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" PREFACE TO SECOND EDITION

CONSIDERABLE number of minor corrections and im-

provements have been made in this reprint of the first
edition. I have to thank a large number of colleagues who have
helped me in the revision. The only major change is that L
have inserted in Chapter VIII a short introduction to the theory
of meromorphic functions. This has been made possible by
compressing some comparatively unimportant sections, and
transferring the theory of the gamma-function to Chapter IV,
where it now includes a more complete discussion of Stirling’s

formula.
‘ E.C.T.

PREFACE TO FIRST EDITION

HIS volume is a development of the notes from which

I have lectured in recent years to students at University
College, London, and Liverpool University. It consists of some
rather disconnected introductions to various branches of the
theory of functions, both real and complex. I think the average
student finds the existing literature on these subjects rather
formidable, and I hope that these chapters will do something
to bridge the gap between the elementary text-books and the
systematic treatises on the theory of functions.

A knowledge of elementary analysis is assumed. By ele-
mentary analysis we mean, roughly, what is contained in
Hardy’s Course of Pure Mathematics. Apart from this the work
is self-contained. The order in which the chapters occur is to
a certain extent arbitrary. The last four chapters might well
come after Chapter I. Apart from occasional references forward,
the earlier part of the book is independent of these chapters ;
but what they contain is part of the necessary equipment of the
analyst of to-day, just as much as the older theory of analytic
functions.

‘A number of miscellaneous examples are given at the ends of
the chapters. Some of them are more or less immediate applica-
tions of the book-work. Others are more difficult theorems



vi PREFACE
which have not found a place in the text ; these are accompanied
by indications of the solution, and references to the sources.
When I first proposed to put my notes into the form of a book,
Professor Hardy very generously offered to work through them
in connexion with his lectures at Oxford, and they have been
revised with the help of the notes which he made during this
process. I have adopted a very large number of improvements
from Professor Hardy’s notes, and I wish to express my very
deep gratitude for the assistance which he has given.
I have also to thank Mr. U. S. Haslam-Jones and Dr. B. M.
Wilson, who have read the proofs and made a large number of

useful suggestions.
E.C.T.

REFERENCES TO HARDY'S PURE MATHEMATICS

This book refers to the sixth edition of the above but the
corresponding references in the seventh edition may be found
from the following table:

Siath Seventh Stxth Seventh Sixth Seventh
Edition Edition Edition Edition Edition Edition
99 100 160, 161 165, 166 193-4 200-1
101-2 102-3 167, 168 173, 175 206 213
. 105-6 - 1067 175 181 .208 215
125 126 177-8 184-5 213-14  220-1
146 149 180-1 187-8 222 229
153, 1564 157, 159 184-5' 191-2 224 231
156-64 161-9 189-90 196-7 233 240

The following alterations to references should also be noted:

Page 10, footnote, for Ex. 27 read Ex. 16
19, line 20, for ex. 32 read ex. 36
20, line 2 from foot, for § 184 read § 203
31, line 3, for ex. (xv) read ex. (xvii)
43, lines 2-3, for § 181, exs. LXXVI, 9-10
read § 188, exs. LXXVI, 8-9
51, footnote 1, for ex. 20 read ex. 15
305, footnote *, for ex. 42 read ex. 44
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CHAPTER I
INFINITE SERIES, PRODUCTS, AND INTEGRALS

1. Introduction. In this opening chapter we supplement
the knowledge of elementary analysis which the reader is sup-
posed to have at his disposal. We deal particularly with series,
each term of which is a function of a variable; with intégrals
involving variable parameters; and with a variety of those
double-limit problems which are so common in all branches of
analysis. As we have explained in the preface, we take Hardy’s
Pure Mathematics (to which we refer as P.M.) as a starting-
point, and refer to it whenever possible.

We shall use the following notation. In any argument, a
number independent of the main variables is called a constant.
A number not depending on any variable is called an absolute
constant. We use 4 to denote an absolute positive constant,
not necessarily the same one each time it occurs. The reader
may find statements such as ‘f(x) < 4, hence 2f(z) < 4’ a little
disconcerting at first, but he will soon get used to them. A con-
stant depending on one or more parameters is usually denoted
by K. '

By f(x)= O{¢(2)} we mean generally that |f(x)|<Ad(z) if 2
is sufficiently near to some given limit. In particular, O(1)
means a bounded function. Thus

sinz=0(lz), (¢+1)*=0(1)
as z - 0; and
sinz = O(1), (z+1)% = O(2?)
a8 & — 00. :
Sometimes, however, f(x) = O{¢(z)} is used to mean
' )< Kdl),

but it is usually sufficiently obvious what parameters are
involved.

By f(z) = o{$(x)} we mean that f(z)/$(x) >0 as z tends to
a given limit. Thus '
sinz=0(2?), (z+12=o0(?

as & ->co. In particular, o(1) means a fufction which tends to
zero.
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By f(x) ~$(x) we mean that f(x)/$(x) -1 as z tends to a
given limit.

We use ¢ to denote a variable which is to be given arbitrarily
small values, and so may be thought of as small.

By max(a,b,...) we mean the greatest of g, b,..., and by
min(e, b,...) the least.

1.1. Uniform convergence. The reader should be familiar
with the idea of a convergent series.* Our standard notation for
an infinite series is

Uyt Uyt Ugt . = Z Up = 2 Uy,

the limits of summation being (l,oo), unless other limits are
definitely assigned. The nth partial sum of the series is
8y = Uy+Up+ ..Uy
We begin by recalling the definition of convergence. The series
is said to be convergent to the sum s if, given any positive
number ¢, however small, we can find a number 7, depending
on ¢, such that ls—s, | < e (1> 7).

.In other words, s, tends to the limit s as » tends to infinity.
Suppose now that each term of the series is a function of a
‘real variable z. This variable is usually supposed to range over
a closed interval, a <z <{b, say; but the range of variation
may equally well be an open interval, @ <x <b; or indeed any
set of points. We now write the series

( )"l ’“2(“ = z un x),

and its nth partial sum is sn(x). The series may, of course, be
convergent for some values of # and divergent for others. If it
is convergent for all the values of z considered, its sum is a
function of z, defined for these values of z. We denote it by s(z).

DrerinirioN. The series > u,(z) is said to be wniformly con-
vergent over the interval (a,b) if, given any positive number e,
however small, we can find a number ny, depending on ¢ but not
on x, such that I8(2)—s,, (%) | < ¢

Jor n>mny, and for every value of x in the interval (a,b).
It is clear that uniform convergence implies convergence for
every value of x in the interval; but a series may (as we shall
* P.M.§76.
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show by examples) be convergent for every value of  in an
interval without being uniformly convergent. It may be true
that to every pair of values of 2 and e corresponds a number n,
such that |s(z)—s,(%)] < e for n > n,; but at the same time it
" may happen that, as « approaches some point of the interval,
the number 7, may become indefinitely large. The series would
then not be uniformly convergent.

Notice that uniform convergence is a property associated with
‘an interval (or sét of points), not with a single point.

1.11. Tests for uniform convergence. Just as there are
tests for the convergence of a series of constants, so there
are tests for the uniform convergence of a series of functions.
The simplest and most useful test, due to Weierstrass, is as
follows: _

The series 3 u,(x) is uniformly convergent over the interval (a,b)
if there is a convergent series of positive constant terms, > a,, say,

“such that lu, (@) < @,

for all values of n and .

In the first place, the series D u,(z) is convergent for every
value of z, by the ordinary comparison theorem (P.M. § 167,
184). It therefore has a sum s(z) for every value of z. Also

[8() —8,(2)| = |y 11(®) FUpso(@)+ | < iz t+Bpioteos
which can be made less than any given e by taking » greater
than a certain number n,. Since the a,, series is independent of
#, the number 7, is independent of z. This proves the theorem.

Notice that the result still holds if |u,(x)| < a,, not necessarily
for all values of n, but for all sufficiently large values of n.

A more general test of the same type, which is sometimes
useful, is that Y u, (z) is uniformly convergent if |u,(x)| < v,(x),
and > v,(x) is uniformly convergent. We leave the proof of this
to the reader. :

Examples. (i) The power series E‘ z* is uniformly convergent for

n=0
agzgh, if —1l<a<b<l. [Take a,= [a]* or |b|*, whichever is the
greater.]
(ii) The trigonometrical series

i cosS nT

2
n=1 "
is uniformly convergent over any interval.
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(iii) The Dirichlet series i n-* is uniformly convergent for @ <8 < b,
n=1

ifl<a<b
[Take a, = n—°; see P.M. §175. The sum of this important series
is denoted by {(s).]
(iv) The series

(A—(—aYi = 3 al—a?)"

n=0
is uniformly convergent for —1 <z < 1.
(v) A similar definition of uniform convergence may be framed for
series such as

2 " cos nf,

Where the general term is a functlon of two (or more) variables, here
r and f. This series is uniformly convergent for 0 <7 < b < 1 and any
range of values of 0.

1.12. Other tests. In a general way, any test for con-
vergence becomes a test for uniform convergence if its condi-
tions are satisfied independently of z. For example (P.M.§168),
> un(x) is convergent for a particular value of x if there is a
number 7, less than 1, such that

'n+1(x)]

u@) S
for all values of n. In general, the value of » for which this is
true will depend on z. Suppose, however, that we can find a
number r such that the condition is satisfied for all values of
x with this same value of 7. Then the series is uniformly con-
vergent, provided that u,(x) is bounded. For repeated applica-
tion of the above inequality gives

[un(@)| < 7oy ()| < M,
if |uy(x)| < M, and the result follows from the comparison test.
Other tests for convergence may be extended in the same

way. Take, for example, Dirichlet’s test (P.M. §189). The
analogous test for uniform convergence is as follows:

If ¢, is a positive function of n which tends steadily to zero as
n — 00, and if there i3 a constant A such that

N,
2 un(2) < 4
n=1

Sor all values of N and x, then the series

2 butin(®)

18 uniformly convergent.
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The reader should have no dlfﬁculty in formulating the
rigorous proof.*

Examples. (i) If the numbers a, are positive and decrease steadily
to zero, the series .
> a,sinnz
is uniforml;,” convergent in any closed interval not including a multiple
of 27. [Compare P.M. ex. LXXIX, 2. Use the identity
cos 3z — cos(n+3)x ]

sin 2 -+ sin 224-...+ sinne = Semis

(ii) Under the same conditions, the series
> a,x sinnx
is uniformly convergent in an interval including x = 0.

1.13. A necessary and sufficient condition for uniform
convergence. The series Y u,(x) is uniformly convergent if and
only if the following condition is satisfied. Given any positive
number €, we can find n,, depending on ¢ but not on x, such that

[$m(@) —8u(2)] < e
for all values of m and n greater than ny.

This corresponds to the ‘general principle of convergence’ for
ordinary series (P.M. § 83, 84).

As in the case of ordinary series, the condition is easily seen
to be necessary; for

[$n() —8,(2) | < |8(2) — 8, (%) |+ |8(2) —8,(2)
so that, if the series is uniformly convergent, the condition is
satisfied. In the case of ordinary series, the proof of sufficiency
is more difficult. But, once the difficulty has been overcome in
the ‘ordinary’ case, there is no further difficulty in the ‘variable’
case. For suppose that the condition is satisfied. Then, by the
theorem for ordinary series, the series > u,(x) is convergent for
every z. Let its sum be s(z). Given ¢, choose 7, so that
sm(@)—sa(@)| <€ (m>ng, n> ).

Keeping m fixed, make n — co. Then, since s,(x) - 8(z),

| sm(@)—s(2)| < ¢
provided only that m > n,. Hence the convergence is uniform.

1.131. The following theoremt on a class of trigonometrical
series is an excellent example of the above principle.

* See Bromwich’s Infinite Series, ed. 2, § 44.
1 Chaundy and Jolliffe (1).
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If the numbers b, are positive and steadily decreasing, a neces-
sary and sufficient condition that the series

> b,sinnx

should be wuniformly convergent throughout any interval is that
nb,, ~ 0.

To show that the condition is necessary, observe that, if
z = =[(2p), and* n = [p+1],
b, sinnx + b, ., sin(n+41)z +...4- b, sin px

> b, (sinnx +...+ sin px) > b ,(3p—1)sin i,

since there are at least 1p—1 terms in the bracket, in each of
which mx > }w. Since the given series is uniformly convergent
in an interval including the origin, the left-hand side of the
above inequality tends to zero as p — co. Hence pb, — 0.

In proving the sufficiency of the condition, we require the
following result, known as Abel’s lemma.:

If b1>bz>'>bn>oy
and if m< ay+a,+...+a, < M
for all velues of n, then

bym < aby+ab,+...+a,b, < bM

for all values of n.

Let s, = a,+...4+a,. Thent

Uyby oAby = by8y+Do(8,—81) .. 4D, (8, — 5,1
= 81(b1~b2)+82(b2—'b3)+'"+sn—1(bn—1——bn)+‘?nbn'
Since each bracket is positive or zero, the sum is not decreased
if each s, be replaced by M; and this gives
M(by—by)+M(by—bg)+-...-+ Mb,, = Mb,,

the required upper bound. Similarly we obtain the required
lower bound. This proves the lemma.

In the series in question, it is sufficient to consider the interval

0 <<z < 7, since each term is odd and has the period 27. Con-

sider the sum 8y, p = by sinnx 4.4 b, sin pz,

where now n and p are unconnected. Let p, = max (mb,,), so
. : m>n

* [#] means the integral part of z.
t Compare P.JM. § 189.
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that u,, 0. If x >n/n, we apply Abel’s lemma. We have
. . cos(n—3)x —cos(r+1zx . 1
|sinnx 4-...+sinre, - (n—2) . (r+32) L e
2sin iz sin iz
for all values of n and 7, and, since sin 8/0 is steadily decreasing
for 0 < 6 < im, 1 -
sinle a’
and we deduce that
b, X
['Sn,p| < ”;" <nb, < Mn-

If x < #/p, we have, since sinf < 0,

[80, p| < b2 40, P < P2 < THy,e

If #/p <z < m/n, we combine the two arguments. We have

lsn,pl < Isn, k‘ + lsk+1,p |:
and, applying Abel’s lemma to the second part, and the other
method to the first part, obtain
lsn,pl g k“nx+bk+1ﬂ-/x

< b+ mf{ (- ],
Taking k = [w/x], we have

I'S'n,pl < Hop (77+ 1)-
Hence in any case 80, | < Aty
and, since u,, — 0, the result follows.

1.14. Uniform convergence and continuity. So far, of
course, we have not suggested any reason for considering uni-
formly convergent series at all. They are important for many
reasons, not all of which can be explained in this chapter. The
first reason is the following theorem :

The sum of a uniformly convergent series of continuous func-
tions is a continuous function.

We use the same notation as before, and write

8(x) = sll(x) —I—r,,v(x),
so that r,(x) is the remainder after n terms of the series. Then,
if x and z+A are any two points of the interval considered,

'S(x—l"h)""é'(.ﬂ)i == lS,,(x-}—h)——8,,(:&)+T,,,,(x+h)——rn(x)|

< 15, @+R) =5, (0) | Ir, @+B) |+ I, @)].
Having given €, we can choose ny so that
I (+h)<e,  Ir(@)l<e  (n>mng),
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for all values of . We now fix on a definite value of » which
satisfies this condition. Having fixed =, s,(x) is a continuous
function of z, since it is the sum of n continuous functions. We
can therefore choose & so small that

lsp(@t+h)—sp(@)|<e (A <3).
Hence, combining the above inequalities,

s(z+h)—s(x)| <3¢ (|h]<9),
which proves that s(z) is continuous.

Notice that the result is true if the functions s,(x) are merely
continuous at the single point # considered; for all we have used
isthat s,(x+h) > s,(x) as b - 0, x being fixed. We can therefore
state the result as follows: ‘

The limit of the sum of a uniformly convergent series of func-
tions, each of which tends to a limit, is the sum of the limits of the
separate functions.

1.2. Series of complex terms.* The theory of uniform
convergence may be extended to series of the form

Uy (2) () oo
in which the general term u,(z) is a function of the complex
variable z. Instead of uniform convergence in an interval, we
shall now have uniform convergence throughout some region of
the z-plane, such as the interior of a circle or a square. The
reader should have no difficulty in extending the definitions and
tests to this case. It should also be noticed that the theorem
on the continuity of the sum of a uniformly conveigent series
can be extended at once to series of complex functions.

Example. The series Eln—-‘, where s is a complex variable, is uni-

e

formly convergent throughout any finite region in which R(s) > a > 1.

The function {(s), defined as the sum of the series, is continuous at
all points of the region R(s) > 1.

[Compare ex. (iii), § 1.11.]

1.21. Power series. One of the simplest cases of uniform
convergence of a series of complex terms is that of a power
series. We know (P.M. § 193) that a power series

0
z a, 2"
n=0

* P.M. §190.
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has a radius of convergence R (which may be zero or infinite),
such that the series is convergent for |z| < R, and divergent
for [z|> R. :

The series is uniformly convergent for |2| < R', where R’ is any
positive number less than R.

For let p be a number between R’ and R. Since the series is
convergent for z=p, there is a number K, independent of =,
such that |a, p"|< K for all values of n. Hence, for 2| < R/,

z\n R’ n
ot ot () <k(Z)

and the last term is independent of 2, and is the general term
of a convergent geometrical progression. Hence (by the ana-
logue for complex functions of the test of § 1.11) the series is
uniformly convergent.

We have thus shown that any circle interior to the circle of
convergence is a region of uniform convergence. The. circle
of convergence itself is not necessarily a region of uniform con-
vergence; in fact on the circle the series does not necessarily
converge at all.

Example. For the series 3 2/n? the circle of convergence is a region
of uniform convergence.

1.22. Abel’s theorem. There is one interesting possibility
which the above discussion so far leaves open. Suppose, to take
the simplest case, that we have a real power series

ngoa!bxn (1)
with radius of convergence 1. Suppose further that the series
2 @, )

n=0
is convergent. Does the interval of uniform convergence, in this
case, extend right up to the point x == 1 ? The answer is in the
affirmative.
If the series

0
2 @,
n=0

18 convergent, and has the sum. s, then the series

2
Z @,x"
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is uniformly convergent for 0 <Lz < 1, and

lim Z QX" =s.

&1
The proof is an immediate consequence of Abel’s lemma (see
§ 1.131). Let Il n T an+”:H1+ +fll)'

Then, given e, we can choose n, so large that |s, ,|<
(ng < m < p). Since the numbers 2" are non-increasing if » < l
Abel’s lemma gives, for ng << n < p,
' a4 At S ext e (0L < 1),

and this is the condition for uniform convergence.

The second part of the theorem now follows from the con-
tinuity theorem of § 1.14.

Example. From the expansion (P.M. § 213)

log(1-4-0) = 2— 32+ 33 ... (Ja|< 1),

deduce that log2=1—3-+%—...

1.23. Tauber’s theorem. The direct converse of the ‘con-
tinuity’ part of Abel’s theorem would be that if ‘

f(x) = i a,x" —>s
n=0

as a -1, then E a, converges to the sum s. That this is false

is shown by the simple example

o

N TS 1\ — 1
Jer)=2 (=1t =

o
in which f(x) -+ }, but ¥ a, is not convergent.
0

If, however, we impose on the coefficients @, a restriction as
to their order of magnitude, it is possible to prove a converse
theorem.

If a,, = o(1/n), and f(x) - s as x — 1, then > a, converges o the

. 0
sum 8.
We first prove the following simple lemma :*
Lemva. Ifb, — 0 as n -+ o0, then
by-t-by+ ... 4D, N
n-p1

* P.M. Ch. 1V, Misc. Ex. 27,
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For, if b, << K for all values of n, and |b,| Ze for o > uy,
then
by+by4-...+b,, <|bo-i«...~§—b,,“ b, i1t b,
n+1 I | n—41
< (7L0+1)K+('n—720)e
S on+1 T |
if n > (ng+1)K/e. This proves the lemma.
To prove Tauber’s theorem, it is sufficient to prove that

@0 N
%‘_ a,x"— % a,—>0
as -1, where N =[1/(1—=x)]. That is, we have to show that
0 N
> axt— > a,(l—x") > 0.
N+1 [1)

Call these two sums 8, and S,. Given ¢, choose N so large that
|na,| <e (n>N). Then

< 2¢

0 2 | «©
(8] = na x____e_ x"’<—-—5—-—-— < €
3l Nz+1 " nl N-g—l.zm (N+1)(1—x)

N
Also 11—z = (1—z)(1+z+4...+a" 1) <n(l—=x),
N 1~
a‘nd 50 ISEI<(1_x)§n!a‘n=<ﬁ§0:n[anl'

which tends to zero, by the lemma. Hence |S,|< ¢ if IV is large
enough, and so [S;+8,|< 2¢. This proves the theorem.

1.3. Series which are not uniformly convergent. Up to
this point, the reader may still suspect that convergence
throughout an interval is the same thing as uniform conver-
gence. We shall show by means of examples that this is not so.

Examples. (i) We can construct a series for which

1
sa(x) = Tinz O<eg])
by taking u,(z) = 1/(1+2z), and
unl) =, 1 - (n>1).

T l4ne l+m—x (1+na}l+(n—1)z
This function s,(x) is a continuous function which tends to « discontinuous
limit. For, if > 0, s,(x) obviously tends to zero as nm-»>o. But if
x =0, s,(x) = 1 for all values of n, and so its limit is 1. The sum of
the series is therefore discontinuous. Hence the series cannot be uni-
formly convergent.

(ii) Consider the series

o0
> xer=,
n=0



12 INFINITE SERIES, PRODUCTS, AND INTEGRALS
Here s,(0) = 0, so that s(0) = 0. When x>0,
$a() = 25 s(w) = 'i'jwéi.';
As 0, s(x) — 1. Hence s(z) is discontinuous, and, as before, the series
is not uniformly convergent in any interval ending at z = 0.
In fact, if 2 = 1/n,

-2
S\ TR T 1T

so that |s(x)—s,(x)] is not ‘uniformly small’ near z = 0.

' (iii) Consider similarly
o0

S am(l—z).
n=0
(iv) As in example (1), we can construct a series for which
sp(2) = nx(l—z)* 0.

Obviously s(0) = 0. Also, if >0, n(l—=z)*— 0 as n— o (P.M. § 206).
Hence s(x) = 0 for all values of z. In this case, therefore, the sum of
the series is continuous. But the series is not uniformly convergent. It
is a simple exercise in differential calculus to find the maximum of
s,(x); it is

and thus tends to the limit e~* as n— oo (P.M. §§ 73, 208). Hence,
however large » may be, the function s,(x)—s(x) takes values nearly as
large as e-!. Thus the convergence is not uniform.

The reader should draw the graph of s,(z). It has a wave which
approaches the origin, and diminishes indefinitely in breadth, but not
in height.

Notice that uniformity of convergence may be altered by
multiplying by a factor independent of n. For example, if

then |s,(z)| < 1/n (0 <2z < 1), so that the series converges uni-
formly to zero. But the series obtained by multiplying by 1/
is not uniformly convergent (ex. (i)).

On the other hand, if we multiply a uniformly convergent
series by a bounded factor independent of n, the resulting series
is also uniformly convergent. This is easily seen from the
definition.

1.31. Uniform convergence of series of positive terms.
It is clear from the above examples that uniform convergence
is not. a necessary condition for continuity, though it is a suffi-
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cient condition. There is, however, one interesting case in which
uniform convergence and continuity are equivalent.*

If 3 u,(x) = s(x) is a series of continuous positive terms in
a given closed interval, a necessary and sufficient condition that
s(x) should be continuous is that the series shoubd be uniformly
convergent over the interval.

We have to prove that the condition is necessary, i.e. that,
if s(x) is continuous, the series is uniformly convergent.

Employing our usual notation, the function s(z)—s,(x) is
continuous, and so (P.M. § 102, Th. 2) has an upper bound, ¢,
say, which is attained at some point x, of the interval. It is
sufficient to prove that ¢, 0; for, since the terms are positive,

ls(@)—s,(x)| < [s(2)—sn ()| S en
for n > N and all x; and this implies uniform convergence if
ey >0 as N—co.

Suppose on the contrary that e, does not tend to zero. Then,
since it is steadily decreasing (because the terms are positive),
it has a positive lower bound, 3 say. Also the numbers z, have
a limit-point, ¢ say, in the interval (P.M. § 19). Choose N so
large that s(€)—sy(€) <. Then, if ¢ is an interior point of the
interval, there is an interval (¢§—h,£+h) throughout which
s(x)—sy(r) <8 (P.M. § 101, Th. 1). If £ is an end-point, the
same is true of (£,6-+h) or (¢—h,£). Hence ¢, <8 for those
values of n for which |x,—&| <h. This gives a contradiction,
and the theorem is proved.

1.4. Infinite products. An infinite product is an expression

of the f
oo (1423)(1+a5) (1-+ay)... ¢y
containing an infinity of factors. We denote it by
11 (1+a,).

We Suppose that no a,, is equal to —1.
Writing p,, for the partial proauct

=7f__.[1(1+am):

we say that the infinite product is convergent if, as n - oo, p,
tends to a limit other than zero. We might, of course, admit the

* See Hardy (11) for a detailed discussion.
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limit zero as well; but we shall see later that this would often
be inconvenient.

If the product is not convergent, it is said to be divergent.
If p, — 0, it is said to diverge to zero.

Examples. (i) The product

(I=ENI+HT—-1HA+D)...

is convergent.

(ii) If the product (1) is convergent, a, — 0.

1.41. We begin by considering two simple cases.

~If a,>0 for all values of n, the product T] (1+a,) and the

series Y a, converge or diverge together.

Since, in this case, p,, is a non-decreasing function of #, it
either converges or tends to positive infinity. Now

ata,+...Fa, < (14a,)...(14-a,) < eattatatan

The left-hand inequality is obyious on multiplying out the pro-
duct; and the right-hand inequality follows from the fact that
14-a < e® for every positive a. The two inequalities show that
?, and a,+...4a, are bounded or unbounded together, and this
gives the result.

If a, < 0 for all values of n, write a, = —b,, and consider
the product I
7:!_;]_'l(l—bﬂ).

Ifb,>0, b,51, for all values of n, and > b, is convergent,
then T] (1—b,,) is convergent.

Since Y b, is convergent, we can choose N so large that

by+byt... <3,
and, in particular, b, <1 (n > N). Then
(1-bN)(1“‘bN+1) = 1-"bN“bN+1:
(I=by)(1—=by.1)(A—by.s5) = (1—by—by.1)(1—by.s)
= 1—by—byy1—by s
and so generally
(1=by)(1=by4qy)...(1—=0,) = 1—by—...—b, > 1.

Hence p,/py-, is steadily decreasing for » >N, and has a
positive lower bound. Hence it tends to a positive limit. Since
Py-1 18 not zero, the result follows.

If 0<b, <1 for every n, but 3 b, diverges, then TT (1—b,)
diverges to zero.
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For 1—-b<e?if 0<b <1, so that

(1=b,)(1—by)...(1—=b,) < e~hr=bw~bi,
The right-hand side tends to zero, and the result follows.

In particular, if 0<b, <1, the product T] (1—b,) and the
series Y b, converge or diverge together.

1.42. The general case. Now let the numbers a, be any
numbers, real or complex, other than —1.

DeriNiTION. The product T] (1+a,) is said to be absolutely
convergent if the product T] (14 |a,|) is convergent.

It is clear from the first result of § 1.41 that « necessary and
sufficient condition that the product should be absolutely convergent
is that 3 |a,| should be convergent.

We next show that an absolutely convergent product is con-

vergent.
To prove this, let p, denote the same partial product as
before, and let

P=TI(1+a,)
Dr—Pp-1= (1-{—&1).,,(1-}—(1”_1)(1,,,
P—P, = (+|ay])...(1+|a, 4 ]) @, ],
and it is plain that

Then

) lp'n—pn—lf < -Pu'_Pn-l'

Now, if T] (141a,|) is convergent, P, tends to a limit, and so
> (P,—P,,) is convergent. Hence, by the comparison theorem,
> (Pn—Pn-1) is convergent, i.e. p, tends to a limit.

This limit cannot be zero. For, since > |a,| is convergent
and 1+a, - 1, the series

2‘ 2

‘|14-a,

is also convergent. Hence, by what we have just proved, the

product
TT(- __EL)
1 + a‘nL

m=1
tends to a limit. But this product is equal te 1/p,. Hence the
limit of p,, is not zero.

Example. The factors of an absolutely convergent product may be
taken in any order, without altering the value of the product. (Compare
P.M. §185.)
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1.43. The logarithm of an infinite product. If

H (1+a,)=mp,
n=1
is it necessarily true that
2 log(l+a,)=logp?
n=1

Here logz denotes the principal value of the logarithm of ¢z,
i.e. the value whose imaginary part lies between —# and =
(P.M. § 224).

The result is obviously true if all the numbers a, are real and
positive, for then all the logarithms have their ordinary arith-
metical value. But, in the general case, the formula requires
modification.

Let p, denote the nth partial product, and let p, = p,ei$n,
so that p, and p, tend to limits, and so does ¢, if its values are

suitably chosen. Let l1+a, = 7,eifx, where —7 <8, << m;
then, since a, — 0, 6, — 0 as n — co.
n
Let 5,= > log(1+a,).
. m=1
Then s, =logp,+ 2k, im, (1)

where £, is an integer. Now
2k, m=0,+...4+0,—4¢,,
so that 21(ky a1 — ) = O i1 — (Brss—b,),
and the right-hand side tends to zero. Hence, if n is sufficiently
toree,  [2nlly—ky)] <2

and so k., =k,, since k, is always an integer. Thus %, has
a constant value, k say, if » is sufficiently large; i.c.

8, =log p,+2kim (m > ny),
- and, making n - oo,
> log(1+a,) =logp.—+ 2kinm.
The sum of the series is therefore a value, but not necessarily

the principal value, of the logarithm of the product.
Notice also that it follows from the proof that

Ngllog(“ran) =logp —logpy

for all sufficiently large values of N.
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If we start with the series of logarithms, and assume that

E: log(l—}_a’n) == 8,
n=1
we have, on taking the exponential of (1),

&% =Dy,
and so Pp—>p=2¢,
i.e. the product converges to the exponential of the sum.

Examples. (i) If 3 a, and 3 |a,[* are convergent, then [T (1+a,) is
convergent. [Use the equation log(1+a,) = a,+0(|a,|?).]

(i) ¥ Ya, 3 ai.., 3 a1, > |a, are all convergent, then [T (1+a,)
is convergent.

(itl) If a, is real, and ¥ a, is convergent, the product [ (1-+a,) con-
verges, or diverges to zero, according as > a2 converges or diverges.

(iv) The product ! ! .
(1-55) (1+33) (=) -

is divergent.
(v) Show that, if
1
=T D), Jo D T a1 T mE e’
the product T (1+¢,) converges, though both 3 a, and ¥ a2 diverge.

(vi) The product ]_—_[(l—r- )15 divergent, but H 1+ - is convergent.

Aoy =

(vil) If 3 |u2| is convergent, so is [T (1 —u,)et; and if ¥ |u,|® is con-
vergent, so is JT (1—w,)etntt¥h, [As u — 0, (1—u)e¥ = 14+ O(u2) and
(1—u)entin’ = 14+ 0(u=3); or we may consider the series of logarithms,
as in (i). Products of this type are of great importance in Chapter VIII,
and are discussed fully there.]

1.44. Uniform convergence of infinite products. The
infinite product
H{l +u,(2)}

where the factors are functions of a variable z, real or complex,
is said to be uniformly convergent if the partial product

2u(e) =TT {14,2}

convergessuniformly in a certain region of values of z to a limit
which is never zero.

The simplest test for the uniform convergence of a product
is as follows:
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The product TT {1+u,,(2)} is uniformly convergent in any region
where the series > |u,(z)| converges uniformly to a bounded sum.
The proof consists of a re-examination of the convergence-
argument of § 1.42 from the point of view of uniformity. Let
M be the upper bound of the sum 3 |u,(z)| in the region con-
sidered. Then

{1 Juy (2) [} {1 |, (2) [} < el e,

n
Let Pn.(z) = Hl{l"l" u,,(%) I}
m=
Then
Py@) =By () = {1+ [a (&) [} {1+ [0 1 () e ()| < e[y (2))-
Hence ¥ {P,(2)—P,_,(z)} is uniformly convergent, and the result
follows as in § 1.42.
Examples. (i) The product
1
(- )
where w runs through the prime numbers 2, 3, 5,..., is uniformly con-
vergent in any finite region throughout which R(s) >~a>1; for the
same thing is true of the series ¥ |w~*|, which consists of some of the
terms of the series Y [n—| (§ 1.2, example).
The value of the produect is 1/{(s). For
(1—2-{(s) = 143~4+5""+...,
all terms containing the factor 2 being omitted on the right. Next
(1—2-)(1—3-4){(8) = L--5~*4T~*-p 11" 4.,
all terms containing the factors 2 or 3 being omitted. So generally, if
w, is the nth prime,
(1—2-9)..(l—w9)L(8) = 1-+4-1-*+...
where all numbers containing the factors 2, 3,..., w, are omitted. Since
all the numbers up to w, are of this form,
[(L=27)(l=w7)(8)— 1| < (wp+ 1)~ |+ |(w,+2)~* |+ ...
which tends to 0 as w, — . Hence
Lim (1—2-%)...(l—w;*){(s) = 1,
n—>x
the result stated.
(ii) If R(s) > 2
log {(s) = — Zlog(l—w ),
all the logarithms having their principal values.
[We deduce from the above exarnple and § 1.43 that
log {(s) = — 3 log(l —ar—*) 4 2kirr,

where k is an integer, which depends prima facie on s. If s is real, k is
obviously 0. Also, as long as R(s) > 1, the real part of 1 —w~* remains
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positive, and so its amplitude remains between — }m and j7. Each term
log(1—w~?*) is therefore continuous for R(s)> 1. Hence the sum of the

series is continuous.
Similarly log {(s) is continuous, provided that R{{(s)}>0. This is
certainly true if R(s) > 2, since, if R(s) = 0 > 2,
R{{(s)}»1—-2-7—30—.. »1-2"2-3"2—.,
1 1
| >l-55—53 =0
It follows that k is continuous for R(s) > 2, and so zero throughout

this region.] .
(iii) The convergence of the product IT (1+a,) does not imply that
of T (14a,x), except for z = 0 and @ = 1.*
(iv) The convergence of [] (1+«,) does not imply that

lim JT (14-a,2%) = IT (1+a,).
a1

{In fact, Hardy (5) gives an example in which

lim T (1a2m) = 2T (1+a,).
The result is, of course, in striking contrast to Abel’s theorem on the
continuity of power series.]

inf
(v) The produect: 11 (1 + Ig: 7.&)

is not convergent for any rational value of 8/, but is convergent if 6=
is an algebraic number (P.M. Ch. I, ex. 32) which is not rational.

[The problem of the behaviour of this product, suggested by Hardy
(5), was solved by Littlewood (2).]

1.5. Convergence of infinite integrals. We assume that
the reader is familiar with the elementary properties of the
Riemann integral of a continuous function (P.M. § 156-64). If
f(x) is continuous over a finite closed interval (a,b), the Riemann
integral b

[ @) dz

exists. Similarly the indefinite integral
@

F(r)= f fitydt
a

exists for @ <ax << b; and F(z) is continuous, and has a dif-
ferential coefficient equal to f(z). We assume a knowledge of
the usual rules of integration by parts, integration by substitu-
tion, ete., and of the mean-value theorems (2.41. § 160-1).
We next extend the definition to a class of discontinuous
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functions. Suppose that the interval (a,b) can be divided up
.into a finite number of parts (a,z;), (%1, %s);-.., (%p, D), such that
f(z) is continuous except at xy,..., Z,, and such that the limits
f(@,—0), f(z,+0),..., ete., exist (P.M. §99). Then the integral
of f(x) over each partial interval exists, and the integral over
the whole interval is defined as being the sum of the integrals
over the partial intervals; i.e.

fb f) dos = ff(x) do + fgf(x) dz + ..t f 1) de.

An infinite integral is defined in P.M. § 177. If f(¢) is in-
tegrable over (a, z) for all values of z, and

lim f f&) dt=1,
230 -
then we say that the infinite integral
[ feyae
a

is convergent, and has the value I.
Similarly, if f(f) tends to infinity, or oscillates, as x - ¢, but

lim f f) dt =1,

then we define the integral of f(f) over (a,c) to be equal to 7
(P.M. § 180).

There is no difficulty in extending the rules for integration
by parts and substitution to these cases.

A number of tests for convergence, such as the comparison
test, for the case where f(x) is positive, are given in P.M. § 178.

Suppose now that f(x) is not necessarily positive. If f(z) and

| f(z)| are both integrable in one of the senses already explained,
and if the integral

[ 170

is convergent, then the integral

N

fﬂow

is said to be absolutely convérgent (cf. .M. § 184).
An absolutely convergent integral is convergent. For, if the
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integral of |f(¢)| is convergent, so are the integrals of
$(t) = |fOI+10), @) = |fBOI—=fQ)
by the comparison test, ¢ and ¢ both being positive. Hence
the integral of 3{¢(¥)—(¢)} = f(t) is convergent

The result may be extended to the case where f(£) is a con-
tinuous complex function, by considering separately its real and
imaginary parts.

An integral which is convergent, but not absolutely con-
vergent, is said to be conditionally convergent.

The most important tests for conditionally convergent in-
tegrals are the analogues of Dirichlet’s and Abel’s tests for
series (P.M. § 189).

Analogue of Dirichlet’s test. If ¢(z) has a continuous
derivative, and decreases steadily to zero as x — oo, and

F(z) = f f(t) de

1s bounded, then the integral

[ $@)f@) do

s convergent.

We integrate by parts, this being the process for integrals
analogous to the ‘partial summation’ by which Dirichlet’s test
is proved. We have

X x
[ $@)f(@) dw= $(X)F(X)+ [ {—'@)}F (@) dz

a a
The integrated term tends to zero as X — oo0; and the last
integral is absolutely convergent by the comparison test; for
|F(x)| is bounded and —¢'() is positive, and

f{ $(@)} do = $(a)—d(X) - 4(a).

This proves the theorem.
Examples. (i) The integrals

sinz cosz
f -dz, f = dw
x 2

are conditionally convergent.
(ii) State and prove the analogue for integrals of Abel's test.
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We note finally a necessary and sufficient condition for the
convergence of the integral

f fl@) das

it is that, given ¢, we can find X, such that

X

J fl@)de <e

x
for X’ > X > X,,. This may be proved in the same way as (or
deduced from) the corresponding theorem for servies ([.3.
§§ 83-4).

Examples. (i) Use this principle to prove that an absolutely con-
vergent integral is convergent.

(ii) Prove Dirichlet’s test for convergence by means of this principle
and the second mean-value theorem (P.MM. § 161, exs. 11-12).

1.51 Uniform convergence of infinite integrals. We can
now extend the idea of uniform convergence to infinite integrals.
Let f(x,y) be an integrable function of z over the interval
a<x<b, for o <y < B, and for all values of b. Suppose that
the integral

) = [ f(z,y) do

is convergent for all values of y in the interval («,8). Then the
integral is said to be uniformly convergent if, given €, we can find
a number X, depending on e but not on y, such that

X

$o)— [fwy)de <e, (X=X

A similar definition may be framed for integrals which are
infinite by reason of the integrand becoming infinite in the range
of integration.

The simplest test for uniform convergence is the analogue of
the series-test of § 1.11. The above integral is uniformly ccn-
vergent if there is a positive function g(x), independent of y, such
that | f(x,y)| < g(x) for all vaiues of x and y, and such thut the
wnlegral

o

[ g(x) dx
. Q
28 convergent.
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This may be proved in the same way as the corresponding
result for series. ’

Other tests may be extended in a similar way. For example,
in Dirichlet’s test, if f and ¢ are functions of x and y, we assume
that @¢/ox is continuous, and ¢(z) tends to zero steadily and
uniformly with respect to y, and that | F| is less than a constant
independent of # and y. The integral of ¢f is then uniformly
convergent.

Examples. (i) Consider the convergence of the integral

T'(z) = ftz-le-t dt.

[Suppose first that « is real. The integral is convergent at the upper
limit for all values of z, since #+1¢—* is bounded for all z, and we can
compare the integral with that of 1/t2; but for convergence at the lower
limit we must have x> 0 (P.M. § 180).
The integral is uniformly convergent over any finite z-interval (a, b),
where ¢ > 0. To prove this, we divide it into integrals over (0, 1) and
(1,0), and compare the two parts with
1 ©
f o1 it f P-le=t ds,
0 1

which are convergent and independent of z.

Similarly, if « is complex, the integral is uniformly convergent over
any finite region throughout which R(x) > ¢ > 0; for if z = £+4in, then
[##==1] = -1, and the result can now be proved as before.]

(ii) The integral o

f E.‘E‘EQ da
fod
0
is absolutely convergent for 1 <s < 2, and any 4. For a fixed s in this
range, it is uniformly convergent for 0 <« <y < B, for any B.

It is conditionally convergent if 0 <8 < 1, ¥ >0, and uniformly con-
vergent for s in this range and 0 <a <y < .

For fixed y>0, it is absolutely and uniformly convergent in
1<8 <8 <8,<2, and uniformly, but not absolutely, convergent in
O<s el

1.52. The continuity theorem. In this section we shall
prove the analogue for integrals of the theorem that the sum
of a uniformly convergent series of continuous functions is
continuous. .

We first require the following theorem on continuous functions
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of two variables, similar to the theorem for one variable proved
in P.M. § 106.

Let f(z,y) be a continuous function of x and y throughout the
reclangle a <z <b, a<y<<B. Then, given ¢, we can. divide
up the given rectangle into a finite number of sub-rectangles
2, KT K Lyirs Yy <Y S Yyrp 0 Such a way that

|f@,y) =€) <e

provided that (x,y) and (£,m) belong to the same sub-rectangle.

We prove this by the method of subdivision. Suppose that
the given rectangle has not the required property. Then, if we
divide it into quarters by the lines x = ¥(a+-b), y = %(x+p), at
least one of the four quarter-rectangles has not the required
property. Choose that one which has not; or, if more than one
have not, choose one of them—+to give a definite rule, choose
one on the left-hand side if possible, and then, having fixed the
side, choose the lower of two on the same side.

We next subdivide the chosen rectangle into quarters; and
so the process of subdivision proceeds indefinitely, there being
always at least one quarter which has not the required property.
The left-hand sides of the chosen rectangles form an increasing
sequence, and the right-hand sides form a decreasing sequence,
and so each sequence has a limit; and the limits are the same,
since the length of the side tends to zero. Call the limit X.
Similarly the upper and lower sides tend to a limit Y.

We now use the fact that the function is continuous at (X, ¥).
Given €, we can find § so that

Ifle,y)—fX, Y)|<ie  (o—X|<3, [y—Y]|<9),
and so |f@y)—fEn]<e

if (z,y) and (¢, ») both lie in the square with centre (X, ¥) and
side 26. Thus the rectangles chosen in the construction have
the required property when they lie in this square, as they
ultimately dc. We have thus obtained a contradiction, and the
theorem is proved.

