 (necessary condition for convergence).

n-—»>w

The converse is not true.

For convergence of the series (1) it is necessary and sufficient that for
any positive number e it be possible to choose an N such that for n >N
and for any positive p the following inequality is fulfilled:

lapty+apee+- . -+an+p| <e
(Cauchy's test).
The convergence or divergence of a series is not violated if we add or
subtract a finite number of its terms.
2°. Tests of convergence and divergence of positive series.
a) Comparison test I. If 0<<a,<Cb, after a certainn=n,, and the scries

byt byt ... bt ... = b, @)

Ms

n

converges, then the series (1) also converges. If the series (1) diverges, then
(2) diverges as well.

It is convenient, for purposes of comparing series, to take a geometric
progression:

ag" (@ #0),
0

Ms

n



294 Series [Ch. 8

which converges for || < 1and diverges for [g] =1, and the harmon:c sertes

® ]
3w
n=i
which is a divergent series.
Example 1. The series
1
Tatestee 2=+ gt

converges, since here

while the geometric progression

- 1
whose ratio is g=-, converges.
P4

Example 2. The series

In2 1In3 Inn
2 + 3 + +—+ X}

. . : Inn .
diverges, since its general term - is greater than the corresponding term

1 . . . .
Y of the harmonic series (which diverges).
!

b) Comparison test [I. If there exists a finite and nonzero limit lim %z
n > x
(in particular, if a, ~ b,), then the series (1) and (2) converge or diverge at
the same time.

Example 3. The series

R Tl

aiverges, since

. 1 1 1
lim P L
n—»m(?ﬂ.—l' n) 2#:0'
whereas a series with general term % diverges.
Example 4. The series

1 1 1 1
2—1+2‘-—2+2’—-3+"'+2"—n+"'
converges, since
. 1 1 1 1
lim ——— e | = i. — N =
n—)ao(?"—'n 2") l' L€, 2" —n P

. . . 1
while a series with general term 5n converges.
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l_c)‘tD’Alembert’s test. Let a, >0 (after a certain n) and let there be
a limi .

lim 9nty_ o

n->w a, q

Then the series (1) converges if ¢ <1, and diverges if ¢ > 1. If g=1, then
it is not known whether the series is convergent or not.
Example 5. Test the convergence of tle series

1 3 . 5 2n—1
gtEtyt..t—mt...

Solution. Here,

an:2' n'2n ]' , an+1=2';n-l;ll
and
L
lim dt1_ i @ tD2" 1 L 2n_1
n->» d, ".)QQ'“'I(QH—” 2n—>m1_2_ 2.
n

Hence, the given series converges.
d) Cauchy's test. Let a,==0 (after a certain n) and let there be a limif
lim n/g —
n l»mao l/a"-q'
Then (1) converges if ¢ <1, and diverges if ¢ >1. When ¢=1, the question
of the convergence of the series remains open.
¢) Cauchy’s integral test. If a,=f (n), where the function f(x) is positive,

monotonically decreasing and continuous for x=a =1, the series (1) and the
integral

§ f(x)dx

converge or diverge at the same time.
By means of the integral test it may be proved that the Dirichlet sertes

= 1
Z 7P 3)
n=i
converyes if p>1, and diverges if p<C1. The convergence of a large number
of series may be tested by comparing with the corresponding Dirichlet
series (3)
Example 6. Test the following series for convergence

1 1 1 1
1'-§+;s—-4+5-_ts+"'+(2fz—1)2n+"'

Solution. We have

1 1 1 1

G=Gn—12n _ 4n* int

~ 5.
l___l 4n

2n
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Since the Dirichlet series converges for p=2, it follows that on the basis of
comparison test 11 we can say that the given series likewise converges.
3°. Tests for convergence of alternating series. If a series

lagl+lagl+...+la, 1+ ..., 4)

composed of the absolute values of the terms of the series (1), converges,
then (1) also converges and is called absolutely convergent. But if (1) con-
verges and (4) diverges, then the series (1) is called conditionally (not abso-
lutely) convergent.

For investigating the absolute convergence of the series (1), we can make
use [for the series (4)] of the familiar convergence tests of positive series.
For instance, (1) converges absolutely if

<1 o lim J/fa, <1

n->w

In 4y
a

lim
n-> o

In the general case, the divergence of (1) does not follow from the diver-
gence of (4). But if 1lim |[%a+1] > 1 or lim Vla—,,l> 1, then not only does
n-»w

n->w a,
(4) diverge but the series (1) does also.
Leibniz test If for the alternating series

by—by+ by—by+ ... (b, =0) (5)

the following conditions are fulfilled: 1) b, =b,2=by=>=...; 2) lim b5,=0,

n-aw
then (5) converges.
In this case, for the remainder of the series R, thc evaluation

ho]dS. IRnlsbn+l
Example 7. Test for convergence the series

()= (B () b )

Solution. Let us form a series of the absolute values of the terms of
this series:
N 2 2 3 3 4 4 n n
4 (3) +(5)+(7) + ()

. z n . . 1 1
lim 1/ ~ " V= lim " lim -
n-w (2n—-l) ns>w2n—I n—pw2__| 2"

the series converges absolutely.
Example 8. The series

Since

11
1—§+§—...+(—1)"+'7’+...

converges, since the conditions of the Leibniz test are iulfilled. This series
converges conditionally, since the series

1
1+-;-+%+...+;+...

diverges (harmonic series).
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Note. For the convergence of an alternating series it is not sufficient that
its general term should tend to zero. The Leibniz test only states that an
alternating series converges if the absolute value of its general term tends
to zero monotonically. Thus, for example, the series

11
l——t———F—— . +——=+...
) 513 Tt

diverges despite the fact that its general term tends to zero (here, of course,
the monotonic variation of the absolute value of the general term has been

violated). Indeed, here, Sy, =S, + S}, where

, 1 71 | S 11 1
Sp=l+gtgt..+p Sk——(3+5—,+...+§).
and lim S;‘,=oo(8;, is a partial sum of the harmonic series), whereas the
k> x>

limit lim S',; exists and is finite (S;z is a partial sum of the convergent geo-
k> »
metric progression), hence, lim S,,= .
k

- ®
On the other hand, the Leibniz test is not necessary for the convergence
of an alternating series: an alternating series may converge if the absolute
value of its general term tends to zero in nonmonotonic fashion
Thus, the series

11 1 1 1

converges (and it converges absolutely), although the Leibniz test is not ful-
filled: though the absolute value of the general term of the series tends to
zero, it does not do so monotonically.
4°. Series with complex terms A series with the general term c,=a, 4
o

+- tb,(i*=—1) converges if, and only if, the series with real terms 2 a,
n=1

k.
and Zb,, converge at the same time; in this case
n=1
[ ]

M= ast+iX by (6)
n=1 n=t

n=1

The series (6) definitely converges and is called absolutely convergent, if the
series

-] ®

Sleal= DV ap+os,

n=i n=1

whose terms are the moduli of the terms of the series (6), converges.
5°. Operations on series.

a) A convergent scries may be multiplied termwise by any number k3
that s, if

ata+...+a,+...=S,
then
* ka,tkay+ ...t kha,+ ... =kS.
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b) By the sum (difference) of two convergent series

a,+a,+...+a,+...=8,, 7
b+b,+...+b,+...=8, (8)
we mean a series
@ b))+ (@ +b)+...4+(a, £b,)4-...=85, £ S,
¢) The product of the series (7) and (8) is the series
I 7% R o M o (9)

where ¢, =a,b,+a,b,_,+... +apb(n=1, 2, )

If the series (7) and (8) converge absolutely then the series (9) also con-
verges absolutely and has a sum equal to S,S..

d) If a series converges absolutely, its sum remains unchanged when the
terms of the series are rearranged. This property is absent if the series con-
verges conditionally.

Write the simplest formula of the nth term of the series using
the indicated terms:

2401, 14+ +5+1+... 2m¢1+i+l+%+“,
1 1 1 1 6

2402. §+T+'6—+§+... 2405. 4—|- +lb+2_5+"‘
4 8

2403. 1+ 2+3 444 0 a6 24L4to Sy

1 1 1 1 1 1
2407, $+ 5+ 15ta5t et it -

1.3.5 , 1.3:5.7
2408. 1+14+147+14710+

2409. 1—1+1—141—14...
2410 144 +3 47 +5+5 +...

In Problems 2411-2415 it is required to write the first 4 or
5 terms of the series on the basis of the known general term a,.

2411, a, =51, 2414. a,= ﬁ?%ﬁ?'

2412. &= 1) n. (2—{-sin%>cosnn

2413 a T gy 2418. a,= nl '
n— — pz

Test the following series for convergence by applying the com-
parison tests (or the necessary condition):

2416, 1—141—1+.. . +(—1)""+
i, (3 4 (3 5ok (5
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s, 3 dad e g
2419. Vl‘r_~;/11‘+“11_-“‘+'(:_l')%+“'
2420. LAttt e gt
2421. 11_1'}‘%'*‘%';‘ +_1(ml+l+
222 ettt e
2423. 242+ + T4
2424, 1+—‘2:+ﬁ+... l—};ﬂ
2425. Gt gt gt eyt
5 /3 8/
2426, ook L

Using d’Alembert’s test, test the following scries for conver-
gence:

1 3 5 2n—1
2427- — =" = . .« e -1 T r—\n ; .« ..
oreg 2 2.5 2.5.8 92.5.8...(3n—1)
2428. sttt o tise sy T

1
Test for convergence, using Cauchy’s tesl:
2429 —2—-—{—(‘_3 2_|_ 4 a_+_ _*_(”“'rl n .
1 3 5 v o —i

2430. %y(%)+(-§)’y ...-|-<3ni_~l)m_'+...

Test for convergence the positive series:

2431, 14 oot oot

nl
1 | 1 1 .
2432. g+ g+ttt

DD 1 l
2433, Ittt tema et
4 n?
ght ot
2

n

+
3 . .
+5+t R o e R

S, T 2n 41
FpetaptEet - - +m+ cee

2434.
2435.

2436.
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2437. 3+ (7) + () + - +(zq) + -

2438. (%
2439. -
2440, 14+t ..+ 4.
2441. sritarrtoarrt - togte-
2442. 1

]
1,13, 1.3.5 1.3-5...2n—1)
2443. T+—'+———— +_4_8—W——+

an? (2!)’ (31) (n1)*
2444. -4 +%5t -t @)1 +...

2445. 1000 + 1000.1002+ 1000-11.({227 1004 +...

1000- 1002+ 1004. . . (998 + 2n)
-+ 1.4.7...(31 —9) + ...

2  2.5.8 ..(6n —7) (6n —4)

2446. Ttisst - +1 5 9 (8n—ll) 8n—7) +..
1 1.5 .(4n —3)

2447. stazet - -toa 6 (4n—4) (4,1—2)+
1, 1.1, 1.11.21 1-11.21...(10n —9)

2448, it sttt + @) +...

1.4 1.4.9 1-4-9..

2449. 1'*‘1-3-.5+ 35791 - Ti3579. (4n—d) tee.
< o « 1

2450. Z;larc sin 77_ 2455. :‘m

SR §
]
S
©

S

2451. 3 sin ;. 2456.
n=j

S
1
»

1
n.lnn-lnlnn°

Ms

2452. Min(1+44). | 2457.

S

1]
S
Il
]

. nt41 w 1
2453. Eln X 2458. n};:n,_n
< 1 mﬂ 1
2454- T e 2459- .
;:‘11"" ,.%:Vn(n-l-l)
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2460. ¥ ———1 . 2465.
bl ARSI CESN
< 1
2461. };m 2466.
2462. 2;” /n_ﬁ 2467.
2463. z___:(2n—l) (5 n—1)"
2464. Z(l——cos—)
2469. Prove that the series }__

[
3)s
al =

3
]

Ms
|2
b

3
L]

Ms
al%
SE

3
"
-

x

2468%. <

n=1

nl’ln‘l n

1) converges for arbitrary q, lf p>1,and for ¢g>1, if p=1;

2) diverges for arbitrary ¢, if p<|,
Test

and for g<1, if p=1.

for convergence the following alternating series. For con-

vergent series, test for absolute and conditional convergenee.
2470, 1—4 44— .. LS
a7t 1— L4 L et
Ve ' V3 Va
2472, 1 — 44— .+(_‘n’f-'+..
2473. 1-2 42 .+“6',:’:'5'"+..
T4 St — - H (D R
n?+n
2475. —-;——%+-%+%—...+(—1)—’—-§+...
2476. —3 V;'—1+3 V§—1_4 V:‘—|+ ree ¥
= (n+1)ulj_r‘zlﬁ—1+
2477, —%+(%)'—(110)°+ +(—1)" (i:‘;}) +...
s, 335 gen Ly st i
79, 7— ;‘—3+719171 "+(_“"~'7]-9-_171..'_““.(:2nn:—25))+"'
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sina sin 2a sin na
2480. ot o T e TR T

2481. ]E:(-l)"ﬂﬁﬁ. 2482, ;gd( 1)*-" tan v"
2483. Convince yourself that the d’Alembert test for conver-
gence does not decide the question of the convergence of the

series ¥, a,, where
1=1

2k-1 2k—| k 1
azk—1=5ﬁ' azk="§k_ k=1, 2,...),

whereas by means of the Cauchy test it is possible to establish
that this series converges.

2484*. Convince yourself that the Leibniz test cannot be
applied to the alternating series a) to d). Find out which of
these series diverge, which converge conditionally and which con-
verge absolutely:

1 1 1 1 1

1
a) V2‘—1_V§+1+V§—1—V§+1+V4"—1_V4‘+1+"'
_ 1 _ 1 .
(“’k-"vm—l' o= Vm+1>’

1 1 1 1 1
b l—gt+g—gta—z+...

1 1
<a2k-—1 = ok=1" Qpp=— 32k-1) ’
1 1 1 1 1
=gtz —gts—zt
1 1
<azk-1—2k_l ’ azk—_?i;)’

1 11,1 1
d) 3'—1"_7_§+ﬁ__§+“-
1 1
(aqu:m—,, a=k=-4k—_§>-
Test the following series with complex terms for convergence:

® -]

2485, 212;$Qf. 2488. ¥ 2.
2486, 3 A@—D" 2489. 1
Z 3 ,;VMH

®

1
2487. 52;5731757’

)
=
8

Ms
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o

) [ n@—)+17"
2491, Em‘n—“‘_l),]! 2492. ,.}':‘, [n (3-2:')-3;'] ’

2493. Between the curves y=x]—, and y=;cl—z and to the right

of their point of intersection are constructed segments parallel
to the y-axis at an equal distance from each other. Will the sum
of the lengths of these segments be finite?

2494. Will the sum of the lengths of the segments mentioned
in Problem 2493 be finite if the curve y:—l— is replaced by the

x?

1
curve y=— ?

8

2495. Form the sum of the series -
Does this sum converge? )
2496. Form the difference of the divergent series 2211

and 2 — and test it for convergence.

n=i

2497. Does the series formed by subtracting the series

o«
1 . 1
L S - ?
HZ—I 5,—7 irom the series n};: —- converge:
2498. Choose two series such that their sum converges while
their difference diverges.

2499. Form the product of the series Z Vo and 22,, .
n n

n=1

Does this product converge?

2500. Form the series (1-{—%—{-—;——}— ...—}—?,l—_—,—l— )3 Does

this series converge?

2501. Given the series 14-% 3‘—}- —i-(_n,l) ... Estimate
the error committed when replacing the sum of this series with
the sum of the first four terms, the sum of the first five terms.
Whatl can you say about lhe signs of these errors?

2502*, Estimate the error due to replacing the sum of the

series | . . L/ 1n
rra(z) +a(e)+ o +am(e) +o

by the sum of its first n terms.
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2503. Estimate the error due to replacing the sum of the
series

1 1 1
I+5+5+ ... +5+--.
by the sum of its first n terms. In particular, estimate the accu-
racy of such an approximation for n=10.

2504**. Estimate the error due to replacing the sum of the
series

R R R

by the sum of its first n terms. In particular, estimate the accu-
racy of such an approximation for n=1,000.
2505**. Estimate the error due to replacing the sum of the

series
1+2(§)’+3(%)°+..,+n(%)”'ﬂ+.”

by the sum of its first n terms.

(="
n

2506. How many terms of the series Z does one have

n=1
to take {o compute its sum to two decimal places? {o three
decimals?

2507. How many terms of the series 2 does one

_n_
@nrns5”

have to take to compule its sum to two decimal places? to three?
to four?

. . 1 1 1

25?8*. Find the sum of the series l—-§"|'2-_3+§-71+"'+
tamEn T

2509. Find the sum of the series

Vit (Vx—V )+ 5=V )+ 0 Y =" 0) + ...

Sec. 2. Functional Series
1°. Region of convergence. The set of values of the argument x for which
the functional series
)+ @+. .+ ()+... (1)

converges is called the region of convergence of this series. The function
S (x)= lim S, (x),
n-wo
where S, (X)=f, () +f, () + ...+ [, (x), and x belongs to the region of con-

vergence, is called the surm of the series; R, (x)=S8 (x)—S,, (x) is the remainder
of the series.
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In the simplest cases, it is sufficient, when determining the region of
convergence of a series (1), to apply to this series certain convergence tests,
holding x constant.

Diverges , Converges Diverges
—__rmcuzﬁ%______
-3 -1 0 1 X

Fig. 104

Example 1. Determine the region of convergence of the series

x4+1 (x+1)2, (x4 1)? (x+1)"
T2t o T3 t Tt @

Solution. Denoting by «, the general term of the series, we will have

lim |"n+1|__: [x4+1["+12"%n =|x+”
n>o |Uyl now 2"t (n+1) | x|? 2
Using d’Alembert’s test, we can assert that the series converges (and converges

absolutely), if I"f—_;}—-l<l. that is, if —3 <x < 1. the series diverges, if
lx+1]
2

> 1, that is, if —e0o <x<—3 or 1 <x< o (Fig. 104). When x=1
we get the harmonic series l+%+ ~;—+ ..., which diverges, and whenx= —3

we have the series —l+l2——:]3—+..., which (in accord with the Leibniz

test) converges (conditionally).
Thus, the series converges when —3<<x < 1.
2°. Power series. For any power series

G- (x—a)+cy(x—a)+ ...+, (x—a)* +... (3)

(¢, and a are real numbers) there exists an interval (the inferval of conver-
gence) | x—a| < R with centre at the point x=a, with in which the series (3)
converges absolutely; for | x—a|> R the series diverges. In special cases, the
radius of convergence R may also be equal to 0 and . At the end-points of
the interval of convergence x=a + R, the power series may either converge
or diverge. The interval of convergence is ordinarily determined with the
help of the d’Alembert or Cauchy tests, by applying them to a series, the
terms of which are the absolute values of the terms of the given series (3).
Applying to the series of absolute values

lel+lallx—al+...+leql | x—al®+...

the convergence tests of d’Alembert and Cauchy, we get, respectively, for the
radius of convergence of the power series (3), the formulas

1 : [

R=——o—— and R= lim n

lim J/lcyl n-wo

n->ow

Cn+1

However, one must be very careful in using them because the limits on the
right frequently do not exist, For example, if an infinituce of coefficients ¢,
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vanishes [as a particular instance, this occurs if the series contains terms
with only even or only odd powers of (x—a)], one cannot use these formulas.
It is then advisable, when determining the interval of convergence, to apply
the d’Alembert or Cauchy tests directly, as was done when we investigated
the series (2), without resorting to general formulas for the radius of con-
vergence.

If z=x-+41y is a complex variable, then for the power series

cte (2—2)+c,(2—2z)+ ... Fc,(2—2)" + ... “4)

(cp=a,+ib,, 2,=2x,-+ iy,) there exists a certain circle (circle of convergence)
|z—2z,| < R with centre at the point z=z2,, inside which the series converges
absolutely; for |z—z,| > R the series diverges. At points lying on the cir-
cumference of the circle of convergence, the series (4) may both converge and
diverge. It is customary to determine the circle of convergence by means of
the d’Alembert or Cauchy tests applied to the scries

leol e lz—z, [+l lz—2 |2+ ...+ cul-l 2—2o "+ .. .,

whose terms are absolute values of the terms of the given series. Thus, for
example, by means of the d’Alembert test it is casy to see that the circle of
convergence of the series

241, (2417 241y @+H"
l-2+ 2.22 + 3.23 +et n-2" +..

is determined by the inequality |z+ 1] <2 [it is sulficient to repeat the cal-
culations carried out on page 305 which served to determine the interval of
convergence of the series (2), only here x is replaced by z]. The centre of
the circle of convergence lies at the point z=—1, while the radius R of this
circle (the radius of convergence) is equal to 2.

3°. Uniform convergence. The functional series (1) converges uniformly on
some interval if, no matter what & > 0, it is possible to find an N such that
does not depend on x and that when n> N for all x of the given interval
we have the inequality |R, (x)| <e, where R, (x) is thc remainder of the
given series.

1f [fn)|<c, (n=1, 2, ...) when a<<x<{b and the number series
2 ¢, converges, then the functional series (1) converges on the interval
n=i
la, b’ absolutely and uniformly (Weierstrass’ test).

The power series (3) converges absolutely and uniformly on any interval
lying within its interval of convergence. The power series (3) may bc term-
wise differentiated and integrated within its interval of convergence (for
| x—a| < R); that is, if

GFe(x—a)tc, (x—a)+ ...+, (x—a)'+ ... =f (x), (5
then for any x of the interval of convergence of the series (3), we have
a+2,(x—a)4 ...+ ne, (x—a)* "4 ... =f" (x), (6)

X X X

S codx 4 S ¢, (x—a)dx+ S Cy(x—a)tdx+... +ch,, (x—a)*dx+...=
Xo

%o Xo Xy

N =)t (r—a)™ ;
_.ch P _Sf(x)dx (7
n=o0

Xo
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(the number x, also belongs to the interval of convergence of the series (3)].
Here, the series (6) and (7) have the same interval of convergence as the

series (3).

Find the region of convergence of the series:

s
:'xl'—

2510.

n=1

® . 1
2511. ,;(——1) .

- n+1 ]
2512, Y (—1)"* prs

=

S |

sin (2n—1) x
@n=1% °

2513.

ZTM

n

2514, 2 2"sin % .
n=o0

2515+, Y (B

(’""
n=o0
2516, . (— 1)+ e-nsnx,
n=o
2517. 3 0.

n=i

2518.

2519.

2520.

25621.

2522.

2523.

2524*.

2525.

i
n!x®’

M

=
i

1
(2n—~ 1) x**

[\Aﬁ IIMS

(x oo
Z 2n+1

(n - 1)s x2%°
n=9

»n
S Al
n-3" (x—5)"%"
n=i
o
-3 nn
ek 1t "

n=1-
1
( x" +2Tx") ’

zx

n=-1

Samsa

Find the interval of convergence of the power series and test
the convergence at the end-points of the interval of convergence:

2526. ¥ x".
n=o

2527. 3 .
Il 1

‘Il 1

2528. 22,1_]
rl 1

oQn—1yin—1
—~ @n—3) °
2530, 3 =0T

n
n=1

2529.
n

2531.

2532.

2533.

2534.

2535.

2‘(” + 15 k20
n=o 2n+-1

Y (=1 @rp 1) an,

n=o0
4

PR
mc
n=1
Z n!x",
n=1
[ ]

“"
2

n=1
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2636 3. (52y) & 2551. Z"‘;ﬂ’: -
= 2,n3 (x—2)"
2537. ,.Z=.,3ﬂx 2552. 2(2,1__])2,..
2538. 3, (5 )" 2553, Z(—l)"“
n=1 n=1
bd n 2n—1)*"* (x—1)"
2530, 3 2 X =gy -
n=j ® "
. on 2554, . 2T
2540. Y X ,.2=. n
- 2655. 3, - -_——_("‘*""
9541. ¥ xnt, &=t (n+1)In*(n+41) °
"2:‘1 o (x 3):n
® 2556, » — o —°F
2542%%. )" nl xn!, st Din(atn)”
© 2557. 3. (—1)"* X
2543%. ) 5 nz-_:,
n=1 >< (x_2)n
o544r. 3 X @FDTa D -
. n‘_‘l n © (x+2)n'
2558, 3,
n- ,(x—S) n=1
2545. HZ( Iy . o
- 2659 . (1+) (x—1)"
2546. 3 00, n=
n=1 N (2/1—-1)” (x+ l)"
- 2560. 3 EokEE
2547, 3 ) = Y
ne 2561, 2_( DrEEEE
2548, 3" (—1y-1 =27
n=1 2n : X(X_Q)"
-~ (x+3)" (3n-—2) (x—3)»
2549. o] n? 2562. - W,—- .
= n=o0
2650. 3" n" (x + 3)° 2563, 3 (—1)" &=
r12=: )y ,,z;:o( )(2n+l)l/u-}l.
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Determine the circle of convergence:

o - ]
) (z—2i)*
2564. Y i"z". 2566. Y “—=- .
n=o0 n=1
: ® zlll
2565. ,,2‘-.,(1 i) 2°, 2567. n}__‘_,ﬁ

9568. (1+2i)+(1 +20)(3 +2) 24 ... +
+(14+2)3 +2i)...@n+1+20)2" ...

2 F4

n

2z
‘ "+(l—i)(l—2i)...(l-—ni)+ Tt

Q‘ 142ni\"”
2570. 2; () =
2571. Proceeding from the definition of uniform convergence,
prove that the series

T4+x+x4+...4+x"+...
does not converge uniformly in the interval (—1, 1), but con-
verges uniformly on any subinterval within this interval.

Solution. Using the formula for the sum of a geometric progression, we
get, for | x| <1, a1
X

R, (x)=x"+t"4x"+24 | =

1—x

Within the interval (—1, 1) let us take a subinterval [—1+a, 1—a], where
a is an arbitrarily small positive number. In this subinterval |x|<<1—a,
| 1—x|>=a and, consequently,

| —a)r+?

(
IR, () << p

To prove the uniform convergence of the given series over the subintervat
[—1+4a, 1—a], it must be shown that for any e > 0 it is possible to choose
an N dependent only on e such that for any n >N we will have the ine
quality IR, (x)| <e for all x of the subinlterv;x,l“rt,mder consideration,

(1—a
pu==

Taking any €>0, let us require tha < e; whence (1 —a)"+'<ea,

(n+1)In(1—a) < In(ea), that is, n+41 >Tx:r;l(;—(f)a) [since In(1—a) < 0] and
In (ea) . _ In(ea) _ .
n>m_l. Thus, putting N—1n T—a) 1, we are convinced that

when n> N, |R,(x)| is indeed less than e for all x of the subinterval
[—14a, 1—a] and the uniform convergence of the given series on any sub-
interval within the interval (—1, 1) is thus proved.

As for the entire interval (—1, 1), itnf?ntains points that are arbitrarily

close to x=1, and since lim R, (x)=Ilim X —, no matter how large n is,
X1 x-»1 1—x
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points x will be found for which R, (x) is greater than any arbitrarily large
number Hence, it is impossible to choose an N such that for n > N we
would have the inequality |R, (x)| <e at all points of the interval (—1, 1),
and this means that the convergence of the series in the interval (—1, 1)
is not uniform.

2572. Using the definition of uniform convergence, prove that:
a) the series

I+ 55+ o

converges uniformly in any finite interval;
b) the series
X2 Xt 28 (— 1)1 xtn

Tty -t

converges uniformly throughout the interval of convergence
(—1, 1);

c) the series
1 1 1
It+gmtmt.. =+

converges uniformly in the interval (14-8, o) where 8§ is any
positive number;
d) the series

(=X F (= x) (P —=x®) (=)

converges not only within the interval (—1, 1), but at the extre-
mities of this interval, however the convergence of the series in
(—1, 1) is nonuniform.

Prove the uniform convergence of the functional series in the
indicaled inlervals:

2573. Z%—: on the interval [—1, 1].
n=i
2574. 2%’5 over the entire number scale.

n=1

2575. Z(—l)"“];—':n_ on the interval [0, 1].
Applyi,;igl termwise differentiation and integration, find the
sums of the sezries:
2576. x+5+54+ ..+ ...

Xt x8 n-1 X"
25717. x—?‘*‘g—.. +(':—l]) IF_I_"'

2578, x+5+5+ . gt
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x? Xt poy X7
2579. x———3—+-5--—'.. +(—1) 2n_]+.
2580. 1 -2x+3x+ ...+ (nd+1)x"+ ...
2581. 1—3x"4 bx*— ...+ (=1)"" @n—1) "4 ...
2582, 1.24-2-3x+34x’+ ... +n(r+ 1) x""+ ...
Find the sums of the series:

1 2 3 n
2583. -;+-)C—2-{—?,+.. '+x—"+ cee
xw-a

5 9
2584. x+"§+%+.. =t
(==

1 1 1
2585*. 1—373—1—5*33——-,7—?—{- o +W__"+ cee

1 3 5 2n—1
2586. ?—!—? Jr‘?"*-.. . +'—§ﬁ—+ .

Sec. 3. Taylor’s Series

1°. Expanding a function in a power series. If a function f(x) can be
expanded, in some neighbourhood |x—a|< R of the point a, in a series of
powers of x—a, then this series (called Taylor’s series) is of the form

, " (a . " (a

0 =1@+F @ —a+ 50 e @ g
When a=0 the Taylor scries is also called a Maclaurin’s series. Equation (1)
holds if when [x—a| <R the remainder term (or simply remainder) of the
Taylor series

n k)
Ru1=1 0= [1@ 3 L@ r—at]| —o0
k=1

as n — .
To evaluate the remainder, one can make use of the formula
__(X—a)"‘*’ i :
R, (x)= ETESE f la+0 (x—a)], where 0 <0 <1 2)

(Lagrange’s form).
Example 1. Expand the function f(x) = coshx in a series of powers of x.
Solution. We find the derivatives of the given function f(x)=coshzx,
f' (x)==simhx, ["(x)=ccshx, [ (¥)=sinhx, ...; gencrally, ™ (x)=coshx,
if n is even, and fU"(x)=sinhx, if n 1s odd. Putting a=0, we get f (0)=1,
f(0)=0, f"(0)y=1, "' (0)=0, ...; generally, f¥(0)=1, if n is even, and
" (0)=0 if n is odd. Whence, from (1), we have:

x‘m

am e 3)

To determine the interval of convergence of the series (3) we apply the
d’Alembert test. We have

x2n+2 A28

lim | — ;. - _|= lim __._.f_z_..___:o
nox | (2n42)1 " (2a)l| nsw(2n41)(2n+2)

xt X
COth=1+—2T+7ﬁ—+...+
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for any x. Hence, the series converges in the interval —e < x < . The
remainder term, in accord with formula (2), has the form:

X" coshOsx, if n is odd, and
R, (x)=(—ﬂ_—i—)! cosh0x, if n is odd, an
ARE WO if n i
R, (x)_m! sinh O x, if n is even.
Since 0> 0>1, it follows that
0x -fx Ox___ ,-fx
|cosh9x|=e—+;——<e’”, lsinh9x|=|e———e— <e *!,
and therefore | R ()c)l<|x'"+l el ¥ A series with the general term Lx1”
n (n+ D) . = n!

converges for any x (this is made immediately evident with the help o
d’Alembert’s test); therefore, in accord with the necessary condition for
convergence,

| x|+

now (0

and consequently lim R, (x)=0 for any x. This signifies that the sum of the
n

—®

series (3) for any x is indeed equal to coshx.
2°. Techniques employed for expanding in power series.
Making use of the principal expansions

x  x* X"
I. Bx=l+ﬁ+ﬁ+...+a+... (—oo<x<oo),

. _x P I ] n x2n+1
lI.smx—ﬁ—E!-—l—a—...—{-(—l) (2n—m+ (—oo < x< o),
111. cosx=1 xz—}-xd ])"-f—’—'--}- (—oo <x< ®)

. = ""é‘i 4—’—.+(— (2?1)! ces ’

IV, (1 +x)™=1 +%x+’£(—m2-l_—-l—)x2+

“+m(m—1)...'(m——n—{—l)x,,_*_”.

nl

(—l<x<)™),
x? i L xn
\Y ln(l+x)=x——2—+§—...+(——l)" '74—... (—l<x<g)),

and also the formula for the sum of a geometric progression, it is possible,
in many cases, simply to obtain the expansion of a given function in a po-
wer series, without having to investigate the remainder term. It is sometimes
advisable to make use of termwise differentiation or integration when expan-
ding a function in a series. When expanding rational functions in power
series it is advisable to decompose these functions into partial fractions.

*) On the boundaries of the interval of convergence (i.e., when x=—1
and x=1) the expansion IV behaves as follows: for m =0 it converges abso-
lutely on both boundaries; for 0 >m >—1 it diverges when x=—1 and
ﬁonfiitlonally converges when x=1; for me—1 it diverges on both boun-

aries.
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Example 2. Expand in powers of x *) the function

3
F == as0"

Solution. Decomposing the function into partial fractions, we will have

1 2
fO=1—+ire

Since
i—-_l—}=l+x—l—x’—l—...= V' " @)
n=0
and
l o
m:l—-% +(2x)2—. _—z (— 1)2mxn, (5)
n=o
it follows that we finally get
o o
f(x)=2x"+2§: (=1 2% =3 (14 (= D" 27+ xm, )
n=o n=0 n=o

The geometric progressions (4) and (5) converge, respectively, when |x| <1

and Ix|<§; hence, formula (6) holds for |x,|<-2—, i.e., when
Lex<d
) 2

3°. Taylor’s series for a function of two variables. Expanding a function
of two variables [(x, y) into a Taylor’s series in the neighbourhood of a
point (a, b) has the form
1 qa 0 1 a
Fx, y)=Ffla, b+ [(x—a) 5;'1"(!/—17) d_y]f(a' b+ 5 [(x—a)a'i'
0 a 21" ,
+—b 5 ] f@ b+. +m [(x—a)a-l-(y—b)@] [ab+... (D

If a=b=0, the Taylor series 1s then called a Maclaurin’s series. Here the
notation is as follows:

7] A of (x, J
[e—ag+u-ng|i@o=T52)  w—atTED|  w—v
x=a x=a
y=b y=b
a2 a%f (x,
[(x-—a>a‘1x+(y—b)@] fa=2LED | gy
x=a
y=b
0?
+2"§,§’g;" w—ay—0+ZLED) by and so forth,
= i

*) Here and henceforward we mean “in positive integral powers”,
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The expansion (7) occurs if the remainder term of the series
51 F) a7k

Rute, D=1 n—{f @, D> ai[e—agz+u—n3] 1@ o} —o
=1

as n—> . The remainder term may be represented in the form
1 d b ar+!
Rus, 0+ gy =) g+ =0 2] ) ,

x=a+h(x-a)
y=b+i(y-b)

where 0 <0< 1.

Expand the indicated functions in positive integral powers
of x, find the intervals of convergence of the resulting series and
investigate the behaviour of their remainders:

2587. a* (a>0). 2589. cos (x4 a).
: T 2590. sin® x.
2588. sin (" 3 ) ‘ 2591*. In (24 x).

Making use of the principal expansions [-V and a geometric
progression, write the expansion, in powers of x, of the following
functions, and indicate the intervals of convergence of the scries:

2¢—3 2

2592. G- 2598. cos® x.
3x—>5 .

2593. pomyse 2599. sin 3x 4+ x cos 3x.
—2 X

2594. xe x. 2600. m .

595. ™. 2601. — |

2595. ¢ | 1 Vi

2596. sinh x. 2602. In ;7%

2597. cos2x. 2603. In (1 +x—2x?%).

Applying differentiation, expand the following functions in
powers of x, and indicate the intervals in which these expansions
occur:

2604. (1 4+ x)In (14 x). 2606. arcsinx.

2605. arctan x 2607. In(x+VT1+x).

Applying various techniques, expand the given functions in
powers of x and indicale the intervals in which these expansions
occur:

2608. sin® xcos® x. 2612 x2—3x 41
2609. (1 +x)e %, x2—5x+6"°
2610. (1 + &%) 2613. cosh® x.

N 1
2611. /8t x. 2614. .
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2615, In(x* +3x + 2). x ’
2618, (MULHE,
2616. g¥dx. ;
0 r dx
p 2619. S
2617. Se""dx. v Vi—x.

Write fhe first three nonzero ferms of the expansion of the
following functions in powers of x:

2620. tanx. 2623. sec x.
2621. tanh x. 2624. Incos x.
2622, ewosx, 2625. e*sin x.

2626*. Show that for computing the lenglth ot an ellipse it is
possible to make use of the approximate formula

sz2na(l—§),

where € is the ecceniricity and 2a is the major axis of the
ellipse.

2627. A heavy string hangs, under ils own weight, in a ca-
tenary line y=acosh%, where a=11 and H is the horizontal

tension of the string, while ¢ is the weight of unit length. Show
that for small x, to the order of x*, it may be taken that the

string hangs in a parabola y=a ¢ ;—Z

2628. Expand the function x*—2x*—5x—2 in a series of
powers of x-| 4.

2629. f(x) =056x'—4x*—3x+2. Expand f(x+h) in a series of
powers of &
2630. Expand Inx in a series of powers of x—1.

2631. Expand % in a series of powers of x—1.

2632. Expand ;15 in a series of powers of x+ 1.
2633. Expand :

x24-3x+2
2634. Expand AT in a series of powers of x +2.
2635. Expand e” in a series of powers of x+2.
2636. Expand }x in a series of powers of x—4.

2637. Expand cosx in a series of powers of x——% .

2638. Expand cos’x in a series of powers of x—i:—.

in a series of powers of x 4.

l—x

2639*. Expand Inx in a series of powers of Tz °
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2640. Expand ———— l_x in a series of powers of =/ +
2641. What is the magnitude of the error if we put appro-
ximately
ex 2+ gtatg?
2642. To what degree of accuracy will we calculate the num-
ber %, if we make use of the series

% %8
arctanx-—x—-?—i—g—...,

by taking the sum of its first five terms when x=1?
2643*. Calculate the number % to three decimals by expand-

ing the function arcsinx in a series of powers of x (see Exam-
ple 2606).
2644. How many terms do we have to take of the series

cosx=1——m—{—..,,

in order to calculate cos18° to three decimal places?
2645. How many terms do we have to take of the series

sinx= x——5~,+ .

to calculate sin 15° to four decimal places?
2646. How many terms of the series

=145+ 5+. .

have to be taken to find the number e to four decimal places?
2647. How many terms of the series

ln(1+x)=x—x—22+...,

do we have to take to calculate In2 to two decimals? to 3 de-
cimals?

2648, Calculate /7 to two decimals by expanding the func-
tion y/8-Fx in a series of powers of x.

2649. Find out the origin of the approximate formula
l/a‘—i—xza+-2"71 (@>0), evaluate it by means of V23, putting
a=>5, and estimate the error.

2650. Calculate /19 to three decimals.
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2651. For what values of x does the approximate formula

xl
cosx=~1 —5

yield an error not exceeding 0.01? 0.001? 0.0001?
2652. For what values of x does the approximate formula

sin xax

yield an error that does not exceed 0.01? 0.001?
1/2

2653. Evaluate Ss—ilfdx to four decimals.

0

2654. Evaluate Se"‘zdx to four decimals.

2655. Evaluate \}/xcosxdx to three decimals.

2656. Evaluate _dx to three decimals.

Vx

\_,3_°t/1.-°

4

\ VT dx to four decimals.

—=°

2657. Evaluate

-

I
2658. Evaluate SV;e”dx to three decimals.

2659. Expand tlole function cos(x—y) in a series of powers
of x and y, find the region of convergence of the resulting series
and investigate the remainder.

Wiite the expansions, in powers of x and y, of the following
functions and indicate the regions of convergence of the series:

2660. sinx-siny. 2663*. In(1—x—y + xy).

2661. sin ()C: -{—y’). L 664, arctan x+y

l—x-I—y —xy

2662*, -

2665. f(x, ¢ J)—ax +-2bxy +cy*. Expand f(x+ h, y+ k) in po-
wers of A and &

2666. f(x, J)—x —2y*4-3xy. Find the increment of this
function when passing from the values x=1, y=2 to the values
x=14+h, y=2+4k.

2667. Expand the function e¢**” in powers of x—2 and y+2.

2668. Expand the function sin(x+y) in powers of x and

1
V—5-
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Write the first three or four terms of a power-series expansion
in x and y of the functions:

2669. e* cos y.

2670. (1 +x)'*7.

Sec. 4. Fourier Series

1°. Dirichlet’s theorem. We say that a function f(x) satisfies the Dirich-
let conditions in an interval (a, b) if, in this interval, the function

1) is uniformly bounded; that is [f(x)|<<M when a<x<b, where M
is constant;

2) has no more than a finite number of points of discontinuity and
all of them are of the first kind [i.e., at each discontinuity §

the function f(x) has a finite limit on the left f (E—0)= lim f(§—e) and a
e—>0
finite limit on the right f (§4+0)= lim f(§+¢€) (e > 0)];

€ >0
3) has no more than a finite number of points of strict extremum.
Dirichlet’s theorem asserts that a function f(x), which in the interval
(—m, m) satisfies the Dirichlet conditions at any point x of this interval at
which f(x) is continuous, may be expanded in a trigonometric Fourier sertes:

f(x)=%’--|—a, cos x - b, sin x+-a, cos 2x4-b, sin 2x 4 ... 4 a, cos nx +
+b,sinnx+4-..., (1)

where the Fourier coeffictents a, and b, are calculated from the formulas
n n
1
ay = — Sf(x) cosnxdx(n=0, 1, 2, ...); b,,:-—?lt- Sf(x)sinnxdx (n=1,2,...).
-1 -7

If xis a point of discontinuity, belonging to the interval (—m, @), of a
function f (x), then the sum of the Fourier series S (x) is equal to the arithme-
tical mean of the left and right limits of the function:

1
S == [fx—=0)+f(x+0)].
At the end-points of the interval x=—mn and x=m,
S(= =S (W= [ (= 7+0)+] (x—0)].

2°. Incomplete Fourier series. If a function f(x) is even [i. e., f(—x) =
= f (x)], then in formula (1)

and

a,,=-J2T | (x)cosnxdx (n=0, 1, 2, ...).

Sy
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If a function f(x) is odd [i.e., f(—x)=—F(x)], then a,=0(n=0,1, 2...)
and

113
bn=%5f(x) sinnxdx (n=1, 2, ...).
[}

A function specified in an interval (0, m) may, at our discretion, be conti-
nued in the interval (—m, 0) either as an even or an odd function; hence,
it may be expanded in the interval (0, @) 1n an incomplete Fourier series
of sines or of cosines of multiple arcs.

3°. Fourier series of a period 2/. If a function f(x) satisfies the Dirichlet
conditions in some interval (— [, [) of length 2/, then at the discontinuities
of the function belonging to this interval the following expansion holds:

f(x)z—.f;i-}-a, cos:rll'fﬂ—bx sin %E +a,cos-2—:tl£+b,sin2#+,”

...+a,,cos-nl—m-+b,,sinn—nlf+... ’
where .
a,,=-}— Sf(x)cosn—?fdx (n=0, 1, 2, ...),
-1
1 2)
bn=% Si(x) Sin-n—ln—xdx (n=1, 2, ...).
-1

At the points of discontinuity of the function f(x) and at the end-points
x=+1 of the interval, the sum of the Fourier series is defined in a manner
similar to that which we have in the expansion in the interval (—m, m).

In the case of an expansion of the function f(x) in a Fourier series in
an arbitrary interval (a, a+2/) of length 2/, the limits of integration in
formulas (2) should be replaced respectively by a and a--2/

Expand the following functions in a Fourier series in the
interval (—x, n), determine the sum of the series at the points
of discontinuity and at the end-points of the interval (x=—g=,
x==m), consiruct the graph of the function itself and of the sum
of the corresponding series [outside the interval (—m, m) as well]:

¢, when —n<<x<O0,

2671. f(x):{ ¢, when 0<x<<m.

Consider the special case when ¢,=--1, ¢,=1.

ax when --n<<x<<0,
2672. f(x)={ bx when 0 << x <<m.

Consider the special cases: a) a=b=1; b) a=—1, b=1;
¢)a=0, b=1; d) a=1, b=0.

2673. [(x)=x. 2676. [(x)=cosax.

2674. [(x)=e"*. 2677. [(x)=sinhax.

2675. [(x)=sinax. 2678. f(x)=coshax.

2679. Expand the function f(x)="%x in a Fourier series in
the interval (0, 2m).
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A

2680. Expand the function f(x)=-2— in sines of multiple arcs

in the interval (0, m). Use the expansion obtained to sum the
number series:

1,1 1 ) )
a)l—g+z—=+... 5 Dltg—a—pgtatp— -
1 1 1 1

Ql—z+z—q+E—---

Take the functions indicated below and expand them, in the
interval (0, =), into incomplete Fourier series: a) of sines of
multiple arcs, b) of cosines of multiple arcs. Sketch graphs of
the functions and graphs of the sums of the corresponding series
in their domains of definition.

2681. f(x)=x. Find the sum of the following series by means
of the expansion obtained:

R R

2682. f(x)=x*. Find the sums of the following number series
by means of the expansion obtained:

D l4gtgte. 2 l—gtgm—gt...

2683. f(x) = €.
‘ 1 when 0<x<Z,
2684. f (1) =

l 0 when %<x<n.

J x when 0<x<Z,
2685. f(x) = .
l n—x when T <zl

Expand the following functions, in the interval (0, =), in
sines of multiple arcs:

x when 0<x<1,
2686. [ (x) = .

0 when 7 <xr<m
2687. f(x)=x(n—x).

2688. [ (x) = sin .

Expand the following functions, in the interval (0, n), in co-
sines of multiple arcs:
1 when 0<x<h,
2689. i(x)—{ 0 when A< x<<m.
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X
2690. f(x)_—_{ | —o when 0<x<2h,

0 when 2h<x<<m.

2691. f(x)=xsinx.
cos x when 0<x<g—,
cfx)=

—cos x when —fz‘—<x<n.

2692

2693. Using the expansions of the functions x and x* in the
interval (0, m) in cosines of multiple arcs (see Problems 2681 and
2682), prove the equality

®
Zcos nx _ 3x*—6nrc4 2
nt 12

0 < x<<nm).
n=i

2694**. Prove that if the function f(x) is even and we have
f(g—+x)=—f<~;——-x), then 1ts Fourier series in the interval
(—mn, n) represents an expansion in cosines of odd multiple arcs,
and if the function f(x) is odd and i(%-{- x)=f %—x), then
in the interval (—m=, n) it is expanded in sines of odd mul-
tiple arcs.

Expand the following functions in Fourier series in the indi-
cated intervals:

2695. f(x)=|x| (—1<<x<<l).

2696, f(x)=2x (0<<x<1).

2697, f(x)=¢" (—I<x<]I).

2698. f(x)=10—x (5<<x<15).

Expand the Iollowing [unctions, in the indicated intervals,
in incomplete Fourier series: a) in sines of multiple arcs, and
b) in cosines of multiple arcs: '

2699. f(x)=1 (O<<x<]).

2700. f(x)=x (O<x<l).

2701. f(x)=x* (0< x < 2n).

x when 0<<x<1,
2702. f(x)-—-{ 2—x when 1 <<x< 2.
2703. Expand the following function in cosines of multiple

arcs 1n the interval (%, 3):

f(x)=‘ 1 when%<x<2,
\ 3—x when 2 << x<<3.

11900



Chapter IX
DIFFERENTIAL EQUATIONS

Sec. 1. Verifying Solutions. Forming Differential Equations of Families of
Curves. Initial Conditions

1°. Basic concepts. An equation of the type
Fx, y, 4. ..., Pp!™=0, 1))

where y=y (x) is the sought-for functian, is called a differential equation of
order n. The function y=¢ (x), which converts equation (1) into an identity,
is called the solution of the equation, while tho graph of this function s
called an integral curve. 1f the solution is represented implicitly, @ (x, y)=0,
then it is usually called an integral

Example 1. Check that the function y=sinx is a solution of the equation

Y +y=0.
Solution. We have:
y' =cosx, Y =—sinx
and, consequently,
y' +y=—sinx4sinx=0.

D(x, 9, Cyy ..., C))=0 @

of the differential equation (1), which contains n independent arbitrary con-
stants C,, ..., C, and is equivalent (in the given region) to equation (1), 1s
called the general integral of this equation (in the respective region). By assign-
ing definite values to the constants C,, ..., C, in (2), we get particular
integrals.
Conversely, if we have a family of curves (2) and eliminate the param-
eters C,, ..., C, from the system of equations
dd d"®
O =0, =0, ..., PP =0,

dx
we, generally speaking, get a differential equation of type (1) whose general
integral in the corresponding region is the relation (2).
Example 2. Find the differential equation of the family of parabolas

The 1ntegral

y=C,(x—C,)" )
Solution. Differentiating equation (3) twice, we get:
y'=2C,(x—C,) and y'=2C,. (4)

Eliminating the parameters C, and C, from equations (3) and (4), we obtain
the desired differential equation

294" =y
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It 1s easy to verify that th: Tunction (3) converts this equation into an
identity.

2°, Initial conditions. If for the desired particular solution y =y (x) of a
differential equation

YW =fx y ¥y ol gt )
the inttial conditions
Yo =lor ¥ () =Yg «ous YTV (x) =4{" "V
are given and we know the general solution of equation (5)
y=e¢(x, C,, ..., Cp,),

then the arbitrary constants C,, ..., C, are determined (if this is possible)
from the system of equations

Yo=9(x0, Gy, ..., Cp),

yozq);(xm Ci ..., Cp),

W= GBI G Cor e €

Example 3. Find the curve of the family
y="Cie"+ Cpe™, (6)

for which y(0)=1, y’' (0)=—2.
Solution. We have:
y'=C,e*—2Ce-*
Putting x=0 in formulas (6) and (7), we obtain (7)
1=C,+C,, —2-C,—2C,,
whence
C,=0, C,=
and, hence,
y=e-*.

Determine whether the indicated functions are solutions of the
given diflerential equations:
2704. xy =2y, y=>5x>.

2705. y*=x+y*, y= %

C’—x’

2706. (x y)dx +xdy=0, y=
2707. y"+y=0, y=3sinx— 4LObX
2708. dt,-}—m x=0, x=C, cos ot +C, sin of.
2709. y"—2y' +y=0; a) y=uxe*, b) y=xe~.
2710, y"— (A, + X))y + A Ay=0,

y=_C, ehur C et

Show that for the given differential equations the indicated
relations are integrals:

2711, (x—2y)y' =2x—y, x*—xy t y* == C*.

11*
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2712, (x—y+1)y’'=1, y=x+Ce.

2713, (xy—x)y"+xy'* +yy'—2y'=0, y=In(xy).

Form differential equations of the given families of curves
(C, C,, C,, C, are arbitrary constants):

2714. y=Cx. 2721. In==1+ay
2715. y:cx’. ‘ !./ t
2716, y*=2Cx : (a is a parameter).
' ' 2722. (y—y,)* = 2px
2717, X¥*+y*=C* 0
2718. = Ce* ' (y,» p are parameters).
2719' i’;C(x’—- :) 2723. y= Cle“‘_*_cze-x.
. v " 2724. y=C, cos 2x+C, sin 2x.
2720. y'—}——)lc—==2+Ce—T, 2725. y=(C,+ C.x)e*+C,.

2726. Form the! differential equation of all straight lines in the
xy-plane. ﬁ )

2727. Form the differential equalion of all parabolas with
vertical axis in the xy-plane.

2728. Form the diflerential equation of all circles in the
xy-plane.

For the given families of curves find the lines that satisfy
the given initial conditions:

2729. x*—y*=C, y(0)=5.

2730. y=(C,4-C,x)e**, y(0)=0, y'(0)=

2731. y=C,sin(x—C,), y(m)=1, y (n)=

2732, y=C.e *+4C,e"+C'%,

y(0)=0, y'0)=1, y"(0)=—2.

Sec. 2. First-Order biﬁerential Equations

1°. Types of first-order differential equations. A differential equation of

the first order in an unknown function y, solved for the derivative y’, is of
the form

y'=F[ y) (1

where f(x, y) is the given function. In certain cases it is convenient to
?onsider the variable x as the sought-for function, and to write (1) in the
orm

=g(x Y, (1"
where g (x, y)-—:—l-.
f(x, 9)
Taking into account that y’=Z—f’c and x'=%’f. the differential equations
(1) and (1’) may be written in the symmetric form
P (x, Y)dx+Q (x, y) dy=0, (2)

where P (x, y) and Q (r, y) are knowr functions.
By solutions to (2) we mean functions of the form y=¢(x) or x=1 (y)
that satisfy this equation, The general integral of equations (1) and (1’), or
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equation (2), is of the form
D (x, y, C)=0,

where C is an arbitrary constant.
2°. Direction fleld. The set of directions

tana="{(x, y)

is called a direction fleld of the differential equation (1) and is ordinarily
depicted by means of short lines or arrows inclined at an angle a.

Curves f(x, y)==~k, at the points of which the inclination of the field
has a constant value, equal to k, are called isoclines. By constructing the
isoclines and direction field, it is possible, in the simplest cases, to give a

Y

Fig 105

rough sketch of the field of int:gral curves, regarding the latter as curves
which at each peint have the given direction of the field.

Example 1. Using the method of isoclines, construct the field of integral
curves of the equation

Yy =x

Solution. By constructing the isoclines x-=%& (straight lines) and the di-
rection field, we obtain approximately the field of integral curves (Fig. 105).
The family of parabolas .

X
is the general solution.

Using the method of isoclines, make approximate constructions of fields
of integral curves for the indicated differential equations:

2733. y' = —x.
2734, y' = — 3 .
2735. y' =14y
2736. o' =j—j—!y’.

2737, y'=x"+y'.
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8°. Cauchy’s theorem. If a function f(x, y) is continuous in some region
l{{a<x<A, b<y<B} and in this region has a bounded derivative
[y (x, y), then through each point (x,, y,) that belongs to U there passes one

and only one integral curve y=o (x) of the equation (1) [ (xo) =y,)-

4°, Euler’s broken-line method. For an approximate construction of the
integral curve of equation (1) passing through a given point M, (x,, y,), we
replace the curve by a broken line with vertices M; (x;, y;), where

X=X+ Ax; Yi+ =y + Ay,

Ax;=h (one step of the process),

Ay,-=hf(x,-, yl) (l=0, 1, 2, ...).
Example 2. Using Euler’s method for the equation

’ xy

y - 2 »

find y (1), if y(0)=1 (h=0.1).

We construct the table:
4 X —*iYi

i Yi Al/,‘ 920

0 0 1 0
1 0.1 1 0 005
2 0.2 1.005 0.010
3 0.3 1015 0 015
4 04 1.030 0 021
5 0.5 1.051 0 026
6 0.6 1.077 0 032
7 0.7 1.109 0.039
8 0.8 1.148 0 046
9 0.9 1.194 0.054
10 1.0 1.248

Thus, y(1)=1.248. For the sake of comparison, the exact value is
1

y(l)=e® 1284

Using Euler’s method, find the particular solutions to the
given differential equations for the indicated values of x:

2738. y'=y, y(0)=1; find y(1) (h=0.1).

2739. y'=x+y, y(1)=1, find y(2), (h=0.1).

2740. y'—_-—l—i—x, y(0)=2; find y(1) (h=0.1).
2741. y'=y—-2—:, g(0)=1; find y(1) (h=0.2).
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Sec. 3. First-Order Differential Equations with Variables Separable.
Orthogonal Trajectories

1°. First-order equations with variables separable. An equation with variables
separable is a first-order equation of the type

y'=fx g (1
XY (@de+ X, (Y, (y) dy=0 (1
Dividing both sides of equation (1) by g(y) and multiplying by dx, we get

—%:f(x) dx Whence, by integrating, we get the general integral of equa-
tion (1) in the form

or

£L=S-d c
F= ) e dxt )

Similarly, dividing both sides of equation (1") by X, (x) Y () and integrating,
we get the general integral of (1) in the form

X (v) Y (), ,
wandx+swwmdy‘c @)

If for some value y=y, we have g(y,)=0, then the function y=y, is
also (as is directly evident) a solution of equation (1) Similarly, the straight
lines x =a and y=>b will be the intesral curves of equation (1’), if « and b
are, respectively, the roots of the equations X, (x) =0 and Y (y) =0, by the
left sides of which we had to divide the imtial equation.

