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PREFACE.

THE present work is comstructed on the same plan as
the author’s Algebra for Beginners and Trigonometry
Jor Beginners; and is intended as a companion to them.
‘It is divided into short Chapters, and a collection of
Examples follows each Chapter. Some of these examples
are original, and others have been selected from College
and University Examination papers.

The work forms an elementary treatise on demon-
strative mechanics. It may be true that this part of
mixed mathematics has been sometimes made too abstract
and speculative; but it can hardly be doubted that a
knowledge of the elements at least of the theory of the
subject is extremely valuable even for those who are
mainly concerned with practical results. The author has
-accordingly endeavoured to provide a suitable intro-
‘duction to the study of applied as well as of theoretical
Mechanics. : :

The demonstrations will, it is hoped, be found simple
and convincing. Great care has been taken to arrange
them so0 as to assume the smallest possible knowledge
of pure mathematics, and to furnish the clearest illus-
tration of mechanical principles. At the same time there
has been no sacrifice of exactness; so that the beginner
may here obtain a solid foundation for his future studies:
afterwards he will only have to increase his knowledge
without rejecting what he originally acquired. The ex-
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perience of teachers shews that it is especially neces-
sary to guard agninst the introduction of erroneous
notions at the commencement of the study of Mechanics.

The work consists of two parts, namely, Statics and
Dynamios. It will be found to contain all that is usually
comprised in elementary treatises on Mechanios, together
with some additions. Thus, for example, an investigation
has been given of the time of oscillation of a simple
pendulum. The more important cases of central forces
are also discussed; partly because they are explicitly
required in some examinations, and partly because by
the mode of discussion which is adopted they supply
valuable exemplifications of fundamental mechanical theo-
rems. It would be easy to give in the same manmer
the other cases of central forces which are contained in
the first three sections of Newton’s Principia.

As the Chapters of the work are to a great extent
independent of each other, it will be possible to vary the
order of study at the discretion of the teacher. The
Dynamics may with advantage be commenoed before the
whole of the SBtatics has been mastered.

Any remarks on the work, and especially the indica-
tion of difficulties or omissions, will be most thankfully
received.

1. TODHUNTER.

CAMBRIDGE,
July 1867,

CORRECTIONS.

Page 14. In the first line omit the word equal.

Page 29, Example 11. For throughout the points read through
the point.
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-MECHANICS FOR BEGINNERS.

1. Introduction.

1. W shall commence this work with some preliminary
explanations and definitions.

‘We shall assume that the idea of matter is familiar to

the student, being suggested to us by every thing which we
can touch.

2. A body is a portion of matter bounded in every
direction, A material particle is a bt:}ly which is indefi-
nitely small in every direction: we shall speak of it for
shortness as a particle.

3. Forceis that which moves or tends to move a body,
or which changes or tends to change the motion of a body.

4. When forces act on a body simultaneously it may
happen that the{ neutralise each -other, 80 as to leave the
body at rest. When a body remains at rest, although acted
on by forces, it is said to be in equilibrium. :

5. Mechanics is the science which treats of the equili-
brium and motion of bodies. Statics treats of the equili-
brium of bodies, and Dynamics of the motion of bodies.

6. Mechanics may be studied to a certain extent as a
purely experimental subject; butthe knowledge gained in
this way will be neither extensive nor sound. To increase
the range and to add to the security of our investigations
we require the aid of the sciences of space and number.

T. M. 1

.



2 INTRODUCTION.

Moot oot o huimber, and. Geometss 4o space: Trigor
Algebra re number, an me : Tri
nogmeetry is formed by the combination of Arithmetic and
Algebra with Geometry. When Mechanics is studied with
the aid of Pure Mathematics it is often called Demonstra-
tive Mechanics, to indicate more distinctly that the results
are deduced from principles by exact reasoning. Demon-
strative Mechanics constitutes & portion of Mized Mathe- .
matics.

7. In the present work we shall give the elements of
Demonstrative Mechanics. We shall assume that the
student is uainted with Geometry as contained in
Euclid, and with ‘Algebra and Trigonometry so far as they
are carried in the Treatises for Beginners.

8. There are three things to consider in a force acting
on a particle: the t{m‘m of application of the force, that
is, the position of the particle on which the force acts; the
direction of the force, that is, the direction in which it
rilndfs to make the particle move; and the magnitude of

e force. :

9. The position of a particle may be determined in
the same way as the position of & point in Geometry. The
direction of a force may be determined in the same wa
a8 the direction of a straight line in Geometry. We shaﬁ

roceed to explain how we measure the magnitude of a
orce.

10. Forces may be measured by taking some force as
the unit, and expressing by numbers the ratios which other
forces bear to the umit. Two forces are equal when on
being applied in opgosite directions to a particle they keep
it in equilibrium. If we take two equal forces and apply
them to a particle in the same direction we obtain a force
double of either; if we combine three equal forces we
obtain a ¢riple force; and so on,

11, Thus we may very conveniently represent forces by
straight lines. For we may draw a straight line from the
point of application of the force in the direction of the force,
and of a length proportional to the magnitude of the force,
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Thus, suppose a particle acted on by three forces
P, Q, R in three different directions. We may take straight
lines to represent these forces.

For let O denote the position B A
of a particle. Draw straight
lines 04, OB, OC in the di-
rections of the forces P, @, R 0
respectively; and take the
lengths of these atraight lines
proportional to the forces:
that is, take Y
OB @ 0oC R
0oa=P ™ o3=¢" .

In saying that OA represents the force P, we suppose
that this force acts from O towards 4; if the force pacted
from A towards O we should say that 40 represents it.
This distinction is indeed sometimes neglected, but it may
be observed with great advantage.

It would be convenient to dmtm&l inguish between the
phrases line of action and direction; thus, if we say that
OA is the line of action of a force P, it may be under-
stood that the force merely acts in this straight line, not
necesgarily from O to 4 butitmagbe from A4 to O; but if
we say that 04 is the direction of a force P it may be un-
derstood that the force acts from O towards 4.

12. Sometimes an arrow Q
head is used in a figure to
,indicalt;e hwxihich end of tlﬁe
straight line representing the
force is that tgwarda which
the force tends. Sometimes
the letters, as P, Q, R, which
denote the magnitudes of the
forces, are inserted in the
figure.

- 13. We find by experiment that if a body be set free
it will fall downwards in a certain direction; if it start
1—2
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again from the same point as before it will reach the
ground at the same point as before. This direction is
called the vertical direction, and a plane perpendicular
to it is called a hom'zontts plane. The cause of this
effect is assumed to be a certain power in the earth which
is called attraction, or sometimes gravity.

If the body be prevented from falling by the interposi-
tion of a hand or a table, the body exerts a pressure on
the hand or table.

‘Weight is the name given to the pressure which the
attraction of the earth causes a body to exert on another
with which it is in contact.

. 14, In Statics forces are usually measured by the
weights which they would support. Thus, if we denote the
force which will support one pound by 1, we denote the force
which will support five pounds by 5.

15. Force may be exerted in various ways; but only
three will come under our notice:

We may push a body by another; for example, by the
hand or by a rod: force 8o exerted may be called pressure.

‘We may pull a body by means of a string or of a rod:
force ex by means of a string, or of a rod used like a
string, may be called tension.

The attraction of the earth is exerted eithout the in-
tervention of any visible instrument: it is the only force
of the kind with which we shall be concerned.

16. A solid body is conceived te be an tion of
material particles. A rigid body is ofie in which the i".
ticles retain invariable positions with respect to each other,
No body in nature is perfectly rigid; .everﬁ body yields
more or less to the forces which act on it. But investiga-
tions as to the way in which the garticles of a solid body
are held %r,la.nd t? to t.hebs :viation of tlgg{dxe; from

ect rigidity belong to a very abstruse of Mechanics,
f:‘;fs fou'iﬁ' cient in elementary worm assumeo that
the rigidity is practically perfect.
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17. We shall now enunciate an important principle of
Statics which the student must take 2s an axiom : when g
Jorce acts on a body the effect of the force will be un-
changed at whatever point of its direction it be applied,

- provided this point be a point of the body or be rigidly
connected with the body.

Thus, suppose a body kept in equilibrium by a system
of forces, one of which iys the forcee%’ applied aty the point

A. Let B be any point on the straight line which coincides
with the direction of P. Then the axiom asserts that P
may be applied at B instead of at 4, and that the effect of
the force will remain the same.

This principle is called the transmiseibility of a force
to any point wn it line of action. It may be verified to
some extent by direct experiment; but the best evidence
we have of its truth is of an indirect character, We as-
sume that the principle is true; and we construct on this
basis the whole theory of Statics. Then we can compare
many of the results which we obtain with observation and
‘experiment; and we find the agreement so close that we
may fairly infer that the principle on which the theory rests
is true. But we cannot appeal to evidence of this kind at

ec:iland we therefore take the

the beginning of the subj
pm%ﬂ as an axiom the truth of which is to be assumed.

18. The following; remarks will give a good idea of the
amount of assumption involved in the axiom of the preced-
ing Article. . :
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At the point B suppose we apply two forces @ and R,
each equalgg P, the former in the direction of P, and the

latter in the opposite direction. Then we may readily
admit that we have made no change in the action of P.

Now P at 4 and R at B are equal forces acting in
opposite directions ; lef us assume that they neutralise each
other: then these two forces may be removed without dis-
turbing the equilibrium of the body, and there will remain
the force @ at B, that is, a force equal to P and applied
at B instead of at 4.

19. When we find it useful to change the point of
aEplication of a force, we shall for shortness not a.lwaj's state
that the new point is 7igidly connected with the old point ;
but this must be always understood.

20. We shall have occasion hereafter to assume what
may be called the converse of the principle of the trans-
missibility of force, namely, that if a force can be trans-
ferred from its point of application to a second point with-
out altering its effect, then the second point must be in the
line of action of the force.

21. We shall frequently have to refer to an important
property of a string considered as an instrument for exert-
ing force, which we will now explain.

Let A.B represent a string pulled at one end by a force
P, and at the other end by a force @, in opposite directions.

It is clear that if the string is in equilibrium the forces
must be equal.
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If the force @ be applied at any intermediate point C,
instead of at B, still for equilibrium we must have @ equai
to P, This is sometimes expressed by saying that force
mmmtod directly by a string is transmitted without

nge. .

Again, let a strin o
ACB be stretched roun SO g
asmooth peg C'; then we o
may admit that if the s
string be in equilibrium A

the forces P and @ atits .

ends must be equal. This /

is sometimes expressed p

by'saying that, force trans-

mitted by a string round

@ smooth peg s transmitted without change.

Or in both cases we may say briefly, that the tension of
the string is the same throughout.

We sutppose that the weight of the string itself may be
left out of consideration.

22. Experiment shews that the weight of a certain
volume of one substance is not necessarily the same as the
weight of an equal volume of another substance. Thus,
7 cubic inches of iron weigh about as much as 5 cubic
inches of lead. 'We say then that lead is denser than iron;
and we adopt the following definitions:

When the weight of any portion of a body is propor-
tional to the volume of that portion the body is said to be
of uniform density. And the densities of two bodies of
uniform density are proportional to the weights of equal
volumes of the bodies. us we 1&&{ take any body of uni-
form density as the standard and call its density unity, and
then the density of any other body will be expressed by a
number. Thus, suppose we take water as the standard
substance; then since a cubic inch of eops:r weighs about
as much as 9 cubic inches of water, the density of copper
will be expressed by the number 9.
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Examrres. I.

L J
1. If a force which can just sustain a weight of 51bs. be
represented by a straight line whose length is 1 foot 3
inches, what force will be represented by a straight line
2 feet long 1

2. How would a force of a ton be represented if a
straight line an inch long were the representation of a force
of seventy pounds ?

3. If a force of Plbs. be mmsented by a straight
line a inches long, what force be represented by a
straight line b inches long ?

4. If a force of P lbs. be represented by a straight line
a inches long, by what straight line will a force of € 1bs. be
represented ?

5. A string suspended from a ceiling supports a weight
of 3 1bs, at its extremity, and s.weighl?(!:fg 6 1bs. at its middle
point: find the tensions of the two parts of the string. If
the tension of the upper part be represented by a straight
line 3 inches long, what must be the length of the straight
line which will represent the tension of the lower portion ¢

6. If 41bs. of brass are as large as 31ba. of lead, com-
pare the densities of brass and lead.

7. Compare the densities of two substances 4 and B
when the weiﬁht of 8 cubic inches of 4 is equal to the
weight of 4 cubic inches of B,

8. A cubic foot of a substance weighs 4 cwt.: what
!lmlk og another substance five times as dense will weigh
cwt.

9. Two bodies whose volumes are as 3 is to 4 are in
weight as 4 is to 3: compare their densities.

10, If the weight of a cubic inches of one substance
and of b cubic inches of another be in the ratio of m to n,
compare the densities of the substances.
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1L Parallelogram of Forces.

23. When two forces act on a particle and do not
keep it in equilibrium, the particle will begin to move in
some definite direction. It is clear then that a single
force may be found such that if it acted in the direction
O{v‘gosite to that in which the motion would take place,
this force would prevent the motion, and consequently
would be in equilibrium with the other forces which act
on the particle. If then we were to remove the original
forces, and replace them by a single force equal in magni-
tude to that just considered, but acting in the opposite
direction, the particle would still be in equilibrium.

Hence we are naturally led to adopt the following
definitions :

A force which is equivalent in effect to two or more
forces is called their resultant; and these forces are called
components of the resultant.

24. We have then to consider the composition of
Jorces, that is, the method of finding the resultant of two
or more forces. The present Chapter will be devoted to
the case of ¢w0 forces acting on a particle,

25. When two forces act on a particle in the same
direction their resultant is equal to their sum and acts
in the same direction.

This is obvious. For example, if a force of 51bs. and a
force of 3 1bs. act on a particle in the same direction their
resultant is a force of 81bs., acting in the same direction.

26. When two forces act on a particle in opposile
directions their resullant is equal to their difference,
and acts in the direction of the greater force.

This is obvious. For example, if a force of 51bs. and a
force of 31bs. act on a particle in opposite directions their
resultant is a force of 2 1bs., acting in the same direction
a8 the force of 51bs.

27. We must now proceed to the case in which two
forces act on a particle in directions which do not lie in
the same straight line; the resultant is then determined
by the following proposition:
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If two forces acting on a particle be represented in
magnitude and direction by straight lines drawn from
the particle, and a parallelogram be constructed having
these straight lines as adjacent sides, then the resultant
Qf the two forces is represented in magnitude and direc-
tion by that diagonal of the parallelogram which passes
through the particle.

This proposition is the most important in the science of
- Statics; ]gt mued briefly the Parallelogram of Forces.
We shall first shew how the proposition may be verified
experimentally ; we shall next point out various interesting
results to which it leads; and demonstrate it.

28. To verify the Parallelogram Forces experi-
mentally. 4

Let 4 and B be smooth horizontal pegs fixed in a
vertical wall. Let three strings be knotted together; let

O represent the knot. Let one string pass over the

A and have a weight P attached to its end; let another
string pass over the B and have a weight @ attached
to its end; let the other string from O and have a
weight R attached to its end. Let the system be allowed
to adjust itself so as to be at rest. .

By Art. 21 the pegs do not change the effects of the
weights P and @ as to magnitude.

We have three forces acting on the knot at O,7and




R

PARALLELOGRAM OF FORCES. 1

keeping it in equilibrium; so that the effect of P alon,
0OA and of @ along OB is just balanced by the effect of
acting vertically down at 0. Therefore the result-
ant of P along 04 and of @ along OB must be a force
. equal to R, acting vertically upw at O,

Now on 04 take Op to contain as many inches as the
weight P contains pounds; and on OB take Og to contain
as many inches as the weight @ contains pounds; and
complete the elogram Ogrp. Then it will be found
by trial that Or contains as many inches as the weight R
contains pounds ; and that Or is a vertical line,

‘We may change the positions of the pegs, and the
magnitudes of the weights employed, in order to give due
variety to the experiment; and the general results afford
iluﬂicient evidence of the truth of the Parallelogram of

orces.

The strings should be fine and very flexible in order to
promote the success of the experiment; and it is found

ractically that small pullies serve -better than fixed pegs

or changing the directions of action of the weights P and
@ without changing the amounts of action.

‘We proceed to give an expression which will serve for
the numerical calculation of the resultant of two forces.

29. The case in which two forces act on a particle in
dirttiactions which include a right angle deserves especial
notice.

° Let AB represent a force P, and AC a force Q; and
let BAC bearightangle. Complete the rectangle ABDC':
then 4D represents the resultant of P and @; we will
denote this resultant by R.

Now by Euclid 1. 47, c D

AD*=AB'+ BD'=AB*+ AC*;
80 that R=P'+ @

For example, let P be 151bs,,
and @ be 81ba.: then

RA=(15)2+ (8)'=225 + 64=289;
therefore R=117.

Thus the resultant force is 17 Ibs.
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30. We will now give the general expression for the
resultant of two forces which act on a particle whatever be
the angle between their directions.

[ D

A

Let 4B represent a force P, and AC a force @; and
let a denote the angle BAC. Complete the parallelogram
_ ABDC: then AD represents the resultant of P and Q;

we will denote the resultant by R.

Now by Trigonometry,
AD*=AB'+ AC*+24B.ACcos BAC,
80 that R*=P2+Q*+2PQcosa.
For example, let @ be equal to P, and let a be 60° then |
cos 60°=-;- ,80 that
R'=P'+ P*+ P*=3P",
therefore R=P y3.

‘Whatever be the angle a if P=Q we have
R*=P*+ P*+2P%cosa =2P*(1+cosa);

but 1+eosa=2eos’g-;
therefore Ri=4p2 eos’g,
and’ R=2Pcosf—'.
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31. Let AB and AC represent two forces; and 4D
their resultant. Draw CB the other diagonal of the pa-
rallelogram,

Then since the diagonals of a parallelogram bisect each
other, CE=EB, and AD=24FE. Hence the resultant of

C D

the two forces may be determined thus: join CB and
bisect it at £; then AZ is the direction of the resultant,
and the magnitude of the resultant is twice AZ. This
mode of determining the resultant is often useful.

32. Suppose three equal forces to act on a particle,
and the direction of each to make an angle of 120° with
the directions of the two others. Then it is obvious that
the particle will be in equilibrium; for there is no reason
why it should move in one direction rather than in another.

This result is in accordance with the Parallelogram of
Forces.

For let 04 and OB be equal

straight lines; and let the angle
AOB be 120°. Complete ghe ®
parallelogram OA4CB.

. Then AC=0B=04; there-

fore the angle ACO=the angle

A0C=60" o c
Hence the triangle 0OAC is

equilateral, so that 0C=04.

Thus the resultant of two equal
forces, the directions of which
include an angle of 120° is equal A
to either of the forces, and bisects
the angle between them.
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33, Suppose that three equal forces act on a particle
and keep it in equilibrium, and that two of the forces are
equal : then the third force must be equally inclined to the
directions of the other two.

Hence, if the resultant of two forces is equal in magni-
tude to one of the forces, the other force is at right angles
to the straiﬁht line which bisects the angle between the
resultant and the force to which it is equal.

34. If three forces acting on a particle be represented
in magnitude and way of action by the sides of a triangle
taken vn order they will keep the particle in equilibrium.

Let ABC be a triangle; let P, @, R be three forces
proportional to the sides BC, C4, AB; let these forces

Q

act on a icle, P parallel to BC, @ parallel to C4, and
R pmnef %o 4.7 thon the particlo will be in equilibrium,

For draw AD parallel to BC, and CD parallel to B4
Forces represented by 4B and AD in magnitude an
direction will have a resultant represented by 4C in mag-
nitude and direction. Therefore forces represented by
AB, AD, and CA in magnitude and direction will be in
equilibrium; and 4D is equal and parallel to BC. Thus
the proposition is true.




PARALLELOGRAM OF FORCES., 15

35. The precedin % propogition is usually called the
Triangle of gorm. e student should pay careful at-
tention to the enunciation, in order to understand distinctly
what is here asserted. The words taken in order must be
noticed. If one force is represented by AB the others
must be represented by BC and CA4, not by BC and AC,
nor by CB and CA, nor by CB and AC. Also, it is to be
observed that the forces are supposed to act on a 'ﬁ;zrh'ck,
that is, to have a common point of application. us the
directions of the forces are not represented strictly by 4 B,
BC, and C4, but by straight lines parallel to these drawn
Jrom a common point. Beginners uently make a mis-
take in this respect; they imagine that forces, actuall
represented in maﬁ\‘iltude and situation by 4B, BC, an
CA, would keep a body in equilibrium: that is, they forget
the limitation the forces must act on a particle. In
order to direct the attention of the student to this impor-
tant limitation we have employed the words way of action
in the enunciation, msteas of the usual word direction,
which is liable to be confounded with situation.

36. [f three forces acting on a particle keep it in
equilibrium, and a triangle be drawn having ite sides
parallel to the lines of action of the forces, the sides of the
tﬁa:%; will be proportional to the forces respectively
par to them.

Let forces P, @, R acting on a particle at O keep it at
rest. In the direction of P take any point p, and in the

direction of @ take a point ¢, such that % = %— Complete
the parallelogram Oprq. Then Or represents the resultant
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of Pand @ in magnitude and direction. Hence » must
be on the straight line RO produced. Therefore any
triangle having its sides lel to the directions of the
forces will be similar to the triangle Opr, and will there-
fore have its sides proportional to the forces in magnitude.

37. If three forces acting om a particle keep it in
equilibrium, and a triangle be drawn having tts sides
perpendicular to the lines of action of the forces, the sides
qf the triangle will be proportional to the forces respec-
tevely perpendicular to them.

For suppose 4 BC to denote any triangle. Then straight
lines perpendicular respectively to 4.B and 4C will include
an angle equal to 4 ; and so on. Thus the triangle which
has its sides peg)endiclﬂar to those of 4 BC will be equi-
angular to ABC, and therefore similar to it. The side
which is perpendicular to BC will be opposite to an angle
equal to 4; and so on. Now by Art. 36 the forces will
represente«i by the sides of a triangle parallel to the lines
of action; and therefore they will also be represented by
the sides of a triangle perpendicular to the lines of action.

88. If three forces acting on a particle keep it in
equilibrium, each force is proportiondl to the sine of the
angle betwesn the directions of the other two.

Let forces P, @, R acting on a particle at O keep it in
equilibrium. Tl’:en: as in Art. 36, we have

P:Q:R=0p:pr:r0.
But, by Trigonometry,
Op : pr : rO=sin prO : sin pOr : sin rp0
=gin QOR : sin ROP : sin POQ.

89, Conversely, if three forces act on a particle, and
each force is proportional to the sine of the angle between
the other two,the forces will kee; thfgﬁarticle in equilibrium
provided a certain condition lled. This condition
corresponds to that efﬁresaed by the words taken in order
of Arts, 34 and 35. us if Op and Og in the figure of
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Art. 36 re t the directions of two of the forces,

the third force must be in the direction 70, and mnot

in the direction Or. We may express this by saying that

the direction of the third force must lie within the greater

% tht? two angles formed by the directions of the other
o forces.

40. If three forces act at a point we may find their
resultant thus: form the resultant of two of them, then
form the resultant of this and the third force. Thus we
have the resultant of the three forces. This process may
be extended to more than three forces; we shall consider
it more fully in the next Chapter.

41. 1If three forces acting in one plane maintain &
rigid body in equilibrium their lines of action either all
meet at a point or are all parallel.

For suppose the lines of action of two of the forces to
meet at a point; these forces may be suppesed to act at
this point, and may be replaced by their resultant. This
resultant and the third force must then be equal and oppo-
site in order to maintain the body in equilibrium: so that
the line of action of the third force must pass through the
intersection of the lines of action of the other two. Thus
the forces must satisfy the conditions of Art. 36.

The conditions which must hold among three parallel
forces which keep a rigid body in equilibrium will be given
in Chapter V.

42. As we can compound two forces into one, so on
the other hand we 7esoloe one force into two others.

a For let 4D represent aaf%rze 3 2 2
raw any parallelogram

having AD as a diagonal ; then the

force represented by 4.D is equi-

valent to two forces represented

by AB and AC respectively. A

Thus we can resolve any force into two components
which shall have assigned directions.

T. M, 2
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The case in which we resolve a force into two others at
right angles deserves special notice.

Let BAC be a right angle ; and
let a denote the angle DAB. Then © D
AB=ADcosa, AO=BD=AD sina.
Thus any force P may be resolved
into two others, P cosa and P sina,
which are at right anil)es, the direc-
tion of the component P cos a making A B
an angle « with the direction of P. .

43. We see from the former part of the preceding
Article that a given force may be resolved into two others
in an infinite number of ways. In future when we
:{ the resolved % of tzhforoe in a given direction ziv]e sh:ll

'ways suppose, unless the contrary is expressed, that the
force is resolved into two forces, one in the given direction,
and the other in the direction at right angles to the given
direction; and the former component we shall the
resolved force in the given direction.

44. The resolved part in any direction of the vresult-
ant of two forces acting at a point is equal to the sum of
the resolved parts of the components in that direction.

Let AB and AC denote two forces, and 4D their
resultant.

D
[y

K

A E

Let AK be any straight line through 4. Draw BE
and DF perpendicular to 4K, and BG parallel to 4 K.

Then A F represents the resolved part of the resultant
along 4K ; and AF=AE+EF. Now AK is the resolved



PARALLELOGRAM OF FORCES. 19

of the comgonent AB along AK; and EF is equal to
@, that is to the resolved part along AKX of the compo-
nent A0 ; for BD is equal and pan.lfel to BC.

45. 'We shall now give the demonstration of the truth
of the Parallelogram of Forces which is most suitable for
an elementary work ; it is called by the name of Duchayla,
to whom it is due.

The demonstration is divided into three parts: in the
first the proposition is established so far as relates to
the direction of the resultant, the forces being commen-
surable; in the second part this result is extended to in-
commensurable forces ; in the third part the proposition is
established with respect to the magnitude of the resultant.

46. We have first to notice a preliminary assumption,

‘We assume that if two equal forces act on a particle the
direction of the resultant will be in the same plane as
the directions of the forces and will bisect the angle be-
tween them. This seems obvious, for there is no reason
-why the resultant should lie on one side of the plane of the
forces rather than on the other; and there is no reason why
it should be nearer to one force than to the other.

If a parallelogram be constructed on two equal straight
lines meeting at a point as adjacent sidele&:e diaéngal
which passes through that point bisects the angle between
the sides which meet at that point.

Hence the parallelogram of forces is true, so far as the
direction is concerned, when the forces are equal.

47. To demonstrate the Parallelogram of Forces
g0 fur as relates to the direction of the resultant, the forces
being commensurable.

Suppose that the proposition is true for two forces P
and @, inclined at any angle; and also for two forces P
and R inclined at the same angle: we shall shew that it
will be true for two forces P and @+ R inclined at the
same angle.

22
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Let 4 be the point of ap-
plication of the forces; let 4 c n
the force P act along 4B and
the force Q@+ R along AF.

P L%t gBin and AC resen;.
an magnitude, an
let CE represent R in mag-
nitude. Complete the paral. > "l\ °\
lelogram ACDB, and the pa-
rallelogram CEGD. ¥

By Art. 20 the force R may be supposed to act at C'

instead of at 4 ; and thus may be denoted in magnitude
and situation by CE.

Now by hypothesis the resultant of 2 and Q acts alo
AD; let P and @ be replaced by their resultant, an
let this resultant be supposed to act at D instead of
at 4. Resolve this force at D into two components, one
;lﬁieap and tl;? otIl’Jer t:.ilogg t{;w;‘ : these two bceomponents

i ively P and @, the former may be supposed
to act amt:i the latter at G-

Again, the resultant of P along CD and R along CE
acts by hypothesis along C&; let P and R be replaced by
theci; resultant, and let this resultant be supposed to act
at G.

Thus by this process we have transferred the forces
which acted at 4 to G, without altering their effect.
Hence, by Art. 20, we infer that & is a dpoint in the
direction of the resultant of the forces P and @+ R at 4 ;
that is, the resultant of P and @+ R acts in the direction
of the diagonal AG; thus, if the ‘gro sition hold for
Pand Q and for P and K, it holds for P and Q+R.
But the proposition holds for equal forces P and P, there-
fore it holds for P and 2P, and therefore for P and 32,
and so on; hence it holds for P and nP where n is any
whole number.

And since it hqJds for P and «P, it holds for 2P
and nP, and therefore for 3P and P, and so on; hence
it holds for mP and nP where m is any whole number,
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Thus the proposition holds for any two commensurable
forces.

48. To demonstrate the Parallelogram of Forces so.
Jar as relates to the direction of the resultant, the forces
betng incommen surable.

The result in this case may be inferred from the fact
that when two magnitudes are incommensurable, 8o that
the ratio of the one to the other cannot be expressed
ezactly by means of numbers, we can find numbers which-
:lhall represent the ratio within any assigned degree of

oseness.

" The result may also be established indirectly thus :
A

Let 4B, AC represent
two incommensurable forces.
Complete the elogram
BC. Thenif their resultant
do not act along AD su
g::eittoactalongA: ¥ o)

1.4

EF parallel to BD. ‘:'é YII,K

Divide AC into a number of equal portions, each less
than DE; mark off on CE portions equal to these, and
let X be the last division: then K evidently falls between
D and E. Draw K@ parallel to CA.

. Then two forces represented by AC and 4G have a
resultant in the direction 4K, because the forces are
commensurable. Therefore the forces .AC and AB are
equivalent to a force 4K, together with a force equal
to GB applied at 4 along AB. And we may assume
as obvious that the resultant of these forces must lie
between 4K and AB; but by hypothesis the rvesultant
is AE, which is not between AKX and AB: this is

c

In the same way we may shew that the resultant cannot
act along any straight line except 4.D.

Thus the Parallelogram of Forces is demonstrated so
far as relates to the direction of the resultant whether
the forces are commensurable or incommensurable.
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49. 7o demonstrate that the Parallelogram of Forces
holds also with respect to the magnitude of the resultant.

Let 4B, AC be the directions of E
the given forces, A4.D that of their re-
sultant. Take AX opposite to 4D,
and of such a leng)th as to represent E
the magnitude of the resultant.

Then the forces represented by
AB, AC, AE balance each other. On A
AE ‘snd 4B as adjacent sides con-
struct the parallelogram ABFE: then
the diagonal 4 F is the direction of the B c
resultant of AE and 4B.

Hence AC must be in the same
straight line with 4 #'; therefore AFB.D D
is a parallel ; therefore 4.D=BF.
But BF=AE. Therefore AE=AD : hence the resultant
is represented in magnitude as well as direction by the
diagonal 4.D. - :

Thus the Parallelogram of Forces. is completely de-
monstrated. )

ExamprLes. II

1. Two forces act on a particle, and their test and
least resultants are 72 and 56 1bs.: find the fo;‘:::

2. Find the resultant of two forces of 121bs. and 351bs.
respectively which act at right angles on a particle.

3. Two forces whose magnitudes are as 3 to 4, acting
on a particle -at right angles to each other, produce a
resultant of 151bs.: find the forces.

4. Two forces, one of which is double of the other, act
on a particle, and are such that if 61bs. be added to the -
larger, and the smaller be doubled, the direction of the
resultant is unchanged : find the forces.

5. Shew that if the angle at which two given forces are
ingli.nlelgd. to each other is increased their resultant is di-
minis




EXAMPLES. II. 23

6. 'If one of two forces acting on a particle be 5 Ibs.,
and the resultant be also 51bs,, and at right angles to the
?nown force, find the magnitude and direction of the other

orce.

7. If the resultant of two forces is at right angles to
one of the forces, shew that it is less than the other force.

8. If the resultant of two forces is at right angles to
one force and equal to half the other, compare the forces.

9. If forces of 31bs. and 4 Ibs, have a resultant of 5 Ibs.,
at what angle do they act ?

10. If two component forces acting at right angles to
each other be in the (i)roportion of 1 to ,/3, and their
resultant be 10 1bs,, find the forces.

11. How can forces of 43 and 651bs. be applied to a
particle so that their resnltant may be 221bs. ?

12. A and B are fixed points; at a point P forces of
given magnitude act along 4 and PB: if their resultant
is of constant magnitude, shew that P lies on the circum-
ference of a circle,

III. Forces in one plane acting on a particle.

50. 'We shall now shew how to determine the resultant
of any number of forces in one plane acting on a particle;
we have already briefly noticed this subject: see Art. 40.

51, T find the resultant of a given number of.forces
acting on a particle in the same straight line.

‘When several forces act on a particle in the same
direction their resultant is equal to their sum.

‘When some forces act in one direction, and other forces
in the opposite direction, the whole force in each direction
is the sum of the forces in that direction. Hence the re-
sultant of all the forces is equal to the difference of those
two sums, and acts in the direction of the greater sum.
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If the forces acting in one direction are reckoned posi-
tive, and those a/ctmﬁ in the other direction negative, then
the resultant of all the forces is equal to their algebraical
sum ; and the sign of this sum determines the direction in
which the resultant acts.

If the algebraical sum is zero the forces are in equi-

librium ; and conversely, if the forces are in equilibrium their
algebraical sum is zero.

52. To determine geometrically the resultant of any
number of forces acting on a particle.
* Let forces P, @, R, S act on a particle: it is required
to determine their resultant.

P

Take any point 4, and draw the straight line 4B to
represent the force P in magnitude and way of action ;
from B draw BC to represent @ in magnitude and way of
action ; from C draw CD to represent R in magnitude and
way of action; and from D draw DE to represent S in
magnitude and way of action. Join 4% ; then AE will
represent the resultant in magnitude and way of action. -

This is obvious from the preceding Chapter, For the
resultant of P and @ would be represented by the straight
line 4C; and then the resultant of the forces represented
by AC and CD would be represented by AD ; that is, 4D
would represent the resultant of P, @, and R ; and so on.

The method is asglicable whatever be the number of
forces acting on a particle, . i
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53. If any number of forces acting on a particle
be represented in magnitude and way of action by the
sides of a polygon taken in order, they will keep the par-
ticle in equilibrium. .

Take for example a (Polygon of five sides. Let forces
represented in itude and way
of action by AB, BC, CD, DE, EA B S
act on a particle: they will keep the
particle in equilibrium, D

A
For, by the preceding Articl
the fomesyrepreeented by AB, B&
CD, DE have a resultant which may o
be represented by AE : and two forces represented by 4E
and £4 respectively will balance each other.

54. The recedm'ﬁ roposition is usually called the
Polygon qflf'grm. epremarks madeinArt{%respect-
ing the T'riangle qf Forces are applicable here also.

The converse of the Zriangle of Forces is true, as is
shewn in Art. 36; but the converse of the Polygon of
Forces is not true; that is, if four or more forces acting on
a particle keep it in equili rmn‘;i we cannot assert thatthe
forces are proportional to the sides of any poly&on which
has its sides parallel to the lines of action of the forces.
For one polygon m%g be equiangular to another without
being similar toit. If in the figure of the preceding Article
we draw any straight line parallel to one of the sides, as
AE for example, we can form a second polygon, which like
the first has its sides parallel to the lines of action of the
forces ; but the sides of the one polygon are not in the
same relative proportion as the sides of the other.

55. It will be seen that the geometrical process of
Art. 52 is applicable when the forces do not all lie in one
plane. Also in Art. 53 the polygon need not be restricted
to be a plane polygon. But the method which we shall
now give for calculating by the aid of Trigonometry the
resultant of any number of forces acting at a point assumes
that the forces are all in one plane. .
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56. JForces act on a particle in one plane ; required
the magnitude and direction of their resultant.

Let P, @, R,... denote the forces; let q, B3, y,... denote
the angles which their directions make with a fixed straight
line drawn through the particle.

By Art. 42 the force P can be resolved into Pcos a
and Psgine along the fixed straight line and at right
angles to it respectively ; similarly @ can be resolved into
Q cos8 and Qsing; and R can be resolved into R cosy
and 2 sin y; and 8o on,

Then, by algebraical addition of the components which
act in the same straight line, we obtain

Pcosa+QcosB+Rcosy+...
along the fixed straight line, and

Psina+Qsin B+ Rsiny+...
at right angles to the fixed straight line.

. 'We shall denote the former sum by X, and the latter
by ¥; hence the given forces are equiva.ient to the two
forces X and Y in directions which are at right angles to
each other, Let K be their resultant, and § the angle
which the direction of X makes with that of X, Then, by

Art. 29, K:=X24 Y},
Kcos0=X, Ksinf=7Y.

57. To find the conditions of equilibrium when any
number of forces act on a particle in one plane.

The forces will be in equilibrium if their resultant
vanishes; that is by the preceding Article if K=0; and
this will be the case if X =0 and ¥'=0. These conditions
then are sufficient for equilibrium; we may express them
in words thus:

A system of forces acting in one plane on a particls
will be in equilibrium if the sum of the resolved parts of
the forces along two straight lines at right angles to each

other vanishes.
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Conversely, if the forces are in equilibrium X=0 and
thfn dX =0 an«% tll:: ?; anda]X denotes tl}eh:ulx}: of tllie re-
solved parts of the forces along any straig e. Hence
if forces acting in one plane on a particle are in equilibrium,
the sum of the resolved parts of the forces along any straight
line will vanish,

58. If forces in one plane act on a body at different
points, we ma; investigage the resultant of the forces b;
repeated use of the principles of composition, resolution, an
transference.

For example, let¢ ABCD
be a square; sup aforce D (Y
of 11b. to act along 4D, a
force of 2 Ibs, along 4B, and
a force of 31bs. along CB: B
required the resultant of the N
forces. \

The forces along AB and ‘\
AD will have their resultant B
alon% the straight line 4AE ° \
which is so situated that £B
is to AB a8 11b. is to 21bs; that is, E is the middle point of
BC. Buppose this resultant applied at E; and resolve it
again into its components el to AB and 4D. Thus
we have a force of 11b. along EC, and a force of 2 lbs,
acting at £ el to 4B. 'Fhere is also a force of 31bs.
along OB. Thus on the whole we have a force of 21bs.
along E B, and also a force of 21bs. at £ parallel to 4.B.

Hence the resultant of all the forces is /(4 +4)Ibs.
that is 24/21bs; and its direction passes through Z, an
makes an angle of 45° with EB.

The only case which could present any difficulty is that
in which we should have ﬂnalg two forces in parallel di-
rections; and this will be considered in the next Chapter.
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ExampLEs, III.

1. If three forces represented by the numbers 1,2, 3
acting in one plane keep a particle at rest, shew that they
must all act in the same straight line. .

- 2. Three forces represented by the numbers 1, 2, 3 act
on a particle in directions lel to the sides of an equi-
lateral triangle taken in order: determine their resultant.

3. Can a particle be kept at rest by three forces whose
magnitudes are as the numbers 3, 4, and 7?

4. Three forces act along the sides of a triangle, taken

in order, and are inversely as the perpendiculars from the
angular points of the triangle, on the sides along which
the forces act respectively: shew that they are in equili-
brium.
5. A weight of 251bs. hangs at rest, attached to the
ends of two strings, the lengths of which are 3 and 4 feet,
and the other ends of the strings are fastened at two points
in a horizontal line distant 5 feet from each other: find the
tension of each string.

6. Three forces acting at a point are in equilibrium ;
the greatest force is 51bs., and the least force is 3 1bs., and
the angle between two of the forces is a right angle: find
the other force.

7. Two equal forces act at & certain angle on a parti-
cle, and have a certain resultant; also if the direction of
one of the forces be reversed, and its magnitude be
doubled, the resultant is of the same magnitude as before:
shew that the resultant of these two resultants is equal to
each of them.

8. Two equal forces act at a certain angle on a particle,
and have a oeeq;'tam resultant ; also if the direction of one of
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the forces be reversed, and its itude be doubled, the
resultant is of the same magnitude as before: shew that
the two equal forces are inclined at an angle of 60°.

9. Two forces are represented in magnitude and direc-
tion by two chords of a circle, drawn from a point on the
circumference at right angles to each other: shew that the
resultant is represented in magnitude and direction by the
diameter which passes through the point.

10. Eight points are taken on the circumference of a
circle at equal distances, and from one of the points straight
lines are drawn to the rest: if these straight lines represent
forces acting at the point, shew that the direction of the
resultant coincides with the diameter through the point,
and that its magnitude is four times that diameter.

11. The circamference of a circle is divided into a
given even number of equal parts, and from one of the
points of division straight lines are drawn to the rest:
shew that the direction of the resultant coincides with the
diameter throughout the points.

12. Forces of 3, 4, 5, 6 1bs. respectively act along the
straight lines drawn from the centre of a square to the
an points taken in order: find their resultant,

13. Perpendiculars are drawn from any point on the
four sides of a rectangle: find the magnitude and direction
?11; :llxllirs. resultant of the forces represented by the perpen-

14. The circumference of a circle is divided into any
number of equal parts; forces are represented in magni-
tude and direction by straight lines drawn from the centre
to the points of division: shew that these forces are im
equilibrium,

15. Shew that the result in Example 11 is true also
when the number of equal parts is odd. Find also the
magnitude of the resultant.
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IV. Resultant of two Parallel Forces.

59. Forces which have their lines of action parallel
are called parallel forces; if they tend in the same way
they may be called Zke, and if they tend in opposite ways
they may be called uniike.

60. 7o find the maimituds and direction of the resul-
tant of two like parallel forces acting on a rigid body.

Let P and @ be the forces aoting at 4 and B re-
‘spectively.

4]

B < 5 5 > 8
A
P
Q Y

The effect of the forces will not be altered if we apl‘)ill’ )

two forces equal in magnitude, and acting in opposite
rections along the straight line 4B, Let & denote each of
these forces, and suppose one to act at 4 aleng BA pro-
duced, and the other at B along 4.8 produced.

Then P and § acting at 4 are equivalent to a ainge
force X acting in a direction between those of S and P ;
and @ and § acting at B are equivalent to a single force
Y acting in a direction between those of S and Q.
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Produce the directions of X and ¥ to meet; let them
meet at C, and draw CD parallel to the directions of P and
@, meeting 4B at D.

Transfer X and ¥ to C, and resolve them along CD
and a straight line through C parallel to 4B; each of the
latter components will be equal to S, and they will act in

opposite ions, and balance each other: the sum of
tge former components is P+ Q.

Hence the resultant of the like parallel forces P and @
is P+ @, and it acts parallel to the directions of P and @
in a straight line which cuts AB at D; so that it may be
supposed to act at .D.

‘We shall now shew how to determine the point D.

The sides of the triangle 4DC are parallel to the direc-
tions of the forces S, P, X ; hence, by Art. 36,

Similarly
Therefore e
Thus the point D divides 4B into segments which are

inversely as the forces at 4 and B respectively.
Let AB=a, and AD=w; then

therefore Pz=Qa—x),

therefore = P+@Q
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61. 7o find the magnitude and direction of the result-
ant of two unlike parallel forces acting on a rigid body.

Su] Q the greater of the two forces. By the same
method as in the preceding Article we shall arrive at the
following conclusion.

The resultant of the unlike el forces P and Q is
Q— P, and it acts lel to the directions of P and @
in a straight line which cuts AB produced at a point D
such that -

AD @

BD™ P’
Thus D divides 4B produced through B into segments
which are inversely as the forces at 4 lﬁd B respectiv:i];.
Let AB=a, and AD=2; then.
v @

LA
z—a P’
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therefore Pz=Q(z—a);
_ @
therefore = o-P

Tt will be observed that the results of this Article may
}1)3 deduce;l) from those of the preceding Article by changing
into —2P.

62. If three el forces keep a rigid body in equili-
brium one must be equal and opposite to the resultant of
the other two. Hence they must all act in one plane; one
of them must be unlike the other two; and its line of action
must lie between theirs, dividing the distance between
them in the inverse ratio of the two forces.

63. We may find the resultant of any number of paral-
lel forces by repeated application of the process of Arts. 60
and 61. First find the resultant of two of the forces; then
find the resultant of this and the third force; and so on.

64. There is one case in which we are unable to find a
single resultant for two parallel forces, namely, when the
forces are equal and unlike. The process of Art. 61 will
not a%pl;'to this case; for the lines of action of the forces
X an are then parallel, 8o that the points O and D do
not exist. -

Two such forces are usually called a couple. The theory
of couples includes some important propositions; it will be
sufficient for our dpur;,go:se to demonstrate one of these:
some preliminary definitions and remarks will be required.

65. A couple consists of two parallel forces which are
équal and 'unhll’:le

The arm of a couple is the perpendicular distance be-
tween the lines of action of its forces.

The moment of a couple is the product of one of the
T. M. 3
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equal forces into the arm; that is, the number which ex-
presses the force must be multiplied by the number which
expresses the arm to produce the moment.

66. The student will readily conceive that the tendency
of a couple which acts on a free rigid body is to make the
body turn round; and it is shewn in works on the higher
parts of mechanics that such is the case: the rotation takes
place round a straight line which always passes through a
certain point in the body called its centre of gravity, but is
not necessarily perpendicular to the plane of the couple.

87. Two couples in the same plane may differ as to the
m in which they tend to turn the body on which
ey .

Take for example the couple denoted in the Izﬂre of
the next Article by the two equal forces P, and that de-
noted by the two equal forces €. Suppose a board 4 BCD
capable of turning in its own ;'i!ane round a pivot fixed
at any point within 4BCD. The couple @, @ tends to
turn the board in the same way as the hands of a watch
revolve, and the couple P, P tends to turn the board in
the opposite way.

Couples which tend to turn a body round in the same
way may be called like, and couples which tend to turn a
y round in opposite ways may be called unlike.

68. Two unlike couples in the same plane will balance
each other if their moments are equal.

Let each force of one couple be P, and each force of
the other couple @. Let 4BCD be the parallelogram
formed by the lines of action of the forces.

‘0 g)é'aw AM perpendicular to CD, and AN perpendicular
' By hypothesis the moments of the eonpleé are equal,
that 1s,
PxAM=QxAN;
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Hence, by the parallelogram of forces, the resultant of
Pand @ at 4 acts in the direction AC. )

Similarly, the resultant of P and @ at C acts in the
direction C4, and is equal to the former resultant in magni-
tude; so that the two resultants balance each other.

Hence the two couples balance each other. .
" Since two unlike eouples of equal moment in the same

plane balance each other, it follows that tewo like couples of
équal moment in the same plane produce equal effects.

69. The demonstration of the preceding Article as-
sumes that the forces of one couple are not parallel to
those of the other. When the four forces are all parall
the theorem may be shewn to be true by the aid of Arts.
60 and 61. Or we may proceed thus. Suppose the couples
unlike, and all -the forces parallel; take a couple in the

3—2

by Euclid v1. 4.
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same plane, and of equal moment, with its forces not parallel
to the four forces. Then by Art. 68 this new couple
balances one of the two couples and is equivalent to 519
other. Therefore the two couples are equivalent.

70. Hence we see that two like couples of equal mo-
ments in the same plane are equivalent to a single like
couple in that plane of double moment. And any number
of like couples in the same plane are equivalent to a like
couple in that fpla.ne with & moment equal to the sum of
the moments of these couples.

Hence finally, if any number of couples act in one plane,
some of one kind and some of the other, they are equi-
valent to a ﬁﬁle couple in that plane, having a moment
equal to the difference of the sums of the moments of the
two kinds, and being of the same kind as the couples which
have the greater sum of moments.

71. A single force and a couple tn one plane are
equivalent to the same single force acting in & direction -
parallel to its original direction.

Let P denote the single force, @ each force of the
couple.

If the directions of all the forces are el, P com-
bined with the ¢ike force of the couple will produce a re-
sultant. P+ @ also el to the former force. Then
P +@ combined with the other force of the couple will
produce a resultant P parallel and like to the original P,

If the directions of all the forces are not parallel, let 4
dengte the point at which the line of action of P crosses
that of one force @ of the couple. Form the resultant of
P and this @, and denote the resultant by B. Let B de-
note the point at which the line of action of R croeses that
of the other force @ of the couple; and suppose R to act
at this point. Resolve R into its components P and Q.
The two forces @ balance each other, leaving the force 2
acting at B el to its original direction. .
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Exampres. IV.

1. ABCD is asquare. A force of 31bs. acts from 4
to B, a force of 41bs. from B to C, a force of 61bs. from D
to C, and a force of 51bs. from 4 to D: find the magnitude
and direction of the resultant force.

2. Two men carry a weight of 1521bs. between them
on a pole, resting on one shoulder of each; the weight is
tbrzo;l i .esh:.s falz; from :&e&sfrom ihe ?til::r: ﬁln how
much weight each suppo e weight of the pole bei
much weight pp eig] pole being

3. A man supports two weights slung on the ends of &
stick 40 inches long placed across his shoulder: if one
weight be two-thirds of the other, find the point of support,
the weight of the stick being disregarded. :

4. ABO is a triangle, and O an %gint within it ; like
parallel forces P and @ act at 4 an such that P is to
@ as the area of BOC is to the area of 40C'; shew that the
resultant acts at the point where CO produced meets 4.5,

. 6. If the point O be outside the triangle and the forces
P and @ in the same proportion as in Example 4, shew that
the result is still true, provided 2 and Q be like or unlike
according as the intersection of CO and AB be on 4B or
on AB produced. .

" 6. ABC is a triangle, and O an point within it; like
parallel forces act at 4, B, and C which are proportional
to the areas BOC, CO4, and A0B respectively: shew that
the resultant acts at O.

7. If the point O be outside the triangles and the
forces in the same proportion as in Example 6, but a cer-
tain one of the three be unlike the other two, shew that
the resultant acts at O,

8. P and Q are like parallel forces; an unlike farall.el
force P+@Q acts in the same plane at perpendicular dis-
tances @ and b respectively from the two former, and
between them: determine the moment of the couple which
results from the three forces.

9. Like parallel forces, each equal to P, act at three
of the corners of a square perpendicular to the square; at
the other corner such & force acts that the whole system is
a couple: determine the moment of the couple.
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V. Moments.

72. The product of a force into the perpendicular
drawn on its line of action from any point is called the
moment of the force with respect to that point.

Thus su Ese AB the line of action of a force, O any
point, and 6) the ndicular from O

on AB. Then if P denote the force A L B
the moment with respect to Ois P x OM.
Hence the moment of a force never .-

vanishes except when the point about 5
which the moment is taken is on the
line of action of the force.

73. Supgose that OM were a rod which could turn
round O in t ep]aneofthep:lper; if a force were to act at
M in the direction 4B it would tend to make the rod turn
round O in the same direction as the hands of a watch
revolve; if the force were to act in the direction B4 it
would tend to make the rod turn round O in the opposi
direction. It is found very convenient to distin be-
tween these two kinds of moment; and thus moments of
one kind are called positive, and moments of the other
kind negative. It is indifferent in any investigation which
kind of moment we consider positive, and which negative;
but when we have made a choice we must keep to it
during that investigation,

74. Since the area of any triangle is equal to half the

?roduct of the base into the altitude, the moment of a
orce may be geometrically ropresente& by twice the area
of a triangle having for its base the straight line which
represents the force, and for its vertex the point about
which the moments are taken.

We shall now give a very important proposition re-
specting moments.

76. The algebraical sum of the moments of two forces
round any point in the %am containing the two forces is
equal to the moment of their resultant.

- Let AB, AC represent two forces; complete the Etnl-
lelogram 4 BCD and draw the diagonal ED, which will
represent the resultant force. Let O be the point round
which the moments are to be taken; join 04, 0B, 00, OD.
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L Let O fall without the angle BAC and that which
is vertically opposite to it.

The triangle 40C
ol
the triangles
and OBD. For the
former has the "base
AC, and each of the y
latter has the equal 4 By
L .

n m \
o ACs equal to the c
sum of the perpendiculars from 4 and O on BD. .
Thus triangle A0C = triangle 4B D +triangle 0BD
=triangle 40D —triangle A0B;
therefore triangle 400+ triangle AOB=triangle 40D,
Hence, multiplying both sides by 2, we have
moment of 4C'+ moment of 4B=moment of 4D,

II, Let O fall within the angle BAC or its vertically
opposite angle.

The triangle AOC is equal to the difference of the tri-

angles ABD and OBD. For the former has the base AC,
and each of the latter has a

the equal base BD; and
the j)erpendicular from O
on AC is equal to the dif- 4
ference of the perpendi- - )
cilars from 4 and O on-
BD,
o

Thus triangle 40C =triangle 4 BD— triangle OBD
=triangle A0B +triangle 40D ;
therefore triangle 40C— triangle 40B=triangle 40.D.
Hence, multiplying both sides by 2, we have  °
moment of AC—moment of 4B =moment of 4D,

The moments of AC and 4B round O are now of oppo-
site kinds: thus the moment of the resultant is always
equal tt:. the algebraical sam of the moments of the com-
ponen .
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76. The p ing Article applies to the case in which
the lines of action of the forces meet : we have still to shew
that the proposition holds for parallel forces.

Let P and @ be like parallel forces, acting at 4 and B';
let R be their resultant, C the point where the direction of
the resultant cuts 4B. Take A c B
any point O, not between the g
lines of action of the forces, and
draw a_perpendicular from O
on the lines of action of P, @,
and R, meeting them at a, b,

and c respectively. B’
Now g: gg’by Art. 60, =%,by Euclid v1. 2;
therefore Pxca=@Qxch.

And P xO0a+@Qx 0b=P (0c—ca)+Q(Oc+ ch)
=(P+Q)O0c—P xca+Qxch=(P+@Q)0c=RxO0c.
Thus the required result is obtained in this case.
Similarly, it may be shewn that when O falls between

the lines of action of P and Q the moment of R is equal
to the arithmetical difference of the moments of P and Q.

Thus for two like parallel forces the moment of the
resultant is always equal to the algebraical saum of the
moments of the components.

In a similar manner the proposition may be established
for the case of unliks parallel forces.

71. The algebraical sum of the moments of the two
Jorces which form a couple 18 constant round any point
in the plane of the couple.

If the point is between the lines of action of the forces
the moments of the two forces are of the same kind, and
their sum is equal to the product of one of the forces into
the perpendi distance between the lines of action.

If the point, is not between the lines of action of the
forces the moments of the two forces are of :gonto kinds,
and their arithmetical difference is equal to the product of
one of the forces into the perpendicular distance between
the lines of action,
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Thus in every case-the algebraical sum of the moments
of the forces of a couple round a point in the plane of the
couple is equal to the product of one force into the perpen-
dicular distance between the lines of action; that is, to the
moment of the couple. See Art. 65.

78. When two forces act in one plane one of three
cases must hold. Either the forces ce each other so
that their resultant is zero, or they have a single resultant,
or they form a couple. The algebraical sum of the mo-
ments of the forces about a point in the plane alwa
vanishes in the first case, vanishes in the second case oni
when the point is on the line of action of the resultant, an
never vanishes in the third case.

79. The result of Art. 75 can be extended to the case
of any number of forces acting in one plane at a point.
Take two of the forces; the algebraical sum of their mo-
ments round any point is equal to the moment of their
resultant. Replace the two forces by their resultant; then
zppéy Art. 75 again to this resultant and the third force.

nd so on.

80. Similarly, by the aid of Art. 63 we mayextend Art.
76 to the case of any number of parallel forces in one plane.

81. If anynumber of forces in one plane act on a ga.rti—
cle either they are in eqililibrium or they have a single re-
sultant. The algebraical sum of the moments round a point
in the plane always vanishes in the former case, and in the
latter case vanishes only when the point is on the line of
action of the resultant.

82. Hence we may use the following instead of Art.57:

Forces acting in one plane on a particle will be in
equilibrium if the algebraical sum of the moments vanishes
round any two points in the plane which are not situated
on a straight line passing through the particle.

Conversely, if the forces are in equilibrium the alge-
braical sum of the moments will vanish round any point in .
the plane.
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ExampLEs. V. -~

1. P and Q are fixed points on the circumference of
a circle; @4 and @B are any two chords at right angles to
each other, on opposite sides of QP : if @4 and @B denote
forces, shew that the difference of their moments with
respect to P is constant.

2. If two or more forces act in one plane on a particle,
shew that the algebraical sum of their moments round a
point in the plane remains unchanged when the point
moves parallel to a certain straight line,

8. If the algebraical sum of the moments of forces
acting in one &lane on a particle has the same valne for
two points in the plane, then the straight line which joins
these two points is par:ilel to the resultant force.

4. ABC i8 a triangle; D, E, F are the middle points
of the sides opposite to 4, B, O respectively: shew by
takin%moments round 4, B, and C, that forces denoted by
AD, BE, and CF are in equilibrium.

5. Forces are denoted by the perpendiculars drawn
from the angular points of a triangle on the opposite sides:
shew by taking moments round the angular points that the
f:roes will not be in equilibrium unless the triangle is equi-

6. Forces act at the ints of a triangle along
the perpendiculars drawn from the angular points on the
respectively opposite sides, each force being proportional
to the side to which it is perpendicular: shew by taking
moments round the angular points that the forces are in
equilibrium.

7. ABO is a triangle, O any point within it; 40,
BO, and CO uced cut the m?ecﬁvel opposite sides
at H, I, and K; shew that forces denoted by 4 H, BI, and
CK cannot be in equilibrium unless A, 7, and K aro the
middle points of the respective sides,

8. ABC is a triangle, O any point within it; straight
lines are drawn through O pam.lﬂaf to the sides and termi-
nated };)  the sidest: b:l!ew tha.tbi;tl)rces “:lenbmh by the]s]:

es cannot be in equilibrium unless i
m bisected at O. ol Strig

. \
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VI. Forces in one Plane.

83. In the present Chapter we shall investigate the
conditions of equilibrium of a system of forces acting in
one plane on a rigid body.

84. A system of forces acting in one plane on a rigid
body, if not in equilibrium, must be equivalent to a single
resultant or to a couple. :

For take any two of the forces of the system, and de-
termine their resultant; then combine this resultant with
another force of the system ; and so on. By proceeding in
this way we must obtain finally a single resultant or a
couple; unless one force of the system is e&t;al and ogpo-
site to the resultant of all the others, so that the whole
system is in equilibrium, .

85. If a system of forces acting in one vlane on a
rigid body is equivalent to a single resultant, the moment
of the resultant round any point in the plane is equal to
the algebraical sum of the moments of the forces.

This proposition is established by repeated applications
of Arts. 75 and 76. Take any two of the forces; then the
moment of their resultant round any point in the plane is
equal to the algebraical sum of the moments of the two
forces. Combine the resultant of these two forces with
another of the forces; then the moment of their resultant
is equal to the algebraical sum of the moments of the com-
ponents, that is, to the algebraical sum of the moments of
the three forces of the system. And 8o on.

Hence the algebraical sum of the moments of the forces
round any point in the plane will not vanish unless the
point about which the moments are taken is on the line of
action of the resultant.

86. If a system of forces acting in one plane on a
rigid body is in equilibrium, the algebraical sum of the
moments round any point in the plane vanishes.
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For when the system of forces is in equilibrium, one of
the forces is equal and opposite to the resultant of all the
others, Hence the moment of the one force round any
point in the plane is equal and contrary to the moment of
the resultant of all the other forces; see Art.78. Thus,
by Art. 85, the moment of the one force is equal and con-
trary to the algebraical sum of the moments of all the
other forces. 'l‘%erefore the algebraical sum of the mo-
ments of all the forces vanishes.

. 87. If asystem of forces acting in one plane on a rigid
body is equivalent to a couple, the algebraical sum of the
moments of the forces round any point in the plane ts
equal to some constant which is not zero.

Conversely, if the algebraical sum of the moments of
the forces round any point in the plane is equal to a con-
stant which is not zero the system of forces i3 equivalent
to a couple. .