We also deduce the following result: Given ¢, we can find &

such that |f@,9)—f& )l <e

provided that [x—¢&|< 8 and |y—n|<3, & depending on € only,
and not on x, y, &, or 7.
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For divide up the rectangle so that | f(z, y) —f(&, 7)| < $eif (, )
and (¢, 7) belong to the same sub-rectangle. Let & be the minimum
of the sides of sub-rectangles. Then §is the required number. For
if [z—¢| <8 and |[y—n| <3, (z,y) and (£, ) belong to the same
or to adjacent rectangles, and in either case the theorem follows.
The result may be expressed by saying that a function of two
variables which is continuous in a rectangle (boundary included)
is uniformly continuous in the rectangle. _
We can now proceed with the properties of integrals.
If f(x,y) is continuous in the rectangle a <x<b, a <<y < B,
then

b
= [ f@.y) de

18 @ continuous function of y in (o, B).
For - b ‘
bly-+k) =) = | {f@ y+k)—f y)} do,
and, given e, we can choose %, so that

@, y+h)—f@y)<e  ([kl<ko),
for all values of z and y. Hence

_ lply+k)—d)| <e(b—a)  ([k]<hy),
the required result.
If f(x,y) is continuous in the rectangle o <z < b, a LY <P,
for all values of b, and the integral

$(y) = [ f,y) de

a
converges untformly with respect to y in the interval («,p), then
(y) is a continuous function of y in this interval.
We have

1B+ — () f [ (fay+1)—fa ) de

X )
<| [ {f@y+h)—fle )} do | + | JGe,y) do
4 X !
Given €, we can choose X, so that each of the last two terms
is less than e for X > X, for all values of . Having fixed X,

the first term tends to zero with &, by the previous theorem.
The result now follows.

[ flas,y- 1) da +

<
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In the above theorems, the continuity of ¢(y) at the end-
points « and B is one-sided, e.g. ¢(y) > ¢(«) as y - « by values
greater than .

Examples. (i) If the integral

fj'(.v) dx
is convergent, then w

f e~¥f(x) dx

is uniformly convergent in U < ¥ < S, and so continuous at y = 0.
[This is the analogue for integrals of Abel’s theorem on power series.
It may be proved as follows. Let

Fw) = [ 10 dt,
so that F(x)— 0 as x—> 0. Suppose that |F(z)| <€ for 2 > X,;. Then

A | .
ff(x}e'” da = F(X)e‘xy——-F(X’)e'X'”—yfF(w)c‘W dx!

. X
v

< et+etye {c'ﬂ dz < 3e

for X’ > X > X, and all ¥ 3= 0; and the result follows.]

(ii) The integral f S.l.r;‘fz/ dx

is convergent for every y; but it is not uniformly convergent in the
neighbourhood of ¥ = 0, since it is discontinuous at this point.
[To prove this, observe that it is (a) constant for y > 0 (put z = u/y),
(b) positive for y = 1 (express it as
nwr

(n—1)rm
i.e. as a series of decreasing terms of alternate signs), and (c) an odd
function of .

We may prove directly that it is not uniformly convergent by con-
sidering the ‘remainder’

[-+] [+ ]
sinazy . ['sinu
J @ J u ’
X Xy

and putting, c.g., X = 7 /y.
The value of the integral will be obtained later (§ 1.76).]
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1.6. Double series. A double series consists of a double
array of terms S 3

where each of the suffixes m and »# runs from 1 to infinity. There
is no single method of summing the series, such as the ‘lim s,
method for single series, which obviously claims our attention.
We can form partial sums of the series in a great variety of
different ways, and each way gives rise to a method of summing

the series. We may, for example, consider ‘rectangular’ sums
M N

z aﬂ,’ll’

m=1 n=1
and then make M and N tend to infinity in various ways. Or
‘we may consider sumns such as

a’m, ns
m+nN

taken over triangular regions. Or, finally, we may convert the
double series into a ‘repeated’ series, first evaluating the sums

o0
E am,-m
n=1

and then finding the sum of their sums. We write this repeated

series as © o
Z Z a:n, nd
m=1n=1

the inner sum being found first. We call this the ‘sum by
.rows’. If we proceed in the opposite order, we obtain another
repeated series 0

am, Iy
n=1m=1

We call this the ‘sum by columns’.

1.61. Double series of positive terms. If all the terms
@, . of the series are positive, all methods of summation are
equivalent. FEither we obtain a finite limat, the same in all cases;
or, however we sum, the series diverges to positive infinity.

To prove this we consider in turn the various possibilities.

We call a set of pairs of numbers (m,n) a region. Let A,
(p=1,2,...) denote a sequence of finite regions, each of which
includes the one before, and such that, however large N is, A,
includes the square m << N, n < N, if p is large enough.

There are now two possible cases. Suppose first that the

finite sums
“m,, N +am=. "y +' b -*— (llylk, np
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selected in any manner from the series, have an upper bound

(. Then plainly Sy, < G
2y

for all values of p. On the other hand, given ¢, we can find

one of these finite sums greater than G'—e. But A, includes

every term of this finite sum, if p is large enough, and then

> @, m, > G—e.
Ap
Hence, since Y is non-decreasing,
A
lim ¥ a, ,=G;
P20 A,

that is to say, the series is convergent when summed in this
particular way, and its sum is G. In this case the series is said
to be convergent, it being unnecessary to specify the partlcular
sequence of regions taken.

Suppose secondly that there is no such upper bound G. Then,
having given any positive number H, there is a finite sum

Qe gy g, > H.
Since we can find a number p such that A, includes this sum,

we have » G o> H

for this value of p. Hence

> @y, —> 0.

In this case the series is said to be divergent.

These two cases are the only possibilities; and, since the
results are independent of the particular regions A, considered,
we have proved the theorem, so far as finite partial sums are
concerned.

Repeated series do not, so far, come under our analysis. To
include them we have to replace our finite regions A,, by infinite
regions.

Suppose first that the double series is convergent. Let D be
any region, finite or infinite. Let b,, ,= @, ,, if (m,n) is a point
of D, and otherwise b, ,,- 0. Then clearly > b, , converges if
2 @y, does. We write

%: a’m, n z bm. n?
/
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this being the definition of the left- hand side. Itis clear that

E“m WG

Now let D, (p='1,.d,...) be a sequence of regions, finite or
infinite, having the property characteristic of A,. Then we have

zam ‘IL<G

and we can prove prec1se1y as before that
Ea’m,n>G'—E (:p>p0)'

Hence hm Z U, = G-

p—0 Dy
In particular, if we take D, to be the infinite region defined by
m < p, we find that the sum by rows is equal to G Similarly
the sum by columns is G.
Secondly, suppose that the double series is divergent. Then
it may happen that the series

“m,n

is divergent for a definite value of p. In this case the process

comes to an end at this point. On the other hand, if 3 is con-
D
vergent for every p, we can, as before, show that ?

> Oy >H
D,

for every H and p > py(H). Hence
Oy = OO,

In particular, if the double series is divergent, either some
column is divergent, or every column is convergent, but their
sums form a divergent series. The same thing is true of rows.

1.62. Asthe case of repeated series is particularly interesting,
we give an alternative proof for this case.

If @y, , =0, then

2 2 Opyp= Z Eam,ns (1)
m=1 n=1 A\ n=1m=1

in the sense that, if either side converges, then so does the other,
and to the same sum.

Suppose, for example, that the left-hand side is convergent.
This means that all the series
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are convergent, to sums 4, say, and that

z A4,
m=1
is convergent, to sum S, say.
Since a,, , < 4,, for all values of m and =, it follows from the
comparison test that all the series

Z O,
are convergent Let their sums be 4. Then

EA('I)—Z zam,n—‘z Zamn zAm—‘S

n=1 m=1 =
Hence the series > A™ is convergent, and, 1f 1ts sum is &, then
8’ < S. But we can now reverse the whole argument, and,
starting with the convergence of the right-hand side, prove that
S< 8. Hence S=£8".
1.621. Still another method of proof is as follows. Suppose
that the left-hand side of 1.62 (1) is convergent. Then

>: 2 am n = Z Z anz n’ (1)

n=1 m=1 m=1 n=1
this being merely the addition of a finite number of convergent
series, whose convergence follows from that of > A4,,. It is now
sufficient to prove that, as N — oo,
) 03 (2)
m=1 n= V+1
for this expression, together with the right-hand side of (1), is
§; and it will then follow that the left-hand side of (1) tends
" to 8, which is what is required.
This, however, follows from the uniform convergence theorem
of § 1.14; for the series (2) is of the form
2, Up(N).
m=1
It converges uniformly with respect to N, since
lun?(N)I < A?ﬂ’
and > 4, is convergent; and, for vach value of m, u,,(N) - 0.
This proves the theorem.
This method is of interest for the following reason. In less
simple cases, where the numbers a,, , are not all positive, we
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can still start from (1), and so reduce the problem to the proof
of (2). This can then be proved by some special method—see,
for example, §1.66, ex. (xvii).

1.63. The comparison test. Series of positive and
negative terms. We first note the comparison test for the
convergence of a double series of positive terms: if a,, ,, < by 2>
and 3 b, , is convergent, then Y a,, ,, is conve‘rgent. We leave the
proof of this to the reader.

Suppose now that some of the numbers a,, , are positive, and
some are negative. Then the series > a,, ,, s said to be absolutely
convergent if the series Y |a,, ,| is convergent.

Let oy, = ay, , if @, , >0, and otherwise let o, , = 0; let

m,n

Bun=—0p, if a,, <0, and otherwise B, ,=0. Then
0 o, < B, 0] 0K By, o, < @y, |- Heénce, by the comparison
test, the series S S B

are convergent if ¥ |a,, ,| is convergent. Let the sums of these
series be « and 8. Then, with our previous notation,

2 Ay = Z K™ z IBm,n - 0‘_18'
Ap Ap Ap

The same thing is true if the finite region A, is replaced by an
infinite region D), but now the above equation is taken as the
definition of the left-hand side.

The ‘sum’ «—}f is independent of the region A, or D,. We
state the result simply by saying that the series > a,, ,, is con-
vergent; that is, an absolutely convergent double series is convergent.

The comparison test can now be extended to series of this
type.

1.64. Series of complex terms. Suppose now that Ay 18
a complex number, say a,, ,=0b,, ,-+ic, ,. Then the series
da,, is said to be absolutely convergent if 3 |a,, ,| is con-
vergent. Since

[mn’<!a’

|
m, n n (Con, 2 l Iam, n [7
this involves the absolute convergence, and so the convergence,
of 30, ,and Yec, . If b and ¢ are the sums of these series,

a, Z bm :L'T i Z cm n b-{—ZC‘
Ap(or Dy)

and the series is said to be convergent, that is, an absolutely
convergent series of complex terins is convergend.
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All our conclusions about series of positive terms can now
be extended to absolutely convergent series.

1.65. Multiplication of series. Let

ay+a,+a+..., bo+b,+bs+... ‘
be two absolutely convergent series. The series obtained by
multiplying these series by Cauchy’s rule is
CoteciHeot..

where Cp = Obpt+aiby ... F+a,b,.
The rule has its origin in the case of power series, where
a, = a,z", b, =B,2" and where, in the multiplied series, we
collect together terms involving the same power of z.

N0 o0
If the series X a,, > b,, are absolutely convergent, and their

sums are a and b, then i c,, 48 absolutely convergent, and its sum
0

18 ab.

This follows at once from the above theorems on double
series. For the double series > a,b, is absolutely convergent.
Its sum by rows or columns is ab, and

N
Z Cp = Z a’mbn’
n=0 m+n<N

which also tends to the limit ab.

0 o0 2]
If the series > a,, > b,, > ¢c,, are all convergent, fo sums a, b,
0 0 0
and ¢, then ¢ = ab.
"We apply the above theorem to the series i @, 2™, i bz,
0 0

> ¢ 2", which are absolutely convergent if 0 <z < 1, and then
0

make 2 —1 and use Abel’s theorem (§ 1.22).

1.66. Miscellaneous examples on double and repeated series.

(i) If |G, »| < Amonf, where 4, «, B are constants, and lz]< 1, ly]< 1,
then ¥ a,, .2™y" is absolutely convergent.

(i1) If 3, @, 255 is absolutely convergent, then 3 a,, ™y is absolutely
convergent for || < |%,|, |y] < [9o]-

(iii) The series ¥ m~%n=F is convergent if o > 1, § > 1.

(iv) The series 3 (m2-n%)~*is convergent if o > 1.

[Compare the terms for which m < n with § :15_2, n-2]
n=1m=1
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The same result holds for the corresponding doubly infinite series, in
which each variable ranges from —w to o, omitting 1 =n = 0.

(v) The series 3 (am?®+ 2bmn+-cn?)~% is convergent if @ > 0, b2 < ace,

and oo > 1. [For
am*<4- 2bnm + cn-

has a positive minimum value.]
(vi) If the ratio z/2’ is complex, and « is not equal to any of the

numbers —mz—nz’, then Y |a+mz-+nz’|~* is convergent if « > 2.
(vii) By expanding the function
log(1— 2% cos 0 + x?) = log(1—zeif)4-log(1—ze—if)
in two different ways, show that '

n(n2 3) Lon~5p0gh—40 —...

cos nf = 27-1cos"f — -—2" 3cosn—20

and also obtain a series of ascendmg powers of cos 6.

[The rearrangement may be justified by the double series theorem;
we also use the theorem on the uniqueness of a power series, P.M. § 194.]

(viii) If || < 1 and |z| < 1,

= ef— 2 a3 dpa5 __
Zn‘ 1+a%am el e
n=0
(ix) If « is not a negative integer,

< 1 11 1 11
Zo;zc(m+'1)...<x+n> = -nEmtEE ).
n=

(x) If d(n) denotes the number of divisors of 7, and. 2| <1,
f'_nn — z d(n)xn_
1—a2 45
n=1
(xi) Dirichlet multiplication. If ¥ a,n~% 3 b,n~* are absolutely

convergent, and ¢, = > a,,b!, then
0 pq_

San~t.3bn"t=>cn
In particular {L(s))? = X d(n)n—2.
(xii) If @pn=1 (m=n+l, n=12,.), @p,=—1 (m=n-—1,
n = 2, 3,...), and otherwise a,, , = 0, then
E Z O, 0 7= Z Z A, ne
n=1m=1
(xiii) Prove a similar result if

A, '}_ng (m 7 n)’ [ 0 (m = n)'

N
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[Here (terms m = n being omitted)

SIS B 08 BN
z mz——nZ_N_m2nZ m—n m-+n

m=1 m=1
~im 1(_”2‘11+.’Vz”3_ N“”1+_1)
N 2n v v v 2n
—>c0 top=1 v=1 v=n-+1
)
TN

and the sums by columns and rows are 72/8 and —z%8. Sec Hardy (3).]

(xiv) If ¥ |u,| is convergent, then [T (1+4wu,z) is absolutely and uni-
formly convergent in any finite region, and it may be rearranged as
a power series in z,

TT(+uz)=1+z3u,+2* 3 3 w,u,+....

m#EN
[The first part has been proved already (§ 1.44), and it is simply a
question of justifying the rearrangement. Let z be fixed. Let

N
By = TL (1 alle) = 14 O] oot O e

Then Py — P, and, for each m, C!¥ is non-decreasing and < Pz,
Hence C¥ — C,,, say. Plainly

k N
I+ 3 Wl < Py < 14+ 3 Gz (k < N).
m=1 m=1
Making N — o0, then k& — o0, we deduce that

P =1+ 3 Oyl

m=1
Let Py = H (L4+u,2) == 14-cMz-f ... el2d,
By an obvious extension of the thcorem of absolute convergence to

multiple series, ¢}’ —- ¢, and plainly |c,, —c\’| < €, —C¥ < (. Hence
ifk < N,

- N
z (.mzm_, z ci;‘V)zm z "",_(Y(‘V) I Im_’ 2 (1 l }m
m=

m=1 m=1
which tends to 0 by choosing first L and then N. Hnncc the result.
(xv) Assuming that
siny = 1 2
x . nint)’
. l 2 [*e] 1 4

deduce that Z —_= 1 , —=

n2 6 nt 90

n=l n -1

(xvi) Let s, ,—s mean that |3, ,—s| < e if m and n are bLoth
> ng = nyle).
Show that, if s, , — s, and lim s,,, exists for each ., then

”
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lim (lim .9,,,,,,) = 8.
M—>00 \N—>0
It has been proved by Pringsheim that, if the double series 3 > an,
converges to sum s in the sense that

'm:\ n

a,,~>$,

(784
p=1v=1

and the single series “ 3 G
m=1

all converge, then the sum by rows and the sum by columns are also
both equal to s. See Bromwich, Infinite Series, § 30.
(xvii) From the formula

1—
(P.M. § 214), deduce that

1
-I-g— =

w1y

1
3

1 1 1 3
F + g‘é + ‘5—‘5 + cse = '§‘ .
[The result follows from the formula

2 Z (m—i-%()gnl—i-nﬁ-i) z z (M+%()??73-)i:n+%)'

me—
For the left-hand side (putting n = r-—m) is equal to

__(”—;‘—1{");;4_ - ('r:—l%)r: (g - 2; +---)2= .

%
Also, if n 5 0,
0

Lo 1 (1 1)
Ly (mEBmtntd) n L \mtd omtntd) "
so that the right-hand side is equal to

mzw@{W: 8(-11—2 +§1-+)

We have therefore to justify the inversion of the repeated series. The
associated double series is clearly not absolutely convergent, so that
a special method is required.

We have, for every N,

) N N 0

% X2 =2 3

m=—o n=—N n=-N 'm=—oo’
and hence (see § 1.621) it is sufficient to prove that, as N — o,

@ ® o —~N-—1
> > -0, > > —0.
V41 -0 N==—00

D2
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Consider the former sum. If m > —N—1, we have

(=1 1
Z mtn+y “mEN+E
=N+

This part of the sum is therefore less in absolute value than

> SRR R SR
1l (m - N 1-3) IN(mT =
MmN —1 [m+3{(m+N+3) _N-1<m<'—.‘.-N.-<.1_, IN(m4-N+3)

m IN z m-«»
—3iN—- al<‘m<Nl + ] ( I

which plainly tends to zero. In the rest of the sum, we wnte

(=1 S (=1
1= (T Dy
n=N+1 n=—w
The sum formed from the terms involving 7 plainly tends to zero, and
the last term is similar to the one already considered, and so also gives
a sum which tends to zero.

Finally, the othér sum can be dealt with in the same way, and the
result follows.]

1.7. Integration of series. Having completed our discus-
sion of repeated summations, we now turn to a similar set of
problems, in which one of the summations is replaced by an
integration. Since a finite integral is itself a limit, whereas a
finite sum is not, this makes everything one degree more com-
plicated.

We first consider the term- by -term integration of a series over
a finite range.

1.71. A uniformly convergent series of continuous SJunctions
may be integrated term by term; that s, if u,(x), uy(%),... are con-

tznuous, and ul(x)+u2(x)+ — 8(-’27)
converges uniformly over (a,b), then

J?‘ul(x) dx + fuz(x) dz ... = fbs(x) dx

Since s(z) is continuous (§ 1.14), it has a Riemann integral.
Also the sum of the first 7 terms of the integrated series is (with
our usual notation) »

f 8, (x) dx.
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We have therefore to prove that ,

0 U

fs” () dz —> s(x) dz,

or that f {s(x)—s, ()} dx — 0.

But, given ¢, we can find n, such that
ls(@)—sa(z)| < e
for n> n, and all values of x. Hence, by P.M. § 160, (7),

[ @) —s,) d < elo—a),

and the result follows.
Examples. () If0<2z<1,

1 [a ] . -
IOgT-—_—m=fT:t—f(l+z+t —{—...)dt—x—{-%x +'§.’L —l—....
0 0
P~
(ii) Similarly, arctanz = z— 5 + et
1
14z de =2
(iii) Prove that f IOgl—-—-{c ==

0
[Use Abel’s continuity theorem.]
(iv) Show that, if r < 1, and n is a positive integer,

ku

1—r
J’W cosnf df = mr

1.72. A series may be differentiated term by term if the dif-
ferentiated series is a uniformly convergent series of continuous
functions; that is, if

Uy (%) (@) +-... = 8(2),

and the functions u,(x), uy(x),... have continuous derivatives
u;(2),... such that the series
@)+ uyla) + ..

_converges untformly to f(x) in (@, b), then f(x) = s'(z) fora <z <b.
By the previous theorem, the second series may be integrated
term by term over (@, z), so that

{uy (@) —uy (@)} -+ {up () —us(@)} +... = f



38 INFINITE SERIES, PRODUCTS, AND INTEGRALS
But the left-hand side is also equal to s(x)—s(a). Hence

s(e)—s(a) = [ J) d,

and, differentiating, the result follows, since f(z) is continuous.
Examples. (i) If [z| < 1,
® k!
nz:kn(’ﬂ—‘ 1)-..(n—k+ ])x"'—k = m.
(i) If s> 1, o
{(s) = — 3 n-tlogn.
n=2

1.73. A real power series may be integrated or differentiated
any number of times within the interval of convergence. That is
to say, the result of any number of formal term-by-term integra-
tions or differentiations is true, provided that we are inside the
interval of convergence.

Let the power series be

flo) = 5"; g, (js|<R).

We can integrate once, by uniform convergence (§ 1.21), and
obtain

x -
=N % an
off(t)dt nz:(:,'”“]'lx (lz|< R).
The interval of convergence, and so of uniform convergence, is
plainly at least as wide for this series as for the previous one,
and so the process may be repeated.
Term-by-term differentiation gives

0
f'@) =2 na,z"-1.
1 .
This series also is convergent for |x| < R. For, if 0<p <R,

la, p"| < K. Hence
n—1| n~1
P \p

-m

lnanx'n-ll = n]a’n. "

and hence the differentiated series is convergent for |z|< p, by
comparison with the convergent series
i " ( ]xl)n—-l_ 1
O\ P (1— | /p)*"

Hence the differentiated series is uniformly convergent over
any interval included in (—R, R), and so term-by-term dif-
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ferentiation is justified. The process can, of course, now be

repeated.
It follows in partlcular that a funciion represented by a power

series has derivatives of all orders.
It is also clear, since neither integration nor differentiation

can decrease the interval of convergence, and the two processes
are reciprocal, that neither can increase the interval.

Example. The Maclaurin expansion of f(x) Z a,x" in powers of
n=0
% is the original series.

1.74. Ifx is real, and
fe)=3aa (| <B),

then f(x—+h) may be expanded by Taylor's theorem in powers of
h, provided that |x|< R and |h|< R—|x|.
The formal expansion is

_ & hm
= = fm) (e
fleth)= 2 T3,
where, by the previous theorem,
f(m)(m) = i n(n——1)...(n—-m+1)anxn-m_

n=m

To prove that this actually holds, we write

feth = 3 aotir=> e, > 2D B D) g
h m=0 .

i i n(n—1)... n m'{_l)x,L_,,Lhm:iﬁ__gf(m)(x)
m=0 n= m=0

We have to justify the inversion; and it is justified by absolute
convergence if

2|,L|2“(”“ LoD fapromipin = 3 Ja(lal-+ )"

is convergent. This is true if |x|4|k| < R, which proves the
theorem.

Notice that the interval of convergence obtained for the new
series extends just up to one end of the interval of convergence
of the original series. The actual interval of convergence may

D
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be no larger, e.g. in the case of

fl@) = ——1— == 14-a24xtt....

But it may in some cases extend further; e.g. if

1)mm!
we have f(m) ((1-[-92) :il’
and f(.lf+h) == z (—l)m(%)m+1})‘m,

m=0
which is convergent for [h| <3.

It is impossible to give a satisfactory account of this pheno-
menon so long as we consider real power series only, and we
must postpone further discussion until we have considered func-
tions of a complex variable.

1.75. Series which cannot be integrated term by term.
A simple example of such a series is obtained by putting

8,(x) = n?x(l —x)" o<z
Then s(x) = 0 for all values of z, so that

1
f s(z) dx = 0.
0
n
But of 8, (&) de = (n-F1)(n-+2) -1,
so that term-by-term integration gives an incorrect result. The
series is, of course, not uniformly convergent.

On the other hand, uniform convergence is not a necessary
condition for term-by-term integration. Somec of the non-uni-
formly convergent series of § 1.3, e.g. those for which

Sy )= “'_1—‘!'
14-nx
can be integrated term by term.

"This leads us to consider more general classes of series which
can be integrated term by term.

1.76. Boundedly convergent series. A series

wy (&) Fay() ...

is said to be boundedly comvergent in an interval (u,b), if il con-

8,(®) = na(1—ux)",
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verges for every value of x in the interval, and if there is a constant
M such that |s, (x)| < M for all values of n and z (a <z < b).

It is clear that the sum of a boundedly convergent series is
bounded. So far we have no method of integrating bounded
functions in general, 8o boundedness by itself does not enable
us (at this stage) to integrate term by term. We have to com-
bine it with another condition.

- We say that a series is uniformly convergent over (a,b), cxcept

in the meighbourhood of the point ¢, if it is uniformly convergent
over the intervals (@,¢—3), (¢+38,b), however small § may be.
We can then justify term-by-term integration under the fol-
lowing conditions:

If the series is uniformly convergent over (a,b), except in the
neighbourhood of a finite number of points, and also boundedly
convergent over the whole interval, then it may be. integrated term
by term over (a,b).

To prove this, it is sufficient to suppose that there is one
exceptional point, ¢. Suppose that s, (z)| < M. Then |s(x)| < M
also. The integral of s(z) exists in the sense of § 1.5, and

1~0 b
{s(x)—s, (@)} dz < f {s(x)—s,, (%)} dx!—{—{ f {s(@)—s,(x)} d: +
c+3
c4-8 cld
+ [s@)de + | s,()da
-8 Pt
¢ -8 "
+ | asm
c+d
We can choose 8 so small that the last term is less than a given
¢, for all n. Then, having fixed 3, the other terms tend to zero,
by uniform convergence. This proves the theorem.

Various extensions of the theorem are possible. It is not
necessary that the series should be uniformly convergent over
(a,c—38) and (c+3,b), if term-by-term integration over these
intervals can be justified in some other way. A more important
observation is that the theorem remains true if we insert in the
integral a factor ¢(x), which is integrable, but not necessarily
bounded. Suppose, for example, that é(z) is continuous over
(2,b) except at z==a, in the neighbourhood of which it is
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unbounded; and that b

[14@)lde

a

exists as an infinite integral. Then we may multiply the series
Ly ¢(x) and integrate term by term. For
a+8

f {s()— 8, (2} () d | <

which can be made less than any given e, by choice of §, for all
values of n; and the integral over (a-+38,b) may be dealt with

as before.

We observe finally that later, when we have developed the
theory of the Lebesgue integral, we can put all these theorems
into a much more satisfactory form. All the restrictions involv-
ing continuity and uniform convergence are only necessary
because of the limitations of the Riemann integral, and dis-
appear in the final form of the theorem.

a+d
oM [ |p(a)) d,

Examples. (i) The series for which
1
sux) = iTne’
are boundedly convergent.
(ii) Consider the series

5,(@) = ma(l—z)y (0 <z <),

sinz  sin2x  sin3x
R e

It follows from one of the general tests (see §1.12, ex. (i)) that this
series is uniformly convergent except in the neighbourhood of the points
% =0, 42w, +4m,.... To show that it is boundedly convergent, and
to sum it, we use a more special method.

Since each term has the period 27, it is sufficient to consider the
interval 0 <« < 277. Here we write

xz @€

s, (x) = f(cos t+ cos 2t ...+ cosnt) di = fsm et - sin gt gy
0

x
_ | sin(n+3) Iy _ .
_J‘w_—t_‘_dt-i_f(m E)bm(n-kg)tclt——}.x,

0 0
(n+1)x ki

- f a’“{”’ du - [(-——1——— - 1>sin(n'|-i)t dt — k.

2sindt ¢
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h
Now f sinw
U

is always positive, and has an absolute maximumn at 2 = 7 (P.M.§181,
exs. LXXVI, 9-10). Hence

T T
@)l < | S‘%‘duntj(_-l— 3)¢zz+-.}n
: 6

2sindt ¢

for 0 <z <, i.e. the series is boundedly convergent in this interval.
Since each term is odd, it is boundedly convergent in (—m, 0), and so,
by periodicity, in any interval.
To sum the series, let z be fixed, 0 < < 27, and make n — 0. Then
(n+3)x ®
lim sinu
n—>x (2
0 0

exists (§ 1.5). Let us denote the value of this integral by I. Also
x

1 1) .
f (2?1@ — t—) sin(n+4 %)t dt

l\lcos(n—l--?_,—).‘c_l_v 1 f’( 1 _l)cos(n+%)zdt,

(Qsina.},-x x] n+} n+3 | dt\2sinkt i

which tends to zero on account of the factor n+} in the denominator
(the other factors being bounded). Hence, if s(x) is the sum,

s(z) = I—3}x (0 <z < 27).
But plainly s(z) = 0, so that I = }=. This gives at the same time the
sum of the series and the value of the infinite integral.

The reader should draw the graph of the sum of the series, noticing
its discontinuities at the points = 0, + 27, -+ 4mr,.... [See also Ch. XIII,
ex. 11.] :

(iii) Prove, without using integrals, that the above series is boundedly
convergent, using a method similar to that used in § 1.131.

(iv) Sum the series 1 1 1
ErmteEt
by integrating the above series over (0, 7).

(v) Prove that

s

tcosnx w wx | @?
Z .?5_-72-—}—? (0 <2 <),

1.77. Term-by-term integration when the integrals are
infinite. We now pass to the general case of term-by-term
integration over an infinite range, or of functions which become
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infinite in the range of integration. In cach case the results are
gimilar to those already obtained for repeated scrics. For con-
venience we state them as a single theorem.

Suppose that w,(z) = 0 for all values of n and x, and that

f {3 up (@)} de =73 J u, (%) do (1)
for all values of ¢ less than b (or for all finite values of c). Then

b b

[(Zu@}de=3 [ () dz @)
(or [{Zun@}dz=3 [ un(w) da (2a)

in the second case), provided that either side of the resulting equation
18 convergent.

The proof is the same in the two cases. Let us take the case
of a finite interval (a, b).

Suppose that the series on the right of (2) is convergent, say

2 f'un(x) dz= 8

Then, since u,(z) >

[4

({Eun }dx--qun(x dx

for all values of ¢ less than ). Hence (see P.M., 7th edition,
§185) the integral on the left of (2) exists, as an infinite
integral at b; and, if its value is Z, then I < 8. On the other
hand

fu x)dx—f{zu } !{i::u,n(x)} de=1,

and, making N — o0, we see that S < I. Hence in fact S = I.
A similar method may be used if the left-hand side of (2) or
(2a) is assumed to exist. The reader should write it out in detail.
As in the case of series, we can omit our ‘positive’ condition
if we assume instead that one of the sides of (2) or (2a) is
‘absolutely convergent’, i.e. remains convergent if u,(x) is re-
placed by its modulus.

n=1
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The above results remain true for functions w,(x) which wnay
have either sign, or be complex, provided that either of

b : b
[Cm@pds 3 [ jue)de,

(or [ S @y de, 3 [ lu) de

in the second case), is convergent.

It follows from the theorem already proved that the two con-
ditions are equivalent. We then obtain the result precisely as
in the case of double series. If w,(x) is real, we consider the
functions |u,(x)|+u,(x), each of which is positive. If u,(z) is
complex, say u,(r) = o,(x)+18,(x), we consider the four func-
tions |u,(%)| o, (@), [u,(@)|+Ba(7), each of which is positive.

1.78. Miscellaneous examples on term-by-term integration.

1

(i) Prove that f log—- de=1
0
by expanding in powers of « and integrating term by term. [Notice
that the series is not uniformly or even boundedly convergent in the
neighbourhood of & = 1.]
- (il) We have

-] o0 ©

il — ~lo—n2y Ay -— —1lp=nE of

fmdm_f{zxx e }dx_zojxs e ds
0

0
©

= S~ [yter dy = 3 no"T(s) = T(s)L(o):
0
Justify this process (a) for s > 1, (b) for s complex, R(s) > 1.

v

(iii) Prove that fe—“ cos bz dx = B

by expanding cos bz in powers of z. [The process is justified by absolute
convergence if R(a) > [b], though the result holds in a wider Tange
than this.]
(iv) Prove that, if p > 0,
1

arl 1 1
fl xlog dx ’+(p¢i—)§+'"'
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(v) Prove that, if p > 0,
1

zr-1 1 1
fmd""—rm”L

[Here the absolute convergence test fails. Integrate over (0, £), where
0 < ¢ <1, and use Abel’s theorem.]

0

(vi) Prove that f sinhav do = Ztan 2 (0<a<b).

sinh bx 2b 2b

[On expanding in powers of e~%%, we obtain the series

Z 2a
(2n—1)%%—a?’

For the summation of this we must refer to Chapter III.]

o0

.. cosh ax am
(vii) Prove that fcosh o do = 2b sec 5 (0<a<b).

[The general test fa,lls, but the integral can be evaluated by means of
(v) above.]

(viii) If u,(z) = ae~"**—be-"* (0 < a < b), show that

2> f U, (%) do 7~ f {3 u,(x)} de.
Y 0

M de = SS(L_ 1) =0,
[We have > J u, () dz Z( ) 0.

n N

but j{Zu )} do = f( )dx>0

since the mtegrand is positive for all values of z, u/(e—1) being a
steadily decreasing function of u.

It is easy to prove directly that

3 [ @) ds

is divergent.]
(ix) Consider the integral

f e~#* gin 2% cosaz dz.

Here we shall anticipate for a moment some of the results of Chapter III.
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If we expand cos az in powers of # and integrate term by term, we obtain

‘\ — s
Z 317);;(:& ”f e~#tgin gty dx,

every term of which is zero (§3.125). But the given integral is not

identically zero (see § 3.13).
The test of § 1.77 fails; for the integral obtained by replacing u,(z)

by |u(x)| is o ’
Je*”*]sinx*]coshax dz,
0

which is divergent,.

1.79. As a final example of term-by-term integration under
special conditions, we prove the following theorem:

The power series }_: a,x", supposed convergent for x > 0, may

be multiplied by e—* and wntegrated term by term over (0, 00), pro-
vided only that the resulting series is convergent.*
The formula is

o0 o

~® 0 )
f e—x{ > anx“} de= 7Y a, f eTgn de =3 a,n!,
o n=0 n=0 0 n=0

and we have to justify the inversion on the assumption that

2. a,n! is convergent.
Put a,n! =b,, sothat > b, is convergent. Then b, is bounded,
|6, < B, say, and
bn” <BX 0<z<X)

Hence 3 b,z"/n! is uniformly convergent over (0,X), and we
may multiply by e—® and integrate term by term over this

range. Thus
X o X

- f bltxﬂ — b e—Tyn
fe lz o o= > b e g (1)
0 n=0 ‘o

n=0

We are given that

. -
b 0
n =Ll g —
zm{e rde=3Y b,
n=g ¥ n=0

* Hardy, (1), (6).
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is convergent. Hence (1) may be written

©

£ b
fe—x=zb . ]dx ——'ngob _Zﬁ f o dx’ (2)
0

n=0 n=0

and it remains to be proved that the last term tends to zero
as X - 0. Now

-]

[ oo do= e X(Xn-paXn )

so that the series in question is
Xm
-X
20D ®
n=0 m=0

Letr, = Z b,, %o that r, - 0 as n - co. Then b, =r,—r,,;,and

N n Xm N - .
z bn z ‘m— = (Tn'—rn+1) i
n=0 m=0 n=0 m=0 m!
N
XN
=>r ?_IT rN+1(1+X+ 42 )
n=0

The last term tends to zero as N — oo, for any X, so that, making
N > o0, (3) takes the form

n
-X
e z fa—r
n=0
The result now easily follows. Given any positive ¢, we can find

N so that |r,|<e for n>N. Then, since |r,| <4 for all
values of #,

N

< Xn Xn - o X
X z -X z -X E
OAT“ n! I<Ae ~ ! e n!
n=

N+1
N
Xn
< Ae‘X z -’;-b-!-‘ + €,
0
and, having fixed N, we can choose X so large that the first

term also is less than e. Hence the result.

1.8. Repeated integrals. A repeated integral is one degree
more complicated than a series of integrals. Even if the linits
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of each integration are finite, a repeated limit is involved, and
its inversion requires justification. If the limits of each integral
are infinite, four successive limiting operations are involved.

1.81. We consider first continuous functions and finite limits.
If f(z,y) is @ continuous function of = and y in the rectangle
e<r<b a<y < B, then

b B B b
[ dx | f@,y)dy= [ dy [ ftw,y) du

Since f(x,y) is continuous, the integral

B
= [fle.y) dy

is a continuous function of z (§ 1.52). We can therefore integrate
it over (a,b). The result is the left-hand side of the equation.
Similarly the right-hand side has a meaning.

To prove that the two sides are equal, divide up the ranges
of integration by points xz, and y, (a =2 b=2,, a=y,
B=1y,), such that z, ,—=, <3, ¥,,,—y, <39, for all values of
p and v. Let m, ,, M, , be the lower and upper bounds of

12224
f(x,y) in the rectangle (z,,%,41;¥,¥,4+1). Thenfory, <y <y,

Tu+1
m n,v(xp+1_xp) < f f(x: ?/) dz < M[L,v(xp.'l‘l_xp.)’

and hence, integrating with respect to ¥,

Yo+l Tl
My @uir— ) U1~ < [ dy [ fl,y) da

Uy Tu
< My,v(xp+1’—x‘u)(yv+1"'yv)'
Summing with respect to p and v, we have

3 3 My 1~ W= 2) < f dy ffxy

Z Z Mp,v w1 ,/.)(yv+1'_yv)-

The same inequalities are also satisfied by the other repeated
integral. Also, when & — 0, the difference between the extreme
terms of the inequality tends to zero; for we can choose 8 so
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small that the maximum value of M, ,—m,, , is less than any
given ¢; and then

22 (My v )( L1 ™% )('Jm =)
Se E Z #+1 Jv+1 ¥,) = e(b—a)(B—a).
Hence the two repeated 1ntegrals are equal.

1.82. Extension to discontinuous functions. Suppose
next that the rectangle is crossed by a continuous monotonie
curve y = ¢(x), or = 1J(y), from z =a to z =c; and let f(z,y)
be bounded, and continuous except on this curve. Then the
repeated integrals still exist and are equal.

In the first place, the function F(z) is still continuous. For
fa<z<e,

$() 4
)= | fey)dy + [ fy) dy = F@)+Fe),
o é(x)
say; and
$(@) Plz+h)
Rtk =R = [ fetho)—feyldy + | fethy)d,

(x)
which plainly tends to zero with 2. Hence F,(x) is continuous,
and similarly Fu(z) is continuous. Hence the first repeated
integral exists, and, similarly, so does the second one.
To prove that they are equal, consider the strip
$@)—n <y < @)+,
and suppose for simplicity that ¢(z) is steadily increasing. Con-
struct rectangles (x,,%,.13%,Y,+1) With sides less than §, as
before. Then the area of those rectangles between z, and z,
which contain any point of the stnp is less than
(@ 41— [-L)[{qs(x[.b+1 +n}— {?S —7}+23]
< 8{¢(xp,+l p,)}"]‘ (x,u,+1—xy.)(277 +23);
the total area of such rectangles is therefore less than
8(8—o)+ (b—a)(29+28). |
Hence, if 3 denotes a summation over these rectangles, and
|fle,9)| < M,
zl (Mu, v_’m’y, v)(xy+1“xy)(yv+1—yv)
< 2M{3(B—c)+(20+28)(b—a)},
which can be made arbitrarily small by choice of % and 8.
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Finally, since f(z,y) is continuous in each of the remaining
regions, we can choose 8 so small that

max (M, ,—m,,)<e

in the remaining rectangles. The result now follows as before.
~ We can, of course, now extend the result to functions which
have any finite number of discontinuities of the above type. In
particular, the result holds for an integral taken over a non-
rectangular region bounded by curves of the above type; for
this can be considered as an integral over a rectangle, the func-
tion being continuous in a limited part of it and zero elsewhere.
Notice finally the following inequality. Suppose that f(z,y)
is continuous, and | f(z,y)| < M, in a region of the above type,
and that f(x,y) = 0 elsewhere. Let F(z,y) = M in the region,
and F(z,y) = 0 elsewhere. Then

Ud?/ff(w,y) dz gfdyfp(x,y) e,

The reader should have no difficulty in deducing this from the
above analysis.

1.83. Change of variables in a repeated integral. The
formula by which the variables in a repeated integral are
changed may be obtained as follows. Consider the integral

[y [ fay) dz

over a given region, and let
| z=¢wv),  y=P@0).
Suppose that these functions are such that, if y is constant, z is

a monotonic differentiable function of u. If we transform the
integral with respect to x into one with respect to u, we obtain

f fl@,y) do = f fi’f du.

dr _op  opow ap | o ov
But® du— __+8v ou’ 0= +3fu ou’
so thatt dz__ (aﬁ%_a_‘ﬁ ?‘_/’)/a‘/’ a(¢.4) [ o

du \ouwéw ovoul v a(u,v)] ov

* See I’.M. § 153.
1 For the Jacobian notation see 1°.31. ch. VII, ox. 20.
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Hence the repeated integral becomes

f f fa((ﬁ lﬁ) 3¢'

if the order of 1ntegratlon may be mverted. F 1nally, expressing
y as a function of v (for a fixed %), and assuming that it is
monotonic, we have

i [ LD [ g

dy _ o
dv o’
and the integral becomes
fduf F(u, v)g((_qb l/‘)

where F(u,v) = f{¢(u,v), P(u,v)}.

The process is valid if, for example, the integrand at every
stage is a continuous function, and the region is bounded by
monotonic curves as in § 1.82. Some care is needed in verifying
this in particular cases. Consider, for example, the integral

a ~a'-yr)
I=[dy [ fy ds
0 0
where f(z,y) is continuous, and transform to polar coordinates
(r,0) given by x = rcos 6, y = rsin §. Transforming first to (r,y),
we have x = ,/(r2—y?), and
dr _ r
dr — J0"—y)
which becomes infinite at r =y. To avoid this difficulty, con-
sider instead the integral
V(a=8)  V(at-1r)
L= [ dy [ foy)ds
0 )
where 0<8< a. Transforming first to (r,%), then to (r,0), in
the above manner, we obtain
a arccos(d/r)
Iy= frdr { f(rcos8,rsin 6) dé.
3 0
Now let § - 0. Then /5-> I, and the last integral tends to
a

i
f rdr f f(rcos8,rsin 6) de.
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Each of these statements is readily proved by means of the
inequality noticed at the end of § 1.82.

For the general theory of these transformations sec Goursat’s
Cours d’ Analyse, t. 1, ch. 6.