Example 1. Solve the equation

"

y=—=. ®
In particular, find the solution that satisfies the initial conditions
y(l)=2
Solution. Equation (3) may be written in the torm
dy__ Y
dx x

Whence, separating variables, we have
dy dx

Y X

and, consequently,
In|y|=—1In]x|+InC,,

where the arbitrary constant InC, is taken in logarithmic form. After taking
antilogarithns we get the general solution
C

where C= + C,. ]
When dividing by y we could lose the solution y=0, but the latter is
contained in the formula (4) for C=0.
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Utilizing the given initial conditions, we get C=2; and, hence, the de-
siced particular solution is

y=--

2° Certain differential equations that reduce to equations with variables
separable. Differential equations of the form

y =flax+by+4c) (b #0)

reduce to equations of the form (1) by means of the substitution u=ax+by+e¢,
where u 1s the new sought-for function

3° Orthogonal trajectories are curves that intersect the lines of the given
family ® (x, y, @ =0 (a 1s a parameter) at a right angle. If F(x, y,4')=0
is the diflerential equation of the family, then

F(x, Y, —%):0

is the differential equation of the orthogonal trajectories.
Example 2. Find the orthosonal trajectories of the family of ellipses

x2 4 2y% = a®. (5)

Solution Differentiating the equation (5), we find the dulerential equa-
tion of the family

x+2yy =0,

Fig. 106

Whence, replacing i’ by —-;1,-, we get the differential equation ef the
orthogonal trajectories

x—2-y,=0 or y’=-2—y.
Yy x

Integrating, we have y=Cx? (fammly of parabolas) (Fig. 106).
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4°. Forming differential equations. When forming differential equations in
geometrical problems, we can frequently make use of the geometrical meaning
of the derivative as the tangent of an angle formed by the tangent line to
the curve in the pos'tive x-direction. In many cases this makes it rossible
straightway to establish a relationship between the ordinate y of the desired
curve, its abscisca x, and the tangent of the angle of the tangent line y¢’,
that is to say, to obtain the diffeiential equation. In other instances (see
Problems 2783, 2890, 2895), use is made of the geometrical significance of
the definite integral as the area of a curvilinear trapezoid or the length of
an arc. In this case, by hypothesis we have a simple integral equation
(since the desired function is under the sign of the integral); however, we
can readily pass to a differential equation by difterentiating both sides.

Example 3. Find a curve passing through the point (3,2) for which the
segment of any tangent line contained between the coordinate axes is divid-
ed in half at the point of tangency.

Solution. Let M (x,y) be the mid-point of the tangent line AB. which by
hypothesis is the point of tangency (the points A and B are points of inter-
section of the tangent line with the y- and x-axes). It is given that OA=2y
and OB =2x. The slope of the tangent to the curve at M (x, y) is

dy 0A Yy

dx~ OB x°
This is the differential equation of the sought-for curve. Transforming, we gel
da  dy _
*Ty=0

and, consequently,
Inx+1Iny =InCor xy=C.

Ultilizing the initial condition, we determine C=3.2=6. Hence, the desircd
curve is the hyperbola ay=6.

Solve the diflerential equations:

2742. tan xsin® ydx--cos® xcot ydy=0.

2743. xy' - y=1y"’.

2744. xyy' =1 —x'.

2745. y—xy’ =a (1l +x*y’).

2746. 3¢ tan ydx -+ (1 —e*)sec’ ydy=0.

2747. y’ tan x=y.

Find the particular solutions of equations that satisly the
indicated initial conditions:

2748. (1 +¢*) y y’ =e*, y=1 when x=0.

2749. (xy* +x)dx+4- (*y—y)dy=0; y=1 when x==0.

2750. y’sin x=ylIny, y==1 when x=%.

Solve the differential equations by changing the variables:
2751. y’ = (x +y)*.

2752. y=(8x--2y + 1)

2753. (2x +3y—1)dx -+ (4x+ 6y—5)dy =0.

2754. (2x—y)dx+ (4c—2y4-3)dy=0.
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In Examples 2755 and 2756, pass to polar coordinates:
9755, y' =V XH¥=x

Yy

2756. (x*+y*)dx—xydy=0.

2757*. Find a curve whose segment of the tangent is equal
to the distance of the point of tangency from the origin.

2758. Find the curve whose segment of the normal at any
point of a curve lying between the coordinate axes is divided in
two at this point.

2759. Find a curve whose subtangent is of constant length a.

2760. Find a curve which has a subtangent twice the abscissa
of the point of tangency.

2761*. Find a curve whose abscissa of the centre of gravity
of an area bounded by the coordinate axes, by this curve and
the ordinate of any of its points is equal to 3/4 the abscissa of
this point.

2762. Find the equation of a curve that passes through the
point (3,1), for which the segment of the tangent between the
point of tangency and the x-axis is divided in half at the point
of intersection with the y-axis.

2763. Find the equation of a curve which passes through the
point (2,0), if the segment of the tangent to the curve between
the point of tangency and the y-axis is of constant length 2.

Find the orthogonal trajectories of the given families of cur-
ves (a is a parameter), construct the families and their orthogo-
nal trajectories.

2764. x*+y' =a'. 2766. xy —=a.

2765. y* =oax. 2767. (x—a)* ry* =a’.

Sec. 4. First-Order Homogeneous Differential Equations

1°. Homogeneous equations. A differential equation ,
P (x, y)dx+Q (x, y) dy=0 1

is called homogeneous, if P (x,y) and Q (x, y) are homogeneous functions of
the same degree. Equation (1) may be reduced to the form

y’=f(%);

and by means of thesubstitution y=-xu, where u is a new unknown function,

it is transformed to an equation with variables separable. We can also apply
the substitution x = yu.

Example 1. Find the general solution to the equation
y

I__; _y_
y =e +x'
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Solution. Put y=ux; then u+4xu’=e*+u or

e'"du=d—x.
X
. C
Integrating, we get u=—1In InT, whence
=—xIn ln—C—.
X

2°. Equations that reduce to homogeneous equations.

If
' ayx+by4c
y_f(a=x+bzy+c:) @

and 6=|Z‘:‘ l # 0, then, putting into equation (2) x=u+4a, y=v-+p, where
the constants o and B are found from the following system of equations,

aa+bp+c,=0, a,a+bp+c,=0,

we get a homogeneous differential equation in the variables u and v. If
8=0, then, putting in (2) a,x4-b,y=u, we get an equation with variables
separable,

Integrate the differential equations:
2768. y' = L 1. 2770. (x—y)ydx—x'dy=0.
X

2769. y' = — Y.

X

2771. For the equation (x* +y*) dx—2xydy=0 find the family
of integral curves, and also indicate the curves that pass through
the points (4,0) and (1,1), respectively.

2772. ydx+ 2V xy—x)dy=0.

2773. xdy—ydx= Vxr ydx.

2774. (4x* + 3xy + y*)dx + (4y* +3xy+ x*)dy=0.

2775. Find the particular solution of the equation (x* —3y*)dx+
+ 2xydy =0, provided that y=1 when x=2.

Solve the equations:

2776. (2x—y + 4)dy+ (x—2y + 5)dx=0.

, 1—3x—3y r_ X+2y+41

27717. y = TIrty 2778. y =5y i3

2779. Find the equation of a curve that passes through the
point (1,0) and has the property that the segment cut offi by the
tangent line on the y-axis is equal to the radius vector of the
point of tangency.

2780**, What shape should the reflector of a search light
have so that the rays from a point source of light are rellected
as a parallel beam?
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2781. Find the equation of a curve whose subtangent is equal
to the arithmetic mean of the coordinates of the point of tan-
gency.

2782. Find the equation of a curve for which the segment
cut off on the y-axis by the normal at any point of the curve
is equal to the distance of this point from the origin.

2783*. Find the equation of a curve for which the area con-
tained between the x-axis, the curve and two ordinates, one of
which is a constant and the other a variable, is equal to the
ratio of the cube of the variable ordinate to the appropriate
abscissa.

2784. Find a curve for which the segment on the y-axis cut
off by any tangent line is equal to the abscissa of the point of
tangency.

Sec. 5. First-Order Linear Differential Equations.
Bernoulli’s Equation

1°. Linear equations. A differential equation of the farm
Y +P(x)y=Q(x) 8]

of degree one in y and y’ is called linear.
If a function Q (x) =0, then equation (1) takes the form

Yy +Px)-y=0 (2)

and is called a homogeneous linear differential equation. In this case, the
;lariables may be separated, and we get the general solution of (2) in the
orm

—f P(x) dx

y=C-e 3

To solve the inhomogeneous linear equation (1), we apply a method that
is called variation of parameters, which consists in first finding the general
solution of the respective homogeneous linear equation, that is, relation-
ship (3). Then, assuming here that C is afunction of x, we seek the solution
of the inhomogeneous equation (1) in the form of (3). To do this, we put into
(1) y and y* which are (}ound from (3), and then from the differential equa-
tion thus obtained we determine the function C(x). We thus get the general
solution of the inhomogeneous equation (1) in the form

y=cie I 7O,

Example 1. Solve the equation
y’ =tanx.y-cosx. 4)
Solution. The corresponding homogeneous equation is

y' —tanx.y=:0,
Solving 1t we get:
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Considering C as a function of x, and differentiating, we find;

1 dc sifn x
cosx “dx Tcostx

y=

Putting y and y’ into (4). we get:
1 dC | sinx
cosx dx +

dc 2
o x C=tanx. o ® +cosx, or d—x=c°S X,

whence
C(x):Scos’xdx:é—x—{--}l-sin 2x+C,.
Hence, the general solution of equation (4) has the form

| 1 . 1
y=(§-x+—‘r sin 2¢x+4C, ) .

cosx

In solving the linear equation (1) we can also make use of the substitu-
tion

y=uv, ©)]
where u and v are functions of x. Then equation (1) will have the form
[ +P (x)u]jv-t+o'u—=Q(x). (6)
If we require that
w4 P(x)u=0, )

then from (7) we find u, and from (6) we find v; hence, from (5) we find y.
2. Bernoulli’s equation. A first-order equation of the form

Y+Py=Q W)y,

where a # 0 and a # 1, is called Bernoulli’s equation 1t is reduced to a li-
near equation by means of the substitution z=g¢'"?* 1t is also jossible to
apply directly the substitution y=wuv, or the method of varia-
tion of parameters.

Example 2. Solve the equation

’ 4 -
y=—y+xVy.

Solution. This is Bernoulli’s equation. Putting

y—_- U'U,
we cet

u’v+v’u=%uv +xVuv or v(u’——i—u)+u'u=x V uv. (8)

To determine the function 4 we require that the relation

u’—i u=0
X

be fulfilled, whence we have
u==x4
Putting this expression into (8), we get

vxt=x Vux“.
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whence we find v:
2
v= (%— Inx4¢ ) Y
and, consequently, the general solution is obtained in the form
y= x‘(—lnx-{-C) .

Find the general integrals of the equations:

2786. "—¥+—=x'

2787*. (14 y*)dx= (V14 ¢ siny—xy) dy.
2788. y'dx— (2xy +3)dy =0.
Fmd the particular solutions that satisfy the indicated con-
ditions:
2789. xy' +y—e*=0; y=> when x=a.
2790. y'—-f—_ﬁx—,—l x—O' y=0 when x=0.

2791. y'—ytanx= ; y=0 when x=0.

COS x
Find the general solutions of the equations:

dy , ¥ _
2792. Z4 L =— sy,
2793. 2xy3—z—y'+x=0.

27904, ydx-{—(x——;—x’y)dyzo.

2795. 3xdy =1y (1 + x sin x—3y* sin x) dx.

2796. Given three particular solutions y, y,, y, of a linear
equation. Prove that the expressmn 27Y remains unchanged for

any x. What is the geometrical sngmflcance of this result?

2797. Find the curves for which the area of a triangle formed
by the x-axis, a tangent line and the radius vector of the point
of tangency is constant.

2798. Find the equation of a curve, a segment of which, cut
offi on the x-axis by a tangent line, is equal to the square of the
ordinate of the point of tangency.

2799. Find the equation of a curve, a segment of which, cut
off on the y-axis by a tangent line, is equal to the subnormal.

2800. Find the equation of a curve, a segment of which, cut

off on the y-axis by a tangent line, is proportional to the square
of the ordinate of the point of tangency
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2801. Find the equation of the curve for which the segment
of the tangent is equal to the distance of the point of intersec-
tion of this tangent with the x-axis from the point M (0,a).

Sec. 6. Exact Differential Equations.
Integrating Factor

1°. Exact differential equations. If for the differential equation
P(x, y) dx+Q (x, y)dy=0 M
the equalityg—!};—:%—g is fulfilled, then equation (1) may be written in the

form dU (x, y)=0 and is then called an exact differential equation. The gen-
eral integral of equation (1) is U (x, y)=C. The function U (x, y)is deter-
mined by the technique given in Ch. VI, Sec. 8, or from the formula

x Y
U=SP(x,y)dx-l- Q (xy, y) dy

Xa Yo

(see Ch, VII, Sec. 9).
Example 1. Find the general integral of the differential equation
(3x% 4 6xy?) dx + (6x%y + 4y*) dy =0.

2 2
Solution. This is an exact differential equation, since a—(3":—-{-65“[/—)=

oy
2, ] 3
= ﬂﬁ—“‘é—#: 12xy and, hence, the equation is of the form dU =0,
Here,
aU — 2 2 OU —_ 2 3.
J—Sx + 6xy? and W—Gx y -+ 4y*;
whence

U={ @ +6xh dr+9 @) =#+3xy" + 9 ).

Differentiating U with respect to y, we find %=Gx’y+(p' (y) =6x*y + 4y* (by
hypothesis); from this we get ¢’ (y) =4y* and (p(y):y‘-{-C . We finally get
U (v, y) =x*+3x*y*+ y* + C,. consequently, x*+ 3x y’+y‘=(f is the sought-tor
general integral of the equation.

2°. Integrating factor. If the left side of equation (1)is not a total (exact)
differential and the conditions of the Cauchy theorem are fulfilled, then there
exists a function p=p (x, y) (integrating factor) such that

i (P dx+ Q dy)=4dU. 2
Whence it is found that the function p satisfies the equation

0 d
- P =5, Q).

The integrating factor p is readily found in two cases:

1 (0P 0

1) (_2.(_ay———ag)=1-‘(x), then p=p (x);
1 (0P 4

2) 5 (5!7 —b_xg) =F, (), then p=p(y).
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; 3
Example 2. Solve the equation (2xy +x%y +% ) dx+ (2 + y*) dy =0.

Solution. Here P =2xy + x% .f_i’. , Q=x*+y?

OP 0Q\_2x4x*4y*—2¢
s g (5= ) =T =t “°"°e"‘ ke
.o 0(pP) _duQ) oP 9Q
Since o = ox o By =k +Q

it follows that

dp_ 1 (0P dQ
e Q(()y ax)dx dx and Inp=x, p=e*.

Multiplying the equation by p=e*, we obtain
y3
e* (2xy+x’y—|——3- ) dx-4-e* (x*+4y?) dy =0

which is an exact dilferential equation. Integrating it, we get the general
integral

ye* (x’—}—yg) =C.

Find the general integrals of the equations:

2802 (x+y)dx+ (x4 2y)dy=0.
2803. (x* +y*+2x)dx +2xydy=0.
2804. (x*—3xy* + 2)dx— (3x’y—y*) dy=0.

2805. xdx—ydy= )c_%r/_:iygc

2806. 2xdx+y — 312 dy =0.
2807. Fmd the partlcular integral of the equation

(_x—l—e-’Jj)d,\:-|—e7;/i (1——3)dy=0,

which satisfies the initial condition y (0)=2.

Solve the equations that admit of an mtegratmg factor of the
form p=p(x) or p=p(y):

2808. (x+ y*)dx—2xydy=0.

2809. y (1 + xy)dx—xdy=0.

2810. %dx-{»(y'——lnx)dy:O.
2811. (xcosy~—ysiny)dy+ (xsiny-} ycosy)dx=0.
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Sec. 7. First-Order Differential Equations not Solved
for the Derivative

1°. First-order differential equations of higher powers. If an equation
F(x, y, y)=0, (1
which for example is of degree two in y’, thea by solving (1) for y' we get
two equations:
y=hxy), y=I(xy. 2)
Thus, generally speaking, through each point M, (x,, y,) of some region

of a plane there pass two mtegral curves. The general integral of equation
(1) then, generally speaking, has the form

O(x, !}: C):E(Dl (-\', !I» C) "Dz (X- !/, C)=0| (3)

where (I, and M@, are the general integrals of equations (2).

Besides, there may be a stngular integral for equation (1). Geometrically,
a singular integral is the envelope of a family of curves (3) and inay be ob-
tained by eliminating C from the system of cquations

®(x, y, C)=0, D (x,y, C)=0 @
or by eliminating p=y’ from {he system of equations
F(x, 4, p)=0, F,(x,y, p)=0. (5)

We note that the curves defined by the equations (4) or (5) are not
alwavs solutions of equation (1); therefore, in each case, a check is necessary.
Example 1. Find the general and singular integrals of the equation

xy’?+ 2xy' —y=0.

Solution. Solving for y’ we have two homogeneous equations:

y=—1+ ]/1+*”x-. y’=—l~]/1+%.

defined in the region

x (x4 y) >0,

the general integrals of which are
2
v_ Y =G
(V)5 (VT

@x+y—C)—2Vx*+xy=0, (2x+y—C)+2 Vi fay=0.
Multiplying, we get the general integral of the given equation
(2x+y—C)l—4 (x*+ xy) =0
(y—C)*=4Cx

or

or
(a family of parabolas).

Differentiating the general integral with respect to C and eliminaling C,
we find the singular integral
y+x=0.

(It may be verifled that y+4x=0 is the solution of this equation.)
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It is also possible to find the singular integral by differentiating
xp*+2xp—y=0 with respect to p and eliminating p.

2°, Solving a differential equation by introducing a parameter. If a first-
order differential equation is of the form

x=¢(y, y'),
then the variables y and x may be determined from the system of equations
_0¢  dpdp
F_a +'a_d_y' ’ x"‘(p(yr p)l

where p=y’ plays the part of a parameter.
Similarly, if y=1v (x, '), then x and y are determined from the system

of equations
_op dpdp
P-—g;'f'a—pa. y=v9(x, p).

Example 2, Find the general and singular integrals of the equation
’ ’ x,
y=y"—' +5.

( Solution. Making the substitution y’=p, we rewrite the equation in the
orm

2
y=p"—sp+.

Differentiating with respect to x and considering p a function of x, we have
d d
p=2F—p—xLtx
dp dp . -
or a(2p—-x)==(2p—x), or ﬁ;—l' Integrating we get p=x-+4C. Substituting
into the original equation, we have the general solution

y=(+CP—x(x+C)+75 or y=7+Cx+C

Differentiating the general solution lwith respect to C and eliminating C, we
2

obtain the singular solution: y=£—

e (It may be verified that y=% is the

solution of the given equation.)
If we equate to zero the factor 2p—x, which was cancelzled out, we get

pag and, putting p into the given equation, we get y=-xz , which is the
same singular solution.

Find the general and singular integrals of the equations:

(In Problems 2812 and 2813 construct the field of integral
curves.)

2812. y'—2y 110,
2813. 4y'*—9x=0.
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2814, yy''—(xy + 1)y’ + x=0.

2815. yy''—2xy’ +y=0.

2816. Find the integral curves of the equation y'* +y*=1
that pass through the point M (0, .

Introducing the parameter y’ = p, solve the equations:

2817, x=siny’ +Iny’. 2820. 4y =x*+y'".
2818, =y, Ly
2819. y=y"* +2Iny’. 2821. e = 2y "

Sec. 8. The Lagrange and Clairaut Equaticns
1°. Lagrange’s equation. An equation of the form
y=x¢ (p)+V (p), (n

where p=y’ is called Lagrange's equation Equation (1) is reduced to a linear
equation in x by differentiation and taking into consideration that dy =pdx:

pdx=¢q (p)dx+ [x¢" (p) + ¥’ (p)] dp. (2
fIf pZ ¢ (p), then from (1) and (2) we get the general solution in parametric
orm:

x=Cf(p)+g(p). y=[CF(p)+g(P] ¢ (p)+¢(p),

where p is a parameter and f(p), g(p) are certain known functions. Besides,
there may be a singular solution that is found in the usual way.

2°, Clairaut’s equation. If n equation (l)p=q(p), then we get Clai-
raut’s equation

y=xp-4-¥(p).
Its general solution 1s of the form y —Cx+ ¢ (C) (a family of straight lines).

There 1s also a particular solution (envelope) that results by eliminating the
parameter p from the system of equations

{ x=— " (p),
y=px+y(p)
Example. Solve the equation

, 1
y~2yx+y—,. 3)

Solution. Putting y"-=p we have !/=2P\+%: differentiating and replac-
ing dy by pdx, we get
pdx=2pdx+2xdp—%’—:

. d 2 1
X
_.=-—-—.x —_—
dp p +p'

Solving this linear equation, we will have

1
x=F(lnp+C).
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Hence, the general integral will be

Jx=£—.(lnp+c).
1
l y——2px+7.

To find the singular integral, we form the system

1 1
=92 —_, 0=2¢x— —
y=2px+ —

in the usual way. Whence

1 2

=5 V=%
and, consequently, _
y=+2 V2x.

Putting y into (32 we are convinced that the function obtained is not
a solution and, therefore, equation (3) does not have a singular integral.

Solve the Lagrange equations:
’ Iz
2822. y=%x(y'+%>. 2824. y=(l+?)x+y :
- % —— .
2823, y=y +VT—y" 2825%. y=—gy'(2x+y)

Find the general and singular integrals of the Clairaut equa-
tions and construct the field of integral curves:

2826. y=xy' +y'.

2827. y=uxy' +y'.

2828. y=xy' +V 1+ ().

2829, y=xy’-]—&.

2830. Firid the curve for which the area of a triangle formed

by a tangent at any point and by the coordinate axes is con-
stant.

2831. Find the curve it the distance of a given point to any
tangent to this curve is constant.

2832. Find the curve for which the segment of any ol its
tangents lying between the coordinate axes has constant length L

Sec. 9. Miscellaneous Exercises on First-Order Differential Equations

2833. Determine the types of diflerential equations and indi-
cate methods for their solution:

a) (x+y)y =xarctan £, e) xy’ -i—y=sin€;
b) x—y)y =y~ ) G—xy) =y"
c) y'=2xy+x'; g) y=xe’’;

d) ¥’ =2xy -+ 4% h) (v —2xy)V y=4+"
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i) y'=(x+y)"
j) xcosy +ysiny' =1,
k) (¢! —xy)y' =y";

Solve the equations:

2834.

2835.

2836.
2837.
2838.

2839.
2840.
2841.

2842,

2843.
2844.
2848.

2849, y
2850.
2851.

2852,

2853.

2854.
2855.
2856. ¢

2857. ¢

2858.
2859. x

2860.

Yy
a) (x—y cos —x->

b) xln—xy—dy—ydxzo.

xdx= (%—y‘ dy.

(2xy* —y)dx +x dy = 0.

xy' -+y=—=xy* Inx.
y=xy +y' lny'.
y=xy -V —ay’.

) (¢ +2xy*)dx -+ .

+ (y* +3x*y") dy =0;

m) (x*—3xy) dx + (x* +3)dy =0;
n) (xy’+ Inx)dx = y'dy.

+x cos-—dy = 0;

Xy 4 1) dx+- (' —1) (y—1) dy=0.
(1 4 4°) (e** dx—e’ dy) — (1 +-y) dy = 0.

ye' = (4’ 2xe”) y'.
J—}-Jcosx—~sxn X COS X.

2845.
2846.

2847.

(1—=xy +xy=a.

’ Y .
xy —-m—x-—O.
Yy (xcosy-rasin2y)=1.

(x/ X'+ y—-1)dx | (xy +2x—3y—6) dy =0.

(1)
xy’ dx = (x*y +2)dy.

y == ——
2dx +

Yy =;+tan7
yy' -+ y° = cos x.
xdy-t ydx==y*dx.
J’ (x-}-siny)=1.
Jd”=—p—}—p'.
xtdx—
Yy Sxyy' -

+2y*=0.

xdx+ydy )
Veate

+xdy~ydx=0-

yl

(' t ') dy=0.

Ly =2

. e¥dx+ (xe’ —2y)dy =0.
cy=2y +VTry™

. y’=%(l +Iny—Inx).
. (2" +yh)dy—

—ye*dx=0.
(_y+2 )’
\x+y—1/ °

cxy(xyt H ) dy—dx =

=0.

ca(xy +2y)==xyy'.
. xdy—ydx=y'dx.
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2869. (x*—1)2dy+ (x*+3xyV x*—1)dx=0.

2870. tanx:-;—)y-c—y=a.

2871. Va' ¥ ¥ dy-+ (x+y—Va* + 1) dx=0.

2872, xyy'* — (> +y*)y +xy=0.

2873. y=xy’+—l,—,.

2874. (3x* +2xy—y*) dx + (x* —2xy—3y*) dy = 0.

2875. 2ypZ—Z=3p’—{-4y’.

Find solutions to the equations for the indicated initial con-
ditions:

2876. y’=y+1; y=0 for x=1.

X
2877. e Vy'=1, y=1 for x=1.
2878. cot xy' + y=2; y=2 for x=0.
2879. &/ (y' +1)=1; y=0 for x=0.

2880. y' +y=-cosx; !/=% for x=0.

2881. y' —2y=—x* y=% for x=0.

2882. y'+y=2x;, y=—1 for x=0.

2883. xy'=y, a) y=1 for x=1; b) y=0 for x=0.

2884. 2xy'=y. a) y=1 for x=1; b) y=0 for x=0.

2885. 2xyy’ +x*—y*=0; a) y=0 for x=0; b)y=1 for x=0;
c) y=0 for x=1.

2886. Find the curve passing through the point (0, 1), for
which the subtangent is equal to the sum of the coordinates of
the point-of tangency.

2887. Find a curve if we know that the sum of the segments
cut off on the coordinate axes by a tangent to it is constant and
equal to 2a.

2888. The sum of the lengths of the normal and subnormal
is equal to unity. Find the equation of the curve if it is known
that the curve passes through the coordinate origin.

2889*. Find a curve whose angle formed by a tangent and the
radius vector of the point of tangency is constant.

2890, Find a curve knowing that the area contained between
the coordinate axes, this curve and the ordinate of any point on
it is equal to the cube of the ordinate.

2891. Find a curve knowing that the area of a sector boun-
ded by the polar axis, by this curve and by the radius vector
of any point of it is proportional to the cube of this radius
vector.

2892. Find a curve, the segment of which, cut ofl by the
tangent on the x-axis, is equal to the length of the tangent.
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2893. Find the curve, of which the segment of the tangent
contained between the coordinate axes is divided into half by
the parabola #* = 2x.

2894, Find the curve whose normal at any point of it is
equal to the distance of this point from the origin.

2895*. The area bounded by a curve, the coordinate axes,
and the ordinate of some point of the curve is equal to the
length of the corresponding arc of the curve. Find the equation
of this curve if it is known that the latter passes through the
point (0, 1).

2896. Find the curve for which the area of a triangle formed
by the x-axis, a tangent, and the radius vector of the point of
tangency is constant and equal to a*.

2897. Find the curve if we know that the mid-point of the
segment cut off on the x-axis by a tangent and a normal to the
curve is a constant point (a, 0).

When forming first-order differential equations, particularly in physical
problems, it is frequently advisable to apply the so-called method of differen-
tials, which consists in the fact that approximate relationships between
infinitesimal increments of the desired quantities (these relationships are
accurate to infinitesimals of higher order) are replaced by the corresponding
relationships between their differentials. This does not affect the result.

Problem. A tank contains 100 litres of an aqueous solution containing
10 kg of salt. Water 1s entering the tank at the rate of 3 litres per minute,
and the mixture is flowing out at 2 litres per minute. The concentration is
maintained umiform by stirring. How much salt will the tank contain at the
end of one hour?

Solution. The concentration ¢ of a substance is the quantity of it in
unit volume. If the concentration is uniform, then the quantity of sub-
stance in volume V is ¢V.

Let the quantity of salt in the tank at the end of ¢ minutes be x kg.
The quantity of solution in the tank at that instant will be 1004 ¢ litres,

. X .
and, consequently, the concentration c—-m kg per litre.

During time dt, 2dt litres of the solution flows out of the tank (the
solution contains 2cdt kg of salt). Therefore, a change of dx in the quantity
of salt in the tank is given by the relationship

2x
100 4 ¢

This is the sought-for differential equation. Separating variables and integrat-
ing, we obtain

—dx=2cdl= dt.

Inx=—2In(1004¢)+InC
_ C
T (10041)2°

The constant C is found from the fact that when ¢=0, 1 =10, that is,

C=100,000. At the expiration of one hour, the tank will contain

100,000 . ]
Xe= — e = 3.9 kilograms of salt.

or
X
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2898*. Prove that for a heavy liquid rotating about a vertical
axis the free surface has the form of a paraboloid of revolution.

2899*. Find the relationship between the air pressure and the
altitude if it is known that the pressure is 1 kgi on 1 em? at
sea level and 0.92 kgf on 1 cm® at an altitude of 500 metres.

2900*. According to Hooke’s law an elastic band of length
! increases in length kIF (k=const) due to a tensile force F.
By how much will the band increase in length due to its weight
W if the band is suspended at one end? (The initial lenglh of
the band is [.)

2901. Solve the same problem for a weight P suspended from
the end of the band.

When solving Problems 2902 and 2903, make use of Newton’s
law, by which the rate of cooling of a body is proportional to the
difference of temperatures of the body and the ambient medium.

2902. Find the relationship between the temperature T and
the time ¢ if a body, heated to T, degrees, is brought into a room
at constant temperature (a degrees).

2903. During what time will a body heated to 100° cool off
to 30° if the temperature of the room is 20° and during the first
20 minutes the body cooled to 60°?

2904. The retarding action of friction on a disk rotating in
a liquid is proportional to the angular velocity of rotation. Find
the relationship between the angular velocity and time if it is
known that the disk began rotating at 100 rpm and afler one
minute was rotating at 60 rpm.

2905*. The rate of disinlegration of radium is proportional
to the quantity of radium present. Radium disinlegrates by one
half in 1600 years. Find the percentage of radium that has disinte-
grated after 100 years.

2906*. The rate of outflow of water from an aperiure at
a vertical distance 4 from the free surface is defined by the

formula L
v=c) 2h,

where ¢ 0.6 and g is the acceleration of gravity.

During what period of time will the water filling a hemi-
spherical boiler of diameter 2 metres flow out of it through a cir-
cular opening of radius 0.1 m in the bottom.

2907*. The quantity of light absorbed in passing through
a thin layer of water is proportional to the quantity of incident
light and to the thickness of the layer. If one half of the original
quantity of light is absorbed in passing through a three-metre-
thick layer of water, what part of this quantity will reach a depth
of 30 metres?
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2908*. The air resistance to a body falling with a parachute
is proportional to the square of the rate of fall. Find the limit-
ing velocity of descent.

2909*. The bottom of a tank with a capacity of 300 litres
is covered with a mixture of salt and some insoluble substance.
Assuming that the rate at which the salt dissolves is proportion-
al to the diflerence between the concentration at the given time
and the concentration of a saturated solution (1 kg of salt per 3
litres of water) and that the given quantity of pure water dis-
solves 1)3 kg of salt in 1 minute, find the quantity of salt in solu-
tion at the expiration of one hour.

2910*. The electromotive force e in a circuit with current i,
resistance R and self-induction L is made up of the voltage drop

Ri and the electromotive force of self-induction L%. Determine

the current i at time ¢ if e==E sinwt (E and o are constants)
and i =0 when t=0.

Sec. 10. Higher-Order Differential Equations

1°. The case of direct integration, If
gy =),
then

y:deS Sf(.\) de+Cix""' 4 Cx"~24 ... 4C,.

jp—
n tumes

2°, Cases of reduction of order. 1) If a differential equation does not
contain y exphicitly, for instance,

F(x, v, y)=0,

then, assuming y'=p, we get an equation ot an order one umt lower:

F(x, p, p"y=0.
Example 1. Find the particular solution of the equation
xy' +y +x=0,

that satisfies the conditions
y=0, y'=0 when x=0,
Solution. Putting y’=p, we have ¥y’ =p’, whence
xp'+p+x=0.

Solving the latter equation as a linear equation in the function p,
we get

xz
px=C,—-2—.
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From the fact that y'=p=0 when x=0, we have 0=C,—0, i.e., C,=0.
Hence,

X
P==—3
or
dy _ _x
dx~ 2°
whence, integrating once again, w2 obtain
xﬂ
y=—7 tGC,

Putting y=0 when x=0, we lind C,=0. Hence, the desired particular
solution is

. 1 2
y—-——4-x .

2) If a differential equation does not contain x explicitly, for instance,
Fly, .y =0
then, putting y'=p, y”=pZ—Z. we get an equation of an order one unit

lower:

F (y, p, p Z—Z):O.
Example 2. Find the particular solution of the equation
vy —y't=y"
provided that y=1, y’=0 when x=0.

Solution. Put y’=p, then y":pj—g and our equation becomes
P o s
up gy Pt =1

We have obtained an equation of the Bernoulli type in p (y is considered
the argument). Solving it, we find

p=+y VC +y*
From the fact that y’=p=0 when y=1, we have C,= —1. Hence,

p=xy Vy—Ii
or

dy _ 7
= ty V‘! L.
Integrating, we have

arc cos -ll/- + x=C,.

Putting y=1 and x=0, we obtain C,=0, whence 5=cosx or y=secx.
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Solve the following equations:

2911, y' =1 2020. yy' =4y + 4.

2912. y":-%. 2021. yy" —y' (1 + ') =0.

2013, y"=1—y"". 2922, :”=—§.

2914. xy" 4 y' =0. 2923. (x+ )y'—(x+2)y' +x+
+2=0.

2015, yy' =y’ 2924. xy" =y’ ln%.

2016. yy" +y''=0. N "

2017. (1 Fx')y +y +1=0, 2925 ¥ +gy" =x4.

2018. y' (1 +y'*) =ay". 2926. xy'"' +y' =1+x.

2919, x*y" +xy' =1. 2927. v + 4" =1.

Find the particular solutions for the indicaled initial con-
ditions:

2928. (1 +x)y"—2xy’'=0;, y=0, y' =3 for x=0.

2929. 14y =2yy", y=1, ¢y =1 for x=1.

20930. yy'+ 4y =y y=1, y=1 for x=0.

2931. xy'=y'; y=0, y' =0 for x=0.

Find the general integrals of the following equations:

2032. yy' =V '+ ¢y —y'y.

2033. gy’ =y +y' Vi +y

20934, ' —yy' =y'y'.

2935. yy'+ 4y —y Iny=0.

Find solutions that satisfy the indicated conditions:

2936. y'y’'=1, y=1, y'=1 for x=%.
2937. yy' +y'* =1, y=1, y’=1 for x=0.
2938. xy"=|/l ty? y=0for x=1; y=1 for x=e".

2939. y" (1 +lnx)+%-y'=2+lnx;y=%, y=1tor x=1.

2940. y"=%(l+ln i—) y=§l, y' =1 for x=1.

2041, ' —y +y (y—1)=0; y=2, y'=2 for x=0.

2042. 3y'y"=y+y" -+ 1, y=—2, y =0 for x=0.

2043. ' +y'—2yy"=0; y=1, y'=1 for x=0.

2044, yy' + 4y +yy"=0; y=1 for x=0and y=0 for x=—1.
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2945. 2y’ + (' —6x)-y"=0; y=0, y' =2 for x=2.
2946. y'y* +yy' —y =0; y=1, y'=2 for x=0.
2047. 2yy"— 3y =4y* y=1, y’' =0 for x=0.
2048. 2yy" +-y'—y''=0; y=1, y'=1 for x=0.

2949. "=y —y; =——-l—, y':% for x=1.

2950. y”—i-—yl—,eyzy'—2yy'==0; y=1, y'=e for x:=—5

1
2 *

2051. 14y +y*=0; y=0, y'=1 for x=1.
2952. (1+yy) ¢ =(+y")y’s y=1, y'=1 for x=0.
2053, (x+ D)y’ +xy’=y’; y=—2, y' =4 for x=1.
Solve the equations:
2054, y' =xy" 4y,
2855, y' =xy" +y" —y".
2956. y''" =4y".

2957. yy'y” ==y’ + y"*. Choose the integral curve passing through
the point (0, 0) and tangent, at it, to the straight line y+x=0.

2958. Find the curves of constant radius of curvature.

2959. Find a curve whose radius of curvature is proportional
to the cube of the normal.

2960. Find a curve whose radius of curvature is equal to the
normal.

2961. Find a curve whose radius of curvature is double the
normal.

2962. Pind the curves whose projection of the radius of cur-
vature on the y-axis is a constant.

2963. Find the equation of the cable of a suspension bridge
on the assumption that the load is distributed uniformly along
the projection of the cable on a horizontal straight line. The
weight of the cable is neglected.

2964*. Find the position of equilibrium of a flexible nonten-
sile thread, the ends of which are attached at iwo points and
which has a constant load ¢ (including the weight of the thread)
per unit length.

2965*. A heavy body with no initial velocity is sliding along
an inclined plane. Find the law of motion if the angle of incli-
nation is a, and the coefficient of friction is p.

| (Hint. The frictional force is pN, where NV is the force of reaction of the
plane.)

2966*. We may consider that the air resistance in free fall
is proportional to the square of the velocity. Find the law of
motion if the initial velocity is zero..
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2967*. A motor-boat weighing 300 kgf is in rectilinear motion
with initial velocity 66 m/sec. The resistance of the water is pro-
portional to the velocity and is 10 kgf at 1 metre/sec. How long
will it be before the velocity becomes 8 m/sec?

Sec. 11. Linear Differential Equations

1°. Homogeneous equations. The functions y,=@,(x), va=0,(), ...
vevs Y =0, (x) are called lineorly dependent il there are constants C,, C,, .
not all equal to zcro, such that

Ciy+Cyy+... +Coy,=0;

otherwise, these functions are called linearly tndependent.
The general solution of a homogeneous linear differential equation

Y P )YV 4Py (x)y=0 1
with continuous coefficients P;(x) (i=1, 2, ..., n) is of the form
y=Cun+Cyo+ ...+ Cpyp,

where gy, Ys ..., U, are linearly independent solutions of equation (1)
(fundamental system of soluttons).

2°, Inhomogeneous equations. The general solution of an inhomogeneous
linear differential equation

vey Uy

Y+ P YT L+ Py () =] (1) @)
with continuous coefficienls P;(x) and the right side f(x) has the form
y=y,+Y,

where y, is the general solution of the corresponding homogeneous equation (1)
and Y is a particular solution of the given inhomogeneous equation (2).

If the fundamental system of solutions y,, y,, ..., y, of the homogeneous
equation (1) is known, then the gencral solution of the corresponding inho-
mogeneous equation (2) may be found from the formula

y=Ci ()4, +Cs (x) Y+ ... +Cp (x) yp,

where the functions C;(x) (i=1, 2, ..., n) are determined from the follow-
ing system of equations:

C,y+Ciys 4 ...+Cp(x) y,=0,
CiwWy+Ci(y, +...4Cp(1)y,=0,

LIl ( @)

Ci My +C )y .+ Cr Wy TP =0,
C.Wy V4C )y V4. 4 C g =f (v

(the method of variation of parameters).
Example. Solve the equation

xy +y =xh @)
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Solution. Solving the homogeneous equation
X!/"+.l/'=0.
y=C;Inx4C,. (6)
Hence, it may be taken that
y,=Inx andy,=1

we get

and the solution of equation (4) may be sought in the form

¥y=C;(x) Inx+C, (x).
Forming the system (3) a,nd taking into account that the reduced form of
the equation (4) is y”+—i—=x, we obtain

’ l ’
C,x) =+C,(x) 0=1x.

X

{ C,(® Inx+C,(x) 1=0,

Whence
C,(x)=%.+A and C,(x)=—§lnx+-§+3
and, consequently,
y———%'-}— Alnx+ B,

where A and B are arbitrary constants.

2968. Test the following systems of functions for linear rela-
tionships:

a) x, x+1; e) x, x*, x%

b) x*, —2x% f) e*, e**, &%,

c) 0, 1, x; g) sinx, cosx, 1;
d) x, x+1, x+2; h) sin*x, cos®x, 1.

2969. Form a linear homogeneous differential equation, know-
ing its fundamental system of equations:

a) y,=sinx, y,=cosx;

b) ylzexs y,=xex;

Q) Yy=2x, Y=1%",

d) y,=e*, y,=e"sinx, y,=e* cosx.

2970. Knowing the fundamental system of solutions of a linear
homogeneous diflerential equation

Yy,=x, y,=x’, y;=x.v
find its particular solution y that satisfies the initial conditions

y'x=1=07 y’ 'x:n = —1, y”|x=| =2
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2971*. Solve the equation
2,
y+5y+y=0,

knowing its particular solution y,=£2—§.

2972, Solve the equation
L(nx—1y —xy' +y=0,

knowing its particular solution y, =x.

By the method of variation of parameters, solve the following
inhomogeneous linear equations.

2973, x*y" —xy' =3x°.

2974*. Xy +xy —y=x".

2975. y''" +y ==secx.

Sec. 12. Linear Differential Equations of Second Qrder
with Constant Coefficients

1°. Homogeneous equations. A second-order lincar equation with constant
coefficients p and g without the right side 1s of the form

y"+py +qy=0 )
If &, and &, are roots of the characteristic cquation
¢ (k) =k*+pk+g=0, @)

then the gencral solution of cquation (1) is written in one of the following
three ways:

1) y= C,eF* L C.e** if k, and k, are real and k,  k;
2) y-=5% (C,+ Cpx) il ky=ky;
3) y =e** (Cycos Px+CysinPa) if k,=a+pt and k,=a—Pi (P #0).

2°, Inhomogeneous equations. The general solution of a linear inhomoge-
neous differential equation

Y +py +qy=f(x) 3)
may be written in the form of a sum:
Y=y, +Y,

where y, is the general solution of the corresponding equation (I) without
right side and determined from formulas (1) to (3), and Y is a particular
solution of the given equation (3).

The function Y may be found by the method of undetermined coefficients
in the following simple cases:

1. f (x)=e**P, (x), where P, (x) is a polynomial of degree n.

If a is not a root of the characteristic equation (2), that is, ¢ (a) # 0,
then we put Y =e"*¥ Q, (x) where Q, (x) is a polynomial of degree n with
undetermined coefficients.

If a 1s a root of the characleristic equation (2), that is, ¢(a)=0, then
Y =x"e?*Q, (x), where r is the multiplicity of the root a(r=1 or r=2).

2. f(x)=¢€%% [P, (x) cos bx + Q , (x) sin bx].
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If @(a £ bi) #0, then we put
Y =e% [Sp (x) cos bx - Ty (x) sin bx],

where Sy (x) and Ty (x) are polynomials of degree N-max {n, m},
But if ¢ (a £ bt)=0, then

Y =x"e?* [Sy (x) cos bx 4 T (x) sin bx],

where 7 is the multiplicity of the roots a J & (for second-order equations,
r=1).

In the general case, the method of variation of parameters (see Sec. 11)
is used to solve equation (3).

Example 1. Find the general solution of the equation 2y” —y’ —y=4xe?*.

Solution. The characteristic equation 2k*—k—1=0 has roots &,=1 and

ky= The general solution of the corresponding homogeneous equation

-1
7
X

(first type) is :/°=C,e"+Cze-?. The right side of the given equationisf (x) =
=4 xe** =¢"*P, (x). Hence, Y =¢** (Ax+ B), since n=1 and r =0, Dilteren-
tiating Y twice and putting the derivatives into the given equation, we
obtain:

2%* (4Ax+ 4B + 4A) —e?* (2Ax + 2B + A) —e** (Ax 4- B) = 4xe®*,

Cancelling out ¢** and equating the coefficients of identical powers of x and
the absolute terms on the left and right of the equality, we have 54 =4 and

7A 4-58=0, whence Az—g- and B=—£§

25°
Thus, Ye* (%x—?—g), and the general solution of the given equation 1s

1
y=Cee*+Ce * +e* (%x—%).

Example 2. Find the general solution of the equation y”—2y’ 4 y=xe®.

Solution. The characteristic equation #2—2k+1=0 has a double root
k=1 The right side of the equation is of the form f(x)=xe*, here, a=1
and n= 1, The particular solution is ¥ =x%* (Ax -+ B), since a coincides wdth
the double root 2=1 and, consequently, r=2.

Difterentiating Y twice, substituting into the equation, and equating the

coefficients, we obfain A-—-—%, B=0. Hence, the general solution of the given

equation will be written in the form

y=(C,+Cpx)e* + %—x’e".

Example 3. Find the general solution of the equation y” -+ y=uxsin x.

Solution. The characteristic equation k*4-1=0 has roots %,=i and
k,= —i. The general solution of the corresponding homogeneous equation
will [see 3, where =0 and =1} be

Yo=C, cos x+C,sin x.
The right side is of the form
[ (x)=e** [P, (x) cos bx+ Q, (%) sin bx],
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where a=0, b=1, P,(x)=0, Q, (x)=x. To this side there corresponds the
particular solution Y,

Y=x[(Ax+ B) cos x+ (Cx -+ D) sin x]

(here, N=1, a=0, b=1, r=1).

Differentiating twice and substituting into the equation, we equate the
coefficients of both sides in cosx, xcosx, sinx, and xsinx. We then get four
equations 24 42D =0, 4C=0, —2B+2C=0, —4A =1, [rozm which we deter-
mine A=—%, B=0, C=0, D= 7':—

The general solution is

. Therefore, Y= —>-cosx+ —:—1 sin x.

|-

x2
4

3°. The principle of superposition of solutions. If the right side of equa-
tion (3) is the sum of several funct:ons

f(X)=f|(X)+fz(X)+---+f,|(X)
and Y;(i=1, 2, 3, ..., n) are the corresponding solutions of the equations
y+ry'+ey=hn (=12, ..., n),
y=Y +Y,+...4+Y,
is the solution of equation (3).

y=C,cosx+Cysinx— cosx-f-% sin x,

then the sum

Find the general solutions of the equations:

2976. y'—5y’ + 6y =0. 2982. y' + 2y’ +y=0.
2977. y'— 9y =0. 2983. y'—4y +2y=0.
2978. i’ —y = 0. 2984, y" + ky=0.
2979. y' +y=0. 2985. y=y"+y'.

2980. y"'—2y" +2y=0. y—y__

2981. y" + 4y + 13y=0. 2988. T =3

Find the particular solutions that satisfy the indicated condi-
tions:

2987, y"—5by +4y=0; y=>5, y' =8 for x=0
2988. y" +3y ' +2y=0; y=1, y=—1 for x=0.
2989. y'+4y=0; y=0, y'=2 for x=0.

2990. 4" +2y'=0; y=1, y=0 for x=0

2991. y”=i—’2; y=a, y =0 for x=0.

2992. y'+3y' =0: y=0 for x=0 and y=0 for x=3.
2993. y' + *y=0; y=0 for x=0 and y=0 for x=1.

2994. Indicate the type of particular solutions for the given
inhomogeneous equations:

a) yh_4y=xielx;

b) y" 4 9y = cos 2x;

12—-1900
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c) y'—4y’ +4y=sin2x 4 &**;
d) y"+ 2y’ +2y=¢e*sinx;

e y'—

5y’ + 6y = (x* -+ 1) e* + xe**;

f) y"—2y’ + by = xe* cos 2x— x*e* sin 2x.
Find the general solutions of the equations:

2995.
2996.

2997.
2998.
2999.

3000.
3001.
3002.
3003.
3004.
3005.
3006.

Yy —4y +4y=x*.

Y —y +y=x'+6.

Y +20 +y=e".

y —8y +7y=14.

Y —y=e.

Y" +y=cos x.

Y +y —2y=28sin2x.
Y +y —6y=xe**.
y'—2y’ 4-y = sin x +sinh x.
Yy +y = sin® x.

Y’ —2y’ + 5y =e”* cos 2x.

Find the solution of the equation "4 4y=sinx that

satisfies the conditions y=1, y'=1 for x=0.
Solve the equations:

3007.

2) p=o.
3008.
3009.
3010.
3011.
3012.

3013.
3014.
3015.
3016.

3017.
3018.

3019.

%?:-!—m’x:A sin pt. Consider the cases: 1) p=+o;

y'—7y +l2y———e"‘
Yy'—2y =x—1.
Y —2y' +y=2e"
y”—2J =e** 15,

y'—2y —8y=e*—8cos 2x.
Y+ y =5x+ 2*.

Yy —y =2x—1—3e*.
Y42y +y=e“4-e" "

Yy —2y’ + 10y = sin 3x +e€*.
Y'—4y + 4y =20+
Y'—3y = x4 cos x.

Find the solution to the equation y’ —2y =e** 4 x*'—1

that satisfies the conditions y=—1- y' =1 for x=0,
Solve the equatjons:

3020.
3021.
3022.
3023.
3024.
3025.

8!

y'—y=2xsinx.

Yy’ —4y=e* sin 2x,

Y +4y=2sin2x—3cos 2x+ 1.
Y —2y' + 2y =4e* sin x.

Y =xe"+y.

y" + 9y = 2x sin x + xe**,
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3026. y'—2y'—3y=x(1+¢€**).

3027. y'—2y' =3x+ 2xe”,

3028. y'—4y' + 4y = xe**.

3029, y" 42y’ ' —3y=2xe~**+ (x4 1)e*.

3030*. y” + y==2x cos xcos2x,

3031. y’—2y=2xe* (cos x—-sin x).

Applying the method of variation of parameters, solve the
following equations: ‘

3032. y' 4+ y=tanx. 3036. y"+y=5%;.

3033. 4’ +y=cot x. 3037. 4" +y= . ‘
3034. y'—2y +y="1. 3038. 2) y"—y=tanhx.
3035. 4" +2y" +y="=. b) " —2y = 4x%e*.

3039. Two identical loads are suspended from the end of a
spring. Find the equation of motion that will be performed by
one of these loads if the other falls.

Solution, Let the increase in the length of the spring under the action
of one load in a state of rest be a and the mass of the load, m. Denote by x

the coordinate of the load reckoned vertically from the position of equilib-
rium in the case of a single load. Then

d®
md—t:=mg—k (x+a),

where, obviously, k=ﬁag and, consequently, 3%:—% x. The general solu-

tion is x=C, cos ]/-5—!+C, sin V %t. The initial conditions yield x=a

and é=0 when £=0; whence C,=a and C,=0; and so

di
x=acos ]/5- L.
a

3040*. The force stretching a spring is proportional to the
increase in its length and is equal to 1 kgf when the length
increases by 1 cm. A load weighing 2 kgf is suspended from the
spring. Find the period of oscillatory motion of the load if it
is pulled downwards slightly and then released.

3041*. A load weighing P=4 kgf is suspended from a spring
and increases the length of the spring by 1 cm. Find the law
of motion of the load if the upper end of the spring performs
a vertical harmonic oscillation y=2sin30¢ cm and if at the
initial instant the load was at rest (resistance of the medium is
neglected). vk '

12*
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3042. A material point of mass m is attracted by each of two
centres with a force proportional to the distance (the constant
of proportionality is k). Find the law of motion of the point
knowing that the distance between the centres is 2b, at the ini-
tial instant the point was located on the line connecting the
centres (at a distance ¢ from its midpoint) and had a velocity
of zero.

3043. A chain of length 6 metres is sliding from a support
without friction. If the motion begins when 1 m of the chain
is hanging from the support, how long will it take for the entire
chain to slide down?

3044*. A long narrow tube is revolving with constant angular
velocity © about a vertical axis perpendicular to it. A ball in-
side the tube is slidinz along it without friction. Find the law
of motion of the ball relative to the tube, considering that

a) at the initial instant the ball was at a distance a from
the axis of rotation; the initial velocity of the ball was zero;

b) at the initial instant the ball was located on the axis of
rotation and had an initial velocity v,.

Sec. 13. Linear Differential Equations of Order Higher than Two with
Constant Coefficients

1°. Homogeneous equations. The fundamental system of solutions y,,
Ys «.-» Y Of @ homogeneous linear equation with constant coefficients

Y +ay "Vt a1y ey =0 M

is constructed on the basis of the character of the roots of the characteristic
equation

k*+ak* '+...+a,_k+a,=0. 2)

Namely, 1) if k& is a real root of the equation (2) of multiplicity m, then to
this root there correspond m linearly independent solutions of equation (1):

=€, yy=xet®, ..., y,=xP"ek%;
2) if a £ Bl Is a pair of complex roots of equation (2) of multiplicity m,

then to the latter there correspond 2m linearly independent solutions of
equation (1):

yy=e"* cos Bx, y,=e€"*sin Px, y,=xe** cos Pfx, y,=xe™* sinPx, ...
coor Yam o1 =X"71€* COS BX, Yy =x""1e"* sin Pux.

2°, Inhomogeneous equations. A particular solution of the inhomogeneous
equation

YW +ay" TV ta, ey =f (%) 3
is sought on the basis of rules 2° and 3° of Sec. 12.
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Find the general solutions of the equations:
3045, y'"’ l3y +12y'=0. 3058. J’V+2y"+y 0.

3046. y ‘—y =0. n Y-t

L Yv—2y = : oy
3049, 5" —3y" + 3y’ —y=0, o 4 e
3050. ¢ 'V+4 =0. -|-—'l'-y'+y=0.

3051, y’V+ 8y" + 16y =0.

3052. 4V 44" =0. 3060. y/v—2y"" +y"=e”.

3053. y"v—2y" +y=0. 3061. y/v —2y""" +y" =x".

; s 3062, v —y=x'—1,
8034, 4V —a'y =0, 5063 g,v Fyf  cosdx

3055- ylv-——ﬁlz/ ”-*_9!/:0. 3064' y,'l +y”=x2 + 1 :}_3xex
3056. y ' 4-a'y’=0. 3065. 4 4y +y +y=xe*.
3057. ¢! +2y™" +4"=0. 3066: y'"' +y =tanxsecx.

3067. Find the particular solution of the equation
Y22 Fy=x
that satisfies the initial conditions g (0)=y’ (0)=y" (0)==

Sec. 14. Euler’s Equations

A linear equation of the form
(ax+0)"y"™ 4- A, (ax--b)* "y =04 LA, _(ax+by+Ay=F(x), (1)

where a, b, A,, ..., A4,_,, A, are constants, 1s called Euler’s equation.
Let us introduce a new independent variable ¢, putting
ax+b =et.
Then

~¢ dy d’y dy
’ t 2 ~2t -
y=a " gp Y =de < dr® dt)'
- d’y d y dy
vee s st
y'''=a% <——dl’ i }-2dt>and so ferth

and Euler’s equation is transformed into a linear equation with constant

coeflicients.
Fxample 1. Solve the equation x’y" +xy' +y=1.
Solution. Putling x==¢!, we get

dy _p—1dy & _ (&Y d'/)
dx FTA TE R

Consequently, the given equatio1 takes on the form
d%y _
Et—i +!/ - lr

whence
y=C,cost4+C,sint 41

y=C, cos (In x)+ Cysin (Inx) + 1.

or
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For the homogeneous Euler equation

Py 4 A=ty =4+ A,y + Ay =0 @

the solution may be sought in the form
. y=x". @)
Putting into (2) v, ¥', ..., y'™ found from (3), we get a characteristic equa-

tion from which we can find the exponent &.
If & is a real root of the characteristic equation of multiplicity m, then to it
correspond m linearly independent solutions

Yo=x% yy=xknx, yy=2F(Inx)?, ..., yp=2F(Inx)""2,

If o £ Bi is a pair of complex roots of multiplicity m, then to it there
correspond 2m linearly independent solutions

y,=x%cos (B In x), y,=x"sin (f Inx), y,=x*Inxcos (B Inx),
ys=x*lnx.sin(Blnx), ..., Ypm_1=x*(Inx)”~*cos (f In x),
Yom=x" (In x)™~ 1 sin (B 1n x).