These results follow from Arts. 84, 85, and 86.

88. A4 system of forces acting in one plane on a rigid
body will be in equilibrium if the algebraical sum of the
moments of the forces vanishes round three points in the
Dlane which are not in a straight line.

For if the system of forces be not in equilibrium, it is
equivalent to a single resultant or to a eoug}e.

In the present case the system of forces cannot be equi-
valent to a couple; for then the algebraical sum of the
moments would not vanish for any point in the plane.

Nor can the system of forces be equivalent to a single
resultant; for then the algebraical sum of the moments
wox:lll%a v:.‘nmh only for points on the line of action of the
resultan

Hence the system of forces must be in equilibrium.
89. The preceding Article gives the conditions of

equilibrium of a system of forces acting in one plane on a
rigid body ; if these conditions are sau:hgsﬁed the body is in
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equilibrium, or in other words these conditions are sufi-
cient for equilibrium., And these conditions are necessary
for equilibrium ; because we have shewn in Art. 86 that
they must hold if there be equilibrium,

We shall give a proposition in the next Article which
will enable us to put the conditions of equilibrium in
another form.

-90. If a system of forces acting in one plane on a
rigid body is in equilibrium the algebraicol sum of the
Jorces resolved parallel to any fixed straight line vanishes.

For when the system of forces is in equilibrium, one of
the forces is equal and opposite to the resultant of all the
others. Hence the resolved part of the one force ﬁ?mllel
to any fixed straight line is:alual and opposite to the alge-
braical sum of the resolv arts parallel to the fixed
straight line of all the other forces; see Art. 44, There-
fore the algebraical sum of the forces resolved parallel to
any fixed straight line vanishes,

91. A system of forces acting in one plane on a rigid
body will be in equilibrium if the algebraical sum of the
moments round two points in the plane vanishes, and the
algebraical sum of the forces resolved parallel to the
straight line which joins these points also vanishes.

For if the system of forces be not in equilibrium it is
equivalent to a single resultant or to a couple.

In the present case the system of forces cannot be
equivalent to a couple ; for then the algebraical sum of the
moments would not vanish for any point in the plane.

Nor can the system of forces be equivalent to a single
resultant; for then the algebraical sum of the moments
would vanish only for points on the line of action of the
resultant, so that the resultant would act a.longl the straight
line joining the two points; but the algebraical sum of the
forces resolved el to this straight line vanishes by
supposition ; therefore by Art. 44 there cannot be a result-
ant acting aiong this straight line. ’

Hence the system of forces must be in equilibrium..
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92. In the proposition of the preceding Article the
forces are :supposedpoi':)l be resolved parallel to two fixed
straight lines, one of which is the straight line joining the
two points; the other straight line is not necessarily at
right angles to this, although it may generally be con-
venient to take it so.

We shew in the preceding Article that the conditions
of equilibrium there stated are suficient; and we see by
Arts. 86 and 90 that they are necessary.

There is still another form in which the conditions of
equilibrium of a system of forces acting in one plane on a
rigid body may be put: and this we now give,

93. A system of forces acting in one plane on a rigid
body will be in equiltbrium if %

Jorces resolved parallel to two fized straight lines in the
plane vanishes, and the algebraical sum of the moments
round any point in the plane also vanishes.

For if the system of forces be not in equilibrium it is
equivalent to a single resultant or to a couple.

In the present case the system of forces cannot be
equivalent to a couple; for then the algebraical sum of the
moments would not vanish round any point in the plane.

Nor can the system of forces be equivalent to a sin%}o
resultant ; for, by su ition, the algebraical sum of the
forces resolved pamlﬁa to two fixed straight lines in the
plane vanishes, and therefore by Art. 44 the resolved part
of the single resultant parallel to these two straight lines
would vanish : so that the resultant would vanish.

Hence the system of forces must be in equilibriam,
94. In the proposition of the preceding Article the

two fixed straight lines are not necessarily at right angl
although it may generally be convenient to take them so.es,

‘We shew in the preceding Article that the conditions

algebraical sum of the .
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of equilibrium there stated are syfiicient; and we see b
Arzg. 86 and 90 that they are necessary. y

‘We have thus presented in three forms the conditions
of equilibrium of a system of forces acting in one plane on
a rigid body; see Arts. 88, 91, and 93: the last form is
generally the most convenient to use.

95. The preceding Articles relate to any system of
forces acting 1"1)1 one plane on a rigid body; the particular
case in which the forces are parallel deserves separate
notice ; for some of the general propositions may then be
simplified. We have the following results ;

A system of parallel forces acting in one plane on a
rigid body, if not in equilibrium, must be equivalent to a
single resultant para;zl to the forces or to a couple. Bee
Arts. 63 and 84,

A system of parallel forces acting in one plane on a
rigid body will be in equilibrium if the algebraical sum
of the moments of the forces vanishes round two points in
the plane, which are not in a straight line parallel to the
direction of the forces. See Art.88. .

A system of parallel forces acting in one plane on a
rigid body will £ in equilibrium f the algebraical sum
of the forces vanishes, and also the algébraical sum
of the moments of the forces round any point in the
plane, See Art. 91 or 93.

96, Many of the results of the present Chapter depend
on the theorem of Art. 84, and although the simple reason-
ing of that Article is quite satisfactory, it may be desirable
to give another investigation. Accordingly we shall now
demonstrate a new theorem which includes that of Art. 84,

97. A system of forces admg in one plane on a rigid
body can in general be reduced to a couple and a single
Jorce acting at an arbitrary point in the plane, .
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Let P acting at .4 be one of the forces of the system.
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At any arbitrary point O in the plane apply two forces
each equal and ol to P, in opposite directions. This
will not alter the action of the system of forces. Thus, in-
stead of P at 4 we have P at O and a couple formed by
Pat 4 and P at O. ‘ .

Let @ acting at B be another of the forces of f.hq
m. Then, as before, we may replace @ at B by @ at
and a couple formed by @ at B and @ at O.

Proceeding in this way we can replace the given system
of forces by the following :

(1) A system of forces at O which are respectively
&mllel and equal to the original forces: this system may
combined into & single force at O.

(2) | A set of couples in the plane which may be com-
bined into a single couge by Art. 70. As the moment
round O of the force at P is egual to the moment of tha
couple consisting of P at 4 and P at O, it follows that the -
moment of the single couple thus obtained is equal to the
sum of the moments of the forces. )

Thus in general a system of forces acting in one plane
on a rigid body may be reduced to a couple and a Snge
fm?h%e,the latter acting through any arbitrary point in the
plane. .
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It may happen that the eouf)le vanishes and then the
system can be reduced to a single force ; or the single force
mtix vanish and then the system reduces to a couple; or
both the single force and the couple may vanish and then

the system is in equilibrium,
If neither the couple nor the aing%force vanishes they
can be reduced to a single force by 71

98. We will now give some examples which illustrate
the subject of the present Chapter.

1) a system of forces 18 represonted in magnitude
m§ pon{tfion by the sides of a plane polygon taken in
order the system must be equivalent to a couple.

The sum of the moments of the forces is constant round
any point in the plane. For if the point be taken within
the polygon the moments are all of the same kind, and
their sum is represented by twice the area of the polygon.
And if the point be taken without the golygon the mo-
ments are not all of the same kind, but their algebraical
sum is constant, being still represented by twice the area
of the polygon.

Since the sum of the moments is equal to a_constant
which is not zero, the system of forces 1s equivalent to a
couple; see Art. 87.

2) ABO iz a triangle; a force P acts from A to B
aférce Q.from B to O, and a force R from A to O: re.
quired ;iho relation bmzam the forces in order tha; th;z

reduce to a single resultant passing through t
me of the circle inscribed in the triangle. .

The algebraical sum of the moments round the centre

of the inscribed circle must
- vanish ; see Art. 85.

Let » denote the radius ¢
of the inscribed circle,
then Pr+Qr=Rr;
therefore R=P+Q.

This is the necessary
and sufficient condition. A B

T. M, C 4
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(:lzl) Forees P, Q, R, § act in order round the sides of a
parallelogram : required the direction of the resultant.
The resultant of P and R will be a force equal to
P~ R acting parallel to 4B, through the point £ on CB
produced through B, such that ‘

BE_R
CE P’
D Re—- 0 F
) @/
/ / /
8 ',."
A——p /B /" i
/ /
E G H

The resultant of @ and S will be a force ogual to Q-9
acting parallel to CB, through the point # on DC produced
through C, such that

oF_g

DF @

Draw EG parallel to 4B, and FG parallel to CB.
Then the resultant of all the four forces passes through G.
Produce EG to H so that GH may be to GF as P—-R
is to @— 8. Then the straight line joining G to the middle
point of F/H is the direction of the resultant.

‘We have supposed P greater than R and @ ter
than &'; it is easy to make the necessary modiﬁcati%'::for
any other case.

Or we may proceed thus:

D 4
It A ]
an 1n W
raﬂef?;o CB; let i 40
AM=z, OM=y. /

We can now express -

the moments of the forces .
A M B

 round O,




EXAMPLES. VI 51

The moment of P=P x OM sin OMB =Py sin A,
the moment of @ =Q x MB sin 4 =Q (h—z) sin 4,
the moment of R=Rx (BC-OM)sinA=R (k—y)sin 4,
the moment of & =8'x 4 M sin 4 =Sz sin 4, :

Now if O be a point on the line of action of the result-
ant the algebraical sum of the moments of the forces round
O vanishes, that is,

Py+Q(h—a)+ R (k—y)+Sz=0,

or (P-R)y—(Q@—-8)z+Qh+ Rk=0.

This gives the relation which must hold between 4M and
MO, when O is a point on the line of action of the resultant.

Exampres. VI .

1. ABCD is a square. A force of 31bs. acts from 4
to B, a force of 41bs. from B to C, and a force of 51bs.
from C to D: find the single force which will preserve
equilibrium.

2. A man carries a bundle at the end of a stick over
his shoulder: as the portion of the stick between his
shoulder and his hand is shortened, shew that the pressure
on his shoulder is increased. Does this change alter his
pressure on the ground ?

3. If forces in one plane reduce to a couple, shew that
if they were made to act on a particle, retaining their mu-
tual inclinations, they would keep the particle at rest.

4. ABC is a triangle; H, 7, and K are points in the
sides such that

shew 13 taking moments round 4, B, C that forces denoted
by AH, BI, and CK are equivalent to a coupleé except
when H, I, and K are the middle points of the sides, and
then the forces are in equilibrium,

4—2
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5. A and B are fixed points; at any point C, in the
are of a circle described on 4B a8 a chord, two forces act,
namely, P along CA4 and Q along CB: shew that their re-
sultant passes through a fixed point on the other arc which
makes up the complete circle.

6. ABCD is a quadrilateral inscribed in a circle ; if
forces P, Q, R act in directions 4B, 4D, CA so that
P :Q : R as CD : BC : BD, shew that they are in
equilibrium.

7. Two forces are denoted by M4 and MB, and two
others by NC and ND: shew that the four forces cannot
be in equilibrium unless MV bisects both 4B and CD.

8. Find a point within a quadrilateral such that if
forces be represented by straight lines drawn from it to
the r points of the quadrilateral the forces will be
in equilibrium, ’

9, Forces progortional to 1, \/3, and 2 act at a point
‘and are in equilibrium : find the angles between their
lines of action.

10. If two equal forces P and P acting at an angle of
60° have the same resultant as two equal forces @ and @
acting at right angles, shew that P is to @ as \/2 is to /3.

11. Cand B are fixed points; C'4 and CB represent
two forces; if 4 move along any stmci]glht line shew that
the extremity of the straight line which represents the re-
sultant moves along a el straight line.

- 12.  Forces denoted by the sides of a polygon, except
one side, act in order: shew that they are equivalent to &
single resultant which is parallel to the omitted side.
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VIL. Constrained Body.

99. A body is said to be constrained when the manner
in which it can move is restricted. A simple example is
that in which a body can only turn round a fixed axis,
that is, can receive no other motion. In such cases forces
may act on the body besides the restraints which restrict
the motion, and we may require to know the conditions
which must hold among these forces in order to ensure the
equilibrium of the body.

100. When a body can only turn round a fixed azis
and is acted on by a system of forces in a plane perpen-
dicular to the ax:s, such that the algebraical sum of the
moments of the forces round the point where the axis
meets the plane vanishes, the body will be in equilibrium.

If the system of forces be mnot in equilibrium it is
equivalent to a single resultant or a couple.

In the present case the system of forces cannot be
equivalent to a couple; for then the algebraical sum of
the moments would not vanish for any point in the plane.

Suppose that the system of forces is equivalent to a
gingle resultant. Bince the algebraical sum of the mo-
ments of the forces vanishes round the point where the
axis meets the plane, the line of action of the resultant
must pass through the point. Therefore the resultant
has no tendency to turn the body round the axis; and the
body is therefore in equilibrium, ’

101. The investigation of the preoedmg Article shews
that the condition there stated is sufficient for equilibrium.
The condition is also necessary for equilibrium; for if the
condition does not hold, the system of forces is equivalent
either to a congle or to a single resultant which does not

through the axis, and in either case the body would

set in motion round the axis. .
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102. The most simple case of the preced.ixy two
Articles is that of the 7. A lever is a rigid body

which is moveable in one plane about a point which is
called the fulerum, and is acted on by forces which tend
to turn it round the fulerum. In order that the lever
may be equilibrium the moments of the two forces round
the fulcrum must be equal and contra.lz, by Art. 101,
Hence the condition of equilibrium stated in Art. 100 is
often called the Principle of the Lever.

103. A body which is not constrained is called a fires
body. From considering the equilibrium of a constrained
body we may render our conception of the equilibrium of
a free body more distinct. Any condition which is neces-
sary for the ecgilibﬁum of a constrained body will also be
necessary for the equilibrium of a free body; although a
condition which may be syfficient in the former case will
not generally be sufficient in the latter case.

For example, in Art. 86 a certain principle is established
with respect to the equilibrium of a free rigid body, and
the investigation of Art. 100 shews us the interpretation
of the princi})le. Suppose a body in equilibrium under
the action of a system of forces In one plane. Imagine
two points in the body, which lie in a straight line perpen-~
dicular to the plane, to become fized. This cannot disturb
the equilibrium, for we do not communicate any motion
to the body by fixing two points in it; we merely restrict
to some extent its possible motion. The body has still
the Kwer of turning round the strai%h(:;dline which joins
the fixed points; amg tg Art. 101, the body will not be in
equilibrium unless the algebraical sum of the moments of
the forces round the point where the straight line cuts the
plane vanishes.

104. Suppose a body can only turn round a fixed axis,
and that it is acted on by forces which are not all in one
plane perpendicular to the axis; a strict demonstration
of the condition of equilibrium is rather beyond our
present , but by assuming some principles which
are nearly self-evident we shall be able to give a sufficient
investigation. .
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First s%‘pose the forces to consist of various systems
in planes which are all perpendicular to the axis. It may
be assumed as nearliml f-evident that the tendency of the
ms to set the body in motion will not be altered if
the other planes are made to coincide with one of
them; and then the forces reduce to a system in one plane
perpendicular to the axis, and Arts, 100 and 101 apply.

Next suppose the forces to be any whatever. Resolve
each force into two components at right angles to each
other; one component being parallel ‘to the fized azxis.
It may be assumed as nearly self-evident that the com-
ments parallel to the axis have no tendency to set the

y in motion round the azis; and they may,accordingly
be left out of consideration. .

The other components form various systems of forces
in planes which are perpendicular to the axis; and, as in
the first case, they may be supposed all to act in one
plane, and Arts. 100 and 101 apply.

105. Suppose a body capable of moving only in such
a manner that all points of the body describe parallel
straight lines. For example, two fixed rigid parallel
straight rods may through the body, and so the body
be only capable of sliding along the rods. Suppose also
that a system of forces acts on the body. Resolve each
force into two components at right angles to each other,
one component being parallet to the fixed rods. Then the
nece and sufficient condition of equilibrium is that the
sum of the components parallel to the fixed rods, that is to
the direction of possible motion, should vanish,

Hence we see the interpretation of the condition in
Art. 90 relative to the equilibrium of a free rigid body.

106. . When three forces mainiain a body in equi-
librium their lines of action must lie in the same plane.

Suppose a body in equilibrium under the action of three
forces. Imagine two points in the body, one on the line
of action of one force, and the other on the line of action
of another force, to become fixed, the points being so taken
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that the ight line which joins them is not parallel
to the line of action of the third force. This cannot
distarb the egmhbrmm The body has still the tEower of
turning round the straight line which joins the fixed
points, a8 an axis, and it will not be in equilibrium wnless
the line of action of the third force pass through the axis.
Thus a”t% straight line which meets the lines of action

of two of the forces, and is not parallel to the line of
action of the third force, must meet that line of action;
mla‘.in therefore all the three lines of action must lie in one
plane.

- By combining this result with that in Art. 41 we have
a complete. account of the conditions of equilibrium of a
rigid body when acted on by ¢&ree forces.

107. In the present work on Mechanics we have begun
with the Parallelogram of Forces and have deduced the
Principle of the Lever; this is the course which is at
present generally adopted. = Formerly it was usual to begin
with the Principle of the Lever and to deduce the Paral-
lelogram of Forces. 'We will briefly indicate the principal
steps of the process.

Various axioms are laid down: for example the fol-
lowing: Equal forces acting perpendicularly at the ex-
tremities of equal arms of a lever, exert equal ¢fforts to
turn the lezer round.

From these axioms certain propositions are deduced;
for example the following: 4 ontal rod or cylinder
of uniform density will produce the same effect by its
wetght as if it were collected at its middle point.

" In this way the Principle of the Lever is established.
‘We will give one proposition as an example of this method
in the next Article, and in the following Article we will
shew how the Parallelogram of Forces is deduced.

108. T'wo forces acting ﬁ endicularly on a straight

lever on opposite sides of ¢t %crumwiabalamocach

other if they are inversely tional to their distances

Md' m:%;{%mandt to turn the lever in eontrary
oy
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Let the forces P A M D X B
and @ which act at 0
M and N perpen-
dicularly to astraight q
lever on opposite »
sides of the fulcrum
C be such that
P_CN
Q oM

and let them be like forces, so that they tend to turn the
lever in contrary directions: they will balance each other.

If P=Q,the proposition is true by the axiom stated
A 107, L Y
If P be not equal to @, suppose P the greater.

On NM tske ND= MC; then NO=MD. Make
MA=MD, and NB=ND.

Let the forces P and @ be measured by the weights
which they would support; and let 48 be a uniform rod
of weight equal to P+ Q.

Now CA=CM+MA=ND+MD=MN;

CB=CN +NB=MD+ ND=MN;

therefore AB is bisected at C.
And A_D_2MD_2NG'=£.
DB~ 2ND 2MC @Q°
therefore 4D L

AD+DB P+ @’

But the weight of 4B is P+Q; and therefore the
weiﬁht of the grtion ADis P; and therefore the weight
of the portion DB is Q.

Since C is the middle point of 4B the rod 4B will
balance about C'; and by Art. 107 if the AD be
attached at its middle point M to the lever MN, and the
part BD at its middle point 1V, the effect will be the same
as before. Therefore in this case also the weights balance;
that is P at. M and @ at IV balance,
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109. 7o deduce the Parallelogram of Forces from
the Principle of the Lever. ) .o

! Let 0,:; for::le I;' act
along and a force
@ along Og; let Or
be the direction of
their resultant.

From any point C
in the direction of the
reapltant draw CA
parallel to Og and
CB llel to Op; o
also CM geé%(;ndicular
to Op an perpendicular to Og.

If a force equal to the resultant of P and @ act along
10, it will with the forces P and @ keep a icle at O in
equilibrium. Supgme these forces applied by means of
rods, connected at O; these rods will then be in equili-
brium. Inﬁline the point C on the rod Or to become
fixed ; this will not disturb’ the eguilibrium. The system
can still turn round C, and it will do so unless the moments
round C are equal and contrary. Thus if there is equi-
librium we must have, by the Principle of the Lever,

PxOM=@QxCN.

P_cN
Q@ CM

Therefore

= g,—f:,by Euelid V1, 4.
_o4
=08

Thus the forces 2 and Q are rtional to the sides
04 and OB of the elogram 0ACB, and the diagonal
OC represents the direction of their resultant. .




EXAMPLES. VII. 59

This demonstrates the Parallelogram of Forces so far
a8 relates to the direction of the resultant; then as in

Art. 49 we can demonstrate it also for the magnitude of

the resultant.

Exampres. VII.

1. ABCD is a square; a force of 31bs. acts from A4 to

B, a force of 41bs. from B to C, and a force of 51bs. from

O to D:-if the centre of the s%(uare be fixed, find the

{'91;'09 which acting along DA will keep the square in equi-
ibrium.

2. The length of a horizontal lever is 12 feet, and
the balancing weights at its ends are 31bs. and 61lbs.
resElectively: if each weight be moved 2 feet from the end
of the lever, find how far the fulcrum must be moved for
equilibrium. .

3. If the forces at the ends of the arms of a horizontal
lever be 8lbs. and 71bs, and the arms 8 inches and 9
inches ree?ectively find at what point a force of 11b. must
be applied perpendicularly to the lever to keep it at rest.

" 4. The arms of a lever are inclined to each other:

shew that the lever will be in equilibrium with equal

weights suspended from its extremities, if the point mid-

f‘;lay between the extremities be vertically above the
crum.

5. A weight P suspended from one end of a lever
without weight is balanced by a weight of 11b. at the other
end of the lever; when the fulecrum is removed through
half the length of the lever it requires 10 Ibs. to balance £:
determine the weight of P.

6. A rod capable of turning round one end, which is
fixed, is kept at rest by two forces acting at right angles
to the rod; the greater force is 6lbs, and the distance
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between the points of application of the forces is half the
. distance of the greater force from the fixed end : find the
smaller force. Shew that if any force be added to the
smaller force, a force half as large again must be added
to the greater force in order to preserve equilibrium.

7. ABCis a triangle without weight, having a right

angle at C, and C4 is to CB as 4 is to 3 ; the triangle is

nded from C, and two forces P and @ acting at 4

and B in directions at ri%:t angles to CA4 and CB keep it
at rest: find the ratio of P to Q.

8. In Example 7 if the force P act at 4 at right
angles to AC, and the force @ act at B at right angles to
BA, find the ratio of P to @ in order that the triangle
may be at rest,

9. The lower end B of a rigid rod 10 feet long is
hinged to an upright post, and its other end A is fastened
by a string 8 feet long to a point C vertically above B, so

at ACB is a right angle. If a weight of one ton be
suspended from 4 find the tension of the string.

10. If three weights P, Q, . hang from the points
A, B, C of a straight lever which balances about a falcrum
D, shew that -

QxAB+8SxAC=(P+Q+8)xAD.

11. A triangle can turn in jts owntflane round a point
which coincides with the centre of the inscribed circle;
forces acting along the sides keep the triangle in equi-
librium; shew that one of the forces is equal to the sum of
the other two.

12. A string passes through a small heavy ring, and
the ends of the string are attached to the ends of a fever
without weight: shew that when the f:fatem is in equi-
librium the ring i8 vertically under the fulcrum.
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VIIL. Centre of Parallel Forces.

110. Suppose we have two parallel forces acting re-
spectively at two points; we know that their resultant is
equal to the braical sum of the forces, and is el
to them, and that it may be supposed to act at a definite
point on the straight line which passes through the two
points. See Arts. 60 and 61. Morevver this definite point
{;mains tgg, sa.nlle howezﬁr the direction olf lthg‘h two fomt;:

chani 80 long as they remain el. This point
called the centre of the two panlﬁo’lmf:l)rces. Hence we
adopt the following definition:

The centre of a system of parallel forces is the point
at which the resultant of the system may be supposed to
act, whatever may be the direction of the parallel forces.

111. 7o find the resultant and the centre of any
system of parallel forces.

Let the parallel
forces be P, Q, R, S,

actm%' at the points
A4, B, O, D respec-
tively.

A

Join AB, and divide it at Z, so that AL may be to
LB as Q is to P; then the resultant of P at 4 and @ at
B is P+ Q parallel to them, at L.

Join ZC, and divide it at M, so that LM may be to
MC as R is to P+ Q; then the resultant of P+Q at L
and B at C'is P+ Q+ R parallel to them, at M,

Join MD, and divide it at N, so that /N may be to
ND as S is to P+ Q+ R ; then the resultant of P+Q+ R
at M and S at D is P+ Q+ R+ parallel to them, at N.

Thus we have found the resultant and the centre of four
parallel forces; and in the same way we may proceed
whatever be the number of the forces.
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112, In the figure and language of the preceding
Article we have implied that the forces are all ?zlco it is
easy to make the slight modifications which are required
when this is not the case. 'We may, if we please, form two
groups, each consisting of like parallel forces, and obtain
the resultant and centre of each group; and then by
Art. 61 deduce the resultant and centre of the whole
system of parallel forces.

‘We shall always obtain finally a single resultant and a
definite centre, except in the case where the algebraical
sum of all the forces is zero; and then either the forces
are in equilibrium or they form a couple: see Art. 95.

113. We have thus shewn how to determine geometri-
cally the position of the centre of a system of parallel
forces: we shall now shew how we may attain the same
end by the aid of algebraical formuls,

114. The distances of the points of application of two
parallel forces from a straight line being given, to deter-
mine the distance of the centre of the par Jorees from
that straight line; the straight line and the points being
all in one plane.

First let 4-and B be the points
of application of two like ufamllel ¢ B
forces, P and Q; their resultant is =
P+ Q, parallel to them, and it ma
be supposed to act at the point C, 4
which is such that
P_CB D F E
Q c4°
Let AD, BE, CF be perpendiculars from 4, B, C' on
any straight line which is in & plane containing 4 and B:
Let AD=p, BE=q, CF=r: then we have to find
L8

t.h%w;.alue of supposing the values of p and ¢ to be
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Through C draw aCb parallel to DFE meeting 4D
and BE at a and b respectively. Then

CB _Bb

7-0-2::-275’ by Euclid v1. 4 ;
P_Bb BE-Eb gq-r,
thus @~ 4a"Da—D4 " r—p’
therefore Plr—-p)=@Q(g-7);
_ therefore (P+Q)r=Pp+Qq;
_Pr+Qq
thus r="py Q"
Next let 4 and B be the points of application of two
unlike parallel forces P and Q.
Suppose @ the greater. Then a b g
using the same construction and »
notation as before, we have . 1
P _CB_Bb,
PQ EiAEBA ’ ® Pt
£ _Lo0-LD 1r-q,
thus Q@ Da-DA r-p’
therefore P(r-p)=Q(r—q);
_Q-Pp
thus r= oy i

It will be observed that the result in the second case
Qtlzbegedueedﬁ-omthatintheﬁrsteasebychmgmg' P
into - P.

115. The distances the points of application of
any number of parallel forces from & straight line bein,
Yiven, to determine the distance of the centre of the par
el forces from that straight line, the straight line and the
poinis being all in one plane..
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Let the parallel forces be P, @, B, S acting at the

ints .4, B, C, D respectively. Let » ’q, 7, 8 be the dis-

g)nees of A, B, C, D respectively from a straight line Oz
in the same plane as the points.

Join 4B and divide it at Z, so that AZ may be to LB
as @ is to P; then Z is the centre of P at 4 and Q at B,
and these forces are equivalent to P+ @ at L : let { denote
the distance of Z from O, then, by Art. 114,

1P+
T P+@Q

Join ZC and divide it at M, so that ZM may be to MC'

as R is to P+ @Q; then M is the centre of P+ @ at Z and
R at O: let m denote the distance of M from Oz, then, by
Art. 114,

_(P+Ql+Rr

~ P+@Q+R

_Pp+Qg+Rr

T - P+Q+R

Join MD and divide it at IV so that MV may be to

NDas Sis to P+Q+R; then IV is the centre of P+ Q+ R
at Mand Sat D: let » denote the distance of V from Ow,
then, by Art. 114,

_(P+Q@+R)m+8s

T P+Q+R+S
_Pp+Qq+Rr+Ss

- P+Q+R+S8 °*

n
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Thus we have determined the distance from Oz of the
centre of four parallel forces; and in the same manner we
may.proceed whatever be the number of the forces.

The symmetrical form of the expression for » should be
noticed. We see that we shall obtain the same result in
whatever order we combine the given forces, as we might

have expected.

116, In the same way if the distances of 4, B, C, and
D from a second straight line, as Oy, in the plane be given
we can deduce the distance of the centre of the pa.ra.llei
forces from the same straight line,

And when we know the distances of the centre from two
straight lines in the plane we can determine the position of
the centre; for the centre will be the point of intersection
of straight lines parallel to O» and Oy, and at the respec-
tive distances from them which have been found.

117, In the figure and language of Art. 115 we have
implied that the forces are all ltke ; it is easy to make the
slight modifications which are required when this is not
the case, We may, if we please, form two groups, each
consisting of like lel forces, and obtain the centre of
" each group; and then by Art. 114 deduce the centre of the
whole system of parallel forces, : '

The final result will be like that of Art. 115, the sign of
those forces which act in one way being positive, and the
sign of those which act in theother being negative,

118. We ;osed in Art. 114 that the straight lines
AD,.BE,mds‘(I/P were all perpendicular to DFE. But
this is not necessary; it is sufficient that these straight
lines should be all parallel. And so also in Art. 115 the
distances denoted by p, f’ r, and # need not necessarily be
m rpendicnﬁ)ar dy to the straight line Oz; it is
sufficient they should all be measured in parallel direc-
tions.

119, Tt is easy to extend our investigation to the case
in which the peints of application of the parallel forces are
not all in one plane.

T, M, 5
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In the fundamental investigation of Art. 114 we ma;
suppose A.D, CF, and BE to be the distances of 4, B, an
C, not from a given straight line but from a given piam;
either perpendicular distances or distances measured paral-
lel to a given straight line. Then, as in Arts. 114 and 115,
if we know the distances of the points of application of the
parallel forces from a given plane, we can obtain the dis-
tance of the centre of the parallel forces from that plane.

120. The weight of a body may be considered to be
the & te of the Weights of the particles which com-
pose %Ee body. The weights of these particles form a
system of like parallel forces, and such a system always has
& centre; see Art. 111. The centre of the parallel forces
which consist of the weights of the particles of a body
is called the centre of gravity of the body.

. Thus the centre of gravity is a particular case of the

centre of parallel forces ; but it is found convenient to give
especial attention to this particular case, and accordingly
we shall consider it in the next Chapter. It will be ob-
served that the theory of the centre of gravity is rather
simpler than the general theory of the centre of parallel
forces, because the weights of the particles of a body are
all like forces, and thus we Bhall not have to consider the *
second case of Art. 114.

121. The following examples contain an interesting
result.
aacf»l) ABC s a iriangle; parallel forces act at B and C,
proportional to the opposite side of the triangle:
determine the position of the centre of the parallel forces.

First let the forces be A
like. In BC take .D Bo that 7
BD ia to DC as the forcé at m\
C is to the force at B, that >
isas ABisto AC; themD B 2 ¢ E
is the centre of the parallel .
forces.

. Hence, by Euclid, v1. 3, the point D is such that 4D
bisectetol:éa;gle Bﬁ(}. % po
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Next let the forces be unlike. Suppose AB greater
than AC. Then, proceeding as before, we find that the
centre of the el forces is at £ on BC produced such
that A E bisects the angle between 40 and BA produced.
See Euclid, VL A. :

(li) Parallel forces act at the angular points of a tri-
angle; each force being proportional to the opposite side of
the triangle: determine the position of the centre of the
parallel forces.

First let the forces be all like. By the preceding
example D is the centre of the parallel forces at B and C;
hence the centre of all the three parallel forces lies on the
straight line 4D which bisects the angle BAC. Similarly
the centre lies on the straight line which bisects the angle
ABC,and on the straight line which bisects the angle BCA.
Therefore the centre of all the parallel forces must coin-
fﬁ; Gyith the centre‘of the circle inscribed in the triangle

Next let the forces be not all Zike. Suppose that the
forces at B and C are unlike, and the forces at 4 and O
like. By example (1) the centre of all the three parallel
forces must lie on the straight line which bisects the angle
between CA4 and BA produced, and also on the straight
line which bisects the angle ABC, and on the straight
line which bisects the angle between .4C and BC produced.
Therefore the centre of all the lel forces nrust coincide
with the centre of the circle which touches 4AC, and B4
and BC produced. See Notes on Euclid, Book 1v.

Examprg. VIIL

1. A body is acted on by two parallel forces 2 and
5P, applied in opposite directions, their lines of action
being 6 inchés apart: determine the magnitude and line of
action of a third force Which will be such as to keep the
body at rest.

2. Parallel forces P and Q@ act at two adjacent
corners of a parallelogram: determine the forces lel
1o these which must act at the other corners, se that the

5—2
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centre of the four el forces may be at the intersection
of the diagonals of the parallelogram. !

3. A rod without weight is a foot long; at one end a
force of 21bs. acts, at the other end a force of 4 lbs., and at
the middle poiut a force of 6Ibs., and theso forces are
all parallel and like: find the ma%nitude and point of appli-
lfo:;.(tilon of the single additional force which will keep the

at rest.

4. Equal like parallel forces act at five of the angular
points of a regular hexagon : determine the centre of the

parallel forces.

5. Find the centre of like parallel forces of 7, 2, 8, 4,
61bs. which act in order at equal distances apart along
a straight line.

6. The circumference of a circle is divided into # equal
Elrts, and equal like parallel forces act at all the points of
\s

ision except one: find their centre.

9. Like parallel forces of 1, 2, and 31bs. act on a bar
at distances 4, 6, and 7 inches respectively from one end :
find their centre. '

8. ABCis a triangle; parallel forees @ and R act at
B and C such that Q is to R as tan B is to tan C': shew
.tha.‘tB %mir centre is at the foot of the perpendicular from 4
on BC.

9. Parallel forces act at the angular points 4, B, C of
a triangle, tg:-oporl;ional to tan A, tan B, tan C respectively:
shew that their centre is at the intersection of the perpen-
diculars drawn from the angles of the triangle on the oppo-
site sides. :

10. Parallel forces P, @, R act at the points
A, B, C of a triangle: shew that the perpendicular dis-
tance of their centre from the side BC is

P x 2area of triangle
P+Q+R BC :
11. Parellel forces P, Q, R act at the angular points
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A, B, C of a triangle : shew that the distance of the centre
from BC measured parallel to 4B is
PxAB
PLQ+R"

12. Parallel forces P, Q, R act at the angular points
A, B, C of a triangle: determine the forces which must: act
at the middle points of BC, C4, AB, so that the second
system may have the same centre and the same resultant
as the first.

13. Like paralle] forces of 3, 5, 7, 51bs. act at 4, B, C,
D, which are the angular points of a quadrilateral figure
taken in order: shew that the centre and the resultant will
remain unchanged if instead of these forces we have acting
at the middle points of 4B, BC, CD, DA respectively
P, 10~ P, 4+ P, 6—Plbs, where P may have any value.

14. Paralle] forces act at the angular points 4, B, C of
a triangle, propartional to @ cos 4, b cos B, c cos C respec-
tively : shew that their centre coincides with the centre of
the circumscribed circle.

15. Parallel forces P, @, R act at the angular points
A, B, C of a triangle ; and 31’911' centre is at O: shevlv)othat

P _ Q _ R
area of BUC ~ area of COA4 ~ area of AOB"

16. Parallel forces P, @, R, S act at 4, B, C, D; and
. P _ Q _ . R _ N
areaof BCD ~ areaofCDA ~ areaof DAB areaof ABC"
shew that their centre is at the intersection of 4B
and CD

17. Find the centre of equal like parallei forces acting
at seven of the angular poinel:sl of a cube.

18. Parallel forces P, @, R, S act at the angular
points 4, B, C, D of a triangular pyramid : shew that the
perpendicular distance of their centre from the face BOD is

P <3 volume of pyramid
P+Q+R+S area of BCD '
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IX. Centre of Gravity.

122. We begin with the following definition:

The centre of gravity of & body or system of bodies
%8 a point on whick the body or system will balance in all
positions, supposing toh:;lpoint to be supported, the body or
system to be acted on only by gravity, and the parts of the
body or system to be rigidly conneoted with the point.

" l:fs. To find the centre of gravity of* two heary par-
icles.

Let 4 and B be the pogsitions of the two
particles whose weights are P and @ respec- B
tively.

Join AB and divide it at Z, so that AL
may be to ZB as @ is to P; then L is the
centre of gravity.

For, by Art. 60, the resultant of the weights
P and Q acts through L; and therefore if 4 and B are
connected by a rigid rod without weight the system will
balance in every position when Z is supported.

As the resultant of P and @ is P+ Q the pressure on
the point of support will be P + Q.

A

124. 70 jfind the centre of gravity of* any nuwmber of
heavy particles,

Let 4, B, C, D be
the positions of particles
whose weights are P,
@, R, S, respectively.

., Join AB and divide [
it at Z, so that AL may
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be to LB as Q is to P: then Z is the centre of gravity of
P at A4 and Q at B; and these weights produce the same
effect as P+ Q at L. See Art, 123.

Join LC, and divide it at 3f, so that LM may he to
%lc'as fLm todPEQ:Ct'.hen (i}.{ﬂ:s the oen{:;a ot;og(rlravit{l;)f

+Qat L an at C; and these weig uce the
same effect as P+ Q@+ R at M, P

Join MD, and divide it at IV, so that MN may be to
NDas Sisto P+ @+ R: then NV is the centre of gravity
of P+@Q+ R at M and S at D; and these weights produce
the same effect as P +Q+ R+ Sat N,

Then XV is the centre of gravity of the system; for the
resultant of the weights passes through IV, and therefore
if the particles be connected with 2V by rigid rods without
weight the system will balance in every position when N
is supported.

Thus we have found the centre of gravity of four
heavy particles; and in the same way we may
whatever be the number of the particles,

125. The investigation of the preceding Article shews
that every system of heavy particles has a centre of gravity;
for the construction there given is always possible. ~

‘We see that the resultant weight of a system of heavy
Emrticles always acts through the centre of timvity; 80
hat the effect of the weight of the system is the same as
if the whole weight were collected at the centre of gravity:
this result might have been anticipated from the definition
of the centre of gravity. .

‘When we speak of a body or system balancing ahout
its centre of %svit.y we shall not always explicitl{)esa.y that
the parts of the body or system are mgpo,sed to be rigidly
connected with the centre of gravity; but this must always
be understood.
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126. A body or a system of bodiece cannot have more
tAan one cenire of gravity.

For, if possible, suppose that the body or system of
bodies has two centres of gravity, & and H; and let G and
H be brought into the same horizontal plane. Then when
@ is supported the body or system balances, and therefore
the vertical line in which the resultant weight of the body
or system acts passes through G. S8imilarly the resultant
weight acts through /. Thus a vertical line passes through
tvl:o g{).mts which are in a horizental plane; but this is
absur:

127. Jf abody or a system of bodics balances itself on
a straight line in every position, the centre of gravity of
the body or system lies in.that straight line.

Let AB be the straight
line on which the body or
system of bodies will balance m
in every position. B 4
Suppose, if possible, that \_i—/
the centre of gravity is not

in AB; let it be at G.

Place the body or system so that 4B is horizontal, and
@ not in the vertical plane through 4B. Suppose two

ints of the body or system situated on the straight
ine 4B to become fixed; this cannot disturb the equi-
librium. The body or system has still the power of turning
round 4B as an axis, and since it is in equilibrium the
resultant weight of the system must pass through 4B,
by Art. 101. But this is impossible, because @ is neither
vertically above nor vertically below 4.8,

Hence, the centre of gravity cannot be out of the
straight line 4B.

128. We shall now give two propositions which are
almost immediately obvious, but which it is convenient to
enunciate formally ; and then we shall determine the posi-
tf.ion of the centre of gravity for some bodies of simple

orms.
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129. Given the cenires of gravily of two parts which
compose a body or system of bodies, to find the centre of
gravity qf the whole body or system of bodies.

. Let 4 a}nd l? be the centre;
o vity of the two parts;
anglz e respective weights
of the parts,

Join 4B and divide it at
C, so that AC may be to CB
a8 Q is to P: then C is the
centre of gravity of the whole body or system.

130. Given the centre of gravity of part of a body or
system of bodies, and also the centre q’}‘ gravity of the
whole body or system, to find the centrs of gravity of the
remainder.

Let A4 be the centre of gravity of the part, C the centre
of gravity of the whole; let P be the weight of the part,
and W the weight of the whole,

Join 40 and produce it to B, sa that CB may be to
CA4 a8 Pis to W—P: then B is the centre of gravity of
the remainder,

131. 7o find the centre of gravity of a straight line.

By a straight line here we mean a uniform material
stra:ght line, that is, a fine straight wire or rod, the
breadth and thickness of which are constant and indefinitely

The centre of gravity of a uniform material straight
line is at its middle point, For we may suppose the straight
line to be made up of an indefinitely large number of equal
particles, Take two of these which are equidistant from
the middle point of the straight line; their centre of gravity
is at the middle point. And since this is true for every
such ﬁau‘ of particles the centre of gravity of the whale
straight line is at the middle point of the straight line.
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132. To find the centre of gravity of a parallelogram.

By a parallelogram here we mean a uniform material
para.lfelogram; that is, a thin '
slice or lamina of matter, the
thickness of which is constant
and indefinitely small.

Let ABCD be the paral-
lelogram. Bisect 4B at E,
and CD at F; join EF. Draw
any straight line aeb parallel to
AEB,meeting AD, EF, BC at a, ¢, b respectively. Then
DFea and FCbe are parallelograms, from which it will
follow that ae=eéh. ‘

Sup the parallelogram to be made up of indefinitel
thin str].i)ose pamlrgl to AB; the centre of gra.vity of eac

strip be at its middle point by Art. 131; and will
therefore be on the straight line EF. Hence the centre
" of gravity of the parallelogram is on the straight line EF.

Similarly the centre of gravity of the parallelogram is
on (;;h; g.raight line which joing the mjddle points of 4D
an A

Hence the centre of gravity of a parallelogram is at
the intersection of the straight ﬁnes which joinoi‘l‘;z middle
points of opposite sides. .

133. 7a find the centre of gravity of a triangle.

The meaning of the word
triangle here is similar to
that of the word parallelo-
gram in the preceding Arti-
cle.

Let ABC be the triangle;
bisect BC at E; join AE.
Draw any straight line bec
.parallel to BEC, meeting
AB, AE, AC at b, ¢, ¢ respec- €
tiveiy.
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be A .
Then ﬂ.=ﬁ, by Euclid, vr. 4;

ce Ae

similarly TE= 4%

co b¢ BE
CE’ therefore — =15

therefore %=CE"

e _
BE "~
But BE=CE; therefore be=ce.

Hence ¢ is the middle point of be.

Suppose the triangle made up of indefinitely thin strig:
parallel to BC: the centre of gravity of every strip will

at its middle point by Art. 131, and will therefore be on
the straight line 4E. Hence the centre of gravity of the
triangle is on the straight line 4 E.

In the same way if AC be bisected at F' the centre of
gravity of the triangle is on BF.

Hence the centre of gravity of the triangle must be at
@G, the point of intersection of 4K and CF.

Join EF'; then EFis parallel to 4B, by Euclid, V1. 2;
4G .
therefore - 22 _ 4% by muctid, vr. 4;

theref: EG _EF _CE _1
relore AGT4ABT 0BT 2"

Thus A@ is twice EG, and therefore A K is three times
EG; that is, EQ is one third of £A4. .
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Hence the centre of gmvity of a triangle is determined
by the following rule: Join any angular point with the
middle point of the opposite side ; the centre of gravity is
o;:l this straight line at one third of its length from the
side,

134. The centre of gravity of a triangle coincides
with the centre of gravity of three equal heavy particles
placed at the angular points of the triangle.

Suppose equal heavy particles placed at the angular
points of a triaugle 4 8C. )

(/4 x B

The centre of gravity of equal heavy particles at B
and Cis at E, the middle point of BC, Join AZ and
divide it at G, so that 4G may be to GE as 2is to 1:
then @ is the centre of gravity of equal heavy particles at
A, B,and C. And @ coincides with the point which was
found in the preceding Article to be the oentre of gravity
of the triangle 480,

135. The centre of gravity of any plane rectilinear
figure may be obtained in the following way: divide the
figure into triangles, find the centre of gravity of each
triangle, and then by successive applications of Art. 129
determine the centre of gravity of the proposed figure.

8 For eﬁampl‘e, suppo:il AggD t&o ‘l;e sny.gn:tdrgatergl
'lgure. Draw a diago and bisect i ; Join
‘A and EC, . . )

e

V- -
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Take EH=}Fd, and EK=; EC. Then H is the

centre of gravity of the triangle 48D, and K is the centre
of gravity of the triangle BCD,

Join HK and divide it at @, so that HG may be to XG
as the triangle CBD is to the triangle ABD: then G is
the centre of gravity of the quadrilateral figure, :

~ Draw the diagonal 4C, and let O be the point of
intersection of the two diagonals; let HZX meet BD at
L.. Then the triangle CBD is to the triangle ABD as
CO is to 40; thus

H&_CO

KG 40

- XL
~HL’

therof HZ _ ' KL
orolore G+ KG - KL+HL’
therefore HG=KT.
This gives a simple mode of determining G.

The case in which two sides of the quadrilateral are
parallel may be specially noticed ; to this we shall now pro-

by similar triangles;

HG XL

that is E—K= FK;
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136. 70 find the centre of gravity of a quadrilateral
Jigure which has two sides parallel.

A E B

Let ABCD be a quadrilateral figure, having 4B paral-
lel to CD: it is required to find the centre of gravity of
the figure,

Produce AD and BC to meet at O; let E be the
middle point of 4B; join O meeting CD at F.

Then, as in Art. 133, we can shew that DF=FC, and
that the centre of gravity of the quadrilateral is on EF.

The centre of gravity of the triangle A0B is on OE,
at a distance ;OE from O; and the centre of gravity of

the triangle DOC is on OF,at a distance gop from O.
5931300 denote the centre of gravity of the quadrilateral

]

By Art. 130,
vae-2ox
3 area of DOC
2. areaof ABCL’

2 oz
3 0E-§ or
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2
0G-30F area of DOC

therefore =
_ 0G—§0F area of ABCD +area of DOC

_ area of DOC
area of AOB"

Now, by Euclid, v1. 19 and vr. 2,
area of DOC _OD* OF?

arca of A0B_ 04~ OE*}
2
og-2or .,

therefore =0E"

.2
0G-30F
20E'-OF* _20E'+0E.OF+0F*

Howo 0G=30E—0F~3" OE+OF

2 0E'+ OE.OF+OF*_
3 OE+OF
_20E*-0E.OF—-OF}
=T 3(0E+0F)
_ (0B—OF)(20E+OF)
- 8 (OE+OF)
_ FE 20E+OF
T3 'OE+OF°
Since OF_CD _ 1. 20E+OF _24B+CD
OE=AB’ OE+OF ~ 4AB+CD "’

_FE 24B+CD
=8 "AB+CD"

Thus F@ is expressed in terms of the lengths of the
two parallel sides and the distancé of their middle points.

therefore FG= OF

Thus FG
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137. 7o find the centre of gravity of a triangular
pyramid. -

Let ABC be the base, D the vertex; bisect AC at'E;
join BE and DE. Take F on EB so that EF:% EB;
then F is the centre of gravily of the triangle 4.BC,

Join FD. From any peint b in DB draw bs and be
parallel to B4 and BC respectively.

Let DF meet the plane abc at f; join &/, and produce
it to meet DE at e.

Then, by simildr triangles, as=ec.

 W_Df. o,
Also BF~ DF~ EF}
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br_BF
ef EF°

But BF is twice EF; therefore bf is twice ¢/; and
therefore f'is the centre of gravity of the triangle abe.

therefore

Suppose the pyramid madeof indefinitely thin slices paral~
lel to JBC ; then, as we have just seep, the centre of gravity
of every slice will be on the straight hne DF, Hence the
centre of gravity of the pyramid is on the straight lipe DF,,

Again, take H on ED so that EH=§ED, and join

BH. Then, as hefore, the centre of grayity of the pyramid
is on BH, .

Hence the centre of gravity of the pgmmld must be at
G, the point of inte_rsect%;: of DF and BH.

. Join FH ; then FH is parallel to BD by Euclid, v1. 2.

HG BG .
Thereff)re HF=BD’ by Euclid, v1, 4;
therefore #G_HF_EF_1

B~ BD~ZB"3'

Thus BG is three times HG, and therefore BH is four
times H@; that is, HG is one fourth of BH.

Hence the centre of gravity of a triangular pyramid is
determined by the followm% rule: Join any angulgr point
with the centre of gravity of the o&p‘osite ace; the centre
of gravity of the pyramid is on this straight line at one
fourth of its length from the face,

138. The contre of gravity of a triangular pyramid
coincides with the centre of gravity of four equal heavy
particles placed at the angular points of the pyramid.

T. M. 6
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Suppose equal heavy par-
ticles pplaced at the an D
points of a pyramid 4ABCD.

The centre of gravity of
equal heavy particles at 4, B,
and C, is at a point # which co-
incides with the centre of gra- G
vity of the triangle ABC'’; see

Art. 134, The effect of equal B 1 A
weights at 4, B, and C is the 4

same as that of a triple weight

at #. Join DF, and divide it at J

G so that DG may be to GF

as 3 is to 1: then G is the centre of gravity of equal heavy
particles at 4, B, C, and D. And @ coincides with the
point which was found in the Srecedmg Article to be the
centre of gravity of the pyramid A BCD.

139. 70 find the centre of gravity of any pyramid
having a plane rectilinear polygon for its base.

The pyramid may be divided into triangular pyramids
determined by drawing straight lines from any point on
the base to all the ar points of the base, and to the
vexitex. The 3:1.11;1'9 o vity h(:f lfvery one ciof theﬁge trian-
gular pyramids is in a plane which is parallel to the base,
and at one fourth of its distance from the vertex. Hence
the centre of gravity of the whole pyramid is in this plane,

Again, suppose the pyramid made up of indefinitely thin
slices ara.lle?ptg the base. It may be shewn, as in Art. 137,
that the centre of gravity of every slice is on the straight
line which joins the centre of graviLt.ty of the base of the
whole pyramid with the vertex. Hence the centre of
gravity of the whole pyramid is on this straight line.

Therefore the centre of gravity of the whole pyramid is
on the straight line which joins the vertex with the centre

of gravity of the at one fourth of the length of this
straight li efrombtmue. engt

140. 7o find the centre of gravity Qfa‘oom.
A cone may be considered as a pyramid which has for
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its base a polygon with an indefinitely large number of
sides. Hence the result obtained for a pyramid in Art. 139
holds for a cone. Therefore the centre of gravity of a cone
is on the straight line which joins the vertex with the
centre of gravity of the base, at one fourth of the length of
this straight line from the base,

141. The principle of symmetry will often aid us in
finding the position of the centre of gravity of a body.

A body is said to be symmetrical with respect to a
plane when the body may be supposed to be made up of

irs of particles of equal size and weight, the two which
orm a pair being on opposite sides of the plane, equi-
distant from it and on the same perpendicular to it.

If a body be symmetrical with respect to a plane,
that plane contains the centre of gravity of the y.
For the weights of the two portions into which the
plane divides the body are equal, and their centres of
gravity are at equal distances from the plane on opposite
sides of it : therefore the centre of gravity of the whole
body is in the plane. See Art. 129. ,

142. If a body be symmetrical with respect to each
of two planes, the centre of gravity will be in each of the
planes, and therefore in the straight line in which they
intersect. If a body be symmetrical also with respect to
a third plane, the centre of gravity is in that plane; if the
three planes have not a common line of intersection they
will meet at a point, and this point will therefore be the
centre of gravity of the body.

Take, for example, a sphere. Any plane passing through
the centre of the sphere divides the sphere symmetrically,
and so contains the centre of gravity: therefore the centre
of the sphere is its centre of gravity.

143. The propositions respecting the centre of parallel
forces, given in Arts. 114...119, are applicable to the centre
of gravity, with the simplification which arises from the
fact that the weights of particles are like parallel forces,

1t will be convenient to repeat these propositions.

6—2
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144, The distances of two heavy particles from a
straight line being given, to determine the distance of the
centre of gravity of the particles from that straight line;
the stratght line and the particles being all in one plane.

Let 4 and B be the posi-
tions of the particles; P and @ B
their respective weights. 8 g b

Join 4B, and divide it at C, ,
80 that 4C may be to CB a.sé
is to P: then C is the centre of
gravity of the particles.

Let AD, BE, CF be perpen-
diculars from 4, B, C on any straight line which is in a
plane containing 4 and B. Let AD=p, BE=€1,’ CF=r:

D F E

then we have to find the value of 7, supposing the values
of p and ¢ to be known.
Through C draw aCb parallel to DFE, meeting 4D
and BE at a and b respectively.
CB _Bb .
Then CA=da’ by Euclid, v1. 4;
P _Bb BE-Eb _q-r,
thus @ 46" Da-Dd4 r-p’
therefore Plr—p)=Q{g-r);
therefore (P+Qr=Pp+Qq;
thus r Pr+ g

=PyQ

145. The distances of any number of heavy particles
in one plane from a straight line in the planebeing given,
to determine the distance of the centre of gravity of the
system from that straight line.

Let 4, B, C, D be the positions of particles whose
weights are P, @, R, S. Let p, g, r, 8 be the distance of
4, B, C, D respectively from a straight line Oz in the
same plane,
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Join AZ, and divide it at Z, so that 4L may be to LB
as @ is to P; then L is the centre of gravity of P at 4
and @ at B, and theso weigﬁlts produce the same effect as
P+Qat L Let ! denote the distance of Z from Oz, then,
by Art. 144, '

1= Pr+Qq
P+Q. *

Join LC, and divide it at 2, so that ZM may be to
MCas R is to P+ Q; then M is the centre of gravity of
P+@Qat L and R at O; and these weights produce the
same effect as P+ Q+ R at M, Let m denote the distance
of M from Oz, then, by Art. 144,

_(P+Qi+Rr

"P+Q+R

_Pp+Qq+Rr
T P+Q+R

Join M D, and divide it at IV, so that MV may be to
ND as S is to P+ Q@+ R; then NV is the centre of gravity
of P+@Q+ R at M and S at D; and these weights produce
the same effect as P+ Q@+ R+ at N. Let n denote the
distance of IV from Ou, then, by Art. 144,

=(P+Q+R)m+Sa
=P QYR+S
Pp+Qq+Rr+5s
P+Q+R+S *
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Thus we have determined the distance from Oz of the
centre of gravity of four heavy particles; and in the same
manne;r we may proceed whatever be the number of heavy
particles, .

146. 1In the same way if the distances of 4, B, C,and D
from a second straight line, as Oy, in the same plane be
given, we can deduce the distance of the centre of gravity
of the system from the same straight line.

And when we know the distance of the centre of gravity
from two straight lines in the plane we can determine the
position of the centre of gravity; for it will be at the point
of intersection of straight lines parallel to Oz and Oy and
;a_,t tl‘nf respective distances from them which have been

oun

It is easy to extend our investigation to the case in
vg:‘th the heavy particles are not all in one plane; see
119, L

Exampres. IX.

1. If two triangles are on the same base, shew that
the straight line which joins their centres of gravity is
parallel to the straight line which joins their vertices.

2. A rod 3feet long and weighing 4 1bs. has a weight
of 21bs placed at one end ; find the contre of gravity of the
system.

3. A quarter of a triangle is cut off by a straight line
drawn parallel to one of the sides: find the centre of
gravity of the remaining piece. .

4. Find the centre of gravity of a uniform circular disc
out of which another circular disc has been cut, the latter
being described on a radius of the former as diameter.

. 6. If three men support a heavy triangular board at
its three corners, compare the force exerted by each man.
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6. Shew that the centre of gravity of a wire bent into
a triangular shape coincides with the centre of the circle
inscribed in the triangle formed by joining the middle
points of the sides of the original triangle.

7. If the centre of gravity of a triangle be equidistant
from two angular points of the triangle, the triangle must
be isosceles.

8. If a straight line drawn from an angular point
through the centre of gravity of a trian%}: be perpendicular
to the opposite side, the triangle must be isosceles.

9. A triangle ABC has the sides 4B and BC equal;
a portion APC is removed such that AP and PC are
equal : compare the distances of B and P from AC in
ord}e;- that the centre of gravity of the remainder may be
at P,

10. A heavy bar 14 feet long is bent into a right angle
80 that the lengths of the portions which meet at the angle
are 8 feet and 6 feet respectively: shew that the distance
of the centre of gravity of the bar so bent from the point
which was the centre of gravity when the bar was straight,
is % feet.

11, If the centre of gravity of three heavy particles
placed at the angular points of a triangle coincides with
the centre of gravity of the triangle, the particles must be
of equal weight.

12. Two equal uniform chains are suspended from the
extremities of a straight rod without weight, which can
turn about its middl® point: find the position of the centre
of gravity of the system, and shew that it is independent of
the inclination of the rod to the horizon.

13. The middle points of two  adjacent sides of a
square are joined and the triangle formed by this straight
line and the edges is cut off : find the centre of gravity of
the remainder of the square.
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14. If n equal weights are to be susrended from a
horizontal straight line, and a given length / of string is to
be used, determine the distance of the centre of gravity of
the weights from the straight line. : .

15. If the sides of a triangle be 3, 4, and 5 feet, find
the distance of the centre of gravity from each side.

16. A piece of uniform wire is bent into the shape of
an isosceles triangle ; each of the equal sides is & feet long,
and the other side is 8 inches long: find the centre of
gravity.

17. Find the centre of gravity of the formed by
an equilateral triangle and a square, the base of the tri-
angle cvinciding with one of the sides of the square.

18. Two straight rods without weight each four feet
long, are loaded with weights 11b., 31bs., 51bs., 71bs., 91bs,
placed in order a foot apart: shew how to place one of the
rods across the other, so that both may balance aboyt a
fulcrum at the middle point of the other.

19. A rod of uniform thickness is made up of equal
lengths of three substances, the densities of which taken in
order are in the proportion of 1,2, and 3: find the position
of the centre of gravity of the rod.

20. A table whose top is in the form of a right-angled
isosceles triangle, the equal sides of which art thtee feet in
length, is supported by three vertical legs placed at the
corners; a weight of 201bs. is placed on the table at a

int distant fifteen inches from each of the equal sides:
nd the resultant pressure on each leg.

.~
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X. Properties of the Cenlre of Gravity.

147. When a body ts suspended from u point round

which 1t can move freely it will not rest uniess its centre

_qf gravity be in the verlical line passing through the
point of suspension. ‘

For the body is acted on Bly] two for'ces, namely its own
weight in a vertical direction through the centre of gravity.
and the force arising from the fixed point. The body w
not rest unless these two forces are equal and opposite.
Therefore the centre of gravity must be in the vertical line
which passes through the point of suspension.

148. The preceding Article suggests an experimental
method of determining the centre of gravity of a body
which may sometimes be employed. Let a body be sus-
pended from a fpoint: about which it can turn freely, and let
the direction of the vertical line through the point of sus-

nsion be determined. Again, let the body be suspended
E%m another point so as to hang in a different position,
and let the direction of the vertical line through the point
of suspension be determined. The centre of gravity is in
each of the two determined straight lines, and is thetefore
at their point of intersection.

149. When a body can turn freely round an axis
which is not vertical, 1t will not rest unless the centre of
gravity be in the vertical plane passing through the azis.