1.84. Repeated integrals, one range being infinite. The
most important theorem here is the analogue of the theorem on
term-by-term integration of a uniformly convergent series.

Suppose that

v B B b
[d= | f@y)dy= [ dy [ f(@,y) d=
a o ¢4 a

for all values of b greater than a, and that

fwf(x, y) dz

is uniformly convergent in the range o <y < p. Then

© B B
[ d= | f@,y) dy= [ dy [ f(z.y) da.

n

For [f@,y) dx = s5,(9) > 5(1)

uniformly in («, 8). Hence, using the result for sequences,
n B B =
[ [ fe9)dy=[ ay [ flo9) da
a o o @
B B B =
= [s.) dy > [ sy) dy= [ dy [ f(z.9) dz,
o ) a o «
the required result.
A similar theorem holds for infinite integrals of the second
kind. :
The same results also hold if the integral is not uniformly
convergent in the neighbourhood of certain points, but is
boundedly convergent. In fact the same proof holds under these
conditions.

1.85. Repeated infinite integrals. The following theorem
is the analogue for repeated integrals of the theorems of § 1.62
and § 1.77 for double series and series of integrals.



H4 INFINITE SERIES, PRODUCTS, AND INTEGRALS
Suppose that f(a,y) is positive, and thal

¢ B B«
J def(;v, Y) dy::j dy J fla,y) dx 1)
47 <4 o a
for all values of ¢ less than b, and that
b Y e b
o ey dy =]y [ fay) d )
a o o a

for all values of y less than B. Then

" B g 4
fdxff(x,y) dy:fdyff(x,y) dz, - (3)

provided that either side of this equation s convergent.

The theorem is still true if one or both of b and B is replaced
by infinity.

Take, for example, the case of two finite intervals, and suppose
that the left-hand side of (8) exists. Since f(z,y) >0

y B
[fendy<[faydy («<y<p)

and hence
Y b by b B
f dy ff(x, y) do = {‘ dax f flx,y) dy < f dx.J fla,y) dy.
o a 73 o 22 o

Making y - B, we see that the right-hand side of (3) exists,
and that 8

b b B
[ dy [ fla ) do < [ da [ flz,y) dy.
[¢3 @ . (4] [+4
The same process may now be reversed, and it yields the
reversed inequality. Hence the two sides are equal.

The same proof holds if b, or B, or both of them, are infinite.

Though the actual proof is simple, we have, of course, made
rather far-reaching assumptions; and, in applying the theorem,
we have to justify (1) and (2) on other grounds, for example, by
uniform convergence. This is made necessary by the limitations
of the Riemann integral; for from the mere fact that

B¢

f dy ’ flz,y) de
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is bounded as ¢—b, we cannot deduce that

[ 0.9)d

is integrable in Riemann’s sense. When we come to the
Lebesgue integral, we shall. see that difficulties of this kind
disappear.

The theorem remains true for functions f(x,y) which may have
either sign, or be complex, provided that either of the infegrals

5 B B s
[de[1f@wldy,  [dy [ {f@y)lde

1§ convergent.

The extension is made as in the case of series. If f(z,y) is
real, we consider the functions |f(z,v)|+ f(z,y), and if f(z,y)
is complex, we consider |f(z,y)|= Rf(z,9), |f(x,y)| L 1f(z,y).

1.86. The Gamma-function. The function
I'(z) = f 121t d (1)

is, as we have already observed (§§ 1.51, 1.52), continuous for
R(z) > 0. We are now in a position to investigate its properties
more fully. We shall suppose throughout this section and the
following one that x and y are real, leaving it to the reader to
consider how far the results are true for complex values of the
variables. v

If « > 1, we may integrate by parts, and obtain

D) =[—t*le ] 4 (x—1) r t*=2e~t dt.

The integrated terms vanish, and we have
P@)=@-1)l'(@-1)  @>1). . @)

0

Since I'(1) = f et dt =1, repeated application of (2) gives

I'(n) = (n—1)! 3)

if » is a positive integer. Thus I'(x) may be regarded as a
generalization of a factorial.
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Now consider the product
o0 0
T'(x)(y) = I tz-le~t dt f wr-te~tdu (z>0,y>0).
0 0 '

We may regard this as a repeated integral. Putting u = tv, and
inverting the order of integration, we have, formally,

INCIINES f z-le~t dt f vl dv
0 0 :

L oo
= J. vt dy j fr+y-lg-l+0) di

0 g 1 d
weHU=-le™ dw
= J‘ qu“l d’U J‘

0 e
/-1
=T+ [ e
N'=x)'y). |
Hence "p“(gg”_i_—y‘)” : (,Y) (x>0,y>0), (4)
where » . o
"S(w, y) : j (T%m dv=2 J (cos g)u_1(sin 0)2y_1 a6

= [ =31 -2yt dd.

The difficulty of the proof lies in the inversion of the repeated
integral

o0 0

[ dt [ gr-toptestesn do.
0 0

Since each integral is infinite at each limit if the indices of ¢ and
v are negative, this requires several applications of the theorem
of § 1.85. It is easily seen that the ¢- and v-integrals are both
uniformly convergent over any finite range which excludes the
origin. Hence the integrals over (0,T';v, V) and (f, T;0,V)
may be inverted if #, >0, vy > 0. Hence, the integrand being
positive, the integral over (0,7';0, V) may be inverted. Since
also the integral over (4, T';0, 00) may be inverted by uniform
convergence, it follows that the integral over (0, 7'; 0, c0) way
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be inverted. Similarly the integral over (0,00;0,7) may be
inverted. Hence, finally the whole integral may be inverted.

Again, putting x =y =1 in (4), we have

{Thy=2r@ [do=m,

or, since I'(}) is plainly positive,
I'(d) = . ®)
Next, putting y =z in (4),

' B
{11:((237)} J- Ax—l(l—A)x—l =2 f A=-L(1—A)%-1 ),

Putting A= }— %«/y,, 0 that A(1—A) = u, this gives
'@)I'(3)
1 J,.__ -1, ~% — 912 — -1,,~% 1-2z .
f )y ptdp =2 ”‘f(l p) it dp =2 il
Hence we obtain the ‘duphcamon formula’
D(22)['(3) = 22T (@) D+ ). (6)

1.87. Asymptotic behaviour of I'(x) as x - co. Consider
first the case where x is an integer, » say, so that I'(z) = (n—1)\.
We use the well-known method of comparing a sum ¥ ¢(n) with
the corresponding integral [ ¢(t) di. We have

log{(n—1)!} =wzllog v.

v+i
Now f logt dt = f {log(v-+1) + log(v—1)} dt
~3
4

f {logvz—l—log(l——)} dt =logv 4 C,,
0

say, where clearly C,= O (1/»®). Hence
v n—k —
log I'(n) = log{(n—1)!} = f logt dt — ZIC,,
i v=1

= (n—Blog(n—1)—(n—H—}log 3+ — 3 o (1)
vl
= (n—3)logn—n+C4o0(1), (1)
where C is a constant.
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We can extend this result to non-integral values of 2 by
means of the following lemma.

Levmma. If a is constant, as x -» oo,

I')
Mete) ™ @
Suppose that @ > 1. Then
P(@_];(g) a—1)~1 —tya~1 -l
'F(x+a)“f1 ety g = j —et)ya-lgat gt
==f {a=le=t (f — J {te-1—(1—¢-t)ye-Le~rt i,
0 0

The first integral is I'(@)z—%, and the second is O(z~*-*). For
1—et<t (t>0), l—et>t—32 (0 <t<C1).
Hence the second integral is positive, and less than

1 »
f{l——-(l-—»}t)“'l}t“’le“ml dt - f {e-lo—at Jt
0 1 )

! =
<K f tae—«t dt |- f tte=rt dt < Kx-o-1,
0 1

where K depends on a only. This proves the lemma for ¢ > 1.
The result for other values of @ then follows from 1.86 (2).
If now z is not an integer, let = n--a, where » is an integer
and 0 <a < 1. Then
logT(z) = log I'(n+a) ==log I'(n) - alogn 4o (1)
= (n—¥)logn — n+4-C+-alogn--o (1)
= (t—a—})log(x—a)—z+-a+ C+4alog(z—a)-- o (1)
= (z—Hlogz — x-+C+ 0 (1), (3)
the required result.
To find the value of C, we use the duplication formula 1.86 (6).
Taking logarithms and using (3), we have
(22— 1)log 22 — 22+ C'+-log v 40 (1)
= (2z—1)log 2 4 (x—})log x + 2 log(z—+ ) —2w— L --2C 40 (1),
and equating the constant terms, we obtain
C = log \/(2m).
[(z) = a*-te~,)(2m){1-}-0 (1)}. (4)
This result is known as Stirling’s theorem.

Hence finally
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1.88. Differentiation of integrals. The two following
theorems cover most of the cases that are ordinarily met with.

If f(z,y) and ;J are continuous i the rectangle a < <b,
Y

Yo— 1 <Y < Yot (9 >0), then

d b (.)
@ff(x,y)dx=J %dm (1)
for y=1o ; ]
Lt 40)=[fends o) = 2.

b
Then  SWEBRZEU) o [ty )10, )

a

= J 9, 9o+-0k) dz
«
where 0 < 8 << 1. Since ¢(z, y) is uniformly continuous, we have,
as in § 1.52, b b
lim [ g(ar, yo-+6k) dz = [ g(a, o) do,
=0 y “

the required result.

If the equation (1) is true for all values of b greater than a, and
if the integral -
fdz

8 Q"}s

1§ convergent, and f o dx
%
a

18 uniformly convergent in the interval (yy—1u, yo-+n), then

d o0 - o0 af.
ag:/ ff(z, y) da == f 5@ dz.

We can deduce this from the corresponding theorem for
series (§ 1.72). For let

atn

fl@,y) de = u,(y).

a+n-—1
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Then J J@,y) de =3 w,(y),
and, by the previous theorem,
a+n
of S e S L =S
J dn="> f Gle=20 | fend=2 2w
a+n—1 a+n—1

The result now follows at once from the theorem for series.

MISCELLANEOUS EXAMFPLES

1. Consider the uniform convergence of the series

o5

o0 ]
Siw SA S
@t fn?’ w*n?’ at—nt’

n=1 n=1 n=1
sin nx
and — (o> 0).
perrml )
n=1

2. Discuss with reference to uniformity the convergence of the series

] -]

Siz. S
n? 1427 n  14zm

n=1 n=1

(i) for = real and positive, (ii) for general complex values of z.
3. Consider the uniform convergence of the integrals

o0 o0 0
dx
‘‘‘‘‘‘ s 2 e~2 do.
fx2+yg’ fa dz, fcoshxye da
0 0 0

4. Consider the uniform convergence of the integral

[

f qu};wy da.
x*

0

Evaluate the integral by differentiating with respect to ¥.
5. The Bessel function J,(z) is defined for y > —1 by the series

5 (= I)n(gz)visn
fz) = z AL (v n1)°
n=0
Prove that, if v> —1, m

J(z) = ""“I‘(u ) f cos(z cos ) sin®6 do,
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and that, if p> —1,v> —1,

Jpwa(2) = 2,,1.,( + 1) f Jy(zsin §)sink+16 cos?+16 df.

6. Prove that

o

1
f 6_“%(b$) d.p = m (0 < b < a),
¢ 1
and that f e~z Jy(x) do = "k

7. Prove that f J(at)e=tirtidt = > +1 e‘i“’

5 [ [ (S

8. Prove that

n=1

9. Show that the repeated integrals

1 1
z—y
—_—d ,
f f(m+y'~* v fdxf(x—f-y)‘ Y
fdwf(::_:‘g 53 s J-d:vf lae— % —be=%) dy,

are not equal t.o the integrals obta.med by inverting the order of in-
tegration.

10. Prove that f e~?cos 2xy de = jVmeV
(i) by expanding cos 2zy in powers of % and integrating term by term,
and (ii) by proving that the integral satisfies the differential equation

dI
o
11. If dy) = f ;c—(%?—_:%;—) dx,
prove that ¢" () —a*P(y)

is a constant, and hence that

$) = gz (l—e=)  (y>0).
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12. Deduce from the previous example the values of the integrals

5 =}
cosxy xsinxy
f ot f arar
0
e-—bzxq 1
13. If $(p,q,a,b p)J‘ (@ T oy

where g, b, p, and g are positive, prove that
$(p, g, @, b) = (¢, p, b, a).

14. If Uy) = f o=V s,
prove that Ply) = INme=% (y>0)

(i) by proving that '(y) = —2(y), and (ii) by means of the substitu-
tion w = z—y/x.
15. Show that the repeated integral

o0
f dx f cos 2max. ye~¥ 1+ dy
.0
may be inverted ; and hence deduce the value of the first integral of

example 12 from those of examples 10 and 14.
16. Prove that if A> 0, u >0,

or? ) 0 i
J e~PA-1 dy; J e~vy2u-ldy = f e=riyAtiu-1 gp f cos*A-105in2r~10 df,
0 0 0 0

and hence obtain another proof of the formulae of § 1.86.
17. Show that, in the repeated integral

L4

o0
f sinax dx ff(y)e"" dy,
0 0
the order of integration may be inverted if the intograls

1 o0
f | f)] dy, flf(y)ly'2 dy
0 1

are convergent. Hence show that

o

sinaz Joly)
J‘J ]—I—ﬂ“) [\”‘?“i'?]—‘: dy.

[The integral f sin ax dx J f@Wle~ dy may be inverted, since the
. £ 0
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y-integral is uniformly convergent for 0 <¢ <w < X. Hence it is

sufficient to prove that the integrals
o

] o

ff(y) dy fsin are~dz, J f@) dyJ sinaze~% dx

0 0 0 X
tend to zero as £ — 0 and X — . Since |sinaz| < ¢z, the modulus of
the former does not exceed

kS ¢ Y é ® o
J [Fw) dyj.awe"ydw < af]f(y)] dy (x dx -{-af [ f)] dyf-xc—rydx
0 0 0 0 Y 0

¥ )

= a2 [ 1)l dy +a [ |tg)ly=2 ay,

0 ¥
which can be made arbitrarily small by choosing first ¥ and then §.
The modulus of the latter integral is

=
Jsm aX + acosa)& x 1 o Lxy
f = vdy - f |f@)le= dy,

0

which tends to zero.]
18. Ifa > 0, > 0,
=
()1 t—g)B-1dt = TOTE)

J( gr-ie—yftde = o e,

19. fa>0,8>0, and/\<2/0r/\>m,

[ ety gi — L@ID(B) (z—y)eih-1
[t=2AjetB T Dap) ARy =AY

[Consider the general linear transformation of the interval (y, 2) into
itself, and use the previous example.]

20. Provetha,tifc>b>0 c—a—b > 0,

Z a(a+ l) (a+n 1) J‘ tb+n—1 _t)c—b—l dt = j b-1(1_.t)c-a—b—1 dt.
n!
n=0 v

Deduce that

a..(a+n—1pb..(b+n—1) T(c)I'(c—a—b)
Z nlc..(c+n—1) T(c—a)l(c—b)"

n=0



CHAPTER 11
ANALYTIC FUNCTIONS

2.1. Functions of a complex variable. It is just as easy
to construct a function of a complex variable z=2x4-1y as it
is to construct a function of a real variable x. Any finite or

infinite convergent expression involving z gives such a function,
For example, 22, 1/z, ¢ are functions of the complex variable z.

The reader of Hardy’s Pure Mathematics is already familiar
with many such functions.

Throughout this chapter and the next all functions are sup-
posed to be one-valued in the region in which they are defined,

Our first task is to give a general definition which will be
appropriate to all such functions.

We might say that w is a function of z if to every value of
zin a certain region corresponds one or more values of w. This
is modelled on the usual definition of a function of a real
variable. It is perfectly legitimate, but, as is explained in
Hardy’s Pure Mathematics, it is futile because it is too wide.
It makes a function of the complex variable z exactly the same
thing as a complex function

w(@, y)+(@,y)
of two real variables z and y. Of course this is not what we
meant when we began to speak of functions of a complex
variable.

Our method of procedure is to assign various properties to
our function which appear to be desirable, and to see whether
any such properties distinguish between what we feel to be
‘proper’ and ‘improper’ functions of z.

2.11. Continuity. Let f(z) be a function of z defined in the
above way. It is said to be continuous at the point z= 1z, if,
given any positive number €, we can find ¢ number 8 such that

|f2)—f(zo)] <e
provided that |z—z,| < 8.

This is quite satisfactory as far as it goes, but it does not go
very far. A continuous function of z is merely a continuous
complex function of the two variables x and y. For if

[@) = u(z,y)+iv(x, y),
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and z, = 7y-+1y,, then
|u(z, y)—u(@, Yo)| < | f(2)—f(20)| <€
if [z—#y| < 8, which is true if

|x—2,| < 8 ly— I<§—
0 Yy '!/o )\/2‘

V2’
Hence u(z,y) is continuous, and so is v(z,y). Conversely, if u
and v are continuous, so is f(2).

2.12. Differentiability. From the class of continuous com-
plex functions, we next select those which can be differentiated.
The meaning of this term for complex functions must now be
defined.

Following the suggestion of real differential calculus, we write

f(z) = limf (2)—1(=y) ,
oz, 2—2Zg
and we say that f(z) is differentiable if the limit on the right
exists. The limit is called the derivative or differential co-
efficient of f(z). As in the definition of continuity, the approach
of z to its limit z, can take place in all possible ways. More pre-
cisely, we interpret the above formula as meaning that, given
any positive number ¢, we can find a number 8 such that

T f(z)"“f(zo)l
f'(z9) a—2, <e
provided that 0 < [z—zy| < 8. Thus we assert that, along
whatever path 2z approaches z,, the ratio

@) —f(zo)
2—2a

always tends to a limit, and that all the limiting values are the
same. Our requirements are therefore somewhat exacting.

This property of differentiability is, however, one which be-
longs to many familiar functions. A constant is differentiable.
A positive integral power of z is differentiable; for the familiar
proof for 2™ applies word for word to the case of z*. Similarly,
the sum or product of two (or any finite number) of differentiable
functions is differentiable; and the quotient of two differentiable
funetions is differentiable provided that the denominator does
not vanish. Finally, a differentiable function of a differentiable
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function is differentiable. All these theorems are proved in the
same way for functions of z as for functions of .

For example, any rational function of z is differentiable for
all values of z, other than zeros of its denominator.

2.13. We now naturally ask whether this property of dif-
ferentiability corresponds to a simple property of the functions
u(z, y) and v(z, y) which are the real and imaginary parts of f(z).

Suppose first that z—z, is purely real, so that

2o = %o+ W, 2 = &4-1Y,.

Then
J&)—f(zo) __ {u(2,y0)+i0(2, yo)} — (%o, Y) +i0(20, Yo)}
2—2a x— xo
u(x:yo)"u(xmyo)_*_ 0(z, ?/0) "’(x(n’/o)
x—x, z—x,

If this tends to a limit as x — z,, then its real and imaginary
parts separately tend to limits. But this means simply that the
partial differential coefficients

ou v
ox’ oz
exist at the point (x,,7,). Also
ou 37;)
1
f( (().L‘ 7 T=Tos YUYy ( )

Similarly, if we take z—z, to be purely imaginary, say
2y = %+, 2 == Xy,

we obtain
f(z)"f(zo) { xos H"W Ly, J)} {u T(): 7/0)‘*"2"( 0 Yo)}
—%p 1y "‘Wo
(@, ) —v(Xg, Yp) (g y) (g )
Y—% Yo
Henee the partial differential coefficients
v ou

exist at the point (2, ,); and

. ?7; Lo
I = ( -) )
Ty ) e,

&y
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Further, on comparing (1) and (2), and equating real and
imaginary parts, we see that
ou o ov ou
%=@: » 6—.7;':—3_?/‘ (x*'xo’ Z/'—yo)- (3)

We now see that the results of assuming differentiability arc
much more far-reaching than those of assuming continuity. Not
orily do the functions u(z,y), v(x,y) possess partial differential
coefficients of the first order, but they are connected by the
differential equations (3). These are called the Cauchy-Riemann
equations.

Thus, even if 4 and v are functions of  and y with partial
differential coefficients of the first order, w9 will not in
general be a differentiable function of z.

Examples. (i) Let f(z) = R(z) =z. Then

ou u v
==1 a_y=0’ = =0, ;7~0
The partial differential coefficients all exist, but the Cauchy-Riemann
equations are not satisfied for any value of z.
(ii) Let f(2) = |2|> = 22+y* Then
ou du v o
The Cauchy-Riemann equations are satisfied at the point z = 0 only.

2.14. Analytic functions. Since the property which we
have been discussing goes far beyond what we ordinarily think
of as differentiability, we give it a special name. A function
which is differentiable in this sense is said to be analytic.

The property of being analytic is in fact the distinguishing
property for ‘proper’ functions of a complex variable for which
we have been seeking.

We have seen that the truth of the Cauchy-Riemann equa-
tions is a mecessary condition for the function to be analytic.
But it is not a sufficient condition. This is perhaps to be
expected, since we obtained the equations as particular cases
only of the general property of differentiability.

Consider, for example, the function

fz) = ylzy|.

ThlS vanishes on both axes, so that at 2= 10
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and the Cauchy-Riemann equations are satisfied. But f(z) is
not differentiable at z=0. For
1) _ oyl
z  xtay’

and, if # = ar, y = Pr, where « and f are constants, this tends to

AlB]

a+i8
as r — 0. The limit is therefore not unique, and so the function’
is not analytic.

This example shows that f(z) may not be analytic if we merely

know that (&) —f e} (z—2)
tends to a limit along two straight lines at right angles. Actually

the definition fails if we restrict ourselves to any special class of
paths. Consider, for example, the function

0/
e =2EE w0, fo=0.
Then it is easily seen that

Lim{f(z)—f(0)}/z =0

as z - 0 along any straight line. But, on the curve x = 32,
@10 _ v 1
z vyt 2
Hence f(z) is not analytic at z = 0.

2.15. Suppose, however, that the four partial derivatives of the
first order exist throughout a region, and are continuous at all
poinis of the region. Then the truth of the Cauchy- Riemann equa-
tions is a mecessary and sufficient condition for f(z) to be analytic
throughout the region.

We have seen already that the condition is necessary. To
prove that it is sufficient, we use the mean-value theorem for
functions of two variables (P./M. § 154). Consider a point (z,¥)
of the region, and a neighbouring point (x-}-8x, y-}-8y). Then

= (G<)ow+ (5m) o

%
where ¢ and 7 tend to zero with 8z and 8y. Similarly

o, i) ,
&= (a-x—]—e)Sx—}-(-é-?;—}—n )83/.
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Hence, using the Cauchy-Riemann equations,

Sui% = (z_;.’ur i j_:;) (5z-+i59)--p,
where le] < (le[+1€') 6|+ (n [+ ']} 18y -

Hence
fz+82)—f(z) _Su+tidv__ou
oz - Sx+tidy ox " 8x+8x+18y

and lo/(0z+18y)| < le|+|€'|+|n]+1n’| > O.
Hence f{(z) is analytic.

2.16. A power series represents an analytic function inside its
circle of convergence.

We shall see later that this is merely a particular case of
a general theorem on series which represent analytic functions.
But the following direct proof may be inserted at this point. Let

Ea zn

be convergent for |z| < R. Then, if p< R, a,p™ is bounded,
say |a, p"| < K. Let

g(z) = Z na, 2",

Then if |z|<p and [z]|+ k| <p,

Je+h)—f(z) o (z+h AR
Now ‘ .
(EAR2 sl ”___(’:;1)zn—2h+...+hn-1
<n(n 1)|z!n—2|h{+ A Bt = (|z|+__..~.__v|”}b)ln—Izln——nlz[”*l.
Hence
FeAM—fE) _ ol < < 1 (([2]+[h])r—|z|m
N KE?{T""'Z‘ Y
1
=K P _ P
{l l( IZI—IkI le) (p—IZI)z}
Kpl|h|

~ == AN (—T2D*
which tends to zero with 2. Hence f(z) has the derivative g(z).
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2.17. Functions analytic in a region. A function is said
to be analytic in a region if it is analytic at all points of the
region. Henceforth we always consider functions which are
analytic in @ region. No particular interest attaches to the fact
that a function (like |z|2) happens to be analytic at certain
points, or even on a certain curve. It is when it is analytic in
a region that interesting consequences follow.

Examples. (i) The function

log(1+2) =z — —2—+§ -
is analytic for |z| < 1.
(ii) The functions
@
Nz (e L(pl2 | g—iz 2 s (i e o2
= ot cosz = J(e4e~#), sinz = f)i(a ~e~E),
n=0
are analytic for all finite values of z.
(iii) The function
f@)=e" (z5£0),  f(0)=0
is analytic for all finite values of z, excopt z = 0. At the point z = 0,
the Cauchy-Riemann equations are satisfied ; for at z = 0

ou o e w0
— = lim == O’ . — == lim -~ = 0’
dx L) & o 2
ou e v P
PYR ol 0, = lu?n == 0,
Y y-0 Y &Y y-0y
so that o _dv ou
dr Y’ dy da”

In spite of this, f(z) is not analytic at z == 0. For suppose that z = retim,
Th .
en f(z) == exp{_(reim)*'}} - 6,-!)

which tends to infinity as 7 — 0.

2.2. The complex differential calculus. The reader might
expect that we should now proceed after the manner of the real
differential calculus. There, having distinguished the special
class of differentiable functions, we next consider the still more
special class of functions which have a sccond differential co-
efficient. Some of these functions have differential coefficients
of the third order, and so on. Finally, from among functions
which have differential coefficients of all orders, we pick out

those which can be expanded in a power series by Taylor’s
theorem.
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There is no such process of successive specialization for
analytic functions of a complex variable. A function which is
analytic in a region has differential coefficients of all orders at
all points of the region, and the function can be expanded in
a power series, after the manner of Taylor’s theorem, about any
point of the region.

All these facts follow from the definition of an analytic func-
tion by means of its first differential coefficient.

The reader would perhaps expect us to begin by proving that
an analytic function has a second differential coefficient. We
are unable to do this. '

The results have of course been proved, or we shoald not have .
been able to announce what they were. But they have never
been proved directly. They all depend on the complex integral
calculus, and it is to this that we must now turn.

2.3. Complex integration. The reader of Hardy’s Pure
Mathematics should know what a complex integral is (P.M.
§ 222). We shall, however, introduce the subject in a slightly
different way.

Let AB be an arc C of a curve defined by the equations

x = ¢§(t), y= Sb(t):
where ¢ and ¢ are functions of ¢ with continuous differential
coefficients ¢'(f) and '(¢), and suppose that, as ¢ varies from ¢,
to ¢z, the point (x,y) moves along the curve steadily from A
to B.
Let f(z) be any complex function of z, continuous along

0. Let 1) =ula,y)+inia, ).
Let 2y, 2,,...,2, be points on C, 2, being 4 and 2, being B. Con-

sider the sum n
mz=1 f(lm)(zm—zm—-l)a (1 )

where [,, is a point of the curve between 2,,; and z, Writing
lm = gm"'“lm’ Uy = u(fm’ M) V= 'U(fm’ T)> this is

m‘gl(um‘i"‘vm)(xm'*"‘ym_r -1 7::l/m—l)-

Now Ly Lpy—q = ¢(tm)_¢(tm-—1) = ‘f”('rm)(tm—tm—l)’
Yn—Ym-1= l!’(tm)'“'1.1’(tm—1) = ‘l’l('r;n)(tm_tm—l)’.
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where ¢,,_; < 7, Sy by <7 < fy,- Hence the sum may he

written n )
z (u1n+7:vm){qsl(7m)+2¢"(T1;z)}(tm'—tm—-1)~ 2)

m=1
Since all the functions concerned are continuous (and therefore
uniformly continuous), we can, given ¢, find 8 so that

[uﬂ’t ¢,(’r?’ll) '—u(xrm ynz)(ibl(trn)! < €
for every m, provided that each |t,—, ;] <3. Also
E e(tm'_tm-—l) = E(tB_tA)'
m=1
It follows that, as € and § tend to zero,

mil Um ';b, (Tm) (tm - tm—.l)

tends to the same limit as

zn u(xvm 3 m)qsl(tm)(tm— tm—l):

viz. to the limit [ wlp(t), g0}’ (¢) d.
iy

Similarly the other terms of (2) tend to limits, and we find that
the whole sum tends to the limit

iy

| wiv)( @)+ 1)} dt, @3)

A
this integral being interpreted in the ohvious way as the sum
of two real integrals, one of which is multiplied by 4.

This limit is taken as the definition of the complex integral

of f(z) along C, and it is written

[, 16) dz. @)

In particular, the above analysis holds for any function f(2)
which is analytic throughout a region including (/.

Some of the most obvious properties of real integrals extend
at once to complex integrals; for example,

fo (@) +9(2)} dz = fa f(z) dz + .[C 9(z) dz,

and, if & is a constant,

fclkf ()de=k f(: f(z) dz.
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Also, if ¢’ denotes the contour C described in the opposite

direction, fc’ fz)dz = — J‘C f(z) dz.

Examples. (i) Let f(z) = k, a constant, and let ! be any curve
joining the points 2z =« and z = b. Then

zlf(cln)(zm_zm—l) =k z zm'—zm—l) = k(b_a)'

ni= m=1
Hence ka dz = k(b—ua).

Since the result is independent of the particular curve €' taken, we may
write the result as b

J‘ kdz = k(b—a).

(i) Let f(z) == 2, and let C be any curve joining the points = = ¢ and
2 =b
First take {,, = z,. Then

"
,

%1 f(gm)(:m—:m-—l) = }: :IIL(:))I;:I)l—l)'

m= Mm-1
Taking {,, = z,,_;, the sum is
n
z - 1(:m"_ - 1)'
-1
These sums tend to the same limit, and hence so does half their sum, viz.

".I’. Z (z};‘—z}’n_l) ='5‘(bz——(lz).
Hence f(': dz "———-;];_(Z)‘l—a.g),

and the integral is‘again independent of the path.
(iii) Calculate the integral
dz

H

o ?
where C is the circle with centre the origin and radius p.
[nge we can put
ar = p cos 0 =¢(6), y = psind = (0),
where 6 varies from 0 to 27. Now
¢'(0)+if'(0) = —psinb - picos§ — picif.

Hence the integral is

Lii il

F;f-@picfﬂ b =i f 0 »27rz’.]

(iv) Prove similarly that fo 2t dz = 0,

where n is any integer. positive or negative, other than —1.
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2.31. An inequality for complex integrals. We may de-
fine the length of the curve z = ¢(¢), ¥ = (t), where ¢'(¢) and
J’(t) are continuous, to be the integral

[ Op+ P d,
taken between appropriate limits. For the justification of this,
see P.M. § 146.
If M s the upper bound of |f(z)| on the curve C, and L is the
length of C, then
] [feyde < ML

In the first place, if F(¢) is any continuous complex function
of a real variable ¢,

th)(zzl/ lF(t)]dt | 1)

FOI' . l Z F(tm (tm m 1 l < Z !F {nz” {m—{ln—l)

and (1) follows on proceeding to the limit.
Hence, with our previous notation,

tp

fz) dz f (u—iv){d’ ()’ (£)} dt

< [ M op-+w o d
¢

4
= ML.

2.32. Contours. By a contour we mean a continuous curve
consisting of a finite number of arcs of the type already con-
sidered, that is to say, arcs defined by equations = ¢(t),
y =(t), where ¢'(!) and /() arc continuous. The contour is
closed if the end-point of the last arc is the same as the starting-
point of the first.

Let C be a closed contour. Suppose that there is an interval
(@,b) such that, if a <2’ < b, the line == 2" meets C in just
two pomts say y;(2") and y,(2’), where y, <2 y,; while if 2’ <a
or &' >b, the line x =2’ does not meet C. Suppose similarly
that there is an interval («, 8), such that if « <%’ << B, the line
y=y meets C in just two points, say x,(y’) and ,(y’), where
xy <i; whileif y' < aor y’ > B, the line i == 3/’ does not meet C.

Then the point (x,y) is said to be inside C if @ < # < b and
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y,(%) <y < Ya(). A point not inside € or on C is said to be
outside C.

A contour which satisfies these conditions is called a simple
closed contour. For example, a circle, square, or ellipse in any
position is a simple closed contour. The definition of ‘inside’
and ‘outside’ which we have given may strike the reacer as
unnecessarily elaborate, and the class of curves considered un-
necessarily restricted. But the general study of questions of this
kind is not quite so easy as might be supposed, and we regard
it as outside our scope. It forms the subject known as ‘analysis
situs’, and is dealt with, for example, in Watson’s Complex
Integration and Cauchy’s Theorem. On the other hand, the
reader who prefers to ignore our explanations and trust to
geometrical intuition will find that he gets on perfectly well.

We can extend the class of contours to which our theorems
apply by ‘addition’ and ‘subtraction’ of simple closed contours.
Suppose that C and C" are two simple closed contours having
one or more arcs in common, but lying outside cach other. We
form a new closed contour C” by deleting the common boundary.
The interior of 0" consists of the interiors of C and C’, together
with points on the deleted boundary. Similarly, if all points
inside C’ are also inside C, we form a new closed contour C”,
the interior of which consists of points inside C' but outside C'.

A closed contour of this kind which is often useful is formed
by the semi-circles |z]=p, |z = R (0 <p < R), in the upper
half-plane, joined by intervals of the real axis.

Still more complicated contours can be introduced by further

“additions; for example, add the contour just described to its
reflection in the real axis, and delete the common boundary
from z= —R to z= —p. We obtain a closed contour with a
definite inside and outside. The outside consists of the regions
|| <pand [z] > R. In describing the contour, the interval from
z=p to z= R is described twice in opposite directions.

2.33. Cauchy’s theorem. The keystone of the theory of
analytic functions is the following theorem of Cauchy :

If a function f(z) is analytic and one-valued inside and on @
sumple closed contour C, then

f'f(z) dz= 0.
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To prove this, we divide up the region inside C into a large
number of small parts by a network of lines parallel to the
real and imaginary axes. Suppose that this divides the inside
of C into a number of squares, C,,...,C,; say, and a number of
irregular regions, D...., Dy say, parts of whose boundaries are
parts of C. Then

a M

Jfde=% [ jod+3 [ f@e

where each contour is described in the positive (anti-clockwise)
direction. Consider, for example, twosquares A BCD and DCEF
with a common side CD. The side CD is described from C to
D in the first square, and from D to C in the second. Hence
the two integrals along CD cancel. So all the integrals cancel,
except those which form part of C itself, since these are described
once only. This proves (1).

We now use the fact that f(z) is analytic at every point. This
means that, if z, is any point inside or on (, then

TG iy < e

provided that 0 < [e—2z,| < 8 = 8(z,); i.e. if [z—2,] < §,
(&) =f(20)— (z—20)f"(20)| < € [o—2y]. (2)

If we consider any particular region C,, or 1), in the above
construction, it is evident that we can choose its sides o small
that (2) is satisfied if z, is a given point of the region, and z any
other point. It is not, however, immediately obvious that we
can choose the whole network so that the conditions are satisfied
in all the partial regions at the same time. We shall prove that
this is actually possible.

Having given €, we can choose the network in such @ way that,
in every partial region C,, or D,, there is a point z, such that
(2) holds for every z in this region.

This means, substantially, that the function is wuniformly
differentiable throughout the interior of C.

Let us assume for the moment that this is true. Consider one
of the squares C,,, of side I,,. Here, by (2),

J@) = f(zo)+(2—20)f (z0) +b(2),

where [6(2)] < elz—2,].
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Hence

[, @ dz= [, (feo+E—wf G} dz+ [, 4(e)da.

The first integral on, the right is zero, by § 2.3, examples (i) and
(ii). Also, by § 2.31,

\ fc $(2) dz| < V2, 4L,

since [z—z,| < V21, and the length of C,, is 47,

In the case of one of the irregular regions D,, the length is
not greater than 47, +s,, where s, is the length of the curved
part of the boundary. Hence

f,: $(2) dz| < eVl (4, +5,).
Adding all the parts, we obtain
§ fc f(2) dzl < 4N2 S (B4B)+ev2 T s, 3)

Now I (12,+) is the area of a region which just includes C,
and is therefore bounded; in fact, if (@,b; «,8) is a rectangle
including €, 5 (2, +8) < (b—a)(f—o).

Also ¥ s, is the length of the contour C. Hence the right-hand
side of (3) is less than a constant multiple of . But the left-
hand side is independent of . It must therefore be zero.

2.34. We have still to prove the assumption which we have
made. This is done by the well-known process of subdivision.
Suppose that we start with a network of parallel lines at con-
stant distance I. Some of the squares formed by these lines may
contain a point z, with the required property. We leave these
unchanged. The rest we subdivide by lines midway between
the previous ones. If there still remain any parts which have
not the required property, we subdivide them again in the same
way. There are now a priori two possibilities. The process may
terminate after a finite number of steps, and then the result is
obtained; or it may go on indefinitely. In the second case there
is at least one region which we can subdivide indefinitely with-
out obtaining the required result. Call this region (boundary
included) R,. After the first subdivision we obtain a part R,,
contained in R, with the same property. So we shall have an
infinity of regions R,, R,,..., R,,... each contained in the pre-
vious one, and for each of which (2) is impossible.
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There is a point z, common to all the regions R, ; and, since
the dimensions of R, decrease indefinitely, [z—zy| <8 if n is
sufficiently large (say » >n,) and zisin B,. But f(z) is analytic
at z,. Hence (2) holds with this 2, in R, if n>n, We have
thus arrived at a contradiction, and so proved the theorem.

2.35. Cauchy’s theorem may obviously be extended at once
to a closed contour of any of the types defined in § 2.32. It
may also be expressed in slightly different forms. Suppose, for
example, that z, and z, are points connected by two different
curves C and C' such that C, and C’ reversed, together make
up a simple closed contour, or a closed contour of one of the
other types described in § 2.32. Let f(z) be a function analytic
in the whole region between C and C’, and on the curves them-
selves. Then Cauchy’s theorem obviously gives

[ fe)de= [ 1) dz. (1)

Suppose again that C is a simple closed contour, and ¢’
another simple closed contour lying entirely inside C. Let f(z)
be analytic and one-valued at all points in the ring-shaped
region between C and C’. Then

[ fe) dz= [, f2)dz. )

For we can join C to C’ by a straight line I, parallel, say, to
the real axis. Then the region between C and (", cut by [, is the
inside of a closed contour I, formed by C described positively,
C’ negatively, and I described twice in opposite directions. Now

[of@) de= [ fe) e — [ f2) de + [ fe) de — [ fte) .
Since the integral round I' is zero, the result follows.
A similar result holds if there are any finite number of con-
tours C’, C”,... inside C, and f(z) is analytic in the region
between them. Then

[, fe) dz= [ @) a2+ [ f) 2 +... @3)
Another important remark is that, for the truth of Cauchy’s
theorem, it is not necessary that f(z) should be analytic on C,

provided that it is analytic inside it and continuous up to and
on C. For if f(z) is continuous, it can be shown that

f o f@) dz=1lim | f@) dz, 4)
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where (" is a contour inside ' and tending to it. It is perhaps
not worth while describing how this is to be done in all cases—
if O is a circle, C’ is a concentric circle, and so on. Now the
right-hand side of (4) is zero for all positions of ¢’ inside C.
Hence the left-hand side is zero.

2.36. A complex integral as a function of its upper
limit. Let f(2) be a function analytic in a region D. Let

= fzf(w) dw,

the path of integration being any contour lying entirely inside
D. Tt follows from Cauchy’s theorem that the value of F(z)
depends on z only, and not on the particular path of integration
taken from z, to z. Our notation has, of course, anticipated this,
The function F(z) is analytic in D. For
248z
Pletda)—Fe)= [ fw) du,

where (by Cauchy’s theorem) we may suppose the integral to
be taken along the straight line from z to z-4-8z. Hence

248z

TR fe =, [ G~y
Since f(z) is continuous,
Ifw)—f@) <e  (lw—z] <)
Hence, if 0 < [82] < §,
| F(z+82)—F(z)
5 —fz) <e.

This proves that F(z) is analytic, and that its derivative is f(2).
As in the theory of functions of a real variable, we call F(z)
the indefinite integral of f(z). _
Suppose, on the other hand, that we know an analytic function
G(z) such that ¢'(2) = f(2)

throughout D. Then
a
e {F(2)—Q(z)} = 0.

. Let F(2)—6G(z) = X +iY.
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Then (as in the proof of the Cauchy-Riemann equations)
oX oX oY oY

=0, =0, =0, ‘—=

or oy ox oy
Hence X and Y are constant, i.e. F—@ is constant. Hence

b
[ #) &2 = 6(0)—G1@).

2.37. Integration and differentiation of complex series.
A uniformly convergent series of analytic functions of a complex
variable may be integrated term by term along any path in the
region of uniform convergence.

This may be proved precisely as in the case of real functions
(using the inequality of § 2.31).

A series of analytic functions may be differentiated term by term
at any point inside a region where the differentiated series is
uniformly convergent.

This also may be proved in the same way as for real functions.
It will, however, be superseded later (§ 2.8) by a much more
useful theorem, which is a characteristic achievement of com-
plex function theory, and which has no analogue in the theorems
of Chapter I.

2.4. Cauchy’s integral. Let f(z) be a function analytic
inside and on a simple closed contour C. Let z be any point
inside C. Consider the function of w

flw)
w—z
This function is analytic except at w = 2, where the denominator

vanishes. Hence
fo) g f 1) g,
cWw—z2 wW—z

where y is any other closed contour inside C' and including
w=2. Let y be the circle with centre z and radius p. Since
f(w) is continuous, we can take p so small that

|flw)—fz)| <e
on y. Then

Y .
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The first term is equal to 27¢ f(2) (§ 2.3, ex. 3). Also by § 2.31,
the modulus of the second term does not exceed

- 277p = 2me.
Hence f flw ) dw —271 f(z) < 2me.
cw—z
But the left-hand side is mdependent of e. It must therefore
be zero. Thus
fey= o [ 1) 4
2m cW— z

This is Cauchy’s integral formula. It expresses the value of f(z)
at any point inside C in terms of its values on C.

2.41. The derivatives of an analytic function. Let z be
any point inside C, and z-+A a neighbouring point, also inside

C. Then 1 fw)
fleth): - 2mi Jo w—z—h .
Subtracting the previous result from this, and dividing by &,
[t —f) f fw) ,
T m ) ey (1)

When % — 0 the integrand tends to the limit f(w)/(w—=z)%. To
prove that we can proceed to the limit under the integral sign,
consider the difference:

fw) S )
L (o—z) ) ™ f o (w2 ™

_ J(w)
—h fo ol @

Suppose that |f(w)| <M on C, and that the distance from z to
C (i.e. the minimum of |w—=z| as w describes C) is 3. Let the
length of C be L. ,Then if [k| <3,

Jo) g < ML
Jo tosits—iy® < 55— i
which is bounded as |h| - 0. Hence the right-hand side of
(2) tends to zero with |k|. Hence, by (1),

o= [ 29 . 3)

2’77‘2 C(w 2)2

This is Cauchy’s formula for f'(z).
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The existence of f/(z) was, of course, our original hypothesis.
But now that we have obtained this formula for it, we can
repeat the above process. We have
"(z+h)—f'(2 1 2w—22—h
f(__i__li_'_f._(__) = 5 fo S e fw) dw
and we prove as before that when h — 0 this tends to the limit
2 [ fe)
2mi Jo (w—2z)®
Hence f"(z), the derivative of f'(z), exists, and is given by the
formula ] 9 fw)
f (z)=§m o (w—z)®
The argument can obviously be repeated indefinitely; kence f(z)
has derivatives of all orders, the nth being giwven by the formula

()
o) =g [T

2.42. Morera’s theorem. This is a sort of converse of
Cauchy’s theorem.
If f(z) is a continuous function of z in a region D, and if the

integral

‘ 4 f f(z) dz

taken round any closed contour in D is zero, then f(z) is analytic
inside D.