Example 2. Solve the equation

x¥y" —3xy’ + 4y =0.
Solution. We put
y=xk y =kt Yy =k(k—1)x""2,

Substituting into the given equation, after cancelling out x*, we get the
characteristic equation

k*—4k+4=0.
Solving it we find

Hence, the general solution will be
y=Cx*4+Cyx®1n x,

Solve the equations:
2 d% dy ,
3068. x a}—,—}-Bxa}—l-y—O.
3069. x*y"—xy —3y=0.
3070. x*y" - xy’ +4y=0.
3071. x*y’""' —3x*y" +6xy' —6y=0.
3072. Bx+2)y"+ Ty =0.
3073. y'=%

=%
v Y Y

3075. x'y"—4xy’ +6y=x.

3076. (14+x)'y"—3(1 +x)y' +4y=(14x)".
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3077. Find the particular solution of the equation
Y —xy +y=2x
that satisfies the initial conditions y=0, y' =1 when x=1.

Sec. 15. Systems of Differential Equations

Method of elimination. To find the solution, for instance, of a normal
system of two first-order differential equations, that is, of a system of the
form

dy

d_x'zf(xv Y, Z), Z—;‘:g(xv Y, z)l (1)

solved for the derivatives of the desired functions, we differentiate one of
them with respect to x. We have, for example,

dy_of of , of
e ox @f-l-gz'g 2)

Determining z from the first equation of the system (1) and substituting the
value found, p
= ey

z"’q)(xv yv dx) (3)

into equation (2), we get a second-order equation with one unknown func-
tion y. Solving it, we find

y=vy(x, CI- C:)' (4)
where C, and C, are arbitrary constants. Substituting function (4) into for-
mula (3), we determine the function z without new integrations. The set of
formulas (3) and (4), where y is replaced by v, yields the general solution
of the system (l).

Example. Solve the system

dy _
a+2y+4z—l+4x.
dz _3 s
a}-+y—z—- ) x*,
Solution. We differentiate the first equation with respect to x:

d%y

dy , ,dz__
a—,+2&+4 =t

From the first equation we determine z=7:- ( l+4x—%’c—-2y) and then

. dz_ 3 , I 3 1 dy .
from the second we will have i + x4 T3 Tac Putting 2
and g; into the equation obtained after differentiation, we arrive at a secords
order equation in one unknown y:

Py 4y 6 fxr—
dx’+dx 6y =— 6x*—4x 43,
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Solving it we find:

y=Ce**+Coe™ ¥ + x4 x,

and then
dy

1
Z_T( 1+4x-—d—i—2y

—C,e”"+%e""—% X2,

We can do likewise in the case of a system with a larger number of

equations.

Solve the systems:

a_,
3078. { “
2

&Y

dy

7, =Y 152,
3079. § .

P el 32=0.

dy
— =—3y —z2,
3080. { dx

dz
L=U—2
dx
a=Y
dy
3081. =2
dz _
‘a—t—x.
d
(& _y+e,
3082. | ¥ —x 1o,
d
S=x+y.
d
F=y+z,
3083. { 4
L=Xty+z

%+2y+z= sin x,
3084 dz

a;—-4y—2z = COS X.

% + 3y -4z =2x,
3085.

y=0, 2=0 when x=0.

‘%—-4x—y+361 -0,
3086. d
3% +2x--y +2¢'=0,

x=0, y=1 when {=0.

y—z z—x x—y
isolate the integral curve pas-
sing through the point (1, 1, —2).

%+2=L
3089. { .

a—i—?y:lnx.

%;y,,+2y+4z=e",

d%
a;—~y—32 =—24x,

3090.
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3091**, A shell leaves a gun with initial velocity v, at an
angle a to the horizon. Find the equation of metion if we take
the air resistance as proportional to the velocity.

3092*. A material point is attracted by a centre O with a
force proportional to the distance. The motion begins from point A
at a distance a from the centre with initial velocity v, perpen-
dicular to OA. Find the trajectory.

Sec. 16. Integration of Differential Equations by Means of Power Series

If it is not possible to integrate a differential equation with the help of
elementary functions, then in some cases its solution may be sought in the
form of a power series:

®

y= 2 cn (x—xo)". m

n=o

The undetermined coefficients ¢, (n=1, 2, ...) are found by putting the
series (1) into the equation and equating the coefficients of identical powers
of the binomial x—x, on the leit-hand and right-hand sides of the resulting
equation,

We can also seek the solution of the equation

Yy =Fx, ) y(x)=y, 0]
in the form of the Taylor’s series

-]

(n
gy = ST oy, @

n
n=0

where y (x)=Ys Y (%)=1F (%o, Yo) and the subsequent derivatives y'™ (x,)
(n=2, 3, ...) are successively found by differentiating equation (2) and by
putting x, in place of x
Example 1. Find the solution of the equation
y.—xy=01
if y=ys,, y'=y; for x=:0,
Solution. We put
Yy=cCotcx+ ...+ x"+...,
whence, differentiating, we get
Y =2-1c,+ 320354 ... +n(n—1) c,x" "2+ (n+ 1) nc,y 4, x" "1 4
F(n+2)(n+ 1) cpyx” 4.0
Substituting y and y” into the given equation, we arrive at the identity
[2:1c3+ 320+ ... +n(n—1) c,x" "2+ (n+ 1) ne, 4 X"~ 1+
F(r+2)(n+ D)X+ J—x o+ Cx+ . x4 .. ] =0,

Collecting together, on the left of this equation, the terms with identical
powers of x and equating 1o zero ihe coefficients of these powers, we will
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have
¢ c
c=0; 3:2c,—c,=0, c,=3—.°§; 4.3c,—c, =0, c‘=4—.‘3; 5.4c4—c, =0,
(:,=5—(“:’74 and so forth.

Generally,

Cyp = % ¢ — G

%7 9.3.5.6....-(3k—1) 3k’ %13 4.6.7-...-3k (3R + 1)’

Cres=0 (k=123 ...).
Consequently,
x3 x8 xak

y=C°<'+2_-3+2-'3.5.6+"'+2-3-5-6-...-(3k—1)3k+"‘)+

x4 X7 x:kq-l
+a ("+§.“4+3.4-6-7+"‘+ 3.4.6.7....3% (3k+1)+"')' “)

’
where ¢c,=y, and ¢,=y,.

Applying d’Alembert’s test, it is readily seen that series (4) converges
for — o0 <x <+ 0.

Example 2. Find the solution of the equation

"=x4+y yo=y(0)=1.
Solution. We put

” e

’ Y y
Y=ot Y+ £ 5 4.

We have y,=1, y;=0+l=l. Differentiating equation y’=x4y, we succes-
sively find y"=1+y', y,=1+1=2, y""'=y", y,” =2, etc. Consequently,

2 2
y=l+x+2—,x’+§-x’+...

For the example at hand, this solution may be written in final form as
y=14+x4+2(*—1—x) or y=2¢*—1—x.

The procedure is similar for differential equations of higher orders. Test-
ing the resulting series for convergence is, generally speaking, complicated
and is not obligatory when solving the problems of this section.

With the help of power series, find the solutions of the equa-
tions for the indicated initial conditions.

In Examples 3097, 3098, 3099, 3101, test the solutions
obtained for convergence.

3093. y'=y+x*; y=—2 for x=0.
3094. y'=2y+x—1; y=y, for x=1.
3095. y' =y* + x*% =% for x=0.

3096. y’'=x"—y* y=0 for x=0.

3097. 1—x)y’'=1+x—y; y=0 for x=0.
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3098*. xy"4-y=0; y=0, y’ =1 for x=0.
3099. " +xy=0; y=1, y’=0 for x=0.

3100*. y”—l—%y' +y=0;, y=1, y"=0 for x=0.

3101, " +—y +y=0; y=1, y* =0 for x=0.
d*x . . dx

3102. —Jt—,+xcost=0, x=a, &?=0 for t=0.

Sec. 17. Problems on Fourier's Method

To find the solutions of a linear homogeneous partial differential equation
by Fourier’s method, first seek the particular solutions of this special-type
equation, each of which represents the product of functions that are dependent
on one argument only. In the simplest case, there is an infinite set of such
solutions u, (n=1, 2,...), which are linearly independent among themselves
in any finite number and which satisfy the given boundary conditions. The
desired solution u is represented in the form of a series arranged according

to these particular solutions:
[ <]
u= Z Cpty. 8))
n=t

The coefficients C, which remain undetermined are found from the initial
conditions.
Problem. A transversal displacement w=u (x, f) of the points of a string
with abscissa x satisfies, at time ¢, the equation
ou 0%
o = o @

where a? = a’(To is the tensile force and @ is the linear density of the
string). Find the form of the string at time ¢ if its ends x=0 and x=1{ are

7,
0] - Lh T X
> 3
Fig. 107

fixed and af the initial instant, =0, the string had the form of a parabola
u =‘ll,ﬁx (I—2x) (Fig. 107) and its points had zero velocity.

Solution. It is required to find the solution u=u (x, t) of equation (2)
that satisfies the boundary conditions

w(0, )=0, u(l, t)=0 ®3)
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and the initial conditions "
u(x, 0)=f-,—x(z—-x), ) (x, 0)=0. @)

We seek the nonzero solutions of equation (2) of the special form
u=X (x) T ().
Putting this expression into equation (2) and separating the variables, we get
T (1) _ X" (%)
T () X0 ° ®
Since the variables x and t are independent, equation (5) is possible only

when the general quantity of relation (5) is constant Denoting this constant
by — A2, we find two ordinary differential equations:

T (t)+(aM)?-T () =0 and X" (x) 4 A%X (x)=0.
Solving these equations, we get
T (t) = A cos akt 4+ B sin aht,
X (x) =C cos Ax + D sin Ax,
where A, B, C, D are arbitrary constants. Let us determine the constants.

From condition (3) we have X (0)=0 and X (/)=0; hence, C=0 and
sin Al=0 (since D cannot be equal to zero at the same time as C is zero).

For this reason, Ak=ﬁ. where k& is an integer. It will readily be seen that

we do not lose generality by taking for 2 only positive values (k=1, 2, 3,...).
To every value A, there corresponds a particular solution
up= (A,, cos-’fa——;tt+Bk sin f‘;—" t) sing
that satisfies the boundary conditions (3).
We construct the series

®
kant . kant\ | knx
u=’§ (A,, cos —l———i-B,, sin ~l—) sin ——,

‘

whose sum obviously satisfies equation (2) and the boundary conditions (3).
We choose the constants A, and B, so that the sum of fhe series should
satisfy the initial conditions (4). Since

®
ou kan . kamnt kant\ . knx
52 =kz—l _l (_Ak sin —[—+BkCOST) sin ~l— N

it follows that, by putting ¢t =0, we obtain

u(x, 0)=Z A sinﬁsgx(l—x)
k=1

and
@

du (x, 0) kan . knx
-——at—_=k2 T Bk sin ’—l— EO.

=1
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Hence, to determine the coeificients A, and B, it is necessary to expand in

a Fourier series, in sines only, the function u(x, 0)_Th x (l—x) and the

function Ju gx ) =0.
From familiar formulas (Ch VI1I, Sec. 4,3°) we have
2 (4h knx 32h
Ak=TS 0 T X (l—x)sin— dx::?l? ,

if 2 is odd, and A,=0 if & is even;

kan =2 SOsinEfdx =0, B,=0.

The sought-for solution will be

© cOS (2n -+ 1) ant
h— 32h 32k $ / sin 2n+ 1) ntx
T 2 @2n4-1)3 ] ‘
n=o0

3103*. At the initial instant ¢t=0, a string, attached at
its ends, x=0 and x=/{, had the form of the sine curve

u=A sin f—lx, and the points of it had zero velocity. Find the
form of the siring at time ¢.
3104*. At the initial time ¢=0, the points of a straight

string 0 <x<</ receive a velocity 5 ?— = 1. Find the form of the

striny at time ¢ il the ends of the string x=0 and x=1 are
fixed (see Problem 3103).

3105*. A siring of lenglh [ =100 cm and attached at its ends,
x=0 and x=1, is pulled out to a distance h=2 cm at point
x=50 cm at the inilial time, and is then released without any
impulse. Deiermine the shape of the string at any time ¢.

3106*. In longitudinal vibrations of a thin homogeneous
and rectilinear rod, whose axis coincides with the x-axis, the
displacement u=u(x, f) of a cross-section of the rod with
abscissa x satisfies, at time ¢, the equation

%u 2 0%u

o =% G
where =L (E is Young’s modulus and g is the density of the

rod). Determine the longitudinal vibrations of an elastic hori-
zontal rod of length =100 cm fixed at the end x=0 and pulled
back at the end x=100 by Ai=1 cm, and then released without
impulse.
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3107*. For a rectilinear homogeneous rod whose axis coincides
with the x-axis, the temperature u =u (x, ¢) in a cross-section with
abscissa x at time #, in the absence of sources of heat, salisfies

the equation of heat conduction
ou ,G’u

=9 5

where a is a constant. Determine the temperature distribution
for any time ¢ in a rod of length 100 cm if we know the initial
temperature distribution

u(x, 0)=0.01x(100—x).



Chapter X
APPROXIMATE CALCULATIONS

Sec. 1. Operations on Approximate Numbers

1°. Absolute error. The absolute error of an approximate number a which
replaces the exact number A is the absolute value of the difference between
them. The number A, which satisfies the inequality

|A—a| <A, M

is called the limiting absolute error. The exact number A is located within
the limits a—A << A<<a+ A or, more briefly, A=a + A
2°. Relative error. By the relative error of an approximate number a
replacing an exact number A (A > 0) we understand the ratio of the absolute
error of the number a to the exact number A. The number §, which satisfies
the inequality
|A—a]

——7‘—' <3, 2)

is called the limiting relative error of the approximate number a. Since in
actual practice A =a, we often take the number 6=% for the limiting

relative error.

3°. Number of correct decimals. We say that a positive approximate
number a written in the form of a decimal expansion has n correct decimal
places in a narrow sense if the absolute error of this number does not exceed
one half unit of the nth decimal place. In this case, when n >1 we can
take, for the limiting relative error, the number

L[ 1\
6“ﬁ(ﬁ> '

where & is the first significant '(xiiglit of the number a. And conversely, if it
. 1 - .
is known that 6<2_(k—+l) 10 , then the number a has n correct decimal

places in the narrow meaning of the word. In particular, the numlberna
10

If the absolute error of an approximate number a does not exceed a
unit of the last decimal place (such, for example, are numbers resulting
from measurements made to a definite accuracy), then it is said that all
decimal places of this approximate number are correct in a broad sense. If
there is a larger number of significant digits in the approximate number,
the latter (if it is the final result of calculations) is ordinarily rounded oft
so that all the remaining digits are correct in the narrow or broad sense.

definitely has n correct decimals in the narrow meaning if 6<—;—
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Hencetorth, we shall assume that all digits in the initial data are
correct (if rot otherwise stated) in the narrow sense. The results of inter-
mediate calculations may contain one or two reserve digits.

We note that the examples of this sectivn are, as a rule, the results of
final calculations, and for this reason the answers to them are given as
approximate numbers with only correct decimals.

4°, Addition and subtraction of approximate numbers. The limiting ab-
solute error of an algebraic sum of several numbers is equal to the sum of
the limiting absolute errors of these numbers. Therefore, in order to have,
in the sum of a small number of approximate numbers (all decimal places
of which are correct), only correct digits (at least in the broad sense), all
summands should be put into the form of that summand which has the
smallest number of decimal places, and in each summand a reserve digit
should be retained. Then add the resulting numbers as exact numbers, and
round off the sum by one decimal place

If we have to add approximate numbers that have not been rounded off,
they should be rounded off and one or two reserve digits should be retained.
Then be guided by the foregoing rule of addition while retaining the appro-
priate extra digits in the sum up to the end of the calculations.

Example 1. 215.21 +14.182 +21.4 = 215.2(1) + 14.1(8) + 21 4 =250.8.

The relative error of a sum of positive terms lies between the least and
greatest relative errors of these terms.

The relative error of a difference is not amenable to simple counting.
Particularly unfavourable in this sense is the ditference of two close numbers.

Example 2. In subtracting the approximate numbers 6 135 and 6.131 to
four correct decimal places, we get the difference 0 004. The limiting relative

20001 44 0001
error is 6= 0,004 =T=0'25' Hence, not one of the decimals

of the difference is correct. Therefore, it is always advisable to avoid
subtracting close approximate numbers and to transform the given expression,
if need be, so that this undesirahle operation is omitted.

5°. Multiplication and division of approximate numbers. The limiting
relative error of a product and a quotient of approximate numbers is equal
to the sum of the limiting relative errors of these numbers Proceeding from
this and applying the rule for the number of correct decimals (3°), we retain
in the answer only a definite number of decimals

Example 3. The product of the approximate numbers 25.3-4.12=104.236.

Assuming that all decimals of the factors are correct, we find that the
limiting relative error of the product is

1 1
6=2—‘.20'01 + 4-:—2-0.01 == 0.003.

Whence the number of correct decimals of the product is three and the
result, if it is final, should be written as follows: 25.3:4 12=104, or more
correctly, 25 3.4.12=104 2 £ (.3.

6°. Powers and roots of approximate numbers. The limiting relative error
of the mth power of an approximate number a is equal to the m-fold limiting
relative error of this number

The limiting relative error of the mth root of an approximate number a

is the —'Iﬁ-th part of the limiting relative error of the number a.

7°. Calculating the error of the result of various operations on approxi-
mate numbers. If Ag,, ..., Aa, are the limiting absolute errors of the appro-
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ximate numbers a,, ..., a,, then the limiting absolute error AS of the resulf
S=f(ay ..., a)
may be evaluated approximately from the formula

AS= 'd lAa,—{- .+ ()af Aa,,.
The limiting relative error S is then equal to
AS | 0f| Aa of | Aa
0S=—=|—— ! — | =l
1517 laa | " TAT T F|aa, T
_Olnf dinf
= |Aa,+...+|—d¥ Aa,.

Example 4. Evaluate S=1n(10.3+ V'4.4); the approximate numbers
10.3 and 4.4 are correct fo one decimal place.

Solution. Let us first compute the limiting absolute error AS in the

general form: S=1In(a+ V b), AS=——1~—T*(Aa +l —AL> . We have

a+t Vb 2 VT
.; we leave 2.1, since the relative error of

11
R

is then equal to %2%=%’; we can be sure of the first decimal place. Hence,

1 1 1 1 1 1 13
AS=q3Ted (WLE‘ : 20.2.1>=12.4-20 (‘+ m)—m~°-°"5-

Thus, two decimal places will be correct.

Now let us do the calculations with one reserve decimal:
log (10.34+ V4 4=~ 1log 12 4=1.093, 1n (10 3+ V' 4.4)=~1.093.2.303 = 2.517.
And we get the answer: 252

8°. Establishing admissible errors of approximate numbers for a given
error in the result of operations on them. Arplying the formulas of 7° for
the quantities AS or 6S given us and considering all particular differentials

of 6[ Aay
3, m equal, we calculate the admissible
absolute errors Aa,, ..., Aa,, ... of the approximate numbers a;, ... ,a,, ...
that enter into the operations (the principle of equal effects).

It should be pointed out that somelimes when calculating the admissible
errors of the arguments of a function it is not advantageous to use the
principle of equal effects, since the latter may make demands that are
practically unfulfilable In these cases it is advisable to make a reasonable
redistribution of errors (if this is possible) so that the overall total error does
not exceed a specified quantity. Thus, strictly speaking, the problem thus
posed is indeterminate.

Example 6. The volume of a “cylindrical segment”, that is, -a solid cut
off a circular cylinder by a plane passing through the diameter of the base
(equal to 2R) at an angle o to the base, is computed from the formula

Aa=Ab\_20. V14 = 2.0976..

the approximate number Vﬁ is equal to = ; the absolute error

’ Aa, or the quantities

V=% R? tan a. To what degree of accuracy should we measure the radius
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R =60 cm and the angle of inclination a so that the volume of the cylindrical
segment is found to an accuracy up to 1%?

Solution. If AV, AR and Aa are the limiting absolute errors of the
quantities V, R and a, then the limiting relative error of the volume V that
we are calculating is

3AR | 2Aa 1
b=tz <in"

3AR 1 2Aa 1
We assume T<2—® an m}<§66. Whence

R __60cm

AR<6—0-6-.—6—00—=1 min;
sin 2a 1 . ,
Ao < —Zﬁo—gmradlan-\.g.

Thus, we ensure the desired accuracy in the answer to 1% if we measure
the radius to 1 mm and the angle of inclination a to 9

3108. Measurements yielded the following approximate numbers
that are correct in the broad meaning to the number of decimal
places indicated:

a) 12°07'14"; b) 38.5 cm; c) 62.215 kg.

Compute their absolute and relative errors.

3109. Compute the absolute and relative errors of the follow-
ing approximate numbers which are correct in the narrow sense
to the decimal places indicated:

a) 241.7; b) 0.035; c) 3.14.

3110. Determine the number of correct (in the narrow sense)
decimals and write the approximate numbers:

a) 48.361 for an accuracy of 1%;

b) 14.9360 for an accuracy of 1%;

c) 592.8 for an accuracy of 2%.

3111. Add the approximate numbers, which are correct to the
indicated decimals:

a) 25.386 + 0.49+43.10+0.5;

b) 1.2-10*+41.72 4 0.09;

c) 38.1+2.0+3.124.

3112. Subtract the approximate numbers, which are correct
to the indicated decimals:

a) 148.1—63.871; b) 29.72—11.25; c) 34.22—34.21.

3113*, Find the difference of the areas of two squares whose
measured sides are 15.28 cm and 15.22 cm (accurate to 0.05 mm).

3114. Find the product of the approximate numbers, which
are correct to the indicated decimals:

a) 3.49.8.6; b) 25.1-1.743; c¢) 0.02-16.5. Indicate the possible
limits of the results.
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3115. The sides of a rectangle are 4.02 and 4.96 m (accurate
to 1 cm). Compute the area of the rectangle.

3116. Find the quotient of the approximate numbers, which
are correct to the indicated decimals:

a) 5.684 : 5.032; b) 0.144:1.2; c) 216:4.

3117. The legs of a right triangle are 12.10 cm and 25.21 cm
(accurate {o 0.01 cm). Compute the tangent of the angle opposite
the first leg.

3118. Compute the indicated powers of the approximate
numbers (the bases are correct to the indicated decimals):

a) 0.4158% b) 65.2% c) 1.5%,

3119, The side of a square is 45.3 cm (accurale to 1 mm).
Find the area.

3120. Compute the values of the roots (the radicands are
correct to the indicaled decimals):

a) V2.715; b) 1/652; ¢) V8I.1.

3121. The radii of the bases and the generatrix of a truncated
cone are R=23.64 cm+0.01 em; r=17.31 cm 4+0.01 cm; [ =
= 10.21 cm 0.0l cm; n=3.14. Use these data to compute the
total surface of the truncated cone. Evaluate the absolute and
relative errors of the result.

3122. The hypotenuse of a right {riangle is 15.4 ¢cm 4+ 0.1 cm;
one of the legs is 6.8 cm 0.1 cm. To what degree of accuracy
can we delermine the second lcg and the adjacent acute angle?
Find their values.

3123. Calculate the specific weight of aluminium if an alumin-
ium cylinder of diameter 2 cm and altitude 11 cm weighs
93.4 gm. The relative error in measuring the lengths is 0.01,
while the relative error in weighing is 0.001.

3124. Compute the current if the electromotive force is equal
to 221 volts 41 volt and the resistance is 809 ohms + 1 ohm.

3125. The period of oscillation of a pendulum of length [ is

equal to T
T=2n 1/-? N

where g is the acceleration of gravity. To what degree of accuracy
do we have to measure the length of the pendulum, whose period
is close to 2 sec, in order to obtain its oscillation period with a
relative error of 0.5%? How accurate must the numbers n and g
be taken?

3126. It is required to measure, {o within 1%, the lateral
surface of a truncated cone whose base radii are 2 m and 1 m,
and the generairix is 5 m (approximately). To what degree of
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accuracy do we have to measure the radii and the generatrix and
to how many decimal places do we have to take the number n?

3127. To determine Young’s modulus for the bending of a
rod of rectangular cross-section we use the formula

1 rp

=7 " d%s’
where [ is the rod length, b and d are the basis and altitude of
the cross-section of the rod, s is the sag, and P the load. To
what degree of accuracy do we have to measure the length [ and
the sag s so that the error E should not exceed 5.5%, provided
that the load P is known to 0.1%, and the quantities d and &
are known to an accuracy of 1%, ! & 50 cm, s~ 2.5 cm?

Sec. 2. Interpolation qf Functions

1°. Newton’s interpolation formula. Let x,, x,, ..., x, be the tabular val-
ues of an argument, the difference of which h=Ax; (Ax;=x;,,—x;; i=0,1,
..., n—1) is constant (table tnterval) and y,, y,, ., y, are the correspond-
ing values of the function y Then the value of the function y for an inter-
mediate value of the argument x is approximately given by Newton's inter-
polation formula

—1.. (¢— 1
9(a=1).. G=n+1)

—1
y=yo+q-Ayo+q(q2! YAty + Y (M
where q=x—x,, and Ay,=y,—Yy, A%,=Ay,— Ay, ... are successive finite
difierences of the furction y. When x=x; =0, 1, ..., n), the polynomial
(1) takes on, accordingly, the tabular values y; (¢ =0, 1, . ., n). As partic-

ular cases of Newtcn’s formula we obtain: for n=1, linear tnterpolation;
for n= 2, quadratic interpolation. To simplify the use of Newton’s formula,
it 1s advisabie first to set up a table of finite differences.

If y=f(x) is a polynomial of degree n, then

A"y; = const and A"+'y;=0

and, hence, formula (1) is exact

In tne general case, if f(x) has a continuous derivative f*+" (x\ on the
interval |a, b], which includes the points x4, x,, ..., x, and x, then the error
ol formula (1) is

n
—D...(g—i+]
Rn(x)=y—z"(q ) ,,(q LD gy
i=o0
—1...(g—
=pn+1 2 (n)_i_”('q "),(n+n(§)' @

where  is some intermediate value between x; (1=0, 1, ..., n) and x. For
practical use, the following approximate formula is more convenient:

Aﬂ+l
(—,;_*_—;l;,q(ll—l)n-w—")-

R, (x) =
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If the number n may be any number, then it is best fo choose it so that
the difference A”+'y,=~ 0 within the limits of the given accuracy; in other
words, the diflerences A"y, should be constant to within the given places of
decimals

Example 1. Find sin 26”15’ using the tabular data sin26°=0,43837,
sin 27° =0.45399, sin 28° = 0.46947,

Solution. We set up the table

! I x | Wi | Ay, Ay,

0 26° | 0 42837 | 1562 | —14

1 27° | 0 45399 | 1548

2 28° | 0 46947
__26°15"—26° l

Here, h=60", I=—%o =7
Applying formula (1) and using the first horizontal line of the table, we

have
1 /1
1 T (T" )
sin 26°l5’=0.43837+T 0.01562 4- ——2—,— - (—0.00014) =0.44229.

Let us evaluate the error R, Using formula (2) and taking into account
that if y=smx, then |y | <<, we will have:

1 /1 1

(1) (3-2) L
3l 180/ ~ 123 "57.33 4 )

Thus, all the decimals of sin 26°15’ are correct.

Using Newton's formula, it is alsc possible, from a given intermediate
value of the function y, to find the correspoading value of the argument x
(inverse interpolation). To do this, first determine the corresponding value ¢
by the method of successive approximation, putting

IR 1<

w Y=Y
d Ay,
an
g4 qo 9% @"=1 A%, ¢"¢"=D...(¢"—n+1) A%,
2! Ay, 7 n! Ay,

(t=0,1,2 ...).

Here, for ¢ we take the common value (to the given accuracy!) of two suc.
cessive approximations ¢'® =4'®+"Y  Whence x=x,4q-h.
Example 2. Using the table

X y=sinh x Ay I Ay
22 4,457 1.009 0.220
24 5.466 1 229

26 6.695

approximate the root of the equation sinhx=35,
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Solution. Taking y,=4.457, we have
5—4.457 0.543

) = = = N
= "To00 —T.009 0%
© (1 —g®) A? 0.538.0.462 0.220
W 00— Ay - . =
qP=q"+ 2 Ay, 058+ D) 1.009~
=0.538+-0.027 =0.565;
g =0.538 - 2:565:0.435 0.230_, 3¢ + 0,027 =0.565.

2 "1.009
We can thus take
x=2.240.565.0.2=2.24-0.113=2.313.

2°, Lagrange’s interpolation formula. In the general case, a polynomial of
degree n, which for x=ux; takes on given values y; ({=0, 1, ..., n), is given
by the Lagrange interpolation formula
— (Xx—x,) (x—x,) . . . (x—x,) + (x—xo) (x—x5)...(x—xy) y +
(xo—x;) (Xg— ). . . (xg—xp) O (X —xg) (ry—x5) .. (5 —xp)”t T T
(X—xo) (x—x7). .. (x—Xp_y) (K—Xp41). .. (x—2x,)
T (p—xo) (xp—xy) . . (tp— X~ 1) (X —Xp 1) . . (Xp—X,)
i (x—x) (x—x,). . .(x—x, ) v
o (xn_xo) (xn'—xl)'~~(xn"'xn-1) "

y

Yot ...

3128. Given a table of the values of x and y:

4(516

12 9l5

x l|23

y|3

16‘15

Set up a table of the finite diflerences of the function y.

3129. Set up a lable of differences of the function y=x*—
—b5x2+x-—1 for the values x=1, 3, 5, 7, 9, 11. Make sure that
all the finite differences of order 3 are equal.

3130*. Utilizing the constancy of fourth-order differences, set
up a table of differences of the function y=x*—10x* 4 2x* 4 3x
for integral values of x lying in the range 1<<x<<10.

3131. Given the table

log 1 =0.000,
log 2 = 0.301,
log 3=0.477,
log 4 =0.602,
log 5 = 0.699.

Use linear interpolation to compute the numbers: log 1.7, log 2.5,
log 3.1, and log4.6.
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3132. Given the table

sin 10°=0.1736, sin 13° = 0.2250,
sin 11°=0.1908, sin 14°—=0.2419,
sin 12°=0.2079, sin 15°=0.2588.

Fill in the table by computing (with Newton’s formula, for n=2)
the values of the sine every half degree.

3133. Form Newton’s interpolation polynomial for a function
represented by the table

el o] ]

yll'4ll5’40’85

3134*. Form Newton’s interpolation polynomial for a function
represented by the table

2,4'6!8'10

IBEEEE

X

Find y for x=>5.5. For what x will y=20?
3135. A function is given by the table

x—2l2‘4

Y '25 '—8'—15 —23

Form Lagrange’s interpolation polynomial and find the value of
y for x=0.

3136. Experiment has yielded the contraction of a spring (x mm)
as a function of the load (P kg) carried by the spring:
25 40

X 5.10

15l20

30’35

P | 49 I 105 I 172 I 253 ‘ 352 | 473 I 619 l 793

Find the load that yields a contraction of the spring by 14 mm.
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3137. Given a table of the quantities x and y

x 5

0‘1

3|4

yll —3 25

129 ' 381

Compute the values of y for x=0.5 and for x=2: a) by means
of linear interpolation; b) by Lagrange’s formula.

Sec. 3. Computing the Real Roots of Equations

1°, Establishing initial approximations of roots. The approximation of the
roots of a given equation
f(x)=0 M

consists of two stages: 1) separating the roots, that is, establishing the inter-
vals (as small as possible) within which lies one and only one root of equa-
tion ('l); 2) computing the roots to a given degree of accuracy

If a function f(a) is defined and continuous on an interval [a, 6] and
f(a)-f(b) <O, then on [a, b] there is at least one root & of equaticn (1).
This root will definitely be the only one if f (x)>0 or ' (x) <0 when
a<x<b.

In approximating the root § it is advisable to use millimetre paper and
construct a graph of the function y=f(x). The abscissas of the points of
intersection of the graph with the x-axis are the roo!s of the equation f(x)=0.
It is sometimes convenient to replace the given equation with an equivalent
equation ¢ (x) =1 (»). Then the roots of the equation are found as the abs-
cissas of points of intersection of the graohs y=0¢ (x) and y=1 (x).

2°. The rule of proportionate parts (chord methed). If on an interval [a, b}
there is a unique root & of the equation f(x)=0, where the function f(x)
is continuous on [a, b], then by replacing the curve y=/(x) by a chord
passing through the points [a, f(a)] and [b, f(b)], we obtain the first
approximationi of the root

P A C) T
“=C e —r@ O @

To obtain a second approximation c,, we apply formula (2) to that one of
the intervals [a, ¢,] or [c,, 6] at the ends of which the function f(x) has
values of oppcsite sign. The succeeding approximations are constructed in the
same manner. The sequence of numbers ¢, (n=1, 2, ...) converges to the
root &, that is,

limc, =E.

n—-+w

Generally speaking, we should continue to calculate the approximations ¢,
€y ..., until the decimals retained in the answer cease to change (in accord
with the specified degree of accuracy!); for intermediate calculations, take
one or iwo reserve decimals This is a general remark.

If the function f (x) has a nonzero continuous derivative f'(x) on the
interval [a, b}, then to evaluate the absolute error of the approximate root
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c,, we can make use of the formula
|§_C"'<”(cn)|
IJ, i
where p= min blf’ x) |-

<
3. Nesvtor:’s method (method of tangents). If f'(x) # 0 and §" (x) # 0 for
a<<x<<b, where f(a)f(b) <0, f(a)f (a) >0, then the successive approxima-

tions x,(n=0, 1, 2, ...) to the root § of an equation f(x) =0 are computed
from the formulas
Xo=a, xp=ty_ =Lz (g9 ), (3)
O IR TRl (X ) T
Under the given assumptions, the sequence x,(n=1, 2, ...) is mono-
tonic and
lim x,=E.
n-—> o

To evaluate the errors we can use the formula

Ixn_g I élf(;:ll)‘_ .
where p= min |f" (x)].
# ag<x<b ) !
For practical purposes it is more convenient to use the simpler formulas
Xo=a, X,=x,_,—0f (x,_,) (n=1,2, ...), 3"
where a:;a, which yield the same accuracy as formulas (3).

If f(b)f (b) >0, then in formulas (3) and (3’) we should put x,=b.
4°, Iterative method. Let the given equation be reduced to the form

x=@ (x), 4)

where | @’ (x) |<<r <1 (r is constant) for a<<x<Cb. Proceeding from the ini-
tial value x, which belongs.to the interval [a, 6], we build a sequence of

numbers x,, X,, ... according to the following law:
H=Q(X), =0 (X)), ..., X, =@ (X,_1)s .. (5)
If a<x,<<b (n=1, 2, ...), then the limit
E=Iim x,
n—» o

is the only root of equation (4) on the interval [a, b]; that is, x, are succes-
sive approximations to the root §

The evaluation of the absolute error of the nth approximation to x, is
given by the formula

| Xp41—2%,
]g—x,,|<——"—l+.'_——r—"— .

Therefore, if x, and x, 4, coincide to within e, then the limiting absolute

error for x, will be -
In order to transform equation f(x)=0 to (4), we replace the latter with
an equivalent equation
x=x—Mf (),

where the number A # 0 is chosen so that the function ‘% [x—MAf ()] =1—Af’ (x}



378 Approximate Calculations {Ch. 10

should be small in absolute value in the neighbourhood of the point x, [for
example, we can put 1—Af' (x) =0].

Example 1. Reduce the equation 2x—Inx—4 =0 to the form (4) for the
initial approximation to the root x,=2.5.

Solution. Here, f(x)=2x—Inx—4; [’ (x)=2-——)l? . We write the equiva-

lent equation x=x—A (2x—Inx—4) and take 0.5 as one of the suitable
values of A; this number 1is close to the root of the equation
ll-——k(2——>| =0, that is, close to -I—QO.G.
! x /lx=2.5 1.6

The initial equation is reduced to the form

x=x—0.5 (2x—In x—4)
or

x=2+-%—lnx.

Example 2. Compute, to two decimal places, the root E of the preceeding
equation that lies between 2 and 3.

Computing the root by the iterative method. We make use of the result

of Example 1, putting x,=2.5. We carry out the calculations using formulas
(5) with one reserve decimal.

x,=2—|——é— In 2.5 = 2.458,

xy=2+ 5 1n2.458 2 450,
x,=2+% 1n 2.450 = 2.448,
x4=2+—;— In2.448 ~2.448,

And so §=2 45 (we can stop here since the third decimal place has
‘become fixed)
Let us now evaluate the error. Here,

1 vl
q)(x)=2+—2— Inx and ¢ (x)_ﬁ.
Considering that all approximations to x, lie in the interval [2.4, 2.5], we
get

r=max | ¢’ (x) l=2—.;—4=0.21.

Hence, the limiting absolute error in the approximation to x; is, by virtue
of the remark made above,

0.001
A'—1-—0.21

=0.0012 = 0.001.

Thus, the exact root § of the equation lies within the limits
2 447 <t < 2.449;

we can take §==2.45, and all the decimals of this approximate number will
be correct in the narrow sense.
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Calculating the root by Newton’s method. Here,
f(x)=2x—Inx—4, f’(x)=2——’l‘-, f”(x)=xl—,.

On the interval 2<<x<3 we have: f'(x)>0 and f"(x)>0; f(2f(B) <0;
f(3) f"(3) > 0. Hence, the conditions of 3° for x,=3 are fulfilled.

We take | .

We carry out the calculations using formulas (3') with two reserve decimals:
x,=3—0.6(2-3—1n3—4)=2 4592;
xy=2.4592—0.6(2.2 4592—1In 2 4592 —4) =2 4481;
x3=2.4481—0.6 (2-2.4481 —1n 2.4481 —4) =2.4477,
x,=2.4477—0.6 (2.2 4477 —1n 24477 —4) =2 4475.

At this stage we stop the calculations, since the third decimal place
does not change any more. The answer is: the root §=2.45. We omit the
evaluation of the erron

5°. The case of a system of two equations. Let it be required to calcu-
late the real roots of a system of two equations in two unknowns (to a given

degree of accuracy):

(P(xv y)=0-

and let there be an initial approximation to one of the solutions (&, n) of
this system x=x;, y=y,.

This initial approximation may be obtained, for example, graphically,
by plotting (in the same Cartesian coordinate system) the curves f(x, y)=0
and ¢ (x, y)=0 and by determining the coordinates of the points of inter-
section of these curves.

a) Newton’s method. Let us suppose that the functional determinant

190 9
9 (x, y)

does not vanish near the initial approximation x=ux, y=y, Then by New-
ton’s method the first approximate solution to the system (6) has the form
X, =Xo+ g, Yy="Yo+ Po» Where a,, B, are the solution of the system of two.
linear equations

i (o Y0+ %y (Xor Yo) + Bof (%o Yo) =0,
P (%0 yo)+aoq’; (%o yo)+ﬁoq); (%o #5) =0.
The second approximation is obtained in the very same way:

Xy=%,+ 0, Y=4+b,
where a,, B, are the solution of the system of linear equations

F g +oufy (5 90 +Bif, (9 =0,
P (x ) +u|(P; (< 4+ ﬁl‘]);/ (%3, #,)=0.

Similarly we obtain the third and succeeding approximations.
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b) lterative method. We can also apply the iterative method to solving
the system ol equations (6), by transforming this system to an equivalent one

x=F(x, y),
7

{ y=0(x, y) @
and assuming that

|Fot [+]| 0,0 | <7 <L |Fy(x )| +]0,(x pp|<r<1  ®

in some two-dimensional neighbourhood U of the initial approximation (x,, y,),
which neighbourhood also contains the exact solution (§, n) of the system.

The sequence of approximations (x,. y,) (n==1, 2, ...), which converges
to the solution ol the system (7) or, what i1s the same thing, to the solution
of (6), is constructed according to the following law:

xy=F (x, 4g), 41 =D (x5, t),
x=F(x;, 1)), y3=P (x;, y)),
X3 =F (x5, 45), Y3=D (x,, ¥,),

..............

If all (x,, y,) belong to U, then lim x,=§, lim y,=n.
n-—®w n - x
The following technique 1s advised for transforming the system of equa-
tions (6) to (7) with condition (8) observed. We consider the system of
equations

{ af (x. ) +Po(x, y) =0,
vz, )+ 09 (x, y) =0,

which is equivalent to (6) provided that ‘z gI # 0. Rewrite it in the form
x=x+af (x, y) +Po (x, y) =F (x, ),
y=y+vf(x, ) +0p (x, y) =D (x, y).

Choose the parameters a, B, y, 6 such that the partial derivatives of the
functions F(x, y) <nd @ (x, y) will be equal or close to zero in the initial
anroxnnatlo.n; in other words, we find «, B, y, 0 as approximate solutions
ol the system of equations

1+ afy (%o, Yo) + By (%o, Yo) =0,
af, (%o, Yo) +B®,, (X0 45) =0,
Ve (Xor Yo) + 00, (x5, 4) =0,
1497, (%o, 40) + 09, (x5, 1) =0.

Condition (8) will be observed in such a choice of parameters a, B, y, 8
on the assumption that the partial derivatives of the functions f(x, y) and
¢ (1, y) do not vary very rapidly in the neighbourhood of the initial approx-
imation (x,, y,).

Example 3. Reduce to the form (7) the system of equations

. x4 yt—1=0,
W—y=0

.given the initial approximation to the root x,=0.8, y,=0.55.
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Solution. Here, f(x, y)=x'+4*—1, @(x, Y=x'—y; Fe ko yg)=1.6,

Fy o 90)=1.1; @y (%0, 90) =1.92, @, (%0, yo) =— 1.
Write down the system (that is equivalent to the initial one)
{ a(@+y*—1+p(—y) =0, (l“ 5];&0)
Y+ —1)+8 (*—y)=0 y, 8
in the form
x=x+a(+y*—1)+p(F*—y),
y=y+y (@ +yr—1)+d(x*—y).
For suitable numerical values of a, P, y and & choose the solution of the
system of equations
1+1.6a+41.928=0,
l.la—p =0,
1.6y +1.925 =0,
14 1.1ly—8=0;
i. e., we put a=~—0.3, p=~—0.3, y=—0.5, 6==0.4.
Then the system of equations
x=x—03(x*+1y*—1)—0.3(x*—y),
y=y—0.5(x*+4*—1)+04(x*—y),

which is equivalent to the initial system, has the form (7); and in a suffi-
ciently small neighbourhood of the point (x,, y,) condition (8) will be fulfilled.

Isolate the real roots of the equations by trial and error, and
by means of the rule of proportional parts compute them to two
decimal places.

3138. x*— x4 1=0.

3139. x*+05x—1.55=0.

3140, x*—4x —1=:0.

Proceeding from the graphically found initial approximations,
use Newton’s method to compute the real roots of the equations
fo two decimal places:

3141, x'—2x—5=0. 3143. 2%—4x.
3142. 2x—Inx—4=0. 3144. logx =

Utilizing the graphically found initial approximations, use the
iterative method to compute the real roots of the equations to
two decimal places:

3145. x*—5x-+ 0.1 =0. 3147, x*—x—2=0.

3146. 4x=cosx.

Find graphically the initial approximations and compute the
real roots of the equations and systems to two decimals:

3148. x’—3x+ 1=0. 3151. x-Inx—14=0.

3149. x*—2x* + 3x—5=0. 3152. x*+3x—0.5=0,

3150. x*+x*—2x—2=0. 3153. 4x—7sinx=0.
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3154, x*4+2x—6=0. 3157 { X+y—4=0,

3155. e+ e **—4=0. "l y—logx—1=0.
L4+y—1=0,

3156. { e y—o.

3158. Compute to three decimals the smallest positive root of
the equation tan x=«x.

3159. Compute the roots of the equation x-tanh x=1 to four
decimal places.

Sec. 4. Numerical Integration of Functions

1°. Trapezoidal formula. For the approximate evaluation of the integral
b

Sunu

a

[f (x) is a function continuous on [a, b]] we divide the interval of integration
[a, b] into n equal parts and choose the interval of calculations h=b—_a .
Let x;=x,+ih (x,=a, x,=b, i=0, 1, 2, ..., n) be the abscissas of the par-
tition points, and let y;=/f(x;) be the corresponding values of the integrand
y=F[(x). Then the trapezoidal formula yields

b
(rooacsn (252 1y tpnt ..+ M
a

with an absolute error of .
h
Rngﬁ(b—a)'sz

where M,=max | (x)| when a<<x<<b.
To attain the specified accuracy e when evaluating the integral, the in-
terval & is found from the inequality

12¢
< ——, 2
(b—a) M, @

That is, & must be of the order of V'e. The value of h obtained is rounded
off to the smaller value so that A
—a

——=n

h

should be an integer; this is what gives us the number of partitions n.
Having established & and n from (1), we compute the integral by taking the
values of the integrand with one or two reserve decimal places.

2°, Simpson’s formula (parabolic formula). If n is an even number, then
in the notation of 1° Simpson's formula

b
Jiwar=g ot om+ 4Gt gt oot +
@ +2WtYat ooty Q)
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holds with an absolute error of
h‘
R, < 180 b—a) M, 4)
where M,=max|f'v ()| when a<<x<<b.
To ensure the specified accuracy e when evaluating the integral, the
interval of calculations h is determined from the inequality

hl
155 (0 —a) Mo <e. ®)

That is, the interval h is of the order f/?. The number h is rounded off
to the smaller value so that n=b——n:iz is an even integer.

Remark. Since, generally speaking, it is difficult to determine the inter-
val h and the number n associated with it from the inequalities (2) and (5),
in practical work h is determined in the form of a rough estimate. Then,
after the result is obtained, the number n is doubled; that is, A is halved.
If the new result coincides with the earlier one to the number of decimal
places that we retain, then the calculations are stopped, otherwise the pro-
cedure is repeated, etc.

For an approximate calculation of the absolute error R of Simpson’s
quadrature formula (3), use can also be made of the Runge principle, accord-
ing to which

R=12—Z|
15

’

where £ and ¥ are the results of calculations from formula (3) with interval
h and H =2h, respectively.

3160. Under the action of a variable force F direcled along
the x-axis, a material point is made to move along the x-axis
from x=0 to x=4. Approximate the work A of a force F if a
table is given of the values of its modulus F:

x |n.o \0.5 \1.0 |1.5 |2.0 |2.5 |3.0 | 3.5 [ 4.0
F |1.50]0.75]0.50[0.75]1.5o|2.75| 4.50| 6.75 |1o.oo

Carry out the calculations by the trapezoidal formula and by
the Simpson formula.
1

3161. Approximate S(3x’—-4x) dx by the trapezoidal formula

putting n=10. Evaluate this integral exactly and find the abso-
lute and relative errors of the result. Establish the upper limit A
of absolute error in calculating for n=10, utilizing the error
formula given in the text,
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3162. Using the Simpson formula, calculate Xidi to four

x+1
decimal places, taking n=10. Establish the upper limit A of abso-
lute error, using the error formula given in the text.
Calculate the following definite integrals to two decimals:

1 2
dx sin x
3163, | ==, 3168. dx.
§l+x “5 x
1 d n ;
3164. | =X, 3169. | =% 4y,
§l+x § X
1 2
d. cos x
3165. Sﬂ% 3170. S‘ d
[ ln
. Y
3166. \ xlogxdx. cos x
5 3171, { 22 ax.
0

-

2
log x
3167. (“82ay. 3172. {e-* dx.
1 (]

3173. Evaluate to two decimal places the improper integral
S% by applying the substitution x=%. Verifgl the calculations
{)y applying Simpson’s formula to the integral S‘li_f?" where b

+ ®
. dx 1 - 1
is chosen so that S m,<7 - 1072,

b
3174, A plane figure bounded by a half-wave of the sine curve
y=sinx and the x-axis is in rotation about the x-axis. Using the
Simpson formula, calculate the volume ot the solid of rotation
to two decimal places.

3175*, Using Simpson’s formula, calculate to two decimal
places the length ot an arc of the ellipse ’—‘l—+(—03”2—22——),=1 situated
in the first quadrant.

Sec. 5. Numerical Integration of Ordinary Differential Equations

1°. A method of successive approximation (Picard’s method). Let there
be given a first-order differential equation

‘=fx 9 ‘1
subject to the initial condition y=y, when x=x,.
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The solution y (x) of (1), which satisfies the given initial condition, can,
generally speaking, be represented in the form ’

y(x)= lim y; (») (2)
{—>®
where the successive approximations y; (x) are determined from the formulas
Yo (X) =Y,
X
vi ) =po+ § 1 (x, s () dx
Xo
¢=0,1,2, ...).
If the right side f(x, y) is defined and continuous in the neighbourhood
R{|x—x,1<<a, |y—y,|<b}
and satisfies, in this neighbourhood, the Lipschitz condition

[Flxe, y)—F(x, ya) I<<L|y,—9,l

(L is constant), then the process of successive approximation (2) definitely
converges in the interval

|x—x0!<h’
where h——-m’;n (a, I—\b/l_) and M=max|f(x, y)|. And the error here is
R
| x—x, " !
— _ n
Rﬂ_ly(x) yﬂ (x)lglML (n+l)| ’

| x—x | < h.

The method of successive approximation (Picard’s method) is also appli-
cable, with slight modifications, to normal systems of differential equations.
Differential equations of higher orders may be written in the form of systems
of differential equations.

2°. The Runge-Kutta method. Let it be required, on a given interval
xo<<x<< X, to find the solution y (x) of (1) to a specified degree of accuracy e.

To do this, we choose the interval of calculations h=)—(:n'i° by dividing

the interval [x,, X] into n equal parts so that h* <e. The partition points
x; are determined from the formula

xy=xo+th (=0,1,2, ..., n).

By the Runge-Kutta method, the corresponding values y;==y (x;) of the desired
function are successively computed from the formulas

Yivr =Yi+ Ayi.
l D
Ayi=5 ( RO 4 200 + 268 + 1),

13—1900
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where
i=0,1,2, ..., nand
KO =F (x;, yi) b,

. h (SO
() L4 T,
k, '—f<x1+ g yi+ 5 )h- @)
(1)
h k
KO =f (xri-f ) y1+—-§——>h,

K= f (xi+h, yi+£P) b

To check the correct choice of the interval A it is advisable to verify
the quantity

i
k;)_kst)
k(lt)__kgz)

.

The fraction 0 should amount to a few hundredths, otherwise A has to be
reduced.

The Runge-Kutta method is accurale to the order of At A rough estimate
of the error of the Runge-Kutta method on the given interval [x;, X] may
be obtained by proceeding from the Runge principle:

_ l!/zm-.‘;m I
R_ 15 ’

where n=2m, y,,, and ¢, are the results of calculations using the scheme (3)
with interval A and interval 2h.
The Runge-Kutta method is also applicable for solving systemns of diffe-
reutial equations .
y'=f(x, 9,2, =0, y, 2 )

with given initial conditions y=y,, z=2, when x=x,.

3°. Milne’s method. To solve (1) by the M:lne method, subject to the
initial conditions y=y, when x=x,, we in some way find the successive
values

=y (x1), Y=Y (%2, Ys=U(x;)

of the desired function y(x) [for instance, one can expand the solution y (x)
in a series (Ch. I1X, Sec. 17) or find these values by the method of successive
approximation, or by using the Runge-Kutta method, and so forth]. The ap-

proximations y; and y=,' for the following values of y; ({=4, 5, ..., n) are
successively found from the formulas

4h
!/i"—‘!/i_¢+'§‘ (2f|'—a_fi-z+2f|‘-1)v
= h — ®)
yi=yi—z+'3—(fi+4fi—l+ft—z).
where f;=Ff (x;, y)) and [;=F (x;, y;). To check we calculate the quantity

11— =
ei=§§| Yi—Yil. ©)
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If e; does not exceed the unit of the last decimal 10~” retained in the

answer for y (x), then for y; we take y; and calculate the next value y,.,,
repeating the precess. But if ;> 107", then one has to start from the be-
ginning and reduce the interval of calculations. The magnitude of the initial
interval is determined approximately from the inequality A% < 10=™,

For the case of a solution of the system (4), the Milne formulas are
written separately for the functions y (x) and 2z (x). The order of calculations
remains the same.

Example 1. Given a differential equation y’=y—x with the initial con-
dition y (0)=1.5. Calculate to two decimal places the value of the solution
of this equation when the argument is x==1.5. Carry out the calculations
by a combined Runge-Kutta and Milne method.

Solution. We choose the initial interval & from the condition A* < 0.01.
To avoid involved writing, let us take 4 =0.25. Then the entire interval of
integration from x=0 to x=1.5 is divided into six equal parts of length
0.25 by means of points x; (=0, 1, 2, 3, 4, 5, 6); we denote by y; and y;
the corresponding values of the solution y and the derivative y’.

We calculate the first three values of y (not counting the initial one) by
the Runge-Kutta method [fromm formulas (3)]; the remaining three values
— Ys, Ys, Yg— we calculate by the Milne niethod [from formulas (5)]

The value of y, will obviously be the answer to the problem.

We carry out the calculations with two reserve decimals according to a
definite scheme consisting of two sequential Tables 1 and 2. At the end of
Table 2 we obtain the answer.

Calculating the value y,. Here, f(x, y)=—x+y, x,=0, y,=1.5

h=0.25. Ago=g (b 1268 + 2 4 £ =

=—é— (0.3750 4 2-0.3906 + 2-0.3926 4 0.4106) = 0.3920;

kO = f (x4, Yo) h= (— 04-1.5000)0.25 = 0.3750;

k()

B = | (x‘,+ —'21 . Ut ) h = (— 0.125 4 1.5000 4 0.1875) 0.25 = 0.3906;

k(0
RO - <xo+%. y°+‘T) h=(— 0 125+ 1.5000 4 0.1953) 0.25 — 0.3926;

RO =f (xo+h,  yo+ k) h=(—0.25- 1.5000 + 0.3926) 0.25 = 0.4106;

Y=Y+ Ay, =1.5000+0.3920=-1.8920 (the first three decimals 1n this
approximate number are guaranteed).
Let us check:

kgo) —kgo)
kio) _k(:)

_ 10.3006—0.30%6__ 20 _ .
= [0.3750—0.3906] 156 '

By this criterion, the interval h that we chose was rather rough.
Similarly we calculate the values y, and y,. The results are tabulated
in Table 1.

13*
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Table 1. Calculating y,, y,, ¥; by the Runge-Kutta Method.
fx, p=—x+y; h=0.25
h
, f (xi + ? ’
Value of i X Y ~f!/z;= ) ksl) 40 ki“
= 1] yl y‘ + 2#)
0 0 1.5000 1.5000 0.3750 1.5625 0.3906
1 0.25 1.8920 1.6420 0.4105 1.7223 0.4306
2 0.50 2.3243 1.8243 0.4561 1.9273 0.4818
3 075 2.8084 2.0584 0.5146 2.1907 0.5477
h
f (xi-l- ,
. 2 fe+h
6] [N i ;
Value of i k;‘) K s+ D) kO Ay; Yim
bit ‘z‘)
0 1.5703 0.3926 1.6426 0.4106 0.3920 1.8920
] 1.7323 0.4331 1.8251 0.4562 0.4323 2.3243
2 1.9402 0.4850 2.0593 0.5148 0.4841 2.8084
3 2.2073 0.5518 2.3602 0.5900 0.5506 3.3590

Calculating the value of y,. We have: f(x, y)=—x+y, h=025, x,=]1;

© Yo=1.5000, y,=1.8920, y,=2.3243, y,—2.8084;

Yo =1.5000, y;=1.6420, y,=1.8243, y,=2.0584,

Applying formulas (5), we find

- 4h , .
Ya=Yot 3 (24, —Y,+2,) =

3.=y,+3—"(3;+4y;+y;)=2.3243+

e‘=I.’/4

hence, there is no need to reconsider the interval of calculations.

4.0.25

= 1.5000 +-——= (2. 1.6420— 1.8243 4-22.0384) = 3.3588;
Ye=f (%4 §3)=— 1+ 3.3588 =2.3588;

0.25

—ya]_13.3588—3.3500 | _0.0002

29

29

29

3 (2.3588 - 4.2.0584 4 1.8243) = 3.3590;

= 7.10"° < -;— « 0.001;
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We obtain y4=yi=3.3590 (in this approximate number the first three
decimals are guaranteed).