The weight of the body may be supposed to act at the
centre of gravity. Resolve it into two components at tight
angles to each other, oné component beiug parallel to the
axis, The component patallel to the axis will not produce
nor prevent motion round the axis; but the other compo-
nent will set the body in motion round the axis, unless the
centre of gravity be in the vertical plane passing through
the axis.

150. A body which is suspended from a fixed Foint by

means of a string will not rest unless its centre of gravit
be below the fixed point to which the string is fastene
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But a body which can turn freely round a fixed point
rigidly connected with it may rest with its centre of
gravity either vertically above or vertically below the fixed
point. And in like manner when a body can turn freely
round a fixed axis which is not vertical it may rest with its
centre of gravity either above or below the axis. There is
an important difference between the two positions of equi-
librium, which is shewn by the following proposition.

151. When a body which can turn freely round a ~
JSiwed point is in equilibrium, if it be ol:'gktly displaced it
will tend to return to its position of equilibrium or to re-
cede from it according as the centre of gravity is above or
below the fived point,

This may be taken as an experimental fact; or it may
be established thus:

Jet O be the fixed point, G the centre of gravity of the
body. Draw GH vertically downwards. The weight of

the body acts along GH; resolve it into two components at
ng!]t angles to each other, one along the straight line
which joins the centre of gravity with the fixed point: let
G K be the direction of the other component.

When G is nearly above O the former component acts
along GO; and thus the latter obviously tends to move the
body away from the position in which @ is vertically
above O.

When G is nearly below O the former component acts
along OG'; and thus the latter obviously tends to move the
body towards the position in which @ is vertically below O,
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_152. When a body is placed on a horizonial plane it
will stand or fall according as the vertical line drawn
zzeroggh its centre of gravity falls within or sosthout

ase.

Let G be the centre of gravity of a body. Let the
vertical line through G' cut the horizontal plane on which
the bod{lstands at®H. Let any horizontal straight line be
drawn through A, and let 4B be that portion of it- which
is within the base of the body.

A H B A B H

First suppose H to be betweon A and B,

No motion can take place round 4. For the weight of
the body acts vertically downwards at @ ; and it may be
resolved into two components, one along G4, and the
other at right angles to GA4. The former component has
no tendency to produce motion round 4. The latter com-
ponent tends to turn G round 4 in the direction GKX'; and
this motion is prevented by the resistance of the plane.

Similarly no motion can take place round B; therefore
the body cannot fall over either at 4 or at B.

Next sugpose H not to be between 4 and B: lot it be
on AB produced through B. .

Then, as before, no motion will take place round 4.
But motion will take place round B ; for the tendency of
the component of the weight at right aIx‘\_gles to GB is
to move @ round B in the direction GK ; and there is
nothing to prevent this motion.
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reégg;ngThe sen:e in which the word base hi:n used in 'lt‘ll:e
ing proposition may require some explanation. The
gortiom of surface common to the body and the hori-
zontal plane may form one undivided area, or may consist
of various separate areas ; a smooth brick placed on a
smooth horizontal plane will exemplify the former case,
and a chair will exem&ify the latter case. Moreover
these areas may be indefinitely small, that is, may be mere
pointa,

The boundary of the base for the Kurposes of the pre-
ceding pro%osit.ion must be determined thus: let a polygon
be formed by straight lines joining the points of contact, in
such a manner as to include all the points of contact, and
to have no re-entrant angle. Bee Notes on Euclid, L 32.

154. Forces are represented in direction by the siraight
lines drawn from any potnt to a system of heavy par-
ticles, each force being equal to the product of the length of
the straight line into the weight of the corresponding
particle: to shew that the resultant force is represented
1n direction by the straight line drawn from the point to
the centre of gravity of the particles, and s equal to the
product of the length of this straight line ¢nio the sum of
the weights.

First, let there be #wo heavy g -
ticles. Suppose P and @ their weights ; B
< and B their respective positious, /\
Let Z be their centre of gravity. L: ;
Let O be any point ; and suppose .
there are two forces, namely ng(gA 4 a
along 04, and @ x OB along OB.

The force Px0A along OA may b resolved into
P x OL along OL, and P x LA parallel to LZA. The force
@ x OB along OB may be resolved into @ x OL along OL
and @ x LB parallel to LB, .

The two forces P x LA and @ x LB are thus equal and
o‘[:fmltg, and therefore balance each other. Hence the re-
sultant is (P+ @) OL along OL, .
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Next, let there be three heavy particles. Suppose
P, Q, R-their weights; 4, B, C K
their respective positions. Let
L be thecentre of gravity of P
and @ ; and M the centre of gra-
vity of P, @, and R.

Let O be any point, and
suppose there are three forces,
namely, P x O4 along 04
@ x OB along OB, and R x ocC
along OC.

By what has been already shewn, these forces are equi-
valent to (P + @) OL along OL, and R x OCalong OC': and
these again are equivalent to (P + Q@+ R) OM along OM.

If there bé a fourth heavy particle, of weight S, at a
point D, there are four forces which, by what has been
shewn, are equivalent to (P+ @+ R) OM along OM, and
SxO0D along OD: and these again are equivalent to
(P+Q+R+38)ON along ON, where N is the centre of
gravity of the four heavy particles.

In this manner the proposition may be established,
whatever be the number of heavy particles.

1f the point at which the directions of the forces meet
coincides with the centre of gravity of the system of heavy
particles, the resultant is zero; that is, the forces are then
in equilibrium.

155. Forces are represented in magnitude and direc-
tion by straight lines drawn from any point: to shew
. that the resultant force is represented in direction by the
straight line drawn from thig point to the centre of gra-
vity of a system of equal particles situated at the other
extremities of the straight lines, and is equal to the product
of this straight line into the number of particles.
This is a particylar case of the proposition of the pre-
ceding Article, obtained by supposxi,ng all the heavy par-
ticles there to be of equal weight.

If the paint at which the directions of the forces meet
coincides with the centre of gravity of the system of equal
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rticles, the resultant is zero; that is, the forces are then
in equilibrium.

156. The sum of the products of the weights of each
particle of a system of heavy particles into the square of
t8 distance from any point exceeds the sum of the products
of the weight of each particle into the square of its dis-
tance from the centre of gravity by the product of the sum
of the weights into the square of the distance between the
point and the centre of gravity.

First, let there be two heavy ‘Barj- B
ticles. Suppose P and @ their

weights ; 4 and B their respective
positions. Let Z be ‘their centre of

gravity.
Let O be any point : then shall A
P x04°+Q x OB
3 =Px AL*+Q x BL*+(P+ Q) OL2
Let OH be the perpendicular from O on 45.
By Euclid, m. 12, 13,
OA*=AL*+O0I3+24L. LH,
OB:=BIL*+0L*-2BL.LH;

therefore
Px0A*+Qx0B'=Px ALI*+Qx BL*+(P+@Q)0L?,
for Px AL = Q x BL, by the nature of the centre of gravity.
In the figure H falls between Z and B; the demon-
stration is essentially the same for
every modification of the figure. B 0
Next, let there be three heavy M
particles. sz;poae P, @, R their I
weights; 4, B, C their respective
positions. Let L be the centre
of gravity of P and @, and M A []
the centre of gravity of P, @,
and R.
Then we have, by three applications of the result already
obtained,

L
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Px0A*+Qx OB+ R x OC*?
=PxLA*+Qx LB*+(P+Q)OL*+ Rx 0C?
=PxLA*+QxLB*+(P+Q) ML+ R x MC?
+(P+Q+R)OM?
=PxMA*+Qx MB2+ R x MC*
+ (P+Q+R)OM?,
Similarly, by three applications of results already ob-

tained, we can shew that the proposition is true when
there are four heavy particles: and 8o on universally.

157. If the weight of each of a system of heavy par-
ticles be multiplied into the square of the distance of the
;;article Jrom a_given point, the sum of the products is

east when the given point i8 the centre of gravity of the
8ystem.

This follows immediately from the proposition of the
preceding Article.

. 158. Examples may be proposed respecting the centre
of gravity which do not involve any new mecianical con-
ception, but are merely geometrical deductions.

For example, required the distances of the centre of
gravity of a triangle from the three angular points in
terms of the sides of the triangle.

Let ABC denote a triangle, D the middle point of BC,

G the centre of gravity. Then G isin 4D, and AG:%AD.
Now, by the Appendixz to Euclid, Art. 1,
AB+ AC*=2(AD'+ BDY);
therefore 40°=] (AB’+A0‘—%BC‘). And A=} 4D#;

therofore 47~ (AB"+ ACT~} BCY).
Similar expressions may be found for BG* and CG*.

159. The theory of the centre of gravity will furnish
us with indirect demonstrations of geometrical theorems.
We will give an example.
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Let 4, B, C, D be four points, c

which need not be all in the same F

lane ; and let equal heavy particles D
ge ihwed at these points. Then E
is the centre of gravity of the par-
ticles at 4 and B,and F'is the centre i £ B
of gravity of the particles at C and
D, Therefore the centre of gravity of the system is at the
middle point of EF. In the same way the gentre of gravity
of the system is at the middle point of the straight line
which joins the middle points of 4D and BC. But there
is only one centre of gravity of the system; and hence we
o}l:etain i;;lslgollowing ;fesu}}: : The strai%ht lines which join
the mi points of the opposite sides of any quadri-
lateral bisect each other. 4

Similarly, from the process for finding the centre of
gravity of a triangle, we might infer that the straight lines
which join the angular points of a triangle with the
middle points of the opposite sides meet at a point.

ExamrLes. X.

1. A square stands on a horizontal plane: if equal
portions be removed from two opposite corners by straight
lines parallel to a diagonal, find the least portion which
can be left 80 a8 not to topple over.

2. Find the locus of the centres of gravity of all tri-
angles on the same base and between the same parallels.

3. A portion of the surface of a heavy body is spheri-
cal, and the body is in equilibrium when any point of this
portion is in contact with a horizontal plane: find the posi-
tion of the centre of gravity of the body.

4. Given the base and the height of a triangle, con-
struct it so that it may just rest in equilibrium with its
base on a horizontal plane.

5. A quadrilateral lamina which has all its sides equal
will be in equilibrium if its plane be vertical and any one
of its sides on a horizontal plane.
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6. Two weights 7 and 2 are connected by a rod
without woigllllt, and also by a loose string which 1s slung
over a smooth peg: compare the lengths of the tst.ringl on
each side of the peg when the weights have assumed their
position of equilibrium.

7. If a number of right-angled triangles be described
on the same straight line as hypotenuse, their centres of
gravity all lie on a circle.

8. If the sides of a triangle be bisected, and the tri-
angle formed by joining these points be removed, shew
that the centre of grayity of the remainder will coincide
" with that of the whole triangle.

9. A round table stands op three legs placed on the
eircumference at equal distances: shew that a body whose
weight is not ter than that of the table may be placed
on any point of it without upsetting it.

10. ABOD i3 a parallelogram having the angle
ABO=60° and the base B( six inches in length: deter-
mine the greatest possible length of AB if the figure is
to stand on BC. .

11. A heayy triangle is to be sus(faended bya string
pmi‘l)ltg thraugh a point on one side: determine the posi-
tion of the point so that the triangle may rest with one

side vertical.

12. A triangle obtuse angled at B is placed with its
gide CB resting on & horizontal Blane; a vertical straight
line from 4 meets the plane at D : shew that the triangle
will stand aor fall according as BD is less or greater
than BC.

13. The sides of a heavy triangle are 3, 4, 5 res
tively: if it be suspended frovgm the gntte of the mmﬂﬁ
circg:l' shew that it will rest with the shortest side hori-
zon|

14, The altitude of a right cone is 4, and the diameter
of the base is b ; a string is fastened to the vertex and to
a point on the circumference of the circular base, and is
then put over & smooth tzeg': shew that if the cone rests
with its axis horizontal the length of the string is./(A%+ b%),

T M 7
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XI. The Lever.

160. Machines are instruments used for communi-
cating motion to bodies, for changing the motion of bodies,
or for preventing the motion of bodies.

The most simple machines are called Mechanical
Powers; by combining these, all machines, however com-
plicated, are constructed. These simple machines or Me-
chanical Powers are usually considered to be sezen in num-
ber ; namely the Lever, the Wheel and Axle, the Toothed
Wheel, the Pull, the Inclined Plane, the Wedge, and the

w‘

‘We shall investigate the conditions of equélibrium of
the Mechanical Powers; that is, we shall suppose these
simple machines employed to prevent motion. We shall
in every case have two forces which balance each other by
means of a machine; one force for the sake of distinction
is called the Power, and the other the Weight: we shall
find that in every case for equilibrium the Power must
bear to the Weight a certain ratio which depends on the
nature of the machine.

‘We shall assume, unless the contrary is expressly stated,
thﬁhthe parts of the machine are smooetip and without
wel

In the present Chapter we shall consider the Lever.

161. The Zever is an inflexible rod moveable, in one
g’lsne, about & point in the rod which is called the fulcrum.
he parts of the Lever into which the fulecrum divides it
are called the arms of the lever. When the arms are in
the same straight line the lever is called a straight lever;
in other cases it is called & bent lever. The plane in which
the lever can move may be called the plane of the lever.
The forces which act on the lever are supposed to act in
the plane of the lever.
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162. Levers are sometimes divided into three class
according to the positions of the points of ap?lication of
the Power and the Weight with respect to the fulcrum.

In the first class the Power and the Weight act on
opposite sides of the fulcrum. .

In the second class the Power and the Weight act on
the same side of the fulcrum, the Weight being the nearer
to the fulecrum.

In the third class the Power and the Weight act on the
same side of the fulerum, the Power being the nearer to
the fulcrum.

Thus we may say briefly that the three classes have
respectively the Fulcrum, the Weight, and the Power in the
middle position.

. 163. The following are examples of levers of the first
class: a crow-bar to raise a heavy weight, a poker
used to raise coals in a grate, the brake of a pump. In
scissors, shears, nippers, and pincers we have examples of
a double lever of the first class.

The oar of a boat furnishes an example of a lever of
the second class. The fulcrum is at the blade of the oar
in the water; the Power is applied by the hand; the
‘Weight is applied at the rowlock. A wheel-barrow in use
will also serve as an example. A pair of nutcrackers is a
double lever of the second class.

A pair of tongs used to hold a coal is a double lever of
.the third class. The fulcrum is the pivot on which the two
rts of the instrument turn; the Power is the pressure
applied by the hand ; the Weight is the resistance of the
coal at the end of the tongs. An example of the third
class of lever is seen in the human fore-arm employed to,
raise an object taken in the hand. The fulcrum is at the
elbow; the Power is exerted by a muscle which comes
from the upper part of the arm, and is inserted in the fore-
;an: dfxear the elbow; the Weight is the object raised in the

7—2
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164, The necessary and sufficient condition for the
equilibrium of two forces on the lever is that their moments
round the fulerum should be e?ual in magnitude but of
opposite kinds. This has been already demonstrated; see

rt. 102. But on account of the importance of the prin-
ciple of the lever we shall give a separate investigation.

165. When there s equilibrium on the lever the
Power is to the Weight as the length of the Wdi'
cular from the fulcrum on the direction of't eight
s to the length of the perpendicular from the fulocrum
on the direction of the Power.

Let ACB be a lever, 0 being the fulcrum. Let forces
P and W act at 4 and B respectively and keep the lever
in equilibriam. -~
- Let the directions of P and W meet at Q. Then the
resultant of P and W will be some force which may be
supposed to act at O; and this resultant must pass through
(, sinoe the lever is in equilibrinma. Hence OC is the direc:
tion of the resultant of P and .

Draw Oa parallel to 04, and Cb parallel to OB, to
meet OB and 04 respectively; and draw CM perpendicu-
Jar to 04, and CN perpendicular to OB,

Then, by the parallelogram of forces,
P _Ca,
w0’



THE LEVER. 10t
and by the similar triangles ONa and CMb,

Ca_ON
G oM’
P _ON
therefore W—m.

Conversely, if %: g—g;, and P and W tend to turn
the lever in opposite directions, they will keep it in equi-
librium,

For with the same construction we have

P _CN_Ca,
W oM™

and therefore OC is the direction of the resultant of P
and W'; and since the resultant passes through C the lever
will be kept in equilibrium,

166. There is no substantial difference in theory be-
tween the seeond and the third class of levers considered
in Art. 162 ; but there is considerable practical difference.
For it follows from the condition of equilibrium of the
lever that in the second class the Power is less than the
Wei&h? and in the third class the Power is greater than
the We Eht. Thus it is said that a mechanical advantage is
gained thg-da lever of the second class, and lost by a lever

of the class.
The advantage of a machine msiibe defined as the ratio
of the Weight to the Power when there is equilibrium,

167. Inthe investifation of Article 165 we assume that
the directions of P and W will meet if produced; but the
point of intersection may be at any distance from the ful-
crum, so that we may readily admit that the result will
hold even when the directions of P and @ are parallel.
Bat it may be useful to give an investigation of this case.
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Let ACB be a lever, C being the fulcrum. Let -
lel forces P and W act at 4 and B respectively andp;eep
the lever in equilibrium,

B w
M N M N /0
A/ ’ l Ai/__"n '

P . .
Through O draw a straight line perpendicular to th®
giire]ctions of the forces meeting them at M and IV respec-
vely.
Now by Arts. 60 and 61 the resultant of P and W is a
force lel to them at distances from them which are in-
verselg proportional to them. But since the lever is in

gquili rium the resultant must pass through C; and there-
ore '
P _oN
W oM
P CN

Conversely, if W= o and P and W tend to turn

the lever in opposite directions, they will keep the lever in
equilibrium,

. P CN
For since =0’ the resultant of P and W passes

through C, and therefore the lever will be kept in equi-
librium,

168. It appears from the foregoing Articles that equi-
librium is maﬁ:ta.ined on the lever by the aid of the ful-
crum which supplies a force equal and opposite to the re-
sultant of P and . Thus we see that the pressure on
the fulcrum will be equal to the resultant of P and W';
if P and W are pa.m(hel this resultant is equal to their
algebraical sum, in other cases it may be determined by
the Parallelogram of Forces,
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169. If two weights balance each other on a straight
Lever in any one %n'tion inclined to the vertical, t
will balance each other in any other position of the Lever.

Let AB be the position of the lever when*the weights
P and W balance each other; let C be the fulcrum.,

Let ab be any other position of the lever.

Through C draw a horizontal line, meeting the vertical
lines which represent the lines of action of the weights
at M and NV and m and » respectively.

P

Now since P and W balance in the position 4B of the

lever,
P _ON
‘ W oM
And by similar triangles,

CN _CB_Cb_On, .
CM~C4A~ Ca™0m’
P

Cn
therefore = Cm"

"Hence P and W will balance each other in the posi-
tion ab of the lever.
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Exampres. XI.

1. A weight of 51bs. hung from one extremity of a
straight lever balances a weight ef 151bs. hung from the
other: find the ratio of the arms.

2. Two weights of 3}1bs. and 4}1bs. are hung at the
ends of a straight lever whose length is 92 inches: find
where the fulcrum must be for equilibrium.

3. Two weights which together weigh 63 1bs. are hun,
at the ends of a straight lever and balogce * if the fulcrmg
is four times as far from one end as from the other find
each weight.

4. Alever 7 feet long is sulzporbed in & horizontal
position by props placed at its extremities: find where a
weight of 281Ibs. must be Elaced 80 that the pressure on
one of the props may be 81bs.

5. Two weights of 121bs. and 81bs, mtﬁvely at the
ends of a horizontal lever 10 feet long co:

far the fulerum ought to be moved for the weights to
balance when each is increased by 21bs.

6. If the pressure on the fulcrum be equivalent to a
weight of 151bs,, and the difference of the forces to a weight
of 31bs, find the forces and the ratio of the arms at
which they act.

7. A lever is in equilibrium under the action of. the
forces P and @, and is also in equilibrium when P is
t}eléled and @ increased by 6lbs.: find the magnitude
of Q.

8. The pressure on_the fulcrum is 121bs,, and the dis-
tance of the fulerum from the middle point of the lever is
one-twelfth of the whole length of the lever: find the
forces which acting on opposite sides of the fulorum will
produce equilibrium.

find how .
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9. One force is four times as great as the other, and
the forces are on the same side of the fulcrum, and the
Eﬁwe is 91bs, on it: firid the position and magnitude of
e forces,

10. ABC s a straight weightless rod nine inches long,
placed between two g:fs 4 and B four inches a 80
as to be kept horizontal by means of them and a weight
of ten lbs. hanging at O': find the pressure on the pegs,

11. A lever bent at right angles, with the angle for
fulcrum and baving one arm double the other, has two
weights hanging from its ends: if in the position of equili-
brium the arms are equally inclined to the horizon compare
the weights,

12. The pressure on the fulcrum is 31bs, and the
sum of the forces 101bs.: find the distance of each from
the fulcrum, if their distance apart be 2 feet.

13. If the pressure on the fulcrum be 51bs,, and one
of the weights distant from the fulcrum one-sixth of
the whole length of the lever, find the weights, supposing
them on opposite sides of the fulerum.

14, If the arm of & cork compresser be 18 inches, and
a cork be placed at a distance of one inch and a half from
the fulcrum, find the pressure mfluoed by a weight of
twelve stone suspended from the handle. ,

15. If the fulcrum be between the two forces, and its
distance from one of them be a third of the whole length
of the lever, shew that when the direction of either of
the forces is reversed, the fulcrum must then be placed
at three times its former distance from the same force.

16. Two forces of 21bs. and 41bs. act at the same
point of a straight lever on opposite sides of it, and keep
1t at rest, the less force being perpendicular to the lever:
determine the direction of the greater force, and the pres-
sure on the fulcrum.
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17. A weight of Plbs. hangs from the end of a lever
2 feet long, at the other end of which is a fulcrum, and the
lever is kept in equilibrium by such a force @ that the

fulcrum bears gPlbs.: determine the magnitude of @,
and the point of its application.

18, If three weights P, Q, S hang from the points
4, B, C of a straight lever which balances about a fulerum
D, shew that

@xAB+8x AC=(P+Q+8)x AD.

19. ABC is a straight lever; the length of 4B is
7 inches, that of BC is 3 inches; weights of 61bs. and
10 1bs. hang at A and B, and an upward pressure of 6 lbs.
acts at C': find the position of a fulcrum about which the
lever 8o acted on would balance, and determine the pres-
sure on the fulcrum.,

20. Weights of 61bs. and 41bs. hang at distances
2 inches and 6 inches respectively from the fulcrum of a
lever on the same side of it: find where a single force of
9 1bs must be applied to support them 8o as to leave the
least possible pressure on the fulcrum.

21. A lever ACB is bent at C, the fulerum, and from
B a weight @ is hung; when P is hung at 4 the lever
rests with AC horizontal ; but when S is hung at 4 then
CB becomes horizontal: shew that

04 : 0B :: Q: J(P.S)
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XII. Balances.

170. The lever is employed to determine the weights of
substances ; and under this c{mracber it is called a B :
we shall now describe various forms of the Balance.

In the preceding Chapter we considered a lever to be a
rod ewithout weight; but in practice a rod always has
weight, and we accordingly attend to this fact in our
investigations. :

'We shall first consider the Common Balance. .

171, The Common Balance. The Common Balance
consists of a beam with a scale suspended from each extre-
mity ; the beam can turn about a fulerum which is above
the centre of gravity of the beam, and therefore above the
centre of gravity of the system formed by the beam, the
scales, and the things which may be put in the scales. The
arms of the beam must be of equal length, and the system
should be in equilibrium with the beam horizontal when
the scales are empty: if these conditions hold, the balance
is said to be true, it they do not hold, the balance is said to
to be false.

The substance to be weighed is placed in one scale, and
weights in the other until the beam remains at rest in the
horizontal position. In this case, if the balance be true,
the weight of the substance is indicated by the weights
which balance it. We may test whether the balance is true,
by observing whether the beam still remains at rest in
the horizontal position when the contents of the scales
are interchanged.

If the balance be true and the contents of the twe
scales be made of unequal weight, the beam will not remain
in the horizontal position, but after oscillating for a time
will finally rest in some position inclined to the horizon,
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172 In the construction of a balance, the following re-
quisites should be satisfied :

(1) When loaded with equal weights the beam should
be perfectly horizontal: that is, the balance should be
irue.

(2) When the contents of the two scales differ in
weig dh:keven by & small alnantity, the balance should detect
this difference : that is, the balance should be sensible.

(3) When the balance is disturbeféhit should readil
mturw its state of rest: that is, the balance shoul
stable.

173. o find how the requisites of a good balance may
be satisfied. e

Let AB be the beam, C the fulcrum ; lot 4B =24, and
let A be the distance of C from 4B. Let P and @ be the
weights of the contents of the two scales. Let # be the
weight of the beam; let % be the distance from C of the
centre of gravity of the beam, this centre of gravity bein;
sugeposed to lie on the ndicular from C on 4B. Le
S be the weight of each scale, so that P and S act verti-
eally through 4, and @ and § act vertically through B.
Let 6 be the angie which the beam makes with the horizon
When there is equilibrium.
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The sum of the moments of the weights round C will be
zero when there is equilibrium, by Arf. 86. Now the
length of the perpendicular from C on the line of action of
P and § isacosf—heinf; the length of the pergen-
dicular from C on the line of action of @ and § is
a cos 6 + A sin 0 ; the length of the perpendicular from C on
the line of action of 7 is ksin 6. ~Therefore

(Q+8)(acos 8+ hsin 6)—(P+8) (acosd ~ sin 6)
+ Wksin6=0;
_ (P-Q)a
therefore tan 0= (m)h+ Wk
This determines the position of equilibrium.
(1) When P=@Q we have tan §=0; thus the balance
is true: so that by makin% the arms equal and having the

centre of gravity of the beam on the ndicular fro
the ﬂﬂcrung;rgn tﬁe beam the first req\ﬁmptzr?: satisfied. "

(2) For a given difference of P and @ the sensibility is
obviously greater the greater tané is; and for a given
value of tan  the sensibility is greater the smaller the dif-
ference of P and @ is. Thus we may consider that %
is & measure of the sensibility; and therefore th% seoong
requisite will be satisfied by making (P+ Q+2S)E+ W‘—z
as small as possible.

(3) The stability is greater the greater the moment of
the forces which tend to restore the equilibrium when it
has been destroyed. Now this moment is

{P+Q+28)h+ Wk} sin 0—(P —Q) a cos 0,
or supposing P and @ equal, it is.
{(P+Q+25)h+ Wk}sin 6.

Henge to satisfy the third requisite this should be made
as large as possible, This is, in part, at variance with the
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second requisite. The two requisites may however both
be satisfied by making (P+@Q+28)h+ large, and a

also; that is, by increasing the distances of the
fulcrum from the beam and from the centre of gravity
of the beam, and by lengthening the arms.

174. It may be observed, that the sensibility of a
balance is in general of more importance than the stability,
since the eye can judge pretty accurately whether the beam
makes ow]fa tions on each side of the horizontal line ;
that is, whether the position of rest would be horizontal ; if
this be not the case, then the weights must be altered until
the oscillations are nearly equal.

175. Another kind of balance is that in which the
arms are unequal, and the same weight is used to weigh
different substances, by varying its distance from the ful-
crum. The common steelyard is of this kind.

178. 7o graduate the common steelyard.

MDINN \

:‘IL ] r ] 4. l]
,L D e % nln

C

\.4

Let AB be the beam of the steelyard, C' the fulcrum.
Let A be the fixed point from which the substance to be
weighed is suspend Let @ be the weight of the beam
. together with the hook or scale at 4; let G be the
centre of gravity of these. Let P be a weight which can
be placed at any distance from the fulcrum. Suppose that
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the machine is in equilibrium with the beam horizontal when
P is suspended at AV, and a substance of weight W is sus-
Ker!tl.ded at A. Then, taking moments round C, we have by

86,
W.A0-Q.CG—~-P.CN=0;

£
0N+1—_,CG

therefore W= —_— P. '
On GC produced through C, take the point D such that

CD= %0@ ; then

CN+CD ,, DN
W=—"40 P=ac™

Now, let DB be graduated by taking on it from D dis-
tances equal respectively to AC, 24C, 34C, 440G, ...; and
let the figures 1,2, 3, 4,... be placed over the points of gra-
duation : these distances ma; be subdivided if necessary.
Then, by observing the uation at 2V, we know the ratio
of W to P; and P being a given weight, we know W,

In this way any substance may be weighed.

177. The sensibility of the common steelyard is greater
the greater the distance between the two points at which
P must be suspended in order to balance two weights
of given difference. Hence it will follow that the sensi-
bility is increased by increasing CA4, or by diminishing P.
For suppose that N/ denotes the Eoint of suspension of
the moveable weight when the weight at 4 is #’’. Thus

P.DN'=W'. AC,
and P.DN=W.AC;
therefore P.NN'=(W'-W)AC;

therefore NN'=W.
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Now W'— W is supposed to be given ; therefore N.N*
varies 88 -, and is increased by increasing 4C, or by
diminishing 2.

Since the sensibility varies 5s i< it is independent, of

the weight of the beam; it is also independent of the
position of IV, that isha %iven steelizrd is equagx sensible
whatever be the weight which is to be determin

178. Another kind of balance is called the Danish
steelyard. This consists of a heavy beam which termi-
nates in a knob at one end, and the substance to be
vﬁighed is placed at the other end; the fulcrum is move-
able.

179. 7o graduate the Danish steelyard.
Lel AB be the beam; let

P be its weight, G its centre PC=3 A
of gravity.

Suppose that the machine P
is in_equilibrim with the M
beam horizontal when the fulcrum is at C, and a substance
of weight W is suspended at 4. Taking moments round

C, we have, by Art. 86,
W.AC=P,0G=P(AG-AC);

_P.AG
therefore AC’—P+ W

Hence, making =P, 2P, 3P, 4P, ... successively, we
can mark on the the corresponding positions of the
fulerum.” If intermediate uations are required they
must be determiged by giving to 7 intermediate values,

8 15
a8 for example, §P, 3 P, 'y P,...

It will be seen that if the successive values of 7 form
an arithmetical progression, the distances from 4 of the cor-
responding graduations will form an harmonical progression.
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ExamprLes. XII.

" 1. If a substance be weighed in a balance having un-
equal arnm, and in one scale appear to weigh @ 1bs. and in
the other scale b lbs., shew that its true weight is ,/(ab)1bs.

2. A body, the weight of which is one lb., when placed
in one scale of a false balance appears to weigh 14 ounces:
find its weight when placed in the other.

3. The arms of a balance are in the ratio of 19 to 20;
the }mn in which the weights are placed is suspended from
the longer arm: find the real weight of a body which appa-
rently weighs 38 Ibs,

4, If a balance be false, having its arms in the ratio of
15 to 16, find how much per lb. a customer really pays for
tea which.is sold to him from the longer arm at 3s. 9d.

per Ib

(’fhe following six questions relate to the common steel-
yard :
5. If the moveable weight for which the steelyard is
constructed be ene lb., and a tradesman substitutes a
weight of two lbs,, using the same graduations, shew that
he defrauds his customers if the centre of lg‘mvit.y of the
steelyard be in the longer arm, and himself if it be in the
shorter arm. ,

6. The moveable weight is one Ib., and the weight of
the beam is one lb. ; the distance of the point of suspension
from the body weighed is 2} inches, and the distance of
the centre of gravity of the beam from the body weighed
is 3 inches: find where the moveable weight must be placed
when a body of 3 1bs is weighed.

7. If the fulcrum divide the beam. supﬁsed uniform
in the ratio of 3 to 1, and the weitﬁ.t of the beam be equsi
to the moveable weight, shew that the greatest weight
which can be weighed is four times the moveable weight,

8. If the beam be uniform and its weight %‘ of the

moveable weight, and the fulcrum be ;1-‘ of the length of the
T, M, : 8
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beam from one end, shew that the greatest weight which can

. . 2m(n—1)+n—2
bewe:ghed iy — —

9. Find what effect is produced on the graduations
by increasing the moveable weight.

- 10, Find what effect is produced on the mﬁom
by increasing the density of the material of the

11. A straight uniform lever whose weight is 50 lbs.
and length 6 feet, rests in eanilibrium on a fulecrum when a
weight of 101lbs. is suspended from one extremity: find
the position of the fulecrum and the pressure on it.

12. Two weights P and @ hang at the ends of a
straight heavy lever whose fulcrum is at the middle peint;
if the arms are both uniform, but not of the same weight,
and the system be in equilibrium, shew that the difference
between the weights of the arms equals half the differénce
between P and Q.

13. A uniform heavy rod 4B, seven feet long, is suj
ported in a horizontal position between two pegs U and Dy
two feet apart, of which C is half a foot from the end 4:
find the pressures on the pegs.

If a force act upwards at a distance of half & foot from
the end B, sufficient to remove all pressure from the peg
C, shew that the pressure on the peg D will be hahp%f
what it was before.

14. Two men carry a uniform plank 6 feet in length
and weighing 2 cwt., and at 2 feet froin ome end a weight
of 1cwt. is placed ; if oné man have this end resting on his
shoulder, find where the other man must sup the beam
in order that they may share the whole weight equally:

15. Two weights of 21bs. and 51bs, balance on a uni-
form heavy lever, the arms being in the ratio of 2 to 1: find
the weight of the lever.

16. If a heavy uniform rod ¢ inches long be supported
on two props at distances @ and b incheengrom the ends,
compare the pressures on the props,

times the meveable weight.

-«
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17. A uniform heavy bar ten feet long and of given
weight W is laid over two props in the same horizontal
line, so that one foot of its lengtEs projects over one of the
props. Find the distance between the props so that the
E;essure on one may be double that on the other, Also

d the pressures. .

18. A straight lever weighing 20 Ibs. is moveable about
a fulcrum at a distance from one extremity equal to one-
fourth of its length: find what weiiht must be suspended
from that extremity in order that the lever may remain at
rest in all positions.

19. A bent lever is composed of two straight uniform
rods of the same length, inclined to each other at 120° and
the fulcrum is at the point of intersection: if the weight of
one rod be double that of the other, shew that the lever
will remain at rest with the lighter arm horizontal.

20. A bar of iron of uniform section and 12 feet long
is supported by two men, one of whom is placed at one
end: find where the other must be placed so that he may
sustain three-fifths of the whole weight.

21. A cylindrical bar of lead a foot in length, and
81bs. in weight is joined in the same straight line with a
similar bar of iron 15inches long and 61bs. in weight:
find the point on which they will balance horizontally.

22, A uniform rod 10 feet long and 48 1bs. in weight is
supported by a prop at one end: find the force which must
act vertically upwards at a distance of 2 feet from the
other end to keep the rod horizontal. 4
. 23. A straight uniform rod is suslfended by one end:
determine the position in which it will rest when acted on
by a given horizontal force at the other end.

24. Two weights acting perpendicularly on a straight
uniform lever ail;g its ends on opposite sides of the fulcrum
balance: if one weight be double the other, but the weight
of thebe lever equal to their sum, find where the fulerum
must be. -
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XIII. The Whee and Axls, The Toothed Wheel.

180. The present Chapter will be devoted to the Wheel

and Axle, amf the Toothed Wheel. It will be seen that

}l‘nese two Mechanical Powers are only modifications of the
ever,

P
Y
181. The Wheel and Axle. This machine consists of

two cylinders which have a common axis; the larger cylin-
der is called the Wheel, and the smaller the 4zle. The
two cylinders are r(ifidly connected with the common axis,
which is sup) in a horizontal position so that the
machine can turn round it. The Weight acts by a string
which is fastened to the axle and coiled round it; the
Power acts by a string which is fastened to the wheel and
coiled round it. The Weight and the Power tend to turn
the machine round the axis in opposite directions.

182. When there is equilibrium on the Whee and
Adle, the Power is to the Weight as the radius of the
Axzle is to the radius of the Wheel. _

Let two circles having the common centre C represent

sections of the wheel and axle respectively, made by planes
perpendicular to the axis of the cylinder. ¥ vE
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It may be assumed, that
the effects of the Power and
the Weight will not be
altered if we suppose them
both to act in the same
plane perpendicular to the n
axis. Let the string by
which the power, P, acts
leave the wheel at J, and
the string by which the
weight, W, acts leave the
axle at B. Then CA and
CB will be Ferpendicular
to the line of action of P =
and W. We mafy regard
ACB a8 a lever of which C is the fulcrum, and hente, by
Art. 165, the necessary and sufficient condition for equi-
librium is

P _CB
w o4’

183. If we wish to take into account the thickness of
the strings by which P and W act, we may consider that
the line of action of each of these forces coincides with the
middle of the respective strings. Thus, in the condition of
equilibrinm, CA4 will denote the radius of the wheel in-
creased by half the thickness of the string by which P

acts, and OB will denote the radius of the axle increased
by half the thickness of the string by which W acts.

184. 'We have supposed that the Power in the Wheel
and Axle acts by means of a string ; but the Power may
act by means of the hand, as in the familiar example of
th‘il. machine used to draw up a bucket of water from a
wel

A windlass and a capstan may also be considered as
cases of the Wheel and Axle.
The windlass scarcely differs from the machine used to

draw up water from a well: the windlass however has
more than one fixed handle for the convenience of working
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it; or it may have a moveable handle which can be shifted
from one place to another.

In the capstan the fixed axis of the machine is.vert.ical 3
the hand which supplies the Power describes a circle in &
horizontal plane, and the rope to which the Weight is
attached leaves the axle in a horizontal direction.

185. In the Wheel and Axle, as described in Art. 182,
the whole pressure on the fixed supports is equal to the
sum of the Weight and the Power; for the machine re-
sembles a Lover with parallel and like forces. If the
Power be directed vertically upwards, the Power and the
Weight being then on the same side of the axis of the
machine, the whole E:'essnre on the fixed support is equal
to thg difference of the Weight and the Power.

186. The Toothed Wheel. Let two circles of wood or
metal have their circumferences cut into equal teeth at
erpendtoniar t thol piaie, and lot thom bo placed with
pel ic: to their planes, an em wi
thelq;e:xes parallel, so that their edges touch, one tooth of
one circumference lying between two teeth of the other
circumference. If one of the wheels of this pair be turned
round its axis by any means, the other wheel will also be
made to turn round 1ts axis. Or a force which tends to
turn one wheel round may be balanced by a suitable force
which tends to turn the other wheel round in the opposite
direction.

187. When there is equilibrium on a pair of Toothed
Wheels, the moments of the Power and the Weight about
the contres of their respective wheels are as the perpendi-
culars from the centres of the wheels on the direction of
the pressure between the testh in contact.

Let M and N be the fixed centres of the wheels.
Buppose the Power, P, and the Weight, ¥, to act by
strings which are attached to axles concentric with the
whee) Let these strings leave the axles at 4 and B
respectively, Then MA and NB will be perpendicular ta
the lines of action of P and W.




THE WHEEL AND AXLE. 119

Let @ denote the mutual pressure af the point of con-
tact of the teeth; so that a force @ acts at the point of
eontact in opposite directions on the two wheels, Draw
perpendiculars from M and XV on the line of action of @,
meeting it at 22 and » respectively.

Then, since the wheel which can turn round A/ is in
equilibrium, the moments round M must be equal; that is,

PxAM=Qx Mm.

Similarly, since the whee] which can turn round &V is in
equilibrium,
’ ) WxBN=QxNn.
PxAM _QxMm _Mm
. WxBN @QxNn Nn'
this establishes the proposition.
Draw the straight line MN meeting mn at O: then,
by similar triangles,
Mm_ MO
Nn  NO'
- If the teeth are very small compared with the radii of
the wheels, O will nearly cvincide with the point of contact

Therefore
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of the teeth, and MO and NO will be nearly the radii of
the wheels. Thus we have very nearly

moment of P round M _ radius of Power-wheel
moment of W round N~ radius of Weight-wheel *

" 188. dI:hpractice the machine is usedt tgten transmlt tgl:h?-
ion ; and then it is necessary to pay great a ion e
form of the teeth, in order to secl;:e uniform action in the
machine, and to grevent the grinding away of the surfaces:
on this subject however the student must consult works
which treat specially of mechanism,

lfi?{ Toothed wheels dare extensively aplgied in all
machinery, a8 in cranes and steam engines, and especially
in watch-work and clock-work.
‘Wheels are sometimes turned by means of straps

ing over their circumferences. In such cases the minute
protuberances of the surfaces prevent the sliding of the
straps; and the condition of equilibrium coincides with
that given at the end of Art. 187.

Examrrrs. XIIL

1. Find the radius of the Wheel {0 enable a Power of
1} 1bs. to support a weight . of 28 lbs,, the diameter of the
Axle being 6 inches,

2. Find what Weight nded from the Axle can be
pported by 3 Ibs. Suspendgi from the Wheel, if the radius
gf:'e Axle is 1} feet, and the radius of the Wheel is 3}
(3
. 3. A man whose weight is 12 stone has to balance
his weight 15 cwt.: shew how to construct a Wheel an
Axle which will enable him to do this.

4. A Woeight of 14 ounces is supported by a certain
Power on & Wheel and Axle, the radii being 28 inches and

, 80

. N
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16 inches: if the radii were each shortened by 4 inches,
find what Weight would be supported by the same Power.

5. If the radii of the Wheel and Axle be as 8 is to 3,
and two weights of 61bs. and 15 lbs, tively be sus-
sended from their circumferences, find which weight will

escend. Supposing that the weight which tends to de-
scend is supported by a prop, find the pressure on the prop
and on the fixed supports of the Wheel and Axle.

. 6. The radius of the axle of a capstan is 2 feet, and
six men push each with a force of one cwt. on spokes
5 feet long: find the Weight they will be just able to raise.

7. The difference of the diameters of a Wheel and
Axle is 2 feet 6 inches; and the Weight is equal to six
Z’u:les the Power: find the radii of the Wheel and the

e.

. 8, Theradius of the Wheel being three times that of
the Axle, and the string on the Wheel being only strong
enough to support a tension of 36 lbs, find the greatest;
‘Weight which can be raised.

9. If the string to which the Weight is attached be
coiled in the usual manner round the Axle, but the string
by which the Power is a;:glied be nailed to ;iﬁoint in the
rim of the Wheel, find the position of equilibrium, the
Power and the Weight being equal.

10. Inthe Wheel and Axle if the two ropes were coiled
each on itself, and their thicimess not neglected, find
whether the ratio of the Power to the Weight would be
increased or diminished as the Weight was raised, sup.
posing the ropes of the same thickness,
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XI1V. ZThe Pully.

190, The Pully consists of a small circular plate or
wheel which can turn round an axis passing through the
centres of its faces, and having its ends supported by a
framework which is called the Block. The circular plate
has a groove cut in its edge to prevent a string from slip-
ping off when it is put round the Pully.

191, Let A denote a Pully the

Block of which is fixed ; and suppose
a Weight attached to the end of a
string ing round the Pully. If
the strw be pulled at the other end
by a Power equal to the Weight there
will be equilibrium.
. Thus a fized Pully is an instru-
ment by which we change the direc-
tion of a force without changing its
magnitude. We have already ad-
verted to this in Art. 28.

. As we proceed with the present Chapter it will be seen
thatal()ty the use of a moveabls Pully we can gain mechan-
ical advantage, '

Theoretically the fact that the Pully can turn round
its axis is not important; but practically it is very im-
portant. When the Pully can turn round it is found that
the tension of the string is almost exactly the same on
both sides of the Pully in the condition of equilibrium.
But when the Pully cannot turn round it is found that
there may be considerable difference between the tensiong
of the two parts of the string: this is owing to Friction,
which we shall consider hereafter.

{:i:él that f°lcl§:.fg§f sl;lall atisunze that the bemsion:1 of
8 8 is no when the string passes round a
Pully. We shall always neglect the weight of the strinﬁe;
a:;lte?llso the weight of the Pullies unless the contrary
8 5
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192. Fn a single moveabls Pully with the strings
par%lel when there 18 equilibrivm the Weight s twice
ower.

Let a string pass round the Pull S
4, have one end fixed, as at K, < .=
and be pulled vertically upwards by a !
Power, P, at the other end. ®

Let a Weight, W7, be attached to
the Block of the

The tension of the string is the
same throughout. Hence we may
regard the Pully as acted on l}); two w
parallel forces, each equal to 2, up-
wards, and by the force /7 downwards. Therefore W =2P.

o gt o s o 7 e
equally m the two of the H
is, it must pass through the centre of the Pully. ’

Tbepgessure on the fixed point X ia equal to P, that.
is, to 3 .

193. The preceding Article will Erobably present no
difficulty to the student ; but Perhaps the following remarks
should be made. The Wheel and the Block of the Pu{llz
are really two distinct bodies; but when there is eq
librium we shall not disturb it by ﬁg(i;illy connecting the
two bodies: thus we obtain one rigid body, and the condi-
tion of equilibrium follows by Art. 62. Sometimes the
principle of the lever is employed in obtaining this condi-
tion of equilibrium; the strict mode of employing the
principle is as follows: The Wheel of the Pully is capable
of turning round its axis, and for equilibrium the moments
of the forces round this axis must be equal ; this condition
is satisfied if the axis be equidistant from the two of
the string. The pressure on the axis is equal to the sum
of the two forces; and this pressure is supported by the
Block. Thus the Block is acted on by 2P upwards, and
by W downwards. Therefore W =2P.
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194. To find the ratio of the Power to the Weight
n the single moveable Pully with the parts of the string
not parallel. :

Let a string pass round
the Pully, 4, have one end
fixed, as at K, and be pulled
by a Power, P, at the other
end. Let a Weight, W, be
attached to the Block of
the Pally.

The tension of the string
which passes round the
Pully is the same through-
out. Hence we may
the Pullkas acted on by two forces, each equal to P, and
a force W. Therefore the line of action of #” must bisect
the angle formed by the lines of action of the two forces
P ; that is, the two parts of the string must be equally
inclined to the vertical. Suppose them each to make an
angle a with the vertical. Then W is equal and opposite
to the resultant of two equal forces P, which are inclined
at an angle 2a. Thus the ratio of P to W is known by the
Parallelogram of Forces. By Art. 30, we have

W =2P cosa.

195. 'We now pass on to investigate the condilions of
equilibrium of various combinations of Pullies.

196. In the system of Pullics in which each Pully
hangs by a separate string and all the Pullies are parallel,
when there is equilibrium the Weight ts equal to the Power
multiplied by 2%, where n is the number of Pullies.

In this system the string which passes round any Pully
exoeft the highest has one end attached to a ﬁxe(ly l?oint,
and the other end to the Block of the next 11)1?3}1@1' ully ;
the stm which round the highest y has one
end attached to a fixed point, and the other end supported
by the Power.

Su) there are four moveable Pullies. Let /7 de-
note the weight, which is suspended from the block of the
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lowest Pully; and P the power
which acts vertically upwards at the
end of the string which passes under
the highest Pully.

By the princigle of the single
moveable Pully, the tension of the
string which passes under the lowest

Pully is -;—V ; the temsion of the
string which passes under the next
Pully is half of this, that is 2, ; the

tension of the string which passes
under the next Pully is half of this,

that is w the tension of the string which passes under

2

the next Pully is half of this, that is v . This last tension
must be equal to the Power which acts at the end of the
string. Therefore P=%’ , or W=2¢P,

Similarly, if there be any number of moveable Pullies
and n denote this number, W=2"P.

This system of Pullies is sometimes called the First
System of Pullies,

. 197. Let K, L, M, N denote the points at which the
ends of the strings are fixed in the system of Pullies con-
sidered in the preceding Article. en the pressure at

Kis o5 the pressure atLis—2-,-,thepressureatMis 90

the pressure at IV is —?77 Hence the sum of these pressures
. 1 1
s w §+ 2
gression, we find that this is 17 1—21‘-— . Thus the sum of

these pressures together with the Power is equal to the
whole Weight.

+ 2—}, + -21—‘), by summing the Geometrical Pro-
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198. In the system of Pullics in which the sams
string passes round all the Pullies and the parts of it
between the Pullies are parallel, when there is equili-
brium the Weight is equal to the Power multiplied by
the number of strings at the lower Block.

Sup there are four strings
at the lower block.

Let W denote the weight which
is suspended from the lower Block ;
and P the power which acts verti-
cally downwards at one end of the
string. The tension of the string is
the same throughout and is equal to
P; thus we may regard the lower
Block as acted on by four parallel
forces each equal to P upwards, and
})y the force W downwards. There-

ore

W=4P.

Similarly, if there be any number of strings at the
lower block, and # denote this number, W =nP.

This system of Pullies is sometimes called the Second
System of Pullies.

199. In the figure one end of the string is fastened to
the upper block, and the number of strings at the lower
block i8 even; if ono end of the string is fastened to the
{)oew:;dblock the number of strings at the lower block will

In the figure there are five strings at the upper block,
’I?V thg the pressure at the fixed point X is Op:r that is
+P.
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200. 1In the system of Pullics in which each string is
attached to the weight, and all the strings are parallel
when there is equilibrium, the Weight is equal to the Power
multiplied by 2° -1, where n i8 the number of Pullics.

In this system the string which es round any
Pully except the lowest has one end attached to the
‘Weight, and the other end to the Block of the next lower
Pully ; the string which passes round the lowest Pully has
one end attached to the Weiiht, and the other end sup-
ported by the Power. The highest Pully is fixed; the
others are moveables

- 8 there are four Pullies. _ _
Let denote the weight t@which

all the strings are fastened ; and P
the power which acts vertically
downwards at the end of the string
which passes over the lowest Pully.

The tension of the string which
over the lowest Pully is P;
the tension of the string which passes
over the next Pully is 2P; the ten-
sion of the string which passes over
the next Pully is twice this, that is
2P ; the tension of the string which
over the next Pully is twice

this, that is 2:P,

The weight is equal to the sum of these tensions by
Art. 111. Thus
W=P+2P+28P+$P=P(1+2+2+2%)=P(2-1).

Similarly, if there be any number of Pullies, and »
denote this number, W=P (2*—1). -

This system of Pullies is sometimes called the Z%ird
System of Pullies. .
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201. The pressure at the fixed point K is 2 x 2P, that
is 24P, that is W+ P. P S

202. We bave hitherto neglected the weights of the
Pulligs; but it is easy to take account of them, and we shall
now do so.

203. In Art. 192 let w denote the weight of the Pully;
we have only to put W+ instead of  in the condition of
equilibrium. Thus W+w=2P,

Similarly, in Art. 194, W+w=2P cosa.
In Art. 198 let w denote the whole weight of the
Pullies at the lower block ; thgn W +w=4P,

204. In Art. 196 let the weight of the four Pullies, be-
ginning with the lowest, be w, z, ¥, = respectively.
Then, the tension of the string which passes round the

lowest Pnllyis%(W+ w); the tension of the next string
is %(W+w)+§z; the tension of the next string is
%(W+w)+§l-,w+%y; the tension of the next string is
-;—.(W+w)+-21—,a+§l;y+§z.

W w =z

v z.Y¥.%
Thus P‘2‘+F+23+ +

§‘0

In fact, here P supports simultancously # and w by
the aid of four Pullies, = by the aid of three Pullies, ¥ by
the aid of two Pullies, and 2 by the aid of one Pully.

If the weight of each Pully is the same, and equal to w,
we have

w 1 1 1 1 w 1
P=*§7+w(§‘+§;+§+- =F+w(l —-2—‘)

-t
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Similarly, if » denote the number of Pullies, and the
weight of each Pully be 0, -

W 1\ 7 _W-w
P-——2—,.+w(l—‘? , or P—W—T'

205. In Art. 200 let w denote the weight of the low-
est Pully, 2 that of the next, y that of the next. Then
the tension of the string which passes over the lowest
Pully is P; the tension of the next string is 2P +w; the
tension of the next string is 2°P+2w+; the tension of
the next string is 22 P + 2%w + 22+ y. : '

Thus W=P(1+2+22+2)4+w(1+2+20+2(1+2)+y
=P @2'-1)+w (2 1)+2(22—1)+y.
In fwc%) here W is suptported by the simultaneous

action of P with the aid of four Pullies, w0 with the aid of
three, # with the aid of two, and y with the aid of one.

If the weight of each Pully is the same and equal to
w, we have .

W =P (20—1)+10(2+20+2—3)=P (2~ 1)+ 10 (2~ 5).

Similarly, if » denote the number of Pullies, and the
weight of each Pully is ,

W=P2-1)+w(2"—n-1).

206. If we take the weights of the Pullies into account
the expressions for the pressures on the fixed points which
have been given in preceding Articles will re;lu‘ire some
alteration. There will be no difficulty in making these
alterations; we will take Art. 197 as an example,

‘With the notation of Art. 204, the pressure at X is
;—(W+w); the presaure atLis%,(W+w)+';; the pres-
sure at M is %(W+w)+2%+g; the pressure at IV is
1 x Z .
-;‘(W+w)+§3+%+§.

T M. 9
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Hence the sum.of these pressures
1 1\ . 1 1 1
=W'(l —2—‘)+w(1 —% +w<l ~§§) +y<1 —2—,) +z(1—2)
=W+w+x+y+2-P,
207. There are two systems of Pullies which are usu-

ally called Spanish Bartons: they will be understood from
the annexed figures.

First, neglect the weights of the Pullies.

In the left-hand figure, W =4P. The pressure at the
fixed point K is P, and at the fixed point Z is 4P.

In the right-hand figure, denoting by 2a the angle be-
tween the parts of the string round the upper moveable
Pully, W=5P cosa. The pressure at the fixed point X is
2P cos a, and at the fixed point L is 4P cos a.

Next, let @ denote the weight of the lower moveable
Pully, and @ that of the upper moveable Pully,

In the left-hand fi W+w=4P+z. The pressure
:} the fixed point K is P, and at the fixed point L is
+2.
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In the right-hand figure W+w=5P cosa+22. The
pressure at the fixed point X is 2P cosa, and at the fixed
point L is 4P cosa+ .

208. It will be seen that in every system of Pullies we
find the condition of equilibrium byr{'eginning at one end
of the system and determining in order the tensions of all
the strings of the system. e have always begun with
the Power end, except in Art. 196 ; and in that Article we
might also have begun with the Power end.

ExampLes, XIV.

1. In a single moveable pully if the weight of the
plllll}y be 21bs,, find the force required to raise a weight of
41bs,

2. If there be two strings at right angles to each other
and a single moveable pully, find the force which will sup-
port a weight of ,/21bs.

113' Adman sta.nl;i: ina scaledatht;ﬁged to a mgvea:;}e
pully, and a rope having one en passes under the
pully; and then over a fixed pully: find with what force the
man must hold down the free end in order to support him-
self, the strings being parallel.

4. If on a wheel and axle the mechanical advantage
be six times as t a8 on a single moveable pully, com-
pare the radii of the wheel and the axle.

The following ten Examples relate to the First System
of Pullies; see Art.196:

5. Ifn=6,and P=281bs,, find W.
6. If W=41bs, and P=1 ounce, find 7.

7. If n=3, find the consequence of adding one ounce
to P, and ten ounces to W.

8. If a man support a weight equal to his own, and
there are three pnlfies, find his pressure on the floor on
which he stands.

9—2
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9. If there are three pullies, each weighing one Ib.,
find the Power which will support a Weight of 17 lbs.

10. If there are three pullies of equal weight, find the
weight of each in order that a Weight of 56 lbs. attached
to the lowest pully may be supported by a Power of
71bs. 14 ounces.

11. If the weight of each pully is P, find ¥ and the
tension of each string.

12. If there be three pullies each of weight 0, and
W=_P, find W.

13. If there are two pullies each of weight 440, and the
Power be 3w, shew that no Weight can be supported by
the system.

14. In a system of three pullies if a weight of 5 Ibs.
is attached to the lowest, 4 1bs. to the next, and 31bs. to
the next, find the Power required for equilibrium.

The following six Examples relate to the Second System
of Pullies; see Art. 198:

15. Find the number of strings at the lower block in
oxl'dber that a Power of 4 ounces may support a Weight of
41bs.

16. Find the number of pullies at the lower block if
P =12 stone and W =18cwt.

17. If there are four strings at the lower block, find
&e Pc’a,onsequence of adding one ounce to 2, and three ounces

18. If there are six strings at the lower block, find the
greatest Weight which a man weighing 10 stone can pos-
sibly raise.

19. A man supports a Weight equal to half his own
weight; if there are seven strings at the lower block, find
his pressure on the floor on which he stands. .

20. Find what Weight can be su;zported if there are
three pullies at the lower block, the string being fastened
to the upper block, and the weight of the lower block being -
three times the Power.,
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XYV. The Inclined Plane,

209. An Inclined Plane in Mechanics is a rigid plane
inclined to the horizon.

‘When an Inclined Plane is used as a Mechanical Power
the straight lines in which the Power and the Weight act
are supposed to lie in a vertical Plane perpendicular to
the intersection of the plane with the
horizon. Thus the Inclined Plane is B

represented by a right-angled tri- .
angle, such asyACB?gthe horizontal
side AC is called the base; the verti-
cal side CB is called the keight; and

the hypotenuse 4B is called the 4 o
length. The angle BAC is the incli-
nation of the Plane to the horizon.

The Plane is supposed perfectly 7igid, and, unless the
contrary be stated, it is su;;gosed to be gerfectly smooth ;
8o that the Plane is assumed to be capable of supporting
any amount of pressure which is exerted against it in a
perpendicular direction.

210. If a Weight be supported on an Inclined Plane
at a point L, and LM be drawn in the direction of the
Power, and LN at right angles to the Plane, so as to mest
a vertical line at M and N, the Power is to the Weight as
LM s to MN.

Let BAC be the Inclined Plane. P
Let a heavy body whose weight is W~
be Elaced on it at any point Z, and
be kept at rest by a Power, P, acting
in the direction ZM. Let MN be
drawn vertically downwards, and ZN L
at right angles to the Plane.

The body at L is acted on by 4 ¢
three forces; the Power P in the
direction L M, its own Weight in a di- b §
rection parallel to M N, and the resist-
ance of the Plane in the direction VL.
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Hence, by Art. 36, since there is equilibrium the sides
of the triangle LZMN are respectively proportional to the
forces. Therefore

P _LM
W MN°
Let R denote the resistance of the Plane ; then
R _NL
W MN'
‘We may write these results thus:
P.:W:R:LM:MN:NL.
It is usual to consider separately two sgecial cases of
o

the general proposition ; and this we shall do in the next
two Articles. ’

211. When there is equilibrium on the Inclined
Plane, and the Power acts along the plane, the Power is
to the Weight as the height of the Plane is to the length.

Let W denote the Weight of

a heavy body, and P the Power. X
From any point Z in the Plane, draw L
LN at riiht angles to the Plane, meet-

ing the base at N; and draw NM

vertical, meeting the plane at . i N0

. Then the sides of the triangle ZMN are parallel to the
directions of the forces which keep the heavy body at rest ;
therefore, by Art. 36,

P _LM
W MN*
But the triangle LM N is equiangular to the triangle
CBA; for the angle LM N is equal to the angle 4BC, by
Euclid, 1. 29; the right angle VZM is equal to the right

angle ACB; and therefore the third angle MNL is equal
to the third angle BAC,
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Hence, by Euclid, v1. 4,
- LM _CB.
MN ~BA’
P _CB
W BA
Let R denote the resistance of the plane; then
£ _4C
W ~—AB°
‘We may write these results thus :
P:W:R::CB:BA: AC.

therefore

212. When there is equilibrium on the Inclined
Plane, and the Power acts horizontally, the Power is to
the Weight as the height of the Plane is to the base.

Let W denote the Weight of

a heavy body, and P the Power.
From any point Z in the Plane draw L

LN at right angles to the Plane, ‘
meeting the base at N, and N M A
vertical meeting at M the horizon- 4 N ¢

tal straight line drawn through L.