* In this theorem the precise sense of the word ‘contour’ does
not matter. The result holds even if we restrict ourselves, say,

to convex polygons.
Consider the function

= | sy

Its value is independent of the path of integration; and

‘ zh
T oy — ¢ [ st d,

dw.

where the path of integration may be taken to be the straight
line. This tends to zero with , since f(w) is continuous. Hence

F(2) is analytic, and has the derivative f(z). But we have just
proved that the derivative of an analytic function is analytic.
Hence f(z) is analytic.
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2.43. Taylor’s series. An analytic function can be ex-
panded in powers of its argument by a formula similar to
Taylor’s series for a real function.
Suppose that f(z) is analytic on and inside a simple closed con-
tour C, and let a be a point inside C. Then

16): = f@+e—a)f@+..+ L oyt

the series being convergent if |z—a| <8, where 3 is the distance
from a to the nearest point of C.
We start from Cauchy’s formula

1 w
f&)= o o 1{}% dw,
where we take I' to be a circle with centre a and radius p < 8.
The formula holds if z lies inside this circle, i.e. if [z—a| < p.
Now 1 1 z—a (z—a)

- 4 2+...+-w_a)n+1-+...,

w—z w—a (w—a)

the series being uniformly convergent on I'. Hence we may
multiply by f(w)/2nt and integrate term by term round I'. We
obtain

2t Jp w—a 2mi w—a)?

+...+(z_0f)nf AN
r

2m1 (w—a)r+t

and, by the formulae of § 2.41, this is the desired result. It is
sometimes known as the Cauchy-Taylor theorem.

There is one difference to be noted between this proof and
the corresponding inyestigation for functions of a real variable.
In the real variable theory we obtain the first » terms of the
expansion, and a remainder term, and a special investigation is
required to see whether this term tends to zero. In the complex
theory the fact that it tends to zero follows from our original
hypotheses. This state of affairs is quite natural; for combining
the above theorem with §2.16, we see that the necessary and
sufficient condition that a function should be expansible in a power
series 18 that it should be analytic in a region. We cannot define
an analytic function of a real variable except as one which
can be expanded in a power series. If therefore we start from
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other hypotheses, we may expect to meet with difficulties. For
example, the radius of convergence of the series depends on the
extent of the region where the function is analytic; and it may
therefore be controlled by the existence of singularities off the
real axis, of which, if we confine ourselves to real variables, we
can have no knowledge.

Thus the expansion

= 1—p2txt—

1

122
holds for |z| <1 only. There seems to be nothing in the nature
of the function, considered as a function of the real variable z,
to account for this restriction. But if we make z complex, it is
accounted for by the fact that the function is not analytic at
the points 2 = 4.

2.5. Cauchy’s inequality. If

f(z) =n§0 A" (Izl < R)’
and M (r) is the upper bound of | f(2)| on the circle |z| = r, (r < R),

then @l < M(r)
for oll values of n.

For a =L f (z)

" 9y z”+1

[el=r
and the theorem of § 2.31 gives at once

a,| < 0

Cauchy’s inequality may also be proved as follows. Let a,
be the conjugate of a,. Then if r < R,

If 12 _._f f(z Z a, ,rmenne z a, ,rwe—wo

m=0
Both series being absolutely convergent, we may multiply by
the usual rule (§1.65). The resulting series is uniformly. con-
vergent for 0 < 8 < 27, and we may therefore integrate term by
term over this interval. On integration, all the terms for which
m 7= 1 vanish, and we obtain

2 »
[1f@)2d8= 3 a,az f =23 |a,ron,
e n=0

7n=0
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1 2m
or 3l = oo [ 1@ 30 < ey
n=0 T

The result clearly follows from this.

Example. Show that Cauchy’s inequality reduces to an equality if,
and only if, f(2) is a constant multiple of a power of z.

2.51. Liouville’s theorem. A function which is analytic for
all finite values of z, and is bounded, is & constant.

We give two proofs of this important theorem.

First ProOOF. If f(2) is analytic for all finite values of z, the

Taylor’s series w

is convergent for all z. Also, if |f(z)| <M, then by Cauchy’s
inequality la,,| < Mr—n

for all values of » and r. Making r - co, the right-hand side
tends to zero if n > 0. Hence a, = 0 for » > 0, and f(z) = a,.
Seconp Proor. If z,, 2, are any two numbers,

) _1 [ f@) 1 [ f&)
j(zl)"f(zz)—% C;:z—ldz 5 cz—_;—z(l,;
1 2y

O
C

2w Jo (r—2y)(2—2,)

where C is a contour including both 2, and z,. Taking C' to be
a circle with centre the origin, and radius R greater than |2, | or

|25, we have uR
_ [21—2,|
e~ < =

The right-hand side tends to zero as R — co. Hence f(z,) = f(z,)-
Since this holds for all values of z; and z,, f(z) is a constant.

The same result holds if the function is bounded on any
sequence of contours tending to infinity. This is clear from
either proof.

2.52. The following is a more general result of the same kind.
If f(2) is analytic for all finite values of z, and as |z| - c0

f@) = O(|z]"),
then f(z) is a polynomial of degree < k.
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For by Cauchy’s inequality
@] < M(r)r—n = O@*-"),
and the right-hand side tends to zero as r - co if n > k. Hence
a, = 0 for n >k, and the result follows.

2.53. The function A(r). Let A(r) denote the upper bound
of the real part of f(z) on |z| =r. We next prove an inequality
similar to Cauchy’s inequality, but involving A(r) instead of
M(r). :

Wehave g, jm < max{ad(r), 0}—2R{f(0)}

Jor all values of n > 0 and r.

Let z =ret, and

F&) = 3 a2 = u(r,0)+iv(r,9),
@y = a1y,
Then u(r,0) = i (&2 cosnd — B, sinnbyrn.
n=0

The series converges uniformly with respect to 6. Hence we may
multiply by cosnf or sinzf and integrate term by term; and
we obtain

27 . 2m
}T f ulr,0)cosnf df = o 97, - f u(r, 6)sinnd db = — B, 1
aT
[} 0
for » > 0, while

2m

1
'é;; f u(’r, 0) de = &g
0

Hence

2
8™ = (B, )1 =7lr f u(r,0)e-"d9  (n>0),

0

2
and anr <2 f fulr, 6)]d8.
0

’ 2
Hence la,b"20< [ {fu(r,0)|-+u(r,0) .
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Now |u|-+u is zero if u << 0. Hence if 4(r) < 0 the right-hand
side is zero. If A(r) >0, the right-hand side does not exceed

717 f 2A(r) d6 = 4A(r).

This proves the theorem.

There are, of course, similar results involving the lower bound
of Rf(z), and the upper and lower bounds of If(z).

2.54. The analogue of Liouville’s theorem for A(r). If
f(2) is analytic for all finite values of z, and A(r) is bounded as
r —> 00, then f(2) 18 a constant. If A(r) < Ar¥,where A and k are
constants, then f(z) is a polynomial of degree < k.

In the first case, it follows from the above theorem that |a, [
is bounded as r — co for every » > 0. Hence a,, == 0 for n >0,
and f(z) = a,. Similarly, in the second case, a,, = 0 forn > £, and
f(z) is of degree <C k. It is sufficient that the conditions should
hold for some arbitrarily large values of r.

The first part of the theorem may also be proved directly as
follows. Consider the function ¢(z) = exp{f(z)}. Then

|p(z)]| = eur .
Hence, if u(r,0) < 4, then

[$(z)] < e
Hence, by Liouville’s theorem, ¢(z) is a constant. Hence f(z)
is a constant.
2.6. The zeros of an analytic function. A zero of an
analytic function f(z) is a value of z such that f(z) = 0. If f(2) is
analytic in the neighbourhood of z = @, then

f(Z) =n20a” (Z—- a)n

for [z—a| small enough; and if 2=« is a zero, onc or more
of the coefficients a,, a,,... vanish. If a,=0 for n <m, but
a,, # 0, then f(z) is said to have a zero of the mth order. Thus
every zero is of some definite integral order—a function cannot
have a zero of fractional order inside a region where it is analytic.
" At a zero of order m, we have

fl@)=f(@)=...=f""a)=0,
while f")(a) 5 0. "This is clear from the form of Taylor’s series.
G
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The zeros of an analytic function are isolated points; that is to
say, if @ function f(z) is not identically zero, and is analytic in
a region including z = a, then there is a circle |z—a|=p (p > 0)
inside which f(z) has no zeros except possibly z = a itself.

The theorem may also be stated as follows:

Let f(z) be a function analytic in a region D, and let Py, P,,...,
P,,... be a set of points having a limit-point P inside D. Then
if f(2) = 0 at every point P,, it follows that f(z) =0 at all points
of D.

fIt may be supposed without loss of generality that P isz= 0.
Then f(z) is analytic in a region including z = 0, and hence

f () =n§0anzn

for |z| < R, say. It will be proved that all the coefficients in
this series are zero. If this is not so, there is a first coefficient
which is not zero, say ;. Then

[@) =2 +ag,2+...) (2] < R).
If 0 < p < R, the series is convergent for z=p, and so «,p" is
bounded, say |z,|o" < K. Hence

1 > el — e — 2 — )

—r a—. KPP

o pHp—lel)

‘and the right-hand side is positive if |z| is sufficiently small,
except at the point z = 0 itself. This contradicts the hypothesis
that f(z) has zeros arbitrarily near to, but not coincident with,
z=10. Hence in fact all the coefficients vanish. Hence f(z) =0
inside the circle of convergence of the above series.

We can now, however, repeat the process, starting from any
point inside this circle; for the data now hold for any such point,
by what has just been proved.* In this way the result may be
cxtended to any point interior to D.

2.61. The theorem has the following obvious corollaries:

(i) If a function is analytic in a region, and vanishes at all
points of any smaller region included in the given region, or
along any arc of a continuous curve in the region, then it must
vanish identically.

* For a more detailed discussion of such chains of circles sece Ch. IV.
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(ii) If two functions are analytic in a region, and have the

same value at an infinity of points which have a limit-point in
the region, then they must be equal throughout the region.

Examples. (i) The function sinz has zeros of the first order at the

points z = 0, 4=, 4 2m,..., and no other zeros. [The formula
|sin(x+4y)| = V(sin%z-+sinh?y),
P.M. § 233, ex. 2, shows that sin z has these zeros and no others.]

(i) The function cos z has zeros of the first order at z = %3, + By
and no other zeros.

(iii) If f(z) and g(z) are both analytic functions in a region D, and
f(2)g(z) = 0 in D, then either f(z) = 0 throughout D, or g(z) = 0 through-
out D.

2.7. Laurent series. Let f(z) be a function analytic in the
ring-shaped region between two concentric circles C and C', of
radis R and R’ (R’ < R), and centre a, and on the circles them-
selves. :

Then f(z) can be expanded in o series of positive and negative
powers of z—a, convergent at all poinis of the ring-shaped region.

We must remind the reader that all functions considered here
are one-valued. This assumption excludes certain functions, any
one value of which is analytic at all points of the ring. Consider,
for example, the function fe) =2

where p is real. This is analytic except possibly at z = 0. Now,
if z=ret, f(z) = rpeind,

As we pass round a circle with centre the origin, starting at
6 = 0, say, f(z) changes from 7? to rPe2r7, and so does not return
to its original value unless p is an integer.
To prove the theorem, let z be a point of the ring, and con-

sider the integral 1 [ faw)

— | L dw

2m ) w—=z
taken round the outer circle C in the positive direction, then
along a radius vector (which we may suppose does not pass
through z) to the inner circle ¢, then round €' in the negative
direction, then back along the radius vector to the starting-
point. This is a closed contour to which we may apply our
previous results—the fact that part of it is described twice does
not affect any of the arguments. The value of the integral is
therefore f(z).
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Since f(z) is one-valued, the two integrals along the radius
vector joining the circles cancel, and we obtain

fo) ) g,
f) = 2771, w~z T 2m o W—z
where now each integral is taken in the positive direction. As
in the proof of the Cauchy-Taylor theorem

L[ ) 0 5y gy
Tmﬁfgz—vtzdw_;a”(d a)”,

where a, =-)—1 f 'ﬂv_)_ dw.

n (w a)n +1

In this case, however, a, is not in general cqual to f0(«)/n!,
since f(z) is not necessarily analytic throughout the interior of C.
Again
1 1 w—a)*1
R B N i

2—w z—a (2— a)~ (z—a)"

T

" this series being uniformly convergent on C'. Hence

fw 1 1 J- '
Zm, ¢ W— z W= o C,f(w)flw SR
6 a1 d L p,
+(z_a)'” "5 J;y (w—a)*~Yf(w) dw +... ; e
Where bn == —-1.._. f (w___a/)'b—lf(u)) (l’ll].
2t

These two series together form Laurent’s expansion. They may
be written together in the form

o0

f)= 2 a,z—a),

Nn=—o0

where a,= —1— __ﬁw)' dw

2m | (w—a)
for all valucs of =, the integral being taken round any snmple_
closed contour which passes round the ring.

In the particular case where f(z) is analytic inside C”, all the
coefficients b, are zero (by Cauchy’s theorem), and the series
reduces to Taylor’s series.

Notice that the series of positive powers of z—a converges,
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not mersly in the ring, but everywhere inside the circle C.
Similarly the series of negative powers converges everywhere
outside C'. ‘

Examples. (i) Show that

N e
ein(z—;). — E (,nzn,
n=—o
27
1 .
where My = 5~ f cos(nf—esinf) d6.
'

0
(ii) Show @a11at, ife> 0,

Wl @
e 2% = z az"
n=—m

2
3e

f ecleos b +cos®®)eog{e sin B(1 — cos §) —nf} d0.
0

2.71. Isolated singularities of an analytic function.
Suppose that a function f(z) is analytic throughout the neigh-
bourhood of a point @, say for |z—a| < R, except at the point
a itself. Then the point @ is called an isolated singularity of
the function. .

Suppose that f(z) is one-valued. We may then expand f(z) in
a Laurent series of powers of z—a, and the inner circle ¢’ of
§ 2.7 may be taken as small as we please. Thus

fe)=3 a,z—ay'+ 3 be—a)  (0<|z—a|<R)

n=0
There are now three possible cases. All the coefficients b,
may be zero. The function f(z) is then equal to a function
analytic for [z—a| < R, except at the point a; for example, we
might define f(z) to be 1 except at z =a, and f(a) = 0. This is
a rather artificial sort of singularity, and of no further interest
in the theory.
Secondly, the series of negative powers of z—a may contain
a finite number of terms only. Then f(2) is said to have a pole
at the point z=a. If b,, is the last coefficient which does not
vanish, then

f&) =3 ane—ay+ $b,e—a)n,

and the pole is said to be of order m, or to be a simple, double,...
pole in the cases m=1,2,....
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If f(z) has a pole of order m, then plainly (z—a)» fl) is
analytic and not zero at z=a. Hence also

1
46 = ey
is analytic and not zero at z=a. Hence
1
——. i (z—a)"P(z),
A

"so that 1/f(z) has a zero of order m at z=a.

Conversely, a similar argument shows that, if f(z) has a zero
of order m, then 1/f(z) has a pole of order .

The finite series '

3. balz—a)"

is called the principal part of f(z) at z =a.
If {(z) has a pole at z = a, then |f(z)| - 0 as z - a. For

S bn(z_‘a)_n z—al™™" 2 bn(z_a’)"
n=1

n=1

m—1
> lz——a[‘m{ Ib,, —ngl Ibnl [z—al

and the expression in brackets tends to |b,,|, so that the whole
tends to infinity—in fact the function is dominated by the last
term in the principal part.

If f(z) = O(|z—a|~*) as |z—a| = 0, the singularity is at most a
pole of order k; in particular, if f(z) = O(1), there is no singularity
(except of the trivial type first mentioned).

An argument similar to that of § 2.52, but with 4,, and r
tending to 0, shows that b, = 0 for n > k. Again it is clearly
sufficient that the data should hold on a sequence of contours
tending to 0.

Examples. (i) The functions cot z and cosec z have simple poles at
the points z = 0, +7, 4-27,... .

(ii) The functions tanz and secz have simple poles at the points
z = 4w, +im....

(iii) Find the poles of

1 1
sinz--sin o’ cosz--cosa’

(iv) The function cosec 22 has one double pole and an infinity of simple
poles.
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(v) Find the poles of the functions
1 1 1
2241’ P 2t 42221 1°
2.72. Essential singularities. The third possibility is that
in the expansion of f(z) in powers of z—a, the series of nega-
tive powers may not terminate. The point z = a is then called
an essential singularity of f(z). In this case

o0 0 b
fe)= 2 me—ay+ 3 o2,
. n=0 n=1
where the last series does not terminate, but is convergent for
all values of z except z=a.

The complicated behaviour of a function in the neighbour-
hood of an essential singularity is shown by the following
theorem of Weierstrass.

Given any positive numbers p, €, and any number ¢, there is
a point z in the circle |z—a| < p at which |f(z)—c| < e.

That is to say, f(2) tends to any given limit as z tends to a
through a suitable sequence of values.

We begin by proving that, if p and M are any positive num-
bers, then there are values of z in the circle [z—a| < p at which
If(z)] > M. If this is not true, then |f(z)| < M for [z—a| <p.
Hence, if the radius of 0’ is R’,

b, = — f (w—a)=Yf(w) dw < MR
2m Jor

by § 2.31. This holds for all positive values of » and R’, and,
making R’ — 0, we see that b, =0 for » > 1. Hence there is
no essential singularity, contrary to hypothesis.

Now consider any finite value of ¢. If f(z)—c has zeros inside
every circle [z—a|=p, the result follows at once. If not, we
can choose p so small that f(z)—c has no zero for [z—a| <p.

1
fl@)—c

is regular for [z a| < p, except at z=a. The point z =@ is an
essential singularity of ¢(z); for

fl)=

Then d(z)

L

$(2)

+¢
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and if ¢(z) had a pole, f(z) would be analytic; while, if ()
were analytic, f(z) would be analytic or have a pole.

1t now follows from the first part that there is a point z in
the circle [z—a| < p such that

$)] > 2,

ie. |fz)—c| <e,
and this is the result stated.

This theorem distinguishes clearly between poles and essential
singularities. While at a pole f(z) tends to infinity, at an
essential singularity f(z) has no unique limiting value, and in
fact comes arbitrarily near to any assigned value an infinity
of times.

Examples. (i) The functions

- A 1
ez, sin -, Ccos ~
z "

have isolated essential singularities at z = 0.

(ii) The function cosec(l/z) has a singularity at z = 0, but it is not
an isolated singularity, being the limit-point of the poles at the points
z = 1/(nar). We call such a point an essential singularity also.

(iii) The function '/~ actually takes every value except 0 an infinity
of times in the neighbourhood of z = 0; and it tends to the limit 0 as
z — 0 along the negative real axis.

2.73. The ‘point at infinity’. We may consider ‘infinity’
as a point by making the substitution z = 1/w. Then the be-
haviour of f(z) ‘at infinity’ depends on the behaviour of f(1/w)
at w=0. We say that f(2) is analytic, has a simple pole, etc.,
at infinity, if f(1/w) has the same property at w=0. Thus
f(z) = 22 has a double pole at infinity.

A function which is analytic everywhere, including infinity, is
a constant. For by Laurent’s theorem, since f(z) is regular for
all finite values of z,

Since f(1/w) is regular at w=0, a,: : 0 for n=1,2,..., so that

J(=) = a,.
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A function which has no singularities other tham poles is @
rational function.

In the first place, there can only be a finite number of such
poles; otherwise the poles would have a limit-point either at a
finite point or at infinity, and at such a limit-point the function
would not be analytic or have a pole, contrary to hypothesis.

Suppose, then, that the poles of f(z) at finite points are at
a, b,..., k, with multiplicities «, B,...,x. Then

- 9() =f@)(z—a)*...—k)
is analytic except at infinity, where it has at most a pole.

Hence
az",
0

g(z) =

3
V18

g(llw) = z a,w-

n=0
Since the singularity of g(1/w) at the origin, if there is one, is
a pole, this series must terminate, i.e. g(z) is a polynomial.
Hence f(z) is the quotient of two polynomials, i.e. a rational
function.
Conversely, a rational function has no singularities other than
poles.

\

2.8. Uniformly convergent series of analytic functions.
Suppose that

(i) each member of a sequence of functions

Uy (2), Ua(2)yeers Uy ()0
18 analytic inside a region D,
(ii) the series w
2. uy(2)
n=1
18 uniformly convergent throughout every region D’ interior to D.
Then the function w
fz)= Zlun(Z)
n=

18 analytic inside D, and all its derivatives may be calculated by
term-by-term differentiation.

Let C be a simple closed contour lying entirely inside D, and
let z be a point inside C.
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If we knew already that f(z) was an analytlc function, we

should have
fe) =5z f £09) g, 1)

w—z

Actually we obtain this result from our data, and then use it
to prove that f(z) is analytic.
We have 1
J.

Uy (2) = Uy () dw

2717: w—=z

for each function «,(z). Hence

fe)=Sune) =2 5 | Ul g,

But, since > u,(w) is uniformly convergent on C, we may
multiply by 1/(w—z) and integrate term by term. Thus

J {25 =2 [ 5 e

and we obtain

fey= 271"& { Z %}71(;%_)} = 217'& c ’i(j-u)z dw,

i.e. we have proved (1).
We can now deduce from (1), as in § 2.41, that f(z) has a
derivative f'(z), given by the formula

f(=): -!—-f (f(w dw.

2w w—z)?

In this case the boundedness of f(z) follows from the uniform
convergence of the series. Hence f(z) is analytic.
Also

1 _flw) _ 1 f S N dw
21 f (w—z)? = 2m Jo nz:l'u,,(u) (w—z)?

— ? ._1_~ J () (Z?ﬂ:yglu;,,(z),

L 21 ) o (Ww—2)?

using the uniformity of convergence again. Hence the series
may be differentiated term by term. Also the differentiated
series is uniformly convergent in any region interior to ). For
if D" is such a region, we can suppose that the curve (! includes
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D' in its interior, and that the least distance of points of D’ from
C is 8. Then for any point z of D’

o, 1[0 u,w)
n,gN un(Z) ; ~2;)'—7—/ fC (w—z)2

1 [ < dw e
p= LZ W) G S

where [ is the length of C, and e the maximum modulus of

N

> a2
on C. Since the right-hand side is independent of z, and tends
to zero when N and N’ tend independently to infinity, the
result follows.

The whole process may now be repeated, starting from the

differentiated series, and the general result thus follows.

The theorem, in a slightly different form, is known as ‘Weier-
strass’s double-series theorem’.*

2.81. Remarks on the above theorem.

(i) We have already pointed out (§ 2.37) the contrast between
the conditions for term-by-term differentiation of real series,
and of series of analytic functions. In the case of real series, we
have to assume that the differentiated series is uniformly con-
vergent. In the above theorem no such assumption is necessary;
actually the differentiated series is uniformly convergent, but
this is one of the conclusions of the theorem.

(ii) If we merely assumed that the given series was uniformly
convergent on a certain closed curve C, we could prove as before
that f(z) was analytic at all points inside C.

(iii) Even if we assume that each wu,(z) is analytic on the
boundary of D, and that the series is uniformly convergent on
the boundary, we cannot prove that f(z) is analytic on the
boundary, or that the differentiated series converges on the
boundary. Consider, for example, the series

o g
n?
n=1

This is uniformly convergent for [z| <{1; but the differentiated
* See Knopp’s Infinite Series, § 56.
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series is not uniformly convergent in the neighbourhood of
z=1, nor is the function represented by the series analytic
at z=1. In fact

f2)=— log(1—2)

2

(iv) The theorem may be stated as a theorem on sequences
of functions: if f,(2) is analytic in D for each value of n, and
tends to f(z) uniformly in any region interior to D, then f(z) is
analytic inside D, and f,(z) tends to f'(z) uniformly in any
region interior to D. -

=]
Examples. (i) The function {(s) = 3 n~* is analytic for R(s) > 1
n=1

[For the series is uniformly convergent in any finite region to the right
of R(s) =1, see § 1.21, example.]
(i1) We have, for R(s) >

L(s) = — Z n-*togn,
n=2
and generally {®(g) = (~1)* Z n*logkn.
n=2

(iii) In what region does the series

z sinnz

n=
represent an analytic function ?
(iv) The series o .
Z sinnz
ne
n=1
is uniformly convergent on the real axis, but not in any region of the
z-plane; so we can déduce nothing about the analytic character of the
function which it represents.

2.82. Another proof of the theorem. We can also deduce
Weierstrass’s theorem from Morera’s theorem (§2.42). For,
since » u,(2) is uniformly. convergent, we may integrate it term
by term round any contour C. Thus

[oterdz= 3 [ o) .
But, since each u,(z) is analytic, every term on the right is

. H
zero. Hence fo 1) dz=o.

Hence, by Morera’s theorem, f(z) is analytic.
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2.83. Definition of analytic functions by means of in-

tegrals. Let f(z,w) be a continuous function of the complex

variables z and w, where z ranges over a region D, and w lies on

a contour C. Let f(z,w) be an analytic function of z in D, for
every value of w on C. Then

F@)= [, few) dw

18 an analytic function of z in D; and
v [
F'(z)= f > dw,

and similarly for higher derivatives.

We may suppose that the contour C consists of a single
regular curve, on which w = u—iv, u = u(t), v =v(t), {, <t < ¢y,
and %'(f) and v'(¢) are continuous.

Let I be a contour lying in D, on which z = x4y, x = x(s),
Y =14(3), 8p < s < s, and z'(s) and y'(s) are continuous. Let { be
a point inside I". Then

fz ®) 4,
fzw
C ——'2;;7/ r z_ dz.

We may invert the order of these two integrations. For we can
express each of these complex integrals as a sum of real in-
tegrals, as in § 2.3; and we clearly obtain an expression of the
form

2

[t [ {te,)-+idts, )y ds,
ty 8

where ¢ and ¢ are real continuous functions of s and . Now
we know that a repeated integral of this type may be inverted
(§ 1.81). Hence

F<c)=2im.f 7 | few dw

1 F(z

T om z—C

Thus F(z) satisfies Cauchy’s integral formula, and from this point
the proof that F(z) is analytic, and that we can differentiate
under the integral sign, proceeds as in the theorem on umformly
convergent series. ST L2
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Examples. (i) Lf f(¢) is continuous in (a, b), then
b b
Flz) = f cosztf()) di,  G(z) = f sinztf(f) dt
a . a
are analytic functions for all finite values of z.
(ii) Under the same conditions

b
f(t) dt

z—1%

is analytic, except possibly when z is real and lies in the interval (a, ).
2.84. Infinite integrals. Let C be a contour going to infinity,
any bounded part of which is reqular. Suppose that the conditions

of the previous theorem are satisfied on any bounded part of C,

and that
fo flz,w) dw

18 uniformly convergent. Then the results of the previous theorem
still hold.
Let C, be the part of C inside the circle [z2| =7, and let

= fc, f(z, w) duw.

Then F,(2) is analytic for every =, by the theorem on finite
integrals. Also F.(z) ~ F(z)

uniformly as n — c0. Hence, by the theorem on uniformly con-
vergent sequences, F(z) is analytic. Finall v
F'(z) = lim F(z) = lim f & .
C ne> n—row

2.85. Infinite integrals of the second kind. There is a
similar theorem for the case of a finite contour C, at one end
of which f(z,w) > co. Such an integral represents an analytic
function, provided that the convergence of the integral is uni-
form. The formal statement and the proof are practically the
game as those of the previous theorem.

Examples. (i) The function

o

I'(z) f e~ w*=1 dy

is an analytic function for R(z) > 0. [The uniform convergence of this
integral has been discussed in § 1.51, ex. (i). It converges uniformly in
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any finite region in which R(z) > ¢ > 0; and any point at which
R(z) > 0 is an internal point of such a region.]

(ii) In what regions do the integrals

-] -]

=]
f e~ dup, J‘ sx’zw i, f cosw 7

0 .0
represent analytie functions ?
f smwz o
w

(iii) The integral
converges uniformly in certain intervals of real values of 2, but not in
any region; so we cannot deduce anything about the analytic character
of the function which it represents.

2.9. Remark on Laurent series. Suppose that we have
obtained in any manner, or as the definition of f(z), the formula
fe) = 2 A,z—a)* (B <[] <R).

n=—00
Is the series necessarily identical with the Laurent series of
f(z)? Yes; for if C is the clrcle [z—a| =p, B' < p < R, the
Laurent coefficient a,, is

1 f(z) (z—a)™
I = o fo( z—a) ""'1 z 2m (z— a)n+1

by uniform convergence; and the r1ght~hand sideis 4, by §2.3,
exs, (iii) and (iv).



CHAPTER III
RESIDUES, CONTOUR INTEGRATION, ZEROS

3.1. The residue at a singularity. We know (§ 2.71) that, |
in the neighbourhood of an isolated singularity z=a, a one-
valued analytic function f(z) may be expanded in the form

)= 3 aple—ay+ 3 byle—a) .

The coefficient b, is of particular importance, and is called the
residue of f(z) at the point z=a. By the formulae of Laurent’s

expansion, 1
by= o Lf(Z) dz,

where y is any circle with centre z = a, which excludes all other
singularities of the function.
It is easily seen that, if z=a is a simple pole,

b, = lim(z—a) f(2).

3.11. The theorem of residues. Let f(z) be one-valued and
analytic inside and on a simple closed contour C, except at a finite
number of singularities z,, z,,...,2,. Let the residues of f(z) al these
points be Ry, R,...,R,. Then

@ de=2mi( Byt Ryt By)

Let vy, s,..., 7, be circles with centres zy, 2,,...,2,, and radii so
small that they lie entirely inside ¢ and do not overlap. Then
© f(z) is analytic in the region between C and these circles, so
that, by Cauchy’s theorem (see § 2.35),

fcf(z) dz= fy‘f(z) dz +...+ fyﬂf(z) dz.
But f | J@) de = 2miRy,

ete., and the result follows.

3.12. Contour integration. The theorem of residues may
be used to evaluate a large number of real definite integrals.
To do this we take a contour, part of which consists of the real
axis, and the remaining part of which is usually made to tend
to infinity. The process is called contour integration. It is best
made clear by means of examples.
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3.121. It is well known that

e}

Adx o
1422 2

To prove this by contour integration, consider the integral

) dz
f 1422

taken round the contour consisting of the real axis from —R
to R, with a semi-circle, on this line as diameter, above it. Since

1 11 1
1422 2 (z_"—z - m)

the integrand has a pole at z = 4, which is inside the contour if
R > 1, with residue 1/2:. Hence, by the theorem of residues, the
integral is equal to . :

Now, on the semicircle, |14-2%2| > R2—1, so that the integral
round the semicircle does not exceed

mR
R_Y

and so it tends to zero as R - 0. Hence

3 d
lim v

R—om 1+x2
—-R

.

Since the integrand is an even function, the result now follows.

The integral of any even rational function which behaves
suitably at infinity can be evaluated in a similar way.

Of course we know the indefinite integral of 1/(14-22), viz.
arctanz, and can evaluate the integral from this. The method
shows to better advantage in cases where we do not know the
indefinite integral.

3.122. Tt has been shown in § 1.76 that

o«

|inx T
T de = —.
[ x v 2

To prove this by contour integration, consider the integral

e‘LZ
—dz
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taken round the contour consisting of the real axis from z=p
to z= R, where 0 <p < R; a semicircle I' of radius R above
the real axis; the real axis again from —R to —p; and finally
a semicircle y of radius p above the real axis. We take p small
and R large. The small semicircle is necessary to avoid the
singularity of the integrand at z=0, and the large semicircle
is necessary to close up the contour. ‘

The function €¥*/z has no singularity inside the contour, and
the value of the integral is therefore zero. Thus

R ) —P . ,
e 12 —L 1z
J-e-—dx—k J E—dz—{—jg——dx—}— j € gz =0.
x K — y ?
R

P
'The two integrals along the real axis arce together equal to
r _ i
g —e . [ s
r de == [ - dx.
J x J ow

p P
"The integral along T" tends to 0 when R -+ 0o, For

pm

3 ks
AL ! PN J i
\J‘ % [zl ;":i " 6’ Le 0?: (10 < j‘ C”]“‘ sin § (10
I i
! ! 0 0
) -8 7
< f(l@ + j e~ksind qf |- ‘.(19 < 28 -me-RHind,
0 S 7r‘-8

We first take 8 arbitrarily small, and then, having fixed 8, the
socond term may be made as small as we please by choosing
R sufficiently large. Hence the integral along I' tends to 0.

Finally, s =
( (—ij? (Iz = J. (_IE + J‘ f’—..::.l 1,'1_
Jy ® y 4 y Z

"The integrand in the last integral is bounded as p > 0, and so,
by § 2.81, the integral tends to zero. Also

0

f” =fmo=-~-'zn.

Jy
™
Hence, making p -» 0 and R — 00, we obtain

o J‘ sina dx —im == 0
x

and the result follows.
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Notice that the integral in the negative direction round the
semicircle y tends to —¢ into the residue at z = 0. It is easily
verified that this is true of any simple pole, but not of a pole
of higher order.
Notice also that we do not consider the integral

J‘smg(17

because the integrand does not behave suitably at infinity.
3.123. Ifo<a<, '

-]

-1 T

e dr=-T_

1+z sinan
0

z0-1
f l—}—z:dz

taken along the real axis from z=p to z= R; then in the
positive direction along the circle I with centre the origin and
radius R; then back along the real axis to z=p; and finally
round the circle y with centre the origin and radius p in the
negative direction. This is a closed contour which excludes
the origin. It is necessary to do so, because the function is
not one-valued in a region which includes the origin, so that
the theorem of residues would not apply to such a contour.
The many-valued function 22-1 is taken to be real on the first
part of the contour. It is then given at all other points by the
formula 73-1@-1i, where 0 < 8 < 2.

« There is one pole inside the contour, at z= —1, the residue
there being e@-7, Hence

’ P
e 1 20-1 - (r(,..:-n-)u -1 211
(1+ R N J Itz 1°+f

Consider the integral

Vi
= i ln-im,

The two integrals along the real axis together give

R
(1—e2inta-D) 2 dx 25e47sin Y dx
—p2 — A S v = .
1+ 14z
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The other two integrals tend to 0. For on I

2z0-1 Ro-1

I4+z ~ R—1
-1 Rae—1 . 27 R
50 that —d: 27 R =
0 that J.J 11z R=1""TR=D

which tends to zero since a << 1. Similarly

L1 IS,
which tends to zero since @ > 0. The result therefore follows on
making B -0 and p - 0.
3.124. The above result has an application to the theory of
the I'-function. Putting y =1—2z in §1.86 (4), we have

u-'x
(¢)(1—z) = f L du
sin(1—z)n’
or T@)(1—2) = T~

where 0 2 < 1.

3.125. Forn=0,1,2,...
f ghe-rt sinat di == 0.
0

Putting 2 == {%, the integral becomes

4 f #n3e~fsin € dll.

i .
Consider the integral f ANt3i-D
taken along the real axis from 0 to R, then along a quadrant
of a circle of radius R to the positive imaginary axis, and then
back to the origin along the imaginary axis. On the arc of
the circle ] e(i—l):, w= g Toosf-Rsin 0 e~k

so that l f 2hn-+3e(i-1)z dz’ <L AmRinvte-E 0,
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Hence J ZAn+3pi-1z Jpr J (i) n-+3eli=Divg dy = 0,
0 ' 0
or, replacing y by z in the last integral,

f atitde=a(glt —e=iv) Jx = 0,
0
and the result follows.

3.126. If ¢ >0, then
T et
1 (e, 1 @>1)
2mi ] 7 0 (0<a<l).
c—1m
If ¢ >1, ie. loga >0, we consider the integral round the
contour consisting of the line from ¢—iR to c¢+iR, completed
by a semicircle on the left. If R is sufficiently large, this con-
tour includes the pole at z= 0, with residue 1; and it may be
proved as in § 3.121 that the integral round the large semi-
circle tends to zero as B - co.
If a < 1, we complete tue contour by a semicircle on the right.
There is now no pole in the contour, and the second result
follows.

3.127. The I'-function integral. We have

f aP—le=a% (g — Pa(fj)) (>0, p>0).

v

If we could make the substitution 2 =1t in the integral, we
should obtain

-

[ (itypte-oti @t = T
' ar

and, multiplying by ¢-¥#7 and separating real and imaginary
parts, we find

f 10-1 2 g @ = I_‘(p) % 1. (1)
sin a? sin

The ordinary rules of integration by substitution, of course,
do not cover a ‘complex substitution’ of this kind. The process is
really an application of Cauchy’s theorem. Consider the integral

f 2P ~1e=0
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taken round the contour consisting of the real axis from z=p
to » = R, the arc of |z = R to the imaginary axis, the imaginary
axis from z=1R to z2=1p, and the arc of |z|==p back to the
starting-point. By Cauchy’s theorem, the integral round this
contour is zero. It may be proved as in previous cases that the
integral along |2[=p tends to 0 as p—~0if p> 0, and that
" along |2| = R tends to 0as R — oo if p<1. Hence the integral
along the imaginary axis is minus that along the real axis, and
on evaluating it we obtain (1) again, for 0 <p < 1.

3.128. Occasionally we use the converse process, and deduce
the residue from the value of the integral.
If p is an even positive integer, the residue of tan?—lmz al z=}

is (—1)¥ [z v
The residue is equal to
1-iR  14iR iR —iB
“)_:T_;{ j + f + j +j }tzm"’—‘wz dz,
SR 1-iR 14+ IR
1R iR —iR
and = | =— J ,
15R —iR iR

since tanmz is periodic with period 1. Hence the residue is

equal to 1—iR iR
1 . { f -+ J }tmﬂ’-lwz dz
21
iR 1+iR
Now 1 e2ima-2m—1 —_ 1/7, +UD)
BANTE == 7 5 ey 1 . Yy :
7 e2ime—2my L1 _|_1/¢ ¢ —0

Hence as B —
1-iR o
tanP-1mz dz - %\p'
—iR

iR
) 1 n-1 1' n-1
tanP-lmz dz > —|—=) = (—)
1 g
1+l
and the residue is

LAY

L

i T



CONTOUR INTEGRATION 109
3.13. Consider the behaviour of the integral
<]
f&)= f eirt—=tgin ot de

[1]
us £ — o0.

It is convenient, for reasons which will appear later, to begin
by integrating by parts. Integrating the factor e, the in-
tegrated term vanishes at both limits, and we obtain

f@) =é f etrt-zt(oos xt — sinzt)z-1 da.
0
As in previous examples, we. replace the circular functions by
exponentials, and consider, instead of f(t), the function
$(t) =1 [ et-rtricky-t o,
0
Putting = = u/t, we obtain

o0
$(t) =1 [ esur--vut gy,
0

Next, turn the line of integration through an angle A, ie. use
Cauchy’s theorem as in § 3.125. We obtain

00
B(t) = 1} [ e -0inetg gy,
0

""This process is valid if the real part of the coefficient of »* is
negative for all values of A through which the line of integration
turns; i.e. if sin4A > 0, or A < .

Actually we take A= 7. This has the effect of making the
term in e~ tend to zero as rapidly as possible. It gives
$(t) = t-te'l® f e~vi—-iweim o E gy,
0
When ¢->co, this last integral, being uniformly convergent,
tends to the limit
[e do=1 [ et dw=3T(3).
0 0
Hence $(t) ~ 3T (})eimie~t.
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Slmlldl‘ly, if B(t) = J e’bxt—a:i—mi ~ dz,
0

we obtain the same asymptotic formula for $(f) as for ¢(s).

[P —
fity= ;{ 2 }

%
~ HT(})eimloE,

A similar process might, of course, have been applied to the
integral before integrating by parts. The reader may verify that
it only leads to the result f(f) = o(t~1).

3.2. Expansion of a meromorphic function. A function
is said to be meromorphic in a region if it is analytic in the region
except at a finite number of poles. The expression is used in
contrast to holomorphic, which is sometimes used instead of
analytic.

The simplest meromorphic functions are rational functions.
We know that a rational function can be expressed in a simple
way by means of partial fractions; we shall now obtain a
similar expression for a more general class of meromorphic
functions.

Let f(z) be a function whose only singularities, except at
infinity, are poles. We shall suppose for simplicity that all these
poles are simple. Let them be a,, a,..., where

0< oy < |ag| < lag] <Cens

and let the residues at the poles be b,, b,,... respectively. Sup-
pose that there is a sequence of closed contours C,, such that
C, includes a,, a,,...,a,, but no other poles; such that the mini-
mum distance B, of C, from the origin tends to infinity with
n, while L,, the length of C,, is O(R,); and such that, on C,,
f(z)=o0(R,). This last condition will be satisfied if, for cxample,
f(z) is bounded on the system of contours C,, taken as a whole.

Under these conditions
0+ Z (ata)

Jor all values of z except the poles.
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To prove this, consider the integral

I— R flw)

2mi [, w(w—2)
where z is a point inside C,. The integrand has poles at the
points a,,, with residues b,,/{a,,(¢,,—2)}; at w =z, with residue
f(2)/z; and at w = 0, with residue —f(0)/2. In particular cases
these last two residues may of course vanish. Hence

_ Z _f0), )
= ,,,(a z z
On the other hand

3

<, R.(R,- T I)ma\lfw)l
which tends to 0 as % — oo, under the conditions stated.
Hence "
f(zz =']f(.Q_.hm z __.__._____.b’"
% 2 o a’m(am'—z),

and the result stated follows.

It is also obvious from the proof that the series converges
uniformly inside any closed contour such that all the poles are
outside 1.