T blSimilarly we calculate the values of y; and y,. The results are given in
able 2.

Thus, we finally have

y(1.5)=4.74.

4°. Adams’ method. To solve (1) by the Adams method on the basis of

the initial data y(x,)=y, we in some way find the following three values
of the desired function y (x):

n=yx)=y X+ h), yo=y (x) =y (Xo+2h), ys =y (x5) =y (x,+ 3h)

[these three values may be obtained, for instance, by expanding y(x) in a
power series (Ch IX, Sec. 16), or they may be found by the method of suc-

cessive approximation (1°), or by applying the Runge-Kutta method (2°)
and so forth].

With the help of the numbers x,, x,, x,, Xy and y,. Y5, Y2, ys We calcu-
late ¢,, 9,, 95 g5 Where

Go=hy,=hf (%o, Yo). @ =hy, =hf (x,, 4,),
gz=hy,=hf (x4, ys), qs=hy, =hf (x5, yy).

We then form a diagonal table of the finite differences of g:

el Wuﬁ?f% v=RE 9 | o yn | Ag=gne~an ___Aqf;f’qu" =£zl,?;,_
-4,

Xy |Uo | Blho ' [0 50) | 40 Aqo Alq, A%,

Xy | Y Ay, fxn 1) I ¢ l Ag, A%q, A%,

X3 | Yo Ay, f(xe 4s) | 92 Aq, A%q, A%,

Xy | s Ay, [(xs, 4s) | Qs Ag, A*q,

X | Ya Ay, | [t ¥ | 4a Aq,

Xs | Ys Ay, F (x5, yg) 9s

Xg | Yo




390 Approximate Calculations [Ch. 10}

The Adams method consists in continuing the diagonal table of differen-
ces with the aid of the Adams formula

1 5 3
A!/n:‘In'*‘? Agp_,y +E A’q"_,-l—g A%q,_s. (M

Thus, utilizing the numbers g¢,, Ag,, A%g,, A%q, situated diagonally in
the difference table, we calculate, by means of formula (7) and puttingn=3

in 1t, Ay,:q,+-;-qu+-15—2A’q,+% A%,. After finding Ay, we calculate

=ys+ Ay,. And when we know x, and y,, we calculate g,=hf(x,, y,),
mtroduce Ys» Ayy and 9% into the difference table and then f{ill into it the
finite differences Ag,, A%g,, A%,, which are situated (together with g,) along
a new diagonal parallel to the first one.

Then, utilizing the numbers of the new diagonal, we use formula (8)
(putting n=4 in it) to calculate Ay,, y; and g, and obtain the next diagonal:
g5, Ag,, A%q,, Aq,. Using this diagonal we calculate the value of y, of the
desired solution y(x), and so forth,

The Adams formula (7) for calculating Ay proceeds from the assumption
that the third finite differences A% are constant. Accordingly, the quantitvh
of the initial interval of calculations is determined from the inequality
h‘<m10"" [if we wish to obtain the value of y(x) to an accuracy of
10— ™.
In this sense the Adams formula (7) is equivalent to the formulas of
Milne (5) and Runge-Kutta (3).

Evaluation of the error for the Adams method is complicated and for
practical purposes is useless, since in the general case it yields results with
considerable excess. In actual practice, we follow the course of the third
finite differences, choosing the interval & so small that the adjacent diffe-
rences A%g; and Alg;,, differ by not more than one or two unitsof the given
decimal place (not counting reserve desimals).

To increase the accuracy of the result, Adams’ formula may be extended
by terms containing fourth and higher differences of g, in which case there
is an increase in the number of first values of the function y that are needed
when we first fill in the table. We shall not here give the Adams formula
for higher aceuracy.

Example 2. Using the combined Runge-Kutta and Adams method, calcu-
late to two decimal places (when x=1.5) the value of the solution of the
differential equation y'=y—x with the initial condition y(0)=1.5 (see
Example 1).

Solution. We use the values Y1, Y2, Uy that we obtained in the solution
of Example 1. Their calculation is given in Table 1.

We calculate the suhsequent values y,, y;, y, by the Adams method (see
Tables 3 and 4).

The answer to the problem is y,=4.74.

For solving system (4), the Adams formula (7) and the calculation scheme
shown in Table 3 are applied separately for both functions y(x) and z(x).

Find three successive approximations to the solutions of the
diflerential equations and systems indicated below.

3176. y' =x* +y*; y(O)—

77. y'=x+y+z2 2’ = 2z, y(0)=1, 2(0)=—2.

3178. y'=—y; y(0)=0, ( )=l
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Table 3. Basic Table for Calculating y,, y., y. by the Adams Method.
fx, )=—x+y h=025
(Italicised figures are mput data)

E t, v Ay y= %=y Ag, A, A%,
2 =f (x, y1)
S
0| 0 1.5000 ' 1.5000 0.3750 0 0355 0.0101 0 0028
1 |0.25 1.8920 ' 1.6420 | 0.4105 0.0456 0.0129 | 0 0037
210 50‘ 2.8243 ' 1.8243 | 0.4561 0.0585 { 0.0166 | 0.0047
310.75| 2.8084 0.5504 2.0584 0.5146 0.0751 0.0213
4[1 00| 3.3588 | 0.6356 | 2.3588 | 0.5897 | 0.0964
5(1 25| 3.9944 0.7450 | 2.7444 0.6861
6(1.50 |4.7394
Answer: 4.74
Teble 4 Auxiliary Table for Calculating by the Adams Method
1 5 3
Ay =qi+ 5 Adioy+ 15 8%t g A%i-s

Value of i _:_ Ag.—, ‘L, A%q, -, % ASgi_ Ay,

3 0.5146 0.0293 0.0054 ] 0.0011 | 0.5504

4 0 5897 0.0376 0.0069 0.0014 0.6356

5 0.6861 0.0482 l 0.0089 I 0.0018 0.7450
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Putting the interval h=0.2, use the Runge-Kutta method to
calculate approximately the solutions of the given differential
equations and systems for the indicated intervals:

3179. y'=y—x y(0)=1.6 (O<<x< ).

3180. y'=L—y; y()=1 (1<x<2).

3181, ¥ =241, 2 =y—x, y(0) =1, z(0)=1 O<<x<<1).
Applying a combined Runge-Kutta and Milne method or
Runge-Kutta and Adams method, calculate to two decimal places
the solutions to the differential equations and systems indicated
below for the indicated values of the argument;
3182. y'=x+y, y=1 when x=0. Compute y when x=0.5.
3183. y'=x*-y;, y=1 when x=0. Compute y when x=1.
3184. y'=2y—3; y=1 when x=0. Compute y when x=0.5.
3185. { y=—x+2y-+2,
2 =x+42y+3z, y=2, z==—2 when x=0.
Compute y and z when x=0.5.
3186. {y’=—3y—z,
2'=y—2z, y=2, 2=—1 when x=0.
Compute y and z when x=20.5.
3187. y'=2—y: y=2, y'= —1 when x=0.
Compute y when x=1.
3188. y*y"4+-1=0; y=1, y'=0 when x=1.
Compute y when x=1.5.

3189. ‘(i—?f,-}—%coth:O; x=0, x'=1 when ¢=0.
Find x(m) and x’ (%).

Sec. 6. Approximating Fourier Coefficients

Twelve-ordinate scheme. Let y,=f(x,) (n=0, 1, ..., 12) be the values

of the function y={f(x) at equidistant points x,,=£6'1 of the interval [U,2nr],

and y, -4, We set up the tables:

,!/o Y Y2 Ys Ya Ys Ys
Y11 Yo Yo Ys Ya

Sums (2) Uo Uy Uy Uy Uy Ug Ug
Differences (A) U, Uy, Uy U, Ug
Ug Uy Uy Uy Uy Uy Uy
Ug Ug Uy Us U,
Sums Sy Sy S3 Sy Sums g, 0, 0,
Dillerences ty Uy ty Differences T, Ty
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The Fourier coefficients a,, b, (n=0, 1, 2, 3) of the function y=f(x)
may be determined approximately from the formulas:

6ay=So+ S, + S3 -+ S5, 6b, = 0.50, + 0.8660, 4 oy,

6a, = ¢, 0.866¢, - 0.5¢,, 6b,=0.866 (1, + T,),
6a,=5,—S;+0.5(s;—s,), 6by=0,—0y,

6ay=t,—1ts . )

V3 11
where O.SGG—T—\. l'—m—% -
We have

s
Fx) = % + Z (a, cos nx b, sin nx).
n=j

Other schemes are also used. Calculations are simplified by the use of

patterns.
Example. Find the Fourier polynomial for the function y=f(x) (0<<yx<2n)

represented by the table

Yy { Yo ‘ Yn

Yq l!/s

Yo yl'yzlya,yalys'ye
38 { 38 l 12 | 4 ‘ 14,’ 4 ’—18‘—23]—27‘——24'8 |32

Solution. We set up the tables:
38 38 12 4 14 4 —18

Y1 30 8 —94 —97 —93

u|387020 —20 —13 —19 —18

v 6 4 28 41 97
o8 0 20 —2 L 6 a8

—18 —19 — 13 27 41
s| 20 51 7—29 o| 33 4598
(| 56 8 33 v|—21—37

From formulas (1) we have
2,=9.7, a,=24.9; a,=10.3; a,=3.8;
b,=13.9; b,=—8.4; b,=0.8.
Consequently,

f(x) = 4.8+ (24.9 cos x + 13.9 sin x) 4 (10.3 cos2x — 8.4 sin 2x) +
-+ (3.8 cos 3x 4 0.8 sin 3x).

Using the 12-ordinate scheme, find the Fourier polynomials
for the following functions defined in the interval (0,2x) by the
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tables of their values that correspond to the equidistant values
of the argument.

. 3190, y,=—7200 y,=4300 y,=7400 y,=7600

y, =300 Y, == Yy, =—2250 y, = 4500
y,=T700 Yy, =—>5200 y,=3850 y,, =250
3191. y, =0 Y, =972  y,=742 Y, =5.60

y,=6.68  y,=897 y,=681 y —4.88
¥, =968  y, =818 y,=6.22 y. =367
3192. y,=2.714 y,=1273 y,=0.370 y, =—0.357
y,=3.042 4 =0788 5 =0.540 y , =—0.437
y,=2.13¢ 4y, =0.495 y,=0.191 4, =0.767

3193. Using the 12-ordinate scheme, evaluate the first several
Fourier coefficients for the following functions:

a) f(x)= él——nz (¢’ —3nx® +20x) (0 << x << 2m),

b) [ () == (x—n)? O<x<2n).



ANSWERS

Chapter 1

1. Solution. Since a=(a—b)+0b, then |a|<|a—b|+|b|. Whence ,a—b[;
=|a|—|b| and |a—b|=|b—a|>=|b|—]|a|. Hence, |a—b|>|a|-—| |
Besides, |a—b|_]a+(—b)|<|al+|—b| |al+|b| 3. a) —2<x<4;

b)x<—3 x>1c¢) —-1<x<0;d) x>0 — —6; 0; 00651,
s VIFS (7 VTt YV T2 6.m & 7 0. 7. f(x)———x+ 3

8. f(x)=—zx’——x+l 9. 0.4. 10. —2-(x+|x|) 11, 3) —1l<<x <+ o0;

b)—w <x <+ 0. 12 (—w,—2),(—2,2), 2, +®).13.3) —0 <x<—V 2,
V2<x<+w; b) x=0, |x = V3 14 —l<z<2. Solution. It should
be 2+4+x—x*=>0, or x—x—— < 0; that is, (x4 1) (x—2) <<0. Whence either
x+1=0, x—2<0, —I<x<2 or x4+1<<0, x—2=0,i.e., x<<—1,
x=2, but this is impossible. Thus, — l<<x<<2. 15. —2<x<0.
16 —0o <x<—1, 0<x<<]. 17, —2<x<2. 18 —1l<x<], 2<x<+ 0.

19. —%<x<l. 2. 1<x<100. 21, bn<r<hut (h=0, £1, £2,...).
22, @ (x) =2x*—5x2—10, P (x) =— 3x*- 6x. 23. a) Even, b) odd, c¢) even, d)odd,
e) odd.24. Hint. Utilize the identity f (x)=%[f )+ f (—x)] +l[f (x)—f (—x)].

26. a) Periodic, T=-§—n, b) periodic, T—— ¢) periodic, T =m, d) periodic

T ==, e) nonperiodic. 27. y=c£x, fl<ry<<c; y=b if c<x<a; S=2%x’

if 0<x<c; S=bx—%€ if e<x<<a. 28. m=gq,x when 0<<x<!l; m=

=¢,l;+qo(x—1;) when I, <x<<l,+1, m=q,l,+q,l,+qs (x—1I,—1,) when
Ltl,<x<l, +l +l,=1. 29. cp[\|J(Jc)]—-2”‘.i|)[q)(x)]—2"2 30. x. 31. (x4 2)2.

T 4—.38. a) y=0 when x=—1, y>0 when x>—1, y<0

37- ——2', 0,

when x<—1; b) y=0 when x=—1 and x=2, y>0 when —1<x<?2,
y<0 when —w0o <x<—1 and_2<x<+0_o; ¢) y>0 when — oo <x< - oo;
d) y=0 when x=0, x=— V3 and x=V 3, y>0 when —V3<x<0 and
V3<x<+ 0, y<Owhen —oo<x<<— V§ and 0<x< V-E; e)y=0when x=1,

y>0when— oo <x<—1and 1<x<+ o0, y<0 when 0<x<1 39. a) x=% (y—3)
(—wo<y<+4ew), b) x=Vy+l and x=— Vy+1 (-l y<+ w);
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o) x=}T=P (—o<y<+w) d) x=2.10Y (—wo<y<+w); ¢ r=

1

1 n —
=—tany| —% <y<—2-). 40. x=y when —oo<y<O0; x=Vy when

3 2
0<y<+o. 41. a) y=u", u=2x—5 b) y=2% wu=cosx; c) y=logu,
u=tanuv, v=—’2£-; d) y=arc sinu, u=3° v=-—x2 42. a) y=sin®x; b) y=

= arc tan Vlogx; ) y=2(*—=1) if |x|<1, and y=0 if [x|>1.
43. a) y=—cosx?, Vn<|x|<V2n; b) y=log(10—10%), —0 <x<1;
c) y=—;—when —ow<x<0 and y=x when 0<<x<+ . 46. Hint. See Appen-
dix VI, Fig. 1. 51. Hint. Completing the square in the quadratic trinomial
we will have y=y,+a(x—x,)* where x,=—b/2a and y,=(4ac—b%)/4a.
Whence the desired graph is a parabola y=ax? displaced along the x-axis by
x, and along the y-axis by Yo- 53. Hint. See Appendix VI,
Fig. 2. 58 Hint. See  Appendix Vl, Fig. 3. 61. Hint

The graph is a hyperbola y=% , shifted along the x-axis by x, and along

the y-axis by y, 62. Hint. Taking the integral part, we have y=%—%/

(x+ %) (Cf. 61*). 65. Hint. See Appendix VI, Fig. 4. 67.Hint. See Appendix VI,

Fig. 5. 71. Hint. See Appendix VI, Fig. 6. 72. Hint. See Appendix VI,
Fig. 7. 73. Hint. See Appendix VI, Fig. 8. 75. Hint. See Appendix VI,
Fig. 19 78. Hint. See Appendix VI, Fig. 23. 80. Hint. See Appendix VI,
Fig. 9. 81. Hint. See Appendix VI, Fig. 9. 82. Hint. See Appendix VI,
Fig. 10 83. Hint. See Appendix VI, Fig. 10. 84. Hint. See Appendix VI,
Fig 11, 85. Hint. See Appendix VI, Fig. 11. 87. Hint. The period of the function

is T=2n/n, 89. Hint. The desired graph is the sine curve y=>5 sin 2x with am-
plitude 5 and period = displaced rightwards along the x-axis by the quantity

1 % . 90. Hint. Putting a=A cos g and b=—A4 sin ¢, we will have y=A sin (x—¢)
where A=V a®+b* and ¢ =arc tan( -%)' In our case, A=10, ¢=0.927. 92.

Hint. cos?x= —;— (1 4-cos 2x). 93. Hint. The desired graph is the sum of the graphs

y,=x and y,=sinx. 94. Hint. The desired graph is the product of the graphs
y,=x and y,=sinx. 99. Hint. The function is even For x>0 we determine
the points at which 1) y=0; 2) y=1; and 3) y=—1. When x — -+ 0,
y — 1. 101, Hint. See Appendix VI, Fig. 14. 102, Hint. See Appendix VI,
Fig. 15. 103. Hint. See Appendix VI, Fig. 17. 104. Hint. See Appendix VI,
Fig. 17. 105. Hint. See Appendix VI, Fig. 18. 107. Hint. See Appendix VI,
Fig. 18. 118. Hint. See Appendix VI, Fig. 12. 119. Hint. See Appendix VI,
Fig. 12. 120. Hint. See Appendix VI, Fig. 13. 121, Hint. See Appendix
VI, Fig. 13. 132. Hint. See Appendix VI, Fig. 30. 133.Hint. See Appendix VI,
Fig. 32. 134. Hint. See Appendix VI, Fig. 31. 138. Hint. See Appendix VI,

Fig. 33. 139. Hint. See Appendix VI, Fig. 28. 140. Hint. See Appendix VI,
Fig. 25. 141, Hint.
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Form a table of values:

t 0 1'2]3 ...l——l —21_3
x 0 1‘8 ‘27' ..l_x —8‘—27
y|0l1‘4|9‘..|ll4‘9

Constructing the points (x, y) obtained, we get the desired curve (see Appen-
dix VI, Fig. 7). (Here, the parameter ¢ cannot be laid off geometrically!)
142. See Appendix VI, Fig. 19. 143. See Appendix VI, Fig. 27. 144, See
Appendix VI, Fig. 29. 145. See Appendix VI, Fig. 22 150. See Appendix VI,
Fig. 28. 151. Hint. Solving the equation for y, we get y=+ VB =% 1t is
now easy to construct the desired curve from the points. 153. See Appen-
dix VI, Fig. 21. 156. See Appendix VI, Fig. 27. It is sufficient to construct

the points (x, y) corresponding to the abscissas x=0, 4- g—, + a. 157. Hint.

Solving the equation for x, we have x=:10 logy—y ™). Whence we get the
points (x, y) of the sought-for curve, assigning to the ordinate y arbitrary
values (y > 0) and calculating the abscissa x from the formula ™® Bear in
mind that logy - — oo as y-— 0. 159. Hint. Passing to polar coordinates
r=V2+4* and tan(p=—% , we will have r=e? (see Appendix VI, Fig 32)

160. Hint. Passing to polar coordinates x=rcos¢, and y=rsin ¢, we will

_ 3singcos @ : : _
have r_cos’(p-l-sin’(p (see Appendix VI, Fig. 32) 161. F=3241, 8C
162. y=0.6x(10—x); Ymax=15 when x=5. 163. =52[zsinx; ym“=u_2b

whenx:—--g—. 164. a) x,=—;-, x,=2; b) x=0.68;, c) x,=1.37, x,=10;
d) x=0.40; e) x=150; f) x=0.86. 165. a) x,=2, y,=5; x,=5, y,=2;
b) y=—3, h=—2 x,=—2, §=—3; 5,=2,4,=3x,=3, y;=2; ¢) x,=2,
=2, %31, y,=—2.5; d) x,=~—36, y,=~—3.1; ,=—27, y,=29

X =29, yy=1.8; x,=~3.4, y,=—1.6; e) x‘=%—, y|_—_—2—2; Xy = %J_t
y,=——VTQ. 166. n > —!: .a)n=4,b) n>10; ¢) n=32. 167. n>—1—-—
Ve e

—1=N, a) N=9; b) N=99; c) N=999. 168. 6=% (e<1). a) 002
b) 0 002; c) 0.0002. 169. a) logx <—N when 0 <x < §(N); b) 2* > N when
x>X(N); ¢ |f(x)|>N when (x> X (N). 170. a) 0; b) 1; c) 2; d) 57(—) .
171, -;— 172. 1. 173. ——g-. 174. 1. 175. 3. 176. 1. 177. % 178. %— Hint.
Use the formula 1'+2’+...+n’=—l§n (n4-1)(2n+1). 179. 0. 180. 0. 181. 1,
182. 0. 183. . 184. 0. 185. 72. 186. 2. 187. 2. 188. oo. 189. 0. 190. 1. 191. 0.

1 a—1 R 1
192, oo, 193. —2. 194. . 195. 3 196. 57 - 197. 3x%. 198, —1. 199. 5 -
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4 1 1
200. 3. 201. — . 202. g - 203. —55" 204. 12. 205.

208. ! 209. l__ 210. ~1 211. 0. 212,

I

ey x T Y 37 2
5 1 1

2

215. 0. 216. a) —;—sin2; b) 0. 217. 3. 218. 5 219. -5- 220. ;. 221,

222, cosa. 223. —sina. 224. ;. 225. cos x. 226. _——V_‘ 227. a) 0; b) I,
1
230. —_— 5 2__ 2 2
0. 231. V_ 232. (n m). 283. 5. 234. L

1

2

2 1 1 1
£l

!

213. — 4. 214

wnN’Iw
w

228.

. 237, —— . 2390 . 240. 1. 241, 1. 242, — .,
37 i 238. m. 239 3 240. 1. 241. 1. 242 1

243. 0 244, —23— 245. 0. 246. e~'. 247. . 248. e~'. 249, e~ %,

235.

1 1
250. e*. 251. e. 252. a) 1. Solution. lim (cosx)* = llm[l—(l—cosx)] ¥ =
—>0

X—>0

2sin1 =
1 2

1 9sin? X N

—1i _2.,£?=. —9sin? X 2 _
lim <1 sin 2) lim [(l sin 2)

x>0 x>0

2sin? sin 5\ 2
Since lim\ — p = —21lim In =—2.1. hm 7 =0, it follows

X—>0 x>0 X0

1
that lim (cos x) *
X0

2sin? X
1 im " —2 Sill’i-
N ) X—>0 X . .
case (see a), lim (cos x)"" =e . Since lim\ ———/ =
X0

2
X—>0 x

1
=e’=1. b) 728' Solution. As in  the  preceding

ox\2 1
sins\ _, 1 L

= —2lim 22 ——_—, 1t follows that lim (cosx)* =e ? =
L 4x2 2

X->0

| %

2
V.__ 253. In2. 254. 10loge. 255. 1. 256. 1. 257. ——;—. 258. 1. Hint.
Put e*—1=q, where a—0. 259. Ina. Hint. Utilize the identity a=e'"?®
260. Ina Hint. Put %:a, where a -0 (see Example 259) 261. a—b.

262. 1. 263. a) 1; b) % 264. a) —1; b) 1. 265. a) —1; b) 1. 266. a) 1; b) 0.
267. a) 0; b) 1. 268. a) —1; b) 1. 269. a) —1; b) 1. 270. a) —oo; b) + .
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271. Solution. If x# kn (=0, £1, £2,...), then cos’x<1 and y=0;
but if x=kn, then cos’x=1 and y=1. 272, y=x when 0<x<l;y=-;-

when x=1; y=0 when x> 1 273. y=|x| 274. =—%— when x<0; y=0
when x=0;y=% when x>0. 276. y=1 when 0<x<1; y=x when
1< x <4 o. 276. 495% 2717. x,—»—%—; Xxg—> . 278, =n.  279. 2nR.
J—
200 ¢ o811 L ose VI oea timac,=L . 285 % 2s6. 4=,
e—1 3 f_ n-»o 3 2
e?—1
/ . . . X241
b=0; the straight line y=x is the asymptote of the curve y=ari-

287. Q"=Q, (l +’—;—t)n, where k& is the proportionality factor (law of

compound interest); Q,=Qoe’". 288. |xl>—:—, a) |x|>10; b) 1x|> 100;

c)|x|>1000.289.|x—ll<—;—- when O<e<l1; a) |x—1]<0.05;

b) |x—1]<0.005; ¢) | x—1|< 00005 200. |x—2| < —

N 8; a) 8=0.1;

b) 8=0.01; ¢) 8=0.001, 291. a) Second, b) third. . 292. a) 1; b) 2

o) w i

1

—2—)
c) 3. €93 a) l; b) %; c) %—; d) 2; e) 3. 295. No 296. 15. 297. —1. 208. —1.
299. 3. 300. a) 1.03(10206); b) 0.985(0.9849); c) 3.167(3.1623) Hint.

YVio=Vifi=3 ]/1 +%; d) 10.954 (10.954). 301. 1) 0.98 (0 9804);
2) 1.03(1.0309); 3) 0.0095(0.00952); 4) 3.875(3.8730); 5) 1.12(1.125);
6) 0 72 (0.7480); 7) 0.043 (0.04139). 303, a) 2; b) 4; c) -;—-. d) % 307. Hint.
If x>0, then when |Ax|{<x we have |Vx+Ax— Vixl=
=1A"l/(V-;‘TE—X+ V'x) <l Ax I/V}. 309. Hint. Take advantage of the
inequality [cos (x+ Ax)—cos x| <<| Ax| 310. a) x # -’;— +kn, where k is an

integer; b) x # kn, where & is an integer 311. Hint. Take advantage of the
inequality ||x+Ax|—|x||<<|Ax| 313. A=4. 314. f(0)=1. 315. No

316. a) f(O)=n; b) [O=5;0) [(0)=2 d) f(O)=2¢) f(0)=0; D) [(0)=1.

317. x=2is a discontinuity of the second kind. 318. x=—1 is a removable dis-
continuity. 319. x=-—2is a discontinuity of the second kind; x=2 is a removable
discontinuity 320. x=0 is a discontinuity of the first kind. 321. a) x=0 is
a discontinuity of the second kind; b) x=0 is a removable discontinuity. 322. x=0
isa removable discontinuity, x=kn (k= 41, 42, ...) are infinite discontinuities

32, x=2mk £ 5 (k=0, £1, £2,..) are infinite discontinuities.

3?4. x=kn (k=0, £ 1, +£2, ...) are infinite discontinuities. 325. x=0 is a
discontinuity of the first kind. 326. x=—1 is a removable discontinuity;
x=1 is a point of discontimuity of the first kind. 3827. x=—1 is a discon-
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tinuity of the second kind. 328. x=0 is a removable discontinuity. 329. x=1
is a discontinuity of the first kind. 330. x=3 is a discontinuity of the first
kind. 832. x=1 is a discontinuity of the first kind. 333. The function is
continuous. 334. a) x=0 is a discontinuity of the first kind; b) the function
is continuous; ¢) x=~kn (& is integral) are discontinuities of the first kind.
335. a) x==k (k is integral) are discontinuities of the first kind; b) x==%
(k # 0 is integral) are points of discontinuity of the first kind. 337. No, since
the function y=E (x) is discontinuous at x=1, 338. 1.53. 339. Hint. Show
that when x, is sufficiently large, we have P (—x,;) P (x,) <O.

Chapter 1l

341. a) 3; b) 0.21; c) 2n++h 342. a) 0.1; b) —3; ¢) /a+th—} Q.
344. a) 624; 1560; b) 0.01; 100; ¢) —1; 0.000011. 345. a) aAx; b) 3x*Ax +

2x A Ax)? 2x 4+ Ax
+3x(Ax)2 4+ (Ax)*;  3x*+3x Ax+(Ax)% ) — ;, (;:’;’-—(Ax’;') P —a (iiA;)’ :
— - 1 2 (2% —1)
d Ax— ;| —————— ox(8%_y), = 7.
) Vitax—Vx TS e) 27 ( 1) "

f) 1n’i+x—A"-. ﬁln(l—i— éxi‘) 36. a) —1; b) 0.1; ¢) —h; 0. 347. 2.

348. 15 cm/sec. 349, 7.5. 350. [E T AN —F () 351 ¢ () = lim [ ETEAN—T ()
Ax Ax—>0 Ax

A@. py 99 _ |im A® h f .
352. a) A b) 5 At"—T:oZT, where ¢ is the angle of turn at time ¢.

353. a) %7‘:; b)g=altigloﬁ_:" where T is the temperature at time ¢.

354. ng lim .A_Q_, where Q is the quantity of substance at time ¢.
dt  At-o At

Am Am

1 5
. 27. b) lim 2= 356. —_—=~—0.16; b) = =~—0238;
35. ) Ax ) AxTo Ax 2) 6 ) 21

[ — %% ~—0249; y,_,=—0.25. 357. sec? x. Solution.

y' = lim tan (x4 Ax)—tan X_ \im sin Ax — 1 sin Ax
Ax >0 Ax Ax»0 Axcosxcos (x4 Ax) Axso Ax

2 1
i = = sec®x. 358. 3x% b)) — £

XALTo cosxcos (x+ Ax)  cos?x sec X a) 3x% b) e <) Ve

d =L 30 L Solution.  f'(8)= lim [B+A&0—[(8) _

sin® x Ax >0 Ax

2

/8=y 8 lim 8+ Ax—8 _
Ax Axso Ax [}/ B T A0+ 3/ B+ Ao 8+ 3/

1

1
= lim =—. 360. [ (0)=—8, [ (1)=0,
Ax>0 3/ (84 Ax 423/ 8+Ax +4 12
f(2)=0. 31. x,=0, x,=3. Hint. For the given function the equation
f'(®=f(x) has the form 3x*=x 362. 30m/sec. 363. 1, 2. 364. —1.

365. [ (x°)=_—’l. 366. —1, 2, tan@ =3. Hint. Use the results of Example 3
x

X

= lim
Ax->0

o , /(B 1
and Problem 365. 367. Solution. a) f’ (0)= lim = hm =4 oo
Ax—»o  Ax Ax>03/ Ax
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VT8 —1_ 1

b)  f'(1)= lim = lim —w; o f— (2"+ 1 n):
Ax—0 Ax Ax—0 V(Ax)‘ 2
2k 41
cos( n—}-Ax)l .
: 2 | sin Ax | . , 2k + 1
= lim \ = lim 221 =—1; ( ) =
Ax>=0 Ax Ax>—0 Ax F+ 2
= lim SMAXL ) 36k Bxd— 124242, 369. — L4 2r— 252, 370. 2ax+b.
Ax—»+0 Ax 3
2 5
a7, 15 4y mat™=1 4 b (m4-n) tn=1, 373, 09 gy T
a Va’+b’ X
-1 2 8 = 2 & 4b
875. 2¢ * —5x* —3x7% 376. 5 x°. Hint. y=xx® =x*. 377. i
2a bc—ad —2x2—6x4+25 1—4x
_—— . Lo—— . 879, T2 380, —
3 /% (¢ +dx)? (x2—5x -+ 5)? x (2x—1)2
381. —_—1—_—, 382. 5cosx—3sinx. 383. — . 384 — —2
Vz0—=V>) sin? 2 (sin x—cos x)?
2 o r_ __x_ . X
385. t%*sinf. 386. y'=0. 387. cotx el 388. arcsinx- ———_Vl—x’ .
J— [ 1
389. xarctanx. 390. x%*(x--7). 391. xe*. 392. ex"x,?‘. 303. 2 .
394. ¥ (cos x—sin x). 395. x%*. 396. e* ( arc sin x - 1 . 397. 'M) .
Vi=z In?x
2 Inx 2 2Inx 1
398. 3x*Inx. , 24 mx 2 Lmnx - . si .
8. 3x®lnx. 399 P + Pt 400. i = 401. sinh x+x coshx
2 —x%si — i
402 x cosh x—x? sinh x 403, —tanh’x. 404. 3(xlnx—|—sn‘nhxcoshx).
cosh? x x 1n% x.sinh® x
405 -2 406 ! arc sinh x+——l— arc sin x
) q—xt’ ) Vi—=x ViFe )
— 2 2
407. * V=T arc coshx. 408. 1+ 2x arc tanhx 410. 3a (ax—|—b) )
2V a2=1 (1—x?%)? . ¢
—1 —x
A1, 12ab 18b%. 412, 16x (34207 413. X LA
+ 186y (3+2x%) o1y Viee
2 VAEWar:) —tan? s
a5, e a6 — V 1/?-, —1. 415, ‘tanixtantx
ii/(a+ bx’)? X cos? x
49, — ' . 420.2—15cos? xsin x. 421, — 1005 2 . Hint. x=sin-2¢ 4
9sin?x J cot x sin® 2¢
. - .
cos=rf. 422, —SMX o ggq  SiNlX 4., _3COsxt2sing
(1—3cosx)? costx 2 ¥V 15sinx—10 cosx
2¢cos x 3sinx 1
425. T . 426- .
3 f/sm x  costx 2V i—x2 V1 arcsinx
4 1 __3(arcsin x)* 4 —1

. 28. .
2(1-+x%)V arc tan x Vi—x (14 x2) (arc tan x)?
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x X X __ox a, -
429, %l—‘;-’ii;———jrﬂ 430. 3?/2%% 3In' 439, (2x—5) x
xe* +x e —
X cos(x‘——5x+1)———a—a—. 433. —asin(ax+f). 434, sin(2f 4-@).
x?cos? —
X
435. —28% 43 —1 . 437. xcos2x®sin3x®. 438. Solution.
sind x x
sin? —
¢ 2 1 1
1 2 — — —
—— 2XY=—:_ . 439, ——— . 440. —_— A4, —,
Vi— (2x)z( Vi—ae x V=1 2V x—x 1422
442, ]+12 . 443. —10xe™ ™. 444, —2¢5~** In5. 445, 2x10%* (1 4 x 1n 10).
X
446, sin2' 42 cos2in2 447, ——S . 448, —2 449, cot xloge,
Vl—e"‘ 2x -7
- x e
450. 2x 451, 2Inx 1 452, (e*+5cosx) Vi—x _4 .
1—x? x xin x (¢*45sin x—4arcsinx) V' 1—x2

1 1 1 ]
. 454, _— - — .
(1+1n2x)x+(1+x')arctanx 2x ,l/lnx—H 2(V x+x)
455. Solution. y’ = (sin® 5x)’ cos? % + sin® 5x (cos2 —;—) =3 sin*5xcos 5x 5 cos’%-{-

453.

+-sin® 5x 2 cos % ( —sin %—) -113—= 15 sin?5x cos 5x cos? % —%sin’ 5x cos % sin —3x— .
2 . 7 —_
a6, X3 g5y A8 e X g5 x—1 .
(x—2)* (x—3)% (1—x2)8 2V 2¢2—2¢F1
1 X2 (+ Vi)' 3/ s
460, ———— . 46‘. —_— . 462. 463. x’ 1 x‘ 2 .
| ACENDE Vi+ey /x e
464. __1________ . 465. 45 (a—2x%) (@ —5x%).
Y/ = 1) (- 28
¢ W/ n\m=1 — —_—
466 2ubmnx" =1 (a - ba") 467, x»—1 ' 468. _{z_:(s_x__.
(a— bxn)m+? x4+2° 2 {a—x
465 3x242(a4-b+c) x+ab+bc+ac 470 142V g
2V (x+a) (x+6) (r+0) 6Vy Vgt V)
a7, 27t +4) /30 a2, —4=2% __ 473, . 474.sin®xcos?x.
@+ /S V @ay—y*)? Ve"+1
475. m 476. 10tanbysec?bx. 477. xcosx®. 478.  3{%sin 263,
479, 3cos x cos 2x. 480. tantx, 481, 52 4gp, — @=BISInZ  e.
sin® x 2 Va sin? x +4- B cos? x
1 arc sin x (2 arc cos x—arc sin x) 2
484, — —_— . 485, ———— . 486. .
s 2 Vi—¢ x V2= 142
agy, Fiecosx—VI=w o0 1 44 ]/“:_" .490. 2V aT—2,
(1—x3)’h Va—bxt a+x
. 492. arcsin V% 493. 5

Vaox—x2 V 1=25xarc sin 5x
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9, —— . aps. U0 4 '

xVi—=Intx 1—2xcosa+4x* 544sinx
x sin® x a % sin3x
497. 4x ]/b—;—x . 4908. m . 499, ? Ve R 500. sin 2xe .
501. 2m?p (2ma™% 4 b)*~'a™* Ina. 502. e (a cos Pt —p sin Bt). 503. e** sin fux.
504. e~ *cos 3x 505. x"~'a~x2 (n—2x* In a). 506. ———l-y tanx (1+ VcosxIna).

3cot — ln 3 —
507. — . 508 2ax + b 509 ! Vx

. — . —— . B10. ———.
(xsin l_)’ ax*+bx+c Va+a 1+ V'«
x

——1 s =2 sis. —Lian®) . sie ZEIL
V2ax + x2 xin®x x: x xt—x—2

_ 3x2—16x 419 1
y—5h’l (x—2)—31n(x+1) 515. (X—lz x—9 (x—-3) . 516.5W .
— —6x 16a In? (ax + b)

2__n2 ——

517. ¥V x*—a’. 518 = me—mm - o T
-———i—_ . B2l mx +n . 522. V Zsinlnx. 3523. I
Vx’+a’ x? —a? sind x

V‘+"'.525. "+‘ . 526, ———o [ 9aesInaX 1 9 4 9 (1 _arc cos 3x)}.
X V1—9x’

sin ax
osbx sin? ax \ a cos ax cos bx -+ b sin axsin bx 1
( 3 In3+4 o5t bx 528.

cos? bx ’ 142sinx ~

s9. —' s, ot o gMmx, 1
x(l-}—lnz x) Vi—x?arcsinx x x VY 1=In*x

x? 2 x2— 3x

53t, ——4—m——— . 532, ———— . 533, ——M— . 534. .
x Q1 +ln"'x) x84 x2—2 cosx Vsinx xi—1

arc sin x . -

l+x" . ————x’)’/’ . 537. 6sinh?2x.cosh2x. 538. e** (acoshfx+

+ P sinh fx): 539. 6tanh?2x (1 —tanh? 2x) 540. 2coth 2x. 541. -72_:_2 .
a4 x

542. _l__ 543. ! . 544. —— . 545. 2 546. xarctanhx

x Vintx—1 cos2x sin x 1 —x?

547. xarcsinhx. 548. a) y'=1 when x> 0; y'=—1 when x < 0; y’' (0) does

not exist, b) y'—|2x|. 549. y'=%. 550. f'(x)::{ ::_‘l’h‘szezfgo
V3

1 . . .
552. &+ . 553. 6m. 554. a) f_(0)=—1, f, (=1 b)f_(0) :%,

feO= 12—: o) f_(0)=1, f, (0)=0; d) f_(0) =f, (0)=0, €) f_(0) and

f ', (0) do not exist. 555. 1—=x. 556. 2+"——3. 557. —1. 558. 0 561. Solu-

611.

Hint.

520.

524.

527.

535.

tion. We have y’'=e~* (1—x). Since e"‘::-y- , it follows that y’ =— (1—x)
or xy' =y (l—x) 566. (l+2x)(l+3x)+2(l—|—x)(l+3x)+3(x+l)(l+2x)
567. (x+2) (54% 4 19x 4 20) 568. x2—dx+

x4 1) (x4-3)° 2 Vx(x—l)(x-—?)’
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3x245 3 %2 (x—2)° (x2=Tx 1)
569 . 570 '
3(xl+1)5 i x’+124 (x—1) (x—2) (x—3) V (x =1y (x—3)*
x4 x—
71, — . 572. x* (1 41n x). 573. xx* 21nx).
5 3(x_1)'/: (x+2)“/, (x+3)s/’ x* (141n x) xx*+1 (] 4 nx)
Vi-—

574 3/ % 0% g7 x (1+-2',-1nx). 576. x"xx"(%+lnx+ln’x).
577, xtinx (Si0X
b4
579 Ly* ! 1 .
. 1+.}. In 1+}_ +1—+—x . 580. (arc tan x)* x
X ’ 1
X [lnarctan x+m . 581. a) xy “m)

3, t— —2t
. 582- _2't . 583- m . 584. 1-—_? .

+cosxlInx ). 578. (cos x)*™* (cos x Incosx — sinx tan x).

b) xy=m;(:)xy= E3
14 5e?

{3
t@e—t) 1+l 588 tant. sse. — 2.

2
1—op ) 33/t TR a

b ¢ _J —1 when t<0, st
590. Ttan t. 591. — tan3t. 592. ¢, _-{ 1 when ¢ > 0. 593. —2¢%,

594. tan{. 596. 1. 597. . 599. No. 600. Yes, since the equality is an 1d£n-

585.

. 2 bx x2 x (3x 4+ 2y) 1/ y
tlty. 601. 5 - 602. —E . 603. ? . 604, — W . 605. ? .
3 /'y 22 1—y? 10
ws. — /L. e /N C .
06 x 607 3(x2 —y?) +2xy 14 3xy?4-4y° 608 10—3cesy
_ ycos?y y l—x*—y? 2 ‘
609. 1. 610. T—x COS’y . 611. —x— -l—m_—yi‘ . 612, (x+y) . 613. Yy =
Y TR 5. 65 Y 616. XY
=g —1=rfy—1" . P . . —y =g

2 2 _
o7, YEEV ARG g0 xlny—yy
cx—y Ve +y2 ylnx —x x
arc tan 2>63°26’. 623. 45°. 624. arc tan -3—2:36° 21'. 625. (0, 20); (1, 15);

. 620. a)0; b)—;—; c) 0. 622. 45°

(—2, —12). 626. (1, —3). 627. y=xt—x+1. 628.k=T—ll . 629, (% —%) .
631. y—5=0; x42=0., 632. x—1=0; y=0, 633. a) y=2x; y=——~l— X;

2
b) x—2y—1=0; 2x+y—2=0; ¢) 6x+42y—n=0; 2x—6y+3n=0;
d) y=x—1; y=1—x; e) 2x+y—3=0; x—2y+1=0 for the point (I, 1);
2x—y+3=0; x4+2y—1=0 for the point (—1, 1). 634. 7x—10y+46=0,

w2y 2
10x +7y—34=0. 635. y=0; (n+4) x4 (n—4) y— 2 =0. 636. 5x 4 6y—
—13=0, 6x—5y+421=0. 637. x+y—2=0. 638. At the point (I, 0):

y=2x—2; y=l;x; at the point (2, 0): y=—x4-2; y=x—2; at the point

(3, 0): y=2x—6; =32—_x. 639. 14x—13y+412=0; 13x+ 14y—41=0.
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640. Hint. The equation of the tangent is 2—;‘-+2l-=1. Hence, the tangent

crosses the x-axis at the point A (2x, 0) and %he y-gxis at B (0, 2y,). Finding
the midpoint of AB, we get the point (x,, y,). 643. 40°36'. 644. The para-

bolas are tangent at the point (0,0) and intersect at an angle
arctani%8°8’ at the point (1,1). 647. S;=8,=2; t=n=2V 2.

7
648 ! 652 T—QasinLtan-t—' N——2asinL- S —2asin’t—tant— ;
"2’ : - 2 2 T 2 °t— 2 2°
S,=asint. 653. arctan%. 654. —J;—+2(p. 655. S;=4n%; S,=aq;
t=2na Vl+4n'; n=a l/l+4n2; tanp=2n. 656. S;=a; S,= a

(F.oz 5
t=l/a’+gz; n=%Va’+Q;; tanp= —q,. 657. 3 cmjsec; 0; —9 cin/sec

658. 15 cm/sec. 659. —% m/sec. 660. The equation of the trajectory isy==x tan a—

g . v Ysin 2a
P — The range is _— The velocity,
202 cos*a g
V 5 - T i . . Ugsina—gt
v, — 20,8t sin o + g2t the slope of the velocity vector is ———_Uo oS &

Hint. To deterinine the trajectory, eliminate the parameter ¢ from the given
system. The range is the abscissa of the point A (Fig. 17). The projections
of velocity on the axes are %—; and S—It/ The magnmitude of the velocity is

1/(%)2.{_(%%)3; the velocity vector is directed along the tangent to the

trajectory  661. Diminishes with the velocity 0.4  62. %, ;)
663. The diagonal increases at a rale of ~ 3.8 cm/sec, the area, at a rate
of 40 cm?jsec 664. The surface area increases at a rate of 0 2m m?jsec,

the volume, at arate of 0.05 1 m?jsec. 665. %— cm/sec 666. The mass of the rod

s 360 ¢, the densily at M is 5x gjcm, the density at A is 0, the density
at B is 60g/cm. 667. 56x°4-210x% 668. e*' (4x®--2). 669. 2 cos2x

— z —
0. 2U=X) gy __—% 672.  2arctanx+ .
3 (14 %)% V(a‘+x=)’ 1 4-x%
2x arc sinx 1 x
673. -— . 674. —cosh — . 679. y'''=6. 680. [’’’ (3)=4320
1—x2 (1—x¥)'f a a y e
681. yv=(x_12_——41)—,. 682. yV'= —64sin2x 684. 0; 1; 2; 2. 685, The velocity

is v=>5; 4997; 4.7. The acceleration, a=0; —0.006; —0.6. 686. The law
of motion of the point M, is x=acoswt; the velocity at time ¢ is
—ao sinot; the acceleration at time ¢ is —aw?cosot. Initial velocity, 0;
initial acceleration: —aw? velocity when x=0 is —aw; acceleration when
x=0 is 0. The maximum absolute value of velocity is aw; the maximum
absolute value of acceleration is aw®. 687. y'™ =nla". 688. a) nl(1—x)~"+0,
3. (2n—
b) (—1yrer i3 @) ggy g gin (x+n%; b) 2% cos (2x +n%) :
2"xn“'_
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(n—1)! (—1)"*'al 2n! .
R N ey C R

g) 2" 'sin 2x+(n—l)-—2—]; h) (_1)(';;_:';'):”!‘1

b) 27=%= | 2(— 1)t 20 (— 1)~k +”(" D¢ 1)"-2]; Q) (1—x%) x
X €Os (x+ %‘)—an cos (x-{- ])n)—n(n—l)cos x4 (n 2)n),
d) (=11 1.8... (2n—3) (—1)"6 (n—4)!

mi [ X3
oy 2
691 4 (0)=(n—1)! 692. a) 9% b) 22+2; ¢) —V T—. 693. a)
1 . —1 —1

Q) (=% 4 (=1

. 690. a) x-e* | ne*:

x—2n—1)] e) for n>4.

asm't ;

) sacositemi’ © 73 4 oy - 694.2) 05 b) 2%, 695. a) (I1+1%)x
4a sin® — 3

X(1+3%;  b) t(ll%:),. 696. W—t_fr%tﬂ?" 697. (“%”,)f_ =1.

699. 2;}3*;’ . 700, 4‘*?;;:?‘::;’;;); ‘: '701.,”—6e"(1+3t+2t’). . e

W AT ap g T~ 08—

707. —2yy—;|’—2.3::)8 %-_-“_;JJ),; g—yf-_—y—"—. ) %é. 710. --l%

11. a) 3'b)_—y— 712. Ay=0.009001; dy=0.009. 713. d (1—x*)=1 when

x=1 and Ax=——l—. 714, dS=2x Ax, AS=2x Ax+} (Ax)®. T17. For x=0.

3
T 1
718. No. 719. dy=—7—2-\_ —0.0436. . 720. dy_m-\_0.000IW.
—mdx dx dx
725. —“-d"—. 726, —2e~*'dx. 727. Inxdy. 728, —20F 709, _1HCO8Q
x4 a? T—x? sin? ¢
X
eldt 10x + 8y —ye-7dx_ y x+y
730. —T‘T‘E—!t. 732. — 7 +5 dx. 733. i = _ydx. 734 ;_—ydx.
yr—xe Y
735. :?dx 737. a) 0.485; b) 0.965; c) 1.2; d) —0.045; e) 7:—t+0.025a\-_0 81,

788. 565 cm?®. 739, V5=2.25, ) T7=x4.13; V70=8.38; V64025 3.
740. )/ 10==2.16; }/T0=4.13; }/200~5.85. 741. a) 5; b) 1.1; ¢) 0.93;

_ 2 _ 2
d) 0.9. 742, 1.0019. 743. 0.57. 744. 2.03. 748. ——(91,— . 749, —x—(df;—
—x%)'la (1—x)"
2cosx smx) @t L 21nxx 3(d ). 752, —e=¥x
4
X (x2— 6x+ 6) (dx)%.  753. TS;_(L;)), 754. 3.2% sin (2x+5 =+ -5-) (dx)®.

750. (—smx Inx4-
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755. e*°*%gin (xsin a4 na)-(dx)?. 757. No, since f' (2) does not exist.

758. No. The point x=—;—t is a discontinuity of the function. 762. E=0,

763. (2, 4). 765. a) g_%, by E=-F. 768, lnx=(x—1)—%(x—l)2+
2(x—1) _ R AT A
e where E=14+0(x—1), 0<0 < 1. 769. smx_x—s—!+a- sin &,

+

3 4] L]
where §,=0,x, 0<0,<1; sinx=x—x—l+';-T—gTsln§,. where §,=0,x,
xn-1 xn ,
=] l)l e", where §=0x,

x?
(l +E e
=10 775. Solution. We have

0<0,<1. 1770, e._l-|-x+2! +3'+ o —

x? 5

0< b <l 772. Error: a) & ; — ; in both cases £=0x;
16(1 Y aaran :

0< 6 < 1. 773. The error is less than 53—

1

Ly 2
VZi;=(1+%) (1_%) . Expanding both factors in powers of x,

x\* I x 1x x\ ¢
we get: (14— F) -\.l+7—5—§a— (l__) =1+

oo| w

h!k hulkn

x
?-i'

rof —

Multipl,ing, we will have: l/aixx_l+ + . Then, expanding e in
X

— 3
rowers of %, we get the same polynomial e“:—.l—}--ﬁ—-{-g—,. 777, — L

? .

778 o 779. 1 1780. 3. 781.% 782. 5. 783. . 784. 0. 785. %

786. 1. 788. % 789. 1. 790. 0. 791. a. 792. o for n>1; a for n=1;

0for n<1. 793. 0. 795. —;- 796. 12 797. —1. 799. 1. 800. e*. 801. 1,

802 1 §03. 1 804. —:—. 805. %. 806. —él—-. 807. 1. 808. 1. 810. Hint.

Findu“f'o _—2_—17;; w here S=%(a—sin a) is the exact expression for the area
3

of the segment (R is the radius of the corresponding circle).

Chapter NI

811, (—o, —2), increases; (—2, o), decreases. 812. (—o0o, 2), decreases;
(2, o), increases. 813. (—oo ®), increases. 814, (—oo, 0) and (2, o),
increases; (0, 2), decreases 815. {— o0, 2) and (2, ®), decreases. §16. (— o, 1),
increases; (1, o), decreases. 8]7 (-—- , —2), (—2, 8) and (8, ), decreases.
818. (0, 1), decreases; (1, ), increases. 819. (—o, —1) and (1, o), in

creases; (—1, 1), decreases 820. (— 0, ®), increases 821. (0, eL)' de-

1
creases; (_e" oo), increases. 822. (—2, 0), increases. 823. (— »,2), decreases;
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(2, ®), increases. 824. (—o, a) and (a, »), decreases. 825. (—oo, 0) and
(0, 1), decreases; (1, o), increases 827, Ymax=7 when x=51. 828. No

extremum. 830, ygin=0when #=0; ymin=0when x=12; y,x =1206 when x =6.

831. Ypin=~—0.76 when x==0.23; yp,x=0 when x=1; ypin =—0.05 when
x=1.43. No extremum when x—2."""832. No extremum.  833. Ymax=—2

when x =0; ymin=2 when x=2 834. ym“=1% when x=3.2. 835. Ymax=

- 2 - 2
=—3V3 when x=——x; =3)3 when x=->= 836. =V?2
V V3 Ymin V V3 B Ymax ;

when x=0 837. ypax=—V¥3 when x=—2V3; ymin=V3 whgn x=2V3.
838. Ymin=0 when x=+1; ymax=1 when x=0 839. Ymin=—"75 V'3 when
x:(k— —é—)n; ymaxz'% V§ when x=(k +'f17 n) (k=0, £1, +£2, ..).

840. ypax =5 when x=12 kmn; ymx=5c052€n when x=12(ki%)n; Ymin=

=—5cos—gwhen x=12 (ki%)n; Ymin=1 when x=6(2k+1)n (k=0,

+1, £2, ..)). B4l. ypin=0 when x=0. 842. ymi,,:-—% when x=:}—,
843. ymax=ei, when x=-:—,; Ymin=0 when x=1 844, ypiy=1 when
x=0 845. ymin=——:— when x=—1. 846. ypnjn=0 when x=0; ym,,‘_:é2

when x=2 847. ypmi,=e when x=1. 848. No extremum. 849. Smallest

value is mz—% for x=—1,; greatest value, =%when x=1. 860. m=0

1
2
M=1 for x—_—gE (=0, +1, +2, ...). 852. m=0 when x=1; M=mxn when

x=—1. 853. m=—I when x=—1; M =27 when x=3. 854. a) m--—6
when x=1; M=:236 when x=>5; b) m=—1579 when x=—10; M =3745 when

x=12. 856. p=—2, g-=4. 861. Each of the terms must be equal to —g

862. The rectangle must be a square with side —i— 863. Isosceles. 864. The
side adjoining the wall must be twice the other side 865. The side of the
cut-out square must be equal to %—. 866. The altitude must be half the
base. 867. That whose altitude is equal to the diameter of the base
868. Altitude of the cylinder, 72/.%; radius of its base R 1/%, where <
is the radius of the given sphere.  869. Altitude of the cylinder, RV'Z2
where R is the radius of the given sphere. 870. Altitude of the cone,

when x=0 and x=10; M=5 for x=5. 85l. m=- when x=(2k +1) —Z—;

T
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where R is the radius of the given sphere. 871. Altitude of the cone, %R,
where R is the radius of the given sphere. 872. Radius of the base of the
cone 7, where 7 is the radius of the base of the given cylinder. 873. That

whose altitude is twice the diameter of the sphere. 874. ¢ =m, that is, the cross-
section of the channel is a semicircle. 875. The central angle of the sector

is 2m ]/%— . 876. The altitude of the cylindrical part must be zero; that

2 2 3
is, the vessel should be in the shape of a hemisphere. 877. h=(l’ —d? ) :

878. %(—+2—z-=l. 879, The sides of the rectangle are an-and bV 2, where
(] [}

a and b are the respective semiaxes of the ellipse. 880. The coordinates of
the vertices of the rectangle which lie on the parabola (%a; +2 V’?)

881. (:1: 7%_, 7‘2—) 882. The angle is equal to the greatest of the numbers

3 -
arc cos L and arc tan A . 883. AM=a —'{—p—— 884 !

’ ‘ Vovya o ¥E
885, a) x=y=7‘_1?; b) x= .1;%_; y=d l/‘é' 886, x— ]/?—(:,—Q' :

Pmin=V 2agQ. 887. V Mm. Hint. For a completely elastic impact of two
spheres, the velocity imparted to the stationary sphere of mass m, after
impact with a sphere_of mass m, moving with velocity v is equal to

1112’%1_ . 888. n= NT-R (f this number is not an integer or is not a divisor of
Nl,we t;ke the closest integer which is a divisor of V). Since the internal resistance

2
of the battery s '—11—\,1, the physical meaning of the solution obtained is as

follows: the internal resistance of the battery must be as close as possible to the
cxternal resistance. 889. y=§-h. 891. (—, 2), concave down; (2, w),

concave up; M(2, 12), point of inflection. 892, (— o, o), concave up.
893. (— 0, —3), concave down, (—3, ), concave up; no points of inflection.
894. (— o, —6) and (0, 6), concave up; (—6, 0) and (6, ), concave down;
points of inflection M, (—5, _%>,0(o, 0), Mz(6, -“2’-) 895. (— o,
—V'3) and (0, V'3), concave up; (— V'3, 0) and (V'3, ), concave down:;
points of inflection M, , (£V'3, 0) and 0(0, 0). 896. ((4k+1) 5" ,

(4k+3)§n), concave up; ((4k +3) g (4k+5)—;) , concave down (k=0,

+1, 2, ...); points of inflection, (2k+1)-2’-‘, 0). 897. (2kn, (2k+1)m),
concave up; ((26—1) =, 2kn), concave down (=0, +1, £2, ...); the abscis-
sas of the points of inflection are equal to x=kn. 898. (0 L concave

e



Answers 411

1 1 3 L .
down; (——=, o ), concave up;M (—=,6 2 | is a point of inflection.
( Ve ) P ( Ve 2e’>

899. (— o0, 0), concave up; (0, o), concave down; O (0, 0) is a point of
inflection. 900. (— oo, —3) and (—1, ), concave up; (—3, —I), concave

down; points of inflection are M, —3, = | and M, | —I, 2 . 901, x=2,
e e

y=0. 902, x=1, x=3, y=0 903. x=42, y=1. 904. y=x. 905. y=—yx,
left, y==x, right. 906. y=—1, left, y=1, right 907. x= 41, y=—x, left
y==x, right 908, y=—2, left, y—=2x—2, right. 909. y=2  910. x—=0
=1, left, y=0, right. 911, x=0, y=1. 912, y=0. 913. x=—1.
914, y=x—m, left; y=x-+m, right. 915. y=a. 916. y,,x=0 when x=0;
Ymin =—4 when x=2; point of inflection, M, (1, —2). 917. ypax=1 when
x=4+V3; Ymin=0 when x=0; points of inflection M, | £1, 3

918. Ymax=14 when x=—1; y,,, =0 when x=1, point of inflection, M, (0, 2).
919. Ymax =28 when x=—2, ynin=0 when x=2; point of inflection, M (0, 4).
920. Ymin=—1 when x=0; points of inflection M, ,(+¥5 0) and
My (1.