Then the sides of the triangle LM N are parallel to the
directions of the forces which keep the heavy body in
equilibrium ; therefore, by Art. 36,

P _ LM
W~ MN’

But the triangle ZMN is equiangular to the triangle
BAC. For the angle BLN, bemg a right angle, is equal
to the sum of the two angles BAC and ABC; and BLM
is equal to BAC, by Euclid, 1. 29 : therefore MLN is equal
to ABC. And the right angles LMN and BCA are
equal. Therefore the t%nrd angle LNM is equal to the
third angle BAC,
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Hence, by Buclid, v1. 4,
' LM _BC.
MN ¢4’
therefore -,% = ‘g—g .
Let R denote the resistance of the Plane ; then
£ _4B
W c4’
'We may write these results thus:
P:W:R:BC:04:AB.
213. We may obtain convenient expressions for the

proportionate values of P, W, and R by the aid of Trigo-
nometry.

Leét the angle BAC=a, and the
angle MLB=_8; therefore the angle
MLN=90"+p8.

Then
P:W:R:LM:MN:NL

::8in LZVM : sin MLN :sin NML
:: 8in a : 8in (90° + B) : 8in (90°— a— B)
::8ina: cos B: cos (a+B).

214. In the figure of the preceding Article the re-
sistance of the Plane is represented by the straight line
NL ; that is, the resistance acts from 2V towards L. Thus
if the body be placed on the Plane, and be in equili-
brium, the straight line Z/N must be below the Plane ; that
is, the sum of the angles M LB and BAC must be less than
a right angle.

215. The results of Art. 213 may also be obtained by
the method of resolving the forces given in Art. 57; and
thus we obtain a good example of ge method, and assist-
ance in remembering the results,
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Resolve the forces along the plane: this gives
PcosB= Wsina.
. Resolve the forces at right angles to the plane: this
ves
& v PsinB+R=W cosa.
Hence we deduce

R=Weosa Wsinasing _ Wcos(a-;-ﬂ).

cos 8 cos B

216. Perhaps it may seem that an Inclined Plane can
scarcely be called a Machine; it is not obvious that it can
be usefully employed like the other Mechanical Powers.
But we may observe that if we have to raise a body we may
draw it up an Inclined Plane by means of a Power which
is less than the Weight of the body.

Exampres. XYV.

In the following twelve Examples the Power is sup-
posed to act along the Plane:

1. If the Weight be reﬁ;esented by the height of the
Pla.nei shew what straight line represents the pressure on
the Plane.

2. If W=12 lbs., and the height of the Plane be to
its base as 3 is to 4, find P.

3. If W=101lbs. and P=61bs, find R.

4. If P=R, find the inclination of the Plane, and the
ratio of P to W,

5. If P is to R as 3 is to 4, express each of them in
terms of W.

6. If P=91bs, find W when the height of the Plane
is 3 inches, and the base 4 inches,
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7. An Inclined Plane rises. 3 feet 6inches for every
5 feet of length: if W =200, tind P.

8, If the length of the Plane be 32 inches, and the
height 8 inches, find the mechanical advantage.

9. When a certain Inclined Plane .4 BC, whose length
is AB, is placed on AC as base, a Power of 3 lbs. can
support on it a Weight of 51bs.: find the Weight which
the same Power could support if the Plane were placed on
BC as base, 80 that 4C is then the height of the Plane.

10. A railway train weighing 30 tons is drawn up an
Inclined Plane of 1 foot in 60 by means of a rope and a
stationary engine: find what number of lbs. at least the
rope should be able to support.

11. A Weight of 20 lbs. is supported by a string
fastened to a point in an Inclined Plane, and the string
is only just strong enough to support a weight of 101bs.:
the inclination of the Plane to the horizon being gradually
increased, find when the string will break.

12. If it takes twice the Power to supﬁmrt a given
Weight on an Inclined Plane 4BC when placed on the
side 4C, that it does when the Plane is placed on the side
BC, find the greatest Weight which a Power of one 1b. can
support on the Plane.

In the following four Examples the Power is supposed
horizontal :

13. If W=121lbs, and the base be to the length as
4 is to 5, find P.

14. If W=481bs., and the base be to the height as
24 i8 to 7, find P and R.

15. If R=21bs.,, and P=11b., find W, and the incli-
nation of the Plane.

16. If W=121lbs, and P=91bs,, find R.

17. If the Power which will support a Weight when
acting along the Plane be half that which will do so acting
horizontally, find the Inclination of the Plane. ,
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18. If R be the pressure on the Plane when the
Power acts horizontally, and S when it acts parallel to the
Plane, shew that BS= W3,

19. A Power P acting along a Plane can support W,
and acting horizontally can support % : shew that

Pi=W3-a2

20. A weight # would be supported by a Power P
acting horizontally, or by a Power @ acting parallel to the
Plane: shew that

21. Give a geometrical construction for determining
the direction in which the Power must act when it is equal
to the Weight ; and shew that if § be the pressure on the
Plane in this case, and R the pressure when the Power
acts along the plane, §=2R.

22. The length of an Inclined Plane is 5 feet, and the
height is 3 feet. Find into what two parts a weight of
104 1bs. must be divided, so that one part hanging over the
i'?lp of the Plane may balance the other resting on the

ane.

23. The inclination of a Plane is 30°; a particle is
laced at the middle ﬁoint of the Plane, and is kept at rest
y & string %assing through a groove in the Plane, and

attached to the opposite extremity of the base: shew that
the tension of the string is equal to the weight of the
particle.

24, A Weight of 20 Ibs, is supported by a Power of
12 lbs.mctinialong the Plane: shew that if it were re%uired
to support the same Weight on the same Plane by a Power
acting horizontally, the Power must be increased in the
ratio of 5 to 4, while the pressure on the Plane will be
ircreased in the ratio of 25 to 16.
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XVI. The Wedge. The Serew.

217, The Wedge. The Wedge is a solid body in the
form of a prism; see Euclid, Book x1. Definitions. In
the Wedge two parallel faces are equal and similar tri-
angles, and there are three other faces which are rect-
angles.

The wedge may be employed to
separate bodies. :

We may suppose the wedge
“urged forward bg a force P acting
on one of the rectangular faces,
and urged backwards by two re-
gistances @ and R arising from the
bodies which the wedgeis employed
to separate. These forces may be
supposed to act in one plane perpendicular to the rect-
angular faces; and we shall assume that the wedge and
the bodies are smooth, so that the force acting on each
face is perpendicular to that face.

Let the triangle 4 BC represent a section of the wedge
made by a plane perpendicular to its rectangular faces;
and suppose the wedge kept in equilibrium by the forces
P, perpendicular to 4B, BC, CA respectively: then

7

b’g}ts
y ) P:Q:R :: AB: BC:CA.

If AC= BC the wedge is called an ¢s0sceles wedge; in this
case Q=R, and P: R :: AB:CA. .
Let the angle ACB be denoted by 2a, then when the wedge
is isosceles A B=2A4C sina, and v

P: R : 2sina:l, so that P=2Rsina.

218. There is very little value or interest in the pre-
ceding investigation, because the circumstances there sup-
posed scarcely ever occur in practice. A nail is sometimes
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given as an example of the Wedge, but when the nail is at
rest the resistances on its sides are counterbalanced by
friction and not by a Power on the head. The nail is
indeed driven into its place by blows on the head ; but it
does not belong to Statics to investigate the effect of blows-

in producing motion.

219. The Screw. The screw consists of a right cir-

cular cylinder 4B with a
uniform projecting thread
abed. ... traced round its sur-
face, making a constant an-
gle with straight lines pa-
rallel to the axis of the
cylinder. This cylinder fits
into a block C pierced with
an equal cylindrical aper-
ture, on the inner surface
of which is cut a groove the
exact counterpart of the
projecting thread abed...

Thus when the block is
fixed and the cylinder is in-

troduced into it, the only manner in w

w,

[ 3]

hich the cylinder
move is backwards or forwards by turning roun

its axis,

220. In practice the forms of the threads of screws
may vary, as we see exemplified in the accompanying two
figures.

The left-hand figure
most nearly resembles that
whgich is tia.ken for iagsktg-

oninelemen ;

} i asual 2o diavegard.thi
thickness and the breadth
of the projecting thread,
that is to consider both of
these as practically v

thread in the following geometrical manner:



142 THE WEDGE. THE SCREW,

Let ABNM be any rectangle. M N

Take any point € in BN, and make
CD, DE, EF,... all equal to BC, a

Join C4 and through D, E, F,...draw ¢
straight lines parallel to Cd, meeting
AM atc,d, e, ... Then if we conceive

ABNM to be formed into the convex  ° /

surface of a right cylinder, the straight
lines AC, ¢D, dE, eF,... will form the
curve which determines the figure of the
8Crew. ¢ 0

Let the angle CAB be denoted by
a; then CB=ABtana; if r be the A B
radius of the right circular cylinder and s express as usnal
the ratio of the circumference of a circle to its diameter,
AB=2rr; thus CB=2nrtana. CB is the distance be-
tween two consecutive threads of the screw measured
parallel to the axis. The angle a may be called the angle
of the Screw,

221. Suppose the axis of the cylinder to be vertical;
and let a Weight 7 be placed on the Screw. Then the
Screw would descend unless prevented by some Power, P.
This Power we shall suppose to act at the end of a
horizontal arm firmly attached to the cylinder; the length
between the axis of the cylinder and the point of applica-
tion of the Power we shall call the Power-arm.

222. When there is equilibrium on the Screw the
Power 8 to the Weight as the distance between two
adjacent threads is to the circumference of a circle having
the Power-arm for radius.

Let » be the radius of the cylinder, b the length of
the Power-arm, a the angle of the screw. The screw.is
acted on by the Weight 7, the Power P, and resistances
exerted by the block. These resistances act at various
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points of the block, but as the thread is sngposed smooth
they all act at right angles to the thread; thus their direc-
tions all make an angle a with vertical straight lines.
Denote these resistances by R, S, 7;... Resolve each re-
sistance into two components, one vertical and the other
horizontal. Thus the vertical components are R cos a,
Scosa, Tcosa,.. ; and the horizontal components are
Rsina, Ssina, Tsina,...

By reasoning as in Arts. 104 and 105 we find that there
are two conditions which must hold when the machine is
in equilibrium, namely :

The components parallel to the axis must balance each
other, thus :

W=(R+8+T+...)cosa;

and the moments of the forces round the axis must
balance each other, thus

Pb=(R+S+T+..)rsina
Hence, by division,
Pb _rsina
W = cosa ’
P _rsina_2snrtana

therefore W =boosa™  9rb

_ distance between two consecutive threads
~ circumference of circle of radius b

.

223. The most common use of a Screw is not to sup-
-gort. a Wei%ht, but to exert a pressure. Thus suppose a
xed bar above the body denoted by # in the figure of
Art. 219 ; then, by turning the screw, the body will be com-
pressed between the head of the screw and the fixed bar.
A bookbinder’s press is an example of this mode of using
a screw. The theory of the machine will be the same as in
Art. 222; W will now denote the pressure exerted parallel
to the axis of the screw by the body which is compressed.
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ExamrLes. XVI

1. A Wedge is right angled and isosceles, and a force
of 501bs. acts opposite to the right angle: determine the
other two forces,

2. A Wedge is in the form of an equilateral triangle,
and two of the forces are 40 1bs. each ; find the third force.

3. Find the vertical angle of an isosceles Wedge when
the pressure on the face opposite this angle is equal to
half the sum of the two resistances.

4. The tangent of the angle of a Screw is i, the radius

of the cylinder 4 inches, and the length of the Power-arm
2 feet: find the ratio of /7 to P.

5. The circumference of the circle corresponding to the
point of application of P is 6 feet; find how many turns
the Screw must make on a c;)linder 2 feet long, in order
that /7 may be equal to 144 P,

6. The distance between two consecutive threads of a
Screw is i inch, and the length of the Power-arm is 5 feet :
find what Weight will be sustained by a Power of 11b.

7. The angle of a Screw is 30° and the length of the
Power-arm is z times the radius of the cylinder: find the
mechanical advantage,

8. The length of the Power-arm is 15 inches: find the
distance between two consecutive threads of the Screw,
that the mechanical advantage may be 30.
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XVII. Compound Machines.

224. We have already spoken of the mechanical
advantage of 3 machine, and have defined it to be the ratio
of the Weight to the Power when the machine is in equi-
librium ; see Art. 166. Now we might theoretically obtain
any amount of advantage b{v the use of any mechanical

wer. For example, in the Wheel and Axle the advan
18 expressed by the ratio of the radius of the Wheel to the
radius of the Axle; and this ratio can be made as great as
we a;l)lea.se: but practically if the radius of the Axle be too
small the machine is not strong enough for use, and if the
radius of the Wheel be too great the machine becomes of
an inconvenient size,

Hence it is found advisable to employ various compound
machines, by which great mechanical advantage may be
obtained combined with due strength and convenient size.
We will now consider a few of these compound machines.

225. Combination of Levers.
K B L @ M

] l°

P w

Let AB, BC, CD be three levers, having fulcrums at
K, L, M respectively. Suppose all the levers to be hori-
zontal, and let the middle lever have each end in contact
with an end of one of the other levers. Suppose the system
in equilibrium with a Power, P, acting downwards at 4,
and a Weight, 77, acting downwards at D.

Let @ be the pressure at B between the two levers
which a.rQe in contaclz there, and R the pressure at C between
the two levers which are in contact there; these pressures
may be supposed to act vertically.

T, M. 10
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B L O M-

e

w

Bince the lever KB is in equilibrium 2 f% ;

s - w. R _BL,
since the lever BLC is in equilibrium Q-ci’

. s an . W _OM
and since the lever CMD is in equilibrium R=DM'

Hence, by multiplication, —;Z = g;% x gLé X %

Hence the mechanical advantage of the combination of
levers is equal to the product of the mechanical advantages
of the component levers.

The result holds even if @ and R do not act vertimlly.
Suppose for example that @ does not act vertically, but in
some other direction; let %z and  denote the le of the
perpendica:larz lf;r_omRK a;nd L on this direction. Then
we haveﬁ= % Q- CL But by similar triangles

%:g—%; andthusthevalueof%isthemeasbefore.

226. Combinations of Wheels and Axles are frequently
used. The Wheel of one component is made to act on the
Axle of the next component by means of teeth, or of a
strap. It may be shewn that the mechanical advantage of



COMPOUND MACHINES. 147

the combination is the product of the mechanical advan-
tages of the components ; that is, we shall have

W _ Product of the radii of the Wheels
P - Product of the radii of the Axles °

227. The Differential Azle.

This machine may
be considered as a
combination of the
‘Wheel and Axle with
a single moveable
Pully.

Two cylinders of
unequal radii have a
common axis with
which they are rigidly
connected ; the axis
is supported in a hori-
zontal position so that
the machine can turn
round. A string has one end fastened to the larger cy-
linder, is coiled several times round this cylinder, then
leaves it, passes under a moveable Pully, and is coiled
round the smaller cylinder, to which the other end is
fastened. The string is coiled in opposite ways round the
two cylindel?‘%, so that when it winds off one it winds on the
other. A Weight W is suspended from the moveable
.Pully. The equilibrium is maintained by a Power, P,
applied at the end of a handle attached to the axis.

Let @ denote the radius of the larger cylinder, b the
radius of the smaller cylinder, ¢ the length of the arm at
which the Power acts.

Suppose the machine in equilibrium, and the parts of
the string on both sides of the Pully to be vertical.

The tension of the string is the same throughout; and
is equal to 3 7 by Art. 192,

10—2
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At the point where the string leaves the larger cy-
linder the tension tends to turn the machine round in one
direction, and at the point where the string leaves the
smaller cylinder the tension tends to turn the machine
round inthe opposite direction. Hence, taking moments
round the axis, we have by Art. 100,

Pty Wb=g Wa;
w c
therefore Y s

Thus we see that by taking @ and b very nearly equal
we can obtain any amount of mechanical advantage.

228, Hunter’s Screw, or the Differential Serew.

AB is a right circular
cylinder, having a screw
onits surface; this
fits into a corresponding
groove cut in the block
CE, which forms part of
the rigid framework
CDFE,

AB is hollow, and has
a thread cut in its inner
surface, 80 that a second
screw GH can work in it.
The second screw does
not turn round, for it has
a cross bar KL the ends
of which are constrained by smooth grooves, so that the
piece GHKL can only move up and down. The machine is
used to produce a t pressure on any substance placed
between KL and the fixed base on which the framework
CDUFE stands.

Let P denote the Power applied l&a handle at the to
of the outer screw. Let /¥ denote the pressure exerteg
below KL in the state of equilibrinm.
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Let a denote the angle of the outer screw, » the radius
of the cylinder; let ' denote the angle of the inner screw,
7 the radius of the cylinder. Let b be the length of the
Kri.l:. 321;2 ;vhich the Power acts. We shall now proceed as in

Let the resistances which act between the outer screw
and the block be denoted by B, S, 7...; and those between
the two screws by R/, §, 7,...

Then, as in Art. 222, since the outer screw is in equi-
librium, :
(R+8+T+..)co8d =(R+8+T+...) cosa,
Po=(R+8S+T+..)rsina—(R'+8"+T'+...)rsind’;
and since the inner screw is in equilibrium,
W=R+8+T"+...)cosd.
From the first and third of these equations
W=(R+8+T+ ..)cosa;

and then from the second equation
Pb=W (rtana—» tanda’);
therefore w b

P “rtana— 2 tand’’

Thus we see that by making 7 tana and 7’tana’ very
nearly equal we can obtain ahy amount of mechanical
advantage. )

229. We see by what has been said re ing the
mechanical powers and compound machines that we can
obtain any amount of mechanical advantage. But it must
be observed that we have hitherto considered machines in
the state of equilibrium, that is as used to support weights ;
practically however machines are more commonly used to
move weights, Now it is found that although with the aid
of a ma.cl%ﬁne we can move a Weight by a Power much
smaller than the Weight, yet in order to make the Weight
move through a line of any length the Power must describe
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s much longer line. Let us take as a gimple example the
single moveable Pully described in Art. 192. If we have
to raise the Weight through one foot, the vertical part of
the string which ends at the fixed point X must be short-
ened one foot, and this requires the end at which the
Power P acts to move through two feet, in order to kee
the string stretched. Thm“ghe length of the line whic
P describes is to the length of the line which 7 describes
a8 W is to P.

The principle is popularly enunciated thus: what is
gained in power is lost in speed. We will give another
illustration of it here, and consider it more fully i the next
Chapter.

‘We will take the case of the Differential Azle; see
Art. 227. Suppose the cylinders to turn once completely
round 8o as to raise the Weight ; then the point of appli-
cation of the Power P moves round the circumference of a
circle of radius ¢, that is describes a length 27c. The depth
of the centre of the Pully below the axis is half the sum of
the lengths of the two parts of the string. Now in turnin
once round the length 27a is wound on one cylinder, an
the length 2#b is wound off the other. Thus the Weight

is raised through the height 2-(2ma — 2rb), that is through
w(a—b). Therefore :

length described by P _27¢ _ 2¢ W
length described by W~ w(a—-0) a—-b P °
: s

Exampres. XVIIL

1. Three horizontal levers 4 KB, BLC, CM D without
wei%ht, whose fulcrums are K, Z, M, act on one another
at B and C respectively, and are keBt in equilibrium b;
weights of 11b. at 4 and 241bs. at D: if AK, KB, B
CM, MD are ?un.l to 2, 1, 4, 4, 1 feet respectively, find
the position of Z and the pressure on it. .
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2. In a combination of Wheels and Axles each of the
radii of the Wheels is five times the radius of the corre-
sponding Axle: if there be three Wheels and Axles deter-
mine what Power will balance a Weight of 375 lbs,

3. A rope, the ends of which are held by two men
A and B, passes over a fixed pully Z, under a moveable
pull{ M, and over another fixed pully . A Weight of
120 Ibs. is suspended from M. Supposing the different
parts of the rope to be parallel find with what force 4 and
B must pull to support the Weight.

4. Inthe preceding Example if B fastens his end of
the rope to the Weight find whether any change takes
place in the force which 4 must exert.

5. A isa fixed Pully; B and C are moveable pullies.
A string is put over 4; one end of it passes under C and
is fastened to the centre of B; the other end passes under B
and is fastened to the centre of 4. Compare the Weights
of B and C that the system may be in equilibrium, the
strings being parallel.

6. Two unequal Weights connected by a fine string
are placed on two smooth Inclined Planes which have a
common height, the string passing over the intersection of
the Planes; find the ratio between the Weights when
there is equilibrium.

7. A Weight W is supported on an Inclined Plane
by a string along the Plane. The string over a
fixed pully, and then under a moveable y to which a
weight # is attached, and having the of the string
on each side of it parallel; the end of the string is at-~
tached to a fixed point: shew that in order that the sys-
tem may be in equilibrium the height of the plane must
be half its length.

8. In an Inclined Plane if the Power P be the tension
of a fine string which passes over a small fixed Pully and
is attached to a Weight hanging freely, shew that if P be
pulled down througg a given length the height of the
centre of gravity of P and W will remain unchanged. .
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XVIIL. Virtual Velocities.

230. We have already drawn attention to a very re-
markable fact with respect to machines, which is popu-
la.rli:xpressed in these words: what i¢ gained in power
18 lost in speed. This fact is included in the general
I_’én'nciple of Virtual Velocities, which we will now con-
sider.

231, Suppose that A4 is the a
point of application of a force P;
conceive the point 4 to be moved 5 A—»r
in any direction to a new position ?

a at a very slight distance, and from @ draw a perpen-
dicular ap on the line of action of the force P: then 4p is
called the virtual velocity of the point A with respect to
the force P; sand the complete phrase is abbreviated,
sometimes into the wirtual welocity of the point A, and
sometimes into the virtual velocity of the force P. :

The virtual velocity is considered to be pesitive or
negative according as p falls on the direction of P or on
the epposite direction. Thus in the figure the virtual
velocity is positive.

‘We see that Ap=_Aacos aAp.

232. Now it is found that the following remarkable
Proposition is true: suppose a system qf forces in equi-
tbrium, and imagine the points of application of the
Jorces to undergo very slight displacements, them the
algebraical sum of the products of each force into its
virtual velocity vanishes; and conversely if this sum
vanishes for all possible displacements the system of forces
18 in equilibrium.

This proposition is called the Principle Virtual
Valocitz‘al: post b
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233, We shall not attempt to demonstrate this im-
portant principle, or even to explain it fully; the student
may hereafter consult the larger work on Statics. We
may however notice two points.

The displacements which the principle contemplates are
such as do not destroy the connexion of the points of
application of the forces with each other. Thus any rigid

y must be conceived to be moved as a whole, without
separation into parts; also any rods or strings which
transmit forces must be gonceived to remain unbroken.

The word virtual is used to intimate that the dis-
placements are not really made but only supposed to be
made. The word wvelocities is used because we may con-
ceive all the points of application of the forces to move
into their new positions in the same time, and then the
lengths of the paths described are proportional to the
velocities in the ordinary meaning of this word. But
there is no necessity for introducing this conception, and
it would probably be advantageous for beginners if the
term virtual velocity could be changed into virtual dis-
placement,

234, In the present work we shall follow the usual
course of elementary writers, and shew that the Principle
of Virtual Velocities holds for all the Mechanical Powers,
by special examination of each case.

Thus in every case which we shall examine there will
be two forces, the Power, P, and the Weight, /#"; and we
shall have to establish the result

P xits virtual velocity + 7" x its virtual velocity=0.

We shall find that in every case the virtual velocities
of P and W will have opposite signs ; but as there are only
two forces we shall not fall into any confusion by droppin
the distinction between positive and negative nrtuaﬁ
velocities. We shall accordingly shew that in every case
we have numerically :

P x its virtual velocity= W x its virtual velocity.
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235. To demonstrate the Principle for the Lever.

Let ACB be
a lever, having
its fulcrum at
C; and kept in
equilibrium %
forces P and
which act at 4
and B respect-
ively.

Suppose the
lever to be turned round C'so as to come into the position
aCb. Join Aa and Bb.

The angle 4 Ca=the angle BCb; denote it by 26.

Let CM and CN be perpendiculars from C on the lines
of action of P and W respectively. Let the angle MAC=a,
and the angle NBC=8.

Then CAa=90"—6, and CBb=90°—0,
The displacement of 4 resolved along 4 M
=Aacos MAa=Aa co8(90°~a—6)=Aa sin (a+6).
The displacement of B resolved along NB
=Bb cos (180°~pBC— CBN)
=.Bb cos (90°—B + 6)=Bb sin (8 —6).
Resolved displacement of A4
Resolved displacement of B
_ Aa sin (a+6) _ 04 sin(a+6)
Bb gin(8—6) ~ CB sin (8—0)°
for the triangle 4 Ca is similar to the triangle BCb.
Now when 6 is made indefinitely small the right hand

. . . CAsina OM ... .
side of this equation becomes CBemB " ON° which is

Therefore

|
Y
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equal to %’ by the principle of the lever.

Hence ultimately, P multiplied by the resolved dis-
placement of its point of application is equal to /# multi-
plied by the resolved displacement of its point of applica-
tion. : '

236. 7o demonstrate the Principle for the Wheel
and Axle. :

Let two circles having
the common centre C re-
resent sections of the
heel and Axle respect-
ively.

Let the machine be
in equilibrium with the
Power P acting down-
wards at 4, and the
Weight % acting down-
wards at B.

. Buppose the machine
to be turned round its
axis so that 4 comes to
a, and B to b; then aCb is a straight line.

The displacement of 4 resolved along the line of action
of P is Ca sin 4Ca; the displacement of B resolved along
the line of action of W is Cb sin BCb.

Resolved displacement of A
Resolved displacement of B
_CasindCa _Ca_CA_W
~ CbsinBCb™ Cb CB P °
Hence P multiplied by the resolved disslwement of its

int of application is equal to 7 multiplied by the resolved
placement of its point of application.

Therefore
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237. To demonstrate the Principle for the single
moveable Pully with parallel strings.
Sup, the Weight to be raised
througmy height s; then the K
g:rt KC of the string between the
ed end and the Pully must be P
shortened bg g: and to keep the
string stretched the end at which P
acts must be raised through the
height 2s. Therefore the point of ¢ A
the string which is on the line of
action of P, and in contact with the
Pully is raised through the height
2;. i ell:o;)e this point of t.h(ei string,
at whic| may be supposed to act,
by A; and denote the centre of v
a‘li:a Pully, at which 7 may be supposed to act, by B.
en

Displacement of 4 .25 2 W
Displacementof B~ & 1 P °

Hence P mtﬂtiflied’};; the displacement of its point of
application is equal to 77" multiplied by the displacement
of it point of application.

238. To demonstrate the Principle for the single
moveable Pully with strings not parallel.

Let the system be displaced so that the strings are
still inclined at the same angle as' before, the part of the
string with the fixed end being kept in its original direc-
tion. Let 2a be the angle between the parts of the string.

Let A denote the point of the string where the string
leaves the Pully, at which we may suppose the Power to
act. Let 4 be displaced to a; draw ap perpendicular to
the lim} 3:‘ action of P: then Ap is the resolved displace-
ment of 4.

Let B, the centre of the Pully, be displaced to b: then
Bb cos a is the displacement of B resolved in the direction
of the Weight. Draw am parallel to Bb meeting the line
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of action of P at m. Let C and ¢ denote the points at
which the part of the string with the fixed end X leaves
the Pully in its two positions.

Now  Ap=Am+mp=Am+am cos 2a.

But since the length of the KCA of the string is
equal to the length of the part Kca we have Am=Cc=Bb.

Also it may be shewn that am is equal to Bb.

Thus Ap=Bb(1+ cos 2a)=2Bb cos’a.

Therefore
Resolved displacement of 4 _ 2Bbcos’a_, . w
Resolved displacement of B~ Bbcosa Y

Hence P multiplied by the resolved displacement of
its point of application is equal to # multiplied by the
resolved displacement of its point of application.

239. In the preceding Article we considered such a
displacement as left the two parts of the string inclined at
the same angle as they were originally: it is however usual
to consider another displacement, in which this condition
is not fulfilled. We will now give the investigation; but it
involves so many approximations, instead of exact equalities
that it is difficult for a beginner.



188 VIRTUAL VELOCITIES.

Let K be the fixed end of the string. Suppose that
part of the string to which the Power is applied to pass

over a small fixed or pnll{ at Z, such that K and Z are

in the same horizontal line. Let 2a be the angle between
the parts of the string. Let the system be displaced so
that the point of ap%l;]cation of the Weight rises vertically
through the height Bb. Let A denote the point of the
string where the string leaves the Pully, at which we may
suppose the Power to act; and suppose A displaced to a.
Draw ap perpendicular to AL; then Ap is the resolved
displacement of 4.

Let AC be th?mgart of the string in contact with the
Pully in the original position, and s¢ the part in contact
with the Pully in the second position.

Draw am vertical meeting AL at m: then the angle
amg{:a, and mp=am cos a.

ow when the displacement is very small we may con-
sider that am=B8b. ¥or if sa were parallel to 4m then
am would be parallel and equal to Bb; and since the angle
between sa and Am is supposed very small we may treat
these straight lines as if they were parallel.

Also when the displacement is very small we may con-
sider Am=DBbcosa. For the length of the part KCA of
the string is exactly equal to the length of the part Kta;
.the parts in contact with the Pully, AC and s, will be
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very nearly equal: and therefore we may consider that
as=KC—Kt. Now if KC and Kt coincided in direction
we should have KXC— Kt=Bb cos a.

And we regard Am as parallel and equal to sa, so that
we take 4m =as=1Bbcos a.

Thus Ap=Am+mp=28b cos a.

Therefore, when the displacement is very small,
Resolved displacement of A _ 28bcosa _ 2.cos a—Z
Resolved displacement of B~  Bb Y

Hence P multiplied by the resolved displacement of its
point of apfylication is equal to 1 multiplied by the re-
solved displacement of its point of application,

240. 70 demonstrate the Principle for the First
System of Pullies.

Let there be four Pullies.
Suppose the Weight raised
through a height s. Then the
lowest Pully is raised through
a height s, the next Pully is
raised through a height 2s, the
next. Pully is raised throu%ll:] a
height 42 and the highest Pully
is raised through a height 8s.
And as the highest Pully is
raised through a height 8sthe

int at which the Power acts -
s raised through a height 16s :
see Art. 237.

Therefore
Displacement of the point at which Pacts 168 2¢ W

Hence P multiplied by the displacement of its point
of application is equal to # multiplied by the displace-
ment of its point of application.

In a similar manner the result may be established
whatever be the number of Pullies,
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241, To demonstrate the Principle for the Second
System of Pullies.

Let there be four strings at the
lower block. '

Suppose the Weight raised
through a height s, then each of
the four strings at the lower block
is shortened by #; and therefore
the point at which the Power acts
must descend through 4s.

Therefore ‘
Displacement of the point at which Pacts _4s_4_ W

Displacement of the point at which W acts s 1 2P °

Hence P multipliedp!,); the displacement of its point of
application is equal to multiplied by the displacement
of its point of application. .

In a similar manner the result may be established
whatever be the number of strings at the lower block:

242, In this system of Pullies it is easily seen that
when the Weight is raised through a height s a length s of
string passes over the highest Pully of the lower block, a
length 2s passes over the lowest Pully of the upper block,
a length 3s passes over the next Pully of the lower block,
a length 48 passes over the next Pully of the higher block ;
and 8o on if there are more Pullies. Hence it follows that
if the radii of the Pullies at the lower block are grbporbiona.l
to 1, 3,... the Pullies will turn through equal angles in
equal times when the machine is used to raise a Weight.
T?ms all these Pullies may be connected together so as to
turn on one common axis. ~ Also if the radii of the Pullies
at the upper block are proportional to 2, 4,... these Pullies
may be connected so as to turn on one common axis.
This arrangement was invented by James White, and is
called White's Pully. .
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243. To demonstrate the Principle for the Third
System of Pullies.

Let there be four Pullies.
Suppose the Weight raised
through a height s. Then the
highest moveable Pully descends
through a depth s. The next
Pully descends through 2s in
consequence of the descent of the
Pully above it, and through & be-
sides in consequence of the ascent
of the Weight ; thus it descends
through (2+1)s on the whole.
The next Pully descends through
twice this depth in consequence
of the descent of the Pully imme-
diately above it, and through
8 besides in consequence of the ascent of the Weight ; thus
it descends through 2(2+1)s+# on the whole, that is
through (2°+2+1)s. Similarly the end of the string at
which the Power acts descends through (28+2%+2+1)s.

Displacement of the point at which P acts
Displacement of the point at which W acts
_(2+2242+1)s 284204241 W

8 1 P
Hence P mult:f)lied"!;y the displacement of its point of
application is equal to /" multiplied by the displacement
o¥1t4 point of application.

In a similar manner the result may be established
whatever be the number of Pullies.

Therefore

244, To demonstrate the Principle for the Inclined
Plane.

Let a Weight W be su;:gorted at L on an Inclined
Plane by a Power, P, the direction of which makes an

T, M. 11
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le B with the Plane. Suppose »
:ngeight displaced along the
Plane to a point K. Then the
displacement of Z resolved along B
the direction of P is LK cosf; K
and the displacement of L re- 1
solved along the direction of W is
LK gina: see Art. 231. A

Therefore
Resolved displacement of the point at which P acts
Resolved dispiacement of the point at which W acts
_LKcosB_cosB_W
“ LKsna sina P°
Hence P multiplied by the resolved displacement of its
g;)‘int of application is equal to 7 multiplied by the resolved
isplacement of its point of application.

a

245. To demonstrate the Principle for the Screw.

Suppese the Power-arm to make a complete revolution,
then the Weight would rise through a height equal to the
distance between two consecutive :ﬁrewds measured parallel
to the axis of the Screw. The path of the end of the
Power-arm, estimated on the horizontal plane in which the
Power is supposed to act originally, is the circamference of
a circle having the Power-arm for radius. If the ‘Power-
arm instead of making a complete revolution makes only &
small part of a revolution, the ratio between the displace-
ments of the end of the Power-arm and of the Weight re-
mains the same. Therefore

Resolved displacement of the point of applicatfon of P
Displacement of W~

_ circumference of circle with Power-arm for radius _ W~
distance between two consecutive threads

=5

Hence P multiplied by the resolved displacement of
its point of application is equal to W multiplied by the dis-
placement of its point of application.
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246. The student will not find any difficulty in shewing
that the Principle is true with respect to the various com-
pound machines described in Chapter xvrr.

Examprrs. XVIII.

1. Ona Wheel and Axle a Power of 71bs. balances
1cwt, and in one revolution of the Wheel the point of
application of the Power moves through 32 inches: find

rough what height the Weight is raised.

" 2. The radius of the Wheel is 15 times that of the
Axle, and when the Weight is raised through a certain
height it is found that the point of alz‘glication of the Power
has moved over 7 feet more than the Weight: find the
height through which the Weight was raised.

. 3. Inthe First System of Pullies find how much string
passes through the hand in raising the Weight through one
inch, there being four Pullies.

4. Inthe First System of Pullies it is found that 5 feet
4 inches of string must ‘Slass through the hand in order to
raise the Weight 2 inches: find how many Pullies are
employed.

5. In the First System of Pullies the distance of the
highest Pully from the fixed end of the string which passes
round it is 16 feet: find the greatest height through which
the Weight can be raised, there being four Pullies.

6. In the Second System of Pullies if P descends
through 12 feet while 7% rises through 2 feet, find the
number of strings at the lower block.

7. In the Second System of Pullies if there be five
strings at the lower block and W rise through 6 inches,
find how much P descends.

8. In the Second System of Pullies if P descend
through 1 foot, 7 will rise through % inches, where n is

the number of Pullies in the lJower block.
11-2
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XIX. Friction.

247. We have hitherto supposed that all bodies are
smooth ; eractically this is not the case, and we must now
examine the effect of the roughness of bodies.

" 248, The usnal meaning of the words smooth and
rough is well known; and a little explanation will indicate
the sense in which these words are used in Mechanics.

Let there be a fixed plane horizontal surface formed of
lished marble; place on this another piece of marble
ving a plane polished surface for its base. If we attempt

to move this piece by a horizontal force we find that there
is some resistance to be overcome: the resistance may be
very small, but it always exists. We say then that the
surfaces are not absolutely smooth, or we say that they are
to some extent rough.

Thus surfaces are called smooth when no resistance
is caused by them to the motion of one over the other;
they are called rough when such a resistance is caused by
them; and the resistance is called friction.

249, The following is another mode of defining the
meaning of the words smooth and rough in Mechanics,
Bodies are called smooth if the direction of the mutual
action between them when they are pressed together is
perpendicular to the surfaces in contact, and rough if this-
is not the case.

‘When two surfaces in contact are both plare surfaces
the definition is immediately u:Ppliwble; when one or each
of the surfaces is a curved surface some exﬂlmation is re-

uired. When one surface is curved and the other plane,
the perpendicular to the plane surface at the point of con-
tact is to be taken for the common perpendicular. When
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each surface is curved, a plane must be sapposed to touch
each surface at the point of contact, and the perpendicular
to this plane at th:uﬂ)tint of contact is to be taken for the
common perpendi 3

250. The following laws relating to the extreme
amount of friction which can be brought into action be-
tweetx'n plane surfaces have been established by experi-
men

(1) The friction varies as the mormal pressure
tzl;en the materials of the surfaces in contact remain
the same.

(2) The friction is independent of the extent of the
surfaces in contact so long as the normal pressure re-
mains the same.

These two laws are true not only when motion is just
about to take place, but when there is sliding motion.
But in sliding motion the friction is not always the same as
in the state bordering on motion: when thereis a difference
the friction is greater in the state bordering on motion than
in actual motion.

(8) The friction 18 independent of the velocity when
there is sliding motion.

. 251, Coefficient of friction. Let P denote the force
Eg ndicular to the surfaces in contact by which two
ies are pressed together; and let # denote the extreme
friction, that is, let /" be equal to the force parallel to the
surfaces in contact which is just sufficient to move onoe body
along the other; then the ratio of # to P is called the
coefficient of friction. It follows from the experimental
laws stated in the preceding Article that the cogfficient of
JSrriction is a constant quantity so long as we keep to the
same pair of substances.

The following experimental results are given by Pro-
fessor Rankine; they apply to actual motion :
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The coefficient of friction for iron on stone varies be-
tween ‘3 and 7, for timber on timber varies between 2
and *5, for timber on metals varies between 2 and ‘6, for
metals on metals varies between 15 and ‘25, Friction acts
in the opposite direction to that in which motion actually
takes place, or is about to take place.

952. Angls of friction. Let a body be placed on an
Inclined Plane ; if the Plane were perfectly smooth the bod
would not remain in equilibrium, but would slide or rol
down the Plane: but practically owing to friction it is
quite possible for the body to remain in equilibrium,

R

Let W denote the weight of
the body, which acts vertically E
downwards. Let R denote the
resistance of the Plane which
acts at right angles to the Plane,
Let F denote the friction which
acts along the Plane.

Suppose the body to be in
equilibrium; then we have, as in Art. 215, by resolving the
forces along the Plane and at right angles to it,
F— W gin a=0,
R— W cosa=0.

Hence by division, % =tana.

This result is true so long as the body is in equilibrium
whatever be the inclinatiog of the playne to :l?e horizon,
Now suppose the plane to be nearly horizontal at first and
let the inclination be gradually increased until the bod

is just about to slide down the plane; the value of

in this state is by our definition the coefficient of friction :
80 that the coefficient of friction is ! to the tangent
%‘ ct?:i inclination of the plane when the body is just

e .

In this way we may experimentally determine the value
of the coefficient of friction for any proposed pair of sur-
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faces. ‘The inclination of the plane when the body is just
about to slide is called the angle of friction.

253, The only case of friction besides that of plane
surfaces which is practically important in Statics, is that of
a hollow cylinder which can turn round a fixed cylindrical
axis, and that of a solid cylinder which can turn within a
fixed hollow cylinder or on a fixed plane. It is found by
. experiment that in these cases the extreme friction is very
nearly proportional to the pressure; but the coefficient of
friction is much less than it would be for plane surfaces
of the same material kept in contact by the same pressure,

254, Statical Problems respecting friction involve two
points, namely, the determination of the extreme or limit-
ing position or positions a¢ which equilibrium is possible,
and the determination of the range of positions within
which equilibrium is possible. Thus in Art. 252 the
limiting position is that in which the tangent of the in-
clination of the plane is equal to the coefficient of fric-
tion, and equilibrium will subsist as long as the inclination
is less than the value thus determined. We may describe
the process of solving statical J)roblems involving friction
thus: let # denote a friction and R the corresponding pres-
sure; put pR for F in the conditions of equilibrium: then
the extreme position of equilibrium is found by making p
equal to the coefficient o}friction for the substances in
consideration; and the range of positions within' which
equilibrium is possible is found by ascribing to g values
less than the coefficient of friction. If there are various
frictions, and the pairs of surfaces in contact not all of the
same material, we shall require different symbols to denote
the ratio of the friction to the pressure in each case.

This general description will be illustrated by the re-
maining Articles of the present Chapter.

256. We will now solve the following problem:

One end of a uniform beam is on a smooth inclined
plane, and the other end on a rough horizontal plane:
determine the limiting positions of equilibrium.
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Let DE be the beam, BA the inclined plane, DAC
the horizontal plane. Let

a denote the angle BAC, 8

and 0 the angle £DA. % B
The forces acting on G B

the beam may be denoted D

as follows: a vertical force, ¥ A C

R, and a horizontal force,

F, arising from the action

of the rough horizontal
plane at D; a force, S, at
right angles to the smooth inclined plane at E; and the
weight of the beam, W, which acts vertically downwards
through G, the centre of gravity of the beam.

‘We apply the conditions of equilibrium of Art. 93.
Resolve the forces vertically and horizontally : thus

R+8Scosa—W=0.....c....coornnnan (1),
F-8sina=0.....cccccoeerrnrnen. (2).

W

Take moments round D: thus
W.DG cos 0=S.DE cos(a—0),
that is Weos0=25¢c08(@—0)..cccerererninnnns (3).

Put pR for F; then from (1) and (2)
' p(W—-Scosa)=Ssina,

- W
therefore S_sino,+peoso, ..................... (4);
Wsina
and then from (1) R= m .................. (5)-
Substitute the value of S'in (3): thus
' _2ucos(a—0) -
o_s—————m””ma ..................... (6).
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The limiting position of equilibrium is assigned by the
value of 6 found from this equation, p being put equal to
the coefficient of friction which is snpgos;g known. We
%roceed to investigate the range of positions of equilibrium.

rom (6) we obtain
_ cosfsina
F=9cos (@a—0)—cosa cos 0

- cosfsina _ tana v
cosacos 0+2sinfsina 1+2 tan0ta.na"'( >

Now it is obvious that 6 must lie between 0 and a.
Hence we deduce the following rqsults :

- L If the coefficient of friction be not less than tana
every position is one of equilibrium.

II. If the coefficient of friction lies between tana and

i‘;t%nt:ﬁ , then 6 may have any value between a and the

limiting position assigned by (6) or (7).

. o e tan a
III. If the coefficient of friction is less than T+2tania’
there is no position of equilibrium.

In cases II and III. suppose the beam in equilibrium
when 6 has an assigned value; and let x be determined from
g): then (4) and (5) will determine the values of the forces

and S, and (2) will determine the value of 7.

The resultant action of the rough horizontal plane on
the beam is the resultant of the forces R and #'; and is
theroforo equal to ,/(2%+ £ that s to ,,/g +p%) R in the
limiting position. remark is applicable also in all

T Cases,

256. The beginner may perhaps object to the investi-
gation of the preceding Article that it is impossible to
obtain a perfectly smooth inclined plane, so that the pro-
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blem cannot co d with any real experience. We ma
reply, that althougﬁ it is impossible to obtain a perfectl;
smooth inclined plane, yet there is no difficulty in imagining
such a plane; and that the problem illustrates the principles
of the subject very well even although the conditions which
it sup; cannot be expeﬁmentallisecnred: and we ma,
add, that it would be practically possible to make the inclin
plane so very much smoother than the horizontal plane, that
the friction arising from the former might be neglected in
comparison with the friction arising from the latter,

‘We proceed to consider the effect of friction on some of
the Mechanical Powers.

257. The Lever with friction.

Suppose a solid bar pierced with a cylindrical hole,
through which passes a solid fixed cylindrical axis. Let
the outer circle in the figure represent a section of the
cylindrical hole made by a plane perpendicular to its axis;
and let the inner circle represent the corresponding section
of the solid axis. In the plane of this section we sap-

N
]

\
Y .
pose two forces, P and W, to act on the bar at right
angles to the bar. Also at C, the point of contact of %he
bar and the axis, there will be the action of the rough axis
on the bar; denote this by a force R along the common
radius and a force F along the common tangent. Suppose
that these four forces keep the bar in equilibrium in a l?:ri-
zontal position,
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Let r denote the radius of the outer circle, 4 and b
the lengths of the Ferpendiculars from the centre of -this
circle on the lines of action of P and W respectively. Let
6 be the inclination of CR to the vertical. '

We apgly the conditions of equilibrium of Art. 93. Re-
s:lveh the forces parallel to the bar and at right angles to
it: thus

RsinO—Fcos 0=0....ccouueererennnn. (1),

RcosO+Fsin0—P—W=0....cceecrureerrrnees ).
Take moments round C': thus

P(a+rsind)=W (b—rsinf)............... (3).

Put pR for F'; then in the limiting position of equili-
brium p is equal to the coefficient of friction which is sup-
posed known: see Art. 253.

Thus from (1) sin §—pucos =0; therefore tanf=p.
This determines 0; and then (3) determines the ratio of
P to W. From (1) and (2) we can find R and F. ’

If the point of contact C' be supposed to fall on the
other side of the vertical through the centre of the outer
circle, we should have instead of (3),

Pla—rsinf)=W b+rsinb) ......couer..n. (4).
= i =———_E:' fro
From tan 6=p we deduce sin § Jica’ and from (3)

B
and (4) we infer that the bar will be in equilibrium pro-
vided the ratio of = lies botween

T e
b AA+p) ang b+~/(l+#f),

e —m
RV SN )

where p is the known coefficient of friction,
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258, The Inclined Plane with friction.

Let a be the inclina- R
tion of the Plane. Su P
%ge a body of Weight

placed on the Plane,
and acted on bya Power
P inthe direction which
makes an anil\:gﬁ with,
the Plane. First sup-
pose the bod{ Jjust on l
the point of moving W
down the Plane. Let
R denote the resistance which acts at right angles to the
Plane, and pR the friction which acts along the Plane
upwards, p geing the coefficient of friction. lve the
forces along the Plane, and at right angles to it, as in
Art. 215: thus

PcosB+pR~ W sina=0............ (1),

R+PsinB— W cosa =0............ (2).
Substitute in (1) the value of R from (2); thus
W sina—pW cosa
P cosf—psmpB . (3)
Next sup’Fose the body just on the point of moving up
he

the plane. friction now acts down the plane; and
proceeding as before we obtain '
_Wsina+pW cosa
P= W ..... e (4)
It will be seen that this result can be deduced from the
former by changing the sign of u.

The equations (3) and (4) give the ratio of P to W in
the extreme states of equilibrium; and we may infer that

the body will be in equilibrium if pi;, lies between

sin a~pucos a sina+p cos a
cos8—pusin B cosB+pusing”
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A particular case of the general result may be noticed.
Suppose S8=0 so that the force acts along the plane ; then
(3) and (4) give respectively

P =W (sina—pcosa), P= W (sin a + p cos a).

Instead of an inclined plane suppose a body of weight
W placed on a rough horizontal plane, and acted on by a
force P inclined at an angle 8 to the horizon. Then we
shall find that .

- W
“cosB+psinB’

1t will be seen that this result is the same as we should

obtain by putting a=0 in (4).

259. Let e denote the angle of friction; see Art. 252.
Then tan e=p. The first value of P of the preceding
Article
) _ Wsina—tane Wcosa_ Wsin(a—e¢)

cosB—tanesinB ~  cos(8+e)
The second value of P
i W sina+tane Wcosa _ W sin (a+e¢)
cosB+tanesing ~ cos(B—e)

Suppose we require to know the least Power which will
suffice to prevent the body from moving down the plane,
the Power being allowed to act at the inclination to the
Plane which we find most suitable.

Consider then that 8 may vary: the first value of P will
be least when cos (8 +¢) =1, that is when 8+¢=0, so that
B= —e. Hence the Power must be supposed to act at an
inclination to the Plane equal to the angle of friction,
measured below the Plane. And the value of P is
W sin (a—e).

Again, suppose we require to know the least Power
which will suffice to move the body up the Plane. The
second value of P is least when cos (8— ¢)=1, that is when

=¢; and the value is then W sin(a+e).
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As a particular case of the last result suppose a=0, so
that instead of an Inclined Plane we have a horizontal
Plane; thus we find that in order to move a given Weight
along a rough horizontal plane with the least Power we
should make the Power act at an inclination to the Plane
equal to the angle of friction ; and then the Power is equal
:? the Weight multiplied by the sine of the angle of fric-

on. .

260. The Screw with friction. See Art. 222,

Let 7 be the radius of the cylinder, b the length of the
Power-arm, a the angle of the screw. Suppose that the
Weight is about to prevail over the Power. Let x be the
coeflicient of friction. The Screw is acted on by the
following forces: the Weight 7#”; the Power P; the re-
sistances R, S, 7,... at various points of the surfaces in
contact, at right angles to the surfaces, and so making an
angle a with the vertical; and frictions pR, uS, p7,...
which will all make an angle 90°—~a with the vertical.

Then using the same conditions of equilibrium as in
Art. 222, we have .

W=(R+8+T+..)cosa+pu(R+S+T+...)sina ...... (1),
Po=(R+8+T+..)rsina—p(R+S+T+..)rcosa...(2).

From (1) we obtain
R+S+ T+""Wa§-”m§ ,
then, substituting in equation (2)
Pt ey,
therefore P _rena~pcoss (3).

W bcosatpsina

If we suppose P about to prevail over 7~ we obtain
P _rsina+pcosa
W bcosa—psina
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The equations (3) and (4) give the ratio of P to 7 in
the extreme states of equilibrium ; and we may infer that
there will be equilibrium if PW-lies between
rsina—pcosa d rsina+pcosa
beosa+ psina bcosa—psina’
If we put tan e for u the expressions become
: %‘- tan (a—e¢) and g tan (a+e).

261. If a body be placed on an Inclined Plane, aud
the friction be great enough to prevent sliding down the
Plane, the body will stand or fall according as the vertical
line drawn through the centre of gravity of the body falls
within or without the base. This may be established in
the manner of Art. 152.

Exampres. XIX.

1. Find the coefficient of friction if a Weight just
rests on a rough plane inclined at 45° to the horizon.

2. A Weight of 101bs, rests on a rough plane inclined
at an angle of 30° to the horizon: find the pressure at
right angles to the plane and the force of friction exerted.

3. A force of 31bs. can, when acting along a rough
inclined plane, just support a weight of 101bs.,, whilea force
of 6 1bs. would be sufficient if the plane were smooth: find
the resultant pressure of the rough plane on the Weight.

4. A body is just kept by friction from sliding down a
rough plane ¥neh’]ned atpan angle of 30° to the horizon:
shew that no force acting along the plane would pull the
body upwards unless it exceeded the Weight of the body.

5. A body placed on a horizontal plane requires a
?orizontal force equal} to h::;s own ‘mliglgl wdogergome {;he
riction : supposing the e gradually tilted, find at what
angle the bo«f;ev‘:ﬁ begl'II)I to slide. ’
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6. In the preceding Example if additional support be
given by means of a string fastened to the body and to a
point in the plane, so that the string may be parallel to
the ui)l:me, find at what inclination of the plane the string
would break, supposing the string would break on a
smooth ineclined plane at an inclination of 45°

7. If the height of a rough inclined plane be to the
length as 3 is to 5, and a Weight of 15 1bs. be supported by
friction alone, find the force of friction in Ibs.

8. If the height of a rough inclined plane be to the
length as 8 is to 5, and a weight of 10 Ibs. can just be
supported by friction alone, shew that it can just be drawn
up the plane by a force of 12 1bs. along the plane.

9. Find the force aloniI the plane required to draw a
weight of 25 tons up a rough inclined plane, the coefficient

of friction being 5 , and the inclination of the plane being
12

such that 7 tons acting along the plane would support the
Weight if the plane were smooth. PPo

10. Find the force in the preceding Example, supposin
it to act at the most advantageous inclinat.ionf to thg planeg:

11. A ladder inclined at an angle of 60° to the horizon
rests between a rough pavement and the smootk wall of a
house. Shew that if the ladder begin to slide when a
man has ascended so that his centre of gravity is half way
up, then the coefficient of friction between the foot of the.

ladder and the pavement is % V3.

12. A heavy beam rests with one end on the ground,
and the other in contact with a vertical wall. Havi
given the coeflicients of friction for the wall and the gronvzﬁ
and the distances of the centre of gravity of the beam
from the ends, determine the limiting inclination of the
beam to the horizon.
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XX. Miscellaneous Propositions.

262. In the present Chapter we shall give some miscel-
laneous propositions of Statics,

. 263. We have hitherto confined ourselves almost en-
tirely to the equilibrium of forces which act in a plane: the
following Articles will contain some propositions explicitly
relating to forces which are not all in one plane,

264. 7o find the resultant of three forces which act on
a particle and are not all in one plane,

Let 04, OB, OC repre- g
sent three forces In magnitude
and direction which act on a
particle at O. Let a parallel-
epiped be formed having these D
straight lines as edges; then y A
the diagonal 0D which passes
through O will represent the
resultant in magnitude and 3 - £
direction,

For OE, the diagonal passing through O of the parallelo-
gram OAEB represent.spin magnitude and direction the
OEDE df;:r?umfs e 0D, 1ha i o7 passing

is a elogram, an , the onal passing
through O, represents in magnitude andmgjrection the
resultant of the forces represented by OF and OC, that i:i
the resultant of the forces represented by 04, OB, an

265. The preceding investigation is only a particular
case of the general process givenin Art. 52, but on account
of its importance it deserves special notice. As we can
thus compound three forces into one, so on the other
hand we can resolve a single force into three others which
act in assigned directions, Most frequently when we have
thus to resolve a force the assigned directions are mutually

T. M. 12
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at right angles; that is with the figure of Art. 264, the
angles A0B, BOC, COA are right les. The angle
OCD is then a rigﬁt angle, so that O0C=0D cos COD:
thus when the three components are mutually at right
angles a component 18 equal to the product of the resultant
tnto the cosine of the angle between them.

Also by Euclid, 1. 47, we have
0D =00+ CD*= 00+ OE*=0C*+ OB+ 0 A4*:

thus when the three components are mutually at right
angles the square of the resultant i3 equal to the sum of
the squares of the three components.

266. The process of Art. 52 Yor determining the re-
sultant of any number of forces acting on a particle is
applicable whether the forces are all in one plane or not ;
the process in Art. 56 assumes that the forces are all in
one plane: we shall now extend the latter process to the
case of forces which are not all in one plane.

267. Forces act on a particle in any directions :
required to find the magmitude and direction of their
resultant.

Let O denote the position of the particle; let Op, Og,
Or, 0s,... denote the directions of the forces; let P, @,
R, S,... denote the magnitudes of the forces which act along
these directions respectively.

Draw through O three straight lines mutually at right
angles; denote them by Oz, Oy, Oz: and resolve each
force into three components aiong these straight lines, by
Art. 265. Thus P may be replaced l}; the following thiree
components: P cos pOx along Oz, P cos pOy along Oy,
and P cos Oz along Oz. Similarly @ may be replaced by
Scosqo.z along O, @ cos g0y along Oy, and 5cosq0z

ong Oz. And so on,

Let X denote the algebraical sum of the components
along Ox; so that

X =P cospOx+ Qcos g0z + R cosrOz+ S cos 20z + ...
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Similarly let Y and Z denote the algebraical sums of the
components along Oy and Oz respectively.

Thus the fiven system of forces is equivalent to the
three forces X, Y, Z which act along three straight lines
mutually at right angles.

. Let ¥ denote the resultant of the given system of fbrces,
and Opv its direction; then, by Art. 265,
- V*=X3+ Y3+ 23,

X Y zZ .
eostz:—,;, cos 90y = 7 cosv0z=7,—.

Thus the magnitude and the direction of the resultant
are determined.

268. Since V cos vOz=X, the resolved part of the
resultant tn any direction 18 equal to the sum of the
resolved parts of the components in that direction: see
Arts. 44 and 90. '

269. In Art. 39 we have given the conditions under
which three forces acting on a particle will maintain it in
equilibrium; we will now present these conditions in a
slightly different form, and then demonstrate a correspond-
ing result for the case of four forces which are not all'in
one plane.

270. OA, OB, OC ars three straight lines of equal
length in one plane, and they are not all on the same side
. of any straight line in the plane passing through O;

%ce; h%t Q, R respectively act along these straight lines

P _ Q _ R .

area of OBC  area of 0CA  area of OAB°
these forces will maintain a particle at O in equilibrium.
For the area of a triangle is half the product of two
sides into the sine of the included angle; hence each force
is proportional to the sine of the angle between the direc-

tions of the other two: and the proposition follows imme-
diately from Art. 39.

12—2
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271. OA, OB, OC, OD ars four straight lines of
equal length, no three of them being tn the same plane,
and they are not all on the same side of any plane passing
through O ; forces P, Q, R, 8 respectively act along these
straight lines such that

pP _ Q _ R _ S .
vol. OBCD ~ vol. OCDA ~ vol. ODAB ™ vol. OABC*

these forces will maintain a particle at O in equilibrium.

Let p denote the length of the perpendicular from O on
the plane BCD. Resolve each force into three along direc-
tions mutually at right angles, one direction being perpen-
dicular to the plane BCD. The sum of the components of

%0% and S in the direction perpendicular to the plane
=0ox-2. P b _ A
_QxOB+Rx00+Sx6D—_(Q+R+S)OB.

Let A denote the length of the ndicular from 4 on
the plane BCD. The component of P perpendicular. to
the plane BCD is P ho—Ap . Now the direction of the com-
ponent of P is ite to the direction of the sum of the
components of @, R, and S by reason of the condition that
the straight lines 04, OB, OC, OD are not all on the
same side of any plane through O, Moreover by reason of
the given ratios we have

P _ vol. of 0.BCD
P+Q+R+S8 sumofvolsof 0BCD,0CDA,0DABOABC

= e— = e

therefore Ph=(P+Q+R+S)p,
and Ph-p)=(@+R+S8)p.

Thus the algebraical sum of the components n-
dicular to the pﬁm BCD vanishes, Po perpe
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Similarly the algebraical sum of the components esti-
mated perpendicular to CDA4, DAB, and ABC vanishes,
Hence the resultant of the four forces vanishes; for if it
did not the component estimated in all the four assigned
directions could not vanish. See Art. 268.

272. Conversely if four forces acting on a particle
maintain it in equilibrium, and no three of the forces are
in the same plane, the forces must be in the proportion
specified in the preceding Article.

For take 04, OB, OC, OD all equal on the directions
of the forces; then, resolving perpendicular to the plane
BCD, we have as a necessary condition of equilibrium
P p P _p_vol. of OBCD
Q+R+S8 h—p P+Q+R+8 & volof ABCD’
and similar expressions hold for the ratios of @, of R, and
of S, to P+Q+R+8.