3.21. We leave to the reader the modifications which are
necessary if f(z) has poles of higher order than the first. A more
important extension can be made to functions which do not
satisfy the condition f(z)=o(R,) on C,. Suppose now that
this is not satisfied, but that there is a positive integer p
such that f(z) = O(RZ), or, more generally, f(z) = o(RE+!), on
C,. Consider the integral

L )
= % fb w (g M
The calculations proceed as before, except that the residue at
w = 0 is now
1(f( ) [ “”(
z{z1'+z1“1+ T }
The integral again tends to 0 as % — oo, and we obtain
207 b 2pil
o) =JO e O+ 2L >

u FL ?
1‘;—‘ a, ( a)
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or

ye o
fz)= zf’(”qlg?)zq+ Z bn( """"" - + + + +ap+1)
q=0 n=0

" 3.22. Application to trigonometrical functions. Con-
sider the function

f(z) =cosecz—1/z (2#0),  f(0)=0.
At the point z = nw, where # is any positive or negative integer,

sinz has a simple zero, so that f(z) has a simple pole. The
residue is

zl'iﬁr(z——nw)(cosecz——g) = %{n% sin(éinw) ];1_1)%( qf“)fc = (—1)",
But there is no singularity at z = 0, since
z—sinz _ O(z]%)
zsinz  224-0(|z]%)
Let C, be the square with corners at the points

(n+-3)(E1Le)m
The function 1/z is obviously bounded on these squares. To
‘prove that cosecz is bounded, consider separately the regions
i) y > 3m, (i) —d7r <y < im, (i) y < —3n. In the first region
24
|e’£z____e—'iz! < r__g—im’

= 0(1).

|cosecz| =

and a similar result holds for the third region. Also |cosecz| is
evidently bounded on the straight line joining 3(1—i)r to
3(1+14)n, and so, since it has the period =, on all the lines
(n+%—~3%i)m, (n-+-%43i)m. Hence cosecz is bounded on the parts
of C, which lie in (ii), and so on the whole square.

The theorem of § 3.2 therefore gives

cosecz- -;-':_;' i' (—1)» (;:ﬁ.;r_{_h—ﬂ)

the accent indicating that the term n = 0 is omitted from the
sum. Since, when we pass from C,_, to C,, we include the two
poles L+ together, we should, in the first place, bracket the
corresponding residues together in the sum. However, the series

with n > 0 and n < 0 converge separately, so that the brackets
may be omitted.
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If we add together the terms corresponding to t-n, the
expansion takes the form
S (=1
neme—z2
n=1

Examples. (i) Obtain the expansions

1
cosecz ==-}+2z
z

~ ;
secz = 2 -(_ml)_ffbg_;,
(Rt 3pm—2t
tanz = z? S -
L (N3P —27
n=0
o0
and cotz:l.;.zzz lq )
z 22—nly*
n=1

(i) Obtain the corresponding expressions for the hyperbolic functions.
(i1i) Prove that

(iv) Prove that cosec’z = .
: (z—nm)?

3.23. Expansion of an integral function as an infinite
product. An integral function is a function which is analytic
for all finite values of z. For example, €7, cosz, sinz, are integral
functions, An integral function may be regarded as a generaliza-
tion of a polynomial; and, just as we can extend the partial

fraétion formula to certain meromorphic functions, so we can
extend the expression of a polynomial as a product of factors
to certain integral functions.

Let f(z) be an integral function of z. Suppose that it has
simple zeros at the points @, @,,.... In the neighbourhood of a,,

f@) = (z—a,)(z)
where g(z) is analytic and not zero. Hence
re, Q)
@ T

and the last term is analytic at a,. Hence f'(z)/f(z) has a simple
pole at z =a,,, with residue 1.
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Suppose now that f'(z)/f(z) is a function of the type considered

in § 3.2. Then f o
o] (m'*zg(m—a )

Integrating from 0 to z along a path not passing through any
of the poles, we obtain

log f{(z) MM~%M+ZWWwobmnwﬁ.

The values of the logarithms will depend on the path chosen;
but when we take exponentials all ambiguity disappears, and

we obtain 10
f(z f(O)e FO) I_[ (1___) edn,
For example, the function f(z) = sin z/z satisfies our condition,
and we obtain the well-known formula

. «© .
smz l l ’ 2 =~
e ¢ 1—— enm,

? nmw

n=—c0

or mmazl{pﬁ_ﬁ)

Similarly, COSZ = ]_I { n—-—-"‘" " }

If f'(2)/f(2) satisfies the conditions of § 3.21, we obtain for f(z)
a product formula of the form

1 apid

ﬂ@=ﬂm&wwmmurlou o s

3.3. Summation of certain series. The method of contour
mtegratlon is often effective in summing series of the form

2 fn)
where f(z) is an analytic function of z of a fairly simple kind.
Let C be a closed contour including the points m, m--1,...,n,
and suppose that f(z) is analytic in this contour, except for poles
at a finite number of points a,...,4;, say simple poles with
residues by,...,b;,. Consider the integral

fc a cot w2 f(z) dz.
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The function = cot =z has in C simple poles at z =m, m--1,..., 7,
with residue 1 at each pole. Hence 7 cot nz f(2) has the residues
f(m),f(m~+1),..., f(r). Including the residues due to poles of
f(2), we find that

[, meotmaf(e) dz = 2 Fm)fom 1)+ ... f(n)
—+bymcotma, +...+bym cot may ).
Suppose, for example, that f(z) is a rational function, none
of whose poles are integers, and which is O(|z|~?) at infinity.
Take the contour C to be the square with corners (n-+4%)(4-14-1).
Then, as in § 3.22, the integral round C tends to zero as n — o0,
and we have
lim f f(m) = —=n{b, cot ma,+...~+b, cot ma,}.
N—>0 M= =N

Similarly, by using = cosec 7z instead of = cot 7z, we can obtain
expressions for sums of the form

2 (=1)"f(m).

Consider, for example, the series
S
(a+n)
Here f(z) = 1/(a+2)* has a double pole at 2 = —a. By Taylor’s
theorem '
cot mz = cot(—na)+(nz+-na){ —cosec*(—ma)}+...,

8o that the residue of cotnz/(z+a)* at z = —a is —= cosec?na.
Hence

N 1 2 2
z (a_}_n)z = T°CoSec-“nma.

3.4. Poles and zeros of a meromorphic function. If f(z)
s analytic inside and on a closed contour C, apart from a finite
number of poles, and is not zero on the contour, then

1 [f@)
— | ==dz=N—P
o Jo J)
where N is the number of zeros inside the contour (a zero of order
m being counted m times), and P is the number of poles (@ pole
of order m being counted m times).
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Suppose that z= @ is a zero of order m. Then in the neigh-
bourhood of this point

fz) = (z—a)"g9(),
where ¢(z) is analytic and not zero. Hence

fe_ m 96
f6) z—a g)

The last term is analytic at 2 = a, 80 that f'(2)/f(z) has a simple
pole at z = a With residue m. Hence the sum of the residues at
the zeros of f(z) is N.

Similarly the sum of the residues at the poles of f(z) is —P
(we need merely change the sign of m).

Tt may be proved similarly that if é(z) 18 analytic in and on
¢ and f(z) has zeros ab @y,...; Oy and poles al by,...,b,,, then

0 (TO e L sa— 3 a0
5 L T 4 de= 2 9 3 4(0,)

3.41. If f(z) is unabytic in (, then the above formula reduces to

IR AP
2t L ) ’

This result can also be expressed in another way. Since

d gt S @
o 10g{j(")} f(z) ’
we have m 2 == A log{f(2)}
¢ J@)
where A denotes the variation of log{ f(2)} round the contour .
The value of the logarithm with which we start i3 clearly
indifferent. Also

log{f(e)} = log|f(2) |+ arg{f(2)};

and log|f| is one-valued. Hence the formula may be written
1
N = - Agarg{fl)

3.42. Rouché’s theorem. If f(z) and g(z) are analytic inside
and on @ closed contour C, and |g(2)| << | f(z)] on O, then f(z) and
f(2)+g(2) have the same number of zeros inside C.

In the first place it is clear that neither f(z) nor f(z)-9(z) has
a zero on C. Hence, if N is the number of zeros of f(z), and
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N’ the number of zeros of f(z)+4g(2),

27N = Aqargf,
2nN' = Aqarg(f+g) = Aaargf—{—Aoarg(l-f—%).
To prove that N = N’, we have therefore to prove that
Agarg (1 + %) =

Since |g| < |f], the point w = 14-g/f is always an interior point
of the circle in the w-plane with centre 1 and radius 1; thus, if
w=peit, ¢ always lies between —3w and im; and therefore
arg(1+g/f) = ¢ must return to its original value when z de-
seribes C—it cannot increase or decrease by a multiple of 27
This proves the theorem.
Another proof is as follows. Let qS(z) = ¢(2)/f(z). Then
N = 1 [‘ ['&)+g (z) dz — —— f+f S'[’+f¢

2w Jo f(2)+9(z)

¢ f(2)+9() 27”' c f(1+</>)
N (R A
~%m (f+1+¢) N+s f ire®

and the last integral is zero, as we see by expanding in powers

of ¢ and integrating term by term.

3.43. The following is an example of the type of problem
which can be solved by means of the above theorems.
In which quadrants do the roots of the equation

2423442242243 =0

lie?
The equation has no real roots; for obviously it has no
positive root: putting z = —x it is

ot 23t 4 — 2043 =
I‘or 0 <z <1 the first three terms together are positive, and
so are the last two. For z > 1 the first two terms together are
positive, and so are the last three.
Putting z =1y the equation becomes
y*—1y—4y*4-2iy+3 =0,
and the real and imaginary parts of this do not vanish together.

Hence there are no purely imaginary roots.
Now consider Aarg(z!-+...43) taken round the part of the
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first quadrant bounded by |z| = R, where R is large. The varia-
tion along the real axis is zero. On the arc of the circle, z = Re®,
and we have

Aarg(z*+...) = Aarg(R%*®)+Aarg{l1+ O(R-1)}
= HTT“"I" O(R—l).
On the imaginary axis we have

—¥*4-2y
arg(zt-+...) = arctan ( igpis)
The numerator of the expression in brackets vanishes at y = +/2,
and the denominator at y = +8 and y = 1. Hence the rational

fraction varies as follows as y varies from oo to 0:
y=00 V3 V2 1 0
Q: —, 0, ‘[": 0’ —, 0, +: 0
Hence arctan(zt+-...) decreases by 27, and therefore the total
variation of arg(z!+...) round the quadrant is zero, if R is
large enough.

Hence there are no zeros in the first quadrant.

Since zeros occur in conjugate pairs, it follows that there are
no zeros in the fourth quadrant, and two in each of the second and
third quadrants.

Any algebraic equation may be treated in the same way.

3.44. The fundamental theorem of algebra. Hvery poly-
nomaal of degree n has m zeros.

In the first place, 2* has n zeros, all at the origin. Now con-
sider any polynomial

a0+a‘1 + -}—CL,,~ H
where a, # 0. Let
f(@)=a,z", 9(2) = agt-a,2-|-...+a, _z"1,

and take the contour ' of Rouché’s theorem to be a circle with
centre the origin and radius B> 1. On ¢

|f)| = |a,|B",
l9(2)] < lagl+lay | R4-...4- @, | R*1 < (lag| 4.4 @, _y |) BP-L.
Hence |g] < |f| on C provided that
B> (lag] ... 42,1 1)/ @,

Hence, by Rouché’s theorem, f(z)+-¢(z) has n zeros in a circle
with centre the origin whose radius R satisfics this condition.
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The theorem can also be proved as follows. Suppose that the

above polynomial has no zeros; then the function
1
Gt ... @ 2"

is analytic for all values of z, since its only possible singu-
larities are the zeros of the denominator; and it is bounded as
|z] = c0. Hence, by Liouville’s theorem, it is a constant. Hence
the polynomial reduces to the single term a,,.

This proves only that the polynomial has one zero, and the
fact that there are n has to be deduced by the familiar process
of algebra.

3.45. A theorem of Hurwitz.* Les f,(z) be a sequence of
functions, each analytic in a region D bounded by a simple closed
contour, and let f,(z) — f(z) uniformly in D. Swppose that f(z) is
not identically zero. Let z, be an- interior point of D. Then z,
18 @ zero of f(z) if, and only if, it 1s @ limit-point of the set of zeros
of the functions f,(z), poinis which are zeros for an infinity of
values of n being counted as szat-pomts

This easily follows from Rouché’s theorem. We can choose
p so small that the circle |z—z,| = p lies entirely in D, and con-
tains or has on it no zero of f(z) except possibly the point z,
itself. Then |f(z)| has a positive lower hound on the circle, say
|f(2)] =m >0. Having fixed p and m, we can choose %, so

large that If.2)—f(2)] <m (n > my)

on the circle. Since f,(2) = f(z)+{f,(2)—f(2)}, it follows from
Rouché’s theorem that, for n > n,, f,(z) has the same number
of zeros in the circle as f(z); that is, if 2, is a zero of f(2), it has
at least one, and otherwise it has none. This proves the theorem.
The example f, () = e?/n shows that it is necessary to as-
sume that f(z) is not identically zero. The example in which
fa(z) = 1—2%/n, and D is the unit circle, shows that the theorem
does not apply to points on the boundary of D. For f,(z) - 1
uniformly in D and on the boundary, but every point of the
boundary is a limit-point of zeros of the functions f,(2).

~ 3.5. The functions |f(z)|, R{f(z)}, I{f(2)}. Let f(z) be a
function analytic in a given region, and let u(z,y), v(z,y) be its

1 * Hurwitz (1),
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real and imaginary parts. We write

a a

éi,u(m! y): 'll:” = é'?;u(xy y),

and similarly for derivatives of higher order.
We have already shown that the Cauchy-Riemann equations

Uy =

Uy =Dy, Uy = —,,
hold at all points of the region.

Since f”(z) exists, so do all the partial derivatives of u and »
of the second order. Hence

0 0
Uy = 52‘; (vy) = 55'/('01) = Uy,

i.e. u satisfies the partial differential equation (Laplace’s equa-

tion) Uy = 0,

Similarly v satisfies the same equation.

A function which satisfies this differential equation is called
a harmonic function or a potential function. The modulus |f(z)|
is not in general a harmonic function; but log|f(z)| is, since it
is the real part of the function log{f(z)}.

3.51. The loci | f|= const., R{f} == const., I{f} = const., are
curves in the z-plane.
If |f(2)| = constant throughout a whole region where f(z) is
analytic, then f(z) = constant.
- For if |f(2)| = ¢, then
U402 = 2,
UU~-vv, == 0,
w,+ww, =0,
or, by the Cauchy-Riemann equations,

Hence

Uy —VU, == 0,

v, = 0.
Eliminating «, we obtain ‘

(u+v?)u, = 0.
Hence u,=0, and similarly u,, v,, and v, are zero. Hence
u and v are constants, i.e. f(z) is constant.

If w = ¢ or v = ¢ the proof (which we leave to tho reader) that
f(z) is a constant is even simpler,
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3.52. The zeros of f(z) are the intersections of the curves « =0,
v= 0. This is obvious.

At a simple zero, the curves » =0, v= 0 intersect at right

angles. This follows at once from the Cauchy-Riemann equa-

tions; or it may be seen by taking the zero to be at z =0, and

vriting ) = a2+ 0((212),
so that % = ar cos(a—+0)++O0(r?),
v = arsin(a+8)-+ O(r?).

Then the directions of the tangents to u =0, v =0, are given
by 0 =ir—a, = —a.

At a point where f(2) is real, and f'(z) = 0, the curve v=0 has
a double point. '

For at such a point v =0, v, =0, v, = 0, which are the con-

ditions for a double point.
The curves |f(z)| = constant are called level curves.

Example. Prove that, at a double zero, each of the curves u == 0,
v = 0, has a double point, and the two curves intersect at an angle .

3.53. A level curve has a double poing, if, and only if, it passes
through a zero of f'(2).
The equation of a level curve is

U2 = 2,
and this has a double point if, and only if,
U, +rvv, =0,
Uy, -+, = 0.

Both these conditions are satisfied if f'(z) = 0. Conversely, the
second equation may be written

—uvw—;-'uum =0,
and squaring and adding we have
(uE2) (u+2?) = 0.
Hence u,=0 and v, =0, i.e. f'(z) = 0.
3.54. The level curves and the zeros of f(z). If C'isa

simple closed level curve, and f(z) is analytic inside and on it, then
f(z) has at least one zero inside C.

Let f@)=utiv= ce{qu
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on C, so that cis a constant. Then

¢ = N(ut+v?), ¢ = arc tan(v/u).
Let s be the length of C measured from some fixed point on
it. Then e _ u‘_il‘_;_vdv 1 ”
“ds ( ds T ds)c’ (@)
dp _(, dv du\) 1
=% @)

Now d¢/ds cannot vanish on C. For if it did we should have,
on squaring and adding the above equations,

ool )

. du dv
ie. - = 0, i 0.
du dx dy
Now il N + Uy
dl’U (Zy ww dy

dx
ag =v$z§+vﬂ£ ' —uyﬁj'}'uzzg’

go that, squaring and adding,

(8]

The last factor is 1, so that u,= 0, u, =0, ie. f'(z)=0. This
is impossible on a level curve without double points.

Tt follows that dp/ds has the same sign at all points of C,
i.e. that ¢ increases or decreases steadily round the contour.
Henee its variation round the contour is not zero.

But the variation of ¢ round the contour is equal to 2w
multiplied by the number of zeros inside C. Hence there is at
least one such zero.

3.55. If f(z) has n zeros inside O, then f'(z) has n—1 zeros
inside C. ‘
Let f(z) — celd
on O. Then
. dd
"(z): :cigit .
f'z): -cie®—

Hence arg{f'(2)} = const.—]—i;—{—arg%it-.
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Hence, if A, denotes variation round C,

Acarglf (=)} = Acarg{f(e))+Apargae.

Let »’ be the number of zeros of f'(z). Then

2mn’ = 2mn4-A, argfiis. (1)
dz
d$  dgds
Now dz dsdz’

and, as we have already seen, d¢/ds is real and of constant sign
on C. Hence oa dVS_Aar@

c3go = Be 83
dz_ @_de
ds ds ds
where i is the angle the tangent to C' makes with the z-axis.
. Hence

Also = cosy-+isiny = €'¥,

Acargg-—— —Agp=—2n

so that on dividing (1) by 27 we obtain %’ = n—1, the required
result.

3.56. The following theorem sometimes gives useful informa-
tion about the zeros of a function.*

Let C be a simple closed contour, inside and on which f(z) is
analytic. Then if R{f(z)} vanishes at 2k distinct points on C, f(z)
has at most k zeros inside C.

If f(z) = u-}-1iv, the number » of zeros of f(z) inside C is
given by ] »
=-A¢ (arc tan —').

2 U

Starting at a point where u 0, we may take the initial value
of arctan(v/u) to lie between —I7 and }m. We can only pass
out of this range, say to (3, }r), if u vamshes, and only pass
on to (3m,5m), if « vanishes again. Thus, if % vanishes twice
on O, Aq(arctanv/u) is at most equal to 27, and n is at most
equal to 1. The general result obviously follows from the same
argument.

* See, for example, Backlund (1).
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3.6. Poisson’s integral formula. Let f(2) be analytic in o
region tncluding the circle |z| < R, and let wu(r, 6) be its real part.
Then for 0<r< R

u(r, 0) =

fRz——Zchos 0—¢)+r U(R, ) dg.

There is a similar formula for the imaginary part (r, ) of f(z).
These formulae are analogous to Cauchy’s formula giving the

value of f(z) at any point inside a contour in terms of its values

on the contour. They cannot, however, be obtained merely by

separating Cauchy’s formula into real and imaginary parts.
We shall give two proofs.

First ProOF. We can suppose without loss of generality that
fz)=7X a,z", where all the coefficients a, are real. For, in the
general case, o, = «,+18,, and

f(z) = z allzn"{—i 2 ﬂnzn =f1(z)+7'f:z(z)
8o that R(f)=R(f)—1(fy).

Also, since |o,| < |a,l, I8,] < la,l, f; and f, are analytic for
2| < B. Hence the general result follows from the special case.
In the special case, if f(re?) = u--iv, then f(re=10) = 4.

Let 2, be a point on the circle [2| = R, and let f(z,) = Uy 10,
Then, by Cauchy’s formula,

_ Ll [wtiv ('”'1"{"""’1)1’33"’s dé
utiv = 2mi %—z dzl 271 Reit—pei®
0

Since the point R?/z is outside the circle, we have

0= ___1__ Uy ‘H_U _1 “ﬁ(ul—}—iw, YRe'® d¢
2mi | 2,—R%[z o7 | Reld_— R2p-t1p-i0°
0

Replacing ¢ by —¢, and so iv, by —iv,, we obtain
1 [ (wy—ivy)Re=i% dp
277 Re-i$— R2%y—1g-i10 ~

(ul——wl)re"’ d$ _

or
"Tr . relf— Reit
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Subtracting this formula from the previous one, we obtain

1 o R ¢+ 9
P -rev
u-{—w—-2 f{u b 0-{- v1> dé,
0

and now, taking real parts, the result follows.
SecoND Proor. Let

= 3 (@ +iBre  (r<B).
Then, as in § 2.53, e

27

o Rr =1 f w(R, $)cosnd dp, B, RM = — f u(R, $)sinng d,

0 0
21

for n>0, while  ag= 21; f w(R, $) d.

0
Hence

u(r,0) = Z (=, co8 18 — B, sin nf)r*
e f u(B, ) d +
+— z B f u( R, ¢)(cos b cos ne - sin nf sin ng) dé

-1 f B[y > counio—4)(5)') a4

the inversion being justified by uniform convergence. The
result now follows on summing the series in brackets.

3.61. Jensen’s theorem. Let f(z) be analyiic for |z|< R.
Suppose that f(0) is not zero, and let 1y, 7,,...,7,,,... be the moduli of
the zeros of f(z) in the circle |z| < R, arranged as a non-decreasing
sequence. Then, if r, <r< r,m, -

og IOl

7'17'2 T

flog[f (re®®)| de. (1)

Here a zero of order p is counted p times. The interest of
“this formula is that it connects the modulus of the function
with the moduli of the zeros.
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It can be put in another form, in some ways more useful.

Let n(x) denote the number of zeros of f(z) for |z| <. Then,
if T < r S T+

rn
log =nlogr— Z logr,,
10T m=1

= 2 m(log e ].Og ¢I/L)+n(log r— lOg rn)
m=1

Tmii

J’dx+n dx

m= T

Now m == n(z) forr,, < X<y, B =n(x) forr, <z <7r. Hence
the right-hand side is equal to

f ig—) dx,

and Jensen’s formula takes the form

» 2w
f&@dx:}_ f log| f(re?)| d0 — log| f(0)|. )

We shall give two proofs of the theorem.
FirsT Proor. If f(z) has no zero on 2| = r, then

‘.’.17, "
0

Jensen’s formula is obtained formally by dividing by r, integrat-
ing with respect to r, and taking real parts. This process is not
obviously valid, owing to the infinities of the integrand. We
therefore adopt a slightly different method.

In an interval between the moduli r,, r,,,, of two zeros, each
side of Jensen’s formula has a continuous derivative; the
derivative of the left-hand side is n/r, and that of the right-hand
side is

277 i

3 f 2 ogl e} do = [ 2 log flre) +-log Fire-1%) ds

If rﬁ 1’()) -.J‘ N _l_ 2ﬂf’(7‘€".0) 0
477_[ + ( )e "‘d(f——R 5 W-)—e as},
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which is also equal to n/r, by (3). Hence the two derivatives
are equal in any such interval. Hence the two sides of Jensen’s
formula differ by a constant in any such interval.

Secondly, the two sides are obviously equal when r = 0.

Hence it is sufficient to prove that each side is continuous
when r passes through a value 7,,.

This is obvious in the case of the left-hand side. For the
right-hand side, it will be sufficient to suppose that there is one
zero of modulus 7,,, and that its amplitude is zero. Then

log|f(re®)| =log 1— Zei +y(r,6),

where ¢ is continuous in the neighbourhood of » =r,. Hence
it is sufficient to show that the integral

27

flog 1L dg

is continuous at r =r,. Now for r/r, <2

> 1-_le® = 1—2 " cos 64—

= s8in%f - (cos 0—;—) > sin24.
Hence, if & < , "
3 )
f log 1—- i d§ f (tog 3+ Jloglsin || a6
-8

=
3

" J. {A—I—[log|0{]} ’<A810g-;—.

We can choose & so that this is arbitrarily small, for all values
of r in the neighbourhood of 7,. Having fixed 3, the remainder
of the integral is evidently continuous. Hence the whole integral
is continuous.

SEcoxD ProOF. We obtain the result in a number of stages.

(i) If f(2) has no zeros for |z| <7, then log f(z) is analytic for
|z] <r, and o

1 logf(z) , 1 £ 200
logf(0) =5 f el g f log{ f(re®®)} d8,
0

2
lzl=r

and, taking real parts, we have the result.
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(ii) If @; = rie®, 0 < r, < r, we have

- \dw
10g(1—-wa1)—7;- =0
[wi=1/r
by Cauchy’s theorem, the logarithm having its principal value.
Hence, with suitable determinations of the logarithms,

w [ - [ s

lwl=1/r lw}=1/r

1 argw=27

= log( —d—l) — T [log?w], o
1 1 1 ACEES | 1
= —_ ) —+2 —log?-.
log( (il) 417i(10g'r + 77@) + 4ri log r

Taking real parts,
2m
1 f log 1— L ei®-0 46 = log_.
27 "

This is Jensen’s formula for

fe) =1—=.

Q4

* (iii) The above result may be extended to the case r = r; by
applying Cauchy’s theorem to the circle (w| = 1/r with a small
circular indentation so that the point w = 1/a, is excluded. The
integral round the indentation tends to 0 with the radius, and
the proof concludes as before.

(iv) In the general case

o = (1= =z}t

where ¢(z) is not zero for |z| < 7,,,;, and ¢(0) = f(0). The general
result then follows by addition of the previous ones.

The theorem may be extended at once to a function which
has poles as well as zeros. Let f(z) satisfy the same conditions
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as before, but now let it have zeros a,,..., @,, and poles b,,...,b,
with moduli not exceeding ». Then

log Cutln 2 10) } =2_1ﬂ f log|f(re®)| d6.  (4)

a“l

Forif  f(z) = g(2) /(1—%)(1—61) — g(2)/h2)

n

we have log — e (0 j log|g(re’®)| df
[@...0
d log " Ih(rei®
an 0g — 5ob | flog;k(re )| d6.

The result therefore follows on subtracting.

3.62. The Poisson-Jensen formula. Let f(z) have zeros
at the points a,, a,,...,a,,, and poles at by, b,,..., b,,, inside the circle
[2] < R, and be analytic elsewhere inside and on the circle. Then

log| fre®)] log| f(Re'4)| dg —

f R2— 2R'rcos 0 qS)-}— 72
—a,,,'re —brett
_ylgR(re’ +z gRre’” —b,)

This contains both Poisson’s formula and Jensen’s formula
as particular cases. If there are no zeros or poles, it reduces to
Poisson’s formula for the real part of the function log f(z). On
the other hand, if » = 0, we obtain the general Jensen formula

bibs--bn ).
|Gy 0.0, |

log|/(0)| ;. [ loglf(Re¥)| &g —lo

(i) Let f(z) = z—a, where |a] < R. Then we have to prove that

log|re®—a| = fRz 2chos(8 Py 2log]Re?7¢—-a{d¢-

o R2—grett
€ Rire?—a)
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or

2
are®® 1 R2—y2 :
et 1 i4—q| d.
log B——F =5 f B2 Br cosf—g) % eI Her—al dé

But this is equivalent to Poisson’s formula for the real part of
the function iz
log (R — E) ,

which is analytic for 2| < R
(i) Similarly, if f(z) = 1/(z—b), the formula is equivalent to
Poisson’s formula for the real part of

log(R_.bE).

(ii) If f(2) is analytic and has no zeros or poles in |z| < R, the
formula is Poisson’s formula for the real part of logf(z).

The general case can now be obtained by addition of these
particular cases.

3.7. In all the above theorems the region considered is a
circle. We shall conclude the chapter by proving two theorems
of the same general type as Jensen’s theorem, but applying to
a half-plane and a rectangle respectively.

Carleman’s theorem.* Let f(z) be analytic for |z| >p,
—§7 < argz < §m, and suppose that it has the zeros r,e®, roeibs, .
7.0 inside the contour comsisting of the semicircles |z|=p,
2| = R, —}n < argz < 4w, and the parts of the imaginary awis
Jjoining them, and that it has no zeros on the contour. Then

i (T——)eosf) __flog;f (Rei%)|cos 8 d6

—i7

R
+%f (iz“f}é) log| f(iy)f(—ay)| dy+0(1),

where O(1) denotes a functzon of p and R which, for fixed p, is
bounded as R — co.

Consider the integral

= el )

* Carleman (1).
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taken round the contour in the positive direction, starting from
the point z=4p with a fixed determination of the logarithm.
The integral along the small semicircle is bounded. On the
negative imaginary axis z= —1y, and we obtain

—f log{f(—1y }(y2 g) dy.

On the large semlelrcle z= Re®, and we obtain

1 f log{f( ew)}( +_)zRewd9

—’m

_1 ” 0
-5 f log{ f( Rei®)}cos § do.
—im

The integral along the positive imaginary axis gives

- flog{f(iy)} (o)

and, taking the real part of I, we obtain the right-hand side
of Carleman’s formula.
Again, integrating by parts, we have

As we describe the contour, log f(2) increases by 2min. ‘The
integrated term is therefore purely imaginary. By the theorem
of residues, the last integral is equal to

o 1 e
Z 7. ef"v- 4 R2 )
y=1 7

and, taking real parts, the theorem follows.

The result is easily extended to the case where f(z) has zeros
on the imaginary axis; we make small indentations round these
zeros, and proceed to the limit.

3.71. Let f(z) be analytic and bounded for x >0, and let its
zeros in the right half-plane be r,e, ryei®s.... Then the series

i cosd,

n=1

18 convergent.
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Under the conditions stated, the right-hand side of Carle-
man’s formula is bounded above, say < M. Hence

= (1 7,
Z (;—ﬁ)cos6,<M

v

for all values of R. Every term on the left is positive, and, if

r <R
PR 1 n_ 3
r, R27 4r,
cos@, 4M
Hence Y << 3
r,<3R T

and the result follows.

It is easily seen that the theorem remains true if, instead of
f(z) = 0(1), we suppose that f(z) = O(e*"), wheére « < 1. But if
o =1 the theorem fails, as the example f(2) = cosz shows.

3.72. The above theorem may be used to prove the following
result.

Let f(z) be analytic for x > 0, and of the form O(e~%*) as z — oo,
wherea > 0, uniformly for largz| < 3n. Then f(z) = 0 identically.

For consider the function F(z)= f(z)sinbz, where 0 <b <a..
Here F(z) is analytic and bounded for x = 0; it has zeros at the-
points z=mnm/b, and ¥ b/nw is divergent. This is inconsistent
with the result of the previous section, unless F(z) is identically
zero. Hence F(z) =0, and so f(z) = 0.

A more complete form of this result will be obtained in
§5.8.

3.8. A theorem of Littlewood.* Let C denote the rect-
angle bounded by the lines z = z,, * = %,, y = y,, ¥y = ¥,, Where
<%y, Yy <Yy Let f(z) be analytic and not zero on C, and
meromorphic inside it. Let F(z) = log f(2), the logarithm being
defined as follows: we start with a particular determination on
2 =1,, and obtain the value at other points by continuous
variation along y = constant from log(z,+13y). If, however, this
path would cross a zero or pole of f(z), we take F(z) to be

F(2-£10) according as we approach the path from above or
below.

* Littlewood (4).
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Let v(z') denote the excess of the number of zeros of f(z) over the
number of poles in the part of the rectangle where x >x'. Then

f C'F(z) dz = —2mi Tv(x) dz.

Consider first the function f(z) =2z—a, where a =a+if is a
point of the rectangle. Let C’ be the'contour obtained by
describing C in the positive direction from (x,,¥,) as far as
(,,B), then the straight line y =B as far as a—e-+1f, then a
circle of radius e about z=a described in the negative direc-
tion, and then returning along y = and the rest of C to the
starting-point. Then F(z) is analytic in C’, so that

f T dz=0.

The integral round the small circle tends to zero with the
radius, and it follows that

[ F@) dz= — [ {Fy(z)—Fy(2)} de,

where F; and F, are the values of F on the two paths joining
x,+1B to atiB. Since we obtain F, from F, by passing in the
negative direction round a simple zero of f(z) at z = a, we have

Fy(z) = F,(2)—2mi.
Hence

ch(z) dz = —2mi fdx = —2m .T’v(x) dz,

! z

where v(2)=1 (;<x<a), 0 (x<z<2,), ie. v(x) is the

v-function for the case considered. .
The general theorem now easily follows by addition of terms

corresponding to the various poles and zeros of f(z).

MISCELLANEOUS EXAMPLES
1. Evaluate the integrals

o0 o o0

dx ?z dx dx
21’ 21’ 20+ 1

by contour integration.
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2. Evaluate the integrals

. N

2 cosz sin%z sindz
f L LN f R f S o f sinz
at4-x? a4 2
0 0 0

by contour integration.
3. Prove that, if ¢ > 0,
ct-10
1 a . loga (a>1),
29 22 0 0<a<l).
c—10

4. Prove that the integral

dz
JE2 1 4213)

taken round the unit circle, starting with thie positive value of the
square root at z = 1, is equal to %m.
5. By integrating log%/(1+22) round the usual semi-circular contour,
prove that , w
log , =°
[eezo 2.
0
6. By evaluating the integral

1 dz
2m1 | (z—a)(z—1/a)
round the unit circle, prove that, f 0 <a < 1,

2
dg - _ 2x
14-a*—2acosf ~ 1—a®’

What is the value of the integral if ¢ > 1?7
7. Prove that, if b >a > —1,

by
“ _ wI'(a+1)
J cos®6 cosbd df = STt I ) Ga—1651)"

[Take the integral { (z- 1/z)%?~! dz round the right-hand half of the unit
cirele.]

8. By integrating f 2 dz
a

—eiz

round the rectangle with corners at —ar, 7, -4, —m--in, and making
n —> 00, show that
kg

xsinz dz a T 14-a
—_— =] 1 - o .
f 1+a*—2acosz a og(l+a) (0<a<l), a]og a @>1)

5 .
[Lindelof, Calcul des Résidus, pp. 48-9.]
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9. Show that the function f(z) = sech{xz\/(}w)} satisfies the equation

f&) = J (;) f flz)cosxt dx.

{Take the integral [ cosizsechaz dz round the rectangle with corners
-at +n, +n+im/a, and make n — 0.]
10. Show that the function
1 1
)= ——
) @) eVem—_1  x.)(2m)
satisfies the equation

O J(%) f f(e)sinat de.
0

[Take the integral f sin ztl dz,

P

where a > 0, round the rectangle with corners at 0, n, n+2ix/a, 2iw/a,
and make 1 — 0.]
11. Prove that, 1f0<a<1and0<c< 1,
c+iw

1 & 1
2w arsinmz w(l+a)
c—io )
12. Prove that.if @ >0, —}7 < ad < }m,

00

fe""ma"‘fps(r“sina)\) dr =°°5()) Iy (l) .
) sin sin g~ \a

13. Sum the series
o0

2w Dt
nttat’ ni+at’
n=1 n=1
14. Prove that if —7 < a <, and z is not an integer,

o

Z (_Unnsinna, _ %ﬂ_s_.inax

x2—n2 sinwx

n=1
15. Prove. that*
cothw  coth2sx +ggth 3 ) 1977
17 37 56700°

16. Prove that ©

1 ) 137°
2 nisin nav2 360v2°
n=1

[Hardy. Consider the integral

* Ramanujan; see Watson (1).
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1 1 dz
27t | sinmzsinfnz 2°
where 6 =+2—1. The series is convergent; for if m is the nearest

integer to nv2,
[2n2—m2]

nv2+m > wetm T n’
and hence cosecnmv2 = O(n).]

[nV2—m)| =

o0
17. Show that if f(z) = 3 a,/2**! (2| > 0), C is a closed contour
n=0

including the origin, and ¢(z) is regular in a sufficiently wide region,

then
1

2mi

18. Prove that

f Fw)pla—w) dw = oy §e)— 0, () + 24" (2) ...
o ]

= (a—b)2%2
az 5 —_ a+b)z —_ ),
e%— % = (qg—b)zelia+t l I {1-{- pre }

n=1
19. Show that, however small p is, all the zeros of the function
1 1 1
1+; + TP +ot prype-
lie in the circle [z] < p, if n is sufficiently large.
20. If a > e, the equation € = az" has » roots inside the unit circle.
[Take f(z) = az", g(z) = €, in Rouché’s theorem.]
21. Show that, if « and B are real, the equation
2 pafin-ly g2 ()
has n—1 roots with positive real parts if » is odd, and n roots with
positive real parts if n is even.

22. Prove that, if « is not an even integer,
-]
f e~ cosxt dx ~
0
as ¢t — oo through real values.*

T(a+ 1)sin 1}_1r9¢

{1

23. If f(2) = u-+1v is an analytic function of z — 2+1y, and  is any
funetion of & and y with differential coefficients of the first two orders,

then hE e . \
)+ 6 = (G + G oo,
o e s B T

[See Hardy (6), p. 270.]

Pélya (1).
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24. If f(z) = w-+iv is an analytic function of z = x4y, show that

(2 + ) 1 = A1

o ' &
d th @ LB\ Lo — pio— Dlule-2| f1(2)]2.
andthat (4 2l = plp—)hepr=21 /)|
25. Let ¢(¢) be a real integrable function in the interval (a, b), and let
b
£ = [ ey ar
a

have zeros at the points 1!, 74¢#:,.... Then the series

cosf,
Z T
is absolutely convergent.
[The function e~%f(z) is bounded for > 0, and e“f(z) is bounded
for £ < 0.]



CHAPTER IV
ANALYTIC CONTINUATION

4.1. General theory. It is natural to think of the aggregate
of all values of 22, say, or logz, for all values of z, as a single
entity, and each such aggregate we describe as an analytic func-
tion. We have, however, not yet encountered the general idea
of an analytic function as a whole. What we have always been
concerned with is the idea of a function associated with a region,
and defined in that region by a formula. Thus

ettt (<) (1)

-]

and f el-ads  (R(z)< 1) ()

&

v
appear as different functions, whose values happen to be the
same for certain values of z. But it is obviously more natural
to regard (1) as a part of (2), and (2) as part of the function
defined for all values of z other than 1 as 1/(1—2).

This particular function is one-valued, i.e. has just one value
. for each value of z (except z = 1). But it is also natural to regard
the two values of vz as parts of the same function, and our
_ definition must include cases of this kind also.

To connect these new ideas with our previous theory, we
require a process by which we can extend the definition of a
~ function beyond a limited region in which it is originally defined.
This process is called analytic continuation. It is characteristic-
of analytic functions of a complex variable, and has no counter-
part in the theory of functions of a real variable.

4.11. Analytic continuation. Suppose that f;(z) and f,(z)
are functions analytic in regions D, and D, respectively, and
that D, and D, have a common part, throughout which
fi(z) =fy(z). Then we consider the aggregate of values of f,(z)
and f,(z) at points interior to D, or D, as a single analytic func-
tion f(z). Thus f(z) is analytic in D = D,+D,, and f(z) = f,(z)
in Dy, f(2) = fy(2) in D,

The function f,(z) may be considered as extending the domain
in which f,(z) is defined, and it is called an analytic continuation
of fi(z). Of course in the same way f,(z) is an analytic continua-
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tion of fy(z). This process of extending the definition of a given
function is known as analytic continuation.

For the process to have any value it is necessary that it
should, under suitable conditions, give a unique result, and we
shall show that this is so. Before giving the proof it may be
interesting to note the difficulties which we encounter if we try
to define a similar process for functions of a real variable.

It would be natural to suggest that if, say, f(z) = ¥(=—=z) for
0 < 2 < m, then we should extend the definition of f(z) to other
values of z by using the same formula. The difficulty is that
two formulae may represent the same function in one interval,
but different functions in another interval, and there may be
no obvious way of deciding which is the ‘proper’ formula. For
example, the above function is also represented by the series

sinz  sin 2z

T ST

for 0 <z < ; but if we define the function as the sum of this
series, we find that its value in the interval (—, 0) is —3(7+2).

This series is not uniformly convergent, but even if we restrict
ourselves to uniformly convergent series, the same sort of thing
happens. For example, the series

xsinz  xsin2x

St g e

is uniformly convergent in an interval including z = 0; yet if
we use it to continue its sum from positive to negative values
of , we obtain the undesirable conclusion that the continuation
of Ja(r—zx) is —a(nr+2).

4.12. Uniqueness of analytic continuation. Suppose that
we have a region D, overlapped by regions D, and D,, which
have.a common part D,, itself overlapping D. Let f(z) be
analytic in D, and let f;(z) be a continuation of f(z) to D,, and
fa(2) a continuation of f(2) to D,. Then either of these functions:
provides a continuation of f(z) to D;. To show that the results
of the two processes of continuation are the same, we have to
show that f,(z) = fy(z) throughout D,. This follows from the
theorem of § 2.6, which itself depends on the fact that an
analytic function can be expressed as a power series. The func-
tion f;(2)—f,(2) is analytic throughout D,; it is zero in the part
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of D, which overlaps D, since there f(z) = f,(z) = f(z). Hence
it is zero throughout D;.

The proof depends on the existence of a region common to
D and D,, and if there is no such region, the result no longer
necessarily holds. We may now have fi(z)=f(z) in DD,
fo(2) =f(z) in DD,, but fi(2) # f(2) in D,;. This does not con-
tradict the principle of uniqueness, since it only applies to
regions throughout which the function is analytic; and now D,
D,, and D, may surround, without including, a point where the
function is not analytic.*

4.13. In the second case considered above, where f,(2) 5 f,(2)
in D,, we still consider the aggregate of values of f,(z) and f,(z)
as a single analytic function of z, but now the function is not
one-valued, and in fact is at least two-valued in D,;. In the
same way, different methods of continuation may lead to many
different resuits, and the function is then many-valued.

The reader of Hardy’s Pure Mathematics is already familiar
with the different values taken by the function logz (though, of
course, there even the idea of a function analytic at a point does
not appear). The properties of some other many-valued func-
tions, such as 2% = e21°62, may be derived from those of logz.

4.14. Definition of an analytic function as a whole. An
analytic function is usually defined originally in some restricted
region of the plane. The principle of continuation enables us to
define an analytic function, without reference to any particular
region in which it is defined. It-consists of the original function,
and all continuations thereof, and all continuations of these
continuations, and so on. In this way we may succeed in de-
fining the function f(z) for all values of z, or everywhere except
at certain special points; or only in some restricted region of
the plane beyond which we are unable to pass. In the last
case the region is referred to as the region of existence of the
funetion, and its boundary as a natural boundary of the func-
tion. In the case of many-valued functions we shall obtain
many values of the function for some or all values of z.

* This case may be illustrated by a figure in which the regions D, D,, and
D, are circles with centres at the vertices of an equilateral triangle, and each
radius just exceeds half the side of the triangle. The function may not be
analytic at the centre of the triangle.
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The definition depends prima facie on the particular defini-

tion of the function from which we start. Since, however, the

relation between two functions which are continuations of each

other is reciprocal, all these processes may be reversed; and it

will appear from the general theory that the definition is really
independent of any particular starting-point.