——FZ-S) . 921, Ymax=—2when x==0; ypnjn==2 when x=2; asymp-
totes, x==1, y=x—1. 922, Points of inflection M, ,(+1. F2); asymptote

x=0. 923. ymix—=—4= when x=—1; ynn==4 when x=1; asymptote, x=0.
924. ypin=3 when x=1; pownt of inflection, M (—/2, 0);  asymptote,
x=0. 925. ymx-:% when a1=0, points of inflection, M +1,

asymptote, y=0 926, ypmax-— —2 when x=-0; asymptotes, x—= j_2 and y=0.
927. ymin==—! when x= ;~l Ymax=1 whenx-l points of inflection, 0(0 0)
and M,‘,(;kQ]/I?, ;{;-1(—23L ; asymplote, y=0 928. y,.«=1 when x—=4;

8
—>; asymptotes, x=2 and y-=0. 929. Point

point of inflection, M {5, 9

of inflection, 0(0, 0); asymptotes, x =42 and y=0. 930, ym“:———?—é
when x:~§—' asymptotes, x—=0, x=4 and y=0 931. yu,, =—4 when

3’
x=-—1; Ypju=4 when x=1; asymptotes, x=0 and y=3¢ 932. A (0, 2)

and B (4, 2) are end-points; r/max——2}/2 when x=2 933. A(—8, —4) and
B (8, 4) are end-points. Point of inflection, 0(0, 0). 934. End-point,

A (=3, 0); Ymin=—2 when x=—2. 935. End-points, A(—¥'3, 0), 0(0, 0)
and B(V'3, 0); Yma Ymax = V'3 when x=—1; point of inflection, M (V 3+2V 3,

6 l/l’*‘ ). 936, Ymax=1 when x=0, points of inflection,

M, (L1, 0). 937 Points of inflection, M, (0, 1) and M, (1, 0); asymptote,
y=—x. 938. ynax=0 when x=—1I; ymm=—] (when x= 0) 939. Ymux=2

when x=0; points of inflection, M, ,(;1;1 /2) asymptote, y=0.
940. ypmin=—4 when x=—4; yq., =4 when x=4; point of inflection, 0 (0, 0);

asymptote, y==0. 941. ymi,,_—_.V‘i when x=2, Ypin= |/4 when x=¢4;
Ymax=2 when x=3. 942. Ypmin=2 when x=0; asymptote, x_.iz

943. Asymptotes, x=+2 and y=0. 944. ymin=§i when x=V¥3;
2
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V3
Ymax=—"73,=

V2
and M,(a, %) asymptotes, x=+1 945. ypijp=73

when x=—3; points of inflection, M, (—3, -%) 0(0, 0)

/—_ when x=6; point

of inflection, M [ 12, 3 12_ ;asymptote, x =2 946. ymax=_1‘ when x=1; point
v/ 100 e

of inflection, M<2, 37), asymptote, y=0. 947. Points of inflection,
M, (—Sa, l:#) and M,(—a. Q?a); asymptote, y=0. 948. ym.,=¢® when
3

x=4; points of inflection, M,, , 8_%2_ , eT ; asymptote, y=0.
3
949. y.x=2 when x=0; points of inflection, M, , (;};l ?). 950. Ymax=1

when x=+1; Upip=0 when x=0. 951. Ymax=0.74 when x=e*==7 39;
point of mﬂechon. M(e/"~l4 39, 0.70); asymptotes, x=0 and y=0.

a’ . . a 3a?
952. Ymin= =7, when x=-—2- point of inflection, M(~—— - ).

Ve’ Ve' 4

2
953. Yymin=e when x=e; point of inflection, M (e’, %) ; asymptote, x=1;

1
y—~0 when x-—0. 954. ymax=ei'§0,54 when x=e—2—1:>—_—0,86;
1
Ymin=0 when x=0; point of inflection, M(%—IQ—O.GS; ?'\-0.37);

y -0 as x »—1+0 (limiting end-point). 955. ymip=1 when x= 4 V'2; points
of inflection, M, ,(+£1.89, 1.33); asymptotes, x=41. 956. Asymptote,
y=0. 957. Asymptotes y=0 (when x—++4 o) and y=—x (as x - — »).

958. Asymptotes, r=——, x=0, y=1; the function is not defined on the
interval -—:—,0]. 959. Periodic function with period 2m. ypin=—1V 2
when x= 7 7+ 27, Ymax = ¥V 2 when x=;+2kn (k=0, +1, +2, ...);
points of inflection, M, (%n+lm, 0). 960. Periodic function with

period 2. Ymin= —% V3 when x=-g—ﬂ+2ku; Ymax = %VS_ when

x= —33—t+ 2k (R=0, +1, £2, ...); points of inflection, M, (kx, 0) and
N, (arc cos (-—-;—) + 2k, 1% Vﬁ) 961. Periodic function with period 2.

‘On the interval [—m, =), ym“::% when x=;|:-:-;£; Ymin=—2  when

X=+%; Ymin=~0 when x=0; points of inflection, M, ,(+£0.57, 0.13) and
M, (12 20, —0.95). 962. 0dd periodic function with’ penod 2n. On inter-

val [0, 2}, ymax=1 when x=0; ymz=0.71, when x=2- } Ymax=1 when
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x =%—; Ymin=—1 when x=1; ymax=—0.71 when x=%ﬁ;ymin=—l when

x=-g—n; Ymax=1 when x=2n; points of inflection, M, (0.36, 0.86);
M,(1.21, 0.86); M,(2.36, 0); M,(3.51, —0.86); M;(4.35, —0.86);

Mgy (5.50, 0). 963. Periodic function with period 2. y,.,,m=—2 when

2
x=%+2kn; ym“=___'/; when x=—-%n+2kn (=0, £1, £2, ...)%
asymptotes, x=—%- n+4kn  964. Periodic function with period m; points of
inflection, Mk( vy +kx, V2 (=0, £1, £2,. );asymptotes,x:%n+kn.
965. Even periodic functxon wnth period 2n On the interval [0, =
Ymax= 3:/._ when x=arccos —— V_ ; Ymax =0 when x==1; yip = — 3—‘—/—% when

1 . - . T
x:.—nmcos(——ﬁ); Ymin=0 when x=0; points of inflection, M, (—2—, 0) :

V2 4V T\, V2 4T
M, <afCSl“-—3—: —57 i M, —arcsm—, ——57 966. Even

periodic function wnth period 2nx. On the mterval [0, =] ymax2-_l when

x=0;, Ymax= V_ when x—-arccos( V_>; Ymin= — 3V-5— when

1 . . n .
x=arcmsT/—g, Ymin=—1 when x:=m; points of inflection, M,(?,0>,

I3 4 3 _ /13 4 13
M, <au cos B 9 ﬁ)’ M,(arc cos( V ﬁ;)' -3 ﬁ)'
967. Odd function. Points of mﬂectlon. My (kn, km) (k=0, +1, +£2, ...).
968. Even function. End- pomts, y, 2(£2 83, —1 57) ymayx=1 57 when x=0

(cusp); points of inflection, M, .(+1.54, —0.34). 969 Odd function.
Limiting points of graph (—I ' ) and (I, + ). Point of inflection,

0 (0, 0); asymptotes, x=41. 970, Odd function. yma,‘:%-—l-{-?kn when

x :%—-{—kn; ymin=%n+l+2kn when x=-2—n+kn; points of inflection,
2k + 1
2

My, (kn, 2kn); asymptotes, x= n (=0, 1, £2, ...). 971. Even

function. ymja=0 when x=0; asymptotes, y=—-1-2‘- x—1 (as x -—ow) and
Y =-J;—x——l (as x -+ o). 972. ypi,=0 when x=0 (node); asymptote, y=1.

973. ym1n=l+%- when x=1; Ymax= %n—-—l when x=—I; point of

inflection (centre of symmetry) (0, ®); asymptotes, y =x+42n (left) and y=x
(right). 974, Odd function. ympin=1.285 when x—-l ym,x—l 856 when

x=—1; point of inflection, M(O, —2—-);asymptotes, ——+n (when

x +—o0) and y—% (as x -+ ). 975. Asymptotes, x=0 and y=x—In2,
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976. Ymin=1.32 when x= £1; asymptote, x=0. 977. Periodic function with
period  2m. ymm=-6l when x=—g—n+2kn; Ymax =€ When x=£—+2kn

V 1 Vs -1
(=0, X1, +2, ...); points of inflection, M, \ arcsin 3 +2kn, e 2 )

Vs+1\
and N, \ — arcsin +(2k+1)n e * |, 978 End-points, A (0, 1)

and B(l 4,81). Pomt of inflection, M (0.28, 1.74). 979. Points of inflection,
M (0.5, 1.59); asymptotes, y=0.21 (as x—+—o) and y=4.81 (as x -+ ).
980. The domain of definition of the function is the set of intervals (2km,
2kn +mn), where k=0, +1, +2, ... Periodic function with period on,

Ymax=0 when x—-—+2k:rt (=0, &1, 42, ...); asymptotes, x=km.

981, The domain of definition is the set of intervals [(2k—%)n,

(2k —}—%) n], where & is an integer. Periodic function with period 2m.
Points of inflection, My (2kn, 0) (=0, +1, +2, ...); asymptotes,
x=4 %+2kn. 982. Domain of definition, x> 0; monotonic increasing

function; asymptote, x=0. 983. Domain of definition, ]x——2lm[<—;E
(=0, +1, £2, ...). Periodic function with period 21 yug,=1 when
x=2kn (=0, %1, +2, ...); asymptotes, xz-g—-l—kn. 984. Asymptote,
y=1.57, y-»—1.57 as x -0 (limiting end-point). 985. End-points,

1

l —
A, ,(£1.31, 1 57); ymin=0 when x=0. 986. ymi“=(?)e = 0.69 when
x=i8k0.37; y—-1 a x->-+0 987. Limiting end-point, A (40, O0);

l .

max=¢€ ‘= 1.44 when x=e==2.72; asymptote, y=1; point of inflection,
M (0.58,0.12) and M, (4 35,1 40). 988. Xmin=—1 whent=1 (y =3); ymm:—~l
when t=—1(x=23) 989. To obtain the graph it is sufficient to vary ¢ from 0 to 2m.
Xmin=-—a when ¢ =1 (y =0); Xpmyx=a when ¢t =0 (y =0); Ymjn —— a (cusp) when

3 7
t=+ —;— (x=0); Ymax=+ a (cusp) when t:—;— (x=0); points of inflection

when ¢ =% 3n 5n 7n —p 8 a
n—4’———4’_4'_4 m,y:i“'f‘;.
1
990. Xmin=—— when t=—1(y= —e); ym;,xz—el— when =1 (x=e); points of

inflection when t=—V2, i.., ( V_? — V'QEV_’> and when t=V'2,
l
e

-y V2
le., (V2 e’ V_’): asymptotes, x=0and y=0. 981. xpa=1 and ypma=1
e

when ¢=0 (cusp); asymptote, y=2x when ¢ -4 . 992. y;;n=0 when £=0.
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_a Y. __x _ I at—cixt
993. ds_—y— dx, cosa=-—-;  sina=-——. 994. ds= P o dx;
22 -
€os a:i(—‘———x—; sina—:—--——j—x—, where c¢= Va’—-b’. 995. ds=
Vot =2 Va—=cix
| Vs Yy .o p 3/a
=—Vp+ytdx;, cOSQU=—F—=———; siNt=—————. 996. ds= —dx;
y V ity Vrrt+d x
3 /% 3/
oS @ = ]/-_x_; sing = — l/i. 997. ds:cosh-{-dx; Cos @ == 1 ;
a a a

cosh-’-‘-
a
X .t I . t
sinu:tanh;. 998. ds=2asm—2—dt; cosm:smi; sin o= cos 3. 999. ds=
=3asintcost dt; cos o= —cos {; sina-=sint. 1000. ds=a Vl-{—(p'd(p; cos fp=

1 Py — a
=—— . 100l.ds=—V T+ ¢ dp; cos p= — . 1002. ds =
Vite @*

1
Vitet cos? %)

dg;
in B == cos 2 = Pap;  sinp=cos 2 -
sin f==cos 5 . 1003. ds=acos ) de;  sinf=cos o 1004 ds=

2
=r V1F (na)}dg; sin ﬁz——l—-i-_lm . 1005. ds:_% deg; sin B =cos 2p.

1 a b 6
1006. K =36, 1007. K= ——— . 1008. K4=2; Kz=2 . 1009. K=—0 _ .
3V72 T e 13V 13
1010. K = 3__2 at both vertices. 1011. (-g,s) and (.g_, _3),
a
In2 V2 9y (6% + a'y?)'?
1012. <“T' —2—> 1013. R_’T o, R=EEIVNT

1015. Rl(y_t‘)_j 1016. R —
iy

3
—2—ash\2tl. 1017. R=|af|. 1018. R=

—_— 4
=|r V ik, 1019. R:\g acos -2 |, 1020. Riast=1pl. 1022, (2,2).

2
116 . 3\t 1
1023. (—7a,§a). 1024.  (x—3) —{—(y——2—> =g 1025 (x42'+
¢ 2

+(y —3)2=8. 1026. pY"’:%(X—p)‘ (semicubical parabola). 1027, (aX)T+

2 4
3 3

+0Y)* =c

, where ¢?=a%>—b2.
Chapter 1V

In the answers of this section the arbitrary additive constant C is omit-
ted for the sake of brevity. 1031, %a’x’. 1032. 2x°4-4x24-3x. 1033. —';——i-

n—1

3 2 4 p2. n
+("——+;’-)-"—+%. 1034, a*x+3%’i+’1%. 1035. %"Vsz. 1036, 1~

n—1 "
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A5 2 1 3 2 ™
1037. {‘/nx 1038. a’x—%a 1x? +—7—a 8x? %— . 1089, Ex__l/-x_
3x¢3/ % ax x wm YV myn Vo eny o
1040. - ’/ 63/ % 104, 2V x_4x Vx 2V
13 4m+l m+2n+1 4n+1
— 1 X
1042. 22 V ax—4ax+4x V ax— 2x2 ——_. 1043, —= arc tan =
V + _ V + 5 Vax V7 V7
1 x— V10

_ X
1044, — In —{. 1045. In (x 44 x%. 1046. arc sin ———
2V10 x+V-lO‘ s+ VA 2V 2
1047, arc sin —Vi—‘a-—-ln(x-}- Vx'+2). 1048*. a) tanx—x. Hint. Put tan?x=
=sec?’x—1; b) x—tanhx. Hint. Put tanh'x:l———l;— . 1049, a) —cotx—
cosh? x
. (3e)* c . a _
—x; b) x—cothx. 1050. TEES 1051. aln ——x" Solution. Sa——x dy=
_ d@—x) _ c
_—aS-—a—;T_ alnla——xl—i—alnc—alnl:‘l. 1052. x+1Inf2x+1].
Solution. Dividing the numerator by the denominator, we get gii?
_ 2 2c 43 2dx _ d@c+1)
-—l+m. Whence P +]dx_de+S2 1 T
=x+1n|2+1]. 1053. ——x+Tln13+2x . 1054, %—F]nla-{—bx[.

1055. x+ aﬂln]ax-}-p] 1056. ——+x+2ln|x—1| 1057. 52f+2x+

+1In|x+3]. 1058. %+%+x’+2x+3]n|x—-ll. 1059. a%x+2ab In | x —a| —

b 1 xdx _ (C(x+D—1
—x—ar 1080 Inlxdlidog. Hint | oEee= (x+l)’ dr=
Sx—}-l S(x+l)’ 1061. —2 Vi—=y. 1062. ——-V(a——bx)‘

dx 1 (d(x*+1)
1063. ¥ x*+1. Solution. | === _ —_ | L¥ T7)_ 3777 1064. 2
l/ + .ou ion Va2 VX’-H x| Vx+

In? x 1 3 1 s V1—2V?2
+ ——. 1065, — arc tan x 1/—. 1066. In = _‘.
2 V15 5 4V1e | xVT74+2V 2
1067. 1 In | ‘i_l.’_l-x l/-a—b(. 1068. x— 1 2 arc tan x_ .

2Vae—6* |Vatb—xV a—b V2

2 2
1069. — (—l—c—+i In| az—x‘l) 1070. xX— %ln (x? +4) + arctan —;—- .

1071. V— In @V 2x+ V7F85). 1072. _5arc sin x ]/
5 sV 3—-1/2‘ 3 l/ 5

1073. ln|3x‘—2 In =|. 1074. ——=arc tan =X —
1= 2V6 |xV3+V V3B 7
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—%ln (5x2 4 7). 1075. —:;— V52 +14——In (x}f 5+ VY Bx% 1).1076. VY x*—4 +

l/_
+3Injx+ V@—4|. 1077 -§ln|x'——5|. 1078. T1n(2x=+3).
1079 -I—In(a’x’-l—b’)—}-iarc tan & . 1080 iarcslni 1081 L ctanx?®
Y a b ) a? ’ c g :
x 2
1 2 (arc tan 7)
1082, o lIn|x'+ V x*=1|. 1083. 3 V (arcsimx)’. 1084, A
3 —e———
1085. %m a+ 4x2)—l/(a’—cga"-gi’- 108. 2V Ineet Vit
2x
1087. -—%e-""‘. 1088. ——”'—42 % 1089. e‘4-e~¢. 1090. %—e“ +2x—
2x
_._(_l. _—&- ._l_— a_x_f —_— SJCI 2
5 € "09"1na—1nb<bx o5 ) —2¢ 1092, SIHaV PPET
1
1 1 x2 x 2 Vx
1003, — . 1004 5T 1095. —e*. 1086 =5
x 4a
1097. In[e*—1] . 1098. -—%}V(a—be")' 1099. -343( +1)*. 1100. -’3‘--—
ln(2"+3) Hint. ! E——l— 1—_2::_ 1101 l—arc tan (a*¥).
3l | hx2"—i—3 3 2 +3)° “Ina
14e~ ! 1
1102. '277‘“ T—o=h% 1103. arcsine 1104. —-Fcos(a—l—bx).
1105. ¥V 2sm V—_-. 1106. x——%acos 2ax. 1107. 2sin V x. 1108. —In10x
x sin2¢

xcos (log x) 1109. T3

+sm42“ Hint. See hint in 1109 1111, ltan(ax-{-b)_ 1. __cotax
X 1
900" 1114. — In

5x n 1 ax+b
A tan( \| 1115. Z—ln tan——2——

1116. - tan(x?). 1117. —=cos(l—x%). 1118. x-——chotxl/_2—-

2 2 V2

—V 2In tanxV2|. 1119. —Injcosx|. 1120. In|sinx|. 1121. (@a—b)X

. Hint. Put sin’x=-;—(l—cos 2x). 1110. —;—-I—

1113. aln

xIn Ism b' 1122. 51n|sin-’;—,. 1123. —2Injcos ¥V x|. 1124. %lnx
in (x2 a a2 X s114 6x

x| sin (x241)]. 1125, In)tanx|. 1126. 5 sin*—. 1127, o5 *

1 1 1 —_

1B, ——— . 1120, ——In@+cosdy). 10 —5 Y s ox.

1131, - -g- V(l +3costx)d. 1132, % tan‘%— . 1133. % Vtan’ X.

3 cot —‘x 1
s, =3 % 35 (tan3x+ dx)' 1136 (lnltan§]+2sxlxax)

14-1900
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2 3 . x 1
1137. gl-aln|b—acot3x|. 1138. gcosth ——5—smh5x.ll39.—§+-zslnh2x.

1140. lnitanh%l. 1141. 2arc tane®. 1142, In|tanhx]. 1143. Incoshx.

1
. j . 1145. — 13 5—x2)°, 1146. —ln xt—4x+ 1], —
1144. In|sinhx] .1 /( ) | V3
1148 Le™ o ]/— arc tan ( x ]/§>_
Xarc tan — V_ . -3 . ) o)
1 T A o« _ 2
_ﬁln(x V3+ V2t 3x ). 1150. 5 +x—2In[x+41]. 1161. ——VeT.

1152. In|x+cosx|. 1153. %(

1
Sx)' 1154. e *

1155. In)tanx4 ¥ tan?x—2{. 1156. V2 arctan (x Vf)— !

T(2x 1 1)
' 3 3 2
1s7. 222 q1iss. ]/"‘ D' 1150, Larcsin(x). 1160. - tanax—x.
Ina 2 a
sin x tan 7 33 p—r
1161. —2-——2— 1162. arcsmT 1163. alntan( +T)|' 1164.7/(1+1nx) .
— 2
1165. —2In|cos V'x—1|.  1166. glnltan—é-,. 1167,  efretanx
2 2 —
-}-]—n—(li'—x—)+arctanx.1168. —In|sinx4cos x| . 1169. V¥V 21in(tan x_ —
v 2V 72
x—V 2
—2—V 2c0s —=. 170, x+—= _I. 1171. In| x | + 2 arc tan x.
Ve V +V?2
172, ™™ 1173, l—/:arcsm V3+V4 3x%. 1174. x—In(1 +€%).
1 ) a—b =% 5 1
1175. —V—GZ_—E arc tan x m.ll76.ln(e"+ Ve =3). ll77.71- In|tanax}.
X 2
T ont 2+|nx (aTCCOS?)
1178. —%cos(7+%) 1179, -—-l 5—Tn , 1180. —_——
H 2
181. —e~'a"* 1182, larcsin( i x) 1183. —2cot2x. 1184, BrESN¥°_
2 }/'2 2
— V' 1—=x%. 1185, In(secx+ V sectx+1). 1186. ! VE""“" 2 |

—In
4V'5
tanx dx dx
7. — ). . =
ns V— arc tan ( V'"Q ) Silat S 14-cos?x ,S‘ sin? x + 2 cos® x

. 2 T+
=gta‘2isx—ig. 1. SV inG+ VITAPF. 118, o sinh (x43).

3

1190. l—r—‘l,—dB‘“"h *. 1191, a) ——]—arccos—V?2 whenx> V' 2 b) —In(l e~ %);

V2
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c)s—lo(sx‘-—3)‘; d) %V(x—}-l)’—ﬂ/x-{-l; ¢) In(sinx+ ¥V T+ sin®x).

1192. l[(2x+5)"—M]. 1193. 2(‘/—"'—% +2 V?—2ln|l+Vfl).

4 127 11 3
1194. In —KZi];l . 1195. 2arctan Ve*—1i. 1196. Inx—In2lin|lnx+
Vax+1+1
g 9
+21n2]. 1197. (Eic%"—"l. 1198. %—(e"—2) VEFL 199, = (cos’ x—5)X
X VCOS x. 1200. In ————-l—_—:_, Hint. Put x=tL. 1201. —% Vl——x’—f—
1+ Vx+1
+%arc sin x. 1202. —-):f; V2—-x’—-% V2=x. 1203. V¥—a—
1Y). .
~aarccos%. 1204. arccosjl‘—, if x>0, and arccos (—-—;) if x<0*) Hint.

Put x=—l—. 1205. ¥V x2+1—In

14+ Vet
t X

yy—e
. 1206. —K%x—’f- . Note. The

substitution x=% may be used in place of the trigonometric substitution.
1207. -’2‘— Vi —x'-}-—; arcsinx. 1208. 2arcsin ¥V x. 1210. -1—2‘- V—a 4

a N 1 ,
+3ln|x+l/x“—a‘|. 1211, xlnx—x. 1212, xarctanx—-5In(14x7).

1213. xarcsinx4+ ¥V 1—x% 1214. sinx—xcosx. 1215. xsm3x+M‘

3 9
x+1 xIn241 e
el 1217. —or gt 1218. 57 (9x2—6x + 2). Solution. In place

of repeated integration by parts we can use the following method of undeter-
mined coefficients:

1216, —

S x2e**dx = (Ax*+ Bx+4C) e¥*
or, after differentiation,
x%** = (Ax? 4 Bx + C) 3e** 4 (2Ax 4 B)e**.
Cancelling out e** and equating the coefficients of identical powers of x, we gef:
1=34; 0=3B+24; 0=3C+ B,

whence A=%—; B=——-g; C=227. In the general form, SP,,(x)e“”dx:

=Q, (x) e®*, where P, (x) is the given polynomial of degree n and Q, (x) i;

a po1ynomial of degree n with undetermined coefficients 1219. —e=* (x*45).
X

Hint. See Problem 1218*. 1220. ——3e- '—(x'+9x’+54x+162). Hint. See

*) Henceforward, in similar cases we shall sometimes give an answer tha$
is good for only a part of the domain of the integrand.

14
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1 2
Problem  1218*. 1221, __xcc;s 2x+S‘“82" . 19222, 2x +1fx+ 11 sin 2x -
+2x;{-5cos 2x Hint. It is also advisable to apply the method of undeter-

mined coefficients in the form

S P, (x) cos Bx dx=Q,, (x) cos fx+ R, (x) sin fx,

where P, (x) is the given polynomial of degree n, and Q,(x) and R, (x) are
polynomlals of degree n with undetermined coefficients (see Problem 1218%).

x3 Inx 1
1223. ln r—g- 1224. x1n®x—2xIn x 4 2x. 1225. o T i
- 2 o
1226. 2 Vxlnx—-4 Vx. 1227. X _2H arctanx— 2 1228, 5 arc sin x—%— X

X arcsinx+% V1—x 1229, xln(x+ V1I+x)—V T+ 1230. —x cot x +
. x x e* (sin x —cos x)
+In|sinx]|. 1231, -—s—ﬁ—x+|n,tan 7!' 1232. —_——,

2
3% (sin x +-cos x In 3) 1234 e%* (a sin bx—b cos bx)

X .
1233. T+ an3) . . o . 1235. 5[5111(1nx)—

- %2 — _ 3
—cos (In x)]. 1236, —8—2—(x2+1). 1237. 2¥ ¥ (Y x—1). 1238 (%—x’—}-

x—l —x Inffx 2inx 2
+3x)lnx—-—+-——3x 1239. lnT- x. 1240. '—'—x————x°——'_ .

1241, [In (In x)— 1]-Inx. 1242, 3arc tan 3x—l_8+m

X (arc tan x)2—x arc tan x—i—l In(14x%. 1244, x(arcsinx)®*+2 YV 1i—xx

1n(9x*+1). 1243.

arcsmx
X arcsin x—2x. 1245, — +1n \
. 1+ Vl—x
— — 2 -X
xarcsian-}—?Vx. 1247, xta;2x+ln|czs2x|_x7. 1248. e2 X
2x ~2sin 2
x(cos X 52sm x_l). 1249. _:2c_+xcos(21nx)-}l-02xsm(2]nx)

x 1
1250, 2(x'+l)+ arc fan x. Solution. Putting u=x and dv=——-—

1 x
ST\ hence S( e T
X

l 1 x
+S 2(xz+1) 2(x’+1) 5 arctanx+C. 1251 w(-arc tan — +
+x'+ s |- Hint. Utilize the identity lE'a—.[(x’-'I*a’)—x’]. 1952, X

1246. —2 Y 1—xx

xdx

e

we get du=dx and v=—

2
— ]
xVa'-—x‘+% arc sin %:-. Solution. Put u= ¥ a*—=x* and dv=dx; whence
xdx —x2dx

du=——}/—.’——; andv=ux;wehave \ Vai—xidyx=xV ad—x'—
a*—x

Vaz — xz

= V“’—x’—j Va"‘x'd"'i'az‘s‘ Va‘fx_xl *

(a*—x*)—a?

Va—x

i Y=g
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Consequently, 25 Vaé—=xde=xV a*—x*+a?arc sm —. 1253. I/A + x4

+—"21—ln,x+ V A+x*|. Hint. See Problem 1252*. 1254. -? VIi=x4

+—9— arcsin > . Hint. See Problem 1252*. 1255, 1 arc tan *+1 1256 lx

5 3 2 2 - ' 2
6x—1
| _._l 7. —arctan —. 1288, o In(—Tx+1 -
X in V'll ( x+ 0)+ V‘
X arc tan VJ . 1259. ,—ln (x2—4x +5)+4 arc tan (x —2). 1260. x-—% In (x*4-
2x+3

+3x+4) +7-— arc tan 1261. x+3 In (x2—6x + 10) + 8 arc tan (x —3).

T

1262, V_arc sin 4x5 3 . 1263. arcsin(2x—1). 1264.In x+—g—+ Vx’-}—px-{-ql .
1265. Vx2—4x+5. 1266. —2 Vl—x——x’ —9 arc sin 2;/—.%1 .
1267, L VEE—HFI 4+ —m 1n(x;/3___+ Yy 2x+l).
5 5V5 vV
x
1268. In| ——— 1269.—arcsm —. 1270. arcsm — = x> V).
1+ Vi—e| x V V
1271. —arcsm;%. 1272. x+l Vx+2x+5+2In(x+14+ V2 2x +5).
1273. -l Vx —x2+]§arc sin (2x—1). 1274. 2x+] V2—x-x'+
9 2x+l _l_ X —3| _ 3—sinx
+§ arc s ——. 1275. In =1 1276. l/— arc tan 73
1277. In (e‘+—;-+ Vite +e"‘) 1278. —Injcosx 42+ Vcos’x+4c<,sx+ 1.
. — 24 1Inx 1 x H)
—In®x— —
1279. — ¥V 1—41Inx—In®x—2arc sin a3 1280, ——ln| o).
1 (x— D x+3)°
—3— —9 , — Ax- X T J)
1281. x+3In|x—3|—3In|x | 1282 ]2In TLO) .
_l__ IM
(x—1) (x—4)’| i x—4)® _x
(x—1)?
1 1 X x? 11 8
A R k= eza B S
9 1 8 27 30 x—>5
2. ey P s mers | ST |-
1 X x—1
1290. -—m 1291. x+1In —,ﬁ_, 1292. x+-—ln|m

1 2
—7arctanx. 1293. lnlx 3|——ln|x—l|+ﬁln(x +4x+0)+l‘su
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1 (x+1)? 1 2x—1 1295. 1
— —_ — —= X
6 x—x+1" V3 V3’ 1V 2
xX4x V2+1 VAP x x4+x+1 1
Xlnx‘—_——xl/2+l 7 arc tan -—x+l+21/3
X arc tan x 2x—1

X arc tan + ) . 1298. YT +

2x 41
- arc tan (x4 1). 1299. ln‘x+ll+3(x’x—:_x2+l)+3 V._arctan ;/+__.
3x—17 1

T —4x +5) + 5 In (x*—4x+5) + 7 arctan(x-—z)

__‘:ﬁ:t£_+l—lnlx+1I——ln(x'+1)+"a"'ta"x'
Ix+D+D "2 4 4

3 x 3. |x—1 155° + 40x* 4+ 33x
1302. _Farctanx—‘,—(x.—_—r,‘*‘l—g‘“ PR 1303. B (12

x—1 2 _
+—arctanx 1304. x-——xT_——2x—+—2+2ln(x —2x+2)+ 3 arc tan (x—1).

1305. -2—1—1(8ln|x'+8|—-ln|x’+l|), 1306. —;—lnlx‘——ll—-
2%+ 1—V'5 13 3
1307. —or0—cs+—
2x4+‘+‘/'5| ‘2(x-—4)'+x—4+
x’+l| 1 )

xarc tan (x +2). 1294.

ln

- V" 07 s

——‘2— In (x* 4+ x4 1). 1300.

1301.

1
2V'’s
1308. -3—(21

—--l—ln]x’+x‘——l |—

—4

+2ln prom

a xa_*_l
fl 1310. ln|x|—7ln]x"+1|. Hint. Put 1=(x"41)—x".

1311. lnlxl—%—lnlx’+ll+ml—m. 1312, -:l;—arctan(x-}-l)—-é—arctanx

x+1 ! 1 ! 1 -
X=5—. 1313. TG T Ta=1" B — et an—

] [ L L PP T
x[2 )/ (ax+8F—5b )/ Tax+ 6| 1317. 2arctan V'x+1. 1318. 6 ;/; _
—33/%+2V x—6In(1+ /7). 1319, _x ;/x__ e i’/?+

4oy x— 3:/—::—6:/_::—3lnl 1+ i"/}’—{—ﬁ arc tan i/x.

1

+ln

(Vx+1—1)'l 2 2V x+1+1

1320. In|—————|——=arc tan — L1821, 2 x—2V 2x

x+2+ Vx+1| V3 T V3

X arc tan 1/'5 . 1322, —2arc tan Y T—x. 1323. l/x (x—-2)+— In|x 4
S— 2

+VE=T]. 134, izl 2 arctan2”'l 22 where

3" =1 TV V3 T

3/x¥1 2 —_—
2= ]/:il a5, — Y 2H3 23 me 2R g L @14
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S 8+ 4x?+ 3x 5 5 ,)
+2V i —x+1). 1827, — ——=—— Y=+ l328(16 — ¥ +—x X

XV1+x’—iln (x+V1+x’). 1329. (-—l— —3-) }/.\:’——l—1 arcsln—%.

4x8 I 8x* 8
1 2x 1 ,,4——
2 -5 —_— 2 _ _1
1330. 5 ( XTSI YV 2+ 2x arc sln l 1331. Ve—x+i+—=Inx

S x"44141
X (2x—14+2V =x+1). 32, L Lg% a3, l VAL

2Y 120 ;/-4+1—-1

Q=) VTTF s Ly =1

S LT s in
3y 1 44 3x*

where 2= /l+x‘. 1336. et 8 x_(2_*_x‘):l, .

1 'Y v
— 5 arc tan V1 1334,
Vs

+
2241

Vs’

1337. —2 I/(x-7+1)’. 1338, sin x——:l?sin'x. 1339. —cosx+—§cos’x-—-

arc tan

sinx  sin®x 1 s x 1 ox sin® x

3 — 5 1341. T cos -2"—3- cos ? . 1342. 9 —
1 . 3x  sin2x sin 4x

—W—2ln|51nx|. 1343. T——T—+.——32—.

x sindx sindx , sin®2x
1344. T 32 . 1345. 16 T +-————48

| cot? x 2 s 1 s
+l—4—4sm 6x. 1347. —cotx 3 1348. tanx+-3—tan x+§tan X

3 s
1309, SO x_Ox o any tanx 4 12 “ x
3 5
1

3
-| 3ln|tanx|—m——m. 1352.
x[ln

1355.

—_— % cos® x. 1340.

5 1 1
. 1346. Ex{—ﬁsin 6x+é—asm 12x4-

—2cot 2x.  1351. % tan? x+

+2|n|tan | 1353. ~><

cos? —
2

x T —cosx 3Jcosx 3
+in|ton (54+5)|]- 15t TR gty e

sin 4x 3sin 4x 3 n 1
16 cost 4 + T9cos? 4x+3—2-ln | tan (2x+T) | . 1356, — tanbx—x,

5
1357. —ci;—x—-lnlsmxl 1358. —gcot’x+cotx+x. 1359. %tan’—g-—{-
x*  sin 2«® cot® x
+tan’—3--—-3tan—+31n +x. 1360. T8 1361. ——3—— .

1362. ——/cos‘x+ /cos‘°x——- 3/ cos™x. 1363. 2 ¥ fan x. 1364.

x x
tan 5 tan —

COoSs +

—=X
V
I’ where z= Vtanx 1365. _cols%_i_

Z'+2’ V2+1___1_ arc fan 2 V
P V2t V2 7o

cos 2x sin 25x . sin 5x¢ 3  bx x 3
+ T 1366, ~——0v— 50 +— 10 . 1367. 5 sin E—+3Sln-6—. 1368. 7“53—

1 sin 2ax | x cos 2b tcosq;_m&ot+q>) sin x
-5cosx. 1%9.T+ 3 . 1370, 2 Yo 1371, D) +

xIn
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X
tan=—2
sinbx  sin7x 1 1 1 1 2
55t . 1372, 24c056x—ﬁcos4x-—§cos2x. 1373. —4—ln —
tan-§+2
x x
1374 —V—__lnltan(i—i-—s-)‘. 1875, x—tan 3. 1376, —x-+tanx+secx.
tan %—5 N 12
1377. In - . 1378. arctan(l+tan‘—2) 1379. 3* ln]2slnx—|—
tani—-B
+4 3crsx Solution. We put 3sinx 4 2cosx=a(2sinx + Jcosx) +
+Pp(2swx43cosx)’ Whence 20—3p=3, 3a+28=2 and, consequently,
u_l? ﬂ__f) W have 38mx+2usxdx_l2 dx--—5-><
13° BERER € S2smx+3cosx _E’»S 13

(2sinx43eosvy 12 5 . .
XS m dx—-ﬁx—ﬁ In I 2Slnx+3cosx I 1380. —In Icosx——slnx‘.

tan x

1381. l— arc tan (—2—

3 ) Hint. Divide the numerator and denominator of the

'. Hint. See Problem 1381. 1384. —;—lnx

fraction by ccs?x 1382, —V—zarctan
2tanx+3— V13
Qtanx+3+ ¥V 13

| Hint. See Problem 1381. 1385.

). Hint. See Problem 1381.

1383 —— In
V73

tan v —

P — 2
— 31 —cos 1386. ln(l+sm x).
1387. ' =ln V 2+sin2e 1388, L1n3=S0F  yage 2 arctan x
V 2 —sm2x 4  l—smnx V3

2tan3—1 3tan X —1

X ——F — arctan ——————. Hint. Use the identity
V3 V 22

1 1 1 tan 5
1390. —x+421n|———/|. Hint.
x
tan 5-{-—1

1 —sin x --cos x 2 cosh® x
Use the ldent]‘y m +m . 1391. —coshx.

LI .
1392. __+smh2x sinh4x sinh% x x  sinh4x

3 1393. yam 1394. —§+ 39

tanh? x
1395. In ‘ tanh = 03 |+coshx' 1396. —2coth2x. 1397. In(cosh x)——2—-

(2—sul x) (3—s1n x) =% smx 3—smx’

3 tanh=+42
3
1398. x—coth x—-c-o—th—x. 1399. arctan(tanhx). 1400. —-—-arctan( ——3——>

3 Vs Vs
2
or -Vl_%arc tan (&* V?:)] . 1401, —E-"—;-——-—sﬂ{—:z—’f—-i Hint. Use the identity
ST —coshy = (sinh x 4 cosh x). 1402. —— 1n ( ¥V 2cosh x4 V cosh 2x 2x).

\
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1403. ’-‘—*Qi—l VI—Zi—w+ 2aresin *-L . 1404, 5 VEIFZ+ine+ V2o,

2
1405, % V9 +x2—% In(x4 V9+x’). 1406. x%l Vx’—2x +2+4
+%1n(x—1+ Vxi—2x+2) 1407. % Ve—4—21in|x+ Vxr—4|.
1408. 2’62—1 Vi +x—%ln [2¢4+1+4+2VxE5x]. x—2-3 VxE—6x—7—

—8In]x—3+ Vx¥—6x—7|. 1410, 6%(2x+l)(8x2+8x+l7) Vaerxtil4

x—1

—2x+5
ezx

1415. —2-)(

+1%781n(2x+l+2l/x’+x+l). 1411. 2]/’1:—? 112 ;
1413. arctan 2V 2 e L '/l+"+"'/2

ViTYiEs ey ViV

X <x4—2x’—{—5x’—5\:+%> 1416. 1 (x'+— sin 6x + € cos 6x-—-l
2X

6 5 T sin Gx) .

1417. —”“65 3 +5"1'83"+“;”—S”% 1418. ‘% (2—sin 2x —cos 2x).
X 3 . .

1419. % (25”2";_‘“(52’6—4“" 4x1;—c S4t>. 1420. e—;-[x(sinx-l—cosx)——sinx].

1421. —i+lm1e’=-—u+l|n(ex+2) 1422, x—In(2+¢*+2 V& TxE1).

1423, % [x’lnl+x+ln(l 2)+x’] 1424. xIn? (x+ V1+x)—2 V1 +x2X

2
X1n (x+Vl+x‘)+2x. 1425. % lgo)arccos (5x —2)— 5x]gb6x
me 1426. sinxcoshx;cnsxsmhx. 427, I,= P ll)al
X . 1 7/ X I = 1
X W+(2ﬂ—3)]"_,] H Iz=§55(x2+a2+ arctan s = 4(13)(
% (3x%+ 5a? x cos x sin™~ ‘x n—I1
[2;"&—%—’%4_2& arctan E] . 1428. I,=— . + n |
_3x cosxsn®x  3sin 2 __ cosxsin‘x 4 2 8
I"—?_ 1 -5 l‘_—-————s-—-—ﬁcosxsm x—lscosx
sin x n—2 sin x 1 x  x .
U, L= o e 2T gty e (545
l.=§%%+-§—tanx. 1430. [,=—x"e"*4-nl,_;; L,,=—e " (x4 10x°+
1 —
+10-9x%4...410-9.8 ... 2x4+10-9... 1). 1431, Vnarctan‘/zl(fx__ l)
—1)2
1432. In VY x2—2x+2—4 arc tan (x—1). 1433. (x_2_ll_+_1 In (x’-}- x+-2—) +

1 1 ]/ x? x+3)_ 1 1
+garctan @e+1). M4 gln |/ = 1435, 2‘"| x+2 x+3"
1

4 _x+1 1 X
1436. (ln Vx”—i—l ~ F l) . 1437, 7 (m_*_ﬁ arc tan -ﬁ) -
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x+1 1 x—2 2x—1
) : 14;_9_ 6 (x*— x+l)‘+ 6 x2—x+1
2 —1 x3+2Vx) 1 4 1

+W—_arc tan V._ 1440. W . 1441. '—-;-—é-x—v.—_;——fx‘;

1442. In (x+—2-+ Vx’+x+l). 1443. Vﬂ—% ;/(“z“x)s. 1444, ———

3 x+1
ws, 2oL 8. —2(3/5—x—12—4In(1+ }/5—x.

Vi:Toc+ 1

77, In|x+VEa—T|— 1448, — L ]/'—_—"’ 1449, Ly
' : 2 et 9. 2

_2|

+

—*
VYV i—1 )
241 x—1

‘ T Vsl 8}/3

2
o 2(x+1) 1 _1/1 1 ) X vETs
Xarcsin prwal Hint. x__—’+4x_T( vy 1452. 5 Vx

9 — 1 —
—5n |x+ Vx¥=9]. 453, o (8x—1) V x—ax +g rc sin (8x—1).

1454. In x ’ uss, P2+ VEFAFT
A+1+2V e txt1 3

_“‘_*2"” l/x"+2x—|—2—lln(x+l+Vx=+2x+2). 1456. V";"'_

Tv2 __ 18 3
_l/_%_”_ . 1457. .'_ Kl_x___’
3x 3 l—x'+l

Xare sin 1451,

°°I

x

1458. —%lnlz—ll-&-

3

1., AR 5
—|—€ln(z +z+1)—7=arctan VT&' where 2= 1459. — x

2
xin(x2+ V i+ 1460. Il_x_*_sn_n‘i&c_i_s%‘:_x . 1461. In|tanx|—cot?2x—

1 . 2 V (cotxy® 5 . 5/
— cot'x 1462. —cotx——-—-3—. 1463. 15 (cos® x— 6) 3/ cos? x.

cosbe * 3Jcos Sx 5x tan®*x  tanS«x

20 s1u8 5x 40sm=5x+4o ta"?l' 1465. 3T 5

1 2 x
1466. Tsm2x. 1467. tan (-2—+T)+2ln,cos(5+-47)|. 1468. —-——x

75

) 1470. arc tan (2 tan x+1).

1464.

x
san = —
4 %an 1 2 tanyx

Y10

X arctan

V3 V"

1469. —— arctan (

tan x 1
——=X

V3i/ v2
p)

tan =
’xarctan< V_‘2>. 1473. Injtanx+2+ Vian?x+4d tanx+1] - 1474-—;-x

1 1 2 (=3
. <1 -5 . . ==
1471 3 n|tanx +sec x| 7 cosec x 1472 starc tan

e 2
XIn (sin ax + Va’+s1n‘ ax). 1475, —l x tan 3x+-— Injcos3x|. 14786. x_

!
xsin2x  cos 2x e? 1 —
—-— - W 7‘2"—”' 1478 -é-e . 1479, E"“ yi—x-—
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2 SR P
—'é'lnl"""ll"ﬁ“ﬁ_'(l{' 1480. Vl+;z’arctanx—ln(x.+ Vl+x=).
1 3x 1 5x x
1481. §-sin—2——msin—2-—§sin§ . 1482, ~T¥tanz’ 1483. In |1 4-cotx|—cot x.
3 L
st S20°F 1485, —2cosh Vl—x 1486, +Incosh2x. 187, —xcoth x+
1 e*—3
+In|sinhx|. 1488. §:—x T+ ln[e" —2|. 1489. garctan 5 -
4 4T 1%, 1491 ‘ll—ﬂ 1492 —l—ofx
1490. = 1/ +D) _3 4GRS Syl V 2T 10
X
a_gp X 41 493. 2VEFEFi4m L=t
X(” l+ln10+2ln’10)' ! Verti+ VEritl
’  —e
1494. In X |_arctanx g4, —l(x'arcsm—l+" +2Vx=—1).
V1+x2 X 4 X 3

1496, g—(coslnx—f-sinlnx). 1497. %(—x’c055x+%xsln5x+3xc055x+

+2—250055x—%sin 5x> . 1498. -%—[(x’—?)arc tan (2x+3)+%1n (2x2+6x+5)—
X 1 1 . - x|x| -
._7]. 1499. Vx—x +(x—7) arcsin ¥ x. 1500 —5

Chapter V

T? 21 —1
1501. b—a. 1502. voT—g-2—-. 1503. 3. 1504. o 1505. 156.

Hint. Divide the interval from x=1 to x=5 on the x-axis into subin-
tervals so that the abscissas of the points of division should form a geo-

metric progression: x,=1, x,=x4q, X,=x4% ..., Xx,=x4" 1508, In% .
Hint. See Problem 1505. 1507. 1—cosx. Hint. Utilize the tormula
sina 4-sin2a 4 ... +sin na = [cos %——cos(n—}-—;)a] . 1508. 1) ;—%:

2sin—2-

1 —
== )db_——. 1509. Inx. 1510. — VT +5 1511, 2re~*'—e=*",
c‘;j’i+ cos ;. 1618, x=nn (n=1,2,3, ...). 1514. In2. 1515. -3,
1516, e*—e~*=2sinhx. 1517, sinx. 1518, -l— Solution. The sum s,=

2
n'+ n’+ +n_—-_1=_’17(nl+_'27+.”+ n— l) may be regarded as the inte-

gral sum of the function f(x)=x on the interval [0,1}. Therefore, lim s, =
n-»w

1512,

1
1
=Sxdx= . 1519. In 2. Solution. The sum s"=n+l
o

2+ +n+n

1
=_—% —t— =\ may be regarded as the integral sum of
I+— 14— I+—
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the function f(x)=l_-:-x on the interval [0,1] where the division points have

1
the form x =l+£ (=1, 2, ..., n). Therefore, lim s,= L:
k n n +
[}

n—>w
1520. L . 1821, 1 1522. l0—0——33 . 15623. 1 . 1524. !ﬁ . 1525, —Z .
p+1 3 9 3 3
1526. —;-ln% . 1527, lnF . 1528. 35 —321n3 1529. arctan3—arc tan2=
1 4 n k44
=arctan-,7— . 1530. ln-§- . 1531. E. 1532. I—T 1533. T 1534. -2—-
LV Vs w1 2
15635. —3— — - 1636. 8+T' 1637. 3 1538. In2. 153;9. 1—cos 1.
L T : _ 1
1540, 0. 1541. m+§. 1542, arc tane—7-. 1543, sinh 1= (e__e.) ,

1544. tanh (In 3)—tanh (In 2)=%. 1545. ——I;—-i—%sinh%t. 1546. 2. 1547. Di-
verges, 1548. l—l—p if p<li diverges, if p=1. 1549. Diverges. 1550. % .

1551. Diverges. 1552, 1. 1553. 1, if p>1; diverges, if p<<1. 1554. m.

15655. Vn—_-_ 1556. Diverges. |557. Dlverges. 1558.

1560. %- 1561. Diverges. 1562. ,'e 1563. -8- 1564. —+ In3 1565. 2“3,

1566. Diverges 1567. Converges 1568. Diverges 156). Converges 1570. Con-

verges. 1571. Converges 1572. Diverges 1573. Converges. 1574. Hint. B (p, q)=
'

-_S f(x)dx+S f (x)dx, where f(x)=xP~"'(1—x)?""; since xln_r.no F(x)x'~P=])

l

1559. Diverges.

|

n

'—‘IO

ana lim (l—x)h'qf(x)=l, both integrals converge when 1 —p<1 and 1—g<1,

x -1
@

1
that is, when p>0 and ¢>0. 1575. Hint. T (p)= S f(x)dx+ S f (x) dx, where
o

f(x)=xP~le~%,  The first integral converges when p>0, the second when p is

I
2 2 dt Ins
arbitrary. 1576. No. 15677. 2 2 tdt. 1578.
roitrary V jr § l/l-i—sm”t g a.
n Inz2
o
wi(arc tan t) 9
1580. ‘S—ﬁ_t’—dt. 1581. x=(b——a)t+a. 1582.4—21n3. 1583.8—mﬂ.
n k11 n 11 —_ 14
1584. 2—= . 1585. —— 1586, ———— . 1587. 1——. 1588. 3—=—
2 V3 2V T+at 4 4 3
2
1589. 4—x. 1590, %mn?.. 1591. In LV—. 1592. -;—-g-%. 1593. “T“
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1504, . 1599, T 1. 1600. 1. 601, EF3

|
. —— - 1602 (4. 1603. 1.

@
a b - .
1604. e 1605. IR 1606. Solution. I‘(p+l)=S xPe=* dx. Applying
the formula of integration by parts, we put x”=u, e""odx=du. Whence
du=pxP~'dx, v=—e"%
and
o
T (p+1)=[—xPe=*|7+p | x7~1e"* dx=pT (p) *
[}

Ui p is a natural number, then, applying formula (*) p times and taking into
account that

®
I‘(l)=S e~ *dx=1,
[\]

we get:
T(p+1)=p
1607. /,,= %ST_G__QEQ%—Q%' if n=2k is an even number; /=
2.4.6 . 2k

I35 ... D’ il n=2k+1 is an odd number

128 637
lo=315° =% -
(p—=D!g—! lg(mtl ntl ; 2.
‘608. —([—)W;_])'— 1609. 9 B 9 . Hint. Put sin x=t.

1610. a) Plus; b) minus; ¢) plus Hint. Sketch the graph of the integrand for
values of the argument on the interval of integration 1611. a) First; b) second;

3
c) first. 1612, 1 1613. a. 1614, —l~ 1615. — . 1616. Qarcsin-l—.

3 2 8 3
- 2 2 2 2 n?
1617. 2<I<V 5. 1618. g<I<Z . 1818, pa<i<za _lszo. 0<l<z; .
. . . 1 V2 32
Hint. The integrand increases monotonically. 1621. —2—<l<——2—. 1623. s=7.
1624. 1. 1625. —;— Hint. Take account of the sign of the function. 1626. 471- .
1627. 2. 1628. 1n2. 1629. m?1n3. 1630. na®. 1631. 12. 1632. %—p’. 1633. 4—;— .
2 32 n 1 1
1634. 10—5. 1635. 4. 1636. 3 - 1637. 775" 1638. e+-—e——2—-2(coshl——l).

1639. ab |2 V 3—In 2+ V 3)]. 1640. %na'. Hint. See Appendix VI, Fig. 27.
1641. 2a%e~'. 1642, —;-a’. 1643. 157. 1644, —g—lnS. 1645. 1. 1646. 3na®. Hint.

See Appendix VI, Fig. 23. 1647. a? (2+%). Hint. See Appendix VI, Fig. 24.
4 4 16 4V3 32 4V73 3
1648. 2ﬂ+'-3- and 6“——5 . 1649. ’g ﬂ—'—a— and —:T n+4 3" 1650, ?nab.
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1651, 3ma®. 1652. n (b4 2ab). 1653. 6at. 1654. -g—a’. Hint. For the loop, the
parameter ¢ varies within the limits 0<{f<C4 o See Appendix VI, Fig. 22.
1655. is-:m’. Hint. See Appendix VI, Fig. 28. 1656. 8na®. Hint. See Appen-

2
. . nat nat .
dix VI, Fig. 30. 1657. < 1658. a®. 1659. - Hint, See Appendix VI,
. 9 14—8V72, np? ./n V3
Fig. 3. 1660, 5. 1081, g —at, 1662, - TPop. 1660, 0 <§+

1664. = /' 2. Hint. Pass to polar coordinates. 1665. %(10 Y10—1).
1666. )} h*—a®. Hint. Utilize the formula cosh?!a—sinh*a=1.

— — S — 2 __
1667. VT +1n(1+ VT). 1668, VIFe— YT 41n Y I1Te ?(ﬁ*'l).

3 1670, In(e+ Ve=1). 1671. In(2+ V'3) 1672 —1(e’+l).

?.
a = e —1 sinh b 1 .,

1673. aln-. 1674. 22 V3™, 1675. In_—y+a—b=In . 1676. —aT*.
. . 4 (a*—b%)

Hint. See Appendix VI, Fig. 29. 1677. —

+%ln (2n+ V' T+ 4n%) . 1680. 8a. 1681. 22 [V 2 +1n (V2 +1)]. 1682. —'€—5+

g TL 2 H
é-'*—?ﬁ L‘/—%ﬂ 1684. %[4+m 3]. 1685. "% | 1686, 2 nape,

+1n 30 3
4

a’n ., - 3 . _n _
1687. ST (e +4—e™?). 1688, ?n. 1689.  v,=-r. 1690. v,=—um.
1601. u,‘=—g-: v,=2m. 1692. lﬁ;“ . 1603, S2na0. 1604, %np’. 1695, = .

5 10
' ]
1696. ’%(lS—lGln 9). 1607. 2n%a®. 1698.

1669. 1 +% In

. 1678, 16a. 1679. na } 1+ 4n? +

. 1683.

2
nR2 H. 1699. gnh’a. 1701. a) 5n%a®;
3
b) 6ntad; c¢) ‘%(9;9-16). 1702, 2 a2 1703 S 1704 2

105 3 21
Ab+-aB nabh 128 8
2

+ab). 1706. —— . 1707, 1708. — ma®h.
16

3 105" 3
1709. -+ na2n. 1710, 1800, 1711, na? Vg, 1712. mabh (1+—"i" 713, 2 e
3 34 3 ) 3 .

ma, BTt Bt YVE-8l s 2w (VT +in (Y2 4]

1m6.  a(yY5— V‘E)+nln%fl—‘). M7 a(VZ+in(+¥2)).
2 2

1718. "T"(e=+e-'+4)=“—;— (2+sinh 2). 1719.%:«12. 1720.-;‘-(e—1) (€ +e+4).

1721. 4n%ab Hint. Here, y=0b+ Va’—x‘. Taking the plus sign, we get the

external surface of a torus; taking the minus sign, we get the internal sur-

2, 2nab 2, W, 148

face of a torus. 1722. 1) 2nb +T arcsine; 2) 2na +—e— In =

T pt 2
8=}—/—9-a—b- (eccentricity of ellipse). 1723. a) -6—4-;3-; b) 16n%a?; c) %na’.