; thus

273. We will now gi&e some additions to our account
of the theory of couples.

274. Two unlike couples in parallel planes will
balance if their moments are equal.

Let there be two unlike couples in gan]]el planes of
equal moments. By Art. 68 we may replace a couple bj
any like couple in the same plane which has an eq
moment. Hence we may sup) the forces of one couple
to be equal to the forces of the other couple: then as the
mox;xlents are equal the arms of the couples will also be
equal.

Let P and p denote the forces of one couple; and
Q and ¢ the forces of the other; where P, p, @, and g are
all numerically equal. Su&)oae P and @ to be like force
and therefore p and ¢ to be like. The resultant of 2 an
Q will be 2P, parallel to the direction of P and @, and
midway between them. The resultant of » and ¢ will be
%l}la, parallel to the direction of p and ¢, and midway between

em.
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Suppose any plane to cut
the li!lljgsoofdaczign ;i;c}t’ allld
at and a respectively, ’ B
Bad of Q aud g at 3 amzhl;
respectively. en since the
couples are in parallel planes
Aa is parallel to Bb; and
since the arms are equal 4a
is equal to Bb. Thus AaBb

is a parallelogram. And since X a

the g:uples are unlike, 4 and

B are at the 0{;posite ends of

a diagonal. The resultant of P and @ acts at the middle

point of 4B, and the resultant of » and ¢ at the middle
roint of ab; so that they act at the same point. And as the
wo resultants are equal but unlike they balance each other.

275. Hence a couple is equivalemt. to another like
couple of equal moment in any plane parallel to its own.

276. We will briefly consider the case of two couples
in two planes which are not parallel. .

By Art. 68 we may transform each force in its owh
lane until the two couples have a common arm situated in
he straight line which 18 the intersection of the two planes.

Let Cc denote this common arm. Let 2 and p be the
forces which form one couple, and @ and ¢ the forces which
form the other ; and suppose that P and @ act at C, and
p and ¢ at c¢. Then P and @ may be replaced by & single
resultant 2, and p and qulz a single resultant 7 ; also R
and 7 will be equal and parallel but unlike. Thus the two
couples are compounded into a single couple,

277. 'When we have spoken of a string passing round
a peg or a pully we have hitherto assumed the peg or pully
to be smooth. But in practice there may be a sensible
amount of roughness; and everg one must have observed
that if a ro coiled two or three times round a post, it
is possible for a force at one end to balance a much larger
force at the other end. This is owing to the friction
tween the rope and the post; and we shall now give some
investigations relating to this subject.
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278. A4 string 18 strotched round a rough right cir-
cular cylinder in a plane perpendicular to the axis: to
shew that as the portion of string in contact with the
cylinder increases in arithmetical progression the mecha-
nical advantage increases in geometrical progression.

Suppose 4B the por- A
tion of the string in cl:o?n- P
tact with the cylinder;
and let C be the centre of
the circle of which 4B is
an arc. Let P and @ be
the tensions of the string
at 4 and B respectively;
and suppose @ the greater.
Bupgose the string to be
in the limiting condition
of equilibrium, so that it is just about to move from 4
towards B.

I. The relation between P and @ will be of the
form%:K, where K is some quantity which does not

depend on the forces.

For suppose that without changing the angle .ACB, or
the radius AC, or the coefficient of friction, we double P;
then equilibrium will still hold if we also double Q. For
the result is the same as if we had two strings in contact
with the same cylinder, over equal arcs, and each acted
on by a force P at one end, and a force @ at the other.

Similarly if P be changed to 3P, and @ to 3Q, equili-
brium will still hold ; and 8o on. Thus if the angle, the radius,
and the coefficient of friction remain the same, @ varies as P,

II. Let the angle 4CB be denoted by 6 : then X must
be of the form %%, where & is some quantity which does not
depend on the forces, nor on 6.

For take any arbitrary angle a, and suppose that §=1na.
Imagine 4B to be divided into » equal ; and let
Q,, Qs, Qy, ... bp the tensions at the ends of the first, second,
third, ... of these parts, beginning from 4. Then f)y what
has been already shewn, we have
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Q_&_@_

y Jut Q,_"“"_H’
where H is some (}timntity which does not depend on the
forces, nor on 6. Hence by multiplication

o
T?:H*:Hﬂ =%,

1
wheare k=H¢%; and k& does not depend on the forces, nor
on é.

If the length of string in contact with the cylinder
increases in arithmetical progression, then 6 increases in
arithmetical progression ; and thus the ratio of @ to 2 in-
creases in geometrical progression.

This result explains the very great mechanical advan-
tage which is gained by coiling a rope two or three times
round a post. Suppose, for example, that when a rope is

coiled once round a post we have %:3 ; then when the

rope is coiled ¢wice round the post §=3’ ; when the rope

is coiled three times roun §=3=; and 8o on.

279. We will now determine the value of %, as the
process is instructive, although it requires more knowledge
of mathematics than we have hitherto assumed.

The forces which act on the portion 4B of the string
are the following : P along the tangent at 4, @ along the
tangent at B, and a resistance and a friction on every
indefinitely small element of the string 4.B.

The resistance on every element is a force the direction
of which passes through C': the corresponding friction is p
times this resistance and its direction 1s at right angles to
that of the resistance.

Suppose R to denote the resultant of all the resistances,
and ¢ to denote the angle its direction makes with C4 ;
then xR will denote the resultant of all the frictions, and
its direction will make an angle ¢ with the tangent at 4.

Buppose the string to be in equilibrium ; if it were to
become rigid, equilibrinm would still subsist; the forces.
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therefore must satis"fg the conditions of Art.93. Hence
e

msolving parallel to the tahgent and to the radius at 4 we
ve
P+pRcosp=Rsinp+Qcosf............ (1),
Rcos p+pRsin p=@sin4d............ (2).

____Q@sing
From (2) we have R_w_s brpsm o’
substitute in (1); thus

- @ sin 6 (sin p—p cos )
P=Qcos 6+ cos p+pusing *

Put tan a for x ; thus

_ Q(Sin¢008a—cos¢sina) <.
P=Qeos 0+ €08 ¢ co8 a +8in P sina sin0;
therefore P={cos 6—tan (a—¢) &in 6} Q.

But %

L _ %9, 80 that £~9=cos 6—sind tan (a—o);

=
y —k—0
therefore tan(a—¢)=%

This is an exact equation which is true for all values
of 6,and is therefore true when ¢ is indefinitely small: from
this consideration we shall deduce the value of % The
value of 4 will depend on the unit of angular measure
which we adopt: we will take the unit to be that of circu-
lar measure. Now when 6 is indefinitely small, so also is
¢, and the left-hand member of the last equation becomes
tana. Also cos =1, and 5~¢=1-—4 log % very approxi-
mately, so that we have on the right-hand side of the equa-
tion ﬂslitl)lgok ; and this by Trigonometry is equal to log %,
when 4 is indefinitely small.

Thus log £=tan a=p, therefore k=e*.

280. It will be seen that in the preceding Article we
only had occasion to employ ¢wo out of the ¢thres equations
of equilibrium of Art. 93. To form the third equation we
will take moments round C': thus we find that @ —P is
equal to the sum of all the frictions exerted.
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ExamprLEs. XX,

1. Three forces of 11, 10, and 2 Ibs, respectively act on
a particle in directions mutually at right angles: determine
the magnitude of the resultant.

2. Three forces P, P,and P./2 act on a icle in
directions mutually at right angles: determine the magni-
tude of the resultant, and the angles between the direction
of the resultant and that of each component.

3. Three forces each equal to P act on a fparﬁcle, and
the angle between the directions of any two forces is a; if
R denote the resultant, and 4 the angle between the direc-
tion of the resultant and that of each component, shew that

sin0=72§sina, Ri=P*(9~125int ).

4. A particle is placed at the corner of a cube, and is
acted on by forces P, @, R along the diagonals of the faces
of the cube which meet at the particle: determine the re-
sultant force.

5. Two couples act in planes which are at right angles
to each other; each force of one couple is 3 1bs, and the
arm is one foot; each force of the other couple is 21bs,
and the arm is two feet: determine the moment of the
resultant couple.

6. D is the vertex of a pyramid on a triangular base
ABC; forces P, Q, R act at the centres of gravity of the
faces DBC, DCA, DAB, at right angles to these faces
respectively, and such that

pr _ Q _ R .
area of DBC ~ area of DCA  area of DAB"

shew, by resolving P, @, and R, parallel and perpendicular
it bato A5G, thit, ol remltant s porpendieula 0

an e centre of gravity o H
and that the resnlta.ntgars the same ratio to the area of
ABC a8 P bears to the area of DBC.
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XXI. Problems.

281. We will close the part of the work relating to
Statics with some observations on the solution of Mechani-
cal Problems,

282. Problems may be_ proposed which have been
“formed by combining some definition or principle in Me-
chanics with some theorem of Pure Mathematics, and
which cannot be solved briefly and simply without the aid
of that theorem. The results given in Art. 121 exemplify
this remark; they are obtained by combining Euclid vL 3
and vI. A with an elementary principle respecting the centre
of parallel forces. It is obvious that in order to solve pro-
blems of this kind the student requires a knowledge of the
most important theorems in Pure Mathematics, together
with a readiness in selecting the appropriate theorem,
which can only be acquired by practice.

283. On the other hand ‘Slroblems may be proposed
which do not depend so much on a know e;!.lge of Pure
Mathematics as on a correct use of mechanical principles;
and I;slpecting this class of problems we may make a few
general remarks,

If forces act in one ¥la.ne on a rigid body three condi-
tions must be satisfied for equilibrium. These conditions
may be expressed in various forms, as we have shewn in
Chapter vi. The most interesting cgroblems, and at the
same time the most difficult, are such as relate to a system
of two or more bodies which are in contact or connected
by hinges or strings. The beginner should pay great atten-
tion to the following statements:

‘When a system of bodies is in equilibrium each body of
the system must be in equilibrium ; and so the forces which
act on each body must satisfy the conditions of equilibrium.

When two bodies are in contact some letter should be
used to denote the mutual action between them; and the
conditions of equilibrium will enable us to find the magni-
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tude of the force. With respect to the direction of the
mutual action see Art. 249.

‘We assume that if two bodies 4 and B are in contact
the force which A exerts on B is equal and opposite to
that which B exerts on A4: this principle is called the
equality of action and reaction, and it may be admitted
a8 an axiom,

If two bodies are connected by a string some letter
should be used to denote the tension, and the value of the
tension found from the conditions of equilibrium.

Beginners frequently make mistakes by assuming in-
correct values for the action which takes place between
two bodies, or for the tension of strings, ins of deter-
mining the values of these forces by the conditions of equi-
librium,

‘When a body is in equilibrium under the action of forces
in one plane three conditions of equilibrium must be satis-
fied, yet it may happen that we do not require to express
all these conditions; For example, in the case of a lever
We may require only the one fz?uatlon which is obtained by
taking moments round the fulecrum; the other two equa-
tions would serve to determine the magnitude and direc-
tion of the resistance of the fulcrum, and need not be
formed if we do not wish to know these,

‘We shall illustrate these remarks by solving some pro-
blems, -

284. Four beams without weight are connected by
smooth joints 8o as to form a parallelogram; the opposite
corners are connected by strings in tension: compare the
tensions of the strings.

Let ABCD represent the
gmllelogmm. Let P be the

nsion of the string 4C, and
@ the tension of the string
BD. Let O be the intersec-
tion of 4C and BD.

. The simplest mode of form-
ing a joint 1s to pass a smooth
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or pivot through the beams which are to be connected.
hus in the present case we have four beams and four
and el;agh of theesetoxqugt tke in eqni{dibrium% “')l‘g:
strings ma Suppos Jjoin the pegs, and so no
immediately connected with the beams.

Thus the beam 4B is acted on by only two forces, one
from the peg at 4, and the other from the peg at B. The
two forces must therefore be equal and g})posite, 80 that
their line of action must coincide with 48. Denote each
force by R.

. Bimilarly 4D must be acted on by two equal and oppo-
site 'forces, the line of action of which must coincide with
AD. Denote each force by S.

The rod 4B exerts on the peg at 4 a force R equal
and opgosit.e to that which the peg exerts on the rod ; simi-
larly the rod 4D exerts on the pegat 4 a force S equal
and opposite to that which the peg exerts on the rod.
Thus the peg at 4 is in equilibrium under the action of
forces P, R, S along AC, B4, and DA respectively.
Therefore, by Art. 38,

P _sinDAB
S “snBAC"

In the same way by considering the equilibrium of the
peg at D we obtain

Therefore

Thus the tensions of the strings are as the lengths of
the diagonals along which they act.
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285. It will be instructive to treat the preceding
problem algo in another manner. :

The joint may be made by a peg or pivot which is
rigidly attached to one beam and passes through the other.
Sup; for example that the ﬁegs are rigidly attached to
the AB and DC. We have then only four bodies
to consider namely the four beams. The strings may be
supposed attached to the beams 4B and CD.

The beam 4D is acted on by forces at 4 and D arising

.from the other beams. . The two forces must be equal and

opposite, so that their line of action must coincide with
} . Denote each force by S

Similarly the beam BC is acted on by two forces
which are equal and opposite, and having BC for their
line of action. Denote each force by 7.

The beam AB is acted on by four forces; namely P
along AC, Q along BD, S having 4D for its line of action,
and 7 having B(/g for its line of action.

‘We shall apply the conditions of equilibrium of Art. 88.

Take moments round B. Thus

S.ABsin BAD=P,.AB sin BAO;
so that S8in BAD=P sin BAO:
and S must act on the beam 4B in the direction DA.
Take moments round 4. Thus
T.AB sin ABC=Q.AB sin ABO;
so that T.sin ABC=Q sin ABO:
and 7'must act on the beam 4B in the direction CB.

Take moments round 0. Thus 7'=8.
sin BAD _Psin BAO
sin ABC ~ @ sin ABO’

P _sinABO _ A0
¢ sinBAO B0’

Hence

therefore
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286. A heavy rod rests with its ends on two given
smooth inclined planes: required the position of equi-
librium.

Let AB be the rod, R
AOM and BON the in-
clined planes ; MON being
a horizontal line.

The forces acting on
the rod are the resistance
of the plane at 4, at right
angles to 04, the resist-
ance of the plane at B, at

right angles to OB, and A
the weight vertically down- G

wards through the centre of -
gravity of the rod. Let N o M

AC and BC be the lines of action of the resistances of the

;éla.ne, and G the centre of gravity of the rod; then the
irections of the three forces must meet at a point by

Art. 41, so that G must be vertically under €, Join CQ.

" Let AG=a, BG=b0, the angle AOM =a, and the angle
BON=8; and let 6 be the inclination of 4B to the hori-
zon, that is, the angle between 4B and M produced.

Since C4 and C@ are perpendicular to O4 and OM
respectively, the angle GCA =the angle AOM=a. Simi-
larly the angle GCB=8.

The angle 04B=a-0, and the angle ABO =8 +6, by
Euclid, 1. 32.

GC _sinGQAC _cos(a—0)
G4 sinGCA~  sina '
GC _sinGBC _cos(B+6).
GB sinGCB~ sinf '’
therefore, by division,

b _sinB cos(a—6)

a” sina cos(B+0)’

Now
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bsina cos(a—0) cosacosO+sinasind
therefore  <in8 = 08 (BT 6) = 208 3 oos s Bemd
_ Cosa+sina tand
“cosB—sin B tan 0’
_bsina cos B—asin B cosa
therefore  tanf= @+B)smasinf

_bcotB—a cota
- a+bd ‘

287. As another example we will explain the balance
called Roberval’s Balance. .

AB and OD are
equal beams which
can turn in a ver- A M
tical plane round g
fixed points Z and
F in the same ver- -
tical line ; 4 Z being W
equal to CF, P

AC and BD are
equal beams connected with the former beams by pivots
at 4, B, C, and D. HK is a beam rigidly attached to
AC, and LI is 8 beam rigidly attached to 5D ; the angles
AHK and BLM bein’g’ﬁght angles. A weight P is hung
at K and a weight is hung at M: it is required to
find the ratio of 2 to /¥ when there is equilibrium, neg-
lecting the weights of the beams.

Since EF is vertical so are AC and BD; and KH
and LM are horizontal.

The piece formed of KA and AC is acted on by the
weight P, by a force at A4 arising from the beam AB{ and
by a force at C arising from the beam CD. Resolve the
force at 4 into two components, one vertical and the other
in the line AB. Resolve the force at € into two compo-
nents, one vertical and the other in the line CD.
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The components in the lines 4B and CD must be
equal and unlike; for if they were not the sum of the
lll)zrizontal components of the forces on the piece would not

zero.

Let Y denote the vertical force on the piece at 4, sup-
posed upwards: then the vertical force on the piece at O
must be P— Y upwards: for if it were not the sum of the
;:rbical components of the forces on the piece would not

zero.

Thus 4B is acted on at 4 by some force in the line
AB, and by a vertical force Y downwards, And CD is
acted on at C by some force in the line CD, and by a verti-
cal force P— Y downwards.

Similarly 4B is acted on at B by some force in the
line 4B, and by a vertical force downwards which we may
denote by Z. And CD is acted on at D by some force in
the line CD, and by a vertical force /7" —Z downwards.

Also AB is acted on by some force at %, and CD by
some force at Z.

Take moments round Z for AB: thus
Yx EAsin EAC=Zx EBsin EBD;

therefore Yx EA=Zx EB.

Take moments round F for CD; thus

(P—Y)FC sin FCA=(W ~Z) FD sin FDB;

therefore (P-Y)EA=(W-2Z)EB.

Hence, by addition,

PxEA=WxEB.

Thus the ratio of P to W is indiﬂendent of the lengths
of HK and LM ; and if EA=EB then P=W, .
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Miscellansous Ezxamples in Statics.

1. The magnitudes of two bodies are as 3 is to 2, and
their weights are as 2is to 1: compare their densities.

2. Two forces act on a particle in directions at right
angles to each other; they are in the ratio of 5 to 12, and
their resultant is equal to 65 lbs.: find the forces.

3. Three forces represented by 24, 25, and 7 are iu -
equilibrium when acting on a particle: shew that two of
them are at right angles.

4. The resultant of two forces which act at right
angles on & cle is 51 1bs.; one of the components
-is 24 1ba.: find the other.

5. Two forces acting in opposite directions to one
another on a icle have a resultant of 28 lbs.; and if
they acted.at right angles they would have a resultant of
521bs.: find the forces, :

6. ABC is a triangle and D the middle point of BC';
three forces represented in magnitude and direction by
AB, AC, DA act ona llYa.ﬂ.icle at 4: find the magnitude
and direction of the resultant.

7. Three forces 3, 4, 5 act on a particle in the centre

of a square in directions towards three of the angles of the

uare: find the magnitude and direction of the force
:vf‘ﬁch will keep the particle at rest,

8. A and Bare fixed points; P4 and PB represent
forces; if P moves along a fixed straight line, shew that
the extremity of the straight line representing the result-
lai:t of the two forces will move along another fixed straight

e
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9. 'Three forces, represented by those diagonals of
three adjacent faces of a cube which meet, act at a point:
:ll:ew tl;h:t the resultant is equal to twice the diagonal of

e cube,

10. A string passing round a smooth peg is pulled at
each end by a force equal to 10 Ibs,, and the angle between
-the parts of the string on opposite sides of the peg is 120°:
-ﬁn& the pressure on the peg, and the direction in which it
ac

11. Three smooth are fastened in a vertical plane
80 as to form an isosceles triangle with the base horizontal
and the vertex downwards, and vertical angle cqual to
120°. A fine string with a weight W attached to each
end is under the lower peg and over the other two.
Find the pressure on each peg. Find also the vertical
pressure on each peg. '

12. Find a point within an equilateral triangle at which
if a particle be placed it will be kept in equilibrium by
three forces represented by the straight lines joining the
point with the angular points of the triangle.

18. Forces represented in magnitude and direction by
the diagonals of a parallelogram act at one of the angles:
find the single force which will counteract them.

14. If R be the resultant of two forces P and Q
acting on a particle, and S the resultant of P and R,
shew that the resultant of .S and @ will be 2R.

15. Three equal forces act at a point, and their di-
rections are parnel to three consecutive sides of a reFu.lnr
hexagoulta: t find the magnitude and the direction of the
res 3

16. Shew that if one of two forces acting on a particle
be given in magnitude and position, and also the direction
of their resultant, the locus of the extremity of the straight

_lime representing the other will be a straight line.

13—2
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17. A weight is supported by two strings which are
attached to it, and to two points in a horizontal line: if
the strings are of unequal length, shew that the tension of
the shorter string is greater than that of the other.

18. Two weights of 31bs. and 41bs. respectively are
connected by a string which is passed over two smooth pegs
in the same horizontal line: find what weight must be at-
tached to the string between the pegs in order that when
the weights have assumed their ;iosition of equilibrium
the string may be bent at right angles,

19. A weight is su&ported by two strings equally in-
clined to the vertical : shew that if instead of one of them
we substitute a string pulling horizontally so as not to
disturb the position of the other, the tension of the latter

will be doubled.

Three forces act on a particle; the forces are

20.
11b, 41bs., and 6 lbs. ret;pecﬁvely, and the force of 41bs.
is inclined at an angle of 60° to each of the others: find
the magnitude and direction of their resultant.

21. Two couples mtﬁx along the sides of a parallelo-
gram are in equilibrium: find the ratio of the forces.

22. A straight rod two feet in length rests in a hori-
zontal position between two fixed pegs placed at a distance
of three inches apart, one of the peﬁn ing at the end of
the rod ; a weight of 51bs. is suspended at the other end:
find the pressure on each of the pegs.

23. A bent lever has arms of equal lenith making an

angle of 120°: required the ratio of the weights at the ends

f,f the at::;ls when the lever is in equilibrium with one arm
orizontal. .

24. ACB is a lever without weight of which the arms
CA, CB are straight and eq and inclined to one
another at an angle equal to a t angle and a half,
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‘When C4 is horizontal a weight P at A just sustains a
weight W at B; and when CB is horizontal W at B re-
gouiées a weight @ at 4 to balance it: find the ratio of P

25. A lever without weight is 5 feet in length, and
from its ends a weight is supgorted by two stri in
length 3 and 4 feet respectively: shew that the fulcrum
must divide the lever into two parts the ratio of which is
ltlhap of t:l. to 16, if there be equilibrium when the lever is

orizon :

26. Two cylinders of the same diameter whose lengths
are 1 foot and 7 feet respectively, and whose weights are in
the ratio of 5 to 3 are joined together so as to form one
cylinder: find the position of the fulcrum about which the
whole will balance.

27. A uniform bar 1} feet inlength and 41bs. in weight
rests in a horizontal ggsition upon a fulerum 3 inches
distant from one end: find what weight acting at this end
;;illl keep the rod at rest. Find also the pressure on the

crum.

28. Find the centre of gravity of four weights 11Ib,,
21bs., 31bs., 41bs.; placed at the angular points of a square.

29. 1If a quadrilateral be such that one of its diagonals
divides it into two equal triangles, the centre of gravity of
the quadrilateral s in that diagonal.

30. Having given the positions of three particles 4, B, C,

and tho positions of the oemtres of gravity of 4 and &, an

g Y. | amo C, find the position of the centre of gravity of
and C.

381. A heavy right-angled triangle is suspended by its
right angle, anrlyt?ng incligation of the hypotenuse to the
horizon is 40°: find the acute angles of the triangle.

32. Two scale pans are suspended from the two ends
of a straight.lever whose arms are as 3 is to 4, and an iron
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bar of 201bs. weight is laid on the scale pans, and will just
reach from the one to the other: find what weight must be
put into one scale to preserve equilibrium.

83. A uniform rod 3 feet long and weighing 6 ounces is
held horizontalli in'the hand, being supperted by means of
a finger below the rod two inches from the end, and the
thumb over the rod at the end : find the pressures exerted
by the finger and thumb respectively.

34. On a uniform straight lever weighing 51bs. and
5 feet in length, weights of 1, 2, 3, 4 1bs. are hung at the
distances 1, 2, 3, 4 feet respectively from one end: find the
position of the fulcrum on which the whole will rest.

d35. &t‘il:éf%‘;ym sigckhe feet lon, 1zliles &3’ f' tab%; with tgnz
end proj ond the edge of the e to the exten
of tao feet; the greatest weight that can be suspended
from the extremity of the projecting portion without de-
s:ygiing the equilibrium is 11b.: find the weight of the
st

36. Two equal particles are placed an two opposite
sides of a parallelogram: shew that their centre of gravity
will remain in the same E:eition, if they move along the
sides through equal lengths in opposite directions.

37. A beam capable of moving about one end is kept
in a position inclined to the horizon at an angle of 60°
by a string attached to the other end; the string is in-
clined to the horizon at an angle of 60° in an o;:ﬁosite
direction: compare the tension of the string with the
weight of the beam.

88, Two strings have each one of their ends fixed
to a peg, and the other to the ends of a uniform rod:
when the rod is hanging in equilibrium, shew that the ten-
sions of the strings are proportional to their lengths.

89. A sugar loaf whose heigl-ht is equal to twice the dia-
meter of its base stands on a table, rough enough to prevent
sliding, one end of which is gently raised until the sugar
loaf is on the verge of falling over: when this is the case
fiud the inclination of the table to the horizon. :
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40." A beam ten stone in weight and ten feet long
rests on two points distant four feet from each end: fin
the greatest weight which is unable to turn it over, on
whatever point of the beam it be placed.

41. A heavy uniform beam of weight W is sup‘forted
in a horizontal mﬁon by two men, one ‘at each end; and
a wei%ll:lt Q is placed at three-fifths of the beam from one
end; find the weight supported by each man.

42. A heavy beam is made up of {wo uniform cylin-
ders whose lengths are as 3 is to 2, and weights as 3 is to
5: determine the centre of gravity.

" 43. Three weights of 21bs,, 31bs. and 41bs. r
tively, are suspended from the extremities and the misdle
point of a rod without weight: determine the point in
the rod about which the three weights will balance. If
the three weights be interchanged in all possible ways,
find how many such points there will be. :

44. TFour weights of 3 ounces, 2ounces, 4 ounces, and
7 ounces respectively are at equal intervals of 8inches on a
lever without weight, two feet in length: find where the
fulcrum must be in order that they may balaunce.

Supposing the lever uniform and to weigh 8 oun
find tl}:a position to which it would be necessary to s&
the fulcrum.

45, A rod 8 feet long balances about its middle point
with a weight of 51bs. at one end, and 41bs. at the other
end. If the weight of 51bs. be removed it is found that
the rod will then balance about & point 1 foot 8 inches
nearer the other end. Find the weight, of the rod. '

46. Arod 11 inches long has a weight of 7 ounces at
one end, 4nd a weight of 8 ounces at the other end, and is
found to be in equilibrium when halancing on a fulcrum
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5 inches from the heavier weight. If the weights are
interchanged the fulcrum must be shifted :—; of an inch,

Find the weight of the rod, and the position of its centre
of gravity. .

47. If any triangle be suspended from the middle"
point of its base, and likewise a plumb line from the same
point, shew that the plumb line will pass through the
vertex of the triangle. If now we place a weight equal to
one third of the weight of the triangle at either angle of
the base, shew that the triangle will assume a position
such that all the angles will have their perpendicular
distances from the plumb line equal.

48. A heavy triangle is hung up by the angle 4, and
the opposite side is inclined at En :ng{e e tou:ge horizon:
shew that 2tana=cot B cot C.

. 49. Find the centre of gravity of a unifotrm wire 16
inches long, bent so as to form three sides of a reetangle,
the middle length being 6 inches.

If the ends be brought together so as to form a
triangle, shew that the centre of gravity will be % of an
inch nearer to the base,

. 50. A uniform plank 20 feet long and weighing 421bs.
is placed over a rail; two boys, whose weights are respec-
tively 751bs. and 991bs., are standing on the plauk, each
one foot from the end: find the position of the rail for
equilibrium. :
_If the two boys change places, find where a third boy
weighing 72 1bs, must stand so as to maintain equilibrium
without shifting the plank on the rail.

51 t:‘Fh;;d lt.he é%nfrehof gravity of a cube from ome
eorner of which a cube whose edge is one-half the ed
the first has been removed. edg " © edge of
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52. A pyramid is cut from a cube by a plane which

passes thrmagh the extremities of three edges that meet at

- a point: find the distance of the centre of gravity of the
remainder of the cube from the centre of the cube,

53. Two forces of 6 and 81bs. respectively act at the
ends of a rigid rod without weight 10 feet long; the forces
are inclined respectively at angles of 30° and 60° to the
rod: find the matgnitude of the farce which will keep the
rog. at rest, and the point at which its direction crosses the
ro

", 4. A Wheel and Axle have radii respectively 2 feet
4 inches, and 5 inches. Find the Power which will balance
a Weight of 3 ewt.

55. In the Wheel and Axle, supposing the rope which
supports the Power to %: over a fixed pully so as to be
horizontal on leaving the Wheel, find what difference would
be llllgade in the pressures on the fixed supports of the
machine. .

- 56. Find the magnitude of the Weight in the second
system of Pullies if it exceed the Power by 401bs, and
are 6 strings at the lower Block. :

57. In the single moveabl%gnlly with %mﬂel strings
o weight of 1001bs. is suspended from the block, and the
end of the string in which the power acts is fastened at
the distance of 2 feet from the fulcrum to a straight hori-
zontal lever 5 feet long, the fulcrum being at one end: find
the force which must be applied at the other end of the
lever to preserve equilibrium.

58. If the weight.s of the pullies in the first system,
commencing with the highest, be 1, 2, &, 6 1bs. respectively,
find what Power will sustain a Weight of 24 lbs. .

. 69. A capstan has four spokes, each projecting 8 feet
from the axis. The cylinder round which the rope is
wound has a diameter of 7 inches, and the rope itself is
half an inch thick. If four men exert a force of 60 Ibs.
each at the ends of the spokes, find the tension of the

rope.
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60. A weight of 56 1bs. rests on a rough plane inclined
at a.llxl angle of 45° to the horizon: find the normal pressure-
on the plane.

61. A body whose weight is ,/21bs. is placed on a
rough plane inclined to the horizon at an angle of 45°. The

coefficient of friction being Ls- , find in what direction a

force of (,/3—1)Ibs. must act on the body in order just to
support it.

62. A uniform pole eans against a smooth wall at an
angle of 45° the lower end being on a rough horigontal
plane: shew that the amount of friction required to prevent
sliding is half the weight of the pole,

63. A rough e is inclined to the horizon at an
angle of 60°: find the magnitude and direction of the least
force which will prevent a body weighing 1001bs. from

sliding down the plane, the coefficient of friction being %

64. A triangular plate is suspended by three parallel
strings attached to the three corners; one of the strings
can a weight of 2lbs. without breaking, and each of
the other two can bear a weight of 1 1b, without breaking:
find the point of the triaugt:far plate on which a weight of
4 1bs. may be placed without breaking any of the strings,

65. ABCD is a triangular pyramid, O is a point within

it ; like el forces act at A,yl;, C,D prop%ortional re-

tively to the volumes of the triangular pyramids

BCD, 0CDA, ODAB, OABC; shew that the centre of
the parallel forces is at O.

66. Parallel forces act at the angular points of a tri-
angular pyramid, each force being proportional to the area
of the opposite face: shew that the centre of the parallel
forces is either at the centre of the inscribed sphere, or at

the centre of one of the escribed spheres.
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67. Two e%ual spheres are strung on a thread, which
is then suspended by its extremities so that its upper por-
tions are parallel: find the pressure between the spheres
and the distance between the parallel threads.

68, Two uniform rods 4B, BC of similar material ave
connected by a smooth hinge at B, and have smooth rings
at their other ends which slide upon a fixed horizontal
wire: shew that in equilibrium the smaller rod is vertical.

69. A rod AB is fixed at an inclination of 60° to a
vertical wall; and a heavy ring of weight W slides along
it. The ring is supported by a tight string attached to
the wall, Shew that the tensions of this string, when the
ring is respectively pulled up and pulled down the rod by a

forceTactingalongtherodareaslistos.

70. Parallel forces P, @, R, S act at the angular points
of a tetrahedron: determine the forces which must act at
the centres of . gravity of the faces of the tetrahedron, so
that the second system may have the same centre and the
same resultant as the first.

71. Perpendiculars are drawn from the angles of a
tﬁanglﬁh ::l the oppositel :ic}es; and at :.the f:letto of the;e'
ndiculars act parallel forces proportion: 8in 24,
gi;rgeﬂ, sin 2C: shew that their centre coincides with the
centre of parallel forces proportional to tan 4, tan B, tan ¢
~ at the angular pointa.

72. Two equal heavy rods of weight 7 are joined by a
hinge at one end, and connected at the other ends by a
thread on which a weight w is capable of sliding freely:
the system is then placed with the hinge resting on a
horizontal plane, so that the two rods are in a vertical
plane : shew that in the position of equilibrium the hanging
weight cuts the vertical between the hinge and the hori-
zgn;.,afl line through the extremities of the rods in the ratio
o to .
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73. Three equal rods 4B, BC, CD without weight,
connected by hinges at B and C, are moveable about
hinges at 4 and D, the distance 4.D being twice the length
of each rod. A force P acts at the middle point of each
of the rods AB and CD, and at right angles to them:
shew that the pressure on each of the hinges 4 and

D will be lz,andthatitsdirectionwillmakean angle
of 60° with 4 B.

74. Two weights support each other on a rough double
inclined plane by means of a fine string passing over the
vertex, and no friction is called into operation: shew that
the plane may be tilted about either extremity of the base
through an angle 2¢ without disturbing the e?uilibrium,
¢ being the angle of friction, and both angles of the plane
being less than 90°—e.

75. A lever without weight is ¢ feet in length, and
from its ends a weight is sugvportad by two strings in
length a and b feet respectively: shew that the fulcrum
must divide the lever into two parts, the ratio of which is
that of a?+c3—-b2 to B+c2—a? if there be equilibrinm
when the lever is horizontal

76. A uniform rod rests with one extremity against a
rough vertical wall, the other extremity being suﬁ:ported
byaaﬁ'ix'z‘ﬁthreetimesthelengthoftherod,attac ed to a
point in the wall ; the coefficient of friction is §: shew that
the tangent of the angle which the string es with the
wall in the limiting position of equilibrium is % or 3.

77. If when two particles are placed on a rough double
inclined plane, and connected by a string passintg over a
smooth peg at the vertex, they are on the point of motion,
and when their positions are interchanged, no friction is
called into play, shew that the angle of friction is equal to
the difference of the inclinations of the two planes.

78. A plane equilateral gentagon is formed of five
equal uniform rods 4B, BC, CD, DE, EA loosely jointed
together. The angular points é, D of the pentagon are
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capable of sliding on a smooth horizontal rod, and the
plane of the pentagon is vertical, the point O being upper-
most. Shew that if 6, ¢ be the respective inclinations of
the rods 4B, BC to the horigon in the position of equili-
brium, 2 tan ¢p=tan 4.

- '79. A uniform wire is formed into a triangle 4 BC, the
lengths of the sides of which are a, b, ¢ respectively : shew
that if 2, y, = be the respective distances of the centre of
gravity of the wire from the middle points of its sides,

4(az® + by* + c2®)=abe.

80. If a particle be in equilibrium under the action of
four equal forces, tending to the an points of a tetra-
hedron, prove that the three straight lines gmsing thro
the point, and through each pair of opposite edges of the
tetrahedron are at right angles to each other.

81, Two weights are connected by a fine inextensible
string which passes over a %ully; and one rests on a rough
inclined plane, while the other hangs freely; if the strin,
make angles 6,, §, with the plane in the highest an
lowest positions of equilibrium of the free weight, and
when no friction is called into play, shew that

2 co8 6 — cos §, —co8 6,= p (8in §, —8in 6,),
where p is the coefficient of friction.

82. A cylinder open at the top, stands on a horizontal
plane, and a uniform rod rests partly within the cylinder,
and in contact with it at its upper and lower edges ; su
posing the weight of the cylinder to be » times that of the
rod, find the length of the rod when the cylinder is on the
point of tumbling.

83. Two equal rough balls lie in contact on a rough
horizontal table; another ball is placed upon them so that
the centres of the three are in a vertical plane: find the
least coefficient of friction between the upper and lower
balls and between the lower balls and the table, in order
that the system may be in equilibrium.
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84. Two uniform beams of equal weight but of anequal
length, are placed with their lower ends in contact on a
smooth horizontal plane, and their upper ends against
smooth vertical planes: shew that in the position of equi-
librium the two are equally inclined to the horizeon.

85. A bowl is formed from a hollow sphere of radius a;
it is 8o placed that the radius of the sphere drawn to each
point in the rim makes an angle a with the vertical, and the
radius drawn to a point 4 of the bowl makes an angle 8
with the vertical : if & smooth uniform rod remains at rest
when placed with one extremity at 4, and with a point in
‘its length on the rim of the bowl, shew that the length of

the rod is éasinpsecé(a-p).




DYNAMICS.

L Velocity.

1. Dyxamios treats of force produting or changing
the motion of bodies, P &

Before we consider the influerice of force on the motion
of bodies we shall make some remarks on motion itself:
vliv: confine ourselves to the case of motion in a straight

e,

2. The velocity of a point in motion at any instant is
the degree of quickness of the motion of the point at
that instant,

. 3. If a point in motion describe equal lengths of path
in equal times the velocity is called uniform or eonetant.
Velocity which is not uniform is called var<abdle,

4. Uniform velocity is measured by the length of path
described in the unit of time. We may take any unit of
time we please; and a second is usually chosen. We may
also take any unit of length we please: and a foot is usu-
ally chosen, Thus by the velocity 16 we mean the velocity
of a point which moves uniformly in such a manner that
the length of path described in one second is sixteen feet.
The word space is used as an abbreviation of the term
length of path: thus in the example just given it would
}):;ts’aid that the space described in one second is sixteen



208 VELOCITY.

5. If a point moving with the uniform wvelocity v
describe the space 8 in the time t, then s=vt.

For in one unit of time » units of space are described,
and therefore in ¢ units of time v¢ units of space are de-
scribed ; therefore s=2t.

6. Variable velocity is measured at any instant by the
space which would be described in a unit of time, if the
velocity were to -continue during that unit the same as it
is at the instant considered.

Hence, as in Art. 5, if » denote the measure of a vari-
able velocity at any instant, a point moving for the time
¢t with this velocity would describe the space »¢.

7. The mode of measuring variable velocity is one
with which we are familiar in practice. Thus a railway
train may be moving with variable velocity, and yet we
may 8ay that at a certain instant it is moving at the rate of
-30 miles an hour; we mean that if the train were to con-
tinue to move for one hour with just the same speed as at
the instant considered it would pass over 30 miles.

8. The illustration just employed suggests that a velo-
" city may be given expressed in any units of time and
space; it is easy to express the velocity in terms of the
standard units, '

For example, suppose that a body is moving at the rate
-of 30 miles an hour. The body here is moving at the rate
of 30x5280 feet in an hour, that is, in 60 x 60 seconds:

hencé it is moving at the rate of 30 x 5260 feot in one

X
second, that is, at the rate of 44 feet in one second. Hence
44 g.enobea the velocity when expressed in the standard
uni
In like manner we ma; from the standard units to
any other units. 7 post

For example, if » denote a velocity when a second is
taken as the unit of time, the same velocity will be denoted
by 600 when a minute is taken as the unit of time. For to
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say that a body is movinﬁ:t the rate of » feet per second
is equivalent to saying that it is moving at the rate of 600
feet per minute. .

In like manner if we wish to take a yard for the unit of
length instead of a foot, as well as a minute for the unit of
time instead of a second, the velocity denoted by » with

the standard units will now be denoted by Gg‘_v .

Generally, let » denote a velocity when a second is the
unit of time, and a foot is the unit of length; then if we
take m seconds as the unit of time, and n feet as the

unit of length, the same velocity will be denoted by —":7” .

ExamMPLES.

1. Compare the velocities of two points which move
uniformly, one through 5 feet in half a second, and the
other through 100 yards in & minute.

2. Compare the velocities of two points which move
uniformly, one through 720 feet in one minute, and the
other through 3% in three quarters of a second.

3. Two points move uniformly with such velocities that
when they move in the same direction the distance between
them increases at the rate of 5 feet per second; and when -
they move in opposits directions the distance between them
increases at the rate of 25 feet per second: find the velo-
city of each.

4. A railway train travels over 100 miles in 2 hours:
find the average velocity referred to feet and seconds.

5. One point moves uniformly round the circumference

of a circle, while another moves uniformly along the dia-
meter: compare their, velocities.

T. M., 14
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11. The First and Second Laws of Motion.

9. The science of Dynamics rests on certain principles
which are called Laws of Motion. Newton presented
them in the form of three laws ; and we shall follow him.

It is not to be expected that a beginner will obtain a
clear and correct idea of these laws on reading them for the
first time; but as he proceeds with the sn{\ject and ob-
serves the applications of the laws he will gradually discover
their full import. In like manner a beginner of geome
rarely comprehends at first all that is meant by the defini-
tions, postulates, and axioms; but the imperfect notions
with which he starts are corrected and extended as he
studies the propositions.

In the present Chapter we shall chiefly discuss the First
Law of Motion.

10. First Law of Motion. Every body continues in
a state of rest or of uniform motion in a straight line,
except in 8o far as 1t may be compelled to change that state
by force acting on tt.

It is necessary to limit the meaning of the word motion
in the First Law. By the motion of a body is here meant
that kind of motion in which every point of the body
describes a straight line; in other word‘:;,o there is to be no
rotation. The rotation of bodies is discussed in works
which treat of the highest branches of dynamics, and many
important results are demonstrated: for example, it is
shewn that if a free sphere of uniform density be rotating
about a diameter at any instant, it will continue to rotate
about that diameter if no force act on it.

In order to exclude all notion of rotation, some writers
use the word particle instead of body in enunciating the
First Law of Motion.

We must now proceed to comsider the grounds on
ﬁhlt(}h we rest our belief in the truth of the First Law of

otion.
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11. Little direct experimental evidence can be brought
forward in favour of the truth of the Law. It is in fact
impossible to preserve a body which is in motion from the
aetion of external forces; and so it is impossible to obtain
that perseverance in umiform motion of which the Law
speaks. If we start a stone to slide along the ground we
find that the stone is soon reduced to rest; but we have
no difficulty in perceiving that the destruction of motion
is due wainly to the friction of the ground. Accordingly
we find that if the same stone is started with the same
velocity to slide on a smooth sheet of ice, it will proceed
much farther before it is reduced to rest. And we may
easily imagine that if all such external forces as friction of
the ground and resistance of the air were removed the
motion would continue permanently unchanged.

In this illustration we suppose the stone to slide along
the ground; we do not suppose the stone to ro#, for the
reason which is assigned in Art. 10.

12. But although the direct experimental evidence of
the truth of this and of the other Laws of Motion is weak,
the indirect evidence is very strong. For on these laws
as a foundation the whole science of dynamics rests; the
theory of astronomy forms a part of dybnamics, and it is a
matter of every day experience that the calculations and
predictions of astronomy are most closely verified by ob-
servation. It seems in the highest degree improbable that
numerous and intricate results, deduced from untrue laws,
should be uniformly true; and accordingly we say that the
agreement of theory and observation in astronomy justifies
us in accepting the Laws of Motion,

13. From the First Law of Motion then we see that a
body has no power to put itself in motion, or to change its
motion; but a commencement or change of motion must
be ascribed to-the action of some external force.

14, It will be readil‘y conjectured from common expe-
rience, that the effect of a given force in communicating
or changing motion may depend partly on the size and the

14—2
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kind of the body to which the force is applied; and this
point will be discussed hereafter, so that we shall be able
to compare the effect of a force on one body with the effect
of the same force on another body. But at present we
confine ourselves to the case in which a given force acts on
s given body, so that we have only to consider the influence
of the force on the velocity of the body.

15. Second Law of Motion. Ohange of motion 1is
proportional to the acting force, and takes place in the
direction of the straight line in which the force acts.

This law will remxire to be developed in order to place
before the student all which its concise statement includes;
but this development we shall reserve, as at present we
only require a part of the law. We suppose a body in
motion In a straight line, and acted on by a force in the
direction of that straight line. Then we require so much of
the Becond Law as to enableus to assume that a given force
communicates the same velocity in a given time, whatever
be the velocity which the bodfy already has. This is in fact
included in the first clause of the Law: change of motion
18 proportional to the impressed force. The whole mean-
ing of this clause will be exhibited hereafter.

" It was scarcely necessary to introduce here even this
brief notice of the Second Law of Motion; but without it
the definition of un{form force which is given in the next
Chapter might appear arbitrary and unnatural.

Although the student must not consider that he has
mastered the subject until he understands the Laws of
Motion, yet it is by no means necessar{)to weary himself by
trying to understand these Laws fully before he passes on
to any results deduced from them. He will learn more by
examining the way in which these Laws are applied than
by confining himself to the Laws themselves,
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Exampres. II.

1. Two bodies start together from the same point and
move uniformly along the same straight line in the same
direction; one moves at the rate of 15 miles per hour, and
the other at the rate of 18 feet per second: determine
the distance between them at the end of & minute.

2. If the bodies move with the velocities of the pre-
ceding Example but in opposite directions, find when they
will be 200 feet apart,

. 3. A body starts from a point and moves uniformly
along a shmi%line at the rate of 30 miles per hour. At
the end of a minute another body starts from the
same point after the former body, and moves uniformly at
the rate of 55 feet per second. Find when and where the
second body overtakes the first,

4. Two bodies start together from the same point and
move uniformly in directions at right angles to each other;
one body moves at the rate of 4 feet per second, and the
other at the rate of 3 feet per second: determine the dis-
tance between them at the end of » seconds,

5. Supposing the earth to be a sphere 25000 miles in
circumference, and turning round once in & day, determine
the velocity of a point at the equator.

6. A mill sail is 7 yards long, and is observed to go
round uniformly ten times in a minute: find the velocity of
the extremity of the sail.

7. Two bodies start from the same point and move
uniformly with the same velocity along straight lines in-
clined at an angle of 60°: find their distance apart at the
end of a given time,

.8. Two bodies start from the same point and move
uniformly along straight lines inclined at an angle a: if the
velocity of one be » and the velocity of the other v, find
their distance apart at the end of n seconds. -
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III. Motion in a straight line under the influence of a
uniform force.

16. We confine ourselves to the case of motion in a
straight line, and the direction of the force is supposed to
be in the same straight line as that of the motion; and we
consider only the effect of the force on the velocity without
regard to the size and the kind of the body moved.

17. If a force acting on a body adds equal velocities
in equal times, the force is called uniform or constant.
Force which is not uniform is called variable.

18, Uniform force acting on a given body is measured by
the velocity which is added in each successive unit of time.
Variable force acting on & given body is measured at any
instant by the velocity which would be added in a unit of
time, if the force were to continue during that unit the
same as it is at the instant considered.

19. We are now about to give some propositions re-
specting uniform force acting on a given body. The term
acceleration is used as an abbreviation for the wvelocity
added in a unit of time; so that when we speak of an
acceleration f, we mean that by the action of a given force
on a given body the velocity /'is added in a unit of time, -

20. A uniform. force acts on a body in a fized direc-
tion during the time t: {f f be.the acceleration, and v
the velocity generated, then v=ft. .

For, by the definition of uniform force, in each unit of
time the velocity / is communicated to the body; and
therefore in ¢ units of time the velocity /¢ is communicated.

- 21. A body starting from rest ts acted on by a uni-
Jorm force in a fizved direction: if £ be the acceleration

and s the spacs desoribed in the time t, then s=3 1.
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Let the whole time ¢ be divided into 2 equal intervals;
denote each interval by r, 8o that nr=4.

Then the velocity of the body at the end of the times
7, 21, 37, .eeue (r—1)7, nr
from starting, is, by Art. 20, respectively,
Jry Ur, .. (n—-1)fr, nfr.

Let s, denote the space which the body would describe
if it moved during each interval r with the velocity which
it has at the beginning of the interval; and let s, denote
the space which the body would describe if it moved
during each interval = with the velocity which it has at the
end of the interval. Then

8=0.vr+fr.7+Yr.v+3fr.v+...+(m-1)Sfr. 7,
SH=Sr. v+ 2T . T+ 3T T+ viiinees +nfr.v;
that is, -
a=/2{1+2+3+...+(n—1)},
&=/ {1+2+3+...+(n—1)+n}.

Hence, by the theory of Arithmetical Progression in
Algebra, we iave

_pan=Dn_fE (n-1)n /B 1
a=pa e L0 L (-0)

_pgn(m+l) /2 n(n+l) S 1\.
2= pa 20D JE nln _-2—(1+5).

Now s, the space actually described, must lie between
8, and &, ; but by making » large enough we can make i
as small as we please; so that we can make s, and s, differ
from %ﬁ’ by less than any assigned quantity. Hence

1
'ziﬂ’.
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22. Thus if a body start from rest and be acted on for
the time ¢ in a fixed direction by a uniform force of which
the acceleration is f, we have the following values, of » the
velocity acquired, and ¢ the space described,

LY 1 Z ORI crerssesnens (1),
‘ S J— @.

From (1) and (2) by eliminating ¢ we have
a7 TN 3);

this gives the velocity in terms of the acceleration and
the space described.

We may of course modify the forms of these expres-
sions by common Algebra ; for example, (2) may be written
us:

28
t= = tecesecese vereresannas 4).
=A7 ®
From (1) and (2) we may deduce
1
O=§ Dl ieucecennns SYTTTTITIII (5) H

this shews that the space actually described is half that
which would be described by a body moving for the time ¢
with a uniform velocity equal to ».

These formulee are very important, and will often be
applied. :

23, Falling bodies. When bodies are allowed to fall
freell to the surface of the earth from heights above it,
we find that different bodies fall through equal spaces
from rest in a given time, and that the space fallen through
in any time from rest varies as the square of the time.
These laws at least hold approximately, and the resistance
of the air appears to be the reason of such deviations from
exact conformity with these laws as may be observed. For
example, a sovereign and a feather do not fall to the
ground in the same time if the experiment be tried in the
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bpen air; but they do if the experiment be tried in the
exhausted receiver of an air pump. .

From these observed facts, compared with the results
given in the preceding Article, we infer that the Earth
exerts a force in the vertical direction on all bodies, that
this force is a uniform force, and that it produces the same
acceleration in all bodies, This force is called graeity.

24, The letter g is invariably used to denote the acce-
leration produced by gravity.

It is found that the value of g diminishes slightly as
we pass from the equator towards the poles. At London
g=32.19 feet nearly, the unit of time being one second.
That is, when a body falls freely in the latitude of London
a velocity of 32,2 feet nearly is communicated to it every
second. .

Moreover, the value of g is not the same at different
heights above the same point of the Earth’s surface; the
force which the Earth exerts on a g‘sven body varies very
nearly inversely as the square of its distance from the cen-
tre of the Earth. But as any heights to which we can
ascend are very small compared with the radius of the
Earth, the change thus produced in the force of gravity
will afso be very small.

The direction of the force of gravity is perpendicular
to the horizontal plane at every place, and so really varies
from point to point on the h’s surface. But this
variation will be scarcely sensible so long as we do not
move more than a few miles from an assigned spot.

Thus on the whole we may practically, in the vicinity of
any assigned spot, regard the direction of the force of
gravity as parallel to the same straight line, and the value
of g as constant.

25. The laws respecting the variation of the force of
gravity which we have stated in the preceding Article are
8 ted by observation and exgeriment; their exact
truth is established by shewing that results deduced from
tix::emmumed laws are verified in numerous cases; see



218 MOTION IN A STRAIGHT LINE

26. Thus, by Art. 22, when bodies fall from rest the
following formulse apply:

o=gt...(1); a=§gﬂ...(2); 2*=2gs...(3).

For example, take the second formula, and put for ¢ in
succession 1, 2, 3, 4, ...; thus we obtain the following re-
sults: in 1, 2, 3, 4,... seconds respectively from rest the

. 4 9 16
spaces described are%g, 39 30 g9 Hence by sub-
tracting each of these numbers from that which follows it,
we find that the spaces described in the second, third,

. 3 6
Jourth, ... seconds respectively are 39 39 ;g,

And generally in »—1 seconds the space described
is %(n—l)’g; in n seconds the space described is %n’g;
hence during the n** second the space described is
%n’y—%(n-l)’g, that is,—;(‘m—l)g.

The velocity “acquired by a body falling from rest
through the space ¢ 18 sometimes called the 1ty dus to
the space 8 under the action of gravity.

27. Motion down an inclined plane. We may now
consider the motion of a body sliding down a smooth in-
clined plane,

Suppose there is a smooth plane inclined at an an-
gle a to the horizon. The force which the earth exerts
on a body acts in the vertical direction; we may resolve
this force into two components, one along the plane, and
the other l;;:rpendicular to the plane. The component
along the plane is obtained by multiplying the whole force
by sina, and so we may naturally assume that the accele-
ration due to this component is obtained by multiplying
the whole acceleration by sina: thus, this acceleration is
gsina. The force perpendicular to the plane has no influ-
ence on the motion down the plane; it is counteracted by
the resistance of the plane. .
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Hence we conclude that the motion of a body sliding
down a smooth inclined gll}ne is similar to that of a body
falling freely; the only difference is that g sina must be
put instead of g in the formulee of Art. 26, so that the
motion of the sliding body is slower than that of the body
falling freely.

We shall in Chapter viL consider the reason which
Jjustifies the assumption of the present Article.

28. Thus if / be the length of an inclined plane, and
v the velocity acquired by a body in sliding down it from
rest, we have 9*=2¢! sin a by equation (3) of Art. 26. Let
k be the height of the plane; then A= sin a ; thus »*=2gh.

Hence the velocity acquired in sliding down a smooth
inclined plane is the same as would be acquired in falling
.;al-eely through a vertical space equal to the height of the
ane.

29. The times of falling from rest down a chord of
a vertical circle drawn from the highest point is con-
stant.

Let A be the highest point of A
a vertical circle, 48 a diameter,
AC any chord. Let a be the
inclination of AC to the horizon;
then the angle BAC=90°—a, and
therefore the angle 4 BC=a. c

Let ¢ be the time of
down AC; then by Art, 27

AC:—lét'g sin a,

And AC=AB sina;so that 4B sina%z'g sina;
therefore ‘=\/2%§’

That is, ¢ is equal to the time of. falling freely down the
vertical diameter 4B. This establishes the proposition.
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In the same manner we may shew that ths time of
Jalling from rest down a chord passing through the low-
est povnt ts constant,

30. If two circles touch each other at their highest
or lowest point, and a straight line be drawn through
this point, the time of falling from rest down a straight
line intercepted between the circumferences is constant.

Let two circles touch A
each other at their high~
est point 4. Through
A draw any straight line
ADE, cutting the cir-
cumferences at D and
E. Let the vertical
straight line through 4
cut the circumferences
at B and C. On BC
a8 diameter describe a
circle; join EC, cutting
the circumference of
this circle at #. Join.
BF and BD.

The angles at D, E, and F are right angles. Therefore
BFis el and equal to DE.

. Hence the time from rest down DE is the same as the
time from rest down BF; and is therefore equal to the
time from rest down BC, by Art. 29. Thus the time is
the same for every such straight line as DE,

Similarly the tgroposition may be established when the
circles touch at their lowest point.

31. The two preceding results will enable us to solve
various problems with respect to straight lines of quickest
descent, We will give some examples: we suppose in
every example that the entire figure is in one vertical
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gll:,ne, and the moving body is supposed to start from rest.
Ae first gix Examples depend on Art. 29, the rest on
rt. 30.

Required the straight line of quickest descent:
(1) From a given point to a given straight line.

Let 4 be the given point,
BC the given straight line,

B A
B a horizontal straight
ﬁne through A. Dt'rsltav‘rg a /
<
' D
[}

circle touching 4B at 4 and
also touc! BC; let D be
the point of contact with
BC: then AD is the re-
3uired straight line. For

raw through 4 any chord of the circle AE, and produce
it to meet the straight line BC at F. Then the time down
AD is equal to the time down AE, and is therefore less
than the time down AF.

Since the two tangents B4 and BD are equal, the
point D is determined simply by taking BD down BC,
equal to B4,

The demonstration of this will give sufficient aid for the
next five cases.

(2) From a given straight line to a given point.

Let A denote the given point; let a horizontal straight
Jine through 4 meet the given straight line at B; take
BD up the given straight line =BA4: then DA is the
required straight line.

(8) From a given point without a given circle to a
given circle.

Join the given point with the Jowest point of the given
circle : the part of the joining straight line which is out-
side the given circle is the straight line required.

For the geometrical part of this and the next three
cases see Appendiz to Euclid, No. 9,
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(4) From a given circle to a given point without it.

Join the given point with the %ighest point of the given
circle: the pilrt of the joining straight line which is ontside
the given circle is the straight line required.

(5) From a given point within a given circle to the
circle. .

Join the given point with the kighest point of the given
circle: the part olp:he joininti;tnight line produced which
is between the point and circle is the straight line
required.

(6) From a given circle to a given point within it.

Join the given point with the Jowest point of the given
circle: the part of the straight line produced which is
between the circle and the point is the straight line re-

q
5'1) From a given straight line without a given circle
to the circle.

Through 4 the lowest point of the circle draw a straight
line touching the circle, and meeting the given straight
line at B ; take BC up the given straight line =B84, and
Jjoin AC meeting the circle at D : then CD is the required
straight line.

For it follows from (3) that whatever be the point on
the straight line the straifht line produced must pass
through the lowest point of the given circle. And then,
by Art. 30, the point on the straight line must be the point
of contact of a circle drawn to touch this straight line and
also to touch the given circle at its lowest point.

28) From a given circle to a given siraight line
without the circle.

Through A the highest point of the circle draw a
straight line touching the circle, and meeting the given
straight line at B; take BC down the given straight line
=BA, and join AC meeting the circle at D : then DC is
the required straight line.

The demonstration is like that in (7).
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9) From a given circle to another given circle
without t.

Join the highest point of the first circle with the lowest
point of the second circle ; the part of this straight line
which is between the two circles is the straight line
required.

For it follows from (4) that whatever be the point on
the second circle the straight line produced must ga.ss
through the highest point of the first circle. And then,
by Art. 29, the point on the second circle must be the
point of contact of a circle drawn to touch the first circle
at its highest point, and also to touch the second circle.

T}le demonstration of the next two cases is similar

o

5‘10) From a given circle to another given circle
within it.

Join the highest point of the first circle with the lowest
point of the second : the part of the joining stmiﬂx:; line
which is between the two circles is the straight line re-
quired. -

Szl;) From a given circle within another given circle
to the outer circle.

Join the highest point of the first circle with the
highest point of the second : the part of the joining straight
line i:g‘iich is between the two circles is the straight line
required.

82. In the three preceding Articles we have supposed
for simplicity that the motion takes place in a wertical
plane: but similar results will hold if the motion takes
place down a fixed smooth inclined plane. If 8 be the
inclination of such a plane to the vertical, then we shall
merely have to put gsin g instead of g in the investigation
of Arts. 29 and 30. And in Arts. 29 and 30 we may put
sphere instead of circle.

33. The following problem furnishes an interesting
application of the formulse of the present Chapter. A
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gerson drops -a stone into a well and after n seconds
; lt:am :tte:m e the water: find the depth of the surface of
e water,

‘We neglect the resistance of the air. It appears from
experiments that the velocity of sound is uniform and
equal to about 1130 feet per second: we will denote this
number by %.