4.15. Thestandard method of continuation. The standard
method of continuation is the method of power series. Suppose
that we start with the series

fl2)=

convergent in a circle [z—a| < R. Taking any point b in this
circle other than a, we calculate the value of the function f(b)
and the derivatives f'(b), f"(b),..., and so obtain the expansion
of the function in powers of z—b. This series will certainly con-
verge in any circle, centre b, which lies in the original circle,
and it may converge in a larger circle, and so provide an
analytic continuation of the function. So the whole function
may be constructed by means of power series. Each of the
power series, or, what comes to the same thing, each set of
values f(a), f'(@), f'(@)...., is called an element of the function.

The adoption of this particular method as a standard is justi-
fied by the following theorem: Al values of the function obtained
by any method of continuation can also be obtained by means of
power series.

Let C be a contour joining two points z =« and z = b, along
which we have continued the function f(2) by any means; that
is, we have a sequence of formulae which define f(z) in a sequence
of regions D,, such that (i) every point of C is an interior point
of one or more D,,’s, and (ii) consecutive D,’s overlap, and the
different deﬁmtlons of f(z) agree in the common parts.

We now attempt to carry out the same process by means of
power series; i.e. we try to find a sequence of points z;, z,,...
on C such that the circle of convergence about each of them
includes the next, such that the values found from the power
series are the same as those found in the other way, and such
that we reach b in this way in a finite number of steps.

With each point z on C is associated a positive radius of

a,(z— a)t
0

ﬁMs



142 ANALYTIC CONTINUATION
convergence p, and p'is a continuous function of z. For take two -
neighbouring points z, 245, and let p and p’ be the corresponding
radii of convergence. Let |k <p. Since f(z) is regular in the
circle with centre 2+A and radius p—|k/|, it follows from the
Cauchy-Taylor theorem that : :
p'=p—Ihl. 1
If |h| <p’ we can use the same argument with z and z2+h
interchanged, so that ,
miereiene p>p'—h,
ie. p' < pth|. (2)

Since the alternative to |k <p’ is p’ < |h|, (2) holds in any
case. But (1) and (2) together show that p’ — p as & — 0, which
is what is required.

Sinee p is continuous it attains its lower bound, and so, since
it is always positive, its lower bound is positive. Let the lower
bound be 3.

We now start at z=a with a power series. Let z, be the
point at distance 48 along the contour. It lies inside the circle
of convergence about @, so that we can expand in powers of

_2z—2;. The new radius of convergence is at least 3, so that we
can go on to the point z, distant & from a along the curve.
Proceeding in this way we plainly reach z = b in a finite number
of steps. The fact that we obtain the same value at b in this
way as in the other way follows from the general uniqueness
theorem. '

4.16. Branches of a many-valued function. We have
defined an analytic function as the aggregate of all values which
can be obtained by continuation from any element of the func-
tion. In general the function will be many-valued, i.e. starting
from z,, say, we can, by taking suitable paths, arrive at z, with
many different values of f(z,). We may, however, make this
impossible by restricting ourselves to the interior of some parti-
cular region. We then say that there is a branch of the function
in this region. Consider, for example, the function vz. The
system of values defined by vret® (—m < 6 < #) is a branch in
the plane cut along the negative real axis from the origin to
infinity; and the system —«reti is another branch in the same
region. Similarly the function logz has in this region an infinity
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of branches defined by
log r+i(0-+2n) (—r< i< m),

every integer n giving a branch.

It should be understood that there is no unique way of
dividing up a function into branches; for example, we might,
in the above cases, cut the plane along any other line from the
origin to infinity. But, however we do it, we obtain a definite
number of branches, e.g. vz has two. The question of the
number of branches will be considered again later.

4.2. Singularities of an analytic function. The only
singularities which we have so far defined are isolated singu-
larities of functions analytic and one-valued in a given region,
or limit-points of such singularities. These were classified as
poles and essential singularities. This clasmﬁca,tlon now proves
to be inadequate.

We shall now say that a one-valued analytic function is
regular at any point which is interior to one of the circles used
in continuation from the original element; and that it is singular
at any limit-point of regular points which is not a regular point.
A point where the function is singular is called a singular point
or singularity. This definition includes the poles and essential
singularities which we considered before; but there may also be
singularities which are not isolated. In § 4.7 we shall construct
functions for which every point of the unit circle is singular.
A point of this kind is usually called an essential singularity also.

The expression ‘regular’, as we have used it here, means more
than ‘analytic’. . A function may be analytic at a point, in
accordance with the definition of § 2.14, without being regular
there ; for example, let f(z) = e-1e for —}n < argz < i, |z| > 0,
and let f(z) = 0 elsewhere. It is easily seen that this function
is analytic at z= 0, and f'(0) = 0. Consider, however, the con-
tour consisting of the triangle with vertices at 0 and 14-%i. The
function is analytic everywhere inside and on the contour, but
it is evidently not regular at z = 0. The distinction is, however,
not very important, since it has to be made only for somewhat
artificial functions like the one considered.

In the theory of many-valued functions we have another kind
of singularity, known as a branch-point. Suppose that, on con-
tinuing the function f(z) round any sufficiently small circle with
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centre z, we return to the starting-point with a value of the
function different from the one with which we started. Then
2, is said to be a branch-point of f(z). For example, if we con-
tinue %z = vret? round the circle of centre 0 and radius r from
f =0 to 8 = 2m, the value of the function changes from vr to
—~r. Hence z=10 is a branch-point of +z. Similarly it is a
branch-point of 1/vz and logz.

Notice that a branch-point is not necessarily an ‘infinity’ of
the function.

A branch of a many-valued function may, of course, have
poles and essential singularities; and a point may be a singularity
for one branch of the function but not for another. For example,
the point z = 1 is a pole of the branch of 1/log z corresponding to
the value of logz which is zero at z= 1, but not for any other
value of the logarithm. A general definition of regular and
singular points is not quite so simple for many-valued functions
as for one-valued functions, and it is usually sufficient to con-
sider particular branches separately. We define a regular point
of a branch in the same way as for a one-valued function; but
a singularity such as a branch-point cannot be assigned to one
particular branch.

Examples. (i) The function z¢, defined as e**c:, has an infinity of
values unless @ is real and rational, when it has a (inite number of values. -

(ii) The function z}(1-—z)} has six values.

(iii) One branch of the function
1

j—

l10 -
2 1
is given for [z| 1 by the series

1
(4324325 +..0),

and z —= 0 is a regular point for this branch; but it is a pole for every
other branch.

(iv) The function {log 1/(1 —=2)}* has singularities at z — 0 and z = 1;
z = 0 is a branch-point for one determination of the légarithm.

(v) Consider the singularities of the function log log 2.

4.21. If the radius of convergence of the series
©
f&) =% az
n=0

18 finite, f(z) has at least one singularity on the circle of convergence.
Let C' be the circle of convergence, of radius R, and € a
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concentric circle of radius B’ < R. Let p be the radius of con-
vergence of the power series about a point z on C'. Asin§4.15,
p is a continuous function of . Also p > R—R’. Let & be the
lower bound of p for zon . Then 8§ > B—R".~

If § > R— R’, the circles of convergence about points on "
together cover the region |z| < R'+38, and so f(z) is regular in
this larger circle. Hence, by the Cauchy-Taylor theorem, the
radius of convergence of 3 a,2" is greater than R, contrary to
hypothesis.

It follows that 8§ = R—R’. Since a continuous function
attains its lower bound, there is a point R'c‘*, say, on C’, at’
which p = R— R’.. Then Re'* is a singularity of f(z). For if it
were a regular point, f(z) would be regular in a circle with centre
z = Re'®, and then the radius of convergence about R’e?® would
be greater than R— R'.

Since we have established the existence of a singularity on
the circle of convergence, we may speak of it as the singularity
nearest to the origin, or one of the nearest. We may then say
that the circle of convergence passes through the nearest
singularity of the function to the origin.

4.22. If we continue an analytic function f(z) along two dif-
ferent routes from z, to z,, and obtain two different values of f(z,),
then f(z) must have a singularity somewhere between the two routes.

We construct two chains of regions, say D,...., D, and Ds,..., D,
such that two consecutive regions of either chain overlap, D,
and Dj include z,, D, and D, include z,; f,(z) is analytic in
D, and g,(2) in Dy; fi(2) = fr_1(2) in the common part of D,, and
D,_,. and fi(z) = ¢,(z) in the common part of D, and D;.

We have then to prove that, if we can continue the function
to every point between the two routes, then f,,(z;) = g,(2,).

If & is small enough, we can construct a polygonal line,
starting at a point ¢ in DD, and ending at b in D, D), with
vertices at points (p3, ¢3), such that the circles of radius 28
with these points as centres lie entirely in the first chain, and
each contains the centre of the following one. This chain of
circles can be substituted for the first chain of regions. A similar
chain of circles, with the same 8, can be substituted for the
second chain of regions.
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We can now replace the first route by a succession of new
routes, consisting of circles of radius 26 with centres at points
(p8, ¢3), such that each circle of each route overlaps the pre-
vious route, and the circles of the same route on each side of -
it, without leaving any space uncovered. No circle has a radius
smaller than 25, or the previous theorem would show the
existence of a singularity. It follows from the general principle
of uniqueness of continuation that, with each such route, we
arrive at z, with the same value of f(z;). Also, in a finite number
of steps we pass from one of our original routes to the other;
since the function is regular at every point between the two

- routes, the process of continuation is never stopped.

4.3. Riemann surfaces. The function vz is a two-valued
function of z; but, if we put z = re® and distinguish between
equal values of z arising from different values of 8, it is possible
to represent it as a one-valued function. Suppose we consider
tlge values of z corresponding to = << 6 < 3= as distinet from
those corresponding to —= < 8 < 7; but those corresponding to.
3m < 6 < 57 as the same again, and so on. This is equivalent
to replacing the ordinary z-plane by two planes. We may think
of them as superposed, each of them being cut along the nega-
tivereal axis,and the planes being joined cross-wise along the cut.
The configuration thus obtained is called a Riemann surface.

If now we pass along a path encircling the origin, starting on
the upper plane from the negative real axis, we pass round the
upper plane once, then cross to the lower plane, pass round it
once, and then return to the upper plane.

This corresponds to the way in which we obtain the two
different values of +z. On the upper plane, say with —7 <6 <,
we have vz = Wret? (—}z < 36 < ), and on the lower plane
Nz = wret (lr < 30 < $7); and if 6 is increased further we
return to the upper plane again, and the values are repeated.
Thus +z is a one-valued function on the Riemann surface.

We represent the function logz in a similar way upon an
infinity of superposed planes, each cut along the negative real
axis and joined to the opposite edge of the one below. In this
case there is no return to the starting-point. .

For a function such as V{(z—a)(z—b)} we may make a cut on
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each plane along the straight line joining the points z = a and
z = b. and join cross-wise along the cut.

The number of branches of a many-valued function may be
defined as the least number of planes which are required to form
a Riemann surface on which the function is one-valued.

Considerable ingenuity is required in constructing Riemann
surfaces for more complicated functions. They are of great im-
‘portance in the general theory of many-valued functions, but it
is beyond the scope of this chapter to pursue the subject further.

4.4. Integrals containing a complex parameter. We
know that if z is real and positive, then

[etar=1. (1)

4

o0

Now the integral is uniformly convergent in any finitc region
to the right of the imaginary axis, and therefore represents an
analytic function of z, regular for R(z) > 0. Hence the function

o

F(o)= [etdr 2

is regular for R(z) > 0, and F(z)== 0 on the real axis. Hence
F(2) = 0 wherever it is regular, i.e. (1) holds for complex values
of z whose real part is positive. Thus we may put z =zt Y
(x > 0) and separate real and imaginary parts, and obtain the
well-known results

[ eteosytdt = ~—
J ertoosyldi= ; 4

Examples. (i) Prove that

=]
A Al

J. g (Re)> ).

Tt _
fe ‘smytdt._xﬁyz (2)

[Assuming the result for real values of z, the general result may be
obtained either by analytic continuation, or by using Cauchy’s theorem
to turn the line of integration through an angle —}argz.]

aw

.(ii) Prove that J. ¢ __ 7
I—zcost J(1—z2%)

except when zisrealand 2 > lorz < —1.
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4.41. The Gamma-function. The formula

0

I(z) = f e~y dw (1)

defines I'(z) as an analytic function, regular for R(z) > 0
(§2.85). As it stands it tells us nothing about I'(z) on the
imaginary axis or to the left of it.

Consider, however, the function

f@) = [ emo(—wp-tdw, )

where C consists of the real axis from oo to 8, the circle jw| = 8
described in the positive direction, and the real axis from & to oo
again. The many-valued function (—w)*~! = e@-Dl8(~¥) js made
definite by taking log(—w) to be real at w = —3. The contour
integral is uniformly convergent in any finite region of the
z-plane, for the question of convergence now arises at infinity
only, a case already discussed in §1.51. Hence f(z) is regular
for all finite values of z.

If w = pe'#, then logw = log p-+i(¢—n) on the contour. The
integrals along the real axis therefore give

[}
J‘ {—e—p+e-Nogp—im | g-p+-Dlogp+im) dp
8

@
= —2sinzr J. e~Pp*~1 dp.
3

On the circle of radius &
(—wy-1| = le(z—l)(log‘B-i-i(gb—w)}l = e@—Dlogd-y(p—m) — 0(3:;—1).

The integral round the circle is therefore O(8%) = o(1) as § - 0
if x > 0. Hence, making § - 0, we obtain

f(2) = —2isinzr f ePpr-ldp = -—2isinznT(z) (R(z) > 0).
0

Now the function }if(z)coseczn is regular for all values of z
except possibly at the poles of coseczm, viz. 2 = 0, -1, +2,...;
and it equals I'(z) for R(z) > 0. We can therefore take thig
function as a continuation of I'(z) over the whole z-plane. But
we know already that I'(2) is regular at z =1, 2,.... Hence the.
only possible poles are at z = 0, —1, —2,....
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These points are actually poles of I'(z); for if z is & negative
integer, (—w)*~! is one-valued, and the integral (2) can be
evaluated by the calculus of residues. We obtain
f(—n) = —2xi/n!,
and the residue of I'(z) is
omi atn (=)

hm
n 0! 2isinze n!

All the gamma-functlon formulae can now be extended to
general complex values of z. For example, the functional equa-
tion I'(z)[(1—2) = = coseczm,
proved on the assumption that z is real and 0 < z < 1, holds
for all non-integral values of z.

A consequence of this formula is that 1/I'(z) is an integral
function. For in the above formula the poles of I'(1—z) are all
cancelled by zeros of sin zr.

We can now prove for I'(z) formulae similar to those of
§ 8.22-3. By§1 86( )

I'(z—h)I(
I'(z)

+ J'{ el ph-idt (0< h < )
1 1
-4 f{(l—t)z-l—l}t—l dt +o(1)
[
as k- 0. The left-hand side is
1 , 1
(T (z)+...}{z+A—|—...},
where 4 is a constant. Equating the constant terms, we obtain
1
I(z) 1 pen
P_(g)__f{l a—t3%_ @ >o.
Putting 1/t = ¥ (1—%)" and integrating term by term,
L) _ (L. _1_)_
(z) ﬂz_o (n+1 Ttz
“The process is justified by §1.77 if z > 1; the result holds by
analytic continuation for any z except a negative integer.
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It is easily seen that the formula can be rearranged as

Mz) 1 _ (1 1
T) ;—*Zl(rm)“a
where C' is another constant. Integrating and taking expo-

nentials, ) »
= g0 24
I'(z) e ].—[ (1+ n)e o

n=1

. : = 1
tt: = ]., 1= c — "'lln_
Putting z e Ill (l-l-n)e
Hence ® )
= — Zle-ln
log Ill (l—i—n)e

=lim (1+%+...+—l%——logN) =,

N—»c0

y being Euler’s constant.

4.42. Stirling’s formula for complex values of z. The
formula of the previous section gives

= [z e’ 3
logI'(z) = ,,Zl {E—log(l—{—?—%)}—yz—logz, (1)
each logarithm having its principal value. Now it is easily
verified that

N Ne—gmHl
[EaHe=3 [ e

n=0 o

Ntz 2 1 1
z z {h-——log(l—f-;&)}——log{(N——— 1)!}—-z(1+§+...+ﬁjl-)—-
—(z+Blogz-+(N—+2)log(N +2)—N.
Using 1.87 (1), and the relations

I g+t = log Nty+o (D),
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1
log(N+2) = % o=
og(N+z) = log N+ Al 0( Nz)’
and making N — 00, it follows that

ClogT'(z) = (z—%)logz—z—{-%log%%—f[ﬂ%l_—%du. (2)
o

Writing $(u) = | ([v]—v+3) dv, $() is bounded, since clearly
0
gb(n-l— 1) = ¢(n) if n is an integer. Hence the last term in (2) is

(4@ 4 f¢w> _ f ) _ ot

u+z (u+-2)? du =0 w12 —2urcosd| 0(7‘)
umformly for —n+438 < argz << w—38. This is the extension of
Stirling’s formula to complex values of 2.

_Exampl'es. (i) For any constant e
' log '(24-a) = (24-a—3})logz—z+4log 2w+ O0(1/[2|)
as |z| = oo, uniformly for —7+8 < argz < w—4.
(ii) For any fixed value of x, a8 y —> 400
D(@+iy)| ~ e~trivlly[==y(2m).
(iii) Show that the series ¢(u) = El(l—cos 2vmru)/(2n*v?) can be in-
v

gerted in the above formula and integrated term by term. Hence prove
that the integral in (2) is

—117z+0(l71!3)'

This process can be carried to any number of terms by repeated partial
integrations.

4.43. The Zeta-function. The function {(z), defined origi-
nally by the series

) =ptgt-  RE>1), (1)

has been shown (§1.78 (ii)) to be also given by the formula

£()

T

1 o«
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We can use this formula to continue {(2) across the line x =1,
in the same way that we continued I'(z) across x=0. In fact
we can prove in precisely the same way as before that, if

R(z) > 1, 1 f (—w)e—2
c

6) = T 2sinzr I'(z) Jo e0—1 dw, (3)

where, as before, the contour ¢ comes from positive infinity
and encircles the origin once in the positive direction. The only
difference is that ¢ must now exclude all the poles of 1/(e¥—1)
other than w = 0, viz. the points w = -+ 2im, J-44m,....

Using the functional equation for the I'-function, we may
write the result in the form
_il(1—=2) [ (—wp?

L dw.

{(z)

As in the case of the I'-function, the contour integral is an
integral function of 2. This formula therefore provides the con-
‘tinuation of {(z) over the whole plane. The only possible
singularities are at the poles of I'(1—z), viz. at =1, 2,.... But
we know already that {(2) is regular at z=2, 3,.... Hence the
only possible pole is at z=1. This is actually a simple pole,
with residue 1, For at z=1 the contour integral is equal to

dw

ew—1

= 277‘@

c

by the theorem of residues, and I'(1—z) has a simple pole with
residue —1, whence the result.
Again, it is well known that

1 11 i (—1)»-1B, w1

=1 w 2 (2n)!

n=1
where the coefficients B, (Bernoulli’s numbers) are rational

numbers. Hence we can evaluate {(—n), where n is any positive
integer, by the theorem of residues. We find that

{0)=—13,
U—2m)=0 (m=1,2,.),
- (__1)m+le+1

C('—2m"“1)—--——-§*m— (m=0,1,..). v
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4.44. The functional equation for the {-function. The
{-function satisfies the functional equation
{(1—z) = 2'2nr~%cos {mz T'(2){(2).
To prove this, we take the formula (3) of the previous section,
where now z may have any value, and deform the contour into
the contour C, consisting of the square with centre the origin
and sides parallel to the axes; length of side (4n--2)m, together
with the positive real axis from (2n4-1)7 to infinity. In so doing
we pass over poles of the integrand at the points w = 24w, 49m,...,
2nirr, and — 2im,...,—2niw. The residue at 2vim (v >0) is .
elz—1Xlog 2y ~3im) — ( 2v,n.)z—1ie—éivrz,
and at —2viw it is
e(z—-l)(log vmdim) — (gvﬂ):—lieé Eﬂ':.
The sum of these two residues is
. (2vm)*-12sin L7z,
Hence § 4.43 (3) gives
1 (—w)=-1
2t Jo, e*—1
Suppose now that R(z) < 0. On the square
l (_w)z—ll —_ e(x—l)loglw]—yarg(—w) — O(Inx—l)’

n
smaz ['(2){(z) = — dw +2msin Iz 3 (2vm)L.
v=1

and |ew—1| > 4, while the length of the square is O(n). Hence
this part of the integral is O(n®), and so it tends to zero. The
remaining part of the integral plainly tends to zero also. Hence,
making n - co, we obtain

sin 7z I'(2){(2) = 27 sin {m7z(2m)*-1 E -1
v=1

= 2m sin 472 (27)*-1{(1—=2),
which is equivalent to the result stated. This proves the func-
tional equation for R(z) < 0, and so, by § 4.42, for all values
of z.

4.45. An alternative proof. The following proof* proceeds
on quite different lines. Let-

fla) = z sin;in_:—ll)x )

n=0

* Hardy (15).



154 ANALYTIC CONTINUATION

This series is boundedly convergent and f(z) = (—1)"}= for
mn<x<(m+1)n,m 0,1,2,...; for

flz) = z smnx__ z sin 2nx’

and the results easily follow from those of § 1.76, ex. (ii). We
may therefore multiply (1) by 27-* (0 <p < 1) and integrate
term by term over any finite interval (0, X). Thus

x

. X
f aP-Yf(z) do = Z 2”’_:__1 f xP-1sin(2n+41)x dx. (2)
n=0 :

0

We may then replace X by oo prbvided that

lim z T | +1 ‘. xP-1 s1n(2n+1)m dx = 0. 3)

X—>0

Integrating by parts, the mbegral is

o0

o c08(2n+-1X | p—1 8 (€ -
Xp Sm +2n+1 xP-2cos(2n+-1)x dx
bq

[ Xp1y 1 [\ [ Xem
= 0(2n+1)+0(2n+1 fxp : d”) = O(mi)’
X

and (3) clearly follows.
Inserting the value of f(x), and evaluating the integrals on
the right-hand side by § 8.127, we therefore obtain
(m-+1)m

i Z (—=1)ym f ‘2?1l dx = I'(p)sin pm Z (721—{_—‘:1—17;:1

The series on the nght—hand side converges to

(1—=2-24)(p+1).

That on the left is
P e m
_27[1-]-”;1(—1) {(m+1)p-mz>}].

This series is convergent for p < 1, and, as a little consideration
of the above argument shows, uniformly convergent for
R(p) <1—8 < 1. Its sum is therefore an analytic function of
- p, regular for R(p) < 1. But for p < 0 it is ‘

2(1P—274-30 — ) = 2(1—20+1){(—p).
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By the theory of analytic continuation its sum is the same
analytic function of p for R(p) < 1.
Hence, for 0 <p < 1,

T (1= 2i(—p) = D(psin bpm(1~27-1)(p-+1),

and putting p =2—1 we have the same functional equation as
before. The proof holds for 1 <z< 2 only, but the result,
proved for these values of z, holds for all values by analytic
continuation.

4.5. The principle of reflection. Let f(2) be an analytic
function, regular in a region D intersected by the real axis, and
real on the real axis. Then f(z) takes conjugate values for conjugate
values of z.

Let z, be an interior point of D on the real axis. Then

f&)= 3 ayle—z)"

for sufficiently small values of |z—z,|
AlL the coefficients a,, are real; for

@y = f(z,), ay = f'(z),--. -
Clearly a, is real. a; may be calculated as the limit of

f@)—fz)
2—72
as z —> zy by real values. Hence a, is real. So they are all real.
The result now follows inside the circle of convergence of the
above series. The general result then follows by continuation,
since the power series about conjugate points will always have

conjugate coefficients.

4.51. A method of obtaining the analytic continuation of
certain functions is given by the Riemann-Schwarz ‘principle
of reflection’. This is contained in the following theorem, which
is a sort of converse of the previous one.

Suppose that a region D of the z-plane has as part of its boundary
o segment 1 of a straight line; and that w= f(z) is an analylic
Sfunction, regular in D and continuous on 1, and such that, as z
describes 1, w describes a straight line X in the w-vlane. Let z be
a point of D, 2, its reflection in 1, and let w, be the reflection of
win X. Then w, = w,(z,) 18 an analytic continuation of w.
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In the first place, w, is an analytic function of z,; for it is
easily seen from a figure that, if w’ corresponds to 2’, and w7, 2;
are their reflections,

Ccml=lr—z | = o —w]

and
arg(zj—2;) = Ja—arg(e—2), arg(wj—w;) = 2B—arg(w'—w),
where « and B are the angles between / and A respectively and
the real axis. Now when z’ — 2z, the limit

. w -w
Iim™~ =
exists, i.e. the limits
!
. —w .
lim l — lim{arg(w’' —w)—arg(z’ —2)}
exist. Hence the limits
W —w, | .
m | L1 lim{arg(w;—w,)—arg (z1—21)}
f—%
exist, and so
W W,
lim -1
=%

exists, i.e. w, is an analytic function of z,.

Secondly, it is clear that, on I, w, = w.

To prove that the two functions are analytic continuations
of each other, take any point of the line I, and describe round
it a circle C so small that it lies entirely inside D and its reflec-
tion D,. Let ¢ be the boundary of the part of C in D, ¢, of the
partin D,. Let ¢(z) = w in the part of D inside C, and ¢(z) = w,
in the remainder of C. Then ¢(z) is continuous, and it is
sufficient to prove that ¢(z) is an analytic function of 2.

' Let #, be a point inside C and D. Then*

$(2o) L[ 28 dz,

= 2m ¢ 2—2
and, since ¢(z)/(z—z,) is regular in D,

0= —1--_ $). dz.
21 Jo, 22

* See the end of § 2.35.
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Adding, we obtain
- $(2)
be) =g | Fo-d 1)
the integrals along I eancelhng.

We clearly obtain the same formula if z, is any point inside
C and D,; and also, since each side of (1) is continuous, if z, is
inside C and on I. But, as in § 2.8, the right-hand side of (1) is
an analytic function of z,, regular inside C. This proves the
theorem. ‘

The method of proof also gives the following general theorem:
if two functions f(z), f,(2), are analytic and regular in regions D
and D, separated by a contour C, and continuous on C, and
f2)=f.(z) along C, then the two functions are analytic con-
tinuations of each other.

4.6. Hadamard’s multiplication theorem.* The following
problem, which was considered by Hadamard, is a good example
of the principles of analytic continuation. Suppose that

flz)= Za 2

is convergent for |z| < R, and "
g(z) = Z b,z
n=0

is convergent for [z| < R’, and that the singularities of f(z) and
g(z) are known. What can be said about the singularities of

the function
a F(z)=> a,b,2", 1)
n=0

whose coefficients are the products of those in the given series ?

The general result is that, if f(z) has singularities at oy, a,...,
and g(z) at By, Pa--., then the singularities of F(z) are to be found
amonyg the points «,, B,.

Let us suppose, to take the simplest possible case, that f(z) has
just one singularity, z = «, and g(z) just one singularity, z= 8.

In the first place, F(z) is regular for sufficiently small values
of z, and in fact for |z| < RR'. Forif e>0

]an(R—e)nl < -K: [bn(Rl—e)n[ < K’
. S

{(B—e)(B'—e)}™
* Hadamard (3).

so that
lanbn ! <
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and by taking e small enough we see that the radius of con-

vergence of the series for F(2) is at least equal to RR’.
Hadamard’s theorem depends on the following representation

of F(z) as an mtegral

Rkl @

where C is a contour, including the origin, on which |w| < R,
|z/w| < R'. To prove this, write

2 o z2\"
o) = 2m()
n=0
in the integral, and integrate term by term, as we may by
uniform convergence. We obtain

dw b,z f(w)
i @) ()w Em gt

"'zan

the required result. In order that. the inequalities |w| < R,
|zfw| < R’, should be consistent, it is, of course, necessary that
|z2] < RR’. If this condition is satisfied, C may, for example,
be any circle between [w| = R and |w|= |z|/R".

In the case where each function has just one singularity,

= |a| and R’ = |B].

We next continue the function F(z) beyond the circle
|z]= RR’ by deforming the contour C. As long as C remains
fixed, z may, in (2), take any value such that z/B remains inside
the contour C. For, by § 2.83, the right-hand side of (2) is an
analytic function of z for all such values of 2z, and the continua-
tion of F(z) to all such values follows at once.

Suppose on the other hand that we deform C into another
contour C;, which includes z = 0 and excludes z = «. Let

Fi) = g |, fre(2) B @)

Then by Cauchy’s theorem F,(z)= F(z), provided that the
point w = z/B lies within both C and C,; for then the integrand
is an analytic function of w, regular between C and C.

The formula (3) therefore provides the continuation of F(z)
to all values of z such that z/8 lies within C,.
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The only restriction on z, therefore, is that z/8 must lie within
a contour which excludes z= «. But we can choose such a con-
tour for every z except z = of.

Thus F(z) is regular except at z=afB. The proof, however,
applies only to what we may call the principal branch of F(z),
viz. that obtained by continuation from the original element
without encircling any of the points of. In the above example
the contour C, cannot have a loop going round « and enclosing
the origin again on the other side, since the integrand has a
singularity at w = 0. Hence if z/8 — 0 along a path encircling the
point «, it is impossible to choose C) appropriately. The point
z =0 may therefore be a singularity of other branches of F(z). -

In the general case the details of the proof are, of course,
more complicated, but the general method is the same.

Examples. (i) If

fz) =a—:—zs 9(2) =5—_—,

2

F .
then (z) ab—z

(ii) T fz) = lizy 9)

then F(z) =0, so that the points «f are not necessaﬂly singularities
of F(z).

4.7. 'Functions with natural boundaries. Let

f&=3 .

Then f(z) is an analytic function, regular for |z] < 1. Let
z = re?pmil,

and consider the behawour of f as r - 1 through real values.
Now fz)= Z M+ Z 2 = f1(2)+/2(2)s

say. Then fi(2) is a polynom.lal, and tends to a finite limit as
r—1. When n >g¢, ¢ is a divisor of n!, and s0

2! — pn! ('ﬂ/ > q).
Hence folz)= S ™,
n=q

which tends to infinity as r— 1. Hence f(z) o0, and so
2= €27l is 3 singularity of f(z). But points of this kind are
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dense everywhere round the unit circle, so that there is no arc,

however small, on which f(2) is regular. Tt is therefore impos-

sible to continue f(2) across the unit circle, and so the unit circle

is a natural boundary of the function. ' '
A similar result holds for the function

o
fr =32
—we put z = re??mi¥ and proceed as before.
471. Lambert’s series.* Let

fey=3 g (EI<D),

where d(n) denotes the number of divisors of n. We shall prove
that the unit circle is & natural boundary of this function.
Consider the double series
DA
p=1v=1
If we arrange it as a single power serics we obtain f(2), and if
we sum it by rows we obtain .
zH
fe)= 2 1%
p=1
The double series is absolutely convergent for [z[ <1, so that
the transformation is justified.
Let - z=re?Pmilt
where p and q are positive integers, p > 0, ¢ > 1, and p is prime_
to g. Then we shall prove that, as r > 1,
(1—17)f(z) = 0.

w
For let f2)= zl Tz:Eﬁ + ZZ lz_'sz,

where, in Y, p takes all values = 0 (modg), in ¥, all other
values. In Y, putting p =mg, )
b = (rez'rriplq)mq —_ qu’

(2] <1).

so that
rme

(1—r) 21‘= (1—7) Z LA

—pm

1—r i 1—14
—_ — ymq
1—re - —qind
m=1

* See Knopp (1).
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1 < rma
1—|—r+.‘.—|—r€l'32 1724 rim-14
1<rme 1
Zei&m T g iR
On the other hand, if 3 0 (modg),

[1—2#[2 = |l —rHe2™Pre|2 = (1—ri)2-|- 4y sinze’gz

> 0

> 4resin? T,
Hence
: (1—r) < 14-+r 1
1— < o — < .
(A=) 2,1 < 2sinn/q P ™= 35n nlq  sinw/q

Hence, as, in the previous cases, the unit circle is a natural
boundary of f(z).

MISCELLANEQUS EXAMPLES
1. The power series 2—322 4323 —...
may be continued to a wider region by means of the series
1—z (1—2)2 (1—2)®

2. The power series 2+ %z2-|--§z3+...'
and im—(2—2)+ 3z —2)*— }(z—2)3+...
have no common region of convergence, but are analytic continuations
of the same function.
3. The functions defined by the series
) 1+az+a%2+...
1 A(l-—a,)zv_*__(l—a)zzz_
1—z (1—2)2  (1—2)®
are analytic continuations of each other.
4. If f(z) and g(z) are integral functions, the integral’

1 { fa) zg(l/w)} i,

and

21 w—z  2w—w?

taken round the unit circle, represents f(z) inside the circle and g(1/z)
outside it.
5. If F(x, B;y;2) denotes the series :
of | oat+1)BB+1) ,
14 g 2T IEET e,
1.y 1.2y(y+1)
show that the series flz) = Fla, 1;¢32)
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e
and g(z)-—l—_—_—zF c a,l,c,z_1

have a common region of convergence; that in this region they both
satisfy the differential equation

2(1 -~&‘4)~—+{c (a+2)z}—--—<w"0

that £(0) = ¢(0) and f(0) = ¢’(0); and hence that the two functions are
analytic continuations of each other.

' 1

JE—2)+1

. has two power series about z = 0, with radii of convergence 1 and 2

respectively.
7. Consider the singularities of the functions

6. The function

ok el
[o0:4 ¢ )} (D ——
P{J(z D+ NPESES
8. Show that the formulae (2) of § 4.4, which were proved there for
real values of x and y, hold also for all complex values such that

@) < R(=).
9. Prove that I

T(z) = f e~*w*=1dw 4 Z =1

: 'n'(z—{—n

and hence give another proof of the analytxc propertles of T'(z).
10. Prove that f t*~'cost dt = I'(z)cosimz

if 0 < R(?) < 1; and that

oo

f #-1sint d¢ = T(z)sin bz

if —1<R(z)<1.
11. Prove that if 0 < R(z) < 1

1 _ 1 1
{z) = @) J W 1((;;—_—1 —'E) dw,
0

and that if —1 < R(z) < 0

<]

O

[Consider the corresponding contour integrals as in § 4.43.]

12. Deduce the functional equation for the zeta-function from the
first formula of ex. 11, and the formula of Ch. III, Misc. Ex. 10.
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13. Deduce the functional equation for the zeta-function from the
second formula of ex. 11, and ex. (iii) of § 3.22.

14. The function L(z) is defined for R(z) > 1 by the series

1 1,1
e =g—gts~

Show that L(z) is an iﬁtegral function of z, and that it satisfies the
functional equation

L(1—2) = 2nr—*sin¥nz T(2)L(z).
15. A function f(z) is defined for [z| < 1 by the series.

fz) = Zo(”‘l'l)' (s> 0).
1 [ gt
Show that fz) 6) f P dt,
o

and hence that f(2) is regular except possibly on the positive real axis.
By deforming the line of integration into a suitable curve, show that
the principal branch of f(z) is regular except at the point z = 1.

16. Show that the singularities of the principal branch of
i az
, n+1y
& (n+1)
are the same for all real values of s.

17. Two functions f(z), g(x), are connected by the formulae

ﬂm=fww»@ ww=%l}4wna

~00 .
for real values of 2. Show that there cannot be a finite interval outside

which both f(z) = 0and g(z) = 0, unless both functions are everywhere 0.
[If f(x) = O for x < a and x > b, g(x) is analytic.]

18. If f@) = ;Sozz',

show that ° ‘ " f(2) = f(22)+2,
and deduce from this that [2| = 1 is a natural boundary of the function.
19. If « is a real irrational number, the series

-]
2, e
n=1

represents two different analytic functions, one inside the unit circle and
one outside it, the unit circle being a natural boundary of each. If « is



164 * ANALYTIC CONTINUATION
rational, the series represents a single rational function. [In the first

case the function is unbounded as 2z "along the radius vector.]
20. The function I I (1 4+ 1 _)
w+n
n=1

has the line R(z) = 1 as a natural boundary.
[Every point of this line is a limit-point of zeros.]

21. Let flz) = f: a2 (lz2] < 1)
n=0
and é(z) = Z g’%
n=0

(-]
Then the integral  F(z) = | e~'(z 1 di

provides the continuation of f(z) across any arc of the circle of con-
vergence where f(z) is regular.

[This is Borel’s method of continuation—see his Legons sur les séries

" divergentes, p. 94. We have F(z) = f(z) wherever the series for f(z) is

convergent; for by § 1.79 we may then insert the series for ¢(z¢) and

integrate term by term. But if f(z) can be continued at all, F(z) exists

in a wider region. Let z be a regular point of f(z). Asin § 4.6 we have

1 ) ezt/w dw
96(“) : - fcf('w)e d w’

where C is a contour including the origin, and excluding the singu-
larities of f(w). Hence
|(zt)| < KeMt
where K is independent of z and ¢, and M is the maximum of R(z/w)
for values of w on C. To prove the integral for F(z) convergent, we must
have M < 1. Now R(z/w) < 1 if w lies outside the circle on Oz as
diameter. We therefore take C to be a concentric circle of slightly larger
radius—say %[z|+8; on it M = |z|/(|]z|+8). Also C must exclude all
singularities of f(w), and it does so if 2 lies in a region D formed as
follows: Through each singular point of f(w), draw a line perpendicular
to the line joining the point to the origin. The unit eircle is included
in & polygon D formed by these lines. It is easily seen from a figure
that the conditions are-fulfilled if z is inside D and 8 is small enough.
It now follows without difficulty that Borel’s integral gives the con-
tinuation of f(z) to all points inside .D.]
22, Verify Borel's theorem for the functions
1 1 1

1-2’ 1—22’ 1—2¢"



CHAPTER V
THE MAXIMUM-MODULUS THEOREM

5.1. The maximum-modulus theorem. Let f(z) be an
analytic function, regular in a region D and on its boundary C,
which we take to be a simple closed contour. Then |f(z)] is
continuous in D, since

| [1fE+R)=17E)| < [fe+)—fE),
which tends to zero with . Hence | f(z)| has a maximum value,
which is attained at one or more points. The fundamental
theorem of the chapter is that |f(z)| reaches its maximum on
the boundary C, and not at any interior point of D. We may
express it by saying that if |f(2)] <M on C, then the same
inequality holds at all points of D.
A more precise form of the theorem is as follows:
If |fz)| <M on C, then |f(z)| < M at all interior points of D,
unless f(z) is a constant (when of course |f(z)| = M everywhere).
We shall give a number of different proofs of this theorem.
5.11. Frrst ProOF. This depends on the lemma that if ()
is continuous, ¢(x) < k, and

s [ s>t M)

then ¢(z)=k. For if $(¢) <k, there is an interval (€—8,£4-8)
in which ¢(z) < k—e, say; and

b
j () d < 28(k—e)+(b—a—28)k = (b—a)k—25¢,

a
contradicting (1).

To prove the theorem, suppose that, at an interior point z,
of D, |f(z)| has a value at least equal to its value anywhere else.
Let I' be a circle with centre %o lying entirely in D. Then

J&)
o) =5 | T-d @)
Putting z—z, = re?, f(2)[f(z) = pe#, so that p and ¢ are func-
tions of 6, we may write (2) as

1 2 .
= f pei d. 3)
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2m
Hence 1< i f p db.
2m

But by hypothesis p <<1. Hence, by the lemma, p=1 for all
ivalues of 6.
Taking the real part of (3) we now obtain

1 27
‘l_é;jcoswi@,

0
so that, by the lemma, cos¢ =1. Hence f(z) =f(z,) on T, and
so everywhere; that is, f(z) is a constant.

5.12, Seconp ProoOF. This is similar in principle to the first
proof, but, instead of Cauchy’s integral, we use the fact (§ 2.5)

that, if o0
‘ = Z a')’b(z-—zo)n:

then — f [ f(zg+rei?)|2d0 = z @, |2r3n.

7

Under the same hypotheses as before, the left-hand side does
not exceed |f(z,)|? i.e. |a5|2. Hence ‘

l@g |2+ ay |22+ @y 2ri ... < agl®

for a positive value of ». Hence a,=a,=...=0, and f(z)
is a constant.

5.13. THIRD PﬁoQF. If 2, is an interior point of D, we may
expand f(z) in a series of powers of z—z,,

0
= z an(z——-zo)n’
n=0

with a positive radius of convergence. Putting

z'—'zo = reie, a,n = Anef“n’
o0
this is fz) = z A rreientnd),
Hence |f z)]2 z z A A ,rm+ne1!(a,,,+m0—ac,,-n0) (1)
m=0 n=0

Suppose first that a, 74 0. Since the series is absolutely con-
vergent, we may rearrange it as a power series in 7 with a positive -
radius of convergence. Let k be the smallest positive value of
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n for which @, % 0. Then
E
|f(e)2 = A3+ 24,4 cos(og—o—kO)+ 3 ot (2)
n=k+1
where |c,, | < ¢ for some value of ¢. Hence

N C 1" < Z o = c"+1'r"+1/(l—cr),
n=k+1 n=k+1
which is less than A4y4,7% if 7 is small enough. For such a value
of r, |f(2)|>—A% takes both positive and negative values as 0
varies between 0 and 2, the middle term on the right of (2)
varying between —24,4;7* and 24,4,r%. Hence 4, is neither
a maximum nor a minimum of |f(z)|.

The proof breaks down if there is no a, (» > 0) which is not
zero. But then f(2) = g, for all values of 2. .

Finally, if @y =10, |f(z,)| =0, which cannot be a maximum,
but is & minimum. _

This proves the theorem. We have also shown incidentally
that | f(z)| cannot have, in D, a minimum other than 0. This may
also be proved by applying the general theorem to the function
1/f@).

5.14. Harmonic functions. The corresponding theorem
for harmonic functions is that a function which is harmonic in
a region cannot have a maximum at an interior point of the region.
For let u be the real part of f(z). If » is a maximum at an
interior point, so is e¥; i.e. so is |F(z)| = |e/®@|. This has been
shown to be impossible.

The theorem can also be proved by an argument similar to
that of § 5.13. Without going into complete detail, this may be
seen in a general way as follows. Let u(x,y) be the real part
of an analytic function f(z) = 3 @,2", regular at z=0. Then

u(x’ y) =R Z a’n(x'{'iy)n’

and we obtain for u(x,y) a double series of powers of  and y.
The coefficients being those of Taylor’s theorem, we have

(@, y)—u(0, 0) = u,x4-u, y+ F(%,, 224 2u, 2y +-u,, y?) +... .
A necessary condition for a maximum is that , =u, = 0. But
since, for a harmonic function, u,,+u,, =0, u,, and u,, have
opposite signs, and we can make u(z, y)—u(0, 0) either positive
or negative by taking x = 0 and y small, or y = 0 and = small.
M
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Examples. (i) If | f(z)] > m on |z]| = «, f(2) is regular for |z| < a, and
| f(0)] < m, then f(z) has at least one zero in |z| < a.