1705. -% (AB—}-

where
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1724 lz—snaa 1725. 2na* (2— V'2). 1726. %fnaa 1721. Mx=.’;— Vit
2 2 3
My=—a2— Vet 1728 Ma=9§; M,,=‘12—b. 1729. MX=MY=—%-;
;=§=—“3-. 1730. MX=My=—g—a’; ;=g7=-§—a. 1731, 2na®. 1732, x=0;
E=%2:;‘;:’2. 1733. ;c‘:“s:“; 7=0. 1734.7=na;3=%a. 1735. 7=;T‘:;
4b - =9 - =5 a
Y=35, 1736. x=y=g5. 1737. x=nma; y=¢a 1738. (0, 0,5-). Solu-

tion. Divide the hemisphere into elementary spherical slices of area do by
horizontal planes. We have do=2na dz, where dz is the altitude of a slice.
a

2n§ az dz

Whence z = gt

=—;—. Due to symmetry, x=y=0. 1739. At a dis-

tance of % altitude from the vertex of the cone. Solution. Partition the

cone into elements by planes parallel to the base. The mass of an elemen-
tary layer (slice) is dm;=ymng?dz, where y is the density, z is the distance

of the cutting plane from the vertex of the cone, Q=LZ. Whence

h
h 2
e S E’-’ 22 dz
Z= —1°——=%h. 1740, (0; 0; +-g-a) . Solution. Due to symmetry,
T nreh

*=y=0. To determine z we partition the hemisphere into elementary
layers (slices) by planes parallel to the horizontal plane. The mass of such
an elementary layer dm=ynr®dz, where y is the density, z is the distance

of the cutting plane from the base of the hemisphere, 7=} a*—z? is the
a

T S (a2—2%) zdz

radius of a cross-section. We have: —z'=—°——2———=i83-a_ 1741. I=rna.
— na?
3
1142, 1, =L b Iy=L o, 1743, 1= nor. 1724, 1,= L naps; 1, =L na%
IR T - B - R A T A

1745, ]=l?n(R:—-R:). Solution. We partiticn the ring into elementary

concentric circles. The mass of each such element dm=y2nrdr and
R,

the moment of inertia 1=2n§' R dr=% % (RS —RY); (y=1). 1746, [ = %nR‘Hv.
R,
Solution. We partition the cone into elementary cylindrical tubes paralle!

to the axis of the come. The volume of each such elementary tube is
dV =2nrhdr, where r is the radius of the tube (the distance to the axis of

the cone), h=H (l—k'—) is the altitude of the tube; then the moment of
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ynR*H
10

R
inertia I=yS2nH (1-—%) ridr= , where y is the density of the
[}

cone. 1747, I=—25—Ma’. Solution. We partition the sphere into elementary
cylindrical tubes, the axis of which is the given diameter. An elementary

2
volume dV =2nrhdr, where r is the radius of a tube, h=2a l_-gz-
a
s
is its altitude. Then the moment of inertia / =4nay s‘ Vl_ %r'dr:% na‘y,
; u
where y is the density of the sphere, and since the mass M=—;—na'y, it fol-
lows that J=%Ma’. 1748. V=2n%%h: S-=4n2ub. 1749. a) Y=y_:—§— a;
b) ;=!/—=%p. 1750. a) x=0, y—z—%—;-[— Hint. The coordinate axes are cho-
sen so that the x-axis coincides with the diameter and the origin is the

centre of the circle; b) ?:%' Solution. The volume of the solid—a double

cone obtained from rotating a triangle about its base, is equal to V:% mbh?,
where b is the base, h is the altitude of the triangle. By the Guldin theo-

rem, the same volume V—;?n;—l—b’r. where x is the distance of th: centre

2
. —_ h gtz
of gravity from the base. Whence «x =3 1751. Ul =% -
c < Uy ) v, . 2 .
1752. % In l-{-—c—_— . 1753, x= SISO Vg =Y 1754. S=10' m.
A a A a
1755. U=? ln(m), h—-'b—z‘ X {bl‘—(a—bll)‘na—bt‘] . 1756. A=

_—_%Y R2H? Hint. The elementary force (force ol gravily) is equal to the
weight of water in the volume of a layer ci thickness dx, that s, dF =
=ynR2dx, where y is the weight of unit volume of water. Hence, the ele-

mentary work of a force dA==ynR*(H—x)dx, where x is the water level.

1757, A=TCyRHYL. 1758, hA:_E} RTM=079-100=079-10" kgm.
1759, A=ynR'H. 1760. A=—"E"_; Aw=mgR. Solution. The force acting
1+2
R

on a mass m is equal to F=kmr—/:1, where r is the distance from the centre
of the earth. Since for r=R we have F?mhg, it follows that kM =gR?. The
+

. t . mM 1 1
sought-for work will have the form A= 5 k e dr=FkmM (—R—-—m)=
=_m_gjh__ When h=c we have Aw=mgR. 1761. 1.8:10* ergs. Solution.
7
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The force of interaction of charges is F-—— dynes. Consequenfly, the work

performed in moving charge e, from point x, to x, is A=e.e,‘s‘§-f=
Xy
=e,e, (i———:—):l.s-l()' ergs. 1762. A=800 nin2 kgm. Solution. For an
isothermal process, pv=p,v,. The work performed in the expansion of a gas
14

from volume v, to volume v, is 4= S‘p dv=p°voln%. 1763. A=15,000 kgm.
D o

Uo
Solution. For an adiabatic process, the Poisson law pvk=pou’;. where

Pov vk PV v, \ k-1
k=>1.4, holds true. Hence A= g 0 dy~ L% [1._(_0) ] R
R—1 v,

1764. A-——-ina Solution. If a is the radlus of the base of a shaft, then

the pressure on unit area of the support pz-:% . The frictional force of a

2
ring of width dr, at a distance r from the centre, is gf:—,P-rdr. The work per-

formed by frictional forces on a ring in one complete revolution is
a

4npP 4P
a? a?

dA = r®dr. Therefore, the complete work A= X Sr’ dr=%ﬂp.Pa-
(]

1765. l MR?@?. Solution. The kinetic energy of a particle of the disk

mv’ erin?

dK_———=—2—d0. where do is an element of area, r is the distance of it

from the axis of rotation, @ is the surface density, Q=T—[—[g—,. Thus,.
R

dK =2/‘:g: /2 do. A:;;)’Sr'dr=M§2m’ 1766. K=§%><MR’0)’.
0

1767. K_-—R’cu3 2.3-10° kgm. Hint. The amount of work required is equat

o the reserve of kinetic energy. 1768. p=b—6— . 1769. P_(a+2b) » =11.3-10° T

1770. P =abysh. 1771, P=nR;H (the vertical component is directed upwards).

2
1772 633 1 gm 1773, 99.8 cal. 1774, M=""Lgf em. 1735, f"i”;) (k is the

gravitational constant). 1776. 8’;:1 Solution. Q = S‘v2nrdr~_“ps(as__,:),d’=

_np [a‘r’ r‘]a npa*

ab®
—_— = = = t -
=oui | 2T =8l 1777, Q= Sv,dy 3 pw Hint. Draw the x-axis

15—-1900
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along the large lower side of the rectangle, and the y-axis, perpendicular to
dv_
tdt
v,d
whence dt=%dv, and consequently, the acceleration time is t=§;v=s.

e
Uy

1779. Mx=—§%-(x—t)dt+%x=—g- [xt—t—z]:-l—g— =%‘(1——’1‘—>.

Uy
it in the middle. 1778. Solution. S=S%du; on the other hand a,
Uy

i 2 2%

1780. Mx=—5‘(x—t) ke dt -+ Ax="2 (=&, 1781, Q=0.12 TR/} cal. Hint.

[
Use the Joule-Lenz law,

Chapter VI
178 V=2@—o)x 1783, S=2(x+y) VETIG—0)
1784. f(% 3)=—§’—; F(, —l)=—2. 1785. y;;y"z, ";:yyz, y;;f’,
x,f"_x_yy,. 1786. f(x, x)=1-4x—x2. 1787. z=T—_’?f§,. 1788. f(x)=1/l;l.xz.
Hint. l?epresen‘ the given function in the form f(-g—): ]/(%)2-}-] and
replace % by x. 1789. f(x, y)__:x’-?xy_ Solution. Designate x+y=u,
x—y=v. Then x=u-|2—.v , y=u——2£; f (4, v)___u—|2-v . u—2—v+(u-;v)’=
;__u’—;uu. It remains to name the arguments u and v, x and y. 1790. f (u) =

=u?+2u; 2=x—1+Vy. Hint. In the identity x=1+F(Vx—1) put
Vix—1=u; then x=(u+1)* and, hence, f(u)=u?+2u. 1791. [(y)=
=VT+y%, z=Vx+y® Solution. When x=1 we have the identity

14 +"y='=1-f(%), i.e, f(=VTFg. Then f(%)= ]/1+(’%)2 and
2
2=X l/ 14+ (%) =V x*+y?. 1792, a) Single circle with centre atl origin,

including _ the circle (x*4-y2< 1); b) bisector of quadrantal angle y=x; c) half-
plane lo®ated above the straight line x4-y=0 (x+4y > 0); d) strip contained
between the straight lines y= £ 1, including these lines (—1<<y<1); e) a
square formed by the segments of the straight lines x= 4 1 and y = & 1, includ-
ing its sides (—l<<x<<1, —1<<y<<1); f) part of the plane adjoining the
x-axis and contained between the straight lines y = + x, including these lines and
excluding the coordinate origin (—x<<y<<x when x>0, x<y<<—x when
x<0); g) two strips x>=2, —2<y<<2 and x<<—2, —2<<y<|2; h) the
ring contained between the circles x*+y*=a® and x*+ y*== 242, including the
boundaries; i) strips 2an < x<<(2n+ )7, y =0 and 2n+ 1) < x < (2n+2) 7,
y&0, where n is an integer; j) that part of the plane located above the
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parabola y=—x?(x*+y > 0); .k) the entire xy-plane; 1) the entire xy-plane,
with the exception of the coordinate origin; m) that part of the plane located
above the parabola y?=x and to the right of the y-axis, including the points

of the y-axis and excluding the Foints of the parabola (x=0, y> Vx);
n) the entire place except points of the straight lines x=1 and y=0; o) the
family of concentric circles 2nk<<x*4-y*<<n(2k+1) (=0, I, 2, ...).
1793. a) First octant (including boundary); b) First, Third, Sixth and Eighth
octants (excluding the boundary); c) a cube bounded by the planes x= + 1,
y= 4+ 1 and z= £ 1, including its faces; d) a sphere of radius 1 with centre
at the origin, including its surface 1794. a) a plane; the level lines are
straight lines parallel to the straight line x4y =0; b) a paraboloid of revo-
lution; the level lines are concentric circles with centre at the origin;
c) a hyperbolic paraboloid; the level lines are equilateral hyperbolas;
d) second-order cone; the level lines are equilateral hyperbolas; e) a parabolic
cylinder, the generatrices of which are parallel to the straight linex+4y+41=0;
the level lines are parallel lines; f) the lateral surface of a quadrangular
pyramid; the level lines are the outlines of squares; g) level lines are parab-

olas y=-Cx®; h) the level lines are parabolas y==C Vx: 1) the level lines
are the circles C (¥2+y?)= 2x. 1795. a) Parabolas y ==C—x?(C > 0); b) hyper-
bolas xy=C (|C|<<1); c) circles x®+4y*=C? d) straight lines y=ax4-C,
c) straight lines y—=Cx(x#0). 1796, a) Planes parallel to the plane
x+y-4-2=0; b) concentric spheres with centre at origin; ¢) for >0,
one-sheet hyperboloids of revolution about the z-axis; for u <0, two-sheet
hyperboloids of revolution about the same axis; both families of surfaces
are divided by the cone x*+y*—2z*=0 (u=0). 1797. a) 0; b) 0;c) 2;
d) €% e) limit does not exist; f) limit does not exist. Hint. In Item(b)
pass to polar coordinates In Items (e) and (f), consider the variation of x
and y along the straight lines y=4kx and show that the given expression
may tend to different limits, depending on the choice of k. 1798. Continuous.
1799. a) Discontinuity at x=0, y=0; b) all points of the straight line
x=y (line of discontinuity); c¢) line of discontinuity 1s the circle
x*+4y?=1; d) the tines of discontinuity are the coordinate axes.

1800 Hint. Putting y=y,=const, we get the function ¢, (x)= 24, , wWhich
4y,
is continuous everywhere, since for y, # 0 the denominator x2+y% # 0, and

when y,=0, ¢,(x)==0. Similarly, when x=x,=const, the function

¢, (y) = 22’\"” - is everywhere continuous. From the set of variables x, y, the
4

1
function z is discontinuous at the point (0, 0) since there is no limz. Indeed,
X —>0
y—>0
passing to polar coordinates (x=r cos ¢,y =r sin @), we get z ==sin 2¢, whence it is
evident that if x - 0 and y — 0 in such manner that ¢ =const (0 << @ < 2n),
then z — sin 2¢. Since these limiting values of the function z depend on the
direction of ¢, it follows that z does not have a limit as x — 0 and y — 0.

0z .. ., 0z _ 0o 9z 2% 9z 2x
1801. 0x—3(x ay), ay—3(y ax). 1802. TG W GEg
1803, 22— _¥ 0z_ 1 wsoa, 2 x  0z_ v
Tox x*' dy x° ) ax_y'x:_yz' oy Ve—yt®

0z y? 0z xy 8z 1 0z
1805, —=—2 _ Z=—_ M _ {806 e o2
O (yn’ht % fyh 0% Vrty' %

y a9z Y 0z X

- ox = 9z_ .y
= Vitgt(x+ Vx’+y’)' 1807-ox—" Py R il gy 1808. ax_yxy ,

4w
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sln-y— ® ln-y—

=x’Inx. 1809. 9-’—-——5’-3 feos ¥, %2 _ L, " Foos L g0, o
x2 x' oy «x X’ ox

_xy Vs =2yt ¢_3_z=_yx’ V2x'—2y’ 1811, dz 1 x+a
Tyl(*—y% * oy ly | (x*—y%) Vy Vy

02 x+a x+a 0 Ou -, Ou

- = —— 1812. 3 =Y =1 ~—=-xzx 21— =(xy)*In(xy).

W= "oV " Vy y2 (Yt G = xexy) T =) Inlxy

. ou Xy ou x ou - ’
. == — =x2*Y —==xyz*y ", . =
1813 w= Inz, P x2*Y Ine, 5; = e 1814. . (2,1)

L@ D=0 1815 [, 20=1 f20=g5 [0 20=

wl-—wl-—-

1820. ——— % . 1821, r. 1826, z=arc tan i+q>(x). 1827. z=—2- +

s e
+y'lnx+siny——l— 1828. 1) tana=4, tanf=, tany—-— 2) tana = o,
1 oS 1 s 1 oS
tan f=4, tan Y=7- 1829. 3a=7 h, b= h, 5’—1=?(a+b). 1830. Hint.
Check to see that the function is equal to zero over the entire x-axis and
the entire y-axis, and take advantage of ?he definition of partial derivatives.
Be convinced that f 0, )= [ 0, 0)= 1831. Af=4Ax+ Ay + 2Ax* +
+2Ax Ay + Ax? Ay; df=4dx+dy; a) Af—df=8; b) Af—df==0.062.
1833. dz==3 (x*—y)dx+ 3 (y2—x)dy. 1834. dz=2xy’dx 4 3x*y*dy. 1835. dz =

(),_‘_U,),(xy 2dx—x2y dy). 1836. dz=sin 2xdx —sin 2ydy. 1837.dz=y*xY ~'dx+
—+xY (1 +ylnx)dy. 1838.dz= ,+ 5 (xdx+ydy). 1839. df— praras (dx——-dy)
1840, dz=0. 1841. dz= 22[ (dy—;dx). 1842 df (1, 1) = dx — 2dy.

xsin =
1843. du=yzdx+;xdy+xydz. 1844. du=———1———;(xdx+ y dy + z d2).

®2+y?
1845. du= (xy+—x-)z_‘ [(y-{-—]—)zdx—{— (I—l> xzdy + <xy+i> In x
) y Y y? y h
x z
X(Xy—*-?)dl]. 1846. du’:;w

=%(5dz—3dx—4dy). 1848. d!=0.062 cm; A/=0.065 cm. 1849. 75 cm?® (rela-

(y dx 4 x dy— 24 dz). 1847. df (3, 4, 5) =

tive to inner dimensions). 1850. —;- cm. Hint. Put the differential of the area

of the sector equal to zero and find the differential of the radius from that.
1851. a) 1.00; b) 4.998, c) 0.273. 1853. Accurate to 4 metres (more exactly,

4.25 m). 1854. P e ﬂl 1855. da=l(dycosa—-dxsina). 1856. d_=

‘ eVig Q dt

_e(tint—1) du t x x

=—7 e - 1857 Vy 77(6—5?) 1858. —_Zt Int tan ¢+
2 2

_}_(U + tant (¢ +l)lnt 1859. _:_0 1860. ‘1_= (sin %)% * (cos x cot x —

¢ cos2t ' dt
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0z _ y . dz_ 1 0z . ,_, dz
— sin x In sin x). 1861. ity LR i w1 1862. a;_yxy H

=xY [tp' *) In x+%] . 1863. gz-=2xf;(u, v) + ye*¥f, (u, v); —y== —2f, (4, v)+

’ 0z 0z dz 1
+ xe*Vf, (u, v). 1864 5;=0. a——l 1865. a——:y(l x‘)f (xy+ )

i) 1\ ., d
= (etg)r(wrd). e Fefy a+e @Iy 2+
-i—f; x, y, 2) [\p; (x, y)—{-\p; (x, )@’ (x)). 1873. The perimeter increases at
3 4
a rate of 2 m/sec, the area increases at arate of 70 m?/sec. 1874. % .
) Vit
1875. 20 /'5—2 V2 km/hr. 1876. _9_‘;_"’1. 1877. 1. 1878. Y2 1879, V3

1880, ‘f—g 1881. °°s“+°“;ﬂ+°°”. 1882. 2) (2. 0); b) (0, O); and (1, 1)

¢) (7,2, 1). 1884. 97 —3]. 1885. l—(51—3j). 1886. 61+3j+2k. 1887. | grad u|=

2 2 1
cosO ==, cosﬂ_—g—. cosy=-. 1888. cos —-'7_7). 1889. tan @ = 8.944;
2 2 2
p~orar. e T . e by . P
2 (pratyt)h Oxdy (papaty)’h’ 04F
_ abcx? Oz _ 2—xd, 0 2« 0z 1
- (b2 +atytyh’ 0t (P ty)? ' ox dy - (Xt o (2 4y)
a2 xy 0%z r r*— a2 Pu
1893. - = T T 1804, 5 =0, 1895, To="0 1896, 5= =
_u ofu  dw o*u o'u 21 3-1 71
O IR rr vt vy it rak L -y LR L
3 ”
1898. a()_gy': —2a2%y cos (xy) —2x sin (xy). 1899. f, (0, 0) =m(m — 1),
fx,/ (0, 0)=mn; f:“/ (0, 0)=n (n—1). 1902. Hint. Using the rules of differen-

tiation and the definition of a partial derivative, verify that f;,(x. y) =
—_— X’—!I’ _iﬂi_ (when &l_*_ 0 0 0 0 d u
Y e o y*#0), f, (0, 00=0 and, consequently,

that for x=-0 and for any y, fx (0, y) =—y. Whence fxu (0, y)=—1; in par-
ticular, f;, (0. 0)= —1. Similarly, we find that f, (0, 0)=1.

ot
1903. Tai*_qu (s 0)+ 46 (0 )+ 4yl (@ v) 457 (4 O);

a!

ox ;y:f" (U, v)+ 4xyf,, (4, V) +2 (P +y" fo, (1. 0+ xyfry (4, )

0%

rr =2f, (. )+ 49", (@, 0)+ dxyfy, (@, v) + 5%, (4, V).

0?2
1904. 0—‘,‘— S M LB
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a’ » ’ » ’ ’ ” ’ ’ ” ’ "
1905. 5—? =Fuu @) +2f 40P Wy + Fop (W) +Foy Py + Fo Vi

02
Ox ;y fuu ¢x¢y+ fuv ((lepy_l-‘lpxq)y) + fuu‘px‘lpy + fuq)xj + fv"'pxy ’
" 2 o @+ 2@+ Foy (O Fo @+ e
1914, b, )= ()b (). 1915 & (6, §)=10 )+ &), 1916, Pz—e™ x

X [(y dx 4+ xdy)’ + 2dx dy]. 1917. d%u = 2(xdydz 4 ydzdx + zdxdy)
1918. d?z=49" (t) (xdx+y dy)* 429’ (t) (dx? 4 dy?). 1919, dz= (5—) X
. ex x . o x\¥ ex Y

X (yln-y—dx—}-xln;y—dy), d’z—(g) [(y‘ln’-y——}-;)dx’-}-

ex X X X X
2(xyln =In = ln—) dxd (x'ln’———)dz’].
+2(syin in 20 2 ) drdy + (21002 Y ay
1920. d*z=0a%f,, (4, u)dx=+2abf,w (4, v) dxdy+b*,, (4, v)dy

1921, d?z=(ye*f, + eV}, , + e +If,, + yre?*[,,) dx* +
+2 (e7f,, + €, + xeVf,, +e*+ Y (1 4 xp) f, +ye?*f,,) dx dy +

+ (xeyf' +x’e’yf',;u +2xe"+yf';v e”‘f:,v) dy?. 1922. d?z = ¥ (cos y dx® —
—3sinydxtdy — 3cosydxdy -+ smydy’) 1923. d*2 = — ycosxdx® —
— 3sinxdx®dy—3cosy dxdy + xsin y dy?®. 1924, df (1, 2)=0; d’f (1, 2) =

= 6dx?+ 2dx dy 1+ 4. 5 dy*. 1925. d?f (0 0, 0)—-?dx’+4dy + 6d22 —4dxdy+
+ 8dxdz +4dy dz. 1926. xy + C. 1927, x‘y——+smx+C 1928. x+_/+

+1In(x+4+y)+C. 1929. %ln (x*+y?)+2arc tan—-—+C. 1930. — + C.

1931. Vi y*4C. 1932. a=—1, b=—1, z= ,+ 294 c. 1933, x=+y 422

+ xy+xz+yz+C. 1934, x* +2xy® + 3x2 + y?—yz—2z 4 C. 1935. x?yz—3xy?z -+
+ 4x%y? 4 2x+y+ 3 +C. 1936. §+%+%+C. 1937. VeF+/2+2+C
1938. A= —1. Hint. Write the condition of the total differential for the

xy

expression X dx+4Y dy. 1939. f—f 1940. u-Sf(z)dz-}-C 1941. Zy
= Z:; dd::' af:, Z;, :iz_l‘:yi:' 1942, The equation defining y is the
equation of a pair of straight lines. 1943. %=|_.!i%lyﬂxi——l 1944, Zy !—/%i ;
% a yy), 1945. (%)x=1=3 or —1; (%)x=‘=8 or —8.
1946. %=Zj_f~‘y’; %{:‘ﬁﬁ(‘%%@_ 1947, gz=—%; %:—, i{,
1948, %’Fg“?y;; (%:fiy;;‘x—_;"_fz;—z. 1949. g;-_—%x"_;ycs%sl—yz; z—;:
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Pz_ b=y, 2 My Pz f@—xY) o dz_
o'~ ozt " 0xdy &P’ dyi arz? Codx
Pr 9y
’ ’ +
=—¢—:p_‘7%_ 1954, dz=—§dx —% dy, =37 dx=—2’-‘zi{dx dy +
Yy
x!—at 4 2
+ 5 dyt. 1955. d2=0; d?z= ﬁ(dx’-i—dy’). 1956. dz—= T:(dx-f— dy);
dy dz_ 1 dy ‘d?z 4
2 2 00 —_—== .
dz_—( 2 (‘:x —I—?dxdy-{-dy’) 1(961 L= LTE =% T
ylz—x zZ(x y) 2, e A2y — a
1962. dy-—————( 2) dx; dz= ( ) dx; Py =— d*z = FTo—2p X
ou  Ou Pu  Pu  dw
2 2 —x)2] dy? LBy, gu__ou __ou_ .,
X[(x—y)?+(y—2)2+(2—x)*]dx®.  1963. =y 1; Ey it rr i 3= agt =0;
dv . Ov Fv . v . v _
a——-ly 5 —=0; F m—-l, ay—,—o. 1964. du—l+ dx 4
v 1 v
—dy; dv =—— dx———dy; du=—d¥=
M ET R Ty “ @ (1+1)’dxdy
Adx—o, — P, dx + @, d
_(1—12—0)2@' 1965. du=———————% ; (P,Udy ; dv = idrt 9y .
y Py Py (Pu (PU
lpu \pv lpll wv
0z _csinv 9z _ccosu, 0z __ 1 Q@_ |
1966. a) (TV_——T’ az/———u-—, b) 0 (v+u) @—7(0-—-11)
<) dz=2lz,, [€*~7 (v +u) dx +e"+? (v —u) dy). 1967. g—)-c=F; (r, @) cosp —
smq) 9z 9z _
- , %_ _0_. dy dy _ dy _
_—Ecoscpcotq;, = sin @ cot Y. 1969. ar +dt+y—0' 1970. =9
d*x dx r
1971. a) iy 2y dy =0; b) 37_0 1972. tan p—‘z .
d d? a0
r*42 ( r) —r°L )
de) __ d¢* % 2_,_ Fu
1973. K= o d_r o . 1974, =0. 1975. U z=0. 1976. o +
dg/ |
10  10u 9% 1 0z ow 0w
+ 5 drp’+ r rie =0. 1977, 5090 =%ad0 1978. 5———0 1979, F P =0.
1080 T2 gsr. o) 2e—ty—z—5=0; ES1YEE IR byt
. x—4 _y—=3_z—1 p_ x—Rcosa
—62=0; =7 —5 c) xcosa+tysina—R=0, —osa
—_— 2 2 2
=y—Rslna_z R' 1982, + a N b . 4

sina O Va’+b2+c'; I}/a’+b‘+c" £ Varote
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1983. 3x+4y+122—169=0. 1985. x4 4y +62= £2I 1986. xty+z=
=+ V@EF2+c& 1987 At the points (I, + 1, 0), the tangent planes are
parallel to the xz-plane; at the points (0, 0, 0) and (2, 0, 0), to the yz-plane.
There are no poinis on the surface at which the tangent plane is parallel to
7 =0

z
the xy-plane. 1991. 3 ety —sy— 1 =0,

1994. Projection on the xy-plane: {

x=0
Projection on the yz-plane: { 3y* , , Projection on the xz-plane:
4—+Z — 1=0

=0

)95 . . .

1:}:__*_22__1:0. Hint. The line of tangency of the surface with the cylin
der projecting this surface on some plane is a locus at which the tangent
plane to the given surface is perpendicular to the plane of the projection
1996. f(x+ A, y+ k)=ax®4 2bxy + cy*+ 2 (ax + by) h 4 2 (b + cy) k +-ah® 4
+ bhk + ck? 1997. [, P=1—(x+224+2(x+2) y—1)+3 (y—1)2.
1998. Af(x, y)=2h-+ k- h2+ 2k + hk. 1999. f(x, y, 2)=(x—1) 4 (y—1)? +

-’r}2—1)’+2(X—1)(£/—1)—(y—1)(2—1)- 2000. f(x+h, y+k 24 =
=[x, y, Z)+23l';(x Yy —a+ky ——216—42)64-z Le—x—pl+f(h kD).
2001, y+ay+>gt 2002, 1 EFL L EFIL I 0005 14 (g1 4

= DE =D 204 146 =1+ @+ 0]+ E=DLERDE,

[x—D+ @+ D] l+o__ o 1 1 .
+ — 3l . 2005. a) arc tanl—_—_B-\_ y +.2_ (a+ﬁ)—7f(a2_ﬁ’)'
b) ]/Q_—ﬂl_)'_"_—%-_(_lﬂ'% 1 +%(ma+nﬁ)+3l2 [(3m?* — 4m) a® — 2mnaf +
+ (3n2—4n) p*]. 2006. a) 1.0081; b) 0.902. Hint. Apply Taylor’s formula for

the functions: a) f(x, y)= Vix 13/y in the neighbourhood of the point (1,1);
b) [ (x, y)=y* in the neighbourhood of the point (2,1). 2007. z=1+42(x—1) —
—(y—1)—8(x—=1*+10(x—1) (y—1)—3 (y—1)*+... 2008. zp,,, =Owhen x =1,
y=0 2009. Noextremum. 2010." zp;n=—1whenx=1, y=0. 2011. 2;,,=108
when x =3, y=2.2012. zpyin=—8 when x=)2 y=— V2 and when x=

=—V?3 Y= V2. There is no extremum for x=y=0. 2013. zmax::-é——lgfb—?,—at
ab

the points x=—m y————b— and x =——t y——-—--—’i—- b Zmip = — ———
: V3 'TVs V3’ Vs TSV
a

a b
at the points x=——, y=———= and x=————, Yy=—=.2014. 2, =1
V-3 Y V3 V-3 V3 ‘max

when x=y=0. 2015. 24;,=0 when x=y=0; nonrigorous maximum

2= :—) at points of the circle x2+ y2=1. 2016. 2,x = V' 3 whenx =1,y =—1,
2017, Umin =—"7 when x=-—--§- , =——%—, z=1, 2018. uyi,=4 when
x=%. y=1, z=1. 2019. The equation defines two functions, of which one
has a maximum (2p,=8) when x=1, y=—2; the other has a minimum

(Zmin=— 2)whenx=1, y=—2, at points of the circle (x—1)2+4 (y + 2)*-: 25,
each of these functions has a boundary ext-emum (z=3). Hint. The func-
tions mentioned in the answer are explicitly defined by the equalities
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2=34 1/25—--(x—l)’—(y—}-2)2 and consequently exist only inside and on
the boundary of thecircle (x—1)24(y + 2,2 =25, at the points of which both
functions assume the value z=3. This value is the least for the first function
and is the greatest for the second. 2020. One of the functions defined by the

equation has a maximum (2jg,4-=—2) for x==—1, y=2, the other has a

minimum (zg;, = 1) for x=—1, y =2, both functions have a boundary extremum

at the points of the curve 4x*—4y*—12x+ 16y —33 =0. 2021. zma,(:% for

x=y=—%. 2022. z,=5 for x=1, y=2; zpju=—>5 for x=—1, y=—2
36 18 12 _2+Ve _n

2023. Zmin =3 for =1 Y=13 2024, 2y, = o) for x_§+kn,

=%I-t+kn, zm-m—--2 _2V2 for x=— + k=, y=5-8§+kn. 2025. Uy, =

=—9 for x=—1, y=2, z2=—2, umx=9 for x=1, y=—2, z=2
2026. upm,x =a for x=4%a, y=2=0; upp=c for x=y=0 2z=+c
2027. ”max=2'42'63 for x=2, y=4, 2=6. 2028. um“—_—zﬂ/z, at the pou]ts
4.4 Y, (4214, Z—-iiu =4 at the points (2
33 3) 3'3'3)' 3’ 3 3) mmT p ’
20 (21,2 (I, 20 2. 2030. a) Greatest value 2=3 for x=0, y=1;

b) smallest value 2=2 for x=1, y=0. 2031, a) Greatest value z= 3 2‘/3
2 ya 2 ‘/E
= —_ = - t | = — = f = il
x= 4 ]/3 .y } 3 smallest value z VE or x=+
Yy =— ]/—;— b) greatest value z=1 for x=41, y-=0; smallest value

3V3

for

2=—1 for x=0, y= 4 1. 2032, Greatest value z= for x=y=£— (in-

2 3
ternal maximum); smallest value 2=0 for x=y =0 (boundary mimmum),
2033. Greatest value z=13 for x=2, y =— 1 (boundary maxunum); smallest
value z:==—2 for x =y =1 (internal minimum) and for x=0, y=—1 (boun-

dary minimum). 2034. Cube. 2035. J|/2_V ,‘/E/ —21— i/éT/. 2036. lIsosceles

A/ = 4s— A4S~ 4 1 1
triangle. 2037. Cube. 2038. a = 1/11 . 1/a . 1/a . /a. 2039. M (——4-, T) .

. . 3 3 p __ Xy - maX, - X
2040. Sides of the triangle are 3-p, 5-p, and 5. 2041. T
- mll/|+m31/z+”ls.u! i i .i: 204 i i
y= T 2042. ; + 5 4 - 3. 2043. The dimensions of the

20 % 2%
V3l Vi VR

axes of the ellipsoid. 2044, x=y =28+ 3/5/, 2=

parallelepiped are where a, b, and ¢ are the semi-

x a
— . 2045. x= —
2 + V2
y-== -LQ- 2046. Major axis, 2a=6, minor axis, 26 =2. Hint. The square of
the distance of the point (x, y) of theellipse from its centre (coordinate origin)

1s equal to x*+ y*. The problem reduces to finding the extremum of the function
x24y? provided 5x%+4 8xy + 5y*=9. 2047. The radius of the base of the cylinder
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. R V 2 . 2 . .
is = 24 ——, the altitude R ]/2—-—__, where R is theradius of the
2 Vs V5

sphere. 2048. The channel must connect the point of the parabola (1?. —1—)
with the point of the straight line 1 —22; its length is Z-V2

l rosan sina__ v, f ; .
2049. Ti Y 2730. 2050. P, Hint. Obviously, the point M, at which

the ray passes frem one medium into the other, must lie between A, and B,;

M=-2_, BM=——, 6 A,M=atana, B,M=b tanp. The duration of motion
COs Q. cos B

. a
of the ray is m-{-m.

of the functien f (a, ﬁ):—v—‘chl—l- 5,005 B

The problem reduces to finding the minimum

provided that a tan a+b tanf=:c.

2051, a=f. 2052. l‘:l’:l'z_ﬁ':'l?— PR Hint. Find the minimum of the
1 2 3

function f(I,, I,, I})=13R,;+I;R,+ I3R, provided that [,41I,+1,=1.
2053. The isolated point (0, 0). 2054. Cusp of second kind (0, 0). 2055. Tac-
node (0, 0). 2056. 1solated point (0, 0). 2057. Node (0, 0). 2058. Cusp of first
kind (0, 0). 2059. Node (0, 0). 2060. Node (0, 0). 2061. Origin is isolated point
if a>b; it is a cusp of the first kind if a=b, and a node if a<b.
2062. If among the quantities @, b, and ¢, none are equal, then the curve
does not have any singular points. If a=b < ¢, then A (a, 0) 1s an isolated
point; if a<b=c, then B (b,0) 1s a node; ifa=b=c, then A (a,0) is a cusp
of the first kind. 2063. y= + x. 2064. y%==2px. 2065. y-=+ R. 2066. x'/s +

+ y'/==12/". 2067. xy=—12—S. 2068. A pair of conjugate equilateral hyperbolas,
whose equations, if the axes of symmetry of the ellipses are taken as the
coordinate axes, have the form xy= 4 % . 2069. a) The discriminant curve

y=0 is the locus ¢f points of inflection and of the envelope of the given
family; b) the discriminant curve y =0 is the locus of cusps and of the envelope
of the family;c) the discriminant curve y=-0 is the locus of cusps and is not an en-
velope; d) the discriminant curve decomposes into the straight lines: x=0 (locus
v? 2
of nodes) and x==a(envelope). 2070. y = ié-s_xz . 2071. 7 —;- 2072. V 94 4n2,
v
[}
2073. VT (e'—1). 2074. 42. 2075. 5. 2076, x,4+z. 2077. 11 -|-1“—9‘9

2079. a) Straight line; b) parabola; c) ellipse; d) hyperbola. 2080. 1) %a"

da’ ,da ., da° d _(da db de
9 o 9 e +a . 2081, Zi—t(abc)_(—d-tbc)-1—<aTi-tc>+(abm)
2082. 4t (t24-1). 2083. x =3 cos t; y=4sin ¢ (ellipse); for t =0, 9 =4j, w=—3i; fo
_— 9 . E11
t=%,v=—-3 ];2 i+2V72y W O ‘;2 i—2V2jfort=75,0=—31, w=

=—4j. 2084. x=2cost, y=2sint, z=3t (screw-line); v=—2isint 4

+ 2jcost--3k; v= V13 for any {; w=—2{cost—2jsint; w=2for any ¢

for t=0, ©=2j+3k w=—2 for ::%, v=—2i13%k w=—2
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2085. x=C0s a c0os ®f; y=sin a coswt; z=sin w¢ (circle); 9 =— o cos a sin ©f —
-—@f sin a sin of +- ok cos of; v=|0|; w=— w* cos a cos wf —w?jsin a cos vf —

— o'k sinof; w=0? 2086. v=V vy +v; +(v, —g!), Wy=w,=0; w,=—g;

w=g. 2088. ®Va®+ h: where m—d—e is the angular speed of rotatien of the

di
Ve

screw. 2089, Va’u)’+u’—2amv°sinmt 2090. t~——-(i+k), v=—19; B=

V

2 (i—k). 2091. v=——|(cost—sin£)i + (sint 4 cost)j + &]; v=
lf ‘
..—-——E- [(sin £ 4 cos t) I+ (sin t —cos t) j}; cos (T, z)—i— H cos (v, z)=0.
i+4ji—2k. v=—4i+5j 8k . p=—2 2093. : -
RZ1 V105 V5 —asint
e e e
x—acost y—asint 2—bt
cost  smt O

2002. T— —-2t+k x—acost

(principal normal). The direction cosines of

asint acost b

; COSP = ——x; COSYy = = .
Vaz p ‘/' -i-b' Y Var bt

The direction cosines of the pnnclpal normal are cosa,=cos¢; cosf, = sin#;
cosy, =0. 2094, 2x—z=0 (normal plane); y—l =0 (osculating plane),

the tangent are cosa =-—

x+422—5=0 (rectifying plane). 2095. x-—l2 =y—4— ___21—28 (tangent); x4+
+ 4y 4 12z2— 114 =0 (normal plane); 12x—6y+2z—8 = 0 (osculating plane).
x_g y__ia s tz « tl 9 ts 2 t.".
4 3 2 —4 777F 3 .
2096. T I S (tangent); FIor = T—F — —9r—1 (prin-
t-l tl 2
X——e Y—= 22—

. R A . . 11 1y,
cipal normal); =~ & (binormal); M, (T' 3 2) H
M, (4, —%, 2). 2097. “_12 =yif ="22 (tangent); x-+y=0 (osculat-
. L x—2_ y+2  2—2 . L ox—2_y+2_ 2—2
ing plane); =T =1 (principal normal); ST T =0

1 1 3 V739
binormal); cos @y=-—=; c08P,=—=, COsy,=0. 2098. a ==
( :)2 2 V-2 B: V-2 Y2 ) 0
z————R _ x—1 y—1_ 22
_V.__ (tangent); x ¥ 2 —z= 0 (normal plane); b) T =T=7

x—2 y—2V3_ 23
2y3 1 —2V3
(tangent); 2 V3 x+y—2 V3az=0 (normal plane); 2099. x +y = 0. 2100. x —

" —y—zV9=0. 2101. 2) 4x—y—2—9=0; b) 9x—by+22—18=0;

¢) bxlx—alyly + (a*—b%) 75z = a®h* (a*—b*). 2102. 6x—8y—2z43=0 (osculat-

ing plane); {3—1;1=.{/_2_—(;_1 2_2; (principal normal); J-‘i%l=q—_§l—= ZTI

(tangent); x+y+42—10=0 (normal plane); c)
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(binormal). 2103. bx—z =0 (osculating plane); :g } (principal normal);
x+bz2=0, } . i bk —bi+k
binormal); <t = = — v=j. 2106. 2x
y=0 [ ) Vife' P B= V1+o s +
3 -t et
+ 3y +192—27 =0, 2107. a) V% b) -‘C—. 2108. a) K =2 3V2 T= ?‘
1 _ o lyt+a?, o (2t
av
2111. m. 2112, When t=0. K=2 w, —0
s _ 1 19 _ 2 1/
w, =2; when t=1, K== - T %= w, =2
Chapter VII
2113. 42 . 2114, In 2 on1s. X 2116, 2. 2117, 50.4. 2118. 72X 2119 2.4,
T T 24 12 " T
14

2
2120. 2121, x="i4-—l; x=2—y; y=—6; y=2. 2122, y=x% y=x+9;

'E-
x=1; x=3. 2123, y=x y=10—x; y=0;, y=4. 2124, y=—fc—; y=2x;

x=1; x=3, 2125, y=0; y=V 25—x% x=0; x=3. 2126, y=2x% y=x+2

x=—1 x=2. 2127. deff(x, y)dx=deSf(x, y) dy.

2128. deSf(x y)dx—deSf(x, y)dy. 2129. §dy Sf(x, y)dx =

2x+3

dx f(x y)dy—}-de S f(x, y)dy. 2130. de Sf(x y)dy =

4
Jo
2

[
o,

I

"L’jul§ 91,‘_

f(x, 9) dx+§dy§f(x. y) dx+§dy 3‘ f(x, y)dx.
4 1 ]

y—3
1 [ Vi Vi—p : ° Vi=x2
291, fay § 1o g axt j % S to pav= §ax | fepanr
0 -y ~Vi—p2 -1 -x
1 Vio g 1 3 2 g
+de S fx, y)dy. 2132, S dx Sf(x, Y) dy-_—.—de S fx, y)dx.
[ x -1 2x2 0

nltl
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-1 Va2 1 ~Vi—-x2 1 Vio @
u. (o | fen y)dy+de { et [ar § repags
~2_ Vi< x2 ~Va<x -1 Vi—w
2 Vi xt -1 Vi—2 Vi -
o | re y)dy=de S x, y)dx+de { et
Ve S Vi S Vi
Ve -3 Va—y?
+S o | re y)dx+§dy { rwpa
Vl 7 -Ve=g2
—2 Vo —x2 Vit
2134, S e | fe y)dy+§ O R T PR
__Viexe -2 -1V +x2
Vi -x2 -1 -V <1
+de S fx, y)dy= S dy S f(x, y)dx+4-
—Ve - —Vy =3
o Vi V,-uz ! vy ovEs
de { rew dx+S dy F(x, g de+ de | repags
ViV - O—J’ —V’-_J:
VT Vo—u’ 1—x

+ de S f(x, y)dx. 2135. a) sdx S f(x, v) dy= de S f(x, y) dx=
1 Vi <1

Va? - 52 Var -2 1 Vx - x?
b) S dx S‘ f(x, y) dy= S dy S f(x.y)dr;c) de 5 f(x, y)dy =
Vo -x Vo= p 0 _Vx-x2

1+ V1 -aip
1/, 2 1

= S dy 3 f(x, y)dx; d) S dng(x, Y) dy=31 dyf f(x, y)dx;

=2 1-Vi ap -1

e>§ayyﬁmfu, y)dx=§dx§f(x J)dJ+deSf(x Jm+deS fx, 5)dy-
0 y 0 ) 2a x— 20

v
) 2

2136. de S f(x, y)dx. 2137, S

lI
12

f(x .I)dx"rSdJS f (x, y) dx,
v

._l </ju|':

2 Vai -2 a Vai - y?

2138.de S i(x,y)dx+5;dy :5 f (%, y)dx.

° Vat=aay

—
]
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(binormal). 2103. bx—z==0 (osculating plane); ;‘fg' (principal normal);

x4+ bz2=0, . . _i4bk o —bi+kR
y=0 }(bmormal), t_Vl—FF' == Viis s v=Jj. 2106. 2x 4
- Vé et V2 o=t
+ 3y +192—27=0. 2107. a) V'Z; b) 208 8) K=—7—; T= —3-1
T 1 __(y+a)? _ (p*+ 2x%?
b)K—T—PaTsh—.T. 2109. a) R—Q———a——, b)R— —'_“sp‘x.
av
2111, m 2112, When t=0, K= w, —-0

w, =2; when t=1, K=—l- :—Z. w,=—l_-Z w, =2 1/
Chapter VII

2 25 9
2113. 4-5-. 2114, lnﬂ- 2118. 12 2116. T 2117. 50.4. 2118. —-2— 2119. 2.4,

2
2120, %. 2121. x—.=~"T—-1; Xx=2—y; y=—06; y=2. 2122, y—=x% y—x49;

x=1; x=3. 21238, y=x y=10—x y=0; y=4. 2124 y=-“i; y=2x;
x=1; x=3, 2125, y=0; y=V 25—x% x=0; x=3. 2126, y=x% y=x+2;
1

2 2
x=—1; x=2. 2127. §dy§f(x y) dx § Sf(x. y) dy.

2128. deg‘f(x y)dx—§dx§f(x, y)dy. 2129, de S f(x, Y)dx=
0 y - [ ° 0 0
 § 2—Xx 2 2X+3

‘Slldxg'f(x, y)dy—{-de S f(x, y)ady. 2130. de S f(x, y)dy=
[ 0 1 (] 1 2X

4
Jo
2

I

I

e LI

f(x 9 dx+§dy§f(x. Y dx+§dy S f (%, y)dx.
4 1 5 y—3

1 ) V‘T Vica ° Vica
oot (ay (rowpat o | 1 pa= (o g F(x, ) dy+
0 -y 1 ~Vai-p -1

Y
1 Va-a 1 2 2

+de S f(x, y)dy. 2132, de Sf(x, Y) dyzgdy S xf(x, y) dx.
0 x -1 2 0 v

-1y L
2
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-1 Va=x2 ~-Vi—x 1 Va-»
2133. deg f(x, y)dy+§dx S f(x,9) dy+de S Fx, g)dy+-
-2 _Vi- s -1 Vi< a2 Vi-e
V&-x’ -1 Va—yi _w__yi
+de S f(x, y)dy=de S f(x, y)dx+de S f(x, p)dx -
—Vai—x -2 _Vi-p -1 _Vi=4
1 Va—u? Vi—y*
+de [ e y)dx+de | tena
V' -y -Va=42
—2 Ve -2 Vit xa
2134. S dx S f(x, y)dy+S dx S flx, v) dy4-
_=Vi=a -2 -Vitad
G—X’ —1 —Vj’-‘l
+de S flx, y)dy= S dy S f(x, y) dx+-
-V - _V— -Vs -1
V;_—,,a v,_,,z Vv —V@Eo
de § 1w dx+§ w | teoatfa | teoa
-Vs V_/’ -1 —Vo —y? —V’-—JI
Vs Ve-p2 1 1—x

+ de S f(x, y)dx. 2135. a) S‘dx S f(x, ) dy= deSf(x. y) dx=
) Vit 1

a Vaa-x a Var -y Vx -~ x?
w (el twnw={a [ jepwo de { ey =
—a_Vg- gt —a _Va_, —Vi-x
1+ V1 -a?

s 2 1

=fa | rupamo | axjm, 9 dy=§i dyS” Fe, g)dss
X -1 -1

=Ya 1-Vi ap -1

e)de S f(x, y)dx=§dx

[] Y

)
<
+
»
&
Q

Cl—ox

s, y)dy+deSf(x J)dJ+S4xS v, v)dp

2a x—2a
v v

2136. de S f(x, y)dx. 2137. des.f(x.y)dx—i-Sd_/Sf(x,_/)dx.

12 l l

Var -2 a Ya-p

dy S fx y) dx+S dy S f (%, y)dx.
a

[]

2138.

L T FY

Vai —aay A
2
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aVs
2 a

2139. S dySf(x, y) dx+ S dy S f(x, y)dx.

0 aVs a- Vai =2

a a-Vai—gp a 2a eV 2

2140. de S flx, ) dx+de S f(x, y)dxe+ S dySf (x, y)dx.
0 é%’ ° a+Vai-pp ° {i:a
0 VxTx’ 1—-x —;_ Vex

2141, S dx S f(x, v) dy-{-deS f(x, y)dy. 2142, de S fx, y)dy+
-1 0

RV s

Vs Vi—xa VRI—y

Vs
+ deSf(x y)dy—{-S dx S f(x, y)dy. 2143. 3‘ dy S f(x, y) dx.

0
Tz
1 m—arc siny

1 1 T T
2144, de S f (x, y)dx. 2145. 5 2146. 5 2147 5 a 2148. T
[ arc siny
1 4 15— 16 2
2149, 6. 2150. R 2151, In2 2152, a) 35 b) 5o ) 2—5- .
s Vi—(x—2p
2153. §—K—2- pS. 2154, de S‘ xydy=§. 2155. %a V 2.
1 bY
. 2R y=f(x)
2156. —JT.R’ Hint. SSdedy_ de S y dy=
S) 0
R (1~cost)

=S R (1—cost) dt s ydy, where the last integral is obtained from
[

the preceding one by the substitution x=R (¢—sin¢). 2157, §0 2158. é

1

‘jss\(p (r cos @, r sin ¢) dr-
()

R?
2159. - a4+ 5 - 2160,

°¢-/§-|=|

2
cos @

+ do rf(r?) dr.

S

sn @
do S rf (r cos @, rsin ) dr. 2161.
[

ey

.{:l/jula
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LE 1 n sin @
4 sin ¢ ry ces? ¢
2162. S deg S rf (r cos @, rsin@)dr. 2163. Sf(tan Q) do S rdr+-
kL [ [} []
ry
am 1 Sing_
cos’(p
+Sf(tancp)dq> S rdr+Sf(tanq>)d(p S rdr,
ry 7:_
n
@ aVecos 29 s a Vcos 2
2164. S de S rf (r cos ¢, rsin @) dr+S dcpS rf(r cos @, rsin@)dr.
- E1 [} an )
ry Y
n
* acos@ . 3
2 o ¢ 9 b na’
2165. ‘S‘ de r smqadr__]2 2166. 5 nat. 2167. 3
0 0
2 n\ , a® n 16V 2—20\a
2168. (§+—2—)a 2169. T. 2170. (g————g————)‘f.
2171. %n ab. Hint. The Jacobian is I=abr. The limits of integration are
B =
_{: —_
0<<o<<2m 0<<r<<l. 2172. ‘S S f(u—uv, uv)udu. Solution. We
G.
ita

have x=u(l—v) and y=-uv; the Jacobian is I=u. We define the
limits u as functions of v: when x=0, u(l—v)=0, whence u=0

(since 1—uv # 0); when x=c, u=1—_—c_—l-). Limits of variation of wv: since
y =ax, it follows that uv=au(1—v), whence v-m for y=Pfx we find
1 u
- P _ 1 S S‘ (u+v u—v
v-—l_i_ﬁ. 2173. I-—2 3 dv 4
0 —-u
2 2—-U + 1 0 2+v +
ut+v u—v ? u-v u—v
P e BLIG S
1 u-—-2 -1 -0
1 2-~0
+S dv S f(u_;—_g’ u—;))du]. Hint. After change of variables, the equa-
v
tions of the sldes of the square will be u=v; u+v=2; u—v=2; u=—0v.

2174. [( )arc tan 2 o +H—]' Solution. The equation of the curve
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r‘==r’(——cos’q>——sin' (p). whence the lower limit for r will be 0 and

2

8
#he upper limit, r= %cos‘cp——-sm’q> . Since r must be real, it

2
follows that Fcos’q) Z, sin® 9 =0; whence for the first quadrantal angle
we have tanq><bh Due to symmetry of the region of integration relative

1 Lo .
€0 the axes, we can compute T of the entire integral, confining ourselves
ak " a b3
arc tan I 1/ W cos? ¢ — w sin?@

fo the first quadrant: SS dxdy=4 S do S abr dr.

(S) 0 0
v Vy aVa? = x?

1 Vy 2
1 na® at
2178. a) 47; de S dx—}-de de; b) 79 deg dy.
0 —V_y- 1 y—2 0 a‘—x

2
2176. a) -g-; b) (2+—2i>a’. 2177. ;’—‘2’6. 2178. 1-39a= 2179. n Hint.

—l<x<l. 2180 ‘39;/1“5. 2181. 3(%+—;) 2182. ‘%1—1/3‘.

2183. %na’. 2184, 6. 2185. 10m. Hint. Change the variables x—2y=u,

Sx+4y—v. 2186, -;—(b-a) (B—a). 2187. %(ﬂ——u) ln% .

1
na? 3 1
2188. v=\dy\(1 —x)dx= \dx \(1—x)dy. 2193. - 2194, — . 2195. 5
0 Y 0 0
a e 8YVE 88 abe
2196. 5 2197.-471-. 2198. 5 . 2199, 105 2200. 18 2201, S

2202. na’ (@—p). 2203 %na’(2 V2—1). 2204 Ena’(]ff—l),

Q
2205. %’. 2208. %nabc. 202 T2 (6 V3—5). 220, %Qaa.

2209. na(1—e~RY. 2210. 5”%‘” 2211, 3—l/-§3L2 2212. V2(2 V3 —1).

Hint. Change the variables xy=u, !x—==v. 2213. %V-a’b’—kb'c’-{»c’a’

2214. 4 (m—n) R*. 2215. ‘/22 a'. Hint. Integrate in the yz-plane. 2218. 4qa2.

2217. Oa'lrcsln%.22|8.-3l (3 Y 3 —1). 2219. 8a*. 2220. 3nat. Hint.

.=
Pass to polar coordinates. 2221. o=%na2 [( I+lz—,) - ] Hint. Pass to
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polar coordinates. 2222. %sa' and 8a®. Hint. Pass fo polar coordinates.

a a a

) 2
Ve ady a
2223, 8a?arc tan g Hint. o_S de 7—-—-————- 8a§arc sin2 Va’_-—7dx'
[}

Integrate by parts, and then change the variable x=Z 3 sin ¢; transform

2
b2 o2
the answer. 2224 - (b Vbt+ci—aVar+ct4ctln ﬂﬁ_—t}_) . Hint.
4 - Va+e .
. 2ndR a’h a b’ 12—n
Pass to polar coordmatess2225. 3 2228. T 57 . 2227, x—3(4__g) H
— T - L= -~ 21 sina - -y
y—6(4_n). 2228. X=50 y=0. 2229, x= o y=0. 2230. x 5
y=0. 2231. [Iy=4 2232. a) I, ==-—(D‘ d%); b) Ix=§4—(D‘——d‘).
9 8 a Vax
22383. I=53 at. 2234. ~5—a‘. Hint. I=S dx S (y +a)* dy.
o ~Vax

2235. 16ln2—9 g- . Hint. The distance of the poinf (x, y) from the straight line

x=y is equal to d=% and is found by means of the normal equation
of the straight line. 2236. 1=4—10 ka*[7V 243 In(V 2 +1)], where k is the
proportionality factor. Hint. Placing the coordinate origin at the vertex, the
distance from which is proportional to the density of the lamina, we dircct

the coordinate axes along the sides of the square. The moment of inertia is
determined relative to the x-axis Passing to polar coordinates, we have
n

T aseco T acosec @

35
= S do S kr (r sin )2 rdr —I—S do § kr (7 sing)*r dr 2237. l°=T(5 nat.
0 [} il_
4

2238. I°=nTa‘- 2239. -?gna‘. Hint. For the variables of integration take ¢ and
1 1-X 1—-x-y
y (see Problem 2156). 2240. S‘dx S‘ dy 5 f(x, y, 2)dz
R VE=H H
2241. S dx S dy‘S‘f(x, y, 1)da.
-R _YRi—»¥

Va3 ¢

2242, f dx S dy S f(x y, 5)ds.
-a

b X 3
-2ya=n cV%-,+§
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1 Vi-x Vi—xa—p
2243. de S dy S f(x, y, 2)dz.
-1 ~Vi-x o
8 - - mVe it 1
2244, = (31412 V2—-271V'3). 245. 3 2246 ——. 247 oo
1 5 nas — 97 59 nabc?
2248. 5 ln2—T§ . 2299, 'y (18 V3 —E) . 2250. IBT)“R . 2251. et
4 nh*R s 8 n 3 a( _4
2252. -gﬂabc. 2253. yeut 2254. mR3, 2255. 9 at. 2256, 3 r’ln 3> .
4 1] n 3_2 2 E_ 3 1 .
2257. fSnR . 2258. T 2259. 3 ath.  2260. y nad, Selution. v=
X342 n r2
2a Vaax— x 2a 2 2acos@ 2a
=2S dx S dy S dz=2qu) S rdr Sdh:
9 [ 0 0 0 0
n K2
2 2aC0S @ 2 —
rdr 1 ((2acosg) , 3 ona® V' 2
=2 Sdcps %= S — —de=gma’ 226l. ——=— . Hint. Pass
1] 1] ]

to spherical coordinates. 2262. l—?n. Hint. Pass to cylindrical coordinates.