Let 2 be the number of feet in the depth of the sur-
face ; then the number of seconds taken by the stone to
fall to the surface of thewateria,\/-?—w, by Art. 26 ; and
the number of seconds taken by the passage of the sound

isZ : therefore
u

2 S Z=n.
“ g

By solving this quadratic equation we obtain

2Nz= —u,\/g & \/(‘%‘,*.4“").

The upper sign must be taken because ./« is by sup-
position a positive quantity. By squaring we obtain

2ut | 2u? '\/(ul 2un
dz="" 4+ +dun—du, [(5+—);
g g 2 g
2 ]
therefore x=%+un_u\/<7£+2zn

=u{fen-n/ G+ T}

It will bo found that ’g =35 nearly : thus we have very
approximately
z=u{35+n—/(1225+70n)}.
For example, if =3 ; then
x=u{38— A/1435}=%(38 —37°88) nearly
=ux12=135'6,
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84, In Art. 8 we have explained the chan{i made
in the expression of a given velocity by changing the units
of time and space : we must now consider the change made
in the expression of a given acceleration,

Let f denote an acceleration when a second is taken
as the unit of time, then.the same acceleration will be
denoted by (60)2/ when a minute is taken as the unit of
time. For an acceleration is measured by the velocity
communicated in a unit of time. In the present case f is
communicated in one second, therefore 2/ in two seconds,
....and 60/ in 60 seconds. But by Art. 8 a velocity which
is denoted by 60/ when a second is the unit of time will be
denoted b; 60 x 60/ when a minute is the unit of time,
Hence (60)2f is the measure of the acceleration referred to
& minute as the unit of time, )

~ In like manner if we wish to take a yard for the
unit of length instead of a foot, as well as a minute for the
unit of time instead of a second, the acceleration depoted
by f with the standard units will now be denoted by g-s—g):‘! .

Generally. let / denote an acceleration when a second
is the unit of time and a foot is the unit of length ; then if
we take m seconds as the unit of time, and # feet as the

pn’it of length, the same acceleration will be denoted by

m!
'7—"f.

Exampres. IIL

The following examples all relate to uniformly acce-
lerated motion :

1. A body has described 50 feet from rest in2 seconds:
find the velocity acquired. :

. 2. A body has described 50 feet from rest in 2 seconds:
find the time it will take to move ovet the next 150 feet,

. 8 A body moves over 63 feet in the fourth second:
find the acceleration. Coie e

T. M, 15

4 ~
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4. A body describes 72 feet while its velocity increases
from 16 to 20 feet per second: find the whole time of
motion and the acceleration,

5. A body in passing over 9 feet has its velocit
hcreuedﬁo:zy14t05:ﬁndthewholespaoed bei

from rest, and the acceleration.
6. Two bodies uniformly accelerated in ing over
the same space have their vgloeities increa.sedp?l"l;?;l atod,

and from % to v respectively: compare the accelerations.

7. Find the numerical value of the acceleration when
in half a second a velocity is produced which would carry
a body over four feet in every quarter of a second.

8. A body moving from rest is observed to move
over 80 feet and 112 feet respectively in two consecutive
seconds : find the acceleration and the time from rest.

. 9. A body moving from rest is observed to move
over a feet and b feet respectively in two consecutive
Beconds: shew that the eration is b—a, and find the
time from rest.

10. A body uniformly accelerated is found to be
moving at the end of 10 seconds with a velocity which
would carry. it through 45 miles in the mext hour: find
the acceleration,

11. A body moving with uniform acceleration descﬁ'bes
20 feet in the half second which follows the first second
of its motion : find the acceleration. °

12, Two bodies are let fall from the same point at
‘an interval of one second : find how many feet they will
be apart at the end of five seconds from the fall of the

" “13, Two particles are let fall from two given heights :
find the interval between their starting if they the
‘ground at the same time. )
.~ 14. A body is let fall : find how many inches it moves
over in the first half second of its. motion: if it weré
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m;s;gethto mtl)ve.tungormly d\ll‘i‘lll’g' ﬁgi(l;e‘ if it moved

wi e velocity then acquire over

would move. acq ‘ . \(‘«\at\ the
15. A body slides down a smooth inclined plane of--..

given height: shew that the time of its descent varies

as the gecant of the inclination of the plane to the vertical.

16. A body falls to the ground ; it describes 1° of the

whole space during the last second of the motion : find the
whole time.

17. Find the position of a point on the circumference
of a circle 8o that the time of descent down an inclined
plane to the centre of the circle may be equal to the
time of descent down an inclined plane to the lowest point
of the circle. . .

18, Find a point in a vertical circle such that the
time down a tangent at that point terminating in the
vertical diameter produced may be equal to the time down
the vertical diameter.

19. Find the measure of the force of gravity when
half a second is taken as the unit of time. ’ '

20, Also when the unit of space is a metre, that is,
about 3-28 feet.

21. "Also when the unit of time is ten seconds, and the

unit of space is & yard. : o

- 22.' Also when the unit of time is a quarter of a
- second, and the unit; of time is half a yard.

23. If / be the measure of an acceleration when m
seconds is the unit of time, and n feet the unit of length,
find the measure of acceleration when a second and a foot
are the units. .

24, If f be the measure of an acceleration when m
seconds is the unit of time, and n feet the unit of length ;
find the measure of the acceleration when u seconds is the
unit of time, and » feet the unit of length, . .

15—2
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AT LINE

tine under the influence of a

o&p Ath given initial velocity.
e .
A Aing Chapter we confined ourselves to
. \‘}9’ . the body was supposed to have no velo-
.orce began to operate; this supposition is
m 4sed by saying that the body has no initial
velo, .¢e shall now suppose that the body has an
initiat  .ocity, the direction of which coincides with the
straight line in which the force acts.

36. A4 body starts with the velocity u, and is acted on
b}‘(aa uniform force in the direction of this velocity during
the time t: if £ be the acceleration, and v the velocity of
the body at the time t, then v=u+ft.

For, by the definition of uniform force, in each unit of
time the velocity /° is communicated to the body; and
therefore in ¢ units of time the velocity /¢t is communi-
cat.}d: therefore at the end of the time ¢ the velocity is
u+ft.

37. A body starts with the velocity u, and s acted on
%a uniform force in the direction of the velocity during
the time t: if £ be the acceleration, and 8 the space de-

scribed in the time t, then 8 =ut + %ft’.
Let the whole time ¢ be divided into » °,‘11“1 intervals;

denote each interval by =, so that nr=¢. Then the velo-
city of the body at the end of the times

7 21, 37y c0uens (R—1) T, BT
from starting is, by Art. 36, respectively
u+Jfr, u+ %, u+3fr,...... u+(n-1)fr, u+n/r.

Let s, denote the space which the body would describe
if it moved during each interval = with the velocity which
it has at the beginning of the interval; and let &, denote
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the space which the body would describe if it moved
during each interval = with the velocity which it has at the
end of the interval. Then .

s=ur+{u+frir+{u+2frir+...... +{u+(n-1)fr}r,
s={u+sfrir+{u+2frir+...
ot {u (=1 v+ {utnfi} s
that is,
s=unr+f2 {14243 +.....+(m—1)},

sy=unt +fr {14243+ ... +(n—1)+n}.

Hence, by the theory of Arithmetical Progression in
Algebra, we have

& =unr+Jr? @:uﬂ‘%’ (l—%), !
8:=unr+fr’-n(—n2+—l)=ut +j%2 (l +i) .

Now s, the space actually described, must lie between
8, and &,; but by making n large enough we can make %
as small as we please; so that we can make & and &

differ from u¢+ %ﬁz by less than any assigned quantity.
Hence c=ut+%ﬂ’.

38. The result just obtained has been deduced by an
independent investigation founded on first principles; if we
are allowed to assume the result obtained in Art. 21 we
may put the investigation more briefly as follows:

If the body at a certain instant is moving with a cer-
tain velocity, its subsequent motion will be the same, how-
ever we sup&se that velocity to have been acquired. Let
us suppose that the velocity » was generated by the action
of the force, of which the acceleration is /; during the
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time ¢’; and let the body have moved from rest through
the space ¢ during this time. Then we have, by Art. 21,

u=Jf",
1
"=§ ﬂl’,

i+b=%f(t’+t)*=éﬁ'*+ﬂ’t+%ﬁ;
therefore  s=/¥t + % So=ut+ % mo

39, The result of Art, 37 is sometimes obtained in
the following way :
If no force acted on the body the space described in
the time ¢ would be w¢, by Art. 5. If there were no initial
velocity the space described in the time ¢ under the in-

fluence of the force would be %ﬂ’ Now if the body start

with the velocity #, and be also acted on by the force, the
space actually described must be the sum of these two
spaces; because by the nature of uniform force the velo-.
city al any instant is exactly the sum of what it would
be vn the two supposed cases.

40. Hence we have the following results when a body
starts with a given velocity and is acted on by a uniform
force in the direction of this velocity.

Let / be the acceleration, % the initial velocity, v the
velocity at the end of the time ¢, and s the space de-
scribed ; then . .

From (1) and (2) we have
v’=u’+21(ﬂ+f’t’=u’+2f(ut+;-ﬂ’);
thus =W 2 e cereee(3)e
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- 41, The student must observe that during the motion
which we consider in Art. 37 the only force acting is that
of which the acceleration is /. The gody starts with the.
velocity #, and this must have been generated by some
force, which may have been sudden, as a blow or an ex-
plosion is uxunﬁy considered to be, or may have been
gradual like the force of gravity.- But we are only con-
cerned with what takes place after this velocity » has
been generated, and so during the motion which we con-
gi(}?r no force acts except that of which the acceleration -
isf.

42. Hitherto we have supposed the direction of the
force to be the same as that of the initial velocity; we
will now consider the case in which the direction of the
force is opposite to that of the initial velocity. It will be
sufficient to state the results, which can be obtained as in
Arta. 36, 37, 38, and 40. :

Let f be the acceleration, « the initial velocity, » the
velobc‘ig at the end of the time ¢, and s the space de-
scribed, the force and the initial vel’ocity being in opposite
directions; then

LTV i 2R veees (1), -
1
c-ut—éft’, ...... eereenans weel2), -
V) i 3.
These formulse will nt some interesting conse-

quences ; the student will obtain an illustration of the in-
terpretation ascribed in Algebra to the negative sign.

As long as /? is less than % we see from (1) that o is’
positive, so that the body is moving in-the direction in

which it started. When f=u=0, that is when ¢=’j-‘.,"
we have v=0, 0 that the body is for an instant at rest.
When ¢ is greater than 3,‘— the value of ‘u is negative;

that is, the body s moving in the direction ogﬁ.m to_that
in which it started. Thus we see that the body continueq
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to move in the direction in which it started, until by the
:Hemtion of the force, which acts in the opposite direction,
its velocity is destroyed ; after this the force generates
a new velocity in the body in the direction of the force,
that is, in the direction opposite to that of the original
velocity.
1w w2

u u? .
From (2) when ¢=— we have $=%-~5 =% =g5 this

gives the whole space described by the body while moving
in the direction in which it started. This value of # may
also be obtained from (3) by putting =0; for then we have
ut— e=0, - :

From (2) we have =0 when ut—%ﬂ’:o, that is when
t=0and when t—_-“}—". The value ¢=0 corresponds to the
instant of shrhn% ; the other value of ¢ must correspond
to the instant w. the body in its backward course

reaches the starting point again. Thus the time taken in
moving backwards from the turning point to the starting

point is i.’_u_?_;’ or ’—‘, which is equal to the time taken’
in moving forwards from the starting point to the turning
point. Put t=2—u‘in (1), then we get v=4—2u=—u; 80

that at this instant the velocity of the body is the same
numerically as it was at starting, but in the opposite

direction. Whentilmterthm‘z—;fthenheof:bev

comes negative, indicating that the body is now on the side
of the starting point opposite to that on which it was

while .z changed from 0 to 2—;.‘

It will be important to remember these two results:
the original velocity u is destroyed in the time %, and the

space described in that time is -’z‘—;
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- 43, The most important application of the preoed‘l':g
Article is to the case of gravity. If a body be projected:

vertically upwards with a velocity » it rises for a time g s

2
reaches the height u_’ falls to the ground in the same

time as it took to rise, and strikes the ground with the
velocity » down

Examrres. IV,

1. A stone is thrown vertically upwards with a velo-
city 3g: find at what times its height will be 4g, and find
its velocity at these times.

2. A bo;ig is_projected vertically upwards with a
velocity which will carry it to a height 2g: find after
vgltmt interval the body will be descen: with the velo-
city g.

3. A moves over 20 feet in the first second of
time during which it is observed, over 84 feet during the
third second, and over 148 feet during the fifth second :
determine whether this is consistent with the supposition
of uniform acceleration.

4. A particle uniformly accelerated describes 108 feet
and 140 feet in the fifth and seventh seconds of its motion
respectively: find the initial velocity and the numerical
measure of the acceleration.

5. A body starts with a certain velocity and is uni-
formly accelerated : shew that the ?ace described in any
time is equal to that which would be described in the
same time with a uniform velocity equal to half the sum
of the velocities at the beginning and the end of the time.

6. A bullet shot upwards from a gun passes a certain
goint at the rate of 400 feet per second: find when the
ullet will be at a point 1600 feet higher.

7. A body is dro&ped from a given height and at
the same instant another is started upwards, and they
meet half way : find the initial velocity of the latter body.
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8. At the same instant one body is ped from
a given height, and another is s vertically upwards-
from the ground with just sufficient velocity to attain that
height: compare the time they take before they meet with
the time in which the first would have fallen to the ground.

9. A smooth plane is inclined at an angle of 30° to
the horizon; a body is started up the plane with the
velocity ¢ : find the time it takes to describe a space g.

10. A smooth plane is inclined at an angle of 30° to
the horizon; a body is started up the plane with the
ve‘lo:'ity 5g: find when it is distant 9g from the starfing
poin!

11. A body is thrown vertically upwards, and the time
between its leaving a given point and returning to it again
is observed : find the initial velocity. :

12. A particle is moving under the action of a uni-
form force, the acceleration of which is f'; if. « be the
arithmetic mean of the first and last velocities in passing
over any portion % of the path, and » the velocity gene-
rated, shew that uo=sh.

13. Two small heavy rings ble of sliding alo:
a smooth straight wire of given gngtb incliv;ig8 to tll:g

horizon are started from the two extremities of the wire
each with the velocity due to their vertical distance:
find the time after which they will meet, and shew that
the space described by each is independent of the inclina-
tion of the wire. ‘ .

14. A body to move with the velocity », and
at equal intervals of time an additional velocity u is com-
municated to it in the same direction: find the
described in » such intervals. Hence deduce the s
described from rest under the action of a force constant in
magnitude and direction. i
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V. Second Law of Motion. Motion, under the influence
of a uniform force in a fized direction, but not in a
straight line. Projectiles.

44. We are still confining ourselves to the case of a
uniform force in a fixed direction; but the body will
now be supposed to start with a velocity which 1s not
in the same direction as the force: it will appear that
a body under such circumstances will not describe a straight
line but a certain curve called a parabola.

- It is necessary at this stage to introduce the Second
Law of Motion.

45. Second Law of Motion. Change of motion is
proportional to the acting force, and takes place in the
direction of the straight line in which the force acts.

So long as we keep to the same force and the same
body change of motion is measured by change of velocity ;
the law then asserts that any force will communicate
velocity in the direction in which the force acts: and it is
implied that the amount and direction of the velocity so
comnmunicated does not depend on the amount and direction
of the velocity which may have been already communicated
to tbemy. . We shall see hereafter that the law contains
more

. For the reason explained in Art. 10 we ought to sup-
pose the SBecond Law to relate to the motion of a particle.

46. In confirmation of the truth of the Second Law of
Motion it is usual to adduce the following experiment: If
3 stone be dropped from the top of the mast of a ship in
motion the stone will fall at the foot of the mast notwith-
standing the motion of the ship. The stone does not fall
in a straight line; it starts with a certain horizontal velo-
city, namely, the same as that of the ship, and gravity
acts on it in a vertical direction. The fact that the stone
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falls at the foot of the mast shews that the vertical force
of l‘Erx\vity makes no change in the korizontal velocity
with which the stone started; so that the vertical force
can only have communicated a vertical velocity. If we
were to observe the time of the descent of the stone, and
found it to be the same as of a stone falling from rest
through the same , the confirmation of the truth of
the Second Law of Motion would be much more decisive.

As we have already indicated in Art. 12, the best evi-
dence of the truth of the Laws of Motion is the agree-
ment of results deduced from these Laws with observed
phenomena, especially those furnished by Astronomy.

47. Newton gives the following as one of the Corol-
laries to his Laws of Motion :

A body acted on by two forces will describe the
dmg]' onal of a lelogram in the time in which it
would describe the sides under the influence of the forces
singly.

The following is the substance of Newton’s exposition
of this statement.

Su that a body, in a given
time, lfnp;:: the influence of a ;‘llngle
force M, which acted at 4, would
move with uniform velocity from 4
to B; and suppose that the body
in the same time under the influ- A
ence of another single force XN,
which acted at 4, would move with uniform velocit; from
A to C; complete the parallel ABCD: then if both
forces act simultaneously at 4 the body will move uni-
formly in the given time from 4 to D.

For since the force IV acts along the straight line 4C,
which is parallel to BD, this force, by the nd Law,
will not change the velocity of approach towards the
straight line BD, which is produced by the other force.
Thus the body will reach the straight line BD in the
same time whether the force IV act or not; and so at

() D
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-the end of the given time will be found somewhere in

the straiggg line BD. By the same reasom;:g it follows

that the body at the end of the given time will be found

?ifllmhiml)in the straight line CD. Therefore the body
at D,

The body must move in & straight line from B to D, by
the First Law of Motion. .

48. Thus it ap that, according to Newton’s view,
the Becond Law of Motion tells us that when forces act
simult.aneonsldyl on a body each force communieates in a
given time the same velocity as if it acted singly on
the body originally at rest; and then by the Corollary we
learn how to compound the velocities thus generated into
a single velocity.

. It will be seen that Newton supposes in his expo-
sition that the two forces act instanianeously; that is,
they are of the kind which we naturua:lllj suppose a blow
to be, and communicate velocity by sudden action, not by
continuous action.

49. The principle contained in Art. 47 is called the
Paralldlogram of Velocities, and is usually enunciated
thus: {f a body have communicated to it simultaneously
two ities which are represented in magnitude and
direction by two straight lines drawn from a point, then
the resultant wvelocity will be represented in magnitude
and direction by the diagonal, drawn from that point, of
the parallelogram constructed on the two straight lines as
adjacent sides.

This principle gives rige to applications similar to that
deduced from the Parallelo of Forces in Btatics.
‘We may use the principle either to compound two velo-
cities into one, or to resolve one velocity into two.

50. Thus if velocities « and » be simultaneously commu-
nicated to a body in directions which include an angle e,
the resultant velocity is o/(u?+9®+2up cosa). Let B be
the angle between the direction of the velocity » and that of
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the resultant velocity, and -y the angle between the direc-
tion of the velocity » and that of the resultant velocity;
then 8+vy=a, and .
. sing o
siny %’ . .
In the special case in which a=90°, the resultant velo-
city is A/(u?+%); also .

sinf=——o 2, ERY=—p—g
N+ %) N+ %)
See Statics, Art. 30.

51. A body projected in any direction not vertical and
acted on by gravity will describe a parabola,

Let a body be projected from T
the ‘Hoint A in any direction
which is not vertical; let 47 be
the space which would be de-
scribed by the body in the time ¢
if the force of gravity did not
s oqua o the space through 4
w eq ) ug|
which a body would fall from
rest, in the time #, under the
action of gravi:l. Complete the X
parallelogram 4 7PM. Then P,
the corner olzgosite to 4, will be
the place of the body at the end X
of the time .

For, by the Second Law of Motion, gravity will com-
municate the same vertical velocity to the body as it would
if the body had not received any other velocity. Thus at
any instant there will be the same vertical velocity as if
there had been no velocity parallel to 47, and the same
velocity parallel to AT as if there had been no vertical
"velocity. Therefore the spaces described parallel to 47
and -4 M respectively will be the same as if each alone had
been described. Thus P will be the place of the body at
the end of the time ¢. E
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Let u be the velocity with which the body is projected
at 4; then AT or PM=ut; also AM:;—,yt’, therefore

PM==?§’ AN,

Thus PM?3 bears a constant ratio to AM, and there-
fore by Conic Sections the path of the body is & paraboh},

‘having its axis vertical and A7 for a tangent. And --

is the distance of A4 from the focus of the parabola, and
also from the directrix.

52. Produce 7P to Q, so that PQ=PT, and produce
AM to AN so that MN=AM. Then

Now at the end of the time ¢ the body has its original
velocity parallel to 47, and also the vertical velocity g¢
downwards which has been communicated to it b‘{’gravity;
these velocities are proportional to 47" and AN, and in
these directions. Hence the resultant velocity at P is
parallel to 4Q, by Art. 49.

The direction thus determined for the velocity at P is,
by Conic Sections, that of the fangent at P, which might
have been anticipated.

53. A body projected in any manner and acted on by
gravity is called a Projestils; thus we have shewn that the
path of a Projectile is in general a parabola, and is a
Btraight line in the particular case in ‘which the body is
projected vertically upwards or downwards. :

The student must observe that during the motion
which we consider in Art, 51 the only force acting is that
of gravity; see Art. 41,

54, The valocity of a projectile at any point of its

path is that which would be acquired in falling from the
directriz to the point. .. . . :
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For we have seen in Art. 51 that the dista’nee of the
directrix from the point of projection is ’;—g, where w is

2

the velocity of projection; and % is equal to the vertical
space through which a body must fall from rest under the
action of gravity in order to acquire the velocity ». Now
any point of the parabolic path may be ed as the
point of projection, and the velocity at that point as the
velocity of projection. Thus the required result is obtained,

55. The preceding result may also be obtained thus:

Suppose the direction of projection to make an angle a
with the horizon ; resolve the velocity of projection % into
w cos a in the horizontal direction and « sin a in the verti-
cal direction. Then at the end of the time ¢ the hori-
zontal velocity is still «cos , and the vertical velocity is
% sina—gt. ) . .

Let v denote the resultant velocity; then, by Art. 50, .

o= (% cos a)'+ (% sin a.—gt)*
=u3—2gtu sin a + g3

=u'—2g(tu sina— %yﬂ)

Now fusina— %gt’ is the vertical height of the body
above the horizontal plane through the starting point b,
Art. 43; we will denotg this by y: thus v’:u’—zgg. y

Let % denote the distance of the directrix from the

3
starting point, so that _h=;—‘; ; thus o8 =2g (h—y).
T'l:'i:ds‘heml‘ﬂmgo the ve'l;o:lig ish ta?t whichhwom%hl;z
uired in falling from res e space & —y, .
i;;“,}qm falling from the directrix to“tie point considered.

. 56, To determine the position of the focus of the
paraboladaoribodbyaprmi,::’tﬂa.‘v A
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Let » be the velocity of projection, and a the angle

‘which the direction of projection makes with the horizon.

'l;he distance of the focus from the point of projection
is ';—g by Art. 51. By the nature of the parabola the tan-

‘gent at any point makes e&itgal angles with the focal dis-

tance of that point and the eter at the point. Hence

.the straight line from the point of projection to the focus
-makes an angle 2(90°—a) with the vertical, and therefore

an angle 2a—90° with the horizon. Thus the situation of

e

the focus is determined. .
The height of the focus above’the horizontal plane

“through the point of projection is ;igsin(%-so'), that is
- :—; cos2a. Thus the focus is below the horizontal plane

through the point of projection if 2a is less than 90°% and

" above it if 2a is greater than 90°

Ifa perm:dicular be drawn from the focus on the
horizontal plane throutib the point of projection, the dis-
tance of the f.oot of the perpendicu]a’r from the point of

o e o U T
projection is 2700:(‘20.—90"), thatmgsmh

87. To find the time in which a projectile reaches ite
greatest height, and the greatest height.

Let u be the velocity of projection, a the angle which
the direction of projection makes with the horizon; then at
the end of the time ¢ the vertical velocity is uqma—&t.
Now at the instant of reaching the geatest.hexght e
vertical velocity vanishes, so that we have % sina—gt=0

% gina
therefore ¢= 7"

By Art. 55 the height of the projectile at the time
above the horizontal plane through the point of projectio..

fu sina - > g7; substitute the valuo of ¢ just found ; thus
T M. ' 16
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- in? 2 gins 2 gin?
tho greatest height is 512 — 3 L5IS, ot g e,
Compare Art. 43.

58. To determine the Latus Rectum of the parabola
‘described by a projectile.

Let « be the velocity of projection, a the angle which
the direction of projection makes with the horizon.

At the highest point the velocity is entirely korizontal,
8o that it is parallel to the directrix ; and thus the highest
.point is the vertex of the parabola. The velocity at the

ighest point is % cosa. By Art. 54 this velocity would be

acquired in falling from the directrix ; therefore the dis-

tance of the vertex from the directrix is u’eos’a' The

latus rectum is equal to four times this distance, so that it
. 2uicosla )
ls g9

59. The interval between the projection of a projectile
and its return to the horizontal plane through the point
of projection is called the time of tgh’ght. e distance
from the point of the ptr:f'ection of the (foint at which the
body meets the horizontal plane is called the range on the
horizontal plane through the point of projection.

60. 70 find the time of flight of a projectile.

Let u be the velocity of projection, a the angle which
“the direction of projection makes with the horizon,

The height of the body at the time ¢ is fu sina— ;gt‘.

This vanishes when £=0 and when t=2—u;1i. The value
t=0 corresponds to the instant of starting; the other value
of ¢ must corre:‘g:nd to the instant when the body again
reaches the horizontal plane through the point of projec-
tion. Thus by Art. 57 we see that the time which the
projectile takes in descending from the highest point to
the horizontal plane through the point of projection is

2u sina sma._u___sma, that is '“m"; so that the time of

g:
descent is equal to the time of ascent.
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61. On reaching the ground the vertical velocity is
u sina—2g L sm“, that is —wsina; thus it is numeri-
cally the same as at starting, but in the opposite direction.
The horizontal velocitiis the same at the two points.

And generally at the two points which are in the same
horizontal plane the whole velocities are the same by
Art. 54; and the horizontal velocities are the same: hence
the vertical velocities are numerically the same, but must
be in opposite directions, .

62. 7o find the range on the horizontal plane through
the point of projection. .

Tt is shewnin Art. 60 that the time of flight is 22522,
and the horizontal velocity is  cosa: hence the horizontal

spacedescribedis&u%;m—“xuoosa. This may be put in

ut .
the form 7 sin 2a,
It is often useful to observe that it is ;“ gina.% cosa,

that is gx vertical velocity at starting x horizontal velocity.

63. The time of flight and the range may also be in-
- vestigated thus: .

Let 4 be the point of projection, T
AT the direction of pmection, ABthe
range on the horizontal plane thro:
A,l and %’B ver:!ieal. by t .ul bg’A Be
velocity of projection, a the angle A .
t the tﬁne of dight. 4 B

Then AT=w, TB=;gt’; hence

1

3 — — — t .
nna-———f!”,-2—— —-9—, therefore ¢
2u?sina cosa

And AB=AT cosa=tu oosa:——T——— .

_2usina

16—2
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. 64. An inclined plane passes through the point of
pragection of 3 praectis and s 5t vight anples toihe plans
of motion : to find the time of flight, the greatest dis-
tance from the plane, and the range on the plane.

. Let AP, the inclined plane, make
an u:gle B with the horizon AN ; let 7 P
A T, the direction of projection, make
an angle a with the horizon; let u be
the velocity of projection.

Resolve the initial velocity along £ N
the plane and at right angles to it;
tae latter part i8 wsin(a—B8). Resolve the acceleration g
parallel to the plane and at right angles to it; the latter
part is g cos 8.

. The motion in the direction at right angles to the plane
is independent of the motion parallel to the plane. Hence
a8 in Arts. 43 and 57 the body reaches its greatest distance

from the plane at the end of the time %ﬁ—); and it

takes the same time to move from this point to the plane,
. s v e s 2usin(a— B?o

po that the time of flight is ————

g cosp
* - And, as in Arts. 43 and 57, the greatest distance from
the plane is 2.8 (—A) :
P 2g cosB °

Let P be the point where the body meets the inclined
plane: draw PN perpendicular to the horizon. Thus
AN=AP cosp.

But AN is the horizontal space described in the time

2u sin (a—f) ); therefore

g onf 2u sin (a—B)
% co8 a 2u &in (a—pB) |
AN

248 cos a gin (a— B)
g cos'8

.

therefore AP=AN secB =
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65. The result of the preceding Article may also be
obtained thus: P v

Let A bo the point of projection,

P the point where the body meets the . T
inclin e. Draw a vertical line
meeting the direction of projection at
T and the horizon at . :
Then, with the same notation as be- ' P
fore, :
1
AT=ut, TP=§gt'; . N
also TP _sinTAP sin TAP
AT sin APT cos PAN'
. _l_ g"
2% sin(a—B) _ 2u sin(a—B)
thus = "cosB whence t——————gmﬂ .
_ _ _ 2ulsin(a—pB)cosa
Also AN=AT cos TAN=tu w"'“——_gcoaﬁ ,
AP=AN secB= 2u? 8in (a — ) cosa
g cos®p

66. The theory of projectiles which has now been
given is of no practical use, because it is found by experi-
ment that the resistance of the air exercises a very power-
ful influence on the motion of a body, especially when the
velocity is large. On this account the actual path of a
cannon ball is not a parabola, and the range and time of
flight are quite different from the values determined -
above. The following is an example: a ball of. certain
size and weifght being projected at an angle of 45°, with
a velocity -of 1000 feet per second, it is found that on
taking the resistance of the air into account the range
is about 5000 feet, instead of being (1300,

The discussion of the motion of a projectile, taking
into account the resistance of the air, is however far too
difficult to find a place in this book. . .
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Examrrrs, V.

1. Velocities of 5 feet and 12 feet per second in direc-
tions at right angles to each other are simultaneously com-
municated to a body: determine the resultant velocity.

2. A body is projected with the velocity 3¢ at an incli-
nation of 75° ti) th!;rﬁ]orizon: determine the range.

3. If at the highest point of the path of a projectile
the velou;vt,il be altered without altering the direction of
motion, will the time of reaching the horizontal plane
which passes through the point of projection be altered ?

4, From the highest point of the path of a projectile
another body is projected horizontally with a velocity e%ua.l
to the original vertical velocity of the first body: shew
that the focus of the path described by the second body is
in the horizontal plane which passes through the point of
projection of the first body.

5. A ship is moving with a velocity %, a cannon ball is
shot from a cannon which makes an angle a with the hori-
zon, with powder which would give a velocity » to the ball
if the cannon were at rest: find the range supposing the
ship and the ball to move in the same vertical plane.

6. Two bodies are projected simultaneously from the
same point, with different velocities and in different direc-
. tions: find their distance apart at the end of a given time.

7. Determine how long a particle takes in moving
from the point of projection to the further end of the
latus rectum.

8. A body slides down a smooth inclined plane: shew
that the distance between the foot of the inclined plane
and the focus of the parabola which the particle de-
stgﬁbel;nafber leaving the plane is equal to the height of

e plane, . .



EXAMPLES. V. 247

9. Two parabolic paths have a common focus and their
axes in the same straight line: shew that if tangents be
drawn to the two paths from any point in their common
axis the velocities at the points of contact are equal.

. 10. If two projectiles have the same inmitial velocity
and the same horizontal mnﬁg, the foci of their paths are
at equal distances from the horizontal plane.

11. A heavy particle is projected from a point with
8 given velocity, and in a given direction: find its distance
from the point of projection at the end of a given time.

12. A number of particles are projected from a fixed
point in one.ﬂlane, so that their least velocity is constant:
shew that all of them will be found at any the same in-
stant on the same vertical line.

13. Determine the tangent of the angle which the
direction of motion of & projectile makes with the horizon
at a given instant.

14. A body is projected with a given velocity and in
a given direction: determine the velocity with which
another must be projected vertically so that the two may
reach the ground at the same instant.

15. Shew that the greateet range up an inclined plane
of 30° is two-thirds of the greatest range on a horizontal
plane, the initial velocity being the same in the two cases.

16. A ball fired at an inclination a to the horizon just
clears a vertical wall which subtends an angle 8 at the
Kiﬁ’t of projection: determine the instant at which the

Jjust clears the wall,

17. In the preceding Example determine the horizon-
tal distance between the foot of the wall and the point
where the ball strikes the ground.

18. If one body fall down an inclined plane, and
another be El:jected from the starting point horizontally
along the e, find the distance between the two bodies
when the first has descended through a given space.
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V1. Projectiles continued.

67. Although, as we have stated at the end of the
preceding Chapter, the theory of Projectiles is of no use
in practice, yet it deserves careful study on account of the

uable illustration which it affords of the principles of
Dynamics; and a thorough knowledge of the elementary:
principles is the true foundation for those higher investiq:-
tions which apply to the phenomena actually presented by
nature. A very number of deductions and problems
may be given which serve to impress the met! and
results of the preceding Chapter on the memory: some of
these examples we will now di

68. We have seen in Art. 62 that the range on the
horizontal plane through the point of projection is % sin 2a..
Hence we deduce the following results.

The greatest range for a given velocity of projection is
found by supposing 2a=90°, that is a=45°: tg:: greatest
range is —.

. g .
. Suppose the range to be given; denote it by ¢: then'
1sin2a=c, thus if either a or % is also given we may find
e other. ’

Since wi=—2 , the least value of « is when sin 2a is
sin 2a

greatest, that is when a =45°

Thus when a=45° we have the greatest range corre-
sponding to a given velocity, and also the least velocity cor-

responding to a given range.
Again, suppose ¢ and % given, and « to be found; we
have sin2a={%: it is known by Trigonometry that if cg
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is less than 2 there are two values of 2a between 0 and
180° which satisfy this e(ﬁxation, and one value is the sup-
ement of the other. ence there are two values of
thween 0 and 90° and one value is the complement of the
otaer. R

69. We have seen in Art. 64 that the range on a plane

inclined at an angle 8 to the horizon which through

the point of projection and is at right angles to the plane
. . 2u?cosa sin(a—p) . .

of motion is T ‘We shall now investigate

for what angle of projection this range is greatest, the velo-

city being évon.

- We have to investigate for what value of a the expres-
sion cos a sin (a—B) has its greatest value. Now we know
by Trigonometry that

2 co8 a. sin (a— B) =sin (2a—B)—sin B;
hence the greatest value is when 2a —8=90°, that is when

a=%’(ﬂ+90°);

the greatest range is
(1 —sinB) . u?
goorg WO S gy

Suppose the range to be given; denote it by ¢: then
2u? cos a sin (a—B)=c
g cos* )
Hence the least value of % is when cosa sin(a—p) is
greatest, that is, as before, when a=%(ﬁ+ 90°. Thus, for

this value of a we have the greatest range corresponding
to a given velocity, and also the least velocity correspond-
ing to a given range, o B D
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Su) the range and the velocity of projection given,
and that we have to find the angle of projection; then
since

gecos’
a’
ge cos®p

ut °

2 coBa 8in(a—ﬁ)=

’

we have gin (2a—B)=sin 8 +

Hence we have in general two values of 2a—8 between
0 and 180°, and one value is the supplement of the other.
Suppose one of these values is v, then the other is 180°—1;

from the former we obtain a=%(ﬁ+1), and from the

Iatter a=90°+ 3 (8—y). The sum of these values of a is

90°+ 8, that is twice the angle of projection which gives
the greatest range correspon: to a given velocity: hence
the two directions which correspond to a given. range are
equally inclined to that which corresponds to the greatest
range, but on opposite sides of it.

70. To determine the direction tn which a body must
be pr%ected Jrom a given point with a given velocity 8o
as to hit a given point.

Let 4 denote the point of projection, B the other given

int. The velocity at 4 is known; and therefore the
H:)stm' ce of 4 from the directrix is known by Art. 54, so
that the position of the directrix is known. Then since B
is a given point, the distance of B from the directrix is
also known.

Now the distance of any point in the parabola from
the focus is equal to the distance of that point from the
dire‘(::-ix: hence the distances of 4 and B the focus
are known.

Describe a circle with 4 as a centre, and radius equal
to the known distance of the focus from 4 ; describe an-
other circle with B as centre, and radius equal to the
known distance of the focus from B. The focus of the
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bola will be at the intersection of the circles; and as
he directrix is also known, the parabola is determined.

If the circles do not meet the problem has no solution;
if they touch there is one solution; if they cut, since either
point of intersection may be taken, there are two solutions.

71. Let u be the velocity of projection, a the angle
which the direction of projection makes with the horizon;
and let ¥ be the heiﬁlnt of the projectile at the time ¢

above the horizontal plane through the point of projection.
Then as in Art. 55,
- y=tu sina-% LR ¢ § X

Suj a ndicular be drawn from the projectile
at thepg:?ieof &eer%eime t on the horizontal planep?l?rou h
the point of projection; and let # be the distance of the
foot of the perpendicular from the starting point; then

Z=0U COBQ eevnrnrenvnrsennvsens (2)

From (2) we have ¢=——— ; substitute in (1), thus
% C08Sa

y=x tana m ................. (3).

These equations are often useful in solving problems
projectiles.

72. 'We may apply equation (3) of the preceding Arti-

cle to give another!;noyde of solving the proglem in Art. 70.

For since the point to be hit is given, the values of 2

and y will be known; we may then by solving the quadra-
tic equation determine tana. For we havzmg

y=x tana—g—z:(l +tan%a),

2 :
or tan’a-g'-‘- tana+1+ L’Lz-ao.
gx gz
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Hence, by solving the quadratic equation,
u? ut W
tma= 2w o/ (G- ~73 )

Hence we see that tan a has two values, or one, or none,
according as the quantity under the radical sign is positive,

. . 4 B
zero, or negative, that is, according as :,—— is greater than,

2 .
equal to, or less than w’+?%‘—.

73. If particles are projected from the same point,
at the same instant witf the same velocity, in diferant’
directions, they will all at any future instant be on the
surface of a sphere.

Let u be the velocity of projection; then with the
figure of Art. 51 we have at the end of the time ¢

MP =AT=ut.
This shews that whatever be the direction of projection
all the icles at the end of the time ¢ are on tEe surface

of a sphere of which the radius is ¢, and the centre is M ;
80 that the centre is at the distance % gt below the point
of projection.

74. If two particles are projected from the same
point at the same instant, with different velocities, and in
different directions, the straight line which joins them
will always move parallel to itself. :

Let 4 be the point of pro-

jection ; suppose one body pro- XK
Jected along AP, and the other ,
along 4Q. Q q

First suppose the force of
E:iﬁty not to exist. Then each R
y would move uniformly in a - '
straight line. "Suppose one body

A
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to be at P at the end of the time 7}, and at p at the end
of the time ¢; and su e that the other body is at @
at the end of the time 7}, and at ¢ at the end of the time 2.

AP _T_A4Q,

Then Ap T 4g’
therefore PQ is parallel to pg, by Euclid, vi. 2. Now
ls:)gpoae the force of gravity to act; then in the time ¢ each
y would be drawn down through the vertical space

-l-gt’. Thus take pR and ¢S vertically downwards, and
2

oachequalto%yt‘; then R and S are the positions of the

bodies at the end of the time ¢; and RS is parallel to PQ
by Euclid, xr. 9. 7 :

75. If thres particles are projected from the same
point, at the same instant, witﬁt‘formt ‘velocities, and
tn different directions, the plane which passes through
them always moves parallel to itself. .

This is demonstrated in the same manner as the preced-
ing proposition ; Euclid, x1. 15 will be required.

76. Let v be the velocity at any point P of the parabola
described by a projectile; let S be the focus: it is shewn
in Art. 54 that v*=2g SP. Let p be the perpendicular
from S on the tangent to the parabola at 2; then it is
known from conic sections that SP varies as p®. Hence
o varies a8 p. And the perpendicular from .S’ on the tan-
gent at P is at right angles to the tangent, that is at right
angles to the direction of the velocity at P.

Since then the perfendicnla.r varies as the velocity and
is a.lwa{:aat right angles to the direction of the velocity,
it may be conveniently used to furnish a representation o
the_velocity at any point of the parabola described by a
projectile.

77. It may be shewn that the path of a projectile is
a parabola in the following way :
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Let u be the velocity of projection, a the angle which

the direction of grojection makes with the horizon. Then
the vertical height of the body at the end of the time ¢ is

usin af — % gt2; and therefore the distance of the body from
- . . 2, UR
a straight line parallel to the horizon and at the height 2

3
above the point of projection is % —tu sina+ %gt’
w1 g8
Now {;—g ~tusina+y gt’}

- {;‘7; (sin’a—cos’a)—tusina-l-%gt%:—’oos’a}’

0\

W it a—costa)—tusina+ taet )
{2g(nna cos?a) tumna+2gt2}

u?cos? a\2

{ :—;(sin’a—oos’a)—msinai-%gt’} + (—-—)

2u* cos’ a
g

g .

= {i'(.int —costa)~ fusin a+ 1 ts}'
=12 a at3g
3, 4
+t’u’cos’_a—-%';—tcos’asina+'yi,sin’ams’a

= {iz(s’ 2 g — cos? a) — fu sin +1 t’}’
= 2 1n“a a % 8in a 2g

u? ., 3
+ {tucosa—;—smacosa} o

Now the horizontal distance which the body moves
t h in the time ¢is wcosat; and so the expression
Just given is the square of the distance of the body at the
time ¢ from a certain fixed point, namely the point which is
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. 2 X ' '
at the height >~ (sin®a—cos?a) above the horizontal plane
through’the point of projection and at the horizontal dis-
tance % sin a cos a from this point.

Hence we see that the distance of the body from a
certain fixed straight line is always equal to its distance
from a certain fixed Point. .Hence from the definition of a
parabola the path of a projectile must be a parabola.

Hence it follows that we could thus by the aid of
mechanical princi%lees demonstrate that the property em-
ployed in Art. 51 belongs to a parabola, without assuming
1t from geometry.

Examrres. VI. o

1. Find the velocity and the direction g:nprotie;tion in
order that a projectile may pass horizontally ugh a
given point.

2. Find the velocity with which a body must be pro-
Jjected in a given direction from the top of a tower so as to
strike the ground at a given point.

3. A body is projected with a given velocity at an
inclination a to the horizon; a £Me inclined at an angle g8
to the horizon passes through the point of projection: find
the condition In order that the body when it strikes the
plane may be at the highest point of its path.

4. Two bodies are simultaneously projected in the
same vertical plane with velocities % and 2 at inclinations
a and B to the horizon. Shew that their directions are

. % sin (a—B)
pamllel after the time m .

5. Bodies are projected from the same point in the
same vertical plane and in such a manner that the para-
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bolas described are equal: shew that the locus of the
vertices of these parabolas is an equal parabola. - '

" 6. Bodies are projected from the same &int in the

same vertical plane so as to describe ‘having a
latus rectum of given length: shew that the locus of the
foci is an equal parabola with its vertex downwards, and its
focus at the point of projection.

7. Bodies are grojected simultaneously from the same
point, and strike the horizontal ﬁlt?e through that point
simultaneously : shew that the latera recta of the paths
vary as the horizontal ranges.

8. A body is projected at an inclination a to the
horizon: determine when the motion is tﬁ dicular to a
plane which is inclined at an angle 8 to ﬁorizon.

9. A body is projected at an inclination a to the
horizo:-ik det.enn;ﬁe thgt; eoglition in ol:-ld%r that tmd
may strike at right angles the plane whic
;;lhe{point of projection and makes an a.ng; B with the

orizon,

10. A body is Frojecwd with the velocity « and strikes
.at right angles a plane which passes through the point of
projection and is inclined at an angle 8 to the horizon:
shew that the height of the point struck above the hori-
zontal plane through the point of projection is

2u? _ sin?g
g 1+3sin38°

11. Shew by mechanical considerations that any dia-
meter of a parabola bisects the chords which are el to
the tangent at the extremity of the diameter. :

12. Shew .that the time- of describing any arc of a
parabola by a projectile is equal to the time of moving
uniformly over the chord with the velocity which the pro-

. jectile has when it is moving parallel to the chord. -
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13. The time of describing any arc of a bola by a
Projectile is equal to twioe“zge t{me of fdﬁ;‘ vertigly
x;n?i rest from the curve to the middle point of the
cho!

14. Two bodies are projected from two given points
in the same vertical line in parallel directions and with
equal velocities: shew that nts drawn to the path of
the lower will cut off from the path of the upper arcs’
described in equal times.

15. A smooth plane of length ¢ is inclined at an angle
a to the horizon; a body is projected up the plane with
the velocity w, and after leaving the plane describes a
parabola: shew that the greatest vertical height reached:

above the point of projection is lsinacos’a+£sin'a.

16. A heavy body is projected from a given point in a
given vertical plane with a given .velocity so as to pass
through another given point: shew that the locus of tho
second point in order that there may be only one parabolic
path is-a parabola having the given point as focua.

17. A ball is shot from a cannon with velocity », at an
inclination a to the horizon; the cannon is moving horizon-
tally with velocity « in a direction inclined at an angle g to
the vertical plane which is parallel to the cannon: find the
range of the ball on the horizontal plane.

18. A stone is thrown in such a manner that it would
just hit a bird on the top of a tree, and afterwards reach a
eight double that of the tree; if at the moment of throw-
ing the stone the bird flies away horizontallty, shew that the
stone will notwithstanding hit the bird if the horizontal
velocity of the stone be to that of the bird as 1+ /2
is to 2.

19. Find the time in which a projectile would rcach a
plane inclined to the horizon at an angle equal to the angle
of projection, and bisecting the range on the horizontal
plane.

T. M, 17
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20. A particle is projected from the top of a tower,
at an inclination a to the horizon, with the velocity which
would be aoguired in falling down = times the height of
the tower. Obtain a quadratic equation for determining
the range on the horizontal plane through the foot of the
tower. .

21. If k2 be the height of the tower in the preced-
ing Example, shew that the greatest possible range is
2h \J(n?+n), and that the tangent of the corresponding

. N . n
angle of projection is / A’

' 22, A particle being projected with velocity %, at an
inclination q, just clears a cube of which the edge is c,
which stands on the horizontal plane: find the relation
between #, a, and c.

23. From the result of the preceding Example form
a quadratic equation for finding tan a; and thence shew
that the least possible value of %* is 3cg.

24, In the last Example shew that when u is least
tan a= ,/5 and that the point of projection is at the

distance g (f5-1) from the cube,

28. If ¢ be the time in which a projectile describes an
arc of a parabola; and v the velocity which a particle
wxould acquire in falling from the intersection of tangents
at the extremities of the arc to the thord of the are,
shew that ' :

gt=v,2
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VII. Mass.

78: The word matter is in common use ; and it is not
easy to define it 80 as to give a notion of it to ang ]rerson
who does not already possess the notion, The following
definitions have been proposed :

Body or matter is any thing extended, and possessing
the power of resisting the action of force. :

Matter is the Substance, Material, or Stuff, of which
all bodies are composed that are capable of having forces
applied to them,

79. The word mass is used as an abbreviation for
- quantity of matter.

80. We assume that at the same place on the Earth's
surface, the masses of bodies are &);'oportional to their
weights. We will explain the grounds of this assumption,

If we take a cubic inch of lead, we find by experiment
that it produces the same effect by its weight as another
cubic inch of lead; and thus two cubic inches of lead
produce by their weight twice the effect which one cubic
inch produces by its weight. Now it is a very natural
supposition that so long as we keep to one kind of sub-
stance the mass is ﬁ)roportional to the volume ; and there-
fore, 80 long as we keep to the same kind of substance the
mass is Froportional to the weight. We assume then that
this will also be true when we compare bodies which are
not of the same kind of substance,

81. Now suppose we have two bodies containing equal
volumes of the same kind of substance. If a certain force
acting for a certain time on one of these bodies generates a
certain velocity, an equal force acting for an equal time
on the other body will generate an equal velocity. Imagine
that the two bodies are united into one body, and that
the two forces are made to act on the united body: it is

17—2



260 MASS.

most natural to conclude that a velocity equal to the for-
mer will still be generated in an equal time. We are thus
led naturally to suppose that w! bodies of different

but composed of substance of the same kind, are
similarly acted on by forces proportional to the masses,
the velocities generated in equal times will be equal.

Thus, as long as we keep to the same kind of )
we gee that in order to generate a certain velocity in a
certain time, the force must vary as the mass. We assume
that this is also true for bodies which are not of the same
kind of substance.

‘We have already seen that for the same body the force
varies as the velocity generated in a given time; and we
now see that for the same velocity the force varies as the
mass, Hence by Algebra when both the velocity and the
mass vary, the force varies as their product; or in other
words, when a force acts on a body, the product of the
mass moved into the velocity generated in a given time s
proportional to the force.

82. The word momentum is used as an abbreviation of
the product of the mass moved into the velocity.

83. We see then that the velocity generated in a given
time by a given force, varies ¢nversely as the mass. This
fact, that the greater the mass the less the effect which a
given force produces, is sometimes expressed by saying
that matter i8 tnert, or that inertia is a property of matter.
The words inert and inertia however are sometimes used
in reference to the fact involved in the First Law of
Motion, namely, that a body cannot change its own state of
rest or motion.

84, We now repeat the second Law of Motion.
Change of motion is proportional to the acting Jorer,
and takes place tn the direction of the straight hine in
which the force acte.

By motion here we are to understand motion as mea-

sured by momentum; so that we can now remove the
restriction of having only one body and one force, which
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we have hitherto regarded, and may proceed to those more
complex cases in which different bodies and different forces
oceur,

_ 85.  One case of the general principle of Art. 83 will
be as follows; the weight of a body at a given place is
proportional to the product of the mass moved into the
velocity generated in a given time. Let the given time
be one second, and the unit of length one foot; then the
velocity generated is denoted by g. Let M be the mass
of a body, and W its weight; then F¥ varies as My, so
that by Aigebra W= CMy, where C is some constant.

. It is convenient to have this constant equal to unity;
this we can secure by making a suitable connexion between
the units of mass and of weight which have not yet been
fixed: then W=Mg.

Suppose, for example, we resolve to have one lb. as the
unit of weight: required to determine the unit of mass, -
Let M=1; then we obtain W =g, that is 322; so that
the unit of mass is 86 much mass as weighs 322 lbs.

Again, suppose, for example, we resolve to have the
mass of one cubic foot of water as the unit of mass,
required to determine the unit of weight. Let W=1;
then we obtain M= 5215 so that the unit of weight is such

1

& weight that its mass is 329 that is, the mass of the unit
of weight is 3—;5 of the mass of a cubic foot of water. Now
it is known by experiment that a cubic foot of water
weighs 1000 ounces, so that the unit of weight is %%0_:
ounces.

- 86. We may illustrate the preceding remarks by
discussing the motion of a body sliding on a rough in-
‘clined plane. .

Su%%ose a plane inclined at an angle a to the horizon;
let a body be placed on the plane. Let M denote the
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mass of the body, and therefore Afy ité weight. The
resolved force of gravity down the plane is Mgsina. The
pressure on the plane is Mgcosa. If u demote the
coeflicient of friction, the friction will be uMyg cos a.

If the body is moving down the plane, the friction acts
up the plane. Hence the resultant force down the
is Mg(sina—pcosa). Now when a body is acted on by
its own weight, the velocity generated in a unit of time is
g ; that is, the force g{ generates in a body of mass M
the velocity g in & unit of time: therefore, by Art. 81,
the force Mg (sin a—p cosa) will generate the velocity
g(8in a—p cos a) in & unit of time.

Thus the motion of a body alid.ingo:llown a rough in-
clined plane is similar to that of a body sliding down a
smooth inclined plane, or to that of a body falling freely:
the acceleration i8 g(sin a—pucosa) for the ro lane,
gr:;!]m for the smooth plane, and g for the y &I.lmg

y.

In the same manner it may be shewn that if a body is
sliding u#p a rough inclined plane the acceleration is
g(sin a + p co8 @) downwards.

Exampres. VII

1. A body weighing = lbs. is moved by a constant
force which generates in the body in one second a velociti
ofa fe;t:. per second : find the weight which the force coul
8uppo; :

2. Find in what time a force which would support a
weight of 41bs,, would move a weight of 9 lbs. thrm:i!;
49 feet along a smooth horizontal plane: and find
velocity acquired,

3. Find how far a force which would support a weight
of n lbs, would move a weight of m lbs. in ¢ seconds:
and find the velocity acquired.

4. Find the number of inches through which & force of
one ounce constantly exerted will move a mass weighing
one 1b. in half a second.
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5. Two bodies urged from rest by the same uniform
force describe the same space, the one in half the time the
othe:& does : compare their final velocities and their mo-
men!

6. If a weight of 81Ibs. be placed on a plane which
‘is made to descend vertically with an acceleration of 12
feet per second, find the pressure on the plane,

7. Ifa weight of n 1bs. be placed on a plane which is
made to ascend vertically with an acceleration/, find the
pressure on the plane.

8. Find the unit of time when the unit of space is two
feet, and the unit of weight is the weight of a unit of mass;
assuming the équation W=Myg.

9. A body is projected up a rough inclined plane, with
the velocity which would be acquired in falling freely
through 12 feet, and just reaches the top of the plane; the
inclination of the plane to the horizon is 60°% and the
ooefficient of friction is equal to tan30°: find the height of
the plane.

. 10. -A body is projected- up a rough inclined plane-
with the velocity 2¢; the inclination of the plane to the
horizon is 30°% and the coefficient of friction is equal to
tan15°: find the distance along the plane which the body
will describe. ’
11. A body is projected up a rough inclined plane; the
inclination of the plane to the Ii:orizon i8 a, and the coefli-
cient of friction is tane: if m be the time aOf qscc(mdin)g,
. o m\*_ sin(a—e
and » the time of descending, shew that (3) = (ate)
12. Find the locus of points in a given vertical plane
from which the times of descent down equally rough in-
clined planes to a fixed point in the vertical plane vary as
the lengths of the planes.
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VIII. Tkird Law of Motion.

87.  Newton’s third law of motion is thus enunciated :

70 every action there is always an equal and conirary
reaction: or the mutual actions of any two bodies are
always equal and oppositely directed in the same straight
line. ’

Newton gives three illustrations of this law :

If any ome presses a stone with his finger, his finger is
also pressed bypt.he stone, ’

If a horse draws a stone fastened to a rope, the
:‘l?m:io is drawn backwards, so to speak, equally- towards
e stone,

If one body impinges on another and changes the
motion of the other body, its own motion experiences an
equal change in the opposite direction. Motion here is te
be understood in the sense explained in Art. 84.

88. The first of Newton’s illustrations relates to forces
in Statics; and the law of the equality of action and re-
action in the sense of this illustration has been alread
sasumed in this work; see Statics, Art. 283. The secon
illustration applies to & class of cases of motion which we
shall consider in the present Chapter. The third illustra-
tion applies to what are called smpulsive forces, which we
shall consider in the next Chapter.

89. Two heary bodies are connected by a sring
which passes over a fized smooth pully: required to
determine the motion.

Let m be the mass of the heavier body, and m’ the
mass of the other. Let 7'be the temsion of the string,
which is the same throughout by the Third Law of Motion,
the weight of the string being neglected as usual.

The forces which act on each body are its weight and
the tension of the string ; and these forces act in opposite
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directions, Thus the resultant force on the
‘heavier bodgogs mg— T downwards, and on
the lighter body 7'—m’g upwards, Therefore
the acceleration on the heavier body is m_g;TI"

. — .
and on the lighter body Tmy'ng . l

* Now as the string»is supposed to be in-
extensible, the two bodies have at any instant

equal velocities; and therefore the accelera-
tions must be equal. Thus

- mg—T_T-my,

Lt e

m w
therefore T=w e
m+m
Hence the acceleration is
2gm’ o m—m
S~ m+m? mrm?

This is a constant quantity. Hence the motion of the
descending body is like that of a body falling fregly, but
-

. . . m
is not so rapid ; for instead of g we have now mim P

90. In the investigation of the preceding Article no
notice is taken of the motion of the pully: thus the result
is not, absolutely true. But it may be readil m&posed
that if the mass of the pully be s compared with that
of the two bedies, the error is very slight ; and this supposi-
tion is shewn to be correct in the higher of Dynamics,
Theoretically instead of a pully, we might have a smooth
peg for the string to pass round, but psactically it is foand
that owing to friction this arrangement is not so suitable:
see Statics, Arts. 191 and 278. . S

91. The system of two bodies considered in Art. 89

forms the essential part of a machine devised by Atwood,
for testing experimentally the results obtained with respect
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to rectilinear motion under the action of uniform forces.
Atwcg')ld’s machiﬁe oontaifns some contﬁva:ﬁes for diminish-
ing friction, and some for assisting in the arrangement
and observation of the experiments; but the principle is
not affected by these contrivances.

The chief advantage secured by Atwood’s machine is
that by takin two bodles of nearly equal weight we can
z&—::,g' as small as we please, and thus render the

motion slow enough to be observed without difficulty.
The results of experiments with Atwood’s machine are
found to agree with those assigned by the investigations
already given.

92. Two bodies are comnected by a string, whick
passes over a small smooth pully fized at the top of two
tnclined planes having a common height: required to
d;!:emu‘m the motion, supposing one body placed on each
plane. .

Let m and m’ be the masses of the two bodies; a and o’
the inclinations of the planes on which they are respectively
placed. Let 7 denote the tension of the string. =~ =

%! N -

Suppose the body of mass m to be descending. The
weight of this body is mg; the resolved part of the weight
along' the plane 18 mgsina; hence the resultant force
down the plane is mg sina— 7, and therefore the accelera-

. . mgsina-T
t\onm————m .

Similarly, for the other body, the resultant force up
the .plane en which it moves is 7'-m’g sin o', and .the

J . ’
acceleration is T——-m—"g‘-,ﬂl.
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Now as the string is supposed to be inextensible, the
two bodies have at any instant equal velocities: and there-
fore the accelerations must be equal. Thus

* mgsina—T _T-mgsina
m - w ?

T_mm’g(sin a+8in a’)
. - m+m’ )
Hence the acceleration is
‘g(si sin . msina—m’sina’
_mg(sina+ y a')’ that is s
m -+ m+m

therefore

gsine .
- Thus we see, that in order that this may be positive,
and so the body of mass m be acquiring downward velocity,
-we must have m sin a greater than m’sina’.

Exampres. VIIL

1. If the two weights in Art. 89 are 15 ounces and 17
ounces respectively, find the space described and the
velocity acquired in five seconds from rest.

2. If the string in Art. 89 were cut at the instant
when the velocity of each body is %, find the distance be-
tween the two bodies after a time ¢.

3. In the system of Art. 89 shew that if the sum of
‘the weights be given, the tension is greater the less the
acceleration is,

4. A weight P is drawn along a smooth horizontal
table by a weight @ which descends vertically, the weights
being connected by a string passing over a smooth pully
at the edge of the table: determine the acceleration,

5. A weight P is drawn up a smooth plane inclined at
an angle of 30° to the horizon, by means of a weight
which descends vertically, the weights being connect
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by & passing over a small at the top of the
{nne:t'iifnghe aocelgntion be one- our{h of that 01; a body

Filling freely, find the.ratio of @ to P.

6. Two weights P and Q are connected by a string;
and @ hanginﬁ over the top of a smooth plane inclined
at 80° to the horizon, can draw.P up the length of the
plane in just half the time that P would take to draw
up Q: shew that @ is half as heavy again as P.