[For |f(2)] has a minimum inside the circle, and the minimum value
must be zero.]

(ii) Use the previous example to show that every algebraic equation
has a root.

5.15. The maximum-modulus theorem is also true for a func-
tion f(z) which is regular.but not one-valued in a region, pro-
vided that |f(z)| is one-valued (e.g. 4z in a ring-shaped region
surrounding the origin); for the above proofs hold for any
branch of the function.

5.16. Let f(z) be an analytic function regular for |2]| < R,
and let M(r) denote the maximum of |f(z)| on |z| =7r. Then
M(r) is a steadily increasing function of r for r < R. For it follows
at once from the above theorem that M (rl) < M(ry) if 7, <7y,
and M(r,) can only be equal to M(r,) if f(z) is a constant.

Similarly the function 4(r), defined in § 2.53 as the maximum
of R{f(2)}, is an increasing function of ». For

e40) = max |ef@)|,
lel=r

5.2. Schwarz’s lemma. If f(z) is an rmul ylic function,
regular for 2| < R, and |f(z)| < M for |2| = R, and f(0) = 0, then.
feret) <27
Let ¢(z) = f(z)/z. Then ¢(z) is regular for |z| < R, and
| ()| < MR
on the circle |z2| = R. The same inequality therefore holds inside
the circle also, and since |¢(z)| = |f(z)|/r the result follows.

0<r<R).

5.21. Vitali’s convergence theorem.* Let f,(2) be a se-

quence of functions, each regular in a region D; let
[fR) < M

for every n and z in D; and let f,(z) tend to a limit, as n > oo,
at a set of points ha'umg a lemat-point inside D. Then f,(z) tends
uniformly to a limit in any region bounded by a contour interior
to D, the limit being, therefore, an analytic function of z.

It is sufficient to consider the case where D is a circle, and
the limit-point is its centre. For then, returning to the general

* This proof is given by Jentzsch (1).
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case, we can prove uniform convergence in a circle with centre
the limit-point interior to D. Then we can repeat the process
with any point of this circle; and so, by the method used in
analytic continuation, extend the domain of uniform con-
vergence to any region bounded by a contour interior to D.

We may take the limit-point as origin. Let the radius of the
circle D be R. Let

fnv(z)=a‘o, n+a],‘nz+"' (IZI < R) (l)
Then lfn(z) _fn(o) [< |fn(z)|+ Ifn(o)[ < 2M.
But f,(z)—f,(0) is zero at z= 0. Hence, by Schwarz’s lemma,
2M |z
0 <
Let 2’ (£ 0) be a point where the sequence converges. Then
lfn(o)_fn.+m(0)! < |fu,(0)_"fn(zl)]+ }fu(z,)—fn-é-m(z,)]_i" .
-+ Ifn.+m(z,)—fuw‘-m(o) [
< 4.31]2,}/}%'{— !fu(zl)—fu-{-m(z,)['

‘We can choose 2’ so that the first term is arbitrarily small, and
then, since f,(z’) tends to a limit, we can choose 7 so large that
the second term is arbitrarily small for all positive values of ..

Hence f,(0), i.e. @, ,, tends to a limit, say a,.
Next consider the function

gn(z) = {fn(z)—ao, n}/z = al, llv+a/2, M,z-’_”' .
This also tend¢ to a limit at 2/, since, as we have just proved,
ay, , tends to a limit. Also
l9,()| < 2M/R

for |z| = R, and so also for |z] < R. Thus g,(z) satisfies. the
same conditions as f,(2) (except for the value of its upper
bound), and hence a, ,, tends to a limit, say @,. Similarly a, ,,
tends to a limit for all values of ».

Finally, the convergence of (1) is uniform with respect to » and
z for |z] < R—e, since, by Cauchy’s inequality, |a, ,| < M/R".
So, since every term tends to a limit, the sum tends to a limit
uniformly for |z2| << R—e. This proves the theorem.

(l2] < R).

5.22. From any sequence of functions reqular and bounded in
D, in the sense of the above theorem, we can select a sub-sequence
which converges uniformly in any region interior to D.
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Let f,(z) be the sequence of functions, and let |f,(2)] < M in
D. Let z,, 2,,... be a sequence of points having a limit-point
inside D. Then the points w, = f,(z,) all lie inside the circle
|lw| < M in the w-plane. Hence they have at least one limit-
point; i.e. there is a sequence of values of n, say 7, n,,..., such
that the sequence of functions

Fui(@)s F(2)seee (1)

converges at the point z;.
Similarly from this sequence of functions we can select a sub-

sequence For s FpsEdoe @)
which converges at z,; and then from this a sub-sequence
Jo, @) Jo, ). 3)

which converges at z;; and so on.
Now consider the sequence
Fa @), Fp (@), £02)

formed by taking the diagonal terms of the above double array.
Each of these functions belongs to the sequence (1), and so the
sequence converges at z,; each function after the first belongs
to (2), and so the sequence converges at z,; and so on. Therefore
the sequence converges at each of the points 2,, 2,,..., and so,
by Vitali’s theorem, uniformly in any region interior to .D.

5.23. Montel’s theorem.* Let f(z) be an analytic function

of 2, regular in the half-strip S defined by a <z <b, y>0. If
f(2) s bounded in S, and tends to a limit I, as y —> oo, for a certain
fixed value ¢ of x between a and b, then f(z) tends to this limit
1 on every line x =z, in S, and indeed f(z) -1 uniformly for
a+8 < xy < b—0.
" Consider the sequence of functions f,(z) = f(z--in), where
n=20,1,2,.., in the rectangle R defined bya <z < b, 0 <y < 2.
Then f,(z) > at every point of the line z=¢. Hence, by
Vitali’s theorem, f,(z) - uniformly in any region interior to
R, and in particular in the rectangle ¢+38 <2 <b—3, ;I <y <<
This proves the theorem.

The result may be generalized by means of conformal trans-
formations. For example, let z = ilogw. Then the strip in the
z-plane becomes an angle in the w-plane, and the theorem states

* Montel (1), Hardy (18), Bohr (4).
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that if $(w) is bounded in the angle « < argw < B, and ¢(w) -1
as w — oo along any line argw = constant between « and f, then
#(w) - uniformly in any angle a+3 < argw < f—39.

5.24. The following theorem illustrates another way in which
the maximum-modulus theorem can be applied.

Let f(z) be regular, and |f(z)| < M, in the circle [z—a|< R,
and suppose that f(a) # 0. Then the number of zeros of f(z) in the
circle |z—a| < 3R does not exceed Alog{M/|f(a)|}.

We may suppose that a = 0. Let z,, 2,,...,2, be the zeros of
f(z) in |z] <R, and let

o) =1/ JT (1- 5;)

Then g(2) is regular for |2|< R, and on |z|= R we have
[2/2,] = 8 for m =1, 2,..., n. Hence ’

lg(2)] < M/’,;!_n;[l(:;——l) — 9 Jf

for |z] = R, and so also for |2| < R. In particular this is true for
z=0. Since g(0) =jf(0), it follows that

1f(0)] < 2-"M,

1 M
and hence n<——log - —,

log2 ™ |f(0)]
the desired result.

The factor } can clearly be replaced by any number less
than }. Actually a more complete result can be obtained from
Jensen’s theorem (§ 3.61). If the zerosin |z| < R are 7, 7q,..., Tiy»
thep

RN

log
Tla 'y

— f log|f(Re'%)| d6 —log|f(0)]
0

< log M—log| f(0)].

Let the zeros in the circle |2| <8R, where 0 <3< 1, be 7y,
Toseees - Then the left-hand side is not less than

log 5!

1) 1
>logfz) = -,
TyTy Ty /log( nlog

M

Hence n ——log—on.
log 15 ° 7(0)]
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5.3. Hadamard’s three-circles theorem. Let f(z) be an
analytic function, regular for ry < |z{ <ry. Let r| <7y <7y, and
let My, M, M, be the maxima of |f(z)| on the three circles
[z| =1y, 1y, 3 respectively. Then

' jﬂ_)ogfru/n) <M llog(rslfa)‘?;]}s«'>g(r2/r,). (1)

Let ¢(z) = zf(z), where A is a constant to be determined later.
Then ¢(z) is regular in the ring-shaped region between |z| =1,
and |z| =17y, and |§(z)] is one-valued. Hence the maximum of
'|#(2)] occurs on one of the bounding circles, i.e.

Ib(2)| < max(r} M, r2M ).
Hence on |z| =7,
|£(2)] < max(rirsAMy, rrs ). 2)
We have now to choose A to the best advantage, and this is

done by making the two expressions in the bracket equal. We
therefore define A by the equation

rAM, =M. .
Thus A= —{log(M,/M,)}/{log(rs/ry)}.
With this value of A, (2) gives
M, < (rafry) M, v
and hence MIOBesIrd (1, YOREIM) B logtrlirs)
= Mlorulr) Jlogtralr),
the required result.

Notice that the case of equality can occur only if ¢(z) is a
constant, i.e. if f(z) is a constant multiple of a power of z.

5.31. Convex functions. A function ¢(x) of a real variable
z 1s said to be convexr downwards, or simply convez, if the curve
y = ¢(x) between z; and x, always lies below the chord joining
the points {2;. ¢(z;)} and {z,, (xz)}. Analytically the condition is

$(x) < 95(901 + — ¢(x2) @ <z<z). (1)

The function is sald to be convex in the wide sense if the sign
of equality can also occur.

A convex function is continuous. For if we make z -z, in
(1), we obtain ¢(z,+0) < cﬁ(xl), and if we make z, - = we obtain
(@) < $(x-4-0). Hence ¢(x) = H(x+0) for all values of z. Simi-
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larly ¢(z—0) = ¢(x) for all values of xz. Hence the function is
continuous. ‘
~ If we put 2 = }(z;-+%,) in (1), we obtain

P(321+32,) < Heb()+ b)) (2)
This is sometimes taken as the definition of convexity* instead
of (1). It is less restrictive than the definition adopted here,
and does not involve continuity.
A sufficient condition for ¢(z) to be convex is that ¢"(x) > 0;
for then ¢'(z) is increasing, and

1 [, : 1 . .
Ji;'ilJ‘qS(t) dt < ¢'(x) <E2—_-§f¢(i) di (<2 <ay),

which gives (1).

5.32. The three-circles theorem as a convexity theorem.
Hadamard’s three-circles theorem may be expressed by saying
that log M (r) is @ convex function of logr. For we may write it
in the form
logr;—log7,
logr,—logr,

logr,—logry

< ,
log M(ry) logrs—logr,

log M(r;)+ log M (r3),

and the sign of equality occurs only if the function is a constant
multiple of a power of z.

5.4. Mean values of |f(z)|. The mean values
I 1 2w " 1 2w s
() =5 | Ifre®) dO,  Lyfr) =5 | |f(re”) [ df,
&TT T
0 0 :

have properties similar to those of M(r).

5.41. I, (r) increases steadily with r, and log I,(r) is a convex
function of logr.

Let fR)= f a,z".
7=0
The fact that I,(r) is steadily increasing is then obvious from
the formula ©
Iy(r)= 2 la,|*r*"
n=0

of § 2.5.
* e.g. in Pélya and Szegs, Aufgaben, 1, p. 52.
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To prove convexity, let w =logr, and let I}, I; denote deri-
vatives with respect to u. Then
dz LIy —1,2

& oo I)=12t2—22
duz ( Og 2) I% H

and by Schwarz’s ineciuali‘by
];2 — (Z [aﬂ|22neam‘)2 < (E I%Fez’"‘)(z (an|24n262"“) — Iallz'-
Hence the result.

5.42. I,(r) increases steadily with r, and log I,(r) is'a convex
Jfunction of logr. _

It is possible to prove this in the same sort of way as the
previous theorem,* but the proof is not so easy, since there is
no simple expression for I, in terms of the coefficients @,. So
we adopt an entirely different method.t

- Let 0 <7y <ry<rs and let £(f) and F(z) be defined by

kO)f(rse®) = | flre®)] (00 2m),
F(z)= él; f f(ze®)k(6) db.
0

Then F(z) is regular for |z| <7,;, and attains its maximum in
this circle on the boundary, say at z = r,¢id, Hence

Iy(ry) = Fry) < |F (rse“)l < Iy(rs),

which proves the first part.
Now choose « so that
1$14(ry) = 131, (r5).
Then ,
7$1,(ry) = 15F (1) < m,a)x [22F(2)| < r$Iy(ry) = r3 4 (rs),
ri<izi<rs

and the result follows as in Hadamard’s three-circles theorem.

5.5 Theorem of Borel and Carathéodory.] This result
enables us to deduce an upper bound for the medulus of a fune-
tion on a circle [z| =7, from bounds for its real or imaginary
parts on a larger concentric circle [z| = R.

Let f(z) be an analytic function regular for |z| < R, and let M(r)

* See Hardy (8), and Landau, Ergebnisse der Funktionentheorie, § 23,

1 Pélys and Szegd, 4ufgaben, Dritter Abschnitt, No. 308.
1 See Borel, Acia M. 20, and Landau, Ergebnisse, § 24.
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and A(r) denote, as usual, the mazima of |f(z)| and R{f(z)} on
|zl =r. Then for 0<r<R

M) < A(R)+R+"

1701

The result is obvious 1f f(z) is a constant. If f(é)‘is not con-
gtant, suppose first that f(0) = 0. Then 4(R) > 4(0) =

Let i)
)= 2am) 1w
Then ¢(z) is regular for |z] < R, since the real part of the
denominator does not vanish; ¢(0) = 0; and, if f(z) = u+-v,
2 w2402
$E = gy —upre <t

since —24(R)+% < w < 24(R)—u. Hence Schwarz’s lemma
gives 6@ <5

2A(.R)q6(z) 24(R)r
1+ge) - B—r’
and the result stated follows.

‘If f(0) is not zero, we apply the result already obtained to
f(2)—f(0). Thus

|f2)—f(0)] < »———-—ﬁaIXER{f R—fO)}< <5 {A(R)+ | f(0) [},
and the result again follows. If A(R) > O, we deduce

M) < TR+ IO

By arguing with —f( z), or with 4 if(z) we obtain similar
results in which 4(r) is replaced by min R{f(2)}, max I{f(z)}, or
min I{f(z)}.

- The inequality is thus proved. The form of the right-hand
side may be varied to a certain extent. It must, however, con-
tain, besides 4(R), a term involving f(0), or we could falsify the
result by replacing f(z) by f(z)+tk, where £ is a sufficiently large
real number. Also it must contain a factor, such as 1/(R—r),
which tends to infinity as r - R. To show this, consider the
function f(z)= —ilog(l—z), and let 0<r< R<1. Then
A(R) < $n, however near Risto 1; and f(0) = 0. But M(r) > 0
asr—> 1.

Hence [fz)| =
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5.51. The same principle can be extended to the derivatives
of f(z). Under the conditions of the above theorem, with A(R) > 0,

. 21+l R
Ilglgflf“ <(R T)W{ B)+1f(0)[}-

where C is the circle with centre w =2z and radius § = }(R—r).
On this circle | <r+-3(R—r) = }(R-+7),
so that Carathéodory’s theorem gives

max| fu)| < SN AR 11O} < 7 {ARIHIO
Hence, by (1),
00| < AR AR O = G (4(R) S0

5.6. The theorems of Phragmén and Lindel6f.* The fol-
lowing important extension of the maximum-modulus theorem
was given by Phragmén and Lindelsf:

Let C be a simple closed contour, and let f(z) be regular inside
and on C, except at one point P of C. Let |fz)| <M on C,
except at P.

Suppose further that there is a funciion w(z), regular and not
zero in O, such that |w(z)| < 1 inside C, and such that, if € is any
given positive number, we can find a system of curves, arbitrarily
near to P and connecting the two sides of C round P, on which

Ho@}fRI <M.
Then |f(z)| < M at all points inside C.
To prove this, consider the function
= {w@)}(),
which is regular in C. If 2, is any point inside C, we can, by
the hypothesis about w(z), find a curve surrounding z, on which

: |F(2)| < M.
Hence [F(zg)| < M,
and so | (o) | < M |en(2o) 5.
Making ¢ - 0, [fzg)| < M.

This proves the theorem.
* Phragmén and Lindelof-(1).
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It is not difficult to see that the exceptional point P may be
replaced by any finite number, or even by an infinity, of points,
provided that functions w(z) corresponding to them with suit-
able properties can be found. ’

In the following sections we give a number of theorems of
this type. Instead of actually using the above theorem, it is
usually simpler to start again with a special auxiliary function
adapted to the region considered. In practice the exceptional
point P is always at infinity.

5.61. The above theorem gives many important results about
the behaviour of a function in the neighbourhood of an essential
singularity. By making a preliminary transformation, we can
always suppose that the exceptional point is at infinity. The
fundamental theorem then takes the following form:

Let f(z) be an analytic function of z = re®®, regular in the region
D between two straight lines making an angle wja at the origin,
and on the lines themselves. Suppose that

fRI<M 1)
on the lines, and that, as r — co,
flz)=0(e*), ()

where B < o, uniformly in the angle. Then actually the inequality
(1) holds throughout the region D.
We may suppose without loss of generality that the two lines
are 0 = +4n/a. Let
| Fe) = ef(2),

where f <y <« and ¢ >0. Then

|F(2)| = e~ eosvf| f(z)]. @)
On the lines 6= +in/o, cosyl >0, since y<«. Hence on
these lines IF(2) < |1fe)] < M.

Also on the arc || < {n/a of the circle [z| = R
| F(2)| << e~<B costynla| f(z)| < AeRP—eRVeostynla,

and the right-hand side tends to 0 as B co. Hence, if R is
sufficiently large, |F(z)| <M on this arc also. Hence, by the
maximum-modulus theorem, [F(z)]<<M throughout the in-
terior of the region 0| < i/, r < R; i.e., since R is arbitrarily
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large, throughout the region D. Hence, by (3),

|f@)] < Me

in D; and making e - 0 the result stated follows.

It is evidently unnecessary to suppose that the function f(z)
is regular in the region |z| <7, if there is an arc |z|=r,> 7,
on which (1) is satisfied. With this extension the theorem is
significant for « <4, the angle including part of the plane
more than once, and the function not being necessarily one-
valued. We can also replace the straight lines of the theorem
by curves extending to i.nﬁni’oy;~ the reader should have no
difficulty in supplying the details of such extensions.

5.62. It is important to notice the relation between the
‘angle’ of the theorem, and the order of f(z) at infinity. The
wider the angle is, the smaller the order of f(z) must be for the
theorem to be true.

In the following theorem, the order is just not small enough
for the previous proof to apply, and a more subtle argument
is required.

The conclusion of the previous theorem still holds, if we are only

given that f(2) = 0™

for every positive 8, uniformly in the angle.
As before we take the angle to be —in/a <0< dm/a. Let

F(2) = e~f(2).
Then F(z) tends to zero on the real axis, and so has an upper
bound M’ on the real axis. Let
M" = max(M, M").
We may now apply the previous theorem to each of the two
angles (—in/x, 0) and (0, {7/o), and we thus find that
|F(z)| < M"

throughout the whole given angle. _

But infact M’ < M; for | F(z)] attains the value M’ at a point
of the real axis; hence, if M’ = M”, F(z) must reduce to a con-

stant, and M" = M. Otherwise M’ << M", so that M"= M in
any case. It therefore follows that

|F(2)] < M.
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Hence [f2)] < Mle===|,
and the result follows on making € — 0.

5.63. If f(z) > a as z—> o0 along two straight lines, and f(z) 18
regular and bounded in the angle between them, then f(z)—a
uniformly in the whole angle.

We may suppose without loss of generality that the limit o
is 0. We may also suppose that the angle between the two lines
is less than 7, since the general case can be reduced to this by
a substitution of the form z=w*. We may thus suppose that
the lines are 6 = +6', where §' < }n.

£ 1)

where A > 0. Then

Now |f(z)] < M, say, everywhere, and | f(2)| < € for 7 > 7, = 7,(e)
and 6= 6. Let A=r.M/e. Then forr<r,

]F(z)[<§M<e

and [F(z)| < |f(z)| <e for r >r, and 6= +6’. Hence, by the
main Phragmén-Lindelof theorem, |F(z)|<e¢ in the whole

region. Hence X
If@) < (l-l-;)lF(z)] < Z¢

if » > A. This proves the theorem.

5.64. If f(z) > a as z— ¢ along a straight line, and f(z) > b
as z—> o0 along another straight line, and f(z) is regular and
bounded in the angle between, then a =b, and f(z) - a uniformly
in the angle.

Let f(2) >a along §=uq, and f(z) > b along 0 B, where
a< . The function (fz)—Ha+b))?

is regular and bounded in the angle, and tends to }(a—5)2 on
each of the straight lines. Hence it tends to this limit umformly
in the angle; that is,

{f2)—(a+b)*—1a—b)* = {f(z)—a}{f(z)—b}
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tends uniformly to zero. Thus to any e corresponds an arc on

which (o) —a){fe) b <.
At every point of this arc either |f(z)—a| < Ve or |f(z)—b] < e
(or both), and we may suppose that the former inequality holds
at § = «, the latter at § = B ; let 4, be the upper bound of values
of # for which the former holds; then 6, is a limit of points where
the former holds, and is either a point where the latter holds,
or a limit of such points; hence, since f(z) is continuous, both
inequalities hold at §,. Taking z to be this point, we have
lo—b| < | flz)—al+ | f(z)—b] < 24k,

and, making -0, it follows that a=»5. Finally f(z)-»a
uniformly, by the previous theorem.

These theorems have obvious affinities with Montel’s theorem,
(§ 5.23). But in Montel’s theorem the line along which the func-
tion tends to a limit must be interior to the region of bounded-
ness, so that these theorems become corollaries of Montel’s only
if we assume a slightly wider region of boundedness.

5.65. The Phragmén-Lindel6f theorem for other re-
gions. The angle of the above theorem may be transformed
into other regions, for example into a strip.

Take, for example, the theorem of § 5.61, applied to the region
r>1, 0] < 3nfa, and put s=1logz, f(z)=d¢(s). If s=o-|it,
the lines argz = 43w/« become parallel lines ¢ = +in/x, and
t=1log|z|. Hence, if |¢(s)| <M on the upper half of the two
parallel lines and on the segment of the real axis joining them, while

Blo+it) =0(")  (p<o) (1)
in the strip between them, then actually |$(s)| < M throughout
the strip.

Another theorem of this type, which we shall require in the
theory of Dirichlet series, is as follows:

If ¢(s) is regular and O(e!), for every positive e, in the strip
0, < o< 0y, and

ploy+it) = O([t}"),  p(ogtit) = O([t[*),
then $lo-it) = O([t 1))
uniformly for o, < o < 0y, k(o) being the linear function of o which
takes the values ki, k, for o = oy, 0,.
The result is true more generally if $(s) satisfies a condition
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of the form (1). With the given condition it may be proved
directly as follows.

Suppose first that &, = 0, k;= 0, so that ¢(s) is bounded for
o =0, c =g, Let M be the upper bound of ¢(s) on these two
lines and on the segment of the real axis between ¢, and o,. Let

g(s) = e (s).
Then lg(s)] = e~I(s)] < g} <M
for o =0y, 0 = 0,. Also |g(s)] > 0 as ¢ - oo for ¢; <o < 0y; and
-0, if 7" is large enough, [g(s)| < M ont= T, 0, < o < 0,. Hence
19(s)] < M at all points of the rectangle (oy,0,), (0, 7). Hence
[9(8)] < M at all points in the half-strip, i.e.
I3(s)| < M.

Making € — 0, it follows that |¢(s)| < M for ¢ >0, and simi-
larly for < 0. This proves the theorem in the particular case
considered.

In the general case, let

l/t(é') — (__,,:S)k(s) — ek(s)log(—is),
where the logarithm has its principal value. This function is
regular for o; < o< 0y, £ > 1; also, if k(s) = as+b,
R{k(s)log(—is)} = R[{k(c) +iatjlog(i—ic)]
= k(o)logt + O(1).

Hence ()| = tK@e0M,
The function ®(s) = ¢(s)/ss(s) therefore satisfies the same con-
ditions as ¢(s) did in the first part. Hence ®(s) is bounded in

the strip, and $(s) = Of M@}} = O(t@),

5.7. The Phragmén-Lindelof function %(f). In several of
the preceding theorems we have been considering the way in
which a function behaves as z tends to infinity in different
directions. We shall now make a more systematic study of this
question.

Consider first the function

. f(z) = gla+ib)er
Then ( f(z) | = er*(a cos pf —bsin p0)_

The behaviour of log|f(z)| depends in the first place on the
factor ¢, which is independent of 6. The different hehaviour
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in different directions is determined by the factor

h(8) = acospf — bsin pf = r-rlog| f(z)|.

This is of course a very special case; but the general case is not
so different from it as might be expected.

We shall suppose throughout the following sections that f(z)
is regular for a <6 < B, |¢| =1, and that f(z) is ‘of order p’ in

this angle, i.e. that ”
m_loglr{)(:f* M _o

uniformly in 6, for every positive value of ¢, but not for any
-negative value. (For example, the above function is of order p.)

We define 2(6) in general as .

7 Log [f (re®) |

) = lim =2~

o) = i =5
where V(r) depends on the function considered. We should
naturally choose V(r) so that %(f) is finite and not identically
zero. Here we shall consider the simplest case V(r) = ##; but
our argument would apply almost unchanged to any function

such as ro(log r)?(loglog r)2... .

5.701. It is convenient to introduce at this point an expres-
sion containing the word ‘infinity’, or the symbol co, which is
not used in elementary analysis. We shall use lim¢, =co to
mean the same thing as ¢,, - c0; and we shall say that ¢(x) has
an infinite value, or ¢(z) = 0, if, and only if, 4(z) is defined as
the limit of a sequence ¢,(x), and the sequence diverges to

- infinity for the particular value of = in question. We use —co
in the same way. For example, we might write
s

Z =
1

7 1 .
if the left-hand side is defined as lim J. ; and A(6) = co means that
>0 ¢

r~Plog|f(ret)| takes arbitrarily large values as r — oo.
The novelty consists in writing ‘=0o0’, as if we had defined
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a number ‘co’; but it should be remembered that we have not
done so, and that ‘infinity’ remains an incomplete symbol.*
5.71. Let a <8, <8, <pB, and ,—0, < =/p, and let
BO)<hy  B(B) < hs
Let H(0) be the function of the form acos pf + bsin pf which takes
the values hy, hy at 64, 8,. Then -
hO)SH®O) (6, <O<0y).
It is easily seen that
hysin p(0,—60)+hysin p(8—8,)
H(G) = “1>2P 2” 2 LE
©) ST p(Bo—03)

but we do not require this expression in the proof.
Let H(6) = agcos pb + bssin pd
be the H-function which is equal to A;+8, k48 (8 > 0) for
0 =0,, 0 =0, respectively. Let
F(z) = f(z)e-(as—12,
Then |F(2)] = | f(z)|e~HsOr, (1)
and so, if r is large enough, '
| F(reifr)| = O(eln+dre-Hbrey — O(1).

A similar result holds for F(re?s). Hence, by the theorem of
§ 5.61, F(z) is bounded in the angle (6,,6,). Hence, by (1),

f(z) = O(eZ:r) _ )
uniformly in the angle. Hence h(f) < Hj(6) for 6, <8<6,.
Since H(0) - H(f) as § - 0, the result follows.

5.711. As a particular case of the above theorem, one or
both of %(6;), h(f,), may be —co. The conclusion is then that
h(8) = —oo for f; < 6 < §,. The same proof still applies, one or
both of the numbers h;, h, now being arbitrarily large and
negative.

5.712. Ifa < 6, < 8, < 03 < B, 0,—0; < m[p, 0,—0, <-7/p;
and h(6,), h(0,) are finite, and H(8) is an H-function such that

B < HE), b = HEy),
then h(8g) > H(6). (1)

* P.M. § 55.
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Choose 0; so that 8;—mn/p < 6; < 6,. Then k(f;) < H(6;) by
§5.71. Hence, by §5.711, h(f;) is not —co. If (1) is false, we
can choose & so that A(6;) < H(6;)—3. Let

( smp(B 6;)
Hy(0) = H(6)— 3 T p0—b))"
Then
h(67) < H(6;) = Hy(6;),  h(f;) < H(0;—8) = Hy(6;).
Hence 1(8,) < Hy(6,) < H(B,),

contrary to hypothesis.

5.713. If 6, < 6, < 8;, 0,—0, < w/p, 03—0, < =/p, then

R(6y)sin p(63— 6,)+h(0;)sin p(6; —05)+h(f5)sin p(6,—0;) > 0.

For any H(6)

H(8,)sin p(85—0,)+H (0, )sin p(6;—05)+H (85)sin p(6,—0;) = 0,
and choosing H(f) so that H(8,)=k(6,), H(8,) =h(f,), and
observing that, by the above theorem, A(0;) > H(0;), we have
the result stated.

The function h(6) is continuous in any znterval where it s ﬁmte.

Let h(f) be finite in the interval 6, <6< 0, and let
0; <0, <b;. Let H, ,(f) be the A-function which takes the
values h(8,), h(8,) at 0, 0,; and define H, 4(6) similarly. Then
by the above theorems

Hy 5(0) <h(O) < Hyo(6) (0, <O<0y)
Hyo(0) <h(0) < Hps(6)  (6:<<O<8y).
Hence, in whichever of these intervals 8 lies,
H,,5(6)—Hy, 5(0)  (O)—h(6y)  Hy, 5(6)—Hy,5(63)
6—8, 6—8, < 6—8,
The extreme terms tend to limits as 6 — 6,; hence the middle
term is bounded, and so A(6) - k(8,).

It also follows that |f(re®)| < exp[r*{k(6)+¢}] uniformly for
r > 79(¢); (divide the f-range into n = n(¢) parts).

5.72. Geometrical interpretation of the property of 4(f).
In the case p = 1, the property of the function %(6) has a simple
geometrical interpretation.

For every value of § in an interval where k(f) is finite and
positive, consider the radius vector of length %(f) making an
angle 6 with an initial line, and the perpendicular to this radius
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vector at its end. (Consider, for example, the cases f(z) = coshz,
f(z) = cosz+-coshz.)

Let hy, hy, h; be the values of h(f) at 8,, 6,, 6; where
0, < 9., < f3. Then the three perpendiculars are

xzcosf, + ysin, = h,,
zcos8, + ysinfy, = h,,
xcos 0, + ysin ;= hg.
The first and third meet at a point (X, Y) given by
__hysinf;—hgsin 6, ¥ — hgcos 0;—h, cos by
sin(@;—6;) sin(f,—6,)
Now the condition that (X, Y) should lie on the opposite side
from the origin of the second perpendicular (or on it) is
X cosfy+Ysinfy—hy, >0,

or
(hysin §;3—hgsin 8;)cos 0,+
+ (hy cO8 6,— by cOS B5) sin B, — B, sin(6,—6;) > 0,
or by sin(03—0,)+hysin(0; — ;) + by sin(6,—6,) = 0
This is precisbiy the condition which the function i(f) satisfies.

TIf the perpendiculars envelope a curve, then two tangents
to it meet on the opposite side to the origin of any tangent at
a point between them. It is easily seen geometrically that this
means that the curve is always concave to the origin.

5.8. The following interesting applications of the Phragmén-
Lindelof principle are due to Carlson.*

Let f(z) be regular and of the form O(e*?) for R(z) = 0; and let
f(z) = O(e~94!), where a > 0, on the imaginary axis. Then f(z) =0
identically.

We apply the argument of § 5.71 to f(z), with p=1, 6, =0,
0y=%m, by =1k, hy= —a; and here we can take 8§ = 0 through-
out the argument. Then § 5.71 (2) gives

f(z) = O{e(kcosﬁ-al si.nB[)r} (1)
for 0 < 0 < }; and a similar argument shows that (1) also holds
for —ir < 6<0. '

Let F(z) = e“?f(2)
where  is a (large) positive number. Then by (1) there is a

* In an Upsala thesis (1914). See M. Riesz (1), Hardy (14).
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constant M, independent of w, such that

[F(z)] < M el(k+ew)cosb —alsin B} (_%,n. << %ﬂ.) 2)
In particular we have |PE)| <M 3)

for § = 4= and § = 4+, where o = arc tan{k+w)/a}.

We can now apply the theorem of § 5.61 to each of the three
angles (—im, —a), (—a,«), and (x,3n). It follows that (3)
actually holds for —in << 0 < 4m.

Hence |f(z)| < Me—rees, and making w —> oo it follows that
|f(z)] = 0. This proves the theorem.

5.81. If f(2) is regular and of the forin O(e¥?), where k <
for R(z) >0, and f(z)=0 for 2=0, 1, 2, 3,..., then f(z)=0
identically.

Consider the function F(z)= f(z)cosecmz. On the circles
|z] =n-+%, cosecnz is bounded. Hence F(z) = O(e*#!) on these
circles, and also on the imaginary axis. Since F(z) is regular it
follows that, if n—3} < |z| <n-+3,

F(z) = O(e"+D) = O(ek¥),
and so F(z) is of this form throughout R(z) > 0. Also
F(z)= O(e(k—wﬂzl)
on the imaginary axis. The result therefore follows from the
previous theorem.

MISCELLANEOUS EXAMPLES

1. A function f(z) is regular inside and on a simple closed contour C,
and | f(z)] < M on C. Deduce from Cauchy’s integral for {f(z)}* that,

=
where K is independent of n. Hence show that [f(z)] < M inside C.
[Landau.]

2. Use Poisson’s integral to show that a function which is harmoniec
in a region cannot have a maximum at an interior point of the region.

3. If f(z) is regular and O(¢e"~°) for R(z) > 0, [f(z)] < M on the
imaginary axis, and f(1) = 0, then for z > 0

\ferin] < (=8N

(14z)*+y*
[Consider (1-+2)/(1—2).f(2)].
4. A function f(z) is regular and satisfies the mequah’mes ]
< fe)] < et

in an angle 6, < 0 < 03, where 8,—0, < w/p. As r— oo, r~rlog|f(2)]
tends to the limits A, and %, for § = 6,, 6;. Let H(6) be the function
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of the form a cos pf + b sin pf which takes the values hy, h, for 8 = 6,, 0,.
Then A(f) = H(f) throughout the interval 8; < 6 < 8,.
5. Show that, if f(z) = O(¢™*°) in a given angle, the function
_ i0
1) = T 08|
rlogr
has properties similar to those of the A-functions considered in the text.
Show that if f(z) = 1/T(}-+2), then k(f) = —cos 8 for all values of §.
6. An analytic function f(z) is regular and not zero in the half-strip
defined by a <z < b, y > 0; f(z) = O(y4) as y—> oo uniformly in the
strip, and [log f(z)] is bounded on the middle line x = }(a+b). Prove that
log f(z) = O(log ¥) uniformly for a+8 < =z < b—38.
[Apply Carathéodory’s theorem to log f(z) in a circle with centre at
Ha+b)+iy.]
7. A function f(z) is regular, and |f(z)] < M, for R(z) > 0, and f(z)
has zeros at z;, 2;,... in this half-plane. Prove that
2 —22—2 Z,—Z

[fel Z,+22,+2 ".2,‘—{»-5)
for R(z) > 0; and deduce that, if f(z) is not identically zero, the series

2R

is convergent. [See Pélya and Szegd, Absch. IIT, Nos. 295, 298.]




CHAPTER VI
CONFORMAL REPRESENTATION

6.1. Conformal representation. If w is an analytic func-
tion of z, then to values of z, which we represent as points in
the z-plane, correspond values of w, which we represent as points
in the w-plane. We also speak of the point in the w-plane
representing its corresponding point in the z-plane; and of
regions of the z-plane being represented, or mapped, on corre-
sponding regions of the w-plane. The object of this chapter is
to discuss in more detail the nature of this representation or
mapping.

Let w = f(2) be an analytic function of 2, regular and one-
valued in a region D of the z-plane. Let z, be an interior point
of D; and let C; and C, be two continuous curves passing
through z, and having definite tangents at this point, making
angles o, oy, say, with the real axis.

We have to discover what is the representation of this figure
in the w-plane. Before we go any further, we shall make a
restriction, the reason for which will appear in a moment. We
shall suppose that f'(z,) is not zero.

Let z, and 2, be points of the curves C; and C, near to z,
We shall suppose that they are at the same distance » from
%, 80 that we can write

y—zy=rel, 2z, =rels,
Then as 7 — 0, 6, — ay, and 0, - a. '

The point 2, corresponds to a point w, in the w-plane, and
7, and 2, correspond to points w, and w, which describe curves
C; and C;. Let

W—Wo =%, wy—wy = pyeit:,
Then, by the definition of an analytic function,

w—w,
lim—t "0 "(2,).
=l

Since f'(2,) is not zero, we may write it in the form Re®. Then
lim eliu%: = Reis.
reth
Hence lim(¢,—0,) =38, i.e.
lim¢, = ;8.
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Hence the curve C; has a definite tangent at w, making an
angle o;+8 with the real axis.

Similarly C; has a definite tangent at w,, making an angle
oy+8 with the real axis.

Hence the curves C;, C} intersect at the same angle as the curves
C,, C,. Also the angle between the curves has the same sense
in the two figures.

Because of this property of the conservation of angles, an
analytic representation is called ‘conformal’. Any small figure
in one plane corresponds to an approximately similar figure in
the other plane, since all angles are approximately the same.
To obtain one figure from the other we must rotate it through
a certain angle—the angle § = arg{f’(z,)} of the above notation
—and subject it to a certain magnification, viz.

limft= R =|f(z)].

It is clear from the above analysis that the magnification is the
same in all directions.

6.11. The case f'(z) = 0. Suppose now that f’(z) has a zero
of order » at the point z,. Then in the neighbourhood of this

Pt 1) = flzo) +atz—zo) -+
where @ £ 0. Hence-

Wy — Wy = a2, —2g)" 4.,
ie. €% = |a|yn+leid+n+DOd L
where 8 = arga. Hence

lim ¢, =Lm{8+(n+1)6,}

Similarly lim ¢y = 64 (n+1)a,.
Thus the curves C}, O, still have definite tangents at-w,, but
the angle between the tangents is

lim(¢y—g) = (n+1)(cg—ey).
Also the linear magnification, lim p,/r, is zero. The conformal
property therefore does not hold at such a point.

6.12. In the above conformal representations we have, not
merely conservation of angles, but conservation of the sign of
angles; if we get from C; to C, by a rotation through an angle
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« in the positive sense, we also get from O to C; by a rotatmn
through « in the positive sense.

There are also conformal representations in which the magni-
tude of angles is conserved, but their sign is changed. Consider
for example, the transformation

w =3z,

where Z is the complex number conjugate to z. This replaces
every point by its reflection in the real axis. Hence angles are
conserved, but their signs are changed. And this is true
generally for every transformation of the form
where f(z) is an analytic function of z; for this is the product
of two transformations:

‘ @) Z=2  (b) w=f(2).
In (i) angles are conserved, their signs changed. In (ii) angles
and signs are conserved. Hence in the resulting transformation
angles are conserved and their signs changed.

6.2. Linear* transformation. The function

__az+b
" cztd
is called a linear function of z. We shall suppose that
ad—bc # 0,

for otherwise the numerator and denominator are proportional,
and w is merely a constant.

To every value of z corresponds just one value of w. This is
apparent except, in the case ¢ %0, for the value z= —dJc,
which makes the denominator vanish. But as z - —dJc,
|w] — 00; and we may regard the point at infinity in the w-plane
as corresponding to the point z = —d/c in the z-plane.

a b

If ¢c=0, then w=¢7lz+3,

and (since @ 70) the points at infinity in the two planes
correspond.
dw—b
~-cw+a’
so that z is a linear function of w.
* Or bilinear.

Conversely z=
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Example. Prove that in general there are two values of z (‘invariant
points’) for which w = z, but that there is one only if
) (a—d)*+4bc = 0.
Show that, if there are distinet invariant points p and ¢, the trans-
formation may be put in the form
w—p _ p*P,
w—q z2—q
and that, if there is only one invariant point p, the transformation may
be put in the form 1 1

=4k
w—p 2—P
6.21. Circles. The equation
lz—2z| =p

represents a circle with centre z, and radius p.

Two points p, g are said to be inverse with respect to the
circle if they are collinear with the centre and on the same side
of it, and if the product of their distances from the centre is
equal to p2. Thus, if

p= zo—]—le"}‘,
then - q= zo-{-%f e,
I z = zy+pet

is any point of the circle, then
p—p _pef—let lpetl 1
2—q. l pelf—pi1eh|  le—pe i’
This is therefore a new form of the equation of the circle.
. Conversely, any equation
=P _k (k1)
12—q.
represents a circle* with respect to which p and ¢ are inverse
points. For the equation gives
| [2— 2R (B2)+ o |2 = K¥{lz[2— 2R (32) + a1},
R{F—FD7  lpI*—FleP
2 J—
= e T 1—k2 0.
_p—KkqP_|p—Fq?_ lp|2—F*g|?
1R QR 1—k2
Since  |p—k¥|2—(—R)(IpP—Fgl*) = K*p—al®

* The ‘circle of Apollonius’.

or

or
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ag i easily verified, we obtain

2 P—Fq _klp—ql

S Ty =T
The equation therefore represents a circle, with centre
=
and radius p= ]ﬁﬁi’_ ‘;GZ ]! .
Also P—2y= %—? q—2 = t%,

so that (p—z,)/(¢—2,) is real and positive, and

[P—2ol1g—20| = p*.
Hence p and ¢ are inverse points.

In the particular case £ = 1, z is equidistant from the points’
p and ¢, and therefore lies on the perpendicular bisector of the
line joining them.

6.22. Linear transformation of a circle. In a linear
transformation, o circle transforms into a circle, and inverse points
transform into inverse points. In the particular case in which the
circle becomes a straight line, inverse points become points sym-
metrical about the line.

For let =P
12—q,
be a circle (or straight line), with p and g as inverse points. Let
. az+b __ dw—b

~ezt+d’ #= —cw+a’
Then the circle transforms into
|dw—b—p(—cw+a)
dw—b—q(—cw+a)

tw—-————ap_l_b
or cptd _ . eg+d
P Gx) cp+d

cq-+d|

The result is obvious from this equation.

Example. Prove that the linear transformation in which only one
point p is invariant may be considered as the result of (i) an inversion
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in a circle (centre z,, say), through the point p, (ii) an inversion in the
circle with centre w, corresponding to z, in the transfon:n&tlon, and
touching the previous circle at p.

6.23. To find all linear transformations of the half-plane
1(z) = 0 inio the unit circle jw| << 1.

To points z, Z, symmetrical about the real z-axis correspond
. 1. . . . .
points w, 7 nverse with respect to the unit w-circle. In parti-

cular, the origin and the point at infinity in the w-plane corre-
spond to conjugate values of z.