6
2263. %‘(331—4). 2264. mabc. 2265. %bc (a+b+4c). 2266. g—:(ﬁc’—-a'—bz).
2267. x =0; y =0, z= —;— a. Hint. Introduce spherical coordinates.
4 nath

2268. 7_—.3, Y =0, z=0. 2269. 1—2(3a’+4h’). Hint. For the axis of

the cylinder we tgke the z-axis, for the plane of the base of the cylinder,
the xy-plane The moment of inertia is computed about the x-axis. After
passing to cylindrical coordinates, the square of the distance of an element

2
rdpdrdz from the x-axis is equal to rZsin?@-22 2270, ngﬁl:)a (2h% - 3a?).
Hint. The base of the cone is taken for the xy-plane, the axis of the cone,
for the z-axis. The moment of inertia is computed about the x-axis. Passing
to cylindrical coordinates, we have for points of the surface of the cone:

r=-:—(h—z); and the square of the distance of the element r dpdrdz from

the x-axis is equal to r?sin®g-22. 2271. 2mkoh (1—cosa), where & is the
proportionality factor and @ is the density. Solution. The vertex of the cone
is taken for the coordinate origin and its axis is the z-axis. If we introduce
spherical coordinates, the equation of the lateral surface of the cone will be

¢=g——a, and the equation of the plane of the base will be r=

From the symmetry it follows that the resulting stress is directed along the
z-axis. The mass of an element of volume dm=gqr?cos{dgdpdr, where
is the density. The component of attraction, along the z-axis, by this element

of unit mass lying at the point 0 is equal to krfm sin{ = kg sin P cos P dp do dr.
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a

Pt I h cosec ¢
The resulting attraction is equal to S do S dy S ko sin y cos P dr.
() 0 (]

2272. Solution. We introduce cylindrical coordinates (o, @, 2) with origin
at the centre of the sphere and with the z-axis passing through a material
point whose mass we assume equal to m. We denote by E the distance of
this point from the centre of the sphere. Let r= ) g*+ (E—2)* be the dis-
tance from the element of volume dv to the mass m. The attractive force of
the element of volume dv of the sphere and the material point m is directed

along r and is numerically equal to —kym@ where y= is the

r?’

4 3
'é-ﬂR

density of the sphere and dv=g@dgpdgdz is the element of volume. The pro-
jection of this force on the z-axis is

kmyd —
dF =— m:(s vcos (r/;) =._kmy§—rTszcpdg dz.
Whence
2%t R VR: =72t P 4 |
F=—kmyqu> S (E—2)dz S —;,—9=ka§ nR’E-z— .
0 -R o

® -
4 kM
But since 3 ynR’==M, it followsthatF=——§,—m. 2273. —Syze"‘}" dy—e™*,
X

1
p—a

1 . ) p
2275. a); (p>0); b) for p>a; ¢) [—’%B-z(p>0), d)m (p>0)

®

1
2276. __l . 2277. 2 . Hint. Differentiate Se"l" dt ==— twice. 2278. In E—
n? P p a

°©

2279, arc tan—’%—arctan-,%. 2280. —2“—1n(1+a). 2081, nu (Y T—ai—1).

2282, arc cot — . 2283. 1.  2284. -é- 2285, %. 2286. -— . Hint. Pass to

) _ 4a®’

. V:rt n?

polar coordinates. 2287. -5 2288. T

from S the coordinate origin together with its e-neighbourhood, that is,

consider I, = SS InV x2+y*dxdy, where the eliminated region is a circle of
(S)

radius e with centre at the origin. Passing to polar coordinates, we have

2N 1 2N 2 1 1 2 2 1
r 1 el e
I.=qu) Sr Inr dr=S [—2— Inr . T3 Srdr] dp=2n (—4——5- In G—T) .
] e [] e
Whence lim I.=—%. 2290. Converges for o > 1. 2291. Converges. Hint. Sur-
e—>0
dx dy

V (x—gp

. 2289. Converges. Solution. Eliminate

round the straight line y=x with a narrow strip and put S‘s
)
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1 xX-8 1 1
=lim j‘dx “ 9 4 lim de S 9 2292. Converges for
° 0 x+0

e~o Vik—yr 80 V =y
3 V5+3 ab (a4 ab + b?) 256 ,
a> '5 . 2293. 0. 2294, ln D) . 2295. '—T(—&Tb—)—— . 2296. Ts—a .
. 3 SVitm _ 1 _
2297. %[u+4n=)'_1] . 2208, 5 . 2200. a*V 2. 2300. 77 (56 V7~
2 2 —
—1). 2301. ——MJ{, arc tang—g-l-’. 2302. 2na®. 2303. ;—3(10 Y10—1). Hint.

Sf(x. y)ds may be interpreted geometrically as the area of a cylindrical sur-

Cc
face with generatrix parallel to the z-axis, with base, the contour of integra
tion, and with altitudes equal to the values of the integrand. Therefore,

S = S xds, where C is the arc OA of the parabola y=%x’ that connects the
C

2 T p2
points (0, 0) and (4,6). 2304. a V3. 2305. 2<b’+ &0 arcsin V“a b ) ,

Va’—b’
2 2 252
2306. V @15 (n V@i +5;1n 2nb +——————";W’>. 2307. (%ag a).
—_— kMmb 19
2308. 2na? 2 2 —_—————— - 2311. —2ma®.
Vato 1 209, Yy 810 03
2312. a) %; b) 0; ¢) 32; d) —4;e) 4. 2313. Inall cases 4. 2314. —2n. Hint.
Use the parametric equations of a circle. 2315. -;—abz. 2316. —2sin 2.

X3
2317. 0.2318. a)8 b)12 ¢ 2 d _g.; e) In(x+y); ) S(p(x)dx—}-

. x
Ya

+{vedy. 219 )62 b) Lo L+inz &) 14V 72 2820 VT

L2}
-~V 1402 2322, a) x*4-3xy—2y24C; b) x*—xty+xy*—y*+C;
¢) & Y (x+4)+C; d) In|x+y|+C. 2323. —2na(a+b). 2324. —nR2cos’a
2325. _(‘3__}_2%_2 R®. 2326. a) —20; b) abc—1; ¢)5 V' 2; d) 0. 2327. [=
4 nR4 1

=SS yrdxdy, 2328. —=. 2320 ——. 2330. —o. 2331 0. 2332 a) O;

S)

b) (‘Znn. Hint In Case (b), Green’s formula is used in the region between the
contour C and a circle of sufficiently small radius with centre at the coor-
dinate origin 2333. Solution. 1§ we consider that the direction of the tangent
coincides with that of positive circulation of the contour, then cos (X, n)=

— _dy L -
=cos (Y, ”"‘ﬁ’ hence, gcos(x. n) ds_(f a—sds—éﬁdy—o 2334. 2S, where
S is the area bounded by the contour C. 2335. —4. Hint. Green’s formula is

not applicable. 2336. mab., 2337. —g—na'. 2338, 6mat. 2339, -%—a’. Hint, Put
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y=1x, where ¢ is a parameter, 2340. %-;. 2341, n(R4-r) (R4 2r); 6nR? for
R=r Hint. The equation of an epicycloid is of the form x=(R+r)cost—
-—-rcosR—;}'—rt. y=(R+r)ysint—r sinRj-rt, where ¢ is the angle of turn of
the radius of a stationary circle drawn to the point of tangency.
2342. t (R—r) (R—2r), —g—nR’ for r=—§- Hint. The equation of the hypo-

cycloid is obtained from the equation of the corresponding epicycloid (see
Problem 2341) by replacing r by —r 2343. FR. 2344, mg (2,—2,).

2345. —2—(a’—b’). where k& is a proportionality factor, 2346. a) Potential,

U=mgz, work, mg(z;,—2,); b otential, U=£, work, -—————l___i—__——_

8. g:zzl 2) ) P 1 ) - Va’+b’+c"
c) potential, U=—?(x’+y’+z’), work, kT(R’—-r’). 2347. %M‘.

2 Pt .
2348, %J“—b 2349. 0. 2350, %-nabc. 2051, o 2362, %.
25 ¥V 5+1 iV 2
2353, —~ 2T 5 2354, hs. 2355, a) 0; b) —SS (cos @ 4 cos B 4
_ p)

1006 ¥5—1) (S) R 9
+cosy)dS. 2356. 0. 2357. 4m. 2358, —na’, 2859. —a'. 2360. oo 03.
oP_OR 9Q _oP
%= 5 =5y 261 0. 2862 ?(S(x+y+z)dxdydz.

dx dy dz e /o a*u 92U
2363. 2Sg‘s‘m . 2361 5 S(ax’ ’ +az= )dXdde.
3
2365. 3¢  2366. % . 2367. 15?na. 2368. ’-‘“—2?- 2371. Spheres; cylinders.

2372. Cones. 2373. Circles, x*+ y*=c}, z=c,. 2376. grad U (A) =9 —3j—3&;
lgradU(A) =V 99=3 V1I; 2?=xy; x=y=2. 2371. a) —:—; b) 2r. c)—;'-;— :

d) [ (r)% 2378. grad (cr)=c; the level surfaces are planes perpendicular to

)
the vector ¢. 2379. S—U=‘lrg, u =|grad U | when a=b=c¢c, 2380. g—l-u—-
1
=-°°¥,". %1_11_0 for { | r. 2382, 3. 2383, dlva=—f(r)+f (r).
2385. a) divr=3, rotr=0; b) div (rc)=7, rot (rc)——,c) div(f(ne)=

f(r)(c, r), rot(f(ne)= r ()cxr 2386. divo==0; roto=2®, where

o =owk 2387. 2mn where n° is a umt vector parallel to the axis of rotation.

o-U a U 2
2388. div grad U.._a 3 +<)y 3 rot grad U=0. 2391. 3nR*H.
2302, a) - nRH (3R*+2H?); b) 3 WREH (R*+-2H?). 2393. div F=0 at all

10
points except the origin. The flux is equal to —4nm. Hint, When calculating
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—nR*

the flux, use the Ostrogradsky-Gauss theorem. 2394. 2n%h%, 2395. 3

r
2396. U=Sri(r)dr. 2397.%. 2398. a) No polential; b) U=xyz+C;

r,
c) U=uxy +uxz +yz+C. 2400. Yes.

Chapter vill

1 1 1 n42 2n
01 . 2402, 5. 2403, . 2404, 5. 2405, Ty 249 3.

1 1.3.5. ..(2n—l) 1\l (—t+1
2407. PTENE 2408. T47...Gn=9)" 2409. (—1)*+'.  2410. n .

2416. Diverges. 2417. Converges. 2418. Diverges. 2419. Diverges. 2420. Diverges.
2421. Diverges. 2422. Diverges. 2423. Diverges. 2424. Diverges. 2425. Con-
verges. 2426, Converges. 2427, Converges. 2428. Converges. 2429. Converges.
2430. Converges. 2431. Converges. 2432. Converges. 2433. Converges. 2434. Di-
verges. 2435. Diverges. 2436. Converges. 2437. Diverges. 2438. Converges.
2439. Converges. 2440. Converges. 2441. Diverges. 2442. Converges. 2443. Con-
verges. 2444. Converges. 2445. Converges. 2446. Converges. 2447. Converges.
2448. Converges. 2449. Converges. 2450. Diverges. 2451. Converges. 2452. Di-
verges. 2453. Converges. 2454. Diverges. 2455. Diverges. 2456. Converges.
2457. Diverges. 2458. Converges. 2459. Diverges. 2460. Converges. 2461. Di-
verges. 2462. Converges. 2463. Diverges. 2464. Converges. 2465. Converges.

2466. Converges. 2467. Diverges. 2468. Diverges. Hint. "+'>1 2470. Con-

verges conditionally. 2471. Converges conditionally. 2472, Converges absolute-
ly 2473. Diverges. 2474. Converges conditionally. 2475. Converges absolutely.
2476. Converges conditionally. 2477. Converges absolutely. 2478. Converges
absolutely. 2479. Diverges. 2480. Converges absolutely. 2481. Converges con-
ditionally. 2482. Converges absolutely. 2484. a) Diverges; b) converges abso-
lutely; c) diverges; d) converges conditionally. Hint. In examples (a) and (d)

consider the senesz (23%_,+a,,) and in examples (b) and (c) investigate
k=1

® @
separately the series ) ay,_; and ) a,,. 2485. Diverges. 2486. Converges

k=1 k=1
absolutely. 2487. Converges absolutely. 2488. Converges conditionally. 2489.
Diverges. 2490. Converges absolutely. 2491. Converges absolutely. 2492. Con-

1
verges absolutely. 2493. Yes. 2494. No. 2495. Z+—(——)—, converges. 2496.

1
Zm' converges. 2497, Diverges. 2499 Converges. 2500. Converges.

1
an —
2501. |R,| < 20, IR,|<720,R4<0 Ry>0.2502. R, <2n+l T @n ¥l

Hint. The remainder of the series may be evaluated by means of the sum of
1
2arit

+(%)z(n+ 1)1(fz+2)+"‘] = H” ' 'ﬁ”ﬁ(%): ' (71711~T)’+ ] '

a geometric progression exceeding this remainder: R,=a,
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n+2 . - 1 i .
2503. R, < GFDGEDT R, < 3-107%. 2504. o <R,< - Solution,
R

=1 1 ! !
" (n+l)'+(n+2)’+"'>(n+1)(n+2)+(n+2)(n+3)+"'=

(L 1 1 1 1 1

(n+1l n+2)+(n+2 n+3)+“"‘n+1'R"<n(n+1)+
+m+...=7. 2505. For the given series it is easy to find the
exact value of the remainder:

1 16\ [ 1\"?
Ra=g5(n+) (7)
2n

. 1 1 \27+2
Solution. R,=(n+1){ & +(n+2)(;) +..
We multiply by (—1—)::

© K Ra=(n+1) (})’”“+(n+2)(})"“+-..

Whence we obtain
15 1 2n 1 2n l n42 1 Mm+3
wre=n(5) () H(x) H(3) s
(l)!n
1\ \4 16\ [ 1\*"
=(7) +T‘T=("+Ts) (+)"
16

From this we find the above value of R,. Putting n=0, we find the sum of

2
the series s_—(%) 2506, 99; 999. 2507. 2; 3; 5. 2508. S=1. Hint.
Lo

a,,:—-—'?—m 2509. S:==1 when x>0, S=—1 when x<0; S=0 when
x=:0. 2610, Converges absolutely for x > 1, diverges for x< 1. 2511. Converges
absolutely for x> 1, converges conditionally for 0 <x<1, diverges for
x<<0. 2512. Converges absolutely for x>e, converges conditionally for
1 <x<e, diverges for x=<cl. 2513, —o <x< . 2514 —oo <x< oo.
2515. Converges absolutely for x > 0, diverges for x << 0. Solution. D la,l<<

—

1 . .
<Eﬁ;; and when x> 0 the series with general term E,,—xconverges; 2)??2:1

for x<<0, and cos nx does not tend to zero as n — oo, since from cos nx -+ 0
it would follow that cos 2nx -»—1; thus, the necessary condition for conver-
gence is violated when x<C0. 2516. Converges absolutely when 2kn < x <
<(2k+Dn(k=0, +1, +£2, ...); at the remaining points it diverges. 2517.
Diverges everywhere. 2518. Converges absolutely for x # 0. 2519. x > 1, x<—1.
2520. x >3, x<1. 2521. x=1, x<<—1. 2522. x>5%, x<4%. 2523.
x>1, x< —1. 2524, —1 <x<———;—, —é—<x< 1. Hint. For these values

@® @

1

of x, both the series Zx" and the series 22—!‘;‘7 converge. When |x|=1
k=1 k=1
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1
and when |x|<<o, the general term of the series does not tend to zero

2525, —1<x<0, O<x<l. 2526, —l<x<lIl. 2527, —2<x<2.

2528. —1<x<]1 2529.———1—2<x<—1_. 2530. — | <x<1. 2531. —1<x<1

V2
2532. —l<x<1. 2533, —oo <x<oo. 2534, x=0. 2535. —0 < x < oo.

2536. —4 < x < 4. 2537. ——:]; <x<%. 2538, —2 < x < 2. 2539. —e < x <e.

2540. —3<<x<3. 2541. —1<x<1 2542. —1 <x<1 Solution. The diver-
gence of the series for | x|[=>=1 is obvious (it is interesting, however, to note
that the divergence of the series at the end-points of the interval of conver-
gence x=+ 1 is detected not only with the aid of the necessary condition
of convergence, but also by means of the d’Alembert test). When|x| < 1 we
have

im [ DL
N> n x™

= lim [(a4+ D" <lim(n41)]x"=1m PEl_o
n->wo n- o n-w

l n
|3

(this equality is readily obtained by means of I'Hospital’s rule).

2543. —1<<x<<! Hint. Using the d’Alembert test, it is possible not only
to find the interval of convergence, but also to investigate the convergence
of the given scries at the extremities of the interval of convergence. 2544.
—1<<x<< 1. Hint. Using the Cauchy test, it is possible not only to find the
interval of convergence, but also to investigate the convergence of the given
series at the extremities of the interval of convergence. 2345. 2 < x<C8.
2546. —2<<x < 8. 2547. —2<x<4. 2548, 1<<x<<3 2549. —4d<<x<—2

2550. x=—3 2551. —7<x<—3 2552, 0<x<4. 2553 —-4§<x<l§’.

2554, —e—3 < x <e—3. 2555. —2<<x<<0, 2556. 2 <x <4 2557.1 < x=<3.
1
2558. —3I<<x<<—1 2559. l—-—é—<x<l—l—?1 Hint. For x=1 ;};%— the
1 \n?
. (1+4)

. . . . n |
series diverges, since lim —~—r; =—
n-w e Ve

2561. 1 <x<<3 2562. 1<Cx <5. 2563. 2<x<<4.2564.|z| <1 2565.|z] <1
2566, |z—2| <3 2567.|z| < V' 2 2568.2=0 2569. 2| < oo. 2570. [z[<—;

#0 2560. —2<x<O

2576. | —il?—(l—x) (—1I<x <) 2577. In(l+x) (—1<x<l).
X 1
2578. 5'“ F;c(lx{< 1) 2579. arctanx (] x|<<1). 2580. m(lxl <.
l—x 2 x
81, ——- . — s P,
BBl e (X1 <D 2882 = (xi<D). 2583 (x>0
1 1 — El
2584, 5 (arctanx— ln’:T’Q (xl<1). 2585. = {3 . Hint. Consider the
sum of the series x—%+)-c—-—... (see Problem 2579) Ior x=——l~:
5 V3"

-~|a

@®
n n
2586. 3. 2587. a"=l+2 "_%_ﬁ —m <x< . 2588 sin(x+

_V§ xt % ;4:: x® ’i—-nx"

)=
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l
2589. cos (x + a)=cos a—x sina— 2! cosa—f—a' sma—{-;f,-cosa-{-...

3,4 5,8
(n H)“] F..—0<x<w.2590. s1n=x_32“7_2_4’l‘_+26_’!‘_

+...,—w<x<ow. 2591 ln(2+x)=ln2+f§_

..-}—‘%sin[a—i—

2 n-— 1xzn

\2n)!
(=1

(=1

x? x" . _ _
_ﬁ‘*‘ﬁ:— n-2"+"" —2< x=<<2. Hint. When investi-
gating the remainder, use the theorem on integrating a power series

®
2c—3 n 3x—5
2592. o= Y, ()X X1 < 1. 2503, P v i

(x—1)*
hd 2 —ax hid (_])n-|2n—1xn
—Z(l+:5,,—“>x",]x|<l.2594. xe "—x-}-Z—Tm ,
n=o n=2

®

xzn in +1

—® < < . 2595. ex’=1+2ﬁ. —® <xr<o 259 }.-(2n+l)r

n=1
®©

(—w <x<w) 297 143" ( IR (2 )l 2508, 144 O (__(

n=1 n=1

o
32’]. 20 +1
—o<x<o. 2599 22(—-1\"%_

n=o0

b 2n 41 —
2600, 2(—-1)"" (—3<x<3. 2%0L +po.igldoxE,

g+l

| ::
G

(—oo<x <x).

135x 1.3 (2n—1) x»
+2462’—* -t 246 o 2:n+,+ L —2<x<?

+1 (___l)n-n on__ | n 1 1
2602. 222 y (Ix] <) 2603. Z-———— X <_§<,<5)_

2604 x+i( 5 (*xI<1D. 2605 L( ”"2n+| (xj<.

2606, x-+ i .—+; 2§+ L 32'3.'6',@'2:1);;":]+... (x]<).

2608, i(-—l)”"‘% (—o< x<w). 2609. 1+Z( nn- '"n;l'x"
n=1 n=g

2" n-1i
(— o< x <co). 2610. 84 3Lﬁ_i3_-
n=i

2.x? 2.5x° 2.5.8...(3n—4) x"
001 24 gy~ g Haga F o (S0 gt b

XM (—oo< x <®).
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®

(— o <x <ow). 2612. %——2(2,,——1”4—3%_-,) x" (—2<x<?).
n=1
3 Oy (1 4-32n=1) g2 ® . an .
26,3.1+TZ(__‘*;(§W)_"_(|,¢|<¢). 2614.24—’2ﬁ Wx| < V2.
n=1 n=o
2615, ln2-|-2(--'-l)”-l (14-2-m x;'_' (—l<x<). 2616. E(—l)" X
n=1 pos
x2n+1 o

6 i » x2n 41
X@In@Tm (7@ <F<®). BT ik Y (=" reg (<o),
n=1
3 nr X7 1 1.3
B18. (=1 5 (k<D 619 xpoo o

n=1
1.3.5...2n—=1) ,n,, x| 2%
+—§"—(47+—1—)—n-’—x +-.. (|x|<l). 2620. x+—3—-+ﬁ+...

X 28 x?  xt 2  5xt
262l.x—§+T5-—... 2622. e( l—§+'€—"')' 2623. 1+§+’ﬁ+"'

2624 AN 2625. x4+ 1 2626. Hint. Proceed
T\ TR ) c XX Ot . Hint. Proceed-

ing from the parametric equations of the ellipse x=acos ¢, y="bsin ¢, com-
pute the length of the ellipse and expand the expression obtained in a series
of powers of e. 2628 x*—2x®—5x—2=—78+459 (x+44)—14 (x+4)*+

F(x+4)° (—oo < x< o). 2629. f(x + h)="5x*—4x>—3x + 2+

+ (15x* —8x—3) h+- (15x—4) h*+-5h? (—o<x<w; —w<h< o).
@« —1 n [~

2630. Z(-—l)"—l(i—n—)—(o<x<2). 2631. 3 (— 1) s—1)" @ <x<2).
n=1 n=o

2632. Z(n-}-l) (+1)" (—2<x<0). 2633, 2(2"“"—3""")():-}-4)"
n=o n=o

(—6<x<—2). 2634. Z(‘”" (xs;kﬁ)“ (—2— VT <x<—24 V).

n=o0
- -~ (x+2)" x—4 1 (x—4)
n=1

1.3 (x—4)* 1.3.5(x—4)* )
'l'z__é(x 28 ) —4-6-8(x 08 ) +. ..+(_l>n

 1:3:5...@n—3) (x—ay"
4.6.8...2n e e
1

® T \2n-
)
O0<x<8).  2637. 2(—1)"-(__2.—_ (x| <w). 2638, -é-+
n=1

(2n—1)!
@ n \2n-1
V! 4"“(x__4_) w\ 1 1—x\2n+1
+ ) (=) U5l < ). 2630, —2 né m(m)
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Hint. Make the substitution %:t and expand Inx in powers of ¢.

1 x \? 1.3/ «x 1.3.5...2n—=3)/ x \”"
4640. x+"2"<1+x) +§'-“( ) T teTs (2n—2)<l+x> tee
i< ). 2641 |R;<:,’T < o642, |R|<l—ll~.2s43.-’-‘-=.-

T 2 40 6
(2),12(z)
1, 1\2 1.3\ 2
~3te -3 tia s
exceed 0.001, 1t is necessary to evaluate the remainder by means of a geo-

metric progression that exceeds this remamder 2644. Two terms, that is,

=0.523. Hint, To prove that the error does not

x? . 1
l——2—. 2645. Two terms, i.e., x—g 2646. Eight terms, i.e., l+2;1—!'
n=1
2647. 99; 999. 2648. 1.92 2649. 4.8 | R| < 0.005. 2650. 2.087. 2651. | x | < 0.69;
x| <0.39]|x] <0.22.2652. | x|<039; |x]|] <018 2653. -]—-——1:—--1:0.493[.

2 2%.3.3!
2654. 0. 7?68 26565. 0. 608 2656. 0 621 2657. 0.2505 2658. 0.026.

2659. 1 - Z( 1" (r— (o <x <o, —o <Y< m).

(211)'
n=i
2660 - ( 1) (x__y):n_(x_{_y)zn (_ <X D, — LY < B
' Z —b 2-(2n)! ® ' y >
Il 1
e ‘(x _’_'/2)2'1 1 _ . _
2661. Z( 1) BT (—oo < x< o ® <Y< ®).
n=i
. —X) x— l—x+y_ 2
2662. 122‘0 x)% |x—y| <1 Hint. Hx__y +l-—(y—x) Use
n=i
® P
a geometric progression 2663. ——ZT(—1<x< 1; —1<<y<).
n=1
b
in. 1—x— —(l—x) (1 — AT TY Eottii ol A :
Hin!. 1—x—y4xy=(1—x) (1—y). 2664. L( 1) TEN (—lsx<l;

n=o0

x+y

— 1 <<y <1). Hint. arc tan vy =qarc tanx t-arctany (for |x|<<1, |y]<<)).

1—

2665. f(x+h, y4k)=ax® +2bx1+cy }—2(ax—{«bj)lz+°(bx+01)k+ah +
|-2bh +-ck?. 2666. [ (14h, 2+k)—f (1, 2)= 9/1——9lk+3h +3hk— 12k + h* —

T 2n
' +(s-5 )]
— 2k, 2667, 1+2[(x AWV g8, I—LE( [ (2,,),2 :

y —3xy? 1,
2669. 1+x+—T —3—,——~+.. 2670. I-}-x-|~xy+—xlj+...

2671, c,—;c,_?(c,—c,) \a sin(2n4-1) x| . S(0)= c, € +C,, S(+m)= c,+c,.

n b 241 !
n=o
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. b—a 2(b—a) :cos(2n+l)x - slnnx
2672. & 2_ PIESIL +(a+b)2( —1)r- =

— 1 had
S(+ n)=bTan. 2673. T+4 3 (=1 s (1 my =t 2674, %smhanx

n=i

2sinan

x[gl(-z—i-z:z:-—_'_lg(acosnx—nsinnx)]; S (4 n)=cosh an. 2675. X
n=1

o
X Z 1)""sm " it ais nonintegral; sin ax if a is an integer; S (£ n)=0.
n=1

2sinan| 1 | « nacesnx | . . . . .
2676. __,!__[2_‘1-}-2(—1) a’-—n’] if a is nonintegral; cosax if a is an

n=1

. _ 2 sinh an n—y nsinnx .
integer; S (& n)=cosam.  2677. ———n——Z(—l) et S+ m)=0.
n=1

2678. ZL""L"[ \ 1)"”“5""] S (& m) =cosh an. 2679. Zs"‘”"
n h-d

al_l_nR
n=1

~sin(2n—Nx T n
2680. L ST & 7 b 5 0 V—' 2681. a)QZ(_l)n 'y

n=1

sinnx n 4 & ns(2n—l)x n? > .
X — _R—z e B 2682. a)Eb,,smnx, where

n=1

_2n 8 __n, ”cos nx . n?
b’k—‘_2k—l—ﬂ(2k—l)’ and bzk— _k" b) 3 +4V( 1) ) ?

-]

N ] —(—1)" gamy 1SN AX et —1
3 (=) TR b
n=1

2
2) - 2683 %)

alm

+

COS -—~

2a > [(—1D"e*™—1] cos nx . 1
+5 Z . 2684, a) Z sinnx; by =+

at+n?

cos nx. 2685. a)

+
alw
|
:1[-&

-]
n—y SiN(2n—1)x o
Z D" =gy D

2 ces2(2n—1) x - 1
—?[— > —(2’(1—:1—):'— 2636. an sin nx, where b:k=(—l)k I—2~k 'blk+l=

n=1 n=1

2 sin(2n—1)x n sin nx
—_— -~ n-1
W er e 2657 \ @1y 2688 o z'( D v 1
n=i n=1
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Answers
2h (1 =\ sin nh 2h| 1 o [sin nh\?
2689, = <§ +Z—n-h——cos nx). 2690. ?[7 +2(T) cosnx].
1 7S 2nx

n-: n=l
cos x _, CO8 nx 4 -
2601. 1———+2Z(-1)" 'Sy 2002, —[ +Z(“”" i ]
n=2a n=1
f (x) cos 2nx dx 4

ale
°Q’>-,:j

n
2 Sf (x) cos 2nx dx =

:l

2694. Solution.

—-Sf(x)cos 9nx dx. 1f we make the substitution f=———x in the first

integral and t=x—l in the second, then, taking advantage of the assumed
identity f (T4t )_ f(——t ) it will readily be seen that a,,=0

(n=0, 1,2, ...)% n
T

a
2 S [ (x) sin 2nx dx =% S f (x) sin 2nx dx +% f (x) sin 2nx dx.

wla—3a

2) byp= T
0

The same substitution as in Case (1), with account taken of the assumed
1dent1tyf( +t )=f 1}2——1 \; leads to the equalities b,, =0 (n=1,2,...).
/

i 2 1 2 <X sin 2nmx
Cs@ntl)x g9q, |2 Y AL
T et n

- 1 4
2695. 5'—3?‘2’_(2” {_l)z N 7
n=o n=1
7 1 cos 2 — qn sin 22
R I TN N ey B !
2697. blnhl[T I—Z}J(—l) I F nint
n=1

nnx
sin2(n—D e, 99p0

o *®
10 2 : sit 4
¢ — — n a —
2698. 1) 2699. a) E_ Oy

nnx © (2'r-— 1) ntx 1
sm-— .
L( nett — E . 2701. a)s b, sin = 5
n=i
8 n? 4n 4n®
where bzkh—‘? [2k+ 1 2k _{_ 1)1] ’ byp=—— b) 5
sm (21 1?1) nx |
., 2702, a) — 2 {— o 1)2 ) b) 57—

—162(—1)" '

4 m cos (2n+1) nx

2n o 9 \~ 1 2 I X~ crs2
lnx N CrS 1#184
3 o z- ;_t— 3 2.rt2 PAPEY

n=1
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Chapter IX

2704. Yes. 2705. No. 2706 Yes. 2707. Yes. 2708. Yes. 2709. a) Yes; b) no.
2710. Yes. 2714. y—xy '=0. 2715. xy '—2y=0. 2716. y—2xy’'=0, 2717.
xdx+ydy=0. 2718. y'=y. 2719. 3y*—x*=2xyy’. 2720. xyy’ (xy*+1)=1.

2721, y=xy’ ln-’yi. 2722. 20y +y’ =0. 2728,y —y’ —2y =0. 2724. y" + 4y =0.

2795, y —2y’' +y=0. 2726. 4" =0. 2727. " =0. 27128 (14-y"")y" —3y'y"* 0.
2729, y*—x2=25. 2730. y==xe®*. 2731. y=-—cosx. 2732, y=

=%—(— Be~% 4 9e* —4¢%%). 2738. 2.593 (exact value y=e). 2739. 4.780 [exact
value y =3 (e—1)]). 2740. 0.946 (exact value y—l) 2741. 1.826 (exact value
y=V 3) 2742. cot*y=tan?x+C. 2743. x== —— V—

=1n Cx2. 2745. y=a+]—ixa. 2746. tan y =C (1 —e*)%; x=0. 2747. y =C sin x.
9 .
2748. 2% =V'e (1+e"). 2M9. I4yl=y—(. 250. y=1. 2751

arctan (x+y)=x+C. 2752. 8x+2y +l—2tan(4x|-C) 2753. x+2y+
+31In)2x+43y—T7|=C. 2754. 5x+10y—|—C 3In|10x—5y-+6(. 2755. o=

or y?=2Cx-+C? 2756. Ing= —Injcos@|+C or In|x|—

; y=0. 2744, x4 y* =

=1;—coscp 2cos* @

—ny—z=c. 2757. Straight line y=Cx or hyperbola y=£. Hint. The seg-

ment of the tangent is equal to ]/y’-]—(y) 2758. y?—x2=C. 2759. y =

xydx

X
a

°
ey
= *x

=Ce?. 2760. y*=2px. 2761, y=ax? Hint. By hypothesis

]
W o
®

S ydx

0
Differentiating twice with respect to x, we get a differential equation.
2762. y2=%-x.

—— — —_—2
2763. y=]/-4~—x’+2ln2—l/;-4—i. 2764. Pencil of lines y=~Fkx. 2765. Fa-
mily of similar ellipses 2x*4-y2=C? 2766. Family of hyperbolas x2—y?=C.
2767. Family of circles x2+4 (y—b)2=b2. 2768. y._xln-— 2769. J—E—%.

X
2770. x=Ce¥. 2771. (x—C)*—y?=C% (x—2'—y?>=4; y=+x. 2772.
V—-}-lnl.ﬂ-C 2773. y—-—c-x 21C; x=0. 2774. (x*+y?*(x+y)?C.

2775. y=x ]/1—§x. 2776. (x4-y—1=C (x—y+3). 2777. 3x+y+2x
Xln|x4y—1|=C. 2778. In|4x+8y+5|+8y—4x=C. 2779. x*=1—2y.
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2780. Paraboloid of revolution. Solution. By virtue of symmetry the sought-
for mirror is a surface of revolution. The coordinate origin is located in the
source of light; the x-axis is the direction of the pencil of rays. If a tangent
at any point M (x, y) of the curve, generated by the desired surface being cut
by the xy-plane, forms with the x-axis an angle @, and the segment connect-
ing the origin with the point M (x, y) forms an angle a, then tan a =tan 29 =
__ 2tang

T 1—tan®eg’
y—yy'*=2xy’ and its solution is y?=2Cx+ C*% The plane section is a para-
bola. The desired surface is a paraboloid of revolution. 2781. (x—y)?*—Cy=0.
2782. x*=C (2y+C). 2783. (2y*—x*?*=Cx?. Hint. Use the fact that the area

X
is equal to Sy dx. 2784. y=Cx—xIn|x| 2785. y=Cx-+4x* 2786. y=

a

.-::%x‘—{—;cz. 2787. x V1 +y2+cosy=C. Hint. The equation is linear with

But tan a=%; tan @ =y'. The desired differential equation is

ab—e®

p 2790, y=

respect {>™x and d_x 2788. x:Cy’—-l. 2789. y=-e—x-|—
dy Yy x

1 —_ . 1/1+x x P
= V T—x2+ arc sin x) Ty 2091 y=—. 2792, y(¥*+Cx)=1.

C 1
2 __ 2 __ 3 . J—
2793. y:*=xIn < 2794. x —Jz————cy,. 2795. y?*(34-Cecosx)=x 2797. xy=
—=Cy?+a®. 2998. y?-+x +ay=0. 2799, x——yln—z . 2800. —-z + —Z =1. 2801.

2 3
A24-y>—Cy-+a?=0. 2802. —;— +xy+y*=C. 2803. ;—+xy’+x2=C. 2804.

X 3 s Yy 2 2 14 2__ 2 3
TTXY -1—2x+§=C. 2805. x?4y*—2 arc tan-;:C. 2806. x*—y?=Cy*.

x

x? " 42
n807. 5 +ye’ =2 2808. ln|x|—7=C. 2809.

+—‘lz—y2-—:C. 2811, (xsiny4ycosy—siny)e*=C. 2812. (12C*+41—2Cy) X
X(x*+C2—2Cy)=0; singular integral x*—y?=0. 2813. Gensral integral

(y + C)? =x?; there is no singular integral. 2814. General integral (%— y-}—C) X

x . x? 1
!7+§_C. 2810. —y—- In x4

2
x(x——-g——{—C):O: there is no singular integral. 2815. General integral

y? - C2== 2Cx; singular integral x*—y2=0. 2816. y=—;-cosx + lg

2
x=sinp<4Inp, 2818 {x::eP+pe”+C. 2819 ]x=2p——+C,
= - . =p2e? - p
{y psinp4-cosp+-p+C. y=pe”. y=p*+2inp.

Singular  solution: y=0. 2820. 4y=x2+p2 ln|p—x|=C+,3é;.

3 sin x. 2817.

——— 2 2
2821, In Vp2+y’+arctan§-=C, x-—:ln%&. Singular solution: y=e*.
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1

2 x=Ce~P—2p+2,
2822, y=? CX"‘I‘E, y=i 2x. 2824. {y____c(l+p)e—p_p’+2
1
l - —
x=—=(Cp *—p)
x=In|p|—arcsinp+C, 2825 3 Hint. The differential
2823.{y=p+ Vi=p. : .

y=75(2Cp* +p".
equation from Whicle x is defined as a function of p 1s homogeneous. 2826.
y=Cx+C% y=—%. 2827. y=Cx+C; no singular solution 2828. y:-Cx+

R 1
+ VT1FCE; a2 4y*=1. 2829. y=Cx+T: ; y2=4x. 2830. xy ==C 2831. A circle

and the family of its tangents. 2832. The astroid x* + y2/*=qa?/*. 2833. a) Homo-
geneous, y=xu; b) linear in x; x=uv; c) linear in y; y=uv; d) Bernoulli’s
equation; y=uv; e) with variables separable; f) Clairaut’s equation; reduce
to y=xy' + V¢’ g) Lagrange’s equation; differentiate with respect to x; h)
Bernoulli’s equation; y=uv; i) leads to equation with variables separable;
u =x+y; j) Lagrange’s equation; differentiate with respect to x; k) Bernoul-
li's equation in x; x=uv; 1) exact differential equation; m) linear; y = uv;

n) Bernoulli’s equation; y=uv. 2834. a) sin—i—:—-ln]xH—C; b) x=y.eCY+1,

2835. x* 4 y*=Cy*. 2836, y=ﬁ5- 2837. xy(C—%ln' ¥)=1. 2838 y=

=Cx+C In C; singular solution, y=.e“’l‘+”. 2839. y=Cx+ ¥V —aC; singular
. a X ——
solution, y=g-. 2840. 3y+In '(y+1)l=c. 2841, ?e"‘—e"'-—arc tan y—

— 3 In(144N=C. 2842, y=4(1-+Ce”). 2843, x=y*(C—e~Y). 28M. y=

=Ce™*"* psinx—1. 2845. y=ax+C ) T—x%. 2846. y=ﬁ(x+ln|xl+6).

2
2847, x=Ce™¥ —2 (1 4siny). 2848. T +3xty+Inl(x—3°|y—1p]=C.
2

2849. 2arc tan y;'=1n Cx. 2850, x'=1—§+(:e-7. 2851. x*=Ce¥—y—2

2852. l/%+ln|x|=c. 2853. y=x arc sin (Cx). 2854. y’:-Ce*’”+%sin x4+

-+ %—cos x. 2855. xy=C(y—1). 2856. x= Cey—-;— (sin y4-cos y). 2857. py -

=C (p—1). 2858. x‘=Ce‘—V—y'—% y'—-gy—a% 2859. (xy+ C) (x*y+ C)==0.

C ViFmk 1
X=—m——F5—+355In
2860, V ¥+ y'— —=C. 2861. xe¥—y*=C. 2862. 2 g0t
y + V140,

y=2px+ VT1Fpt

2863, y=xeC%. 2864, 26" —y*=Cy’. 2865. In|y+2|+2arc tan L2 2868,
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¥ y ‘

Y2+ Ce * +17——2=0. 2867. x2y—Ce4. 2868, x+§=c. 2869, y=
—x 2 e

= *C—“x—“z 2870. y=C sin x —a. 2871. y="2 In(x+ Vaifx )+C
e x+ Vartx?

(y—Cx) (2 —x+C)=0. BT, y=Cr+ ;. y=o /TP, WU r4ry—

—yx—y'=C. 275, p't4y’=Cy’ 2876 y—x—1. 2877 y=x. 2878 y=2.

2879. y=0. 2880. y=-§(sinx+cosx). 2881. y=%(2x’+2x+l). 2882, y=

==e~% {-2x —2. 2883. a) y=x; b) y=Cx, where C is arbitrary; the point (0,0)

is a singular point of the differential equation. 2884. a) y*=x; h) y2==2px;

(0,0) is a singular point. 2885. a) (x —C)24- y2=C2 b) no solution; ¢) x2  y2-=x;
X

2872,

(0,0) is a singular point. 2886. y -e. 2887. y—=(V 22 + V %) 2888. y?--
-:1—e~*. 2889. r=Ce%. Hint. Pass to polar coordinates. 2890. 3y2—2¢==0
2891, r»;k(p 2892. x*-|-(y—b)*=b2 2893. y2--16x=0. 2894. Hyperbola
y? —x2.-C or circle x? |-y2--C2 2895, y:%—(e-"—l—e""), Hint. Use the fact

X

that the area 1s equal to Sydx and the arc length, to Volty? v
0

e

2
2896. x:%—f Cy. 2897. y2 _4C(C--a—x). 2898. Hint. Use the fact that tha

resultant of the force of ¢ravity and the centrifugal force is normal to the surface.
Taking the y-axis as {he axis of rotation and denoting by o the angular ve-
locity of rotation, we cet for the plane axial cross-section of the destred sur-
. . di . . .
face the differential equation ggi»:\—{:m-x. 2899. p_:e~"""18%% Hint, The pres-
sure at cach level of a vertical column of air may be considered as due solely
to the pressute of the upper-lying layers Use the law of Boyle-Mar otte, ac-
cording to which the density 1s proportional to the pressure. The sought-for

difterential equation 1s dp — — kp dh. 2900. s_-:—é-klw. Hint. Equation ds-—=

chw "T“xdx. 2901. s:(p—}«%—w) kl. 2902. T=a-(T,—a)e~*. 2903. In

3\t
one hour. 2904. w-=—=100 (%) rpm. 2905, 4 2% of the initial quantily Q,

will decay in 100 years. Hint. Equation ‘% =kQ. Q =Q, (—;—)“"". 2906. ==
1)\2 1
=~ i 2__ — —_ —_—
= 35.2 sec. Hint. Equation n (h®*—2h)dh a(l()) vdt. 2907, 1094 ° Hint,
h

dQ=—*kQdh. Q=Q, (—;—) 3. 2908, v — l/‘% as t —> oo (k is a propor-

tionality factor). Hint. Equation m‘%:mg—ka’; U= ]/gkﬂtanh (t 5—?) .
. dx 1 X R E
2909, 18.1 kg. Hint. Equatlon Ez—k (g—m) . 2910, l——m [(R sin wf—

16—1900
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R

t .
— Lo cos ot)+ Loe L ]. Hint. Equation Ri+Lﬂ=E sin of. 2911. y=

=xIn|x|+Cix+C, 2912. 1+C,y’:( =+C"}x )2. 2913. y=1n|e*+C,|—

—x+C, 2914, y=C,+C,In[x|. 2915. y=C,eC* 2916. y= + ¥V C,x 1 C,
—C
2017, y=(1+C In|x+C,|—Cyx+C,. 2018, (x—C,) =aln|sin 2

sin

2019. y———(lnlx[)’—}-C In|x| 4 C,.2920. x—- In ay=C.2921. y=

| c
= C,eC* + 'C—,' 2922, y= i;—z— [ ch_xurc2 arcsin ] +C, 2923. y:-=
=(Ce* +1) x4C,. 2924, y=(C;x—C?) eE'—H-}—C,; y:——2— x24C (singular solu-
tion). 2925. y=C,x (x—C,)+C,; y=§+c (singular solution). 2926. y=
=£+§+C,xln|x[+6,x+€,. 2927. y= 4 sin (C, £ x)+ Cpyx+C,. 5928.y1

=x*+3x. 2929. y-:;—(x’—i—l). 2930. y=x-1. 2931. y=Cx2 2932. y=C, X

x:j‘_gze,,,y=c. 2933. x=c,+1n ‘ 2034, x=-C, ——111
2935. x=C,y +yln_/+Cz 2936. 24° —4x2__1 2937. y=x-- l 2938 y =
== Al o I=x ety 2939 R
=3e—1n 4 V=3 rnT 1 ’ A
2
2940. y:%xz. 2941. y=2¢*. 2942, x::—-— w-1-2)°. 2943. y - e*.
e—% 2
2944, Y= +1—e' 2945. y= g%hg.rz ——,E—:— . 2946. y-=
=——3eax 2947. y==sec’x. 2948. y--sinx-1 2949. y ;L‘z_l
2+€‘x : . 4 9
2950. x:-—%e"}"". 2951. No solution. 2952, y=e*. 2953. y-- 21nl,\|——2
x4+C:4-12 4 2
2954. y=(——2'—+—§ C, (x+1)2 +C,. Singular solution, y=C. 2955. y ==

_x +1)’

2
= C‘% + (C,—Cf)x+Cz. Singular solution, +C. 2956. y=

=il§(C,+x)‘+sz+C,. 2957. y=0C,+ CpeCr* ;y=l—-—e";y=—-—l+e—";

'singular solution, y:c;ix. 2958. Circles. 2959. (x—C,)?*—C,y*+-kC2 0.

2960. Catenary, y=a cosh x—;xo. Circle, (x—x,)®+y*=a% 2961. Parabola,

(x—x¢)=2ay—a® Cycloid, x—xy=a (t—sint), y=a (1 —cos {). 2962. ¢®+C:=
q q
-—X -

=sec (ax+C,). 2963, Parabola. 2964, y_g-I;—eH 22 ge H

+Cz:=a><
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xcosh +C,, where H 1s a constant horizontal tension, and ﬁ:a. Hint.

x-4+C
a

. . . dy_q ]/ dy\? . .
The differential equation = 1 (Ec) . 2965. Equation of motion,
2

g_tz:g(sin a—p cosa). Law of motion, S=g2t~ pcosa) 2966. s=—

Z X

Tk ds ds
xlncosh(t ]/ng> Hint. Equation of motion, Mo =mg— k (dt> 2967. In
6.45 seconds. Hint. Equation of motion, z th —10 v. 2968. a) No, b) yes,

c) yes, d) yes, ¢) no, f) no, g) no, h) yes 2969. a) " 4-y=0; b) y"—2y’ +y =0;
¢) x%y'—2xy' +2y =0, d) y"'—3y"+4y’—2y =0 2970. y=3x—5x2 4 2x3. 2971. y =

=l—(Cl sin x4 C,cos x). Hint. Use the substitution y=y,u. 2972. y=C,x 4
2

+4-C,Inx. 2973. y=A 4 Bx*{x*. 2974. y:%-k Ax+§_—. Hint. Particular so-

lutions ~8f the homogeneous equation y,==x, y, ::-117 . By the method of the

- 3
variation of parameters we find: C ﬂi—{—A, Co=— —)f-—i—B 2975. y=A+

-} B s x Ccos x+4-1n|sec x 4-tan x| {—smxln]msﬂ—unsx 2976. y = C,e** -
4 C,e%* 2977 y=:C,e™ - C,e*". 2978. u——C -+ C,e* 2979. q C,cosx + C,sinx.

2980 y—=e* (Cycos x-|- C.,sm,\) 2981. y=e “lax (C cos 3v-|-C sm&w) 2982. y=
- (C,--C.x)e~*. 2983. y==e* ((,‘,erl 2—1- Cze"" B, 2984, If k>0, y=
=Cet! K etk if k<0, y-—=Cycos YV —kx -}- C, sn V —kx.
x 1 IS 13 — —
- x - x - fl
2985.y =e *(Ce® --Cre * ) 2986.y=e® <C, cos '/ﬁll.wc—i-C2 sin PG 1.\:) .

2087. iy = 4e* 4-e'¥. 2088. y = c~ . 2989. y == sin 2x. 2990. y=1. 2991. _-acosh—':—.

2992. y =0 2993. y=Csinnx 2994. a) xe* (Ax*+ Bx4-C): b) Acoslx |-
--Bsin2x; ) Acos 2¢-F B sin2¢ - Cy2¥; d) e¥ (Acosx- Bsiny), e) e¥X
N (A2 By 4-C) 4- xe*¥ (D +- E); 1) xe® [(Ax2-- Bx--C) cos 2x+ (Dx2+ Ex |-F)x

X

- 3
Xsin 2x] 2995, y=(C, -t C,x) ez"—}—% (2x24-4x -} 3). 2996. y =e¢ * <C,cosx‘2/ +

. X
+4-C, sin

‘g 3) 4 x3-1-3:2 2997, y=(C,--Cox)e~%-}- —:) 0%

2998, y = Ce® |-Cpe™ -2 2999. y-=Ce¥{-Ce™" —{-% xe*. 3000. y=C, cos x-
--C s:inx«{“]z xsinx. 3001. y=C,¢*+ Cze"”—% (3 s1n1 2¢ -}-cos 2x). 3002. y =
1

2X -3
= C,e** +Cye +x(m %

2
)e” 3003. J=(C,4-C2x)e”+%cos.v+%e"—-
—g—e"‘ 3004. y=C,+ 2e"‘—}- x4

20 (2cos 2x—sin 2x). 3005, y=e*X
% (C, cos 2x - C, sin 2x) 4- % e* sin 2x. 3006. y-=cos2x +% (sin x 4 sin 2x).

16*
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8007. 1) x=C, cos ot 4 C, sin ot +

,sln pt;  2) x=C,cos ot +C,sin of —
2
——;—t cos wt. 3008, y=C,e** + C,e** — e"‘ 3009. y =C,+C, e”‘—i— ————— .

8010. y=e* (C, + C,x+ x?). 3011. y=C,+C,e”‘-|——xe”‘-—-£x. 3012. y=
! 1 2 2

==C,e"”‘+C,e"‘——§ e"+—5—(3 cos2x+s8in2x). 3013. y=C,+Cee~*+¢* +

+-g—x’—5x. 3014. y =C, + Cye* —3xe* —x—x2% 3015.y= (C +C,x+— x’\

A-

xe"‘—{--]—e". 3016. y=(C,cos3x-+C, sln3x)e"+37 (sm3v+6c053x)+ g

3017. y= (C,+C,x+x')e”‘+x+l. 3018. y——C +Cge’”~—- (cos x -+ 3sinx) —
2
—%-%. 3019. y—le'”(4x+1) ——-+4 3020, y=C.e*+Cpe~* —

— xsinx—cosx. 3021. y=C,e~ 2"+ Cze”‘——Q—O- (sin 2x42cos 2x). 3022, y =
= C, cos 2x+ C, sin 2x — —:- (3sin 2x+2cos2x)+% . 3023, y=e*¢3,cosx
+ C, sin x—2x cos x). 3024. y= C,e” + C,e"‘—i—% (x*—x)e*. 3025.y = C, cos3x-+

4 C,sin3x+ —xsm x—-flécos x4 = (3x-—l)e"‘. 3026. y=C,e”‘+C,e""+%x

X (2—3x) +l—6 (2x2—x) e**. 3027.y=C, +C,e”‘—2xe”—-% x—% x* 3028.y =

3
- (C,-{—C,x +%) ex, 3029. y=C,e""’+C,e"—% (2x'+x)e""—|—Tl?i X
2
X (2¢*+43x)e*. 8030. y=C,cosx+C, slnx—{—% cosx+%—sin x—%cos 3x +
-+ %sin 3x. Hint. Transform the product of cosines to the sum of cosines.

8031. y=C,e'xV'—‘+C,e"V’_+xe" sin x +e¥ cos x. 3032, y =C, cos x4 Cy sinx +

+cosxln'cot (%-i——n‘;— ! 3033. y=C,cosx+C,sinx--sinx. ln‘tan%
8034. y=(C,+Cyx)e*+xe*In|x|. 3035. y=(C, +C,x)e"‘+xe"‘ln{x|
8036. y=C,cosx+C,sinx+4xsinx+cosxln cosx] y=C,cos x +
+C, sinx—xcosx-}-smxln[smxl 3038 a) y= Ce"+C,e"‘+(e"+e"‘)x

xarc tane*; b) y=C,e* Vi 4Ce* Vi +e*t, 3040. Equation of motion,
3
3(%1_"5)—_—_2_/;(;:4-2); (k=13 T=2n ]/% sec. 3041, xm

[
o 2gsin 30t;i093gg sin Vgt cm. Hint. If x is reckoned from the position of

rest of the load, then ix":==4—k(x.-{—x—-y—l), where x, is the distance of
the point of rest of the load from the initial point of suspension of the spring,

Lt
1 is the length of the spring at rest; therefore, £ (x,—1)=4, hence, %g-t;—
d*x

== —Fk (x—y), where k=4, g=981 cm/sec?. 3042. m o = k(b—x)—k(b+x)
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and x== ccos< ]/2k> 3043. 6‘57, gs;t:]/gln(6+1f3_5).3o44.a)r=

= i (e +e~h; by r= Zﬁ) (e"t—e~"!) Hint. The differential equation of motion
2
is d———w’r 3045. y=C, 4 C,e* 4 Cye'**. 3046. y=C,+ C,e™* + Cse*.

dt?
vy

X V&
3047. y=C,e~*4-e <C cos——x+C sin —— )

3048, = Cy+Cox+Cye® V® 4 Ce™* V' 3049, y - &% (C, 4 Cpx +Cyrl).
3050. ¢ —e" (C,cos x4 C,sin x)+e "(C,cosx-{ C,sin x)
3051. 1/_(C,+C x) cos 2x + (Cy4- C, x) sin 2x

X
3052, y=C,C.e™ J-e* (C, COSVT x4-C, sm-ﬁx>

3053. y==(C,+ sz)e"*—{ (Cs-|-C,x) e*.
3054. y= C,e“x }Cze"“ --C, usuw}-C sin ax

3055. y=(C,4-Cax) e’ * ¥ 1 (Cy 4 Cox)e™" ¥ ¢ 3056. y=C,+Cux+
+ Cyco®u -|-Cysinav. 3057, y -=C,4-Cpx - (C,+C‘t)e"‘. 3058. y=(C, +
+4- Cyx) cos x - (C3+C,x) sin x. 3059. y—e ¥(C,+Coxt- ... +Cx""N)

3060. y=C,+Cyx |- (C,,—{ C‘x+ >

306t. y=C,+4C,x-| ]2.\‘~-}-3x3+—2— .\4—]-§%A5-i (Cs+4-C,x) e*.
X - e

3062. y=C,e*-|-e <C cos K; x4 Cysim V; x)—x’—s.

3063. y=C, 4 C,x 4 Cyx?+ C,e"+]08 (4 cos 4x —sin 4x)

3064. y= Ce*4-C J»Cx—{—— x“—i x%4- —v‘ +-e¥ }—x-——l—s‘
’ ! BT 2 3 12 2 4 )"

3065. y-—Cie ¥+ C,cusx- Cysinx-e¥ (l —-l> .

4 8

3066. y= C,+- C,cos x+4-C,sin x-{ sec x4-cos x In|cos ¢ |—1an x sin x 4- x sin &,
VA

3067. y:e"‘+e B (cos VS ]/1_51111—3-)() -x—2.

3068. y:—-(C,+C,lIn x)-%. 3069. y;:C,x’—{—%.

3070. y=C,cos (21nx)-+C,sin(21nx).
3071. y=C,x-+Cpx*-}-Cyx®. 3072, y=C,--C, (3x4-2)-"/.

3073, y:Clev-%. 3074. y=C, cos (In x) -+ C, sin (In x).