7. Four equal weights are fastened to & stting: find
how they must be arranged so that when the string is laid
over a fixed smooth pully, the motion may be the same as
that produced when two of the weights are drawn over
a smooth horizontal table by the weight of the other two
hanging over the edge of the table.

8. Two weights of 51bs. and 4 1bs. together pull one of
7 1bs. over a smooth fixed pully, by means of a connecting
string; and after descending through a given s&aoe the
4 lbs. weight is detached and taken away without in-
terrupting the motion: find through what space the re-
maining 5 lbs. weight will descend.

9. Two weights are attached to the extremities of
a string which is hung over a smooth pnllfy, and the
weights are observed to move through 6'4 feet in one
second; the motion is then sto) and a weight of §1bs.
is added to the smaller weight, which then descends
through the same space as it ascended before in the same
time: determine the original weights.

. 10. Find what weight must be added to the smaller
weight in Art. 89, so that the acceleration of the system
may have the same numerical value as before, but may be
in the opposite direction. '

11. Solve the problem in Art. 92, supposing the in-
clined planes rough. » FUPPOS

. 12. If the pully in Art. 89 can bear only half the sum
of the weights of the two bodies, shew that the weight of
the heavier body must not be less than (3 + 2 ,/2) times the
weight of the lighter body.
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IX. The Direct Collision of Bodies.

93. We have hitherto spoken of force as measured
by the momentum which it generates in a given time;
and the force with which we are most familiar is that of

vity, which takes an appreciable time to generate in any

fy a moderate velocity. There are however examgles
of forces which generate or destroy a large velocity in a
time- which is too brief to be appreciated. For example,
when a cricket ball is driven back by a blow from & bat,
the original velocity of the ball is destroyed, and a new
velocity generated; and the whole time of the action
of the bat on the ball is extremely brief, Similarly when a
bullet is discharged from a gun, a large velocitz is gene-
rated in an extremely brief time. ¥Forces which produce
such effects as these are called impulsive forces, and the
following is the usual definition: An smpulsive force is a
Jorce which produces a finite change of motion in an
tndgfinitely brief time,

94, Thus an impulsive force does not differ in kind
from other forces, but only in degree: an impulsive force is
a force which acts with great intensity during a very brief
time.

As the laws of motion may be taken to be true what-
ever may be the intensity of the forces which produce or
change the motion, we can apply these laws to impulsive
forces. But since the duration of the action of an im-
pulsive force is too brief to be appreciated, we cannot
measure the force by the momentum generated in any
given time: it is usual to state that an impulsive force is
measured by the whole momentum which it generates.

95. We shall not have to consider the simultaneous
operation of ordinary forces and impulsive forces for the
following reason: the impulsive forces are so much moré
intense than the ordinary forces, that during the brief
time of simultaneous operation, an ordinary force does nof
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grodnoe an effect comparable in amount with that pro-
uced by an impulsive force. Thus, to make a supposition
which is not extravagant, an impulsive force might gene-
rate a velocity of 1000 in less time than one-tenth of a
second, while gravity in one-tenth of a second would gene-
rate a velocity of about 3. :

96. The student might perhaps anticipate that diffi-
culties would arise in the discussion of questions relating to
impulsive forces, but it will appear as we proceed that the
cases which we have to consider are sufficiently simple.

We may observe that the words impact and impulse
are often used as abbreviations for ¢m, iee action,

97. We are about to solve some problems relating to
the collision of two bodies; the bodies may be considered
to be small spheres of uniform density, and, as before, we
take no account of any possible rotation: see Art. 10.
The collision of spheres is called direct when at the instant
of contact the centres of the spheres are moving in the
straight line in which the impulse takes place; the collision
?:l ﬁg&m is called oblique when this condition is mot

98. When one body impinges directly on another, the
following is considered to be the nature of the mutual
action. The whole duration of the impact is divided into
two parts. During the first part a certain impulsive force
acts in opposite directions on the two bodies, of such an
amount as to render the velocities equal. During the
second part another impulsive force acts on each body in
the same direction respectively as before, and the magni-
tude of this second impulsive force bears to that of the
former a ratio which is constant for any given pair of
substances. This ratio lies between the limits zero and
unity, both inclusive. When the ratio is. unity the bodies
are called peryectly elastic ; when the ratio is greater than
zero and less than unity the bodies are called tmperfectly
elastic ; and when the ratio is zero the bodies are called
inelastic. The ratio is called the modwlus of elasticity,
or the cogfficient of elasticity, or the index of elasticity.
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99. There are three assumptions involved in the pre-
ceding Article, . .

‘We assume that there is an epoch at which the velo-
cities of the two bodies are equal; this will probably be
admitted as nearly self-evident.

‘We assume that during the two parts into which the
whole duration of the impact is divided by this epoch,
the action on one body is equal and opposite to the action
on the other; this is justified by the Third Law of Motion.

We assume that the action on each body after the
epoch is in the same direction as before, and bears a
certain constant ratio to it; this assumption may be taken
for the present as an hypothesis, which is to be established
by oomsa.rmg the results to which it leads with observa-

tion and experiment. See Art. 104.

100. We have still to explain why the words elastic
and tnelastic are used in Art. 98. It appears from experi-
ment that bodies are compressible in various degrees, and
recover more or less their original forms after the com-
pression has been withdrawn: this property is termed elas-
ticity. When one body impinges on another, we may
naturally suppose that the surfaces near the point of
contact are compressed during the first IEmrt of the impact,
and that they recover more or less their original forms
during the second part of the impact.

101. A body impihgu directly on another: requived
to determine the velocities after impact, the elasticity
being impenfect.

Let a body whose mass is m, moving with a velocity u,
img;inge directly on another bocfy whose mass is 7/, moving
with ‘s velocity 2. Let R denote the impulsive force
which during the first part of the impact acts on each
body in opposite directions. Then at the end of the first
part of the impact, the momentum of the body of mass m
is mu— R, and therefore its velocity is "—‘%;‘—I—e: and the

A
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momentum of the bod;ofmaum’ is m’w + R, and there-
fore its velocity is "—”:;—fR. These velocities are equal
by bypothesis, that is

mu—R=m'u’+_ﬂ

m m
_mm’ (u—u)
therefore ‘R"__m+m' .

Let ¢ denote the index of elasticity; them during the
second part of the impact an impulsive force ¢R acts on
each body in the same direction respectively as before.
Let v denote the final velocity of the body of mass m,
and ¢ that of the body of mass w’; then

v=mu-(l'+o)R=u_(l+a)m’(u—u’)

m m+m’ .
_mu+m'u —em’ (u—u)
- m+m ’
c,=m’u’+(l+c)R=u,+(l+a)m(u-u')
m m+m
_mu+m'u +em(u—u")
- m+m’ *

102. From the general formulee of the preceding
Article many parti results may be deduced; we will
give some examples.

If the bodies are perfectly elastic, 6=1; then we have
_(m—m)u+2m'vw 2mu—(m~—m')u’
=", = —_—
m +m m+m
If the bodies are inelastic, 6=0; then we have

mu+m'y
o:v’: —
m+m
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Again, suppose «’' =0, so that a body of mass m, moving
with a voiocit.y %, impinges on a body of mass 2’ at rest;
then we have

m—em’ o= m(1 +¢)

m+m T m+m’

Thus the body which is struck goes onwards, and the
striking body goes onwards, or stops, or goes backwards
according as e is greater than, equal to, or less than em’,
If m’=em, then v=(1—6) %, and v'=wu,

103. The formulee of Art. 101 supply twoe important
inferences. Multiply the value of » by m, and the value of
¢ by m’, and add ; thus we obfain ,

mo+m'v’ =mu+m'v,

This is usually expressed by saying that the momentum
of the system is the same after impact as before. It will
be seen that ‘13 the momentum of the system, we mean the

result obtained by the algebraical addition of the momen-
tum of each body. '

t:ifain' subtract the value of ¢’ from that of v; thus we

0—7 = —6(u—1).

This is usually expressed by saying that the relative
rdocity qfter impact 1s —e times the relative velocity
before impact, 1t will be seen that by the relative velocity,
we mean the algebraical excess of the velocity of the one
body over that of the other.

104. The results of the p ing Article have been
deduced from the principles assumed in Art. 98: if these
results were. contradicted by observation and experiment
we should infer that the principles are partly or entirely
inadmissible. On the other hand assuming these results
to be confirmed by observation and experiment, we may
proceed to examine what support is thus furnished to the
principles, :

The first result in the recedm'f Article may be put in
the form m(u—o)=m'(¥ —«). This furnishes a corrobo«
ration of the truth of the Third Law of Motion; for it

T. M, - 18

o=

[v)
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shews that the whole force which has acted on one body is
equal and opposite to that on the other.

‘We now pass to the second result. Let R denote, as
before, the impulsive action between the two bodies durin
the first part of the impact, and R’ that during the secon

of the impact: we shall shew that it will follow that
! bears a constant ratio to R.
. For gince v and ¢’ are the respective velocities at the
end of the impact we have
. _mu—(R+R)
o= m

_— 1,1
therefore vt/ =u— w— (m + m,) (R+R).

m'W+R+R
v’=%, :

’ m N

- Now let us suppose that experience shews that for the
same pair of substances v — v’ is always equal to —e(%—a),
1

Then (u—w)(1 +e)=(ﬁ + %) (R+R).

7 -— . ’ _
. But R="01) reretore BT W) _ gy

This is the required result. >
- 7105, A body impinges directly on another : required
8o determine the conditione in order that the bodies should
interchange velocities.

Using the same motation as before, we require that
v=/,and o =«. Hence, by Art. 103,
-7 mu +m'u=mu+m'v,
and ©—u=—e(u—u)

The first of these conditions may be written in this form
(m—m')(u—)=0. Hence we must have m=m’'. The

second condition shews that we must have e=1. Thus the
bodiies must be of equal mass and perfectly elastic,

. 106. In Art. 101 we. supposed the collision to be
eaused by one body overtaking the other. If the bodies
move originally in opposite directions, the collision will be
caused by one body meeting the other; the investigatiomr
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in this case will be similar to that already given, and the
results will coincide with those which would be obtained
by changing the sign of «’ in the formulee for » and ¢',

107. The product of the mass of a body into the
m}lune of its velocity is called the vie viva of the body.
The vis viva of a system of bodies is the sum of the vis viva
of every body of the system. In the higher parts of
Dynamics the consideration of vis viva frequently occurs;
and it is usual in the elementary parts to demonstrate one
propol:ition respecting vis viva: this will form the next
Article. :

108. By the direct collision of two imperfectly elastic
bodiies the vis viva of the system s d:‘mim‘fgd.
* Let u and ' be the velocities before impact of two
bodies whose masses are m and m’ respectively, and » and
¢ their velocities after impact. Then by Art. 103,

mo+m'y/=mu+m'v, = o—0=—e(u—-u)
Therefore  (mo +m'v/)*=(mu+m'n"),
mm’ (o—oP=mm'e(u—w)
=mm/ (u—w'PB—mm’(1 —6?) (u—u)?;

therefore, by addition, (m +m’)(mo*+m'v)

=(m +m")(mud+m'u*)—mm’ (1—e%) (u—u')?;

mm’ .

m m,(l — &) (u—u),

Now ¢ cannot be greater than unity, so that 1—e? cannot be
negative; hence mv?+m’s™ is always less than mu?+m'u3
except when e=1, and then the two expressions are equal,

therefore mo?+m/v2=mu?+m'uw/*—

109. It is usual to g’;: the following example of the
subject of the present pter: Let A4, B, C denote the
masses of three bodies, such that the first and third are
formed. of the same substance; let ¢ be the index of
elasticity for the first and second bodies, and therefore
also for the second and third. Suppose the first body to
impinge directly with the velocity « on the second at rest;

18—2
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then the second acquires the velocity ‘%. Suppose
that the second body now impinges directly with this
velocity (J);(the ;.hi:;l( at rsast ; then th‘eq %hzrd ac)z?‘mres the

. 1+¢ 1+e s l+e¢
v G ar s M U B oy T
supposing every quantity given excep require:
determine B so that the velocity communicated to C may
be the greatest possible.

. B ’
Wehsvetomake(A+BXB+C as great as possible.

o R ‘
(d+B)B+0) B+{A+C)B+4AC B+A+0+¢_43(_;.

‘We must therefore make the denominator of the last
fraction as small as possible. -

But B+ 4+0+% = (VB= /47) (4 + o,

80 that the least value is that when 4/ B— A—C vanishes,

i B
that is when B=,/(4C).

. Hence the velocity communicated to the third body is
greatest when the mass of the second body is a mean
proportional between the masses of the first and third.

-110. The i;heorir of the collision .of bodies appears to
be chiefly due to Newton, who made some experiments
and recorded the results: see the Scholium to the Laws
of Motion in Book I. of the Principia. In Newton’s experi-
ments however the two bodies seem always to have Ken
formed of the same substance. He found that the value

of ¢ for balls of worsted was about g, for balls of steel
about the same, for balls of cork a little less, for balls of
ivory g, for balls of glass i—z
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An extensive series of experiments was made by Mr
Hodgkinson, and the results are recorded in the Report
of the British Association for 1834, These experiments
shew that the theory may be received as satisfactory, with
the exception that the value of ¢, instead of being quite
(la:nstant, diminishes when the velocities are made very

Tg0. . ’

ExampLes. IX.

1. An inelastic body impinges on another of twice its
mass at rest: shew that the impinging body loses two-
thirds of its velocity by the impact. .
. 2. ‘A body weighing 5 lbs, moving with a velocity of
14 feet per second, impinges on a body weighing 3 lbs., and
moving with a velocity of 8 feet per second: find the

velocities after impact supposing 6= % .

8. Two bodies are moving in the same direction with
the velocities 7 and 5; and after impact their velocities
are 5 and 6: find the index of elasticity. :

4. Two bodies of unequal masses moving in opposite
directions with momenta numerically equal meet: shew
that the momenta are numerically equal after impact.

5. A body weighing two lbs. impinges on a body
weighing one Ib.; the index of elasticity is 3 : shew that
2v=u+u, and that v'=wu.

- 6:; The result of an impact between two bodies moving
with numerically equal velocities in opposite ‘directions is
that one of them turns back with its original velocity, and

the other follows it with half that velocity: shew that
one body is four times as heavy as the other, and that

gl
-l



278 EXAMPLES. IX.

7. Find the necessary and sufficient condition in order
that ¢ may be equal to u.

8. A strikes B, which is at rest, and after impact the
velocities are numerically mal: if  be the ratio of B's
mass to 4’s mass, shew that the index of elasticily is
2, and that B's mass is ot least throe times A’s mass. -

9. A, Band C are the masses of three bodies, the first
and third of which are formed of the same substance; the
first impinges on the second at rest, and then the second
impinges on the third at rest: determine the index of
elasticity in order that the velocity communicated to C
may be the same as if .4 impinged directly on C. .

10. A body impli):gea on an equal bodieat rest: shew
that the vis viva before impact cannot be greater than
twice the ¥is viva of the system after impact.

11. A series of ‘perfectly elastic bodies are arranged in
the same straight line; one of them impinges on the pext,
then this on the next, and so0 on : shew that if their masses
form a Geometrical Progression of which the common
ratio is 7, their velocities after impact form a -Geometrical

Progression ofwhichthecommonmtiois,%.

12. A number of bodies 4, B, C,...formed of the same
substg;? are placed in & straight line at rest. 4 is then
proje with a given velocity so as to impinge on B;
then B impinges on C; and 80 on. Find the masses of the
bodies B, C,... 8o that each of the bodies 4, B, C,... may
be at rest after impinging on-the next; and find the
velocitz of the nt halfjust after it has been struck by the
{n—1)% ball,
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X. The Oblique Collision of Bodies.

111, In ghe present Chapter we shall consider the
oblique collision of bodies; see Art. 97. It will be found
that the problems discussed involve only a more extensive
application of principles already explained: We shall
confine ourselves to cases in which the line_of impact
;?;l the directions of the motions of the bodies are in one

ne.

112. A body impinges obliquely om another : required
to determine the velocities after impact, the dlasticity being
tmperfect,

Let a body whose mass is m, moving with a velocity 2,
impinge on another whose mass is m’, moving with a velo-
city «. Let the direction of the first velocity make an
angle a with the line of impact, and that of the second an
‘a.nﬁle o, After impact let the velocities be denoted by o
and ¢, and the angles which their directions make with
the line of impact by B and 8.

Resolve all the velocities along the line of impact and
at right angles to it. No impulsive force acts on the
bodies in the direction at right angles to the line of im-
pact, and 8o the velocities at right angles to the line of
anpact remain unchanged. Hence

DL Y 2 T S @

The velocities along the line of impact are affected just

as they would be if the velocities in the other direction did
not exist. Hence, proceeding as in Art. 101, we obtain

mucos a+m'u’ cos d’ —em’ (u co8 a—u’ cos o) @)

P weo(3)y

‘bcosS=

, mu o8 a+m’y cosa’ +em(u cos a—u cosa’)
voos' = o+ omk o
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If we divide (1) by (3) we obtain the value of tan 8 ; this
etermines the direction of the velocity of the impinging
body after impact. If we square (1) and (3) and add, we
obtain the value of ¢*; this determines the magnitude of
the velocity.

Similarly from (2) and (4) we can determine the direc-
tion and the magnitude of the velocity of the other body
after impact. )

113. ﬁlgnurthoo accom-
panyin; e C repre-
sents the centre of ptbe
impin, body, consi-
dered to be a sphere, at
the instant of impact ; and
O’ the centre of the other
body. CC' is the line of
impact. The directions of
the velocity of the imping- ’
ing body before and after im are represented by C4
and OB; and those of the other body by C’4’ and C’B’.
Thus if 2 be a point on CC’ produced,

angle ACD=a, angle 4’C’'D=d,
angle BCD=8, angle B'C’'D=§

This figure may serve to illustrate the problem; it
will however be easily perceived that the general formulse
admit of application to a large number of special cases,
and that the figure would have to be modified in order to
apply accurately to such special cases. For instance, we
have supposed CA and C’4’ to fall on the same side of
CD, but it is of course possible that they should fall on
difforent sides,

114. Multiply equation (3) of Art.112 by m, and equa-
tion (4) by m’ am{ d; thus we obtain v

mv cos B+ m'v’ cos 8’ =mu cosa+m'u’ cosa’;
this shews that the momentum of the system resolved
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in the direction of the line of tmpact is the same after
tmpact as before.
The momentum of each body resolved in the direction
at right angles to the line of impact is the same after im-
a8 before, and therefore so also is the momentum of
the system resolved in this direction.

Subtract equation (4) of Art. 112 from equation (3);
thus we obtain .

v cosB—v cos B’ = —¢(u cosa-u cosa)

This result may be expressed in words thus : the rela-
tive velocity, resolved along the line of impact, after im-~
Dact is —e times its value before impact. ‘

115. We have hitherto treated of the collision of two
bodies each of which is capable of motion; in the next
Article we shall apply the principles already explained to
a case of collision Ex which one body is fixed.

116. A body impinges obliquely on a fized smooth
plane: required to determine the velocity gfter tmpact,
the elasticity being tTmperfect. . : o

Let m be the mass of the body.

Let AC represent the direction »

of the velocity before im .
meeting the plane at ¢, and CB B
the direction after impact. Draw

CD at right angles to the plane;

then, since the plane is smooth, )

CD represents the line of impact.

Let % denote the velocity before impact, and » that
after imgwt; let a denote the angle jg'cD, and 8 the
angle BCD.,

Resolve the velocities along the line of impact and at
rigat angles to it. No impulsive force acts on the body
“at right angles to the line of impact, and so the velocit
3; right angles to the line of impact remains un .

ence

PENB=0BNG...ccrrecrirrrennee ().
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Let B denote the impulsive force which acts on the

during the first of the impact. Them at the end
of the first part of impact the velocity of the body
resolved along the lino of impact is 2220 F; ayy
zero by hypothesis, therefore R=mu cosa. Let ¢ denote
e e s uriee e socond partof
the impact an impulsive force ¢R acts onm the ; and
therefore the final velocity along the line of impact

_mucosa—(1+e)R_ R
- T m

- =—cK cosa.
Thaus
) 0CO83=—6U COBA..ccuernnnnnenee. (2)
From (1) and (2) we obtain, by division,
cotB=—¢ecota................ oee (3)

The negative sign indicates that OB and CA aro on
opposite sides o as represented in the figure, From
(1) and (2) we have b’y sq’;?;'ing and adding

o*=u*(gin%a + 6* cosa)........euee..(4).

Thus (3) determines the direction of the velocity after
impact, and (4) determines ite magnitude,

The a.ngle ACD is called the angle of incidence, and

the angle BCD the angle of reflexion. Thus from (3) we

see that the cotangent of the angle of reflexion is always

il:;‘ndo;rieally equal to ¢ times the cotangent of the angle of
nee,

117. Bome particular results of interest ‘'may be de-
from the preceding Article, .
pose 6=1; then oot 8= ~cota, and e3=us. Thus
it tgzp elasticity be perfeet the angles of incidence and
reflexion are numerically equal, and the velocities before
and after impact are equal, . '

|
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Suppose e=0; then 8 is a right angle. Thus if there
be no elasticity, the body after gﬁ?npact moves along the
plane with the velocity % sina. .

Suppose a=0, so that the impact is direct. Then after
impact the body rebounds along its former course with ¢
times its former velocity.

Buppose a=0 and ¢=0. Then the body is brought to
rest by the impact, . .

118. In the equations of Art. 112 suppose % =03
then the equations become ’

28InB=%BING....cccevruriieirininrininnnad (1),
vsinf'= 0 ... crnessirannieens e (2)y
: m—em’

? 0033— m L3 0080...-.-.............(3),
voos =" sona @)

poegrpen sl L LTSN roovensened A

Let §=h, 80 that m=Jkm’; then the last twe equa-
tions become

v cosB:i%,:u cosa, o’oosﬁ':’flgf;‘—e)

Thus if & be very small indeed we have very nearly o
DCOBB=—06U COBR .ievurereercacess (5),
OB = 0  eereerncrnnenens (6).

Now the results (1) and (é%hagree with those denoted
13 (1) and (2) in Art 116. us we see that the case

'Y impinging on a fixed plane is practi the
unou'lat of a body impinging on snother body of very
much larger mass which is at rest. The comparison we
have here made between the two cases is an example of &
kind of exercise which is very valuahle for students.

% co8 a.
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119. The theory of the collision of bodies gives the
opportunity of forming a large number of illustrative prob-
lems; we will now solve some as examples.

120. A body is io start from one given point, and
after reflexion at a given fized smooth dplane tt is to pass
through another given point: required to determine the
direction of t'na«grw' , the index of elasticity being sup-
posed known. . :

Let A be the point from ,

‘which the body is to stnr%oB the
point through which the body is
to pass after reflexion at the plane.

Draw BC perpendicular to
the plane; mee! it at C;-pro-
duce BC to D so that CD may be

equal to‘% BC, where ¢ is the

index of elasticity. Join 4D, cutting the plane at E;
then AE is the required direction of incidence, and EB
is the direction of reflexion.

For the cotangent of the angle of incidence at & is
the tangent of CED, that is g—g; and the cotangent of
the angle of reflexion at £ is the tangent of BEC, that is
" Hence

cotangent of the angle of reflexion _ BC

cotangent of the angle of incidence  CD~_ *
Hence, by Art. 116, & body impinging on the plane in
. the direction A will be reflected In the direction EB.

121. A body 12 reflected in succession by two fized
smooth planss, of the same substance, which are at right
angles to each other, the body moving in a plane at right
angles to the intersection of the fized planes: required
2o shew that the directions qf motion before the first
reflexion and gfter the second are parallel. .

CE’
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- “Let PQRS be the course of s
the body, the first reflexion being €

at @ and the second at B. Let e

be the index of elasticity.

Suppose the velocity before
reflexion at @ to consist of » per-
pendicular to 4B, and v parallel ®
to AB. After reflexion at Q the
velocity will consist of —eu per- g o) B
pendicular to 4B, and v parallel
to AB. After reflexion at R the velocity will consist of
— eu perpendicular to 4B, and —e¢v el to 48,

Hence the value of each component velocity after re-
flexion at R is —e times its value before reflexion at Q.
This shews that RS is parallel to QP.

- And the whole velocity after reflexion at B is numeri-
callé equal to ¢ times the whole velocity before reflexion
at Q.

‘We here assume that no force acts on the body during
its motion except the impulses at @ and R; so that we
must suppose that gmvity does not exist, or that it is prac-
tically neutralised by the motion taking place on a fixed
smooth horizontal table,

122. If a body be projected in a direction inclined to
the horizon' it describes a parabolic arc; on reaching the
ground it will in general rebound and describe another
parabolic arc: we shall now investigate the connexion be-
tween these two arcs.

Let u be the velocity of projection, and a the inclina~
tion of the direction of projection to the horizon. Thus
at starting the vertical velocity is « sina, and the hori-
zontal velocity is % cosa. The horizontal velocity is not
¢hanged during the motion. When the body reaches the
ground its vertical velocity is the same as at starting ; and
accordingly it rebounds with a vertical velocity eu sina,
if the ground be a smooth hard plane, and the index of
elasticity be e.
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Hence, on starting for the second parabolic are, the
body has the horizontal velocity u cosa, and the vertical
velocity ex sina; and all the circamstances of the motion
can be determined; see Arts. 67, 58, 60, 62. Thus:

The latus rectum =2“’ cos’a

of the first arc.
The time of flight=

, Which is the same as that

2e¢u sin a

The greatest height mhed="'“’;;“’ a,
2 . 2u® .
: Tﬁemnge:ieuspnuuoosa=7¢macosa.

" After describing the second parabolic arc the body will
rebound and describe & third parabolic arc; and so on.
The following results are easily seen to hold.

All these Parabolic arcs have the same latus rectum.
The times of flight form a geometrical ion of
which the common ratio is ¢. The greatest heights form a
geometrical progression of which the ratio 18 ¢. The
ranges form a geometrical progression of which the ratio
ise. . . . . ...

123. In like manner if a projectile describe succes-
sive arcs by rebounding from an inclined plane which
passes thmu%h the point of projection, it will be found that
the times of flight form a geometrical progression of which
the common ratio is ¢, and that the greatest distances
from the inclined plane form a geometrical progression of
which the common ratio is ",

. 124. By the obligque collision of two imperfectly elas
tic bodies the vis viva of the sysiem is diminished.
Let m and m’ be the masses of the bedies, » and «’

their respective velocities before im o and o their
velocities after impact; let a and o’ be the angles which
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their directions of motion make with the line of impact
bek‘oret. impact, 8 and 8 the corresponding angles after.
lmpac
Then, by Art. 114,
(mo cos B+ m'y co8 8)'=(mu cos a+m'w cos«’)’,
m’' (v cos B—’ cos B/ =mm’'é*(u cosa— cosd’)*
mm/ (% cos a—v cos d')'—mm’ (1 —é*)(u cosa—u’ ooga')’.
Hence by addition, and by division by m + v/,
mo* cos’8 + m'v™ cos®*

=mu’ooe’a+mu”cos’ / 'ﬁm—m—e—’)(ueosa u’ cosa’)’,

Also mo* sin? B =mu’ sin'aq, i
and m'v*sin® B’ =m'u?sin’a’,

Therefore, by addition, '
Mo’ + m'oP=mu' + mur— (l d)(u cosa—u cou’)’

and as 1—¢' cannot be negatwa the required result is
obtained.

" If the elasticity is ‘Berfect the vis viva of the system is
the same after the collision as before,

Exawrres, X.
['l'he elaatlm is to be sapposed imperfect unless the
contrary is sta

1. Aballlmpmgesonaneqnalball atmt,the
elasticity .being perfect; if the original direction of the
striking ball is inclined at an angle of 45° to the straight
line joining the eentr?;, determine the angle between the
dnrectxom of motion of the striking ball before and after
impact.



288 EXAMPLES, X,

2 A ball falls from a height 4 on a horizontal plane,
and thon rebounds: find the height to which it rises in its
ascent,

3. A ball falls from & height % on a horizontal plane,
and then rebounds, falls snd rebounds again; and 80 on:
find the sum of the spaces described.

4. A ball of mass m impinges on a ball of mass m’
at rest: shew that the tangent of the angle between the
old and new directions of motion of the impinging body is
1+¢ m'sin2a

. 2 m—em’cos2a”

5. A ball of mass m impinges on a ball of mass m’ at
rest: find the condition which must hold in order that the
directions of motion of the impinging ball before and after
impact may be at right angles,

6. A ball impinges on an equal ball af the
elasticity being perfect; the angle between the old and
new directions of motion of the impinging body is 60°; find
the velocity after impact.

7. A ball impinges on an equal ball at rest, the
elasticity being perfect: find the condition under which
the velocities will be equal after impact.

8. A body is projected at an inclination a« to the
horizon; and by rebounding from 'the horizontal plane
describes a series of bolas: find the tangent of the
angle of projection at the »* rebound. -

9, A body is 1;ln-o‘]ected with the velocity %, at the
inclination a to the horizon, and by continually rebounding
from the horizontal plane describes a series of parabolas;
find the sum of the ranges.

10. In the preceding Example find the time which
elapses before thg body :gases togebou:d.
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11. A ball is projected from a point in & smooth
horizontal billiard table, and after strﬁn' g the four sides
in order returns to the starting point: shew that the
sides of the parallelogram described are parallel to the
diagonals of the table, the elasticity being perfect.

12. A ball is projected from the middle point of one
side of a billiard table, so as to strike first an adjacent side,
and then the middle point of the side opposite to that from
which it started: determine the direction of projection,

13. Two balls moving in parallel directions with equal
momenta im;ilinge: shew that if their directions of motion
be opposite they will move after impact in parallel direc-
tions with equal momenta,

14. In the preceding Example find the condition in
order that the direction after impact may be at right
angles to the original direction.

15. A4 and B are given positions on a smooth hori-
zontal table; and AC, BD are perpendiculars on a hard
plane at right angles to the table. If a ball struck from 4
rebounds to B after an im at the middle point of
OD, shew, that when the is sent back from B to 4,
the point of impact on CD will divide it into parts whose
ratio is that of ¢ to 1.

16. ABOD is an ordinﬁ rectangular billiard table,
perfectly smooth; F is a ball in a given position: it is

-required to select the groper position for another ball F

in all respects like the first, so that the player, striking £ on
F, may cause F to run into the corner It)ocket A, and E to
run into D with equal velocities, the elasticity being perfect.

17. A ball is projected from a point between two
vertical planes, the plane of motion being perpendicular to
both: shew that the latera recta of the parabolic arcs
described form a geometrical progression having the
common ratio ¢

18. A body slides down a smooth inclined plane of
given height; at the bottom of the inclined plane the
particle rebounds from a hard horizontal plane: find the
range on the latter plane.

T. M. 19
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19. A ball is projected from a (fiven point at a given
inclination towards a vertical wall: determine the velocity
so that after striking the wall the ball may return to the
point of projection. .

20. Two equal balls start at the same instant with
equal velocities along the diagonal of a square from the
ends of a side, and when they meet, the line of impact
is parallel to that side: determine the angle which the
direction of motion of each after impact makes with the
line of impact.

21. A perfectly elastic ball is projected with a given
velocity from a point between two parallel walls, and
returns to the point of projection after being once reflected
at each wall: find the angle of projection.

22. An imperfectly elastic ball is thrown from a given

int nst a vertical wall: find the direction in which

it must be projected with the least velocity, so as to return
to the point of projection.

23. There are two parallel walls whose distance apart
is equal to their height, and from the top of one a perfectly
elastic ball is thrown horizontally so as to fall at the foot of
the same wall after rebounding from the other: determine
the position of the focus of the first path.

24. A number of bodies of different elasticities slide
down a smooth inclined plane through the same vertical
height, and impinge on a horizontal plane at its foot: shew
that all the parabolas which are afterwards described have
the same latus rectum.

25. A ball is projected in a given direction within a
fixed horizontal hoop, 80 a8 to go on rebounding from the
surface of the hoop: if the velocity at the end of every
impact be resolved along the tangent and the normal to
the hoop at the point, shew that the former component is
constant, and that the latter diminishes in geometrical
progression. :

" 26. Shew how to determine the direction of projection
of a ball lying at a given point on a smooth billiard table,
#0 that after striking all the sides in succession the ball
may hit a given point. . .




- e - e e

MOTION OF THE CENTRE OF GRAVITY. 291

XI. Motion of the Centre of Gravity of two or
more bodies.

125. We have explained in the Statics what is meant
by the centre of gravity of a body or a system of bodies;
and have shewn that for a given body or system there
is only one centre of ﬁdﬁty' If a change takes place
in the position of any y of the system, there is a
corresponding change in the position of the centre of
gravity of the system; and thus we are led to consider the
motion of the centre of gravity of two or more bodies.

126. ' Having given the welocities of two bodies esti-
mated in any direction, required the velocity of theiy
centre of gravity estimated in the same direction. -

Suppose m and m’ the masses of the bodies; let their
distances from a fixed plane at a certain instant be a and
a’ respectively; then the distance of the centre of gravity

from the fixed plane is ™2+™% . woo Statics, Arts, 119
and 146.

m+m/

Let the velocities of the two bodies estimated perpen-
dicular to the plane be b and ¥; then at the end of a
time ¢ the distances of the bodies from the fixed plane are
a+bt and a'+¥¢t respectively. Therefore the distance
of the centre of gravity from the fixed plane

__m(a+bt)+m/ (@ +¥t) _ma+m'a  mb+m'b.

- m+m’ T m+m’ m+m’

This shews that the distance of the centre of gravity
from the fixed plane increases uniformly with the time;
and that the velocity of the centre of gravity perpendicular
to the fixed plane is 72X ™Y

P o om+m

127. In the preceding Article we have assumed that

the two bodies have uni{form velocities in the assigned
. ' 19—2

[
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direction; but the result may be easily extended to the
case in which the velocities are not uniform. For the
time ¢ may be as short as we please; and if the velocities
of the bogies are really variable in the assigned direction,
no error will ultimately arise from re, ing them as
uniform for an indefinitely short time. Thus we have the
following general result: the wzelocity of the centre of
gravity of two bodies estimated in any direction at any
tnstant i2 found by dividing the momentum of the system
ezt:’maud in that direction at that instant by the sum of
the masses.

128. The result just enunciated for the case of two
bodies is true for any numnber of bodies; the mode of
demonstration is the same as that given for two bodies.

129, The motion of the centre of gravity of two
bodies ts not affected by the collision of the bodies.

First suppose the collision to be direct.

Let m and m’ be the masses of the bodies, » and 2’
their velocities before impact, » and ¢’ their velocities after
impact. The velocity of the centre of grayity, by Art. 126,

Z,
is "XV yofore impact, and MmO+ ofter impact;

and these are equal by Art. 103. -

Next suppose the collision to be oblique.

Let m and m’ be the masses of the bodies,  and 2’
their velocities before impact, a and « the angles which
the directions of motion make with the line of impact ;
let » and o’ be the corresponding velocities, and 8 and 8’
the corresponding angles after impact.

The velocity of the centre of gravity, estimated i
the direction oty the line of impact, byngrt. y1’26, is "

mu cosa+m'u cosd
m+m’

before impact, and
mv cos B+ m'v cos B
m+m’
after impact; and these are equal by Art. 114,
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The velocity of the centre of gravity estimated in the di-
rection at right angles to the line of impact, by Art. 126, is
mu sin a+ m'w’ sin -
m+m

before impact, and
mo 8in B+ m't’ sin B’
m+m’
after impact; and these are equal by Art. 114.

Thus the component velocitéeof the centre of gravit;
in two directions is the same after impact as before; an
therefore the resultant velocity is the same in magnitude
and direction after impact as before,

130. It follows from the investigation of Art. 126, that
if two bodies move in straight lines, each with uniform
velocity, then their centre of gravity moves also in some
straight line, with uniform velocity. Hence we may esta-
blish the foll wing d?roposition: the centre of gravity of
two projectiles, which are moving simultancously,describes
a parabola. For suppose at any instant that gravity
ceased to act; then each body would move in a straight
line with uniform velocity, and so would also the centre of
gravity. The effect of gravity in a given time is to draw
each body down a vertical s which is the same for each
body, and which zaries as the square of the time; and the
centre of gravity is drawn down through the same vertical
space. Hence, by reagoning as in Art. 51, we find that the
path of the centre of gravity is a parabola.

131. By the method of Arts. 126 and 127, we may
establish the following result: [f f and f’ be the accelera-
tions, esttmated in any direction, of two moving bodies,
-whose masses are m and m’ respectively, the acceleration
of the centre of gravity of the two bodies estimated in the

... . mf+m’f
same direction 1s +m, .

m+4m

- And this result may be extended to the ease of any
number of bodies: see Art. 128. .
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Exawprzs. XI.

1. A body weighing 41bs., and another weighing 81Ibs.
are movin, 1{1 the same direction, the former wgth the
velocity of 8 feet per second, and the latter with the
velocity of 2 feet per second: deteimine the velocity of the
centre of gravity. :

2. Equal bodies start from the same point in directions
at right angles to each other, one with the velocity of 4 feet
per second, and the other with the velocity of 5feet per
second: determine the velocity of the centre of gravity.

3. In the system of Art. 89 supposing the initial
velocity zero, find the velocity of the centre of gravity at
the end of a given time.

4. A heavy body hanging vertically draws another
along a smooth horizontal plane; supposing the initial
velocity zero, find the horizontal and the vertical velocity
of the centre of gravity at any instant. .

5. Shew that the centre of gravity in the preceding
Example describes a straight line with uniform acceleration.

6. In the system of Art. 92 supposing the initial velo-
city zero, find the velocity of the centre of gravity at the end
of a given time resolved parallel to the two planes.

7. BShew that the centre of gravity in the preceding
.Example describes a straight line with uniform acceleration.

8. Two balls are dropped from two points not in the
same vertical line, and strike against a horizontal plan
the elasticitz being perfect: shew that the centre o

vity of the balls will never re-ascend to its original

eight, unless the initial heights of the balls are in the
Tatio of two square numbers,

9. Three equal particles are g'ojectad, each from one
Aangular point of a triangle alo e sides taken in order,
with velocities proportional to the sides along which they
move: shew that the velocity of the centre of tﬂaﬁty
estimated parallel to each side is zero; and hence that the
centre oflg'ravit remains at rest.

%

10. are points in the sides BC, CA, AB re-
. BP _(CQ AR
spectively of the triangle 4 BC; such that CP= 40~ BR'

shew that the centre of gravity of the triangle PQR
coincides with that of the trg:gleyABCi s ¢ .
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XII. Laws of Motion. General Remarks.

132. We E;opose in the present Chapter to make some
general remarks concerning the Laws of Motion. It is not
necessary that a student should devote much attention to
this Chapter on his first reading of the subject. He should
notice the points which are here considered, and when in
his subsequent course he finds any difficulty as to these

¢ tl;ilt:l tl;'e can examine the remarks which bear upon the

culty.

133. We will here repeat the Laws of Motiomn.

L Every body continues in & state of rest or of uni-
form motion in a straight line, except in 8o far as it may be
compelled to change that state by force acting on it.

II. Change of motion is proportional to the acting
force, and takes place in the direction of the straight line
in which the force acts.

III. To every action there is always an equal and
contrary reaction: or the mutual actions of any two bodies
are always equal and oppositely directed in the same

straight line.

It is manifest that instead of Laws of Motion it would
be more accurate to call these statements, Laws relating
to the connezion of force with motion.

- 184. We have already observed that the motion of a
body here considered is of that kind in which all the points
of the body describe curves identical in form, though vary-
ing in position. For example, when we speak of the motion
of a falling body we mean such a motion that every point of
the body describes a straight line.. The motion which is



296 LAWS OF MOTION.

here considered is called motion of translation, to dis-
tjsguish it from motion of rotation, which we do not con-
sider, .

135. We have also stated, in connexion with the
distinction just explained, that the Laws of Motion ought
to be enunciated with reference to particles rather than to
bodties. It might ap) to a beginner that there can be
little advantage in studying the theory of the motion of

icles, because in practice we are always concerned with

ies of finite size. But it is not difficult to shew the
importance and value of a sound theognof the motion of
particles. For it is easy to conceive that a solid body is
made up of particles, and that the forces acting may be
such as to make the motion of one particle exactly the
same as the motion of another; and so the motion of the
body is known when that of one particle is known. The
case of a falling body illustrates this remark; see also
Art. 81. Again, it is shewn in the higher parts of Me-
chanics that the motion of the centre of gravity of a rigid
body is exactly the same as the motion of a particle having
& mass equal to the mass of the rigid body, and acted on bg
forces e(iual and 'gamllel to those which act on the rigi
body. Although the student could not at the present stage
follow the reasoning by which this remarkable result is
obtained, nor even fully apprehend the result itself, yet he
may readily perceive that great interest is thus attached to
the theory of the motion of particles.

136. Up to the end of the sixth Chapter we considered
the effect which a force produces on the velocity of a body
without regard to the mass of the body moved. It is
usual to apply the name accelerating force to force so con-
sidered; and hence the two following definitions are used :

Force 9onsidered~'on1y with respect to the velocity
generated is called accelerating force.

loI;‘&reg considered tﬁth respect to the mass to which
velocity is communicated as well as to the velocity generated
is called moving force. vE®
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The terms tend to confuse a beginner, because they lead
him to suppose that there are two kinds of force. Thereis
really only one kind of force, namely, that which is called
moving force in the foregoing definitions; for when force
acts it always acts on some y. It is not necessary to
make any use of the term accelerating force: when the
beginner hears or réads of an accelerating force / he must
remember that this means a force which produces the
a%oell‘:zﬁon Jf in the motion of the body which is con-
side

137. We have followed Newton in our enunciation of
the Laws of Motion; but it is necessary to observe that
this course is not universally adopted. Many writers in
effect divide Newton’s Second Law into two, which they
term the Second and Third Laws, presenting them thus:

Second Law. When forces act on a body in motion
each force communicates the same velocity to the body as
if it acted singly on the body at rest.

Third Law. When force acts on a body the momentum
generated in a unit of time is proportional to the force.

Then Newton’s Third Law is presented as another
principle which must be admitted to be true, although
apparently not difficult enough or not important enough to
be ra.nket{ formally with the Laws of Motion.

‘We have followed Newton for two reasons. In the first
place, his mode of stating the Laws of Motion seems, to say
the lm&; as good as any other which has been proposed ;
and in the second place, there is very great advantage ina
uniformity among teachers and students as to the first
principles of the subject, and this uniformity is more likely
to be secured under the authority of Newton than under
that of inferior names.

138. We have given in Art. 47 Newton’s form of the
parallelogram of velocities ; some writers omit this, and
supply its place by a purely geometrical proposition, which
is substantially as follows: .
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Let OACB be a pa-

o M - A
ralle) : from a point
P ol g
to meeti
OA at M, and PN pa- {
rallel to 04, meeting OB
at V: then if a point P 4

moves in such a manner

PM OB .
thtj,l—v=malwsys,Pmmtmoveﬂoqgth§dngo-

nal OC.

Since 227 = 92 it follows by Eaclid, vi. 26, that the
parallelograms OMPN and OACB are about the same
diagonal. Thus P must be on the straight line OC.

Algo P arrives at C when M isat 4 and N is at B;
and if M and N move uniformly along 04 and OB respec-
tively, then P moves uniformly along OC.

Thus we have demonstrated the remlt% without any
reference to the notion of force, chiefly by the aid of
Euclid v1. 26. Students are sometimes perplexed by find-
ing that while the theorem is asserted to y geo-
metrical the enunciation and demonstration are expressed
%Y the aid of language borrowed from Mechanics. In

ewton’s mode we arrive at the result as a deduction from
the First and Second Laws of Motion. We have already
seen, by an exax:gle given in Art. 77, that it is ible to
obtain geometrical truths indirectly by the aid of Mechanics;
and such a process is both interesting and valuable; but
when we wish to draw sf)ecia.l attention to the fact that
a certain result is purely geometrical, it is advisable to
restrict ourselves to geometrical language in the enunciation
and investigation.

139. We have already stated that the direct experi-
mental evidence for the truth of the Laws of Motion is not
very strong; strictly 'ns we might assert that there
is no direct experimental evidence: for the Laws of Motion
ought to be enunciated with respect to particles, and we

}
’
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cannot make the requisite experiments on particles. In
fact the Laws of Motion should be assumed in the outset as
hypotheses, and their truth verified by the agreement of
results deduced from them with accurate observations. We
are enabled to institute some such comparisons by the aid
of Atwood’s machine; but, as we have said, it is from the
close agreement of theory with observation in Astronomy
that we derive the most convincing evidence of the truth of
the Laws of Motion,

140. The history of the progress of Mechanics con-
firms the statement that the Laws of Motion cannot be
regarded as obviouslﬁ true, or even as readily admissible
when enunciated. The Greeks excelled in Geometry, and
were not ignorant of Statics; but even men so illustrious
as Aristotle and Archimedes completely failed in their
attempts at Dynamics; and the honour of laying the foun-
dations of this subject was reserved for Galileo,

141. In Art. 51 we have devoted a few lines to shewing
that P is the position of the body at the end of the time ¢.
It is usually considered sufficient to make the following
statement: 4 7' is the s which a body moving with the
velocity # would describe in the time ¢, and 7P is the
space through which the bodg would be drawn by ﬁuvity
in the time ¢; and therefore by the Second Law of Motion
P is the position of the body at the end of the time #. This
atatement implies that the result is an immediate deduction
from the Second Law of Motion. But the S8econd Law of
Motion does not give us any immediate information about
the position of a body when forces act on it; the Law is
directly concerned only with the velocity of the body, and
when we have determined the velocity of a body at any
instant we have a further investigation to make in order
to find the position of the body at any instant.

The point is perhaps of small importance in this case ;
but a lggginnerpex;iggz easily be led into error on other
occasions, if his attention had never been drawn to the
exact meaning of the Second Law of Motion. .
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142. It will be interesting to give a brief account of
that part of Newton's Principia which is devoted to the
Laws of Motion ; the student will thus have his attention
drawn to some important principles, which will be of
service to him as he proceeds, although he may be unable
at present to master them completely.

After enunciating and briefly illustrating the Laws
of Motion, Newton adds a series of Corollaries; these we
shall now state, omitting the commentary by which he
supports them.

I. The proposition which is now called the Parallelo-
gram of Velocities : see Art. 47.

II. The statical proposition which is now called the
Parallelogram of Forces. Newton deduces this from his
first Corollary, and points out some applications to the
theory of machines.

III. The momentum of a system estimated in any
direction is unaffected by the mutual actions of the bodies
which compose the system. Newton considers principally
the case of the collision of two bodies: see Art. 114,

IV. The position of the centre of gravity of two or
more bodies is not changed by the mutual actions of the
bodies ; 80 that the centre of gravity of bodies acting
on each other, and subject to no external forces, either
remains at rest or moves uniformly in a straight line:
see Art. 129,

V. The relative motions of bodies comprised within a
given space are the same whether that space is at rest,
or moving uniformly in a straight line. This is illustrated
by the fact that motions take place in a ship in the same
way whether the ship is at rest or moving uniformly in a
straight line: .

VI. If bodies be in motion in any manner their rela-
tive motions will not be changed if they are all acted
on by forces producing equal accelerations in parallel
directions. Arts, 74 and 75 illustrate this statement.
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After the Corollaries Newton gives in a Scholium an ac-
count of experiments on the collision of bodies, and some
additional remarks on the Third Law of Motion.

143. We have already stated that in our investi-
gations respecting falling bodies, we leave out of considera-
tion the resistance of the air; and that in consequence our
results may in some cases deviate considerably from
practical exactness. We will make some remarks on the
nature of the resisting force exerted by the air.

Let us take for example the case of a falling body.
It appears from experiments that the resistance of the
air varies as the square of the velocity of the body;
or at least this is very approximately the case. Let o
denote the velocity of the body ; then the resistance of
the air may be denoted by 4v? where % is some constant.
Let m be the mass of the body, and mg the weight of the
body; then the downward force on the body is mg— ko3,
and so the acceleration, at the instant the velocity is o, is
myg —kov?

o

Thus we see that the acceleration is not constant.
In order to determine the motion of the body under this
acceleration, more mathematical knowledge would be re-
quired than the student is at present supposed to possess;
but two interesting results will be readily understood.

If there are two bodies of the same external form and
substance, experiment shews that the coefficient % is the

same for both. Now the acceleration is g—k—'g ; and

therefore for a given value of %, the effect of the resistance
is'smaller the larger m is. Thus, for example, suppose we
have a solid sphere and a hollow sphere, made of the
same substance, and having the same external radius;
then the resistance of the air has less influence on the
motion of the solid sphere than on the motion of the hollow
sphere. Thus we are able to understand why the resist-
ance of the air produces less effect on the motion of dense
bodies, than on the motion of light bodies, other circum-
stances being the same, .
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If kv*=myg the acceleration is zero, and the nearer the
value of » is to ,/ Tk—g the smaller the acceleration be-

comes. This exg’r:ssion is called the terminal velocity.
If the body falls from rest its velocity will never exceed
this value, but will approach indefinitely near to this value
if the motion can continue long enough. If the body
be projected downwards with a velocity greater than this
expression the velocity will always exceed this value, but
will approach indefinitely near to this value if the motion
can continue long enough. Thus in each case the motion
tends to become uniform.

144, The following example will illustrate the effect of
the resistance of the air on falling bodies. In the fortress
of Kdonigstein in Saxony water is raised from a great
depth below the surface of the ground. For the amuse-
ment of visitors a man draws up a bucket of water, and
then pours the water back into the well. The depth is
known to be about 640 feet, so that if there were no resist-
ance from the air the sound of the splash should reach
the ear il‘;. about 7 seconds; practically the time is about
15 secon

145. We have seen in Art. 43, that, if we neglect the
resistance of the air a body projected vertically upwards
will take the same time in its descent as in its ascent, and
will reach the ground with a velocity numerically the
same as that at starting. These results will not hold when
we take into account the resistance of the air ; the time
of ascent is then less than the time of descent, and the
velocity on reaching the ground is less than the velocity at
starting. The demonstration of these results will furnish
a valuable exercise, and we will therefore give it.

The velocity on reaching the ground must be less than
that at starting for two reasons: In the first place, in
consequence of the resistance of the air, the body will not
rise to 80 great a hez?ht as if there were no resistance;
and therefore it falls down through a space less than that
in which gravity, if unopposed, would generate a velocity
equal to that in starting. In the next place, while the
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body falls the resistance of the air opposes the action of
gravity, and thus the velocity generated is less than that
which would have been llf)roduced by the action of gravity
alone, while the body falls through the same space. Thus
for both reasons the velocity on reaching the ground is less
than the velocity at starting. -

Again, in the same way it follows that the velocity at
any point in the descent is less than it was at the same

point in the ascent: and thus each indefinitely small part

of the straight line described is moved over in less time
in the ascent than in the descent; and therefore the
Xhole 1;1.;ime of ascent 18 less than the whole time of

escen : :

Examrres. XIL

1. If the velocities and directions of motion of two
bodies be known, find the direction and magnitude of their
relative velocity.

2. If a be the distance at a given instant between two
bodies which are moving uniformly, ¥ their relative ve-
locity and u, » the resolved parts of v in, and perpendicular
to, the direction of a respectively, shew that the distance

of the bodies when they are nearest to each other is .,
and find the time of arriving at this nearest distance.

3. Two bodies move with constant accelerations f and /*
in given straight lines; they start with velocities » and «';
ﬁnglthe relative velocity at the end of the time ¢ estimated
along the straight line which makes angles a and o’ with the
directions of motion.

4. A ball is thrown up vertically with a velocity » and
meets with a uniform resistance equal to half the force of
gravity both in the ascent and descent: if it reach the
gtonns again with the velocity v, shew that u=2,/3.
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XIII. Motion down a Smooth Curve.

146. We shall now proceed to consider cases of motion
in which the force acting is not constant in magnitude and
direction; in the gresent Chapter we shall suppose a body
to be acted on by two forces, namely, gravity and the
resistance of a smooth fixed curve. The student may
imagine a fine tube in the form of a curve, and a body in
- the shape of an indefinitely small sphere moving in the tube.
‘We shall not attempt to determine the motion completely,
for the mathematical difficulties would be too great for the
't‘:;denfﬂ at present, but we shall demonstrate some import-
ant results.

147. When a body descends down a smooth curve in
a vertical plane the velocity acquired at any point is the
same as if the body had fallen freely down the same ver-
tical height.

Let AB, BC, CD,...represent suc-
cessive inclined planes. Let 2, be the
vertical height of 4 above B, A, B
the vertical height of B above C,
hy the vertical height of C' above D,
and 80 on. . 0)

A

Suppose a bod{‘eto slide down this D
series of planes. t 2y, 2, 0,...de-
note the velocities at B 6’; b,...respectively. Then if
no velocity were destroyefi in passing from plane to plane
we should have the following equations by Arts. 27 and 40,
o2=2gh,,
09* = 0,2 +2gh,,
el =0+ 20h,,

and so on.
Hence, by addition, supposing there are n planes,

7’-':29()"1""":""":"' o +hﬂ)=2”h’
where % denotes the whole vertical height.
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‘We must now consider what velocity is lost in passing
ﬁl':;’m plane to plane. We assume that the body is in-
elastic.

Let us sup the angle between any plare and the
next plane promd to be the.same; demote it by a.

Resolve the velocity at B along BC and at right angles
to BC; the former comlPonent i8 o, cos a, and the latter is
r,sina: the former will be the velocity at the beginning
o} the motion down BC, for the latter is destroyed by the
plane BC. B8ee Art. 117. Hence instead of v’ =v,*+2gh,
we have 7,' =,* cos*? a + 2g/,.

Similarly we obtain v,*=2,%cos® a+2gA,, and se on.

Hence, by addition,
2340+ 0 + ...+ 0,3=(0 + 0,0 + 03+ ... + 0%, _,)cos% + 2gh;
therefore  ©,2=2gh -3, where = stands for
: sin? a (2,24 0,Y + 02+ ... +2%,,).

‘We shall now shew that = vanishes when the number of
planes is made indefinitely great.

It is obvious that = is less than (2 —1) ¢%,_,sin%?a. Let
B be the angle between the first plane and ther last plane
prodaced; then B=(n —1)a. Hence = is less than
f ,_,sinte, that is less than Bsina. o, ;. Now we
know from Trigonometry that %-a is less than umity, so
that S is less than 8 sin a #%,_,. Hence by making a small
enough we can make = less than any assigned quantity.
Thus ultimately £ =0. o,

Henco v, =2gh, which was to be shewn.

148, In a similar way we may obtain the following
result: {f a body start with the velocity-u and move in
contact with a smooth curve in avertical plane the velocity
gol(zezt tléall:)o‘dy has risen through the vertical height h 1
A/(u?—-2g . "l

T. M. 20
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149. The demonstration in Art. 147 is that which is
usually given in elementary works; when the student has
sufficient mathematical knowledge to read more elaborate
treatises on Dynamics, he will find that the result can be
obtained in a more satisfactory manner, and without assum-
ing that the body is inelastic.

150. Let one end of a fine string be fastened to a fixed
point; and let a heavy particle Yo attached to the other
end. In the position of eay:élibrium the string will be ver-
tical. Let the particle be displaced from this position, the
string being kept stretched, and then allowed to move. The
particle oacillate backwards and forwards describing
an arc of a circle; the arc continually diminishes owing
to the resistance of the air, until the icle comes to rest.
The system is called a simple pendulum.

Now it is a matter of great interest to determine the
time in which the particle describes an or rather the
time in which it would describe an arc ecting the re-
sistance of the air. This we shall consider in the mext
Article. The investigation is somewhat complex; but it
deserves attention because the student will find hereafter
when he has the Differential and Integral Calculus at his
command, that although some of the :It:ﬁs may be abbre-
viated, yet'the process cannot be essentially improved.

‘We assume as obvious that the motion is exactly the
same whether the particle is compelled to describe an arc
of a circle by means of a string in the manner just ex-

plained, or whether the partivle moves in a fine tube in the
manner of Art. 147.

151. 7o find the time of oscillation of a particle
moving in a circle under the action of gravity. e

Let APB be an arc of a circle of which C is the cen-
tre, and B vertically under C'; let a particle start from 4

and move along the curve to B: required the time of
the motion.

Letheang int in the arc ; let the radius CP=1r;
let the angle BCA =a, and the angle BCP=0.
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c ¢ a
&{
l ; 14
B r b

‘When the particle is at P the square of its velocity, by
Art. 147,

;29(rcos0—r eosa)=4gr(sin’§—sin’g). .

Now  AB=2rsini, PB=2rsin.
Assume sin g=sing cos ¢, so that cos ¢ denotes the ratio

of BP to BA, and thus as the particle moves from 4 to
B the angle ¢ changes from 0 tog.

Describe a quarter of a circle apb with radius »; let ¢
be the centre, and the angle acp=¢. Then we have in
fact to find the time in which the point p describes the arc
ab. We must first determine the velocity of p.

Suppose P to move to a new position P, such that the
angle BCP’=(¢'; and let p move to & corresponding new
position p’, such that the angle acp’=¢’. Then the velo-
city of P is to the velocity of p-as the chord PP’ is to the
chord pp’ when these ckords are indefinitely small. But
we have o

. . a . o a
sin 5 =sin 5 cos¢, sin §=sm§c?s¢’;

thereforo  sin —sin & ~sin & (cos —cos ),

2 2
,_ ,
thatis, ain®=% oos?t¥gin in ¥t in 49
20—2
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R T
4

therefore = ‘
o mo 5’ a m¢+$’ ‘
. .y-qs
Now chordpp 27 8in
chord PP~ or ﬁnﬁ
‘in.;,'; mo;a
T w00 00 _—a_. ¢+¢ 0-0°
2sin 1 OOGT 2MEm 2 m'—r

Hence when ghe chords are indefinitely small this ratio |

CO8 -

becomes ¢2 .
25in 2 sin
2
" Now the velocity of P
—2Wpr N/(sin’;-sin’g cos-¢)=2~/g‘nin 2 sin ¢;
therefore the velocity of p ’
2Jg—rsin§sin¢cosg P)
= = erOSQ

2sin;-sin¢

=NgF J(n-m*‘é’)dy‘r N (l—sin'gw;’¢).

Ifwe suppose a ury small, am’ is extremely small,
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and thus the velocity of p is very nearly N/gr. Hence
T

=7r
the required time is very nearly 5;, that is, 7. \/g .

152. The particle will take the same time in rising from
the lowest point of the arc to a height equal to that from
which it descended: see Art.148. Thus the whole time of
moving from the extreme position on one side of the vertical

to the extreme position on the other side is \/ 5 .

If we wish to find the length of a simple pendulum’
which will oscillate once in & second we put = ,/:—;:1;

thus r=’%. Thus . taking g=32 feet, the length of the

seconds’ pendulum is about (3::—3), Joet; this will be found

to be about 39 inckes. The British standard of length
is connected with the length of the seconds’ pendulum
by an act of %arliameut, which defines the inch to be such
that the length of a simple pendulum which oscillates in a
second in the latitude of London shall be 39:1893 inches.

153. It will be seén that the investigation in Art. 151
is ezact up to the point at which we find that the velocity
of pis Jg_r,/(l-sin’g oos’¢), and then we take an

aplproximate value of this expression instead of the exact
value. It is not difficult to make a closer approximation,
supposing still that a is not large.