3075. y=C;x*4 C,x* -[—%x. 3076. y=(x+1)°[C,4+Cyln(x-}D] +(x-+ D
3077. y=x(Inx+In*x). 3078. y=C,cosx+C,sinx, z=C,cos x—C, sinx.
3079. y=e~% (C,cos x+ C, sin x), z:—.%e"" [(C,—2C,) cos x—(C, + 2C,) sin x].
3080. y=(C,—Cy,—C,x)e"%*, z=(C,x+C,)e %,
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t .
3081. x=C,ette ”<C cos—t—]—C sml{—q- )
t
e s (B T a0 L)
t
2=Celte ’< C, 12C0 V-3 H_ELM n}i‘it)

3082. x=C,e~t4Cpe?!, y=-= c,e Ly Chet, z_—(c,+c,)e-'+c et
3083. y=C,+Cze”——z (x*+x), z=C,e**—C, 4—%(x2—x—l).
3084. y=C,+4C,x+42sinx, z=—2C,—C,(2x+1)—3sin x—2cos x.
3085. y=(C,—2C,—2C,x)e"*—6x+ 14, z=(C,+Cyox) e~ *+5x—9;
C,=9, C,=4,
y=14(1—e"*)—2x 34477, z=—9(1—e™*) +x(5+4e%).
3086. x =102t —8e¥ —pl 6t —1; y= — 20e2! 1-8e* - 3e! -+ 12¢ +- 10.

2 2
3087. J_(CQC 2’ 2=CC_‘_x- 3088*, a)‘M-Ty)y:Ch —=Cy;

b) In Vi+y? +y*=arc tan —+C‘, —-——Z—:C,. Hint. Integrating the homo-
VeE+ty®
dx dx

geneous equation )—c—_y=x+y’ we find the first untegral In V x*+4p?-=

=arcX tan %—{-C,. Then, using the properties of derivative proportions, we have
dz__ _xdx _  ydy _xdx+ydy
2 x(x—y)  yl+y) 4y
2
hence, —=——==C, ¢) x+y-+2=0, x2+y*422=6. Hint. Applying the
Vs C ) x4y ¥+ pplying

properties of derivative proportions, we have de _ 4y _ _dz _ detdyidz
y—z z—x X—y 0

whence dx+dy 4 da=0 and, consequently, x+y +z=C,. Smnlarly, -—Q———

x(y—
=y(yzd_1x)=z(ify)=xdx+u(()ij+2dz; xdx--ydy+zdz-=0 and x“rJ' -

+22=C,. Thus, the integral curves are the circles x4y +2—=C,, x2+y*+ 22—
From the initial conditions, x=1, y=1, z==—2, we will have C;=0, C,=6.

., Co X2
3089. y=C,x +7—--1—8(31113x——21n x),

P

Whence In z=—;— In (x®+y*-+1InC, and,

z2=1—2C\x -+ i—i—i—% @Blnltx4Inx—10.

3090. y=Cpe*"? 4-Cpe=*"? 4+ Cycos x+C, sin x + ¥ —2x,
VT _ Vi _Cs

C, 1
z2=—Ce —C, 3 08 x——4~ smx-—-je"—kx
_t ] _k t
3001, x=23'—n$ (1~—e m ) yz—g(kvosina—l—mg)(l—e m )—ngt
dv,
Solution. m%: —kvg m dt—— —kv,—mg for the initial conditions: when
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t=0, xo-ajo,-o Ug,=UoC08 0, U, =v,sina. Integrating, we obtain v, =
k

, ko, + mg=(kvgsina+mg)e ™ . 3092. x=acos——t, y=

Vm

=1. Hint. The differential equations of motion:

= v, COs ue

) Vnz

:ii

k*y?

sin 7“—‘ +

mo}
d*x¢ . dy 2
mat—z—-_:—kx. rrzaz~4—k
3003. y== —2—2v—x%. 3094. y:(yo+%> e“x-'>_%x+%,
PRI U T PN (R
3098 y=gtgrtg Ot iyt
] Loy 2
3096. y--3 ¥—773 *71127

xz
3097. y — ot i —1<<x<l.
y .x.+1_2—{ 3 3+d 4—{— ; the series converges for —1<<x <1
x? x3 x*
3098. y,;x—“”2_21'-(2!)2_3—(3!)2.4 -...; the series converges for —oo <

<x< -i-c0. Hint. Use the method of undetermined coefficients.

. 4.7
3099. y-=1 ——l x¥- ]b_'I x“—L;'— x%...; the series converges for— oo <x<+4 0.

3100. y = "lx Hint. Use the method of undetermined coefficients.
0 u v t1 f
3101, y=1— 22 - T 4.—?——4—&——..., le series converges for |v]|-Z oo,

Hint. Use the method of undetermined coefficients. 3102, x. a < 2't -+
2 . 09 4,5 4 . ant 154
-}- 71-!-1 ——mt +th —... ). 3103, u== ] ] . Hint. Use the condi

tions: u (0, £)==0, u (. )=-0, u(x, 0)=A sinI% s du E); 0

=0.

3104. u -- Z,,LZ 12 1 —cos nmn) sm——ﬂ sin®™ | Hint. Use the conditions:
N3 b 1y

l l
n=1
ou (x,
w0, £y=0, u(l, t)=0, u(x,0)-0, _’L(d"t_olzl,
- 2}
3105. u::fih— L sin — nx cos naat inn—mf . Hint. Use the conditions:
n2 — n? 2 l l
2hv 1
ou (( 0) —l-— for 0-< x<—‘2‘

— 7=0, u(, $)=0, u{, )=0, u(x, 0)= :
ot lQh(l———'-\l) for—‘[)— <x<l.

@
3106.u=2Ancos(2n+21)am i (2”2:)”. where the coefficients A, ==

n=o
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l
=%S -’lisiu _______(2n—|2-l])nx dx. Hint. Use the conditions
(]

_qo Oullt)_ X Ou(x,0)
u(0, 1)=0, ——==0,u(x, 0) 7, —5—=0.
® 1 a2n2n2t
400 . onnx " 1009
3107. u=— Z — (I—cos nm) sin 7 e

n=1
Hint. Use the cgnditions: u (0, £)=0, u (100, {)=0, u(x, 0)=0.01 x (100—x).

Chapter X

3108. a) <<1”; <<0.0023°/; b) <1 mm; <<0.26°; c¢) <1 gm; <0.0016°/,.
3109. a) << 0.05; < 0.021°,; b) <0.0005; < 1.45%,; c¢) <<0.005; <0.16°/,.
3110. a) two decimals; 48.10% or 49-10%, since the number lies between 47,877
and 48,845; b) two decimals; 15; c) one decimal; 6.10% For practiga'-purposes
there is sense in writing the result in the form (5.940.1)-10%. 3111. a) 29.5;
b) 1.6.10% c) 43.2. 3112, a) 84.2; b) 18.5 or 18 474+0.01; c) the result of
subtraction does not have any correct decimals, since the difference is equal
to one hundredth with a possible absolute error of one hundredth.
3113*, 1.840.3 cm? Hint. Use the formula for increase in area of a square.
3114. a) 30.0+0.2; b) 43.74£0.1; c¢) 0.3+£0.1. 3115. 19.94+0.1 m?
3116. a) 1.1295+0.0002; b) 0.1204-0.006; c) the quotient may vary between
48 and 62. Hence, not a single decimal place in the quotient may be consid-
ered certain. 3117. 0.480. The last digit may vary by unity. 3118. a) 0.1729;
b) 277.10% c) 2. 3119. (2.0540.01)-10° cm?® 3120. a) 1.648; b) 4.025+0.001;
c) 9.006+0.003. 3121. 4.01.10*° cm?2. Absolute error, 65 cm? Relative error,
0.16°/,. 3122, The side is equal to 13.8+0.2 cm; sinu=0.4440.01, = 26°15"
435", 3123. 2740.1. 3124. 0.27 ampere 3125. The length of the pendulum
should be measured to within 0.3 cm; take the numbers st and ¢ to three
decimals (on the principle of equal effects). 3126. Measure the radii and the
generatrix with relative error 1/300. Take the number m to three decimal places
(on the principle of equal effects). 3127. Measure the quantity [ to within
0.2°/,, and s to within 0.7°, (on the principle of equal eflects).

3128.

x y | Ay A’y l Ay l A%y ’ A%y
! 3| 7 —2 | -6 ’ 4| -
2 10 5 —8 8 | -o |
3 15 , -3 0 -1 ' ’
s | e -3 | - ] l
5 , 9 —4 l
T ]
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3129.
x y Ay py | Ay
1 —4 —12 32 ‘ 48
3 —16 20 80 , 48
B | 4 100 128 ] 18
N 228 | 176 |
o | e ‘ 401 '
1 l 736 ‘ ' l
® e
3130.
A ' ] ! Al ’ Ay | Ay ! Aty
e T Y
1 l —t | = | —6s R A
2 | —s |- ’ —e5 | w0
3 ’ —162 ’ —178 i 9 | b
I f —310 ’ 29, ’ 6 i mo »
R ’ —2u |7 e
G =T ’ —6 | 20 |
Pl | s | 20 |
5 ‘ 7o l 302 ' 438 | l
9 i —540 ' 770 / | '
10 l a0 | l ' ,

Hint. Compute the first live values of y and, after obtaining Ay, == 24, repeat
the number 24 throughout the column of fourth differences. After this the
remaining part of the table is filled 1n by the operation of additioa (moving
from right to left).



474 Answers

3131. a) 0.211; 0.389; 0.490; 0.660; b) 0.229;0.399;0.491; 0.664. 3132. 0 1822;

0.1993; 0.2165; 0.2334; 0.2503. 3133. 14 x--x*+x*. 3134. y =9—16 x‘——‘—i% © 4
85

-i-24 x— 12)«:—{-8 y =22 for x=5.5; y=20 for x==5.2. Hint. When computing

x for y=20 take y,=11. 3135. The interpolating polynomial is y ==x*— 10x 4 1;
y=1 when x=0. 3136. 158 kgf (approximately). 3137. a) y (0.5) =—

y(2)=11; b)y(0.5)=-—%, y(2=—3 3138. —1.325 3139. 1.01.

3140. —1.86; —0.25; 2.11. 3141. 2.09. 3142. 2 45and 0 019. 3143. 0.31 and 4
3144. 2.506. 3145. 0.02. 3146. 024, 3147. 1 27  3148. —1.88; 0 35; 1 63
3149. 1.84. 3150. 1.31 and —0.67. 3151. 7.13. 3152. 0.165, 3153. 1.73and 0,
3154. 1.72. 3155. 138 3156. x=0.83; y=0 56; x-=—0.83; y=—0.56
3157. x=1.67; y=1 22. 3158. 4 493. 3159. +1 1997 3160. By the trapezoi-
dal formula, 11.625; by Simpson’s formula, 11 417. 3161. —0 995, —1; 0.005;
0.5°,; A =0.005. 3162. 0.3068; A=1.3-10"5, 3163. 069 3164. 0.79.
3165. 0.84. 3166. 0.28. 3167. 0.10. 3168. 1 61. 3169. 1.85 3170. 0.09.
3171. 0.67. 3172. 0.75. 3173. 0.79. 3174. 4.93. 3175. 1 29. Hint. Make use
of the parametric equation of the ellipse x —<cost, y=0.6222 sintezud trans-

form the formula of the arc length to the form l/-l—e2 cos?t.dt, where €

°L/>~l;|

- - . %2 2 X x
is the eccentncnty of the ellipse. 3176. y, (x)—-—_g , Ya (%) ——j +6_§ Yy (X) = T

“x”
+63 2079+59535 3177, J:(x)———H-l yz(x)~~+——t+1 ys(x) =
3

2, (x) =—=3x—2, zz(x):€—2x2—|—3x—, z,(v):zg__

_E
x® x°
— 2x?4-3x—2. 3178, y, (x)=x, !/z(x)—“—-x—?, Yy (X)X 6 +120

3179. y(1)=3.36. 3180. y(2)=0.80. 3181. y(1)=3.72; z(1)==2.72
3182. y=1.80. 3183. 3.15. 3184. 0.14. 3185. y (0.5) =3 15; 2(0 9)—=—3 15.
3186 y (0.5)=0.55; 2(0 5)==—0.18. 3187. 1.16. 3188. 0 87. 3189. x (1) -3.58;
x' (n)=0.79. 3190. 42941739 cos x— 1037 st x—6321 cos 2x -}- 1263 sin 2x —
— 1242 cos 3x—33sm3x. 3191. 6 49—1 96cos x4 2.14 sin x—1.68 cos 2x -
-+ 0.53 sin 2x—1.13 cos 3x 4 0.04 sin 3x. 3192. 0.960 +0.851 cos x - 0.915 s x |-
- 0.542cos 2x +0.620 sin 2x -}-0.271 cos 3x-{-0.100 sin 3x. 3193. a) 0 608 sin x |-
4 0.076 sin 2x 4 0.022 sin 3x; b) 0.338 4 0.414 cos x+0.111 cos 2x |-0.056 cos 3x.
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Greek Alphabet

Alpha—Aa Jota—Iv Rho—Pg

Beta— B Kappa—Kx Sigma—2o

Gamma—TYy Lambda— AM Tau—Tr

Delta—Ad Mu—Mp Upsilon—Tv

Epsilon— Ee Nu—Nv Phi—Og

Zeta—7¢ Xi—EEt Ch1—Xx

Eta—1Hny Omicron—0Oo Psi— ¥y

Theta—00 Pi—IIn Omega— Qu

Il. Some Constants
Quantity x log x Quantity x log x

a 3 14159 0.49715 —:— 0.36788 | T 56571
2= 6.28318 0.79818 et 7.38906 | 0.86859
34 1.57080 0.19612 Ve 1.64872 | 0.21715
n : —
T 0.78540 1.89509 Ve 1 39561 | 0.14476
?l{ 0.31831 | 1.5025 | M=loge | 0.4342) |1.65778
n? 9.86960 0.99130 —AIT=In 10 2.30258 | 0.36222
V= 1.77245 0.24857 | radian | 57°17'45"
v n 1.46459 0.16572 arc |° 0.01745 | 2.24188
e 2.71828 0.43429 g 9.81 0.99167
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Appendix

{ll. Inverse Quantities, Powers, Roots, Logarithms

1 - — |3, —|3,—| 3,— | logx
x| 5 x2 x3 Vx | Viox /x I/IOx I/IOOx ?i];::s.) Inx
1.0{1.000] 1.000 1.000 |1.000{3.162|1.000{2.154| 4.642 | 0000 |0.0000
1.1/0.909] 1.210] 1.331 |1.049(3.317|1.032]|2 224| 4.791 | 0414 |0.0953
1.2(0.833] 1.440] 1.728 |1.095|3.464|1.063]|2.289| 4.932 | 0792 {0.1823
1.3/0.769| 1.690] 2.197 |1.140(3.606(1.091]2.351| 5.066 | 1139 {0.2624
1.4/0.714] 1.960] 2.744 [1.183|3.742|1.119]2.410| 5.192 | 1461 [0.3365
1.5/0.667] 2.250] 3.37511.225|3.873(1.145|2.466| 5.313 | 1761 |0.4055
1.6/0.625| 2.560] 4.096 |1.265/4.000|1.170|2.520| 5.429 | 2041 [0.4700
1.7{0.588| 2.890| 4.913 |1.304]4.123|1 193{2.571| 5.540 | 2304 [0.5306
1.8{0.556| 3.240| 5.832 [1.342|4.243(1.216{2.621| 5.646 | 2553 (0 5878
1.9/0.526| 3.610] 6.859 |1 378/4.359(1.239]|2.668| 5.749 | 2788 |0.6419
2.0{0.500| 4.000] 8.000 |1.4144.472|1.260(2.714| 5.848 | 30% (0.6931
2.110.476| 4.410] 9.261 |1.449(4.583|1.281[2.759| 5.944 | 3222 [0.7419
2.92/0.454| 4.840| 10.65 |1.483]4.690(1.301|2 802] 6.037 | 3424 |0.7885
2.3/0.435( 5.290| 12.17 |1.517|4.796(1.320]|2.844| 6.127 | 3617 [0.8329
2.4/0.417| 5.760] 13.82 |1.549]/4.899(1.339|2.884| 6.214 | 3802 [0.8755
2.5(0.400} 6.250] 15.62 |1.581/5.000(1.357{2.924| 6.300 | 3979 [0.9163
2.6/0.385| 6.760] 17.58 |1.6125.099|1.375[2.962| 6.383 | 4150 [0.9555
2.7/0.370} 7.290| 19.68 |1.643|5.196]1.392|3.000| 6.463 | 4314 [0.9933
2.80.357| 7.840| 21.95 |1.673/5.292|1.409[3.037| 6.542 | 4472 |1.0296
2.910.345| 8.410 24.39 {1.703]|5.385(1.426(3.072| 6.619 | 4624 |1 0647
3.0/0.333| 9.000] 27.00 |1.732]5.477{1.442(3.107| 6.694 | 4771 |1 0986
3.1/0.323| 9.610] 29.79 |1.761]5.568|1.458|3.141| 6.768 | 4914 [1.1314
3.2/0.312110.24 | 32.77 |1.789|5.657]1.474|3.175| 6.840 | 5051 |1.1632
3.310.303{10.89 | 35.94 |1.817|5.745|1.489|3.208! 6.910 | 5185 [1.1939
3.4{0.294(11.56 | *39.30 |1.844]5.831|1.504{3.240| 6.980 | 5315 {1.2238
3.5/0.286(12.25 | 42.88 |1.8715.916]1.518]3.271| 7.047 | 5441 [1.2528
3.6/0.278112.96 | 46.66 |1.897/6.000|1.533|3.302| 7.114 | 5563 |1..2809
3.700.270113.69 | 50.65 |1.924/6.083]|1.54713.332| 7.179 | 5682 {1.3083
3.8{0.263(14.44 | 54.87 |1.949|6.164|1.560|3.362| 7.243 | 5798 |1.3350
3.9(0.256115.21 | 59.32 [1.975(6.245|1.5743.391| 7.306 | 5911 {1.3610
4.0{0.250(16.00 | 64.00 [2.000{6.325|1.587|3.420] 7.368 | 6021 |1.3863
4.1/0.244[16.81 | 68.92 |2.025|6.403|1.601|3.448| 7.429 | 6128 |1.4110
4.2(0.238(17.64 | 74.09 2.0;9 6.481|1.613(3.476| 7.489 | 6232 I 4351
4.3/0.233(18.49 | 79.51 |2.074|6.557|1.626[3.503| 7.548 | 6335 |1.4586
4.4/0.227119.36 | 85.18 |2.098|6.633|1.639/3.530| 7.606 | 6435 [1.4816
4.5(0.222120.25 | 91.12 |2.121{6.708|1.651|3.557| 7.663 | 6532 (1.5041
4.6/0.217|21.16 | 97.34 |2.145|6.782|1.663|3.583| 7.719 | 6628 |1.5261
4.7(0.213|22.09 | 103.8 |2.168(6.856|1.675|3.609| 7.775 | 6721 |1.5476
4.8/0.208/23.04 | 110.6 [2.191/6.928]1.687]3.634| 7.830 | 6812 |1.5686
4.9(0.204 (24.01 | 117.6 |2.214|7.000|1.698|3.659| 7.884 | 6902 |1.5892
5.0/0.200(25.00 | 125.0 2.236|7.071|1.710(3.684| 7.937 | 6990 |1.6094
5.1/0.196(26.01 | 132.7 |2.258|7.141]1.721|3.708| 7.990 | 7076 |1.6292
5.2(0.192[27.04 | 140.6 |2.280(7.211|1.732|3.733| 8.041 | 7160 |1.6487
5.30.189(28.09 | 148.9 |2 302|7.280|1.744|3.756| 8.093 | 7243 |1.6677
5.4{0.185(29.16 | 157.5 |2.324|7.348|1.754|3.780| 8.143 | 7324 |1.6864
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Continued
— —— l3,=13,—]3 log x
o x vE | vIoz |V 2|V 10x ) 1oox (man-| Inx

5.510 30 25| 166 4(2.345] 7.416|1.765|3.803| 8.193 | 7404 |1.7047
561|0. 31 36] 175.6 |2 3661 7 48311 776(3.826| 8.243 | 7482 |1 7228
5.7 {0. 32 49| 185 212 387 7 550{1.7863.849 8.291 | 7559 |1.7405
5.8 10. 33.64| 195.1]2 408| 7 616|1.797|3.871| 8.340 | 7634 |1.7579
5910 34 81} 205.4(2 429 7.681(1.807(3 893| 8 387 | 7709 |1.7750
6.0 |0. 36.00] 216.012.449| 7 746 1.817|3.915| 8.434 | 7782 |1.7918|
6.1 0. 37 211 227.012.470{ 7.810|1 827|3.936| 8 481 | 7853 (1.8083
6.2 10 38.44| 238 312 490| 7 874(1.83713.958| 8 527 | 7924 |1.8245
6.3 10 39.69{ 250 0|2.510( 7.937{1.847|3.979| 8 573 | 7993 |1.8405
6410. 40 96| 262.1/2.530| 8.000(1.857{4.000]| 8 618 | 8062 |1.8563
6.5 42.925| 274 6]2.550| 8.062)1.866|4 021 | 8.662 | 8129 |1.8718
6 6 43.56| 287 52 569 8.124|1 876(4.041| 8.707 | 8195 |1.8871
67 44 89} 300 82 588 8.185|1 885{4 062| 8 750 | 8261 |I 9021
6 8 46 24| 314 412 608| 8.24611.895]4.082| 8 794 | 8325 |1 9169
69 47 61} 328 512.627| 8 30711.904|4.102| 8.837 | 8388 {1 9315
7.0 49.00] 343 0| 2.646| 8.367(1.91314.121| 8 879 | 8451 |1 9459
7.1 50.41| 357.912 665 8 426(1.922(4.141| 8 921 | 8513 {1.9601
7.2 51.84| 373.2/2.683| 8.485]1.931]4.160| 8.963 | 8573 [1.9741
7.3 53.29| 389.0{2.702| 8.544|1.940/4.179| 9.004 | 8633 |1.9879
7.4 54 76 405.2(2.720| 8 602|1.949{4.198| 9.045 | 8692 (2.0015
7.5 56.25| 421.9{2.739| 8.660]1.9574.217| 9.086 | 8751 [2.0149
7.6 57.76| 439 0|2 757| 8.718|1.966|4.236| 9.126 | 8808 |2.0281
7.7 59 29| 456 5|2 775| 8.775|1.975|4.254| 9.166 | 8865 {2.0412
7.8 60.84| 474 6]2.793( 8.83211.98314 273| 9.205 | 8921 {2.0541
7.9 62.41| 493.0(2.811] 8.888 |1 99214 291 9.244 | 8976 |2.0669
S.0 64.00] 512 012.828| 8.944(2.000]4.309( 9.283 | 9031 {2.0794
8.1 65.61] 531.4]2 846| 9.000|2 0084.327| 9.322 | 9085 |2.0919
8.2 67.24] 551.412.864] 9 055]2 01714.344| 9 360 | 9138 [2.1041
8.3 68.89| 571.8/2.8811 9.110]2 025]4.362| 9.398 | 9191 (2.1163
8 4 70.56| 592.712.898]| 9.165/2.033|4 380 9.435 | 9243 |2.1282
8.5 72.25 614.112.915] 9.220({2.041(4.397| 9.473 | 9294 |2.1401
8.6 73.96] 636.112 933] 9.274]12 049|4.414) 9 510 | 9345 |2.1518
8.7 75.69| 658.512.950| 9.327|2.057|4.431| 9.546 | 9395 |2.1633
8.8 77.44! 681.512.966| 9.381(2.065({4.448| 9.583 | 9445 |2.1748
89 79 21| 705.012 983 9.434]2 072[4.465| 9 619 | 9494 |2.1861
9.0 81.00] 729.0(3.000| 9.487(2.080)4.481| 9.655 | 9542 |2 1972
9.1 82.81! 753.613.017] 9.539(2.088{4.498( 9.691 | 9590 |2.2083
9.2 84.64| 778.713.033| 9.592(2.095|4.514| 9.726 | 9638 (2.2192
9.3 86.49| 804.4[3.050] 9.644]2.103|4.531| 9.761 | 9685 |2.2300
9.4 88.36| 830 63 066| 9.695|2.110[4.547| 9.796 | 9731 |2 2407
9.5 90.25| 857.4]3.082| 9.7472.118]|4.563| 9.830 | 9777 |2.2513
9.6 92.16| 884.713.098] 9.798|2.125|4.579| 9 865 | 9823 [2.2618
9.7 94.09| 912 713.114] 9.849|2.133|4.595| 9 899 | 9868 |2 2721
9.8 96.04| 941.213.130| 9.899|2.140|4.610{ 9.933 | 9912 |2.2824
9.9 98.01| 970.3(3.146] 9.950|2.147{4.626| 9.967 | 9956 |2.2925
10.0 100.00/1000.0/3.162{10.000}2.154 | 4.642 {10.000 | 0000 |2.3026




478

Appendix

IV. Trigonometric Functions

x° (rajmns) ’ sin a ' tan x cot x cos x
0 0.0000 (0.0000 | 0.0000 © 1.0000 | 1.5708 90
1 0.0175 0.0175 | 0.0175 | 57 29 0.9998 | 1.5533 89
2 0.0349 0.0349 0.0349 | 28.64 0.9994 1 5359 88
3 0.0524 0.0523 | 0.0524 | 19.08 0.9986 | 1.5184 87
4 0.0698 0.0698 | 0.0699 | 14 30 0.9976 | 1.5010 86
5 0.0873 0.0872 0.0875 | 11.43 0.9962 | 1.4835 85
6 0.1047 0.1045 0.1051 9.514 | 0.9945 | 1.4661 84
7 0.1222 0.1219 0.1228 8.144 | 0.9925 | 1.4486 83
8 0.1396 0.1392 | 0.1405 7.115 | 0.9503 | 1 4312 82
9 0.1571 0.1564 0 1584 6 314 | 0.9877 1 4137 81
10 0.1745 0.1736 | 0.1763 5.671 | 0.9848 | 1 3963 80
11 0.1920 0.1998 0.1944 5.145 | 0.9816 | 1.3788 ), 79
12 0.2094 0.2079 0.2126 4.705 | 0 9781 1 3618 78
13 0.2269 0.2250 0.2309 4.331 | 0.9744 1.3439 77
14 0.2443 0.2419 0.2493 4.011 | 0.9703 1.3265 76
15 0.2618 0.2588 | 0.2679 3.732 | 0.9639 | 1.3090 75
16 0.2793 0.2756 | 0.2867 3.487 | 0.9613 | 1.2915 74
17 0.2967 0.2924 0.3057 3.271 | 0.9563 | 1.2741 73
18 0.3142 0.3090 0.3249 3.078 | 0.9511 1 2566 72
19 0.3316 0.3256 0.3443 2.904 | 0.9455 | 1 2392 71
20 0.3491 0.3420 | 0.3640 2.747 | 09397 | 1 2217 70
21 0.3665 0.3584 0.3839 2.605 | 0.9336 | 1.2043 69
22 0.3840 0.3746 | 0.4040 2.475 | 0.9272 | 1.1868 68
2 0.4014 0.3907 0.4245 2.356 | 0.9205 | 1.169% 67
24 0.4189 0.4067 0.4452 2.246 | 0.9135 [ [.1519 66
25 0.4363 0.4226 0.4663 2.145 | 0.9063 1 1345 65
26 0.4538 | 0 4384 0 4877 2.050 | 0.8988 | 1.1170 64
27 0.4712 0.4540 0.5095 1.963 | 0.8910 | 1.0996 63
28 0.4887 0.4695 | 0.5317 1.881 | 0.8829 | 1.0821 62
29 0.5061 0 4843 0.5543 1.804 | 0.8746 | 1.0647 61
30 0.5236 0.5000 0.5774 1732 | 0.8660 [ 1.0472 60
31 0.5411 0.5150 | 0.6009 | 1.6643 | 0.8572 | 1.0297 59
32 0.5585 0.5299 | 0.6249 | 1.6003 | 0.8480 | 1.0123 58
33 0.5760 0.5446 06494 | 1.5399 | 0.8387 | 0.9948 57
34 0.5934 0.5592 | 0.6745 | 1.4826 | 0 8290 | 0.9774 56
35 0.6109 0.5736 | 0.7002 | 1.4281 | 0.8192 | 0.9599 55
36 0.6283 0.5878 0.7265 | 1.3764 | 0.8090 | 0.9425 54
37 0.6458 0.6018 | 0.7536 | 1.3270 | 0.7986 | 0.9250 53
38 0.6632 0.6157 0.7813 | 1.2799 | 0.7880 | 0.9076 52
39 0.6807 0.6293 | 0.8098 [ 1.2349 | 0.7771 | 0.8901 51
40 0.6981 0.6428 | 0.8391 1.1918 | 0.7660 | 0.8727 50
41 0.7156 0.6561 0.8693 | 1.1504 | 0.7547 | 0.8552 49
42 0.7330 0.6691 0.9004 | 1.1106 | 0.7431 | 0.8378 48
43 0.7505 0.6820 09325 | 1.0724 | 0.7314 | 0.8203 47
44 0.7679 0.6947 0.9657 | 1.0355 | 0.7193 | 0.8029 46
45 0.7854 0.7071 1.0000 1.0000 | 0.7071 | 0.7854 45
€os x . cot x tan x sin x (radx]a“g, ©
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V. Exponential, Hyperbolic and Trigonometric Functions

e® e—% sinh x cosh x tanh x sin x cos x
00 { 1.0000( 10000 | 0.0000| 1.0000 | 0.0000 0.0000| 1.0000
0.1 1.1052 | 0 9048 | 0.1002 | 1.0050 | 0.0997 0.0998| 0.9950
0.2 | 12214] 08187 | 0.2013 | 10201 | 0.1974 0.1987| 0.9801
03| 1.3499 | 0.7408 | 0.3045 | 1.0453 | 0.2913 0.2955| 0.9553
0.4 | 14918 0.6703 | 0.4108 | 1.0811 | 0.3799 0.3894| 0.9211
0 1 6487 | 0.6065 | 0 5211 | 1.1276 | 0.4621 0.4794| 0.8776
0 1.8221 | 0.5488 | 06367 | 1.1855 | 0.5370 0.5646| 0.8253
0 2.0138 | 0.4966 | 0 7586 | 1.2552 | 0.6044 0.6442| 0.7648
0. 2.2255 | 04493 | 0 8881 | 1.3374 | 0.6640 0.7174| 0.6967
0 2 4596 | 0.4066 | 1.0265 | 1.4331 | 0.7163 0.7833} 0.6216
1 97183 | 0.3679 | 1.1752 | 1.543]1 | 0 7616 0 8415| 0.5403
1. 3.0042 | 03329 | 1.3356 | 1.6685 | 0.8005 0 8912| 0.4536
] 33201 | 0.3012 | 1.5095 | 1.8107 | 0 8337 0.9320| 0.3624
1 3663| 02725 | 1.6981 | 1.9709 | 0.8617 0 9636| 0.2675
1 40552 1 02466 | 1.9043 | 2.1509 | 0 8834 0.9854| 0.1700
1¢ 4 4817 | 0 2231 2.1203 | 2.3524 | 0.9051 0.9975| 0.0707
1. 4.9530 | 02019 | 23756 | 2 5775 | O 9217 0.9996 | —0.0292
1 5.4739 | 0 1827 | 2.6456 | 2 8283 | 0.9354 0.9917 | —0.1288
1 6.0496 | 0 1653 | 2.9422 | 3.1075 | 0.9468 0.9738 | —0 2272
| 06859 | 0 1496 | 3.2682 | 34177 | 0 9362 0 9463 | —0.3233
o0 | 7381 | 01353 | 3629 376221 0.9640 0.9093 | —0.4161
91 | 81662 0 1225 | 40219} 41443 | 0.9704 0.8632| —0 5048
22| 90250 01108 | 44571 | 4 5679 | 0.9757 0 8085 | —0.5885
23 | 99742 | 01003 | 49370 | 50372 | 0.9801 | 0O 7457 | —0.6663
24 | 11 0232 00907 | 5.4662 | 5.5569 | 0.9837 0 6753 —G 7374
25 | 121825 | 0.0821 | 6.0502 | §.1323 | 0.9866 | 0.5985|—0.8011
26 | 13.4637 | 00743 | 66947 | 6.7690 | 0 9890 | 0 5155| —0.8569
27 | 14.8797 | 0 0672 | 7.4063 | 74735 0.9910 0.4274 | —0.9041
2.8 | 16 4446 | 0 0608 | 8.1919 | 82527 | 0.9926 | 0.3350 | —0.9422
29 | 18.1741 | 0.0550 | 9.0596 | 9.1146 | 0.9940 0.2392| —0.9710
3.0 | 20.0855 | 0.0498 | 10.0179 [ 10.0677 { 0.9950 0.1411 | —0.9900
3.1 122.1979 | 0.0450 | 11.0764 | 11.1215 | 0.9959 0.0416 | —0.9991
3.2 | 24.5325 | 0.0408 | 12.2459 | 12.2366 | 0.9967 | —0.0584 | —0.9983
3.3 | 27.1126 | 0.0369 | 13.5379 | 13.5748 | 0.9973 |[—0 1577 | —0.9875
34 |29.9641 | 0.0334 | 14.9654 | 14.9987 | 0.9978 |—0.2555| —0.9668
3.5 | 33.1154 | 0.0302 | 16.5426 | 16.5728 | 0.9982 |—0.3508 | —0.9365
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Vi. Some Curves (for Reference)
iY
A )Y
1
-1 X
0 X 0 1
-1
0 X
1. Parabola, 2. Cubic parabola, 3. Rectangular
y=x% y =13, hyperbol_:‘a,
LT
y=
i
Y
1
7
101, X 1ol 1 X

4. Graph of a fractional 5. The witch of Agnesi,

function, 1

=L v= T4+x2°
x2

Y Y
X
0
0 X

6. Parabola (upper

branch),

y=Vx.

7. Cubic parabola,

y=i%
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Y vy
8b Semicubical
parabola,
Ty y?==x* or [ x=1% —
OI X y=t X
8a. Neile’s p arabola,
2 s
y=x* or { ’:‘;
b *
i
y=c0s 1 7 Yy=stn x

9. Sine curve and cosine curve,
y-=simx and y=cosux.

cot r

7
c -
o
NinlL~
;.
N
NP
Ny~
47
2
N'tn 7
Q
)

PE A TR
IF;; —t

10. Tangent curve and cotangent curve,
y=tanx and y=cot x.
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=Sec T l =cosec r
¥ B . lAy/ ] 1 L
J ) \
AV VI
—d 3
\\ 2 14 / T 7
N 1. 7 \\ z
17
L X
Y3n |« Ia 0 [z A |on 2 5w |37
2 2 7 2 2
/ S -/ g Sy / ¥
f \ e A ‘
VAR RIA /
1 | — L — — t ¢
-3
11. Graphs of the functions «
y-=secx and y =cosecC .
y=arccos:t -
Y=arc sin x-
[
y=arccos T
y=arcsin
X
?—-—-
-1 1
ﬁ Yy=arccos x
y=arc sinz )/
2

12, Graphs of the inverse trigonometric functions
y=arcsinx and y= arc cos x.
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Y
l‘ |
2n T
! |
S7 l %1 ' =arc cot x
kf |
" I
|
-;5 ;/,/y=arc cot x
> -1 X
—O—O——O0——
-3 “2.~:1 0 1 1x2 3 0 r2 3
ﬁ: ! 1
‘ .

- P/ =
2 - | Yy=arc cot x
-7 L Yy=arc tanzx
! -nf
~ In I
2 ,

13. Graphs of the inverse trigonometric functions
y=arctanx and y=arccotx.

14, Graphs of the exponential functions
y=e* and y=e~*.
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Al-a,0) X 25, Bernoulli’s lemniscate,
-y =a® (P — )
or r2=a?cos 2¢.
24. Strophoid,
2 20+x
V=¥
27. Hypocycloid (astroid),
{x:a cos’t,
y=asin®¢
X 2 2
26. Cyclbid, or 1%y’ =ad.
x=a (t —sin t), Y
{ y=a(l—cost). f
——
(A
0 £ - 2t P(x,y)
28. Cardioid, 29. Evolvent (involute) of the circle

r=a(l+cos ). x=a (cost+tsint),
y=a(sin{—?cos ).
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ax

M [2on

o30. Spiral of Archimedes, 31. Hyperbolic spiral,

> ). 2

32. Logarithmic spiral, 33. Three-leafed rose,
r=¢%, r =a sin 3¢.

34. Four-leafed rose,
r=asin2q,



INDEX

A

Absolute error 367
Absolute value
of a real number 11
Absolutely convergent series 296, 297
Acceleration vector 236
Adams' formula 390
Adams’ method 389, 390, 392
Agnesi
Witch of 18, 156, 480
Algebraic functions 48
Angle between two surfaces, 219
Angle of contingence 102, 243
An2;£11e of contingence of second kind
3
Antiderivative 140, 141
generalized 143
Approximate numbers 367
addition of 368
division of 368
multiplication of 368
powers of 368 .
roots of 368
subtraction of 368
Approximation
successive 377, 385
Arc length of a curve 158-161
Arc length of a space curve 234
Archimedes
spiral of 20, 65, 66, 105, 487
Area in polar coordinates 155, 256
Area in rectangular coordinates 153,
256
Area of a plane region 256
Area of a surface 166-168, 259
Argument 11
Astroid 20, 63, 105, 486
Asymptote 93
left horizontal 94
left inclined 94
right horizontal 93
right inclined 93
vertical 93

B

Bending point 84
Bernoulli’s equation 333
Bernoulli’s lemniscate
Beta-function 146, 150
Binormal 238

Boundary conditions 363

155,

Branch of a hyperbola 20, 480

Broken-line method
Euler’s 326

C

Cardioid 20, 105, 486
Catenary 104, 105, 484
Catenoid 168
Cauchy’s integral test 295
Cauchy’s test 293, 295
Cauchy’s theorem 75, 326
Cavalieri’s “lemnon” 165
Centre of curvature 103
Change of variable 211-217
in a definite integral 146

in a double integral 252-254
in an indefinite integral 113

Characteristic equation 356
Characteristic points 96
Chebyshev’s conditions 127
Chord method 376
Circle 20, 104
of convergence 306
of curvature 103
osculating 103

Circulation of a vector 289

Cissoid 232

of Diocles 18, 485
Clairaut’s equation 339
Closed interval 11
Coefficients

Fourier 318, 393, 394

Comparison test 143, 293, 294

Composite function 12, 49
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Coneave down 91
Concave up 91
Concavity
direction of 91
Conchoid 232
Condition
Lipschitz 385
Conditions
boundary 363
Chebyshev’s 127
Dirichlet 318, 319
initial 323, 363
Conditional extremum 223-225
Conditionally (not absolutely)
convergent series 296
Contingence
angle of 102, 243
Continuity of functions 36
Continuous function 36
L .
proper.es of 38
Convergence
circle of 306
interval of 305
radius of 305
region of 304
uniform 306
Convergent improper
270
Convergent series 293
Coordinates
of centre of gravity 170
generalized polar 255
Correct decimal places in a hroad
sense 367
Correct decimal places in
a narrow sense 367
Cosine curve 481
Cotangent curve 48l
Coupling equation 223
Critical point of the second kind 92
Critical points 84
Cubic parabola 17, 105, 234, 480
Curl of a vector field 288
Curvature
centre of 103
circle of 103
of a curve 102, 242
radius of 102
second 243
Curve
cosine 481
cotangent 481
discriminant 232, 234
Gaussian 92
integral 322
logarithmic 484

integral 143,

probability 19, 484
sine 481
tangent 481

Cusp 230

Cycloid 105, 106, 486

D

D’Alembert’s test 295
Decreasing function 83
Definite integral 138
Del 288
Dependent variable 11
Derivative 43

left-hand 44

logarithmic 55

nth 67

right-hand 44

second 66
Derivative of a function

in a given direction 193
Derivative of functions

represented parametrically 57
Derivative of an implicit functicn 57
Derivative of an inverse function 57
Derivative of the second order €6
Derivatives

of higher orders 66-69

one-sided 43

table of 47
Descartes

folium of 20, 21, 232, 485
Determinant

functional 264
Determining coefficients

first method of 122

second method of 122
Diagonal table 389
Difference of two convergent

series 298
Differential

of an arc 101, 234

first-order 71

higher-order 198

principal properties of 72

second 198

second-order 72

total, integration of 202-204
Differential equation 322

homogencous linear 349

inhomogeneous linear 349
Differential equations

first-order 324

forming 329

higher-order 345

linear 349, 351
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Differential equations of higher powers
first-order 337
Differentials
method of 343
of third and higher orders 72
Differentiating a composite function
47
Differentiation 43
of implicit functions 205-208
tabular 46
Diocles
cissoid of 18, 485
Direction of concavity 91
Direction field 325
Dirichlet
conditions 318, 319
function 40
series 295, 296
theorem 318
Discontinuity 37
of the first kind 37
infinite 38
removable 37
of the second kind 38
Discontinuous function 270
Discriminant 222
Dicriminant curve 232, 234
Divergence of a vector field 288
Divergent improper integral 143, 270
Divergent series 293, 294
Domain 11
Domain of definition 11
Double integral 246
in curvilinear coordinates 253
in polar coordinates 252
in rectangular coordinates 246
Double point 230

Elimination

method of 359
Ellipse 18, 20, 104, 485
Energy

kinetic 174
Envelope

equations of 232

of a family of plane curves 232
Epicycloid 283
Equal effects

principle of 369
Equation

Bernoulli’s 333

characteristic 356

Clairaut’s 339

coupling 223
differential 322
Euler’s 357
exact differential 335
first-order differential 324
homogeneous 330, 351, 356
homogeneous linear differential 332,
349
inhomogeneous 349, 351, 356
Lagrange’s 339
Laplace’s 289, 291
linear 332
of a normal 60, 218
of a tangent 60
of a tangent plane 218
with variables separable 327 328
Equivalent functions 33
Error
absolute 367
limiting absolute 367
limiting relative 367
relative 367
Euler integral 146
Euler-Poisson integral 272
Euler’s broken-line method 326
Euler’s equation 357
Even function 13
Evolute of a curve 103
Evolvent of a circle 486
Evolvent of a curve 104
Exact differential equation 335
Exponential functions 49, 55, 483
Exbremal point 84
Extremum
conditional 223-225
of a function 83, 83, 222

F

Factor
integrating 335
Field
direction field 325
nonstationary scalar or vector 288
potential vector 289
scalar 288
solenoidal vector 289
Field (cont)
stationary scalar or vector 288
vector 288
Field theory 288-292
First-order differential 71
First-order differential equations 324
Flow lines 288
Flux of a vector field 288
Folium of Descartes 20, 21, 232, 485
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Force lines 288
Form
Lagrange’s 311
Formula
Adams’ 390
Green’s 276, 281, 282
Lagrange’'s 145
Lagrange’s interpolation 374
Leibniz 67
Maclaurin’s 77, 220
Newton-Leibniz 140, 141, 275
Newlon’s interpolation 372
Ostrogradsky-Gauss 286-288
parabolic 382
Simpson’s 382-384
Stokes’ 285, 286, 289
Taylor's 77, 220
{rapezoidal 382
Formulas
reduction 130, 135
Fourier~ coefficients 318,
Fourter series 318, 319
Four-leafed rose 487
Fraction
proper rational 121
I'unction 11
composite 12, 49
continuous 36
continuous, properties of 38
decreasing 83
Dirichlet 40
discontinuous 270
even 13
of a function 12
imphicit 12
increasing 83
Lagrange 223, 224
multiple-valued 11
periodic 14
single-valued 11
vector 235
Functional determinant 264
Functional series 304
Functions
algebraic 48
equivalent 33
cxponential 49, 55, 483
hyperbolic 49, 484
hyperbolic, integration of 133
inverse 12
Functions (cont)
inverse circular 48
inverse hyperbolic 49
inverse trigonometric 482, 483
linearly dependent 349
linearly independent 349

393, 394

logarithmic 49 )

transcendental, integration of 135

trigonometric 48

trigonometric, integrating 128, 129
Fundamental system of solutions 349

G

Gamma-function 146, 150

Gaussian curve 92

General integral 322

General solution 359

General solution (of an equation) 323
General term 294

Generalized antiderivative 143
Generalized polar coordinates
Geometric progression 293, 294
Gradient of a field 288

Gradient of a function 194, 195
Graph of a function 12

Greatest value 85, 225, 227
Green's formula 276, 281, 282
Guldin's theorems 171

255

H

Hamultonian operator 288
Harmonic series 294, 296, 297
Higher-order differential 198
Higher-order differential equations 345
Higher-order partial derivative 197
Hodograph of a vector 235
Homogeneous equations 330, 351, 356
Homogeneous linear differential
equation 332, 349
Hyperbola 17, 18, 20, 485
rectangular 480
Hyperbolic functions 49, 484
integration of 133
Hyperbolic spiral 20, 105, 487
Hyperbolic substitutions 114, 116, 133
Hypocycloid 283, 486

Implicit function 12
Improper integral

convergent 270

divergent 270
Improper multiple integrals 269, 270
Incomplete Fourier series 318, 319
Increasing function 83
Increment of an argument 42
Increment of a function 42
Independent variable 11
Indeterminate forms

evaluating 78, 79
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Infinite discontinuities 38
Infinitely large quantities 33
Infinitely small quantities 33
Infinites 33
Infinitesimals 33
of higher order 33
of order n 33
of the same order 33
Inflection
points of 91
Inhomogeneous equation 349, 351, 356
Inhomogeneous linear differential
equation 349
Initial conditions 323, 363
Integral 322
convergent improper 143
definite 138
divergent improper 143
double 246
Euler 146
Euler-Poisson 272
general 322
improper multiple 269, 270
line 273-278
particular 322
probability 144
singular 337
surface 284-286
triple 262
Integral curve 322
Integral sum 138
Integrating factor 335
Integration
basic rules of 107
under the dilferential sign 109
direct 107 ’
by parts 116, 117, 149
path of 273, 274, 280
region of 246-248
by substitution 113
Integration of differential equation
by means of power series 361, 362
Integration of functions
numerical 382, 383
Integration of ordinary differential
equation
numerical 384-393
Integration of total differentials 202-
204
Integration of transcendental functi-
ons 135
Interpolation
of functions 372-374
inverse 373
linear 13, 372
quadratic 372

Interpolation formula
Lagrange's 374
Newton’s 372
Interval
of calculations 382
closed 11
of convergence 305
of monotonicity 83
Interval (cont)
open 11
table interval 372
Inverse circular functions 48
Inverse functions 12
Inverse hyperbolic functions 49
Inverse interpolation 373
Inverse trigonometric functions 482,
483
Involute of a circle 20,
Involute of a curve 104
Isoclines 325
Isolated point 230
Iterative method 377, 378 380

106, 486

J
Jacobian 253, 264
K
Kinetic energy 174
L

Lagrange’s equation 339
Lagrange’s form 311
Lagrange’s formula 145
Lagrange’s function 223, 224
Lagrange’s interpolation formula 374
Lagrange’s theorem 75
Laplace equation 289, 291
Laplace transformation 271
Laplacian operator 289
Lamina
coordinates of the centre of gravity
of a, 261
mass and static moments of a 260
moments of inertia of a 261
Least value 85
Left-hand derivative 44
Left horizontal asymptote 94
Left inclined asymptote 94
Leibniz rule 67, 269
Leibniz test 296, 297
Lemniscate 20, 105, 232
Bernoulli’s 155, 486
Level surfaces 288
L’Hospital-Bernoulli

rule 78-82
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Limagon
Pascal’s 158
Limit of a function 22
Limit on the left 22
Limit on the right 22
Limit of a sequence 22
Limiting absolute error 367
Limiting relative error 367
Limits
one-sided 22
Line
straight 17, 20
Line integral
application of 276, 283
of the first type 273, 274, 277, 278
Line integral of the second type 274,
275, 278-281
Linear differential equations 349, 351
Linear equation 332
Linear interpolation 372
of a funrtion 13
Linearly dependent functions 349
Linearly independent functions 349
Lines
flow 288
force 288
vector 288
Lipschitz condition 385
Logarithmic curve 484
Logarithmic derivative 55
Logarithmic functions 49
Logarithmic spiral 20, 21, 105, 106,
487

M

Maclaurin's formula 77, 220
Maclaurin’s series 311, 313
Maximum of a function 84, 222
Maximum point
Mean value of a function 151
Mean-value theorems 75, 150
Mean rate of change 42
Method
Adams’ 389, 390, 392
chord method 376
of differentials 343
of elimination 359
Method (cont)
Euler’s broken-line 326
iterative 377, 378, 380
Milne's 386, 387, 390
Newton’s 377, 379
Ostrogradsky 123, 125
Picard’s 384, 385
reduction 123
Runge-Kutta 385-387, 390

of successive approximation 384,
385, 389
of tangents 377
of undetermined coefficients 121, 351
of variation of parameters 332, 349,
352
Minimum of a function 84, 222
Minimum point 84
Mixed partial derivative 197
Moment
of inertia 169
static 168
Monotonicity
intervals of 83
Multiple-valued function 11
Multiplicities
root 121

N

nth derivative 67
Nabla 288
Napier’'s number 28
Natural trihedron 238
Nec(essary condition for convergence
293
Necessary condition for an extremum
222
Newton
trident of 18
Newton-Leibniz formula 140, 141, 275
Newton's interpolation formula 372
Newton’s method 377, 379
Newton’s serpentinc 18
Niele’s parabola 18, 234, 48l
Node 230
Nonstationary scalar or vector field 288
Normal 217
to a curve 60
equations of 218
principal 238
Normal plane 238
Number
Napier’s 28
real 11
Number series 293
Numerical integration of functions 382,
383
Numerical integration of ordinary
differential equations 384-393

0

One-sided derivatives 43
One-sided limits 22
Open interval 11
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Index

Operator

Hamiltonian 288

Laplacian 289
Order of smallness 35
Orthagonal surfaces 219
Orthagonal trajectories 328
Osculating circle 103
Osculating plane 238
Ostrogradsky-Gauss formula 286-288
Ostrogradsky-Gauss theorem 291
Ostrogradsky method 123, 125

P

Parabola 17, 20, 104, 105,
cubic 17, 105, 234
Niele’s 18, 234, 48l
safety 234
semicubical 18, 20, 234, 481

Parabolic formula 382

Parameters
variation of 332, 349, 352

Parametric representation of
a function 207

Partial derivative
hirheg-order 197
“mixed” 197
second 197

Partial sum 293

Particular integral 322

Particular solution 339

Pascal’s limagon 158

Path of integration 273, 274, 280

Period of a function 14

Periodic function 14

Picard’s method 384, 385

Plane
normal 238
osculating 238
rectifying 238
tangent 217

Point
bending 84
critical (of the second kind) 92
of discontinuity 37
double 230
extremal 84
of inflection 91
isolated 230
maximum 84
minimum 84
singular 230
stationary 196
of tangency 217

Points
characteristic 96

480, 485

critical 84

stationary 222, 225
Polar subnormal 61
Polar subtangent 61
Potential (of a field) 289
Potential vector field 289
Power series 305
Principal normal 238
Principle

of equal effects 369

Runge 383, 386

of superposition of solutions 353
Probability curve 19, 484
Probability integral 144
Product of two convergent series 298
Progression

geometric 293, 294
Proper rational fraction 121
Proportionate parts

rule of 376

Q

Quadratic interpolation 372
Quadratic trinomial 118,
Quantity
infinitely large 33
infinitely small 33

119, 123

R

Radius of convergence 305
Radius of curvature 102, 243
Radius of second curvature 243
Radius of torsion 243
Rate of change

of a function 43

mean 42
Ratio (of a geometric progression) 294
Real numbers 11
Rectangular hyperbola 480
Rectifying plane 238
Reduction formulas
Reduction method 123
Region of convergence 304
Region of integration 246-248
Relative error 367
Remainder 311
Remainder of a series 293, 304
Remainder term 311
Removable discontinuity 37
Right-hand derivative 44
Right horizontal asymptote 93
Right inclined asymptote 93
Rolle’s theorem 75
Root multiplicities 121

130, 135, 150
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Rose

four-leafed 487

three-leafed 20, 487
Rotation (of a vector field) 288
Rule

Leibniz 67, 269

I’Hospital-Bernoulli 78-82

of proportionate parts 376
Runge-Kutta method 385-387, 390
Runge principle 383, 386

S

Safety parabola 234
Scalar field 288
Scheme
twelve-ordinate 393-395
Second curvature 243
Second derivative 66
Second differential 198
Second-ordef differential 72
Second partial derivative 197
Segment of the normal 61
Segment of the polar normal 61
Segment of the polar tangent 61
Segment of a straight line 20
Segment of the tangent 61
Semicircle 20
Semicubical parabola 18, 20, 234, 481
Series
absolutely convergent
with complex terms 297
conditionally (not absolutely)
convergent 296
convergent 293
Series (cont)
Dirichlet 295, 296
divergent 293, 294
Fourier 318, 319
functional 304
harmonic 294, 296, 297
incomplete Fourier 318, 319
Maclaurin’s 311, 313
number series 293
operations on 297
power 305
Taylor’s 311, 313
Serpentine
Newton’s 18
Simpson’s formula 382-384
Sine curve 48l
Single-valued function 11
Singular integral 337
Singular point 230
Slope (of a tangent) 43
Smallest value 225, 227

296. 297

Solenoidal vector field 289
Solution (of an equation) 322
general 323, 359
particular 339
Spiral
of Archimedes 20, 65, 66, 105, 487
hyperbolic 20, 105, 487
logarithmic 20, 21, 105, 106, 487
Static moment 168
Stationary point 196, 222, 225
Stationary scalar or vector field 288
Stokes’ formula 285, 286, 289
Straight line 17, 20
Strophoid 157, 232, 234, 486
Subnormal 61
polar 61
Substitutions
hyperbolic 114, 116, 133
trigonometric 114, 115, 133
Subtangent 61
polar 61
Successive approximation 377, 385
method of 384, 385, 389
Sufficient conditions (for an extremum)
222
Sum
integral 138
partial 293
of a series 293, 304
of two convergent series 298
Superposition of solutions
principle of 353
Surface integral of the first type 284
Surface integral of the second type 284
Surface integrals 284-286
Surfaces
level 288
orthogonal 219

T

Table

diagonal table 389

of standard integrals 107
Table interval 372
Tabular differentiation 46
Tacnode 230
Tangency

point of 217
Tangent 238
Tangent curve 481
Tangent plane 217

equation of 218
Tangents

method of 377
Taylor’s formula 77, 220
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Taylor’s series 311, 313 computing volumes by means of 268
Term evaluating a 265
general 294 in rectangular coordinates 262
remainder 311 Trochoid 157
Test Twelve-ordinate scheme 393-395
d’Alembert’s 295
Cauchy’s 293, 295 U
Cauchy’s integral 295 . .
comparison 143, 293, 294 Undetermined coefficients
Leibniz 296, 297 method of 121, 351
Weierstrass® 306 Uniform convergence 306
Theorem
Cauchy’s 75, 326 \'

Dirichlet’s 318
Theorem (cont)
Lagrange's 75

Value
greatest 85, 225, 227

1 least 85
gf,tﬁgg;afssky'(”“ss 291 mean (of a function) 151, 252
Theorems smallest 225, 227
Variable

Guldin’s 171

mean-value 75, 150 dependent 11

independent 11

Theory Vanoep L
field 288-292 ariables separable
- an equation with 327, 328
%ngieorlleaézg rose 20, 487 zariation of parameters 332, 349, 352
i ector
H:‘c:{igrilegl acceleration 236
! of binormal 238

orthogonal 328 S
. of principal normal 238
Transcendental functions of tangent line 238

integration of 135 velocity 236

Transformation Vector field 288

Laplace 271 Ve :
A ctor function 235
Trapezoidal formula 382 Vector lines 288

Trident of Newton 18 b
Trigonometric functions 48 xel‘t)mtyr\'edor 236
integrating 128, 129 ertex of a curve 104

Trigonometric substitutions 114, 115, yertical asymptote 93

133 . .

! Volume of a cylindroid 258
Tr;]};?ﬁrrg? 238 Volume of :olids 161-166
Trinomial W

quadratic 118, 119, 123
Triple integral 262 Weierstrass' test 306

applications of 265, 268 Witch of Agnesi 18, 156, 480

change of variables in 263 Work of a force 174, 276, 277






