Buppose 7 a large number, and let 28 =§ so that B is

avery small angle. Let ¢=m/3, and assume that while the
angle acp changes from mpB to (m+1) 8 we may consider

the velocity of p to be always A/g7 J (l—t;in’%l oos’mﬁ) .,
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Then the time of describing this portion of the quadrant

_ B _BYT(1 % cogtmg)
ﬁ/{;ﬂ’gcos’mﬂ) N7\ e )
= ﬁ:/;(l +% ain’g eos’mﬂ)nea.rly,bythe Binomial Theorem.

Then we have to find the sum of the values of this ex-
pression for all values of m from 0 to #—1 inclusive. Thus

the time required is :/T; (n8 +§ § sin??), where § stands
for 1+cos?B+cos?2B + ...... +cos?(n—1)8.

But since sin mf8=cos (g—mﬁ) =cos (n—m) B, we have

S=1+sin?(n—1) B +sin*(n —2)B+...... +sin*f,
and also

S= cos}(n—1)B+cos*(n—1)B+...... +cos*B+1;
thus by addition 28=n+1. Also np=’§" .

Thus the required time
_ Jr(= In+l.,¢_z)__~1_r r(;, 0+l . .a
—Jg(2+4n' 2 MM3)=3 "/g(l+ an ““2)'

Let n increase indefinitely: then we obtain finally for
the required time

5/ (e gmtg).

154. Thus in Art. 151 we have found an approximate
value of the time of motion; and in Art. 153 a still closer
approximation : the smaller the value of a is the less will
be the error in taking these approximations for the exact
time. By the aid of the higher parts of mathematics we
can find an expression, in the form of a series, which will

determine the time, as nearly as lease, whatever be
the value of a. ’ v wer v
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Examprrs. XIII.

1. A particle slides down an arc of a circle to the~
lowest point: find the velocity at the lowest point if the
angle described round the centre is 60°.

2. If the length of the seconds’ pendulum be 39:1393
inches find the value of g to three places of decimals.

3. A pendulum which oscillates in a second at one
place is carried to another place where it makes 120 more
oscillations in a day: compare the force of gravity at the
latter place with that at the former.

4. Bup, that 7 is the length of the seconds’ pendu-
lum, and that the lengths of two other pendulums are
{—c and 7+ ¢ respectively, where ¢ is very small: shew that
the sum of the number of oscillations of these two pendu-~
lums in a day is very nearly 2x24x60x60(1+;;) .

8. A pendulum is found to make p oscillations at one
lace in the same time as it makes ¢ oscillations at another.
hew that if a string hanging vertically can just support

n cubic inches of a given substance at the former place it

will just support 7;—",),2 cubic inches at the latter place,

6. A seconds’ pendulum hangs against the smooth face
of an inclined wall and swings in its plane: find the time
of a small oscillation.

7. A seconds’ Eendulum is carried to the top of a
mountain m miles high: assuming that the force of

vity varies inversely as the square of the distance from
the centre of the earth, find the time of a small oscillation.

8. Shew that the length of & pendulum which will
make a small oscillation in one second at the top of & moun-
3
tain m miles high is wﬁg"fm) I, where 7 is the length
of the seconds’ pendulum at the surface of the earth.
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XIV. Uniform motion in a Circle.

155. If the direction of a force always passes “m‘:ih
o fixed point the force is called a o:mtrgla Jorce; and the
fixed point is called the centre of force.

Throughout the remainder of the present work we
shall be occupied with cases of central forces: we i
with some propositions due to Newton which are contained
in the next five Articles.

186. When a body moves under the action of a
cz:ural jbrq;oftha areas dam:le;i by the radius drawn to
the centre of force are in one plane and are proportional
to the times of describing them.,

Let S be the centre
of force; and suppose
a body acted on by no
force to describe the
straight line 4.8, with
uniform velocity, in a

iven interval of time,
Ylll another equal inter-
val, if no force acted,
the body would de-
scribe Bc equal to 4B,
in AB produced, so
that the equal areas .
ASB and BSc would )
be deseribed by the radius drawn to S in equal intervals,

But when the body arrives at B let a force tending to
S act on it by an impulse, and cause it to proceed in the
direction BC instead of Bc; then if C be the position of
the body at the end of the second interval Cc is parallel to
BS: see Art. 47. Join SC; then the triangle BSC is
equal to the triangle BSc, by Euclid, 1. 37; therefore the
triangle BSC is equal to the triangle 458, and the two
triangles are in the same plane.

-
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In like manner if imgu]ses tending to S act on the body
at C, D, E,... causing the body to describe in successive
ual intervals the straight lines CD, DE, ..., the triangles
'SD, DSE, ... are all equal to the triangle 4SB, and
are in the same plane.

Thus equal areas are described in equal intervals, and
the sum of any number of areas-is proportional to the time
of description.

Now let the number of triangles be indefinitely in-
creased, and the base of each indefinitely diminished ; then
the boundary ABCDE... will ultimately become a curve,
and the series of impulses will become & continuous central
force by the action of which the body is made to describe
the curve. And the areas deseribed being always propor-
tional to the times will be 80 also in this case.

157. The proposition of the preceding Article is true
also if S be a point which instead of being fixed moves
uniformly in a straight line. For by Coro 6 in Art.
142 the relative motion is the same whether the plane in
which the curve is described be at rest or be moving
with the body and the curve and the point § uniformly in
a straight line,

158. If'v be the velocity ef the body at any point A,
and p the perpendicular from 8 on the tangent at that

point, the area described in the tims t=_ ptv.

Draw SY perpendicular to 4B. Let ¢t be divided:
into » equal intervals, and let 4B be the space described
in the first interval, the force at S being supposed to act
by impulses at the end of each interval.

Then the polygonal area which is described in the time ¢
=n times the triangle SAB=»l§SY.:7.v=%SY. i.0.

In the limit the straight line 4 B, which is the direction
of the velocix at 4, becomes the ent to the curve
at 4; and the curvilinear area descri in the time

1
l—ép".
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Thus the area described in & unit of time is £ po; it is
usual to denote twice the area described in a wunit of
time by % : therefore 4=pv, and a=§. )

159. a body move in one plane so that the areas
described by the radius drawn to a fized point are pro-
portional to the times of describing them the body ts acted
on by a force tending to that point.

Let S be the fixed point about which areas proportional
to the times are descriggd, and suppose a body acted on by
no force to describe the straight line 4B with uniform
velocity in a given interval of time. In another equal in-
terval if no force acted the body would describe B¢ equal
to AB, in AB produced: so that the triangles 458 and
BSc would be eqtﬁal But when the body arrives at B let
a force act on it by an impulse which causes it to describe
BC in the second inte: such that the triangle SBC is
equal to the triangle 4S8, and in the same plane,

Then the triangle BSC is e%ual to the triangle BSc,
and therefore Cc is %anl.lel to S8, by Euclid, 1. 39: there-
fore the impulse at B is in the direction BS: see Art. 47.

In like manner if impulses act on the body at C, D, E,...
causing the body to describe in successive equal intervals
the straight lines CD, DE,... so that the triangles CSD,
DSE,... are all equal to the triangle 4S5B, and are in the
same plane, then all the impulses tend to S

Hence if any polygonal areas be described proportional
to the times ofydesc);%bing them, the impulses at the an-
gular points all tend to S.

Now let the number of triangles be indefinitely in-
creased, and the base of each indefinitely dlmm:si inished ;
then the boundary 4BCDE... will ultimately become a
curve, and the series of impulses will become a continnous
force by the action of which the body is made to describe
the curve: and the force always tends to S.
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160. The proposition of the preceding Article is true
also if S be a point which instead of being fixed moves
uniformly in a straight line; see Art. 157.

161. We have already observed in Art. 49 that the
principle called the Parallelogram of Velocities ‘gives rise
to applications similar to those deduced from the Paral-
lelogram of Forces in Statics; some illustrations of this
remark will occur as we proceed, one of great interest
being given in the next Article,

162. The direction of the resultant action of a cen-
tral force on a body while it describes an arc of @&
curve 18 the straight line which joins the intersection
of the tangents at the extremities of the arc with the centre
of Sorce.

Let PQ be an arc of a curve
described by a body under the
action of a centre of force at S.
Let PT, QT be the tangents
at P and @ respectively. .Sug
pose the b&%y to move from
to @ Produce PT to any
point 2.

The resultant action of the
central force during the motion
changes the direction of the
velocity from 7% to 7'Q; and thus the direction of the
resultant action must pass through 7. But the direction
of the action of the central force passes through S at
every instant, and therefore the direction of the resultant
action must pass through S. Thus 7'S must be the direc-
tion of the resultant action.

This proposition has been given on account of its
simplicity and interest ; but it is not absolutely necessa
for the pur%;)ses of the uf)resent work, for it will be foun
that so much of the result as we may hereafter require will
gresent itself naturally in the course of our investigations.

ee Arts. 163 and 175,
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163. If a body describes a circle of radius r, with
untiform velocity v, the body s acted on by a force tending

3
to the centre of the circle, the acceleration of which is !r-

Since_the body moves with uniform velocity the arc
described in any time is proportional to the time. Hence,
by Euclid, vi. 33, the area described in any time by the
radius drawn to the centre Mroporho to the time.
Therefore, by Art. 169, the y i8 acted on by a force
always tending to the centre of the circle.

Let PQ be an arc of the cir-
cle, § the centre, P7 and QT
the tangents at P and Q@ re-
spectively.

Let the angle PSQ be de-
noted by 2¢, and let % denote
the velocity communicated to the
body by the action of the central
force while the body moves from
P to @ Then the velocity .o
along 7'Q is the resultant of o along P7 and of » com-
municated by the central force. Hence as in Art. 33 of
the Statics the direction of » makes equal angles with
TP and 7Q; and must in fact coincide with Z7S. Hence,
as in Art. 38 of the Statics,

v _sin PTQ _sinPSQ_sin2¢_2lin¢

o sinPTS cosPST cosgp .
Let ¢ denote the time in which the body moves from P to @,
and let /' denote the accelerating effect of the central force.
Then if we suppose @ very near to P we have u=#, be-
cause during a very small change of position of the bOdi
the force may be considered as constant in magnitude an
in direction. Hence ft=2vsin¢. But since the velocity
is uniform we have 2r¢=vt. m these two equations

we obtain
f_2v‘sing__g’ sin
T 29 T r’ ¢ °
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But when ¢ is indefinitely small we have by Trigonometry,
81n
T =1: thll!f = ; .

164. The preceding investigation of the value of the
central force should be carefully studied.

In the first part of the investigation we obtain the
exact direction and amount of the velocity  communicated
by the central force while the body describes a given arc.

In the second part we have to use the method of limits,
that is, we write down equations which are true in the
limit, namely when the arc described is supposed indefi-
nitely small,

reasoning in the second part of the investigation

might be given more fully in the following manner. Let f;
be the test value of the acceleration, and f, the least,
while the body describes the arc PQ. Then u cannot be
80 large as /¢, and cannot be 8o small as fyf cos 2¢ : for fi¢
would be the velocity generated if the force always acted
in the same direction, and had its greatest ible value;
and f,t would be the velocity generated if the force always
acted in the same direction and had i%s least possible value;
and as 2¢ is the angle between the extreme directions of
the force, if the force always had its least value the velocity
ﬁ:nerated would be greater than fjtcos 2¢. Hence u lies
tween fif and fyf cos 2¢; that is 2vsin ¢ lies between
Jit and f3t cos 2¢; therefore g'—m ¢ lies between f; and
Jyco82¢. Bince this is always true it is true at the limit.

g
Now the limit of % %% is 7; and the limit of ; and of
Jioom2is /. Thus Z=.

165. It will be seen that we demonstrate that the ac-
celeration has the same value at every point of the circle:
this might have been anticipated but we did not assume it.

In the manner thus exemplified we may in similar
cases develop the reasoning, so as to render it more rigor-
ous in form : the student will have no difficulty in sapply-
ing such a development for himself on other occasions if
required. .
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166. 'We have thus demonstrated the following result:
if a body of mass m describes a circle of radius r, with
unyform velocity v, then whatever be the forces acting on
the body their resultant tends to the centre of the circle,

3
andioequaltom—v-. No single fact in the whele range
T

of Dynamics is of greater importance than this, and the
student should regard it with earnest attention.

167. For example, suppose a body of mass m fastened
to one end of a string, and the other end of the string fas-
tened to a fixed point in & smooth horizontal table. Let
the body be started in such a manner as to describe a
circle with uniform velocity, », on the table round the fixed

int, the string forml;n‘l)lg the radius, r, of the circle. The
orces acting on the body are its weight, the resistance of
the table, and the tension of the string. The weight and
the resistance act vertically and balance each other. The
tension of the string acts horizontally, and its value must

beequa.ltom—:z.

This may be verified experimentally. Instead of fas-
tening the string to a fixed point in the plane, let the
string be prolonged and E:ss through a hole in the position
of the fixed point, and have a body fastened to its end.
Let m’g denote the weight of this body; then if it remains

at rest we shall find that m’g = ,,%a .

168. For another example we will take the conical
pendulum. One end of a fine string is fixed; to the other
end a particle is fastened. The particle is set in motion in
such & manner as to describe a horizontal circle with
uniform velocity: thus the string traces out the surface

of a right cone, from which the name conical pendulum
is derived.

Let mg be the weight of the particle, » its velocity, 7'
the tension of the string, ! its length, « ‘the inclination of
the string to the vertical.
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The vertical forces ncf.mﬁ on the particle are its weight
and the resolved part of the tension; these must be in
equilibrium, so that ’

T cos a=myg.

The only horizontal force is the resolved part of the ten-
sion; therefore by Art. 166

Tsina:’—@—’;
T
also r=Isina.

L L sin%a _ o?
Hence tana=;é-m, a5
This relation then must hold between v, /, and a, in order’
that the supposed motion may take place.

169. As another example, we will take the case of the
moon moving round the earth; this example is of sf)ecia.l
interest as being that by which Newton tested his law of
gravitation.

It appears from observation that the moon moves
nearly in a ci with uniform velocity, round the earth as
centre. Let o denote the moon’s velocity and » the dis-
tance of the moon from the earth’s centre. Hence the

aeceleratibn on the moon is %’

Now Newton conjectured that this acceleration was

- owing to the earth’s attraction, that the fall of heavy

bodies to the earth’s surface, was due to the same cause,

and that the force of the earth’s attraction varied inversely
as the square of the distance,

Let a denote the earth’s radius; then, since g denotes
the acceleration produced by the earth’s attraction at the
surface of the earth, the acceleration produced at the

3
distance of the moon will be 9%. Hence, if Newton’s
conjecture be true, we must have '
gat 1

r? r
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lthrﬁﬂ:t“wbmﬂm&rmmdm‘hﬁm the
result was not satisfactory; e of & not being known
at that time with sufficient accuracy; but at a subsequent
peﬁﬁhaving obtained a more accurate value of a, he re-
turned to thecalculation and obtained the desired agreement.

The student can easily verify the result approximatel
taking the following fwts’u glﬁvfz:l by observation: v

a=4000 miles = 4000 x 5280 feet,

r =604,
0= 2xr _ 277
"~ Time, of moon's revolution ~ 27} x 24 x 60 x 60"

The preceding investigation is sufficient to give a
general ?dea of the circumstances of the motion of the
moon ; but many additional considerations enter into an
exact discussion of the subject. The moon does not move
accurately in a circle round the earth, nor with quite uni-
form velocity; and the sun exerts an influence on the
motion: but the investigation of these points is altogether
beyond the student at present.

170. Suppese a body to describe a circle of radius »
with aniform velocity . Then as the circumference is

2nr, the body moves once round in the time g:—;. This is

called the periodic time; and generally when a body
describes any closed curve the time of going once round is
called the periodic time.

171. 'When a body is describing a circle with umiform
velocity the straight line drawn from the body to the
centre describes equal angles in equal times. The rate at
which angles are described is called the angular velocity
of the radius. Thus with the notation of the preceding

Article the periodic time is ? ; and in tkiis time the angle
2r is traced out: thus the angular velocity is 2'?,2%1-!

that is 2.
r
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The velocilzu is called the linear velocity when it is
necessary to distinguish it from the a: ulzr velocity,
which is equal to the linear velocity divide’syby the radius.

172. To find the pressure F R
which a body on the surface of N
the earth at any point ezerts
on the earth, supposing the earth x
to be a sphere of umiform den-
sty

Let NCSrepresent the axis on °
which the turns ; suppose a
body at P resting on the earth
and turning round with it. Let ¢
be the centre of the earth, and B
suppose PC to make an angle 6 with the plane of the
equator, so that 6 is the latitude of the body, and PCN is
the complement of 4.

Let m be the mass of the body. The body is acted on
by the following forces: the attraction of the earth towards
its centre, which we will denote by mf; the resistance of
the earth along the radius CP, which we will denote by R,
the friction in the plane NCP along the tangent ai P,
which we will denote by #. Draw PM perpendicular to
CN; then as P revolves with the earth it describes a circle
of radius PM with uniform velocity. Let PM =7, and
let » denote the velocity of P, and a the earth’s radius.
Then the forces which act on the body at 2 must have their

3
resultant along P M, and equal to . Therefore

r
(mf~ ) 0080+ Fain 0=""7, (m/— R) sin 0~ F cos 0=0.
Multigl{ the first of these equations by cosé, and the

second by sin 6, and add; thus
W—R-’—nf—_v-’ cos 0,
that is Remf-"Zcos,

T. M. 21
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Let » denote the angular velocity of the earth, and there-
fore of P; then v=1w: also r=a cos 6. :

Thus R =mf—mae* cos* 6.
Similarly we find F=macw?sin 4 cos 6.

The resultant pressure on the earth is equal and oppo-
site to the resultant of R and F. Denote it by G. Then
the direction of G makes with the radius C. oa.n angle

F . Maae®sin § cos
the tangent of which is jz-, that is ;{f_————' rpwvey L

And  G'=m? {(f—ae?cos? 6} + a’w* sin® 4 cos"6}
=m? {f2—2afw? cos? 0 + a*w* cos* 4}
=m?* {f?—(2afw’—a%") cos* 6}
. The quantity G is what we have hitherto denoted by mg;

we see that it is not the same for all places on the earth’s
surface. We shall proceed to some numerical estimate.

The ;arth revolves once in twenty-four hours; thus
o= m: also a=4000x5280. Here we take as
usual a second as the unit of time, and a foot as the unit
of length.

Wo shall find that au®=" nearly; the square of this
that is a%s, v:e' shall neglect. Thus approximately
#=sF (l ~ 209 o 0), and therefore approximately

g=S (l - “L;'— 008’0).

‘We know that /=32 neaﬂy, and thus g nearly;

. S 289
so that g=/ ( ..o;)gsﬂ) nearly.
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We have assumed that the earth is a sphere, and that
the attraction which it exerts on a body placed at any
point on the surface is directed towards -the centre; but
these assumptions are not strictly accurate, so that the
result must not be considered absolutely true.

Exampres. XIV.

1. Find the force towards the centre ;ﬁxired tomake
a body move uniformly in a circle whose radius is 5 feet,
with such a velocity as to complete a revolation in 5
seconds. \
2. A stone of one Ib, weight is whirled round horizon-
tally by a string two yards long having one end fixed: find
g:e l1l;)ime of revolution when the tension of the string
3 lbs. .

3. A body weighing P lbs. is at one end of a string,
and a body weighing @1bs. at the other; the system is in
motion on a smooth horizontal table, P and @ describing
circles with uniform velocities: determine the position of
the point in the string which does not move. -

4. A strini { feet long can J’ust support a weight of
P 1bs. without breaking ; one end of the string is fixed to
a point on a smooth horizontal table; a weight of @ lbs. is
fastened to the other end and describes a circle with uni-
form velocity round the fixed point as centre: determine
the greatest velocity which can be given to the weight of
Q1bs. 50 as not to break the string.

21—2
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XV. Motion in a conic Section round a focus.

173. The cases of motion which we shall discuss in the
present Cha; are of great interest on account of the
application of them to the earth and planets which describe
eB:poeo round the sun in a focus.

In the remainder of this work we shall consider the
action of a force on‘:gimbody so that we shall be occu-
alied only with the influence of the force on the velocity of

e body: see Arts. 14, 45.

174. If a body describes an ellipse under the action
of a force in a focus, the velocity at any point can be
resolved into two, both constant in magnitude, one per-
pendicular to the major axis of the ellipse, and the other
;t right angles to the radius drawn from the body to the

focus.

Let 5 be the focus which
is the centre of force, H the
other P any Eﬁnt on the
ellipse, SY and HZ n-
diculars from & and H on the
tangent at P. Let C be the

centre of the ellipse, 4 one end
‘of the axis major.

By Art. 1568 the velocity at P varies inversely as SY,
and therefore directly as HZ; for SY x HZ is constant, by
a property of the ellipge. Thus ZZ may be taken to
represent the velocity in magnitude, and it is at right
angles to the velocity in direction. Now a velocity repre-
sented by HZ may be resolved into two represented by
HC and CZ. And by the nature of the ellipse CZ is
parallel to SP and equal to CA4.

Hence a velocity regesented by HZ in magnitude,
and at right angles to AZ in direction, may be resolved
into two, one represented by C4 in magnitude and at right
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angles to SP in direction, and the other represented by
Hg' in magnitude and E:mndicular to HS in direction.

It is convenient to have expressions for the itndes
of these component velocities. Let CA=a, let b denote
half the minor axis, and let ¢ be the excentricity of the
ellipse. Let % represent twice the area described by
the radius SP in a unit of time; then the velocity at

h.HZ _h.HZ s
P= SY<HZ - B by the nature of the ;lhgse. There-
fore the component at right angles to SP is Tf‘l , that is
24 and the component. perpendicular to B is 297,
that is "2

175. A body describes an ellipse under the action
of a force in a focus : find the law qof force.

Let S be the focus which is >
the centre of force; let P and Q N
be any two points on the ellipse; A
and suppose the body to move
from P to Q.

Resolve the velocity at P into
two, one at right angles to SP, -
and the other perpendicular to HS; denote these by ¢,
and o, respectively. When the body arrives at @ its velo-
city is composed of o, and o, parallel to their directions at
P, and the velocity generated by the action of the central
force during the motion, which we will denote by . But
by Art. 174 the velocity at @ can be resolved into ¢, at
right angles to SQ, and 7, perpendicular to SH,

Hence it follows that », at right aniles to SP, together
with % in its own direction have for their resultant », at
right angles to SQ. Hence, as in Art. 33 of the Statics,
the direction of » makes equal angles with the straight
lines at right angles to SP and SQ, and therefore with
SP and SQ. And, by Art. 38 of the Statics,

=20, sin ; PSQ..
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Let SP=r, and PSQ=21?. Let ¢ denote the time in
which the body moves from P to @; and let / denote the
accelerating effect of the force. Then if we suppose @
very near to P so that tis very small, we have #—=71; hence
Si=2v8in¢. The area described in passing from P to

Q= At by Art. 168; and this ares may be taken to be
‘= 3 rtsin2, for it may be considered ultimately as a tri-
angle,
Thus %N:%r’n’nmﬁ. Therefore
JSr3sin 2¢ =2he, sin ¢;

__2hv, Ao, . '
therefore J= Woosg= ultimately,
where ¢ is made indefinitely small.

This shews that the force variss inversely as the square
of the distanoe.

It is usual to demote the constant Az, by u; thus
,.=hx’g=%‘. The quantity y is called the absolute
Jorce,

176. In the preceding investigation it was shewn that
the direction of the velocity # communicated by the cen-
tral force while the body moves from P to Q bisects the
angle PSQ. But we know by Art. 162 that this direction
is that of the straight line which joins S with the intersec-
tion of the tangents at 2 and @. Thus our dynamical in-
vestigation suggests that in an ellipse the two tangents
from an external point subtend equal angles at a focus;
and this is a known property of the ellipse.

177. A body describes an ellipse under the action of
;z_fom tn a focus; required to determine the periodic
ime.
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Let a and b denote the semiaxes of the ellipse; and A
twice the area described by the radius in the unit of time.
By Art. 156 the periodic time :

_ twice the area of the ellipse
. 2 '
Now it is known that the area of the ellipse is wab, and

by Art. 175 we have ,h=b~/L:. Hence the periodic time

178. We can now apply the results obtained to the
motions of the earth and the planets round the sun.
There are certain facts connected with these motions
which were discovered in the seventeenth century by the
diligence of Kepler, a famous German astronomer, and
}v]l:lich are justly called Kepler's Laws. These laws are as
ollows:

¢ (1) The planets describe ellipses round the sun in &
ocus. -

@s The radius drawn from a planet to the sun de-
scribes in any time an area proportional to the time.

3) The squares of the periodic times are proportional
to the cubes of the major axes of the orbits.

+ From the second law it follows, by Art. 159, that each
planet is acted on by a force tending to the sun.

From the first law it follows, by Art. 175, that the force
& each planet varies inversely as the square of the dis-
ce.

From the third law an important inference can be
drawn, as we will now shew. Let a be the semiaxis major
of the ellipse described by one planet, u the absolute force,
T the periodic time; let a’, u’, 7 denote similar quantities
for another planet: then, by Art. 177,

omal 2rat T a
T T r i thereforeT,, Do
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But by Kepler's third law }-",,: 2. therefore A1,

o that u=p’. This shews that the constant which denotes
the absolute force is the same for all the planets; so that
the acceleration produced by the sun depends solely on
the distance from the sun, and not on the nature of any
particular planet.

179. By investigations similar to those in Arts. 174
and 175 it may be shewn that if & body describes an
hyperbola under the action of a force in a focus, the foree
varies inversely as the square of the distance. 1f the body
describes the branch which is the nearer to the focus, the
force is attractive as in the case of the ellipse. But if the
body describes the branch which is the more remote from
the focus the force is repulsive; the body at any instant
instead of moving along the tangent as it would if there
were no central force, or deviating from the tangent on the
side towards the centre of force as it would do if the force
were attractive, deviates from the tangent on the side
remots from the centre of force.

We proceed to consider the case of motion in a para«
bola round a force in the focus,

180. If a body describes a parabola under the action
of a force in the focus, the velocity at any point can be
resolved into two equal constant velocities, one icu-
lar to the axis of the parabola, and the other at right
angles to the radius drawn from the body to the focus.

Let § be the focus, P any point on
the bola, 4 the vertex, SY the ggr— 2
pendicular from S on the tangent at 2. -

Let AS=a; and let 4 denote twice
the area described by the radius SP in a
unit of time, ]

SY bisects the angle ASP; therefore
the resultant of two velocities, each equal

h
to 5a° one along S4, and the other along
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2h SY . h SY? h a.SP
3q° 5P that B E'SY_.SP’;:hat' is, a5Y.5P"
by the nature of the curve, that is, 5y But 37 is the

magnitude of the velocity at P, and its direction is at
right angles to SY. Hence the velocity at P can be re-

solved into two velocities, each equal to 2%, one perpen-
dicular to 4.5, and the other at right angles to SP.

8P, is

Hence it may be shewn, as in Art. 175, that {f a body
describes a parabola under the action of a force in the
Jocus, the force varies inversely as the square of the ’dc'o-

tance. Andif s denote the absolute force, we have p= —:; .

181. In the figure of Art. 174 we have the velocity at
P= SLY Now by a property of the ellipse we might ex-

press S'Y in terms of SP and the major axis of the ellipse ;
and thus obtain another formula for the velocity at P.
But instead of appealing to a property of the ellipse we
can arrive at the result by the aid of mechanical principles,
a8 we will now shew.

Let v denote the whole velocity of the body at P; and
let », and », have the same meanings as in Art. 175. Let
a denote the angle SPY, and 8 the angle between YZ and
AH produced.

Suppose we resolve o, and v, along the tangent at P
and at right angles to it ;vlthen the algebraical sum of the
former two components must be v, and the alg:braiml sum
of the latter two components must be zero: that is,

o,sina—n,sinB=v, v c08a~v,co88=0,

From the second equation we have eosﬁ-—-?—'—o—o'i; substi-

tate in the first; thus v =9, sina— /(9,3 —0} cc:s’a)
=g, 8in a—\/(9,3— 9,*+ £, sin% a).
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_SY
= sp’
e3SY* (e, SY A\

_{t

SP3 SP ~SY)*

Now sin

therefore rl-o2+

h? 2h
Hence Sy -4+ b—;’l

Using the values of v, and v, which were found in
Art. 174 we obtain

B _ohe, Ma{1-¢) _2he, A

S=§p T ¥ TSP B
2 -
. = 5p— & by Art. 175,
-2 _p
that s *=5p"a
In the same way we shall find that when a body moves
in an Ayperbola the square of t.hevelocity=§%+£.
Exawrres. XV,

1. If a planet revolved round the sun in an orbit with
o major axis four times that of the earth’s orbit, deter-
mine its periodic time.

2. If a satellite revolved round the earth close to its
surface, determine its periodic time.

3. A body describes an ellipse under the action of a
force in a focus: compare the velocity when it is nearest
;he focus with its velocity when it i1s furthest from the
focus,

4. ‘A body describes an ellipse under the action of a
force to the focus S'; if H be the other focus shew that the
velocity at any point P may be resolved into two veloci-
ties, respectively at right angles to SP and HP, and each
varying as HP.,
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XVI. Motion tn an ellipse round the centre.

182. We shall give in this Chapter investigations
respecting the motion of a body in an ellipse round the
centre. ‘'lhe results have not the practical interest which
those in the preceding Chagter derive from their appli-
cation to Astronomy; but the investigations will furnish
valuable illustrations of mechanical principles.

183. It will be necessary to return to a result alread;
established. v

Suppose that a body describes a circle of radius » with
uniform velocity ». We have shewn that the body is acted
on by a force to the centre of the circle of which the

accelerating effect is ? Let P be a point on the circum-
ference of the circle, C the centre, C4 a radius. Draw

-
\__/

PM perpendicular to C4. Then a force of constant mag-
nitude, acting along PC, may be represented by PC; and
#0 may be resolved into two represented by PM and MC

ively. Thus we may sag that if & body describes &
circle with uniform velocity the forces acting on it may
be represented by PM and MC respectively.
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184. A body describes an ellipse round a force in the
centre: required to find the law of force.

Let ACA’ be the major axis of the ellipse, 2 any point
on the ellipse; draw P M perpendicular to the major axis.
Produce MP to meet the circle described on 4.4” as dia-
meter at p.

A i A

Now by Art. 156 the elliptic area ACP varies as
the time of moving from 4 to P; and by a property of
the ellipse the circular area .4Cp bears a constant ratio to
the elliptic area ACP. Hence, as P moves, a body always
oorcﬂ)ymg the position p would describe the circle uni-
formly, and would therefore be acted on by a constant
force along »C; or by Art. 183 it would be acted on by
forces which we may represent by gl[ and MC. Now
PM bears to pM a constant ratio, by a property of the
ellipse, 80 that the velocity of P estimated lel to
CB always bears a constant ratio to that of p estimated in
the same direction. Hence the force parallel to CB on P
bears to the force on p in the same direction a constant
ratio, namely that of PM to pM; so that the force on P
in this direction may be represented by PM.

The force on P parallel to CA4 is the same as that on
2, and g0 may be represented by CM.

Hence P is acted on by two forces which may be
denoted by PM and MU respectively ; and the resultant
'}5 Ct'hm will be a single force which may be denoted by
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Therefore the force required varies as the distance.
Since the force varies as the distance CP we may denote
it by uCP, where p is a constant ; p is usually called the
absolute force. ’

185. Let % denote twice the area described by CP in
a unit of time; and let @ and b be the semiaxes of the
ellipse: then will A*=pa%? For the force at B is b, and

therefore the force at £ is pbxg, that is pa. Now the
velocity of P when at B is the same as that of p when at
E; denote it by »: then, by Art. 163, _-:—’: =pa, 80 that

2
o*=pa’. But, by Art. 158, =§ =2 therefore 3= pa?, s0
that 3= pa'®s,

186. A4 body describes an ellipse under the action of
a jforce in the centre: required to determine the periodic
time.

Let a and b denote the semiaxes of the ellipse; and
k twice the area described by the radius in a unit of time.
By Art. 156 the periodic time

_ twice the area of the ellipse _ 2wab
- h A

But %=ab |/p, by Art. 185; therefore the periodic time
=2
NS
187. It will be seen that the result in the precedin
Article is independent of the size of the ellipse; it mﬁ
therefore hold even if we suppose b indefinitely small, that
is it will hold when the body moves in a straight line, os-

gillating backwards and forwards through the centre of
orce.
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188. It is easy to give a geometrical representation of
the velocity of a body moving in an ellipse under the action
of a furce in the centre.

Draw Cg at right an-
gles to Cp, meeting the
circle at ¢; and draw ¢gn

dicular to 44’, cut-
ing the ellipse at Q.

The velocity of p is
constant in itnde, and
its direction at right
angles to Cp, so that it may
be represented by‘gf. The
velocity represented by Cg
may be resolved into two
o, Tho slacity { P parallel to 04 s equal

g respectively. The velocity of e
to t.hatp?)% p, and the velocity of el to CB is to
that of p as bis to a: see Art. 184. Hence the velocity of
P el to C4 may be represented by CN, and that

parallel to OB by NQ, for NQ=2 Ny. Thus the velosity

of P may be resolved into two components, denoted by
CN and NQ respeetiveg; 80 that the resultant velocity
may be represented by CQ: that is, the resultant velocity
of P is parallel to CQ in direction, and is proportional
to CQ in magnitude.

Since the velocity is proportional to CQ in magnitude
it will be equal to the product of CQ into some constant;
and by Art. 185, we see that this constant is \/p.
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L A stone falls down 100 feet, determine the time of
‘motion.

2. A stone falls down a well and is heard to strike thé
‘water after 3 seconds: find the depth of the well. ‘

3. If the space described in falling for 11 seconds from
rest be 5566 feet, find the magnitude of the force.

4. A body, starting from a given point, moves vertically
downwards at thmgof 322 feet pel;-oseg’ond. After four
seconds a heavy bodg falls from the same point under the
‘action of gravity. Shew that it will overtake the first body
at a distance of 2576 feet from the starting point.

* 8. Any number of smooth fixed straight rods, not in
the same plane, pass through a given point; and a heavy
particle slides down each rod, the I)amcles starting simul-
taneously from the given point. If the rods be so situated
that the particles are at one instant of their motion in the
same plane, prove that they will be so throughout it, and
that a circle can be described passing through them.

6. AB is the vertical diameter of a sphere; a chord is
drawn from 4 meeting the surface at P, and the tangent
plane at B at @: shew that the time down P@ varies as
BQ, and that the velocity acquired varies as BP,

7. Find a point at a given distance from the centre of
a vertical circle, such that the time of falling from it to the
centre is less than the time of falling to any point on the
circumference except one, and equal to the time of falling
to this point.
8. Find the locus of points in a given vertical plane
from which the times of descent down smooth inclined
lanes to a fixed point in the vertical plane, vary as the
Pength of the planes.
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9. A body is projected along a smooth horizontal table
with a velocity g : find the le; to which the table must
be prolonged in the direction of the body’s motion, so that
the body after leaving the table may strike ;npoint whose
distances measured horizontally and vertically from the
point of projection are 3g and 2g respectively.

10. A heavy particle is projected from a given point in
a given direction so as to touch a given straight hnl;o give
& geometrical construction for determining the point of
contact and the elements of the path described. If the
direction of projection be not ﬁxer find the path so that
the velocity of projection may be the least possible,

11. A chord is drawn joining any point on the circam-
ference of a vertical circle with the lowest %oint: shew
that if a heavy body slide down this chord the bola
which it describes on leaving the chord has its directrix
passing through the upper end of the chord.

12. Chords are drawn joining any point on the circum-
ference of a vertical circle with the highest and lowest
goints; a heavy body slides down the lower chord : shew

hat the parabola which it will describe after leaving the
chord is touched by the other chord, and that the locus of
the points of contact is & circle.

13. A heavy body is projected from one fixed point so
as to through another which is not in the same hori-
zontal line with it: shew that the locus of the focus of its
path is an hyperbola.

14. A force acting uniformly during one tenth of a
second produces in a given body the velocity of one mile
r minute: compare the force with the weight of the

y.

15. Oneendofa st'rix;ﬁ is fastened to a weight P; the
string passes over a fixed pully, and under a moveable
pully, and has its other end attached to a fixed point; a
weigﬁt. Q is attached to the moveable pully : determine the
motlon,L supposing the three portions of the string all
paralle :
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16. In the formuls of Art. 101 shew that if the veloci-
ties » and « are each increased by the same quantity, so
are the velocities » and v'.

17. From the formulse of Art. 101 determine the values
of «’ and ¢’ if m=em’; also if m'=em.

18. A body of given mass is moving in a given direc-
tion : detecrmine the magnitude and the direction of a blow
which will cause it to move with the same velocity in a
‘direction at right angles to the former. .

'19. A projectile at the instant it is moving with the
velocity % at an inclination a to the horizon impinges on a
verti ¥lane which makes an angle B with the plane of
motion of the projectile : find the velocity after impact.

20. Small equal spherical balls of perfect elasticity are
placed at the corners of a regular hexagon; one of them is
projected with the velocity u, so as to strike all the others

1n succession and to through its original position: find
the velocity with whlpc:sit returns,

21. In the preceding Example shew that each of the
five balls starts at right angles to an adjacent side of the
hexagon ; and find the velocity with which each starts.

22. Two ectly elastic balls of equal mass impinge ;
shew that if the directions of motion after impact are paral-
lel, the cosine of the angle between their original directions
is equal to the ratio of the product of the velocities after
impact to the product before impact.

23. Of twoequal and perfectly elastic balls one is pro-
jected so as to describe a parabola, and the other is drop-
ped from the directrix so as just to fall upon the first when

at its highest point : determine the position of the vertex
of the new parabola.

24. A mark in a vertical wall appears elevated at an
angle S at & certain point in a horizontal plane; from this
point a ball is projected at the mark and after striking it
returns to the point of projection: shew that if a be the
angle of projection tana=(1+6) tan 8.

T. M. 22
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25. A plane is inclined at an angle 8 to the horizon; a
is projected from a point in the plane at an inclina-
ion a to the horizon, with the velocity %, and the particle
rebounds from the plane: find the time of descnibing =
parabolic arcs.
26. In the preceding Examsle find the condition which
must hold in order that after dexcribing n parabolic arcs
the particle should be again at the starting point.

27. A particle is projected with a given velocity at a
given inclination to the horizon from a'point in an inclined
plane: find the whole time which elapses before the par-
ticle ceases to hop.

28. In the preceding Example find the condition which
must hold in order that the particle may cease to hop just
as it is again at the starting point.

29. In Example 25 find the cotangent of the inclination
.o the plane of the direction of motion of the particle at
the beginning of the »* arc.,

80. Bhew that the time of descent to the lowest goint
of & ve:z small circular arc is to the time of descent down
its chord as the circumference of a circle is to four times
its diameter.
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STATICS. ANSWERS.

I 1. 8lbs. 2 32inches. 3. %’ bs. 4 gainches.

5. 9lbs.and 31bs.: linch. 6. As3to4. 7. As4to3.

8. lofacubic foot. 9. As16t09. 10. As 2o %,
20 a b

IL 1. 64,8 2 37. 3. 9,12 4. 3,6 6. 5./21lba,
at an anile of 45° with the resultant. 8. As./3isto 2.
9. Aright angle. 10. 5, 5,/3. 11. In a straight line.

III. 2. By Art. 34, forces 1, 1, 1 are in equilibrium
and may be omitted; thus the resultant is equivalent to
that of forces 1 and 2 at an angle of 120°. 4. See Art.37.
8. 151bs., 201bs. 6. 41lbs. 7. Let OA4 and OB denote
the equal forces, O.D their resultant ; produce 40 to C so .
that 0C=204; and let OF be the resultant of OB and
OC: then it is given that OE=0D. The rcsultant of OE
and 0D is equivalent to that of twice OB and half OC,
and is therefore equal to OE. 8. It follows from 7 that
the angle E0D=120°; and the straight line which bisects
the angle £0D must make with OB an angle equal to
EO0C=the angle OED=the angle ODE. 12. The re-
sultant is 2./2 lbs,, and it is parallel to a side of the
square. 13. The resultant coincides in direction with the
straight line from the point to the intersection of the
diagonals of the rectangle, and is equal to twice that straight
line.  14. Use the ¥olygon of forces,  15. Use Ex. 14:
if n be the number of equal parts the resultant is repre-
sented by (2 — 1) times the radius.

IV. 1. The resultant is 94/21bs.: it is parallel to the
diagonal AC; and it crosses 4D at the distance 5 4D

from 4. 2. 381bs. and 114 lbs. 8. 13} inches from
the heavier weight. 8. Pa~@b. 9. Pa2,/2, where
a is & side of the square. .

. 229
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V. 7. Tuke moments round H: thus we find that K7
is parallel to BC. 8. Take moments round an end of
one force: thus we find that the other two forces are
bisected at O.

VI 1. /(20)lbs. 5. The le ACB is given;
and since P, @, aud R are given, the angles which the
irection of &£ makes with 4C aud CB are given. 6. See
Art. 38, and Euclid, 1. 21, 22. 8. The point must be
at the intersection of the straight lines which join the
middle points of opposite sides. 9. The forces 1 and
/3 are at right angles; the forces 2 and 1 at 12¢°
11. Let CD be the resultant of C4 and CB. Let 4 come
to a. Take Dd equal and parallel to 4a; then ad is equal
mg s el to CB. Thus Cd is the resultant of Ca
an A .

VII. 1. 121bs. 2. 8inches. 3. One inch from the
fulcrum. 5. 21bs. or 5 1bs. 6. 41bs. 7. 3to 4,
8. 9 to 20. 9. 15cwt.

VIII. 2. P and Q. 8. A force of 12 lbs. at
5 inches from the end at which the force of 4lbs. acts.
4. At a distance from the centre of the hexagon equal to
one-fifth of a side. 6. At the point at which the force

of 81bs. acts. 6. At the distance ,% of the radius

from the centre. 7. 6} inches from the end.  12. The
force at the point 4 must be @ + R— P; and so on.

1X. 2. Onefoot from the end. 3. Suppose the straight
line parallel to BC; let D be the middle point of BC: the

centre of gravity is on 4D at the distance %AD from 4.

4. At a distance from the centre of the larger circle
equal to one-sixth of the radius. 5. Equal forces.

9. The ratio must be ; or 1. 13. At a distance from

the centre of the square equal to 21—1 of the diagonal of the

square,  14. % 15. g, 1, gfeet. 16. At a dis-
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tance from the base of the triangle equal to l% of the

altitude of the triangle.  17. At a distance from the
. 3

base of the triangle equal to 5723 of the base.

18. Put the rods so that the points in contact may be '—45 of

a foot from the middle of each, towards the 11b. of the
lower rod, and towards the 9 Ibs. of the upper rod.

19. At % of the whole length from the end.  20. 8},
83, 3} Ibs. ' '

X. 1. Three quarters of the square. 2. A straight
line parallel to the base. 3. The centre of the spherical
surface, 6. One is double the other. 10. Twelve
inches.  11. The distance of the point from one end of
the side must be twice its distance from the other end.

XI. 1. 1to3. 2. 52inches from theend. 3. 1y3;1bs,
5+&; 1bs. 4, Two feet from the end. 5. Two inches,
6. 91bs,, 6 lbs.: ratio that of 2t0 3. 7. 3lbs. 8 5lbs,
71bs. 9. The forces are 31bs. and 121bs.  10. 124 1bs,,
224 1bs. 11. One is double the other.  12. 23, 4§ feet.

13. glb., 4}lbs.  14. 144 stone.  16. 30° with lever;

NJ(A2)Ibs, 17. gP at a distance 1} feet from the fulerum.
19, Oneinchfrom 4 ;10lbs. 20. 4 inches from the fulcrum.

XII. 2. 183 ounces. 3. 40 Ibs. 4. He gets 15
ounces for 3s. 9d.; which is at the rate of 4s. per b,
6. Seven inches from the point of suspension. 9. The
point D, from which the graduations begin, is brought
nearer to the point of suspension C.  10. The point D
is taken further from C.  11. 2} feet from the end af
which 10 1bs. is sudpended; 601bs.  13. Pressure on C is

half the weight of the rod, on D is g of the weight of the
rod.  14. 8inches from the other end.  15. Two lba.
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6. As S-bisto S-a 17 6 feet; 3 W, 3 W
18. 20lbs.  20. Two feet from the other end. 21. At -
-l%ot‘minchfromtheendoftheleadbar. 22. 30 lbs.

24. At a distance of%of the lever from the end where
the greater force acts.

XIII. 1. 56 inches. 2. 631bs. _ 3. The radius of
the Wheel must be ten times the radius of the Axle.
4. 16 ounces. 5. The weight of 6 lbs. The prop must

support glbs., leaving 5§ Ibs. on the Wheel to balance the

31ba. on the Axle. The pressure on the fixed supports is
83 1bs. 6. 15cwt. 7. 18 inches; 3 inches. 8. 108 lbs.
9. The string which is nailed to the wheel hangs vertically
so that its direction just touches the Axle.  10. In-
.creased ; see Algebra for Beginners, Art. 353.

XIV. 1.3lbs. 2. 0Onelb. 3. A force cqual to a
third of his weight. 4. As12to1l. 6. lécwt. 6. 6.

7. The Weight will overcome the Power. 8. g of his
weight, supposing him to pull upwards, as in Art. 196 ; but
g of his weight if the Power end of the string passes over

a fixed pully so that he pulls downwards. 9. 31bs.
10. Onelb. 11. W=P. 12. W=w. 14. 3}lba
15. 16. 16. 6. 17. The Power will overcome the

Weight. 18 Thewt. 19, }—: of his own weight.
20. Three times the Power.

XV. 1. The perpendicular from the right angle on the
length, 2. 7}11’1?:. 3. 8lbs. 4. 45°; aglto,,/?.

5 P=3W,R=3W. 6 lshbs 7.la0lbs 8 4

9. 3%1bs. 10. 1120. 11. At an inclination of 30°.
12. /31bs. 13. 9lbs. 14. 141bs.; 501lbs.
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15. /31bs, 300, 16. 151bs. 17. 60°. 22. 391bs.
to hang over.

XVI. 1. 25,/21bs. 2.40lbs. 3. 60° 4. As 24
tol. 5 48. 6.480wlbs. 7. »,/3. 8. winches.

XVII. 1. BL=3inches; 8lbs. 2. 31bs. 3. 60lbs,
4, A must now exert a force of 40lbs. 5. The weight
of C is twice the weight of B. 6. The weights are as
the lengths of the planes on which they are placed.

XVIII. 1. 2inches. 2. 6 inches. 3. 16 inches.
4, 5. 5. 2 feet. 6. 6. 7. 80 inches;

XIX. 1. 1. 2. Pressure 5,./31bs.; friction 51bs.

3. J\82+3%lbs.; thatis\/731bs. 5. 45°% 6. 75% 7. 9lbs.

9 17tons. 10, 158 tons. 12, mﬂ:%,

where p and ' are the coefficients of friction for the ground

and wall, @ and b the distances of the centre of gravity

tx‘lrong the lower and upper ends; 6 the inclination to the
orizon.

XX. 1. 15lbs. 2. 2P; 60° 60°, 45°.
3. 4 /(P*+Q@P+R+PQ+QR+RP). 5. 5.

MisoELLANEOUS ExaMPLES, 1. As4t03. 2 25]bs,
60 Ibs. 4. 45lbs. 5. 48lbs., 201bs. 6. Itis
represented by AD. 7. It is equal to the resultant of
2 and 4 acting at right angles. 10. 101bs.; bisecting
the angle formed by the parts of the string. 11. On
the lower peg the resultant pressure is # in a vertical
direction; on each of the other pegs the resultant pres-

sure is W,/3, and the vertical component is ig—’ .

18. 51bs. 20. 5,/31bs. inclined at an angle of 30°
to the 4lbs. component. 21. That of the sides.
22. 351bs., 40lbs, 23. As2tol. 24, Q=2P.
26. 2 feet from end. 27. 81bs., 121bs. 31. 25°, 65°
82, 3}lbs. -~ 383. 540z, 480z 34. 1} feet from the
41bs. weight. 35. 2lbs,  37. Weight=2,/3 x Tension,
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W 2@ W 3@

39. 45°. 40. 2} stone. 41. <+tE ot 42. In

the shorter cylinder at a point which divides it in the ratio
of1to 31.  43. The point divides the rod in the ratio
of 5 to 4. 44. 15} inches from one end; shifted
1}inches. 45. 81bs. 46. 2ounces; 4 inchesfrom one end ;
50. 9 feet from the end near the heavier boy; 6 feet from

the rail. 52 ‘15%‘3, where a is an edge of the cube.

40
53. 101bs.; at a point o feet from the 61lbs. end.

54. 601bs. 55. The pressures would now be a hori-
zontal force equal to the Power, and a vertical force equal
to the Weight.  56. 481bs.  57. 20lbs.  58. 3% bs.
59. 6144 1bs. '60. 284/2 1bs. 61. At an angle of
30° to the plane. 63. 501bs. inclined at 30° to the

lane. 64. At the centre of gravity of the weights

Ibs, 11b, and 11b. at the angular points of the tri-
angle. 67. The tension=the weight; the string
within each sphere is inclined at an angle of 45°to the
horizon ; the required distance is (2 +,/2) times the radius.
70. The force on the face opposite to P must be
Q@+R+S-2P, and so on. 82. Let r be the radius of
the cylinder, a the inclination of the rod to the horizon ;
then the extreme length of the rod is (n+2)rseca.
84. Let w be the weight of the upper ball, 7 that of each
lower ball, a the inclination to the vertical of the straight
line joining the centre of the upper ball with the
centre of one of the lower balls; then the least coefficient

of friction between the upper and lower balls is tang; and

between the lower balls and the table is 2

w
2W-p-wt'”’n
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DYNAMICS. ANSWERS.

I 1. As2tol. 2 As6to7. 3. 1510,
4. 733 5 Aswtol.

II. 1. 240 feet. 2. At the end of 5 seconds.
3. At the end of two minutes; at the distance 6600 feet
from the starting point. 4. 5n feet. 5. 1527% feet
gzr second. 6. 7w feet per second. 7. The distance

tween them is equal to the distance each has described.
8. n \/(u?+ v*—2ur cosa).

IIL. 1.-50. 2. 2seconds. 3. 18. 4. 20; 1.
525;3. 6 Ashi-attooi-ul T 32 8 3%
the first second is the third from rest. 9. The first
second is the -0—% th from rest. 10, 63. 11 32,

2(b+a) X
12, gg. 13. 2h_ J&, where % and %’ are the
heights. 14. 48 inches; 8 feet. 16. 2} seconds.

17. The radius to the point is inclined at 60° to the
radius which is vertically upwards. 18. The radius to
the point is inclined at 60° to 1;he’l radius which is vertically
L
downwards. M f.5 . 5
‘IV. 1. 2 or 4 seconds; respective velocities g and
-g. 2. 3 seconds. 3. Yes, f=32. 4. 36; 16.
6. 5 or 20 seconds. 7. Af(gh), where % is the given
height. 8. It is half the time. 9. 2 seconds.
10. 2or 18 seconds.  11. Let = be the initial velocity,
A the height of the given point, » the number of seconds
between zassing this point and coming to it again; then
N (ui—2gh) U | (4 :
T=”' 13. The time is 2 \/ Sgsina’ where
is the length of the wire, and a its inclination to the

horizon. One ring describes %li’ and the other %é.
14. Let r denmote each interval; then the space is
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“w.g.”("._-l)gr_; then we pllt nr={, and ﬂ“=ﬂ; elimi-
nate r and u, and finally suppose » infinite.

V. 1. 13 feet per second. 2, 92—2. ) 3. No.

5. golinu(u-i-oooea). 6. Let » and v be the velo-
cities of ﬁrojection, and a and B the angles of pro-
Jection. e square of the distance at the time ¢
18 (usin a — v 8in B)%?* + (4 cos @ — v cos B)%3, that is

{#*+ 0*—2u0 cos (a~B)} 2 7.usgina+ue;sa. 11. The

]
square of the distance is #u?cosa + (min..-;ga) | that

s t’(u’—gtusina+g¥). 13 #5020 oy ore ais the
angle of projection. 14. Suppose the first body pro-
Jjected with the velocity » at an inclination a; then the
secund body must be projected vertically with the velocity

usina-—-éyt

. 2ul
usina. 16. =tanpB. 17. — cos’a tan 8.

ucosa g

18. Let u be the velocity with which the body is projected

ih;oﬁzontally; then the distance at the end of time ¢
ut.

VI. 1. The point must be the vertex of the parabolic
u?sin 2a u?sin®a

path, so that the values of 2% and 29 are known;

see Arts. 56 and 57. 2. See Art. 70 or 72. 3. From Arts.

57 and 64 we have %80 _2usin(a=8) . 4or 00 tan 8.

gcosf
usina—gt _
8. woosa =dcotf. 9. We must now take

the lower sign of the preceding result: thus we get
t=-ﬂ;:§:_ﬁ); and another value of ¢ is found from
Art. 64. Hence we get 2tan(a—B8)=cotg; this gives
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_ 1+sin’g .
tan = BB’ 10. Let # be the horizontal space

described, and y the Vertic%l.space. Then z=tucosa,
”=”tﬂnﬁ=mtanpcoga=2u sin B cos a.sin (a—B)

. . g cos?s .
=2“‘;““——f‘5,‘;°—£‘(tanamsﬁ—-in,s). This reduces to
2u2cos®a . 2u?sin’B
m, &ndth]ﬂt()m. 16. See Art. 70.

17. 2 osina o/ ut + vcosta + 2uv cosacos §). 19, 502 o,

20. 23—4nxh sin @ cos a—4nk?cos? a=0. 21. From the
preceding results obtain a guwdratic in tana; solve it, and
examine the expression under the radical sign. 22. Let ¢
be the time between just passing the cube and reaching
the highest point, or between reaching the highest point,

and just passing the cube again ; then
1 . wulsin’a ¢
Ey‘ = -C, u‘mazé,
therefore 4utsin’a cos’a —8cgutcos’a —c'g*=0.
23. c’p*tan‘a + tana g&:gu’ +2c%%— 4ut) + c*g?+ 8egu® = 0.
Solve the quadratic for tan’a, wo find that under the
radical sign we have the expression u¢—4cgu? + 3c%g?, that is
(4*—3cg) (WB—cg). From this we infer that %' must be
ter than 3¢g, for it cannot be less than cg, as we see

m the first formula in Ex. 22. 25. See 13.

[5

m

na 4 0 gt _ng?

VIL 1. 7 Ibs. 2 gg?=49, o—§yt. 3. &= R
=2 191 ’— -1

gt. 4, 316 2) 12, 5. m'=4m, o’—20,

m'v’=2mo. 6. Let the pressure be plbs.: then 8—;—2 = 19—2-

7. Let the pressure be plbs.: then 2= =7, 8. Take
the unit of mass, then M=1 and W=1; tlgua g=1. Let
the unit of time be ¢ seconds ; then as %g is the space
through which a body falls in a unit of time, we must take
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tho unit of time such that a body should fall through 1 foot
during it. Lmbemenmberof.eeonds,mng.ahl;

thus ¢=]. 9. 9fect. 10 g(y3+1. 12 Ifr

denote the length of a plane inclined at an angle 0 to the
horizon, we find that » (sin 6 — x cos 6) must be constant;
that is rsin(6—¢) must be constant, where p=tane.
Thus the starting point must be at a constant distance.
from a straight line drawn through the origin which makes
an angle ¢ with the horizon. Two such straight lines can
be drawn; and the required locus is two straight lines

parallel to these respectively.

VIIL 1 #=25,0=10. 2 2ut. 4 TS%Q'
5 Q=P. 7. Three on one side of the pully, and one
on the other side. 8. Through f-: of the given space.

9 21 mi—m'
9. §lbs., glbs. 10. —
1 . AC+ B
IX. 2. 11, 13. 3. §. 7. m'=em. 9. B-(A—_'.G-).

12. B’s mm=% times A’s mass; and 80 on ; ¢*1u where %
is the original velocity of 4. ’

X L4 2% 3 hioh

e
6. %8in30°% 7. a=45% 8. ¢*tana. 9.

5. cos2 =2,
em
2uisinacosa
) g(l1—e)
10. 24812 19 Letdbe the length of the adjacent side

gu-e’
the ball must hit this side at the distanco o from the
end nearest to the opposite xide. 14. tanla=e. 16. The
angle 4 FD must be 90° and the angle DFE must be 135°
18. 4ehsinacosa where 4 is the height of the plane.
19. Let ¢ be the distance of the wall the point of
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projection; then the time of motion =2osma .9

° ; therefore »2sin 2a= gc(l+ ) 23. At
vcusa | évcosa

the foot of the first wall.
XL 1. 4 feet per second. 2. !Jﬁ feet per second.

3. (Z +m}) gt. 4. Let m be the mass of the body hang-

ing over the plane, m’ that of the other : then at the end of
the time Z, the vertical velocity of the centre of gmnty is

mrm P and the horizontal velocity is m——),

6. The veloclty of the centre of gravity is composed of
m(msina—m sina’)gt parallel to the plane on which is the

(m + mo’ ’ (3 ? o8
body of mass m, downwards, and ™ "E":::“, sin a)gt
parallel to the other plane upwards.

XIL 2. The square of the distance at the time # will

be found to bo P¥—2uta+d, that is (Pe=') + %5

hence the distance is least at the end of the time ";;.
3. ucosa—u cosad +(fcosa—sf"cosa’)t.

— 8652\* T r
XIIL 1. «/rg. 3. 1) N
where a is the inclination of the plane to the vertical,
7. M seconds. »
: 4000 .

XIV. 1 Acceleration *©. 2. 272 seconds.
3. The point is the Ig;;ntre o’ gravity of tie P Ibs. and the

Qlbs. 4 J(?)
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XV. 1. 8 year. 2. -GIT)% of the moon’s period.

3. As l+eis to 1—¢, where ¢ is the excentricity.

MiscELLANEOUS. 1. 23 seconds. 2. 144 feet. 3. 9-2.
8. A horizontal straight line. 9. g. 12. This may
be deduced from the geometrical fact that the two
tangents to a parubola from any point in the directrix are
at right angles.  13. Sce Art. 70; the difference of tho
distances of the focus from the two fixed points is constant.
14. 274. 15. Let T be the tension of the string, m the
mass of P, and m’ the mass of @ ; the acceleration of P is

m_g”_:_l_' downwards, and that of @ is 2T—’mq upwards ;

m’
and at any instant P is moving downwards with twice
the velocity v;th vyhich Q is movill:g upwards: thus
=T _ox =, thus 7= 3270, 17, Ym=emy
then o=/, and v'=6u+(1-6)w; if m'=em then v’ =1,
and o=(1—6)u+e6uw. 18. The blow must communicate
a momentum /2 times that which the body has, in a
direction making an angle of 135° with that of the original
motion. 19. o,/(8iu’a + cos’a cos®8 + e*cos?a sin?3).
20. ;,, where u is the original velocity. 21. 12"@ , '%—!—3,

!58&, -'-‘%63, us_fi 23. In the old directrix.
24. We get two expressions for the whole time, namely

2 1+1 (usina-ucosatanﬂ)andg—ui'-m—'—‘:equatethem.

g e
o5 2usin(a—p) 1-¢ sin (@~f) 1—¢* _cos(a—p)
‘' gcsB ‘l-e° geosf "1—e  sinfB °

26.

2usin (a—f)
27. mﬂ. 28. ta.n(a-—ﬁ) tanﬁ:l—o.
2. cot(a—p) _2(1—¢tan B
& e(l—-e) °
THE END.
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