Let W= az+b

be the required transformation. Plainly ¢ 3 0, or the points at
infinity would correspond. Now w =0, w =00 correspond to

z= —bja, —dfc. Hence we may write
N a .
- _———=
a c
az—a
and w=—""",
¢ 2z—a

The point z = 0 must correspond to a point of the circle jw| =1,
so that

@ =Y =1
c —al |
Hence we put a=c¢
where A is real, and obtain
— AP T (1)
z_—.

Since z= « gives w= 0, « must be a point of the upper balf-
plane, i.e. I(a) > 0. 'With this condition the function (1) gives
the required representation. For if z is real, obviously |w|=1;
and if I(z) > 0, then z is nearer to « than to &, and |w|<1.
There are three arbitrary constants in the transformation,
A, R(a), and I(x). We can therefore make three given points of
the real axis correspond to three given points of the unit circle.

Example. The general linear transformation of the half-plane
R(z) > 0 on the circle jw| < 1is

w = e z—;—; (R(a) > 0).
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6.24. To find all linear transformations of the wunit circle
|2] < 1 into the unit circle jw| < 1.

Let az+b

W= ——.

cz-++d

Here w =0, w =00, must correspond to inverse points z= q,
z==1/&, where |a| < 1. Hence

b d

c

—_——=q,

lad 1—«
¢ a—1

Hence w=erZ_
&z
where A is real.
%" This is the required result; for if z = e, o = beif, then
" el —petf !
pet@-PH__1 —
Tf 2 = rei®, where 7 < 1, then
le—a|s—|az—1]2
= r2—2rb cos(6—PB)-+b2—{b%*2—2br cos(f—B)+1}
— (r2—1)(1—b2) < 0.
Henece jw| < 1.
If we are also given that z=0 corresponds to w =0, then
a =0, and the transformation becomes

w= ez,

If also glz_v= 1 at z=0, then
dz

fw| =

w=z.

Example. The general linear transformation of the circle [z| < p into
the circle |w| < p’ is
zZ—uo
s (el <p

6.25. If f(z)isregularfor|z| < 1,R{f(z)} > 0,and f(0)=a >0,
then |f'(0)] < 2a.

A result of this type follows from Carathéodory’s theorem

w = pp'e"\
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and its corollary (§ 5.5-5.51). The following argument is essen-
tially the same, but can now be put in a form which throws some
light on the general method.

Suppose that we can find a linear transformation g= ¢(f)
such that R(f)=0 corresponds to |g| =1, while f=a corre-
sponds to g= 0. Then we shall have [g(z)| <1 for R{f(z)} >0,
i.e. for |2| <1, and g(0) = 0. In this form the data are easy to
deal with. We have

’ 1 g9\z)
0)|=|-— <.
rOI=g; | 5T <,
l2l=1—¢
and hence, making ¢ - 0, |g'(0)| < 1.

We find, as in § 6.23, that the required linear transformation is

_J (z)_iz
g(z)= fe)Ta’
1+9(2)
fl@)= ““" 9(2)
b 20g'(2)
Hence &)= {_——l—g (z)}z’
and 1£/(0)] = 2alg’(0)| < 2a

6.3. Various transformations. We shall now consider
some examples of functions which are not linear.
6.31. The function w=12% If z=re? and w= pe, then

i — 221,8
pe 72¢%Y, so that p=12, &= 2.

The distance from the origin is therefore squared, and the polar
angle is doubled. An angular region o < argz < B is represented
on an angular region 2a < argw < 28; if B—a > =, the angular
region in the w-plane covers part of this plane twice. The
ambiguity arising from this is removed if we replace the w-plane
by the Riemann surface described in § 4.3.

If 2 = x4y, w = w-iv, then

U+ = (x+4-1y)? = 2®—y>+ 2ixy,

or u=x2—y?, v = 2zy.
Hence the straight lines w=a, v="> correspond to the rect-
angular hyperbolas

22—y’ =a, 2ay = b.
These cut at right angles except in the case a =0, b = 0, when
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they intersect at the origin at an angle 1. Since dw/dz has a
simple zero at the origin, this is in accordance with the general
theorems on the transformation of angles.

Examples. (i) Prove that the straight lines # = const., ¥ = const.,
correspond to systems of confocal parabolas.

(ii) Consider in the same way the function w = 2* for n = 3, 4,....

6.32. The function w =%(z —{--;) Here w becomes infinite
at z =0, while dw 1 . 1)
% 3\!"5)

which vanishes at z= 4-1. These points may therefore be
expected to play a special part in the transformation.
Putting z = r¢!, w = u--iv, we have

1 1 1\ .
u—--é(r-}-,;)cosﬂ, 11-—§(r~;)sm0,
and, eliminating 6,

u2

1,1 ity T

a\ ") 4\ 7

This is an ellipse in the w-plane, and it corresponds to each of
the two circles |z| =1, |2] =—i—. As 7 — 1, the major semi-axis

of the ellipse tends to 1, while the minor semi-axis tends to
zero. As r -0 or as r — oo, both semi-axes tend to infinity.
From this it is clear that the inside and the outside of the unit
“circle in the z-plane both correspond to the whole w-plane, cut
along the real axis from —1 to 1. The unit circle |z| =1 itself
corresponds to the straight line from —1 to 1 described twice.
On solving the equation for z, we see that the inverse function
is a two-valued function of w. We can remove all ambiguity
from the representation by replacing the w-plane by a Riemann
surface of two sheets, each slit from —1 to 1, and joined cross-
ways along the slit. If we pass round one or other of the points
w= =1, a different value of z is reached, but, if we pass round
both, z returns to its original value.

Examples. To what ¢urve in the w~plane does the line x = 1 corre-
spond ? Consider the result as an example of § 6.11.
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6.33. The logarithmic function. If w=1logz, the angular
region o < arg2z < B corresponds to the infinite strip « < v < Bin

the w-plane.
For if z=re®, then a value of w is
logr+16.
Hence u=1logr, v=0_0.

As r goes from 0 to o, % goes from —oo to o, and the result
follows.

If we consider the general value of logz,

=log r+i(6+2k=),
where k is any mteger, we obtain, not one strip, but an infinity
of strips in the w-plane, corresponding to the infinity of values
of the logarithm.

On the other hand, a strip « < v < B corresponds to an angle
in the z-plane; but, if B—oa > 27, part of the plane will be
covered more than once. We can, however, avoid any ambiguity
by replacing the single z-plane by a Riemann surface consisting
of an infinity of sheets, each cut along the real axis from 0 to
—o0, and the upper half-plane of each joined to the lower half-
plane of the next along the slit. Then a strip of the w-plane of
breadth 27 corresponds to one complete sheet of the Riemann
surface, and every point of the Riemann surface corresponds to
just one point of the w-plane.

Examples. (i) Investigate the properties of the transformation
w = tan z by considering it as the result of the two transformations

_1 1
3 é—(— 1’ L=
and hence obtain a Riemann surface for the inverse fu.nctlon
z = arc tan w.
[Hurwitz-Courant, Funktionentheorie, p. 293.]
(ii) Consider the properties of the transformation
w =2t
for general values of «.

[The function z* is defined as e*!z. Consider separately rational,
irrational, and complex values of «.]

.6.34. If w="tan?}z, the strip in the z-plane between the lines
x=0, x= 1% is represented on the interior of the unit circle in
the w-plane, cut along the real axis from w= —1 to w=0.
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1—cosz
‘We have =~ Tooss

If z = {n+1y, then cosz = —isinhy, and [w| = 1. Ttis easily
seen that, as y goes from —o0 to 0o, amw goes from —= to =,
so that w describes the whole unit circle once.

If z =1y, cosz=rcoshy, and w is real. As y goes from oo
to 0, w goes from —1 to 0, and as y goes from 0 to —oo, w
retraces its path from 0 to —1.

The boundary of the strip therefore corresponds to the
boundary of the cut circle, and there should be no difficulty in
verifying that the interiors correspond. .

Example. Prove that the line z = }r corresponds to & loop of a
closed curve, cutting the real axis at w = —1 and w = 1/(3+2+/2).

6.4. Simple (‘schlicht’) functions.* We shall say that
function f{(z) is simple in a region D if it is analytic, one-valued,
and does not take any value more than once in D.

The function w=f(z) then represents the region D of the
z-plane on a region D’ of the w-plane, in such a way that there
is a one-one correspondence between the points of the two
regions. , :

If f(z) is simple in D, f'(z) 50 in D. For suppose, on the
contrary, that f'(z,) = 0. Then f(z)—f(z,) bas a zero of order
n (n > 2) at z;. Since f(z) is not constant, we can find a circle
|z—zo] =8 on which f(2)—f(z,) does not vanish, and inside
which f(z) has no zeros except z,. Let m be the lower bound
of [f(2)—f(2,)| on this circle. Then by Rouché’s theorem, if
0< |a| <m, f(z)—f(zy)—a has n zeros in the circle (it cannot
have a double zero, since f'(z) has no other zeros in the circle).
This is contrary to the hypothesis that f(z) does not take any
value more than once.

A simple function of a simple function is simple. If f(2) is
simple in D, and F(w) in D', then F{f(z)} is simple in D; for
F{f(2))} = F{f(2,)} implies f(z,) = f(z,), since F is simple; and
this implies 2, = z,, since f is simple.

6.41. Inverse functions. In the above relationship, to
every point of D’ corresponds just one point of D. We can
therefore consider z as a function of w, say z=¢(w). This is
called the inverse function of w = f(z).

* The German word is schlicht; Dienes, The Taylor Series, uses biuniform.
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The inverse function is simple in D'. For it is one-valued;

and it does not take any value more than once, since f(2) is

one-valued. Finally, it is analytic; for if w, = f(2,), then it is

easily seen by considering | f'(z)/{f(z)—w} dz that, in any given

neighbourhood of z,, f(z) takes every value w sufficiently near
to w,. Hence z = ¢(w) is continuous, and

as w — wy, since f'(z,) # 0.

6.42. Uniqueness of conformal transformation. A4
simple function w= f(z) which represents the unit circle on itself,
so that the centre and a given direction through it remain unaltered,
s the identical transformation w = z.

We have |f(z)|=1 for |z|=1, and f(0)=0. Hence, by
Schwarz’s lemma (§ 5.2), ,

, wl = (/)| < l2l-
But, applying Schwarz’s lemma to the inverse function, we
have |z| < |w|. Hence |w|= 7], i.e.
f@)zl=1  (lz]|<1).
Since a function of constant modulus is itself constant, it follows

tha,t f(z) = az,

where |a| = 1. The remaining conditions then show that a = 1.

Other functions, such as w = 22, satisfy the conditions except
that they are not simple.

A simple function which represents the unit circle on itself is
a linear function.

If w=f(z) represents the unit circle on itself, and f(0) = w,,
we can, by § 6.24, find a linear function I(w) which represents
the unit circle on itself, and is such that I(w,) = 0. Then I{f(z)}
represents the unit circle on itself, and I{f(0)} = 0. Hence, by
the above theorem, i{f(z)} = az. Since the inverse function of
a linear function is linear, f(z) is a linear function of z.

6.43. Let f(2) be reqular at z=0, and f'(0) 52 0. Then f(z) is
gimple in the immediate neighbourhood of z = 0; i.e. in the circle
2] < p, if p is small enough. _

We may suppose that f(0) = 0. Since f'(0) # 0, the origin is
a zero of f(z) of the first order. We can therefore find a circle

o
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C, with centre 2= 0, on which fz)#0, and inside which f(2)
Tas no zero other thanz= 0. Let m be the lower hound of | f(z)|

on C.

Since f(z) is continuous and vanishes at z=0, we call find
a cirele [2[=p inside which | f(z)| <m. Then w = f(2) is simple
in this circle. For let w’ be any number such that |w'| <m.
Then by Rouché’s theorem (§ 3.42) the number of zeros of
flz)—w' in ( is the same as the number of zeros of f(2), that is,
- “one. Hence there is just one point 2 in O corresponding to each
such value of w'. The region consisting of these values of 2’ is
therefore represented simply on the circle |wl<m; and this
region includes the circle |z = p-

An alternative proof may be obtained by considering the

power geries w
f (2) =n§0anzn=
where a, # 0. I flz)) =f(za)s
7?;‘,1%(2’{—2;‘) =0,

e (a—mot gzanwwz?—m...+zg-1>}=o.

I |z <ps |22l <ps the modulus of the second factor is

greater than- ©
CAESD nlaglp"

n=2
which is positive if p is small enough. Hence z; = 2 and the
result follows.

6.44. The limit of @ uniformly convergent sequence of simple
functions i cither simple or constant. More precisely, if fa(2) 18
simple in D for cach value of n, and f(2) ~> f(z) uniformby in D,
then f(2) 18 gimple in D, or is a constant. :

The possibility of the limit being «constant is shown by the
example f,(2) = z/n.

Tn any case, f(2) is analytic and one-valued in D. If it is not
simple, there are two points 2; and 2, at which w= f(2) takes
the same value . Describe, with 2 and z, as centres, two
circles which lie in D, do not overlap, and such that f(z)—wo
does not vanish on either circumference (this is possible unless
flz) is a constant). Let m be the lower bound of | f(z)—wol on
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the two circumferences. Then we can choose n so large that
|f@)—f.()] <m on the two circumferences. Hence, by
Rouché’s theorem, the function

fal@)—wo = {f(e)—wo}+{fa(2) —f(2)}
has as many zeros in the circles as f(z)—w,, that is, at least
two. Hence f,(z) is not simple, contrary to hypothesis. This
proves the theorem.

6.45. Let C be a simple closed contour in the z-plane, enclosing
a region D. Let w=[(z) be an analytic function of z, reqular in .
D and on C, and taking no value more than once on C. Then
f(z) is simple in D.

The contour C corresponds to a contour C’ in the w-plane.
C’ is closed, since f(2) is one-valued; and it has no double points,
since f(z) does not take any value twice on C. Let D’ be the
region enclosed by C’.

We assume that f(z) takes in D values other than those on
C, say at z,. Then, if A, denotes variation round C,

o= Boarg | f2)~f(z)

is equal to the number of zeros of f(z)—f(z,) in C; it is therefore
a positive integer, since there is at least one such zero. But it
- is also equal to 1
o AC" arg (w—wo)>
27
where w, = f(z,); and this is either 0, if w, is outside C’, or 4-1,
if w, is inside €, the sign depending on the direction in which
(' is described. Hence it is equal to 1. Hence w, lies inside (’,
(' is described in the positive direction, and f(z) takes the value
w, just once in D. Thus D is represented simply on D’.

6.46. Extensions. The condition in the above analysis that
the function f(z) should be analytic on the contour can be
relaxed to a certain extent. The state of affairs is not much
altered if f(2) is not analytic, but is continuous, at certain points
of C. Suppose that there is a singularity at 2, on the contour,
and that C, is C with an indentation round 2z;. Then the number
of zeros of f(z)—wy, inside C, is ‘

1 f'(z) dz;

. %Aclarg{f(z)_wo} = —27,1: o f(z)_,wo
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and, as the indentation is closed up, this tends to the correspond-
ing integral round C, if f(z) is continuous and f'(z) = O(|z—z,|*),
where o > —1, The argument of § 6.45 therefore still applies.
The function f(z) may also have a pole on the contour; the
region D’ then extends to infinity. The theorem of § 6.45 still
holds if the pole is of the first order, and the contour is a fairly
ordinary one. Suppose that, by a preliminary change of vari-
able, we take the pole at the origin, and that the direction can
be taken so that R(z) > 0 at all points of D. Let

w=f) = +90),

where g(z) is regular in D. Then, for z in D,
R(w) > minR{g(z)} = a,
say. Let b6 <a. Then |w—b| > a—>b for zin D. Hence
1 2
¢= w—b 1429(z)—bz
is regular in D. The theorem applies dmactly to {, and so, since

w is a simple function of , to w.
The result is not necessarily true for poles of higher order.

Examples. (i) Let w 1L
2 z—1"
1 i0
If z = ¢, then > :‘0+i —cot; 36.

Hence, as z describes the unit circle from 0 to 2w, w describes the real
axis from —co to 0. The only singularity on the z-boundary is a simple
pole. Hence the unit circle in the z-plane is represented simply on the
upper half w-plane. This of course is easily verified.

(ii) Let 0= -(zfi)
Then, if z = ¢, w = —cot’}f.

Hence there is a one-one correspondence between the unit circle in the
z-plane and the real w-axis. Bub since there is a triple pole on the
boundary the areas do not necessarily correspond. In fact
w =i(x+iy+1)3 _ @y 1P 120t yP—1)y®
z+iy—1 {—1p+y%p
and v = 0 corresponds to
(22 4-y2— 1)@+ y2— 243y — 1) (z2 442+ 243y —1) = O,
i.e. the equation of three circles. Hence » > 0 if z is outside each of
these circles, or outside one and inside the other two.

ey
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The reader should draw a figure showing the regions of the z-plane
which correspond to the upper half of the w-plane.

6.5. The function w = f = We know that this func--
tion is equal to arcsinz. Consider, however, what can be
deduced from the integral about the representation of the
z-plane on the w-plane.

Consider what part of the w-plane corresponds to the first
quadrant in the z-plane. If z= ¢y is purely imaginary, we have

foids

1-+s?
which is also purely imaginary; and as y - oo, so does w. The
two imaginary axes therefore correspond.

Again, as z increases along the real axis from 0, so does w,
until 2 reaches 1, and w reaches the value

w =

dt
| o=
Let us denote the value of this integral by I. Actually I = i,
but we need not assume that this is known.

We must now suppose that the path of integration passes
above the point z = 1, say by a small semicircle. Then arg(1—%)
decreases from 0 to —m, and so arg(l—¢)—# increases from 0 to
4m; thus the integrand becomes purely imaginary, and we have

o dt
w=I+sz_—D.

Finally, as z tends to infinity along the real axis, w tends to
infinity along the line » = I.

Hence the boundary of the first quadrant in the z-plane corre-
sponds to the boundary of the half-strip 0 <u <I, >0 in
the w-plane. :

Secondly, the function is simple in this region. We cannot
deduce this from § 6.45 without some further argument, since
both the regions extend to infinity. But it is easily seen directly.
For, if ¢ lies in the first quadrant, the imaginary part of $2—
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is positive, and arg,/(1—?) lies between —im and 0. Hence

et = [

and, taking the integral along the straight line, it is of the form

dA
g

where ) is a real variable, p > 0, —37 < ¢ < 0. Such an integral
plainly cannot vanish. Here the function cannot take any value
twice.

Also the quadrant of the circle |z| = R, where R is large,
corresponds to a curve which (by the previous remark) has no
double point, and which connects the two sides of the strip and
lies entirely at a great distance from the real axis. Hence, by
the theorem of § 6.45, the quadrant is represented simply on
the whole strip.

The next problem is to continue the function beyond this
limited region. This can be done by the method of reflection
of § 4.51. In fact all the boundaries in each figure are straight
lines.

In the first place, the imaginary axes correspond. Hence,
reflecting in these lines, we see that the second quadrant in the
z-plane corresponds to the half-strip —I <u << 0, v >0, in the
w-plane. Hence the upper half of the z-plane corresponds to
the half-strip —I <u<I, v>0.

Next, reflect with respect to the segment (0, 1) of the real axis
in the z-plane. We obtain the lower half of the z-plane. In the
w-plane we obtain the half-strip —I <u < I, v<0.

Hence the whole strip —I <« < I corresponds to the whole
z-plane, but there are singularities at z= -1 round which we
must not pass; we may, for example, suppose the plane cut
from —co to —1 and from 1 to co.

Again, a reflection in the segment (1,00) of the real z-axis
corresponds to a reflection in the line = I in the w-plane.
Hence the lower half of the z-plane (obtained by continuation
to the right of z= 1) corresponds to the half-strip I <u < 31,
»>0.

It is plain that we can continue this process indefinitely. The .
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whole w-plane is divided up into strips of breadth 21, each of
which corresponds to the whole z-plane.

If we reflect a point w, of the strip —I <u < I, firstinu= 1T
and then in u =3I, we obtain the point wy,+4I. Meanwhile
the corresponding z,, being reflected twice in the real axis, has
returned to its original value. Then w, and w,+4I correspond
to the same 2z,; ie. if z2=g(w), then g(w)=g(w-+4I). The
inverse function g(w) is therefore periodic, with period 41.

Example. Prove that the function

dt
| mmammm  ©<E<D

represents the upper half of the z-plane on the rectangle in the w-plane

bounded by thelinesu = —K,u = K, v = 0, v = K’, where

1/k
dt

K= f Ji{(1— tz) 1 kztz)} ; KE—D(1=F)}
Prove tha,t the inverse function z = g(w) has the two periods 4K and
2¢K’. [Hurwitz-Courant, Funkiionentheorie, pp. 302-3.]

6.6. Representation of a polygon on a half-plane. The
functions of the previous section are examples of the representa-
tion of a polygon on a half-plane. It is possible to do this with
any polygon. The complete proof would take us too far, but
we can show in a general way how it is to be done.

Consider a polygon in the w-plane with » sides and angles
07Ty ATy ny Ay, Where oy ..., = n—2. o, <1(m=1,2,...0)
the polygon is convex. Some of the o’s may be greater than 1,
but the polygon must never cross itself. Suppose that the
vertices of the polygon are to correspond to points a,, a,,..., a,,
on the real axis in the z-plane. So long as z remains on the real
axis without passing any of the points a,,..., w remains on the
same side of the polygon; hence the angle between the z-curve
and the w-curve is constant, i.e.jarg(dw/dz) is constant (see § 6.1).

If %—: = C(z—a,)0 Y (z—ay)%1...(2—a,) =L,
then dw/dz has this property. When 2 passes the point a; by
a small circle above it, arg(z—ag) decreases from = to 0, the
amplitudes of the other factors returning to their original values.

Hence  arg(dw/dz) decreases by m(¢;—1). Hence the w-curve
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turns through #(l—«,;) in the positive direction. This corre-
sponds to an angle o, of the polygon.

The required function is therefore of the form

B :
w=0C f (t—ay) - —ay) %1, (f—a, )L dt.
20

The integrand is O(1/[¢[?) as [¢| - co; hence the integral con-
verges as z - --00, and to the same value in each case, since
the integral along a large semicircle above the real axis tends
to zero. Hence, as z describes the real axis, w describes a closed
curve, and in fact, from the construction, a polygon with the
prescribed angles. By first considering the real z-axis as closed
by a large semicircle above it, we can apply the theorems of
§§ 6.45-6, and we find that the interior of the polygon is repre-
sented simply on the upper half-plane.

To show that we can choose the constants so that a polygon
with given sides, as well as given angles, can be represented, is
more difficult. For a triangle, however, the result is easily
obtained. Consider, for example, the triangle with vertices
w=1+8, 0, 1 (and angles i, i, 1), and let the vertices corre-
spond to z= —1, 0, 1. The above theory gives

w=C f (t+1)-H-3¢—1)74 ds.

The origins correspond 1f 2y == 0 and if we write the formula as
=0 f (t+1) -4+ —g)F i,
0

where O’ is real and positive, the directions of the real axes
correspond. Finally, if

L .
1=C" f (1)~ -+1—8)F ds,
0

then z=1 corresponds to w=1, and the required representa-
tion is obtained.

Examples. (i) Prove that the function

=

represents a half-plane on an equilateral triangle.
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(ii) Prove that the function

represents the unit circle in the z-plane on a square in the iu-pla.ne.
[Hurwitz-Courant. Put z = ({—9)/({+17).]

6.7. Representation of any region on a circle. A funda-
mental theorem of Riemann states that any region with a suitable
boundary can be represented on a circle by a simple analytic func-
tion. It is beyond our scope to inquire exactly what forms of
region are suitable. The region may be the interior of a closed
curve; or one side of a curve which goes to infinity in both
directions (e.g. a half-plane); or any form of strip between two
such curves; or even the whole plane cut along a curve (e.g.
along the real axis from 0 to infinity).

Let D be.a region of one of the above types.

The function which represents any region simply on a bounded
region must be simple and bounded. Let us first verify that
there are such functions for D. Let @ and b be two points on
the boundary of D, and let

o= J()

In D we can restrict ourselves to one branch of this function;
this branch is simple, and the values taken by it cover a part
only of the w-plane (since both branches together cover the
whole w-plane once). Let w, be a point of the region not covered.
Then 1/(w—wyg) is simple and bounded in D. Also

f(z)=;0—fgo+q

is simple and bounded, and we can choose p» and ¢ so that, at
a given point of D, f(z) =0 and f'(z) = 1.

Consider all functions f(z) which are simple and bounded in
D, and such that f(z) = 0 and f'(z) = 1 at a given point P of D.
Let M(f) denote the maximum modulus of f(z). Let p be the
lower bound of M(f) for all such functions.

There is then either a function #(z) of the set such that
M(¢) = p; or a sequence [}, fy,... of functions of the set such that

lim M(f,) = p.
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We shall show that the second alternative reduces to the first.

Since the sequence f,(2) is bounded in D, we can, by §5.22,

select from it a partial sequence which tends uniformly to a

limit in any region interior to D. Let f, (2), f, (2),... be such

a sequence, and ¢(z) its limit. Then ¢(z) is also a function of

the set; for it is bounded, and ¢(z) =0, ¢'(z) =1 at P, and ¢(z)

is simple (§ 6.44), being not constant since ¢'(z) = 1. Also
M(¢)=p

by definition of p; and

M) <pte  (>w)

ie. U@l <pte >
Making v — o0, it follows that

l$(2)] <pte,
ie. M($)<p.

This proves the existence of a function ¢(z) of the set with
M(¢) = p; and since ¢(z) is not constant, p > 0.

We shall show that the function w = ¢(z) represents D simply
on the circle {w| < p. In the proof, we may suppose that p= 1.
Let A be the region of the w-plane on which w = ¢(z) represents
D. Since M(¢)=1, A is included in |w| <1, and reaches its
circumference at one point at least.

If the theorem is not true, A has a boundary point « inside
the circle (Ja| < 1). Then each branch of

J&=)

w, =

aw—1

is regular for w in A. Also |w,|<<1 if |w|<<1 (§6.24), and
w(0) = Va.- Let

w, = 1 -o ]
© Noaw,—1
Then |w, <1if |w,|<<1. Also
dwy _dw, dwi 1 _ |a|—1 [2—1

dw ~ dw; dw 2w, (Voaw,- 1)% (Gw—1)2" 2w,
lel—1  Jal?—1 |o|41
T (Je]—12 2Vx T 24
at w=0. The modulus of this is-greater than unity. Hence
2,
e[ +17

Wq =
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is a function of the set considered, and
_ 2|Vaf
le|+1 =7

This gives a contradiction, and the theorem follows.

M (w,)

6.71. Uniqueness theorem. Let D be a region in the
z-plane which is the interior of a simple closed contour, or which
is of one of the other types considered in § 6.7. Then there is
a uniquely determined function w = f(z) which represents D simply
on the interior of the unit circle in the w-plane, and is such that,
if 2y 18 a given point in D, f(zy) = 0 and f'(z,) is real and positive.

It follows from § 6.7 that there is one such function, say
w=f(z). Let z= F(w) be the inverse function. Suppose that
there is another function w=g(z) with the same properties.
Then the function W = g{F(w)} represents the unit circle simply
on itself, the centre and the direction of the real axis through
it remaining unaltered. Hence, by §6.42, g{F(w)}=w, ie.
9(2) = f@).

6.8. Further properties of simple functions. The class
of functions f(z) which are simple for |2| <1, and such that
f(0)=0, f'(0) =1, has been studied in great detail. The func-
tion w =z belongs to the class, and represents the unit circle
on itself. For all functions of the class the ‘map’ of the unit
circle is subject to certain limitations. For the details we may
refer to Bieberbach, Funktionentheorie, ii. 82-94, Landau,
Ergebnisse (ed. 2), pp. 107-14, or Dienes, The Taylor Series,
Ch. VIII. We shall, however, obtain the simplest property of
the map. For any funcjion of the class, no boundary point of the
map of the unit circle is nearer to the origin than the point %.

We deduce this from the two following theorems.

Let P Wik NI
€ w=2z-4 . + e +
be simple for |z| > 1, and regular except for the pole at infinity.

Then o
> nla,|2< 1.
n=1
Since the function is simple, any circle |z| = r > 1 corresponds
to a simple closed curve in the w-plane, which encloses a positive
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area. If w=u-+w, w=u(8), v="10(0), on the curve, the area
enclosed is

2 2m

[[ o0 0= | E’(_@l;ﬂ@@ﬂ@:@_@ de

)
0 0

4 2 _inf_1_g einfd
=1 j {rei"+re-"5+ z A IE —} X
0

rn
n=1

o

3 . na. e—in@ /nd eiﬂg
X {rezﬁ_i_,re—zﬂ__ z n 1.-)1._ n } e
n=1

- -5

n=

Since this is positive

S nla, P < 2%,

n=1
and making 7 —> 1 the result follows.

If 'w=f(z)=z+_a2z2+...
is simple in |z[ <1, then |ag| < 2.
- The function
- Fl)= S = 2+LagZt 4.

is also simple in |2| <1; for it is regular, since f(22) does not
vanish except at 2 =0, where it has a double zero; and if
Flz,) = F(z,), then f22)=1(3), and hence, since f(2) is simple,
B=1, le. 7= 1% But F(z) is an odd function, s0 that
2, = —2 gives Fz) = —F () Hence the only solution of
F(z) = Fl(zp) 18 2, =22 i.e. F(z) is simple.

Tt follows that
1 -l 30,
{F(z)} =2—=> 4.

is simﬁ)le for |z| >1. Hence by the previous theorem
3las2+-- <1,
and the result follows.
Now let w = f(z) =2+0:22+--
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be a function of the class considered in the main theorem. Let
¢ be a value which it does not take in the unit circle, i.e. a point
outside the ‘map’ of the unit circle. Then

¢ J(2) _z+(a2+%)zz+...

c—flz)

is regular and simple for |z| < 1. Hence

Gt <2,

< 2+ la2! < 4:

. lc] =%,
and the result follows.

Example. The function z/(1—z)? belongs to the above class. It has
a, = 2, and it gives a map passing through w = —}.

[The only solution of
=z~ 1=z}’ <1, <1,
is z =2".]

MISCELLANEOUS EXAMPLES
1. In a given linear transformation, the point z, is such that there
is some circle |z¢—z)| = R which transforms into a concentric circle
|w—z,] = R’. Show that the locus of 2, is a rectangular hyperbola; and
that to each point 2, on the locus corresponds just one circle (real or
imaginary) which transforms into a concentric circle.

2. Show that, if & _ ~i{w— l),
dw w

and the constant of integration is properly chosen, the whole z-plane
cut along the semi-infinite lines # = 4, y < 0, corresponds to the
upper half of the w-plane.
dz w
dw  Jwr—a?)’
and @ and the constant of integration and the value of.the square root
are properly chosen, the upper half of the w-plane corresponds to the
upper half of the z-plane, cut along the imaginary axis from z = 0 to
a point z = k. . ]

4. If f(z) is regular inside and on the unit circle, |f(z)] < M on the
circle, and f(a) = 0, where |a| < 1, then

3. Show that, if

z—a
[f@)] <M dz—1

inside the circle.



212 CONFORMAL REPRESENTATION
5. If f(2) is regular inside and on the unit circle, | f(z)] < M on the
circle, and f(0) = a, where 0 < a < M, then

- Mlz|+a
[f2)] < Malz!+M

inside the circle. _
[Consider F(z) = M{f(z)—ua}/{af(z)—D2}.]
6. Either branch of the function

is simple for [2] < 1.
7. Show that the function
(1—2y
is simple for |z| < 4, but not in any larger circle with centre at the origin.
8. Show that the function
f(2) = z+a,2%+ a2 +...

is simple for [2] < 1 if o
S nle,| < 1.
n=2



CHAPTER VII

POWER SERIES WITH A FINITE RADIUS
OF CONVERGENCE

7.1. The circle of convergence. We know that every
power series has a circle of convergence, within which it con-
verges, and outside which it diverges. The radius of this circle
may, however, be infinite, so that the circle includes the whole
plane. In this chapter we shall consider power series which have
a finite radius of convergence.

The radius of convergence of a power series is determined by
the moduli of the coefficients in the series.

The power series

3 a,m (1)
n=0
has the radius of convergence
R=lim [a,|-¥n. 2)

Suppose that R is defined by (2). If z is a point where the
series (1) converges, a,2" - 0 as n —>co. Hence, if 2 is suffi-

ciently large, e,z < 1,

Le. 2] < |a, 1-n.
Making n - oo, it follows that [z2| < R. Hence the radius of
convergence does not exceed R.
On the other hand, for sufficiently large values of »,
lanl_lm > E—e,
ie. la,] < (B—e)™.
Hence the series (1) is convergent if Y (R-——e).""lzln is con-
vergent, i.e. if |z2| < R—e. Since e is arbitrarily small, the series
(1) is convergent if |z| < B. Thus the radiys of convergence is

at least equal to R. Putting together the two results, the
theorem follows.

Examples. (i) Find the radius of convergence of the series

& In! Al
n! n! .
— ", —2 nlz™.
(n?)? Zn" ,;0

n=0 n=1
(ii) If R = 1, and the only singularities on the unit circle are simple
poles, then g, is bounded. [For
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o) = —2 b

1—ze—ix + l—ze-
where g(2) is regular for [z| < 148 (8§ > 0). Hence g(z) = ¥ b,2", where
b, = o(1).]
(iii) If B = 1, and the only singularities on the unit circle are poles
of order p, then a, = O(n?-1).

+9(z),

R

—ze—ix

7.11. We also know from the Cauchy-Taylor theorem that
the circle of convergence of the series passes through the
singularity or singularities of the function which are nearest to
the origin. Hence the modulus of the nearest singularity can be
determined from the modulz of the coefficients in the series.

7.2. Position of the singularities. While the modulus of
the nearest singularities is determined in quite a simple way,
their exact position is not usually so easy to find. There are,
however, some special cases in which we can identify a particular
point as a singularity.

In the following theorems we shall take the radius of con-
vergence to be unity; we can, of course, pass from this to the
general case by a simple transformation.

7.21. If @, >0 for all values of n, then z=1 is a singular
point. '

Suppose, on the contrary, that z =1 is regular. Then, if we
take a point p on the real axis between 0 and 1, there is a circle
with centre p which includes the point 1, and in which the
function is regular. If f(z) is the function, the Taylor’s series

about p is 2, ()
> e &)
v=0

and this converges at a point z= 148 (8 > 0). Now

f(V)(p) =n2vn(n_ 1)(7’&——y+ ].)a7z oY, (2)

and so the above series is

i @%B)ﬁ,i n(n—1)...(n—v+1)a, "~

This is a double series of positive terms, convergent for z = 148



POSITION OF SINGULARITIES 215
Hence we may invert the order of the summations, and we
obtain

,ianin(n 1)...(n— v.l)(z oy

n=0 =0
= E ap{(z—p)+p}* = ¥ a,2"
n=0 n=0

Hence the original series is convergent for z = 13§, contrary
to the hypothesis that the radius of convergence is 1. This
proves the theorem.

Another proof, due to Pringsheim, is as follows. There is at
least one singularity, say e’®, on the unit circle. The Taylor’s
series about pe!®, where 0 < p <1, is

zf(v)(Pem) (z pem)

y'

and, since ¢'* is a singularity, this has the radius of convergence
1—p. But it is clear from (2) that, if @, > 0 for all values of =,
: LfP(pe™)| < fp)-
Hence the radius of convergence of (1) does not exceed 1—p.
Hence z =1 is a'singularity.
722 If a, 18 real for all values of n, cmd > a, is properly
divergent, i.e.
8, = ay+a,+...4a, -> oo (or - —o0),
then z =1 is a singular point.
We have, for |z| < 1,

f(z ;za z"zz”—zs 2", (1)
by §1.65, the senes bemg a,bsolutely convergent Hence
@)= (1—2) 3 s,2n /
n=0

= (1 —-Z)nzz:osnzn_*_ (1 —Z‘)n=§+18nzn — fl(z) +f2(z),

say. Suppose that s, - co. Then, given any positive number G,
however large, we can choose N so that s, > G (n > N). Then,
ifo<z<1, . o

folz) > (1—2) 3 Gzr=GzN+1

- n=N+1
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Having fixed N, we can choose z, so near to 1 that

> ARI<IG (>2z)
since z¥+! — 1 and f(z) = 0. Hence
f&)>1G (2>z),
i.e. f(z) > o0 as z > 1. This proves the theorem.

If we merely know that [s,| o0, we cannot deduce th
z =1 is a singularity. For example,

1
2P
and here |s,| ~ }n?, though the function is regular at z= 1.

7.23. General tests for singular points. If we consid
any particular point on the circle of convergence, we can devi
a test to determine whether it is a singularity or not; but it
not one which lends itself to simple caleulations.

We may suppose that the radius of convergence is 1, and, |
a preliminary transformation, we may bring the point to
considered to z= 1.

The principle to be used is that, if we expand f(z) about
point on the real axis between 0 and 1, the circle of convergen
includes z = 1 if f(z) is regular at this point, and not otherwi
But we can make a transformation which brings the formu
into a simpler form than the direct application of the prineciy
would give.

Let F(w)_.-——-f(l w)

Then F(w) is regular for R(w)<<}, since R(w) <} giv
lw| < |[1—w|. Now

Fe= Y g = z a5 )

—3z+...+(—1)"4(n+1) n+2)z”+

m=0 m=0 r=0
o n
S‘ w" S\
] fon ”b'[fb"‘-llb)
n=0 m=0
n - n,
Lot e S
" mi(n—m)l ™
m==0

YL . o .3 O 4 3%t 1lo.l . 1 ~Alaals
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be a singularity of f(z), i.e. that w =} should be a singularity
of F(w), is that .
lim b, |"»=4.
n—>0
For then F(w) has a singularity on |w|= 3, and every point
other than w = } is known to be regular.

By using other transformations we obtain a variety of other
equivalent conditions.

Example. Prove that every point on the unit circle is a singularity of

fe) = 3 &
n=0

For the point z = ¢, we have to consider
p
n

5 n!
= —_—
» z mi(n—m) ™

. m=0
where a,, = ¢¥0 if m = 2, and a,, = 0 otherwise. Clearly

6] < Zm, Ty = 2n,

m=0

2n1 m
Also by = Z 2""(2”—2”.5;62 6
= !

The modulus of the term m = n—1 is asymptotic to 42"-i» by Stir-
ling’s theorem. Also, if u,, denotes the general term, and 0 <m < n—2,
u ot

" (2m+1)~--2"‘”‘ ‘ ( omil )2’"< _2.)_ <‘_1
Uty - (2n_2m+1+1)'"(2n_2m) "\2n—_9m (3 93

and the remainder is easily seen to be negligible. Hence

1
lim|byn|® = 2.]

7.3. Convergence of the series and regularity of the
function. It will be noticed that we have not used the con-
vergence or divergence of the original series as a test for
regularity or singularity of the function. In general no such
test is possible, for all possible relations can occur. If

=3 0T g 1

the series is convergent, and the function regular, at z=1; and
the series is divergent, and the function singular, at z= —L.



218 POWER SERIES
On the other hand, if

©

floy= > (~1per =g

the series is divergent, but the function is regular, at z=1;
while if

83

the series is convergent at z = 1, but f(z) has a singularity.

7.31. There is, however, one case in which divergence of the
series indicates a singularity of the function; the case where
a, — 0. This follows from the following theorem.

If

and a, — 0, the series is convergent at every point of the unit circle
where the function is regular.

Two proofs of this theorem have been given. One, due to
M. Riesz, is essentially a ‘complex variable’ method, and is
given by Landau, Ergebnisse, § 18. The following proof, due
to W. H. Young (7), is of Fourier-series type. In some respects
it is not so simple as Riesz’s, but it can easily be adapted to
give more general results.

We may without loss of generality take the point in question
to be z=1; and we may suppose that f(1)=0. We have then
to prove that s, - 0.

It follows from § 7.22 (1 ) 1) that

— fz) dz
= 2mi J

1__,z z‘ﬂ+1

Taking the contour to be the circle |2| =7 < 1, we have

1 fre®) o
snzmj Tl nb dg.

Let 0 < § <, and let ¢(8) = (6,3, 7) be such that
(i) ¢(0) =1/(1—rei®) for —r<f< —Sand d<h<m;
(ii) #(9) and ¢'(9) are continuous for —7 < 8 < m;
(iii) [$(8)| <K, |$'0) <K, |¢"0) <K, for —m<b<m
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where K depends on & but not on . For example, if
$(6) = ab®+-b6%*+-cf+d (—8 <K<K,
we can determine the coefficients so that
1 irexi®

95(:!‘_‘ ) ils’ ¢'(i5)= m'

Then (ii) is satlsﬁed; and a, b, ¢, and d are linear functions of
#(=-8) and ¢’(4-8), the moduli of these not exceeding } cosec 38
and } cosec?®15 respectively. Hence (iii) is satisfied.

We can then write

2mrms, = f’re ) e ind 70 + jfreﬁ)gb e~7nﬂ do —

—relf

f Slretb)pe)e-in? do
— I I—1I,. ¥

Since f(z) is regular at z=1, and f(1) = 0, we have
frei®) = O(|1—ret))

in an interval |8] < 6, umformlv for r, <r << 1. Hence
I, =f 0(1) d6 = O(5).
Suppose now that & is-ﬁsxed. We have
I, =m§.1 amr’"_f ¢itn=1849) do),

by uniform convergence; and integrating by parts twice each
integral except the nth,

™

=q r"? — ) (Im’l . i(m—n)d 4"
Timay [ 4000 = 5 D, [ emoneyo) de,

all the integrated terms cancelling. Let ¢, = max(la,,|), so that
€, > 0. Then

112|<\:27K{€n+€o Z : 3T z _-1__0}

mxin (?)I ) m>in (7)?—-')2)"

= O(¢,)+ O(1/n)+Ofey,,)-
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Finally

_[fgemi1 2 1 , No—ind 70 — _1)
r-[2r] ml (Fp+f$)0 a0 =0(3).

Given e, we can choose 8 so that |I;| < i for all values of n;
and, having fixed 8, we can choose ny=14(c) so large that
[1,] < %e and |I;] < 4e for n > n,. Hence

| 2mrtls, | <e (= > ng).

Making r — 1, it follows that 27(s,| < e (n>n,), i.e. s, > 0.

The reader will notice that we have not used the full force
of the hypothesis ‘f(z) isregular at z=1°; and the proof would
hold with little change if e.g. f(z) = O(|1—2z|*), where o> 0.
For the more general form of the theorem we must refer the
reader to Young’s paper.

7.4. Over-convergence.* We know that, at every point
outside the circle of convergence of a power series, the series is
divergent. But if, instead of considering the whole sequence of
partial sums of the series, we consider particular sequences of
these sums, it is sometimes possible to obtain a convergent
sequence. This is shown by the following example.

Let 1) = i {z(l;_z)ﬁ

where p, is the maximum .coefficient in the polynomial
{2(1—2)}*". Then in each of the polynomials

Z1—2)}
Pn ’

the moduli of the coefficients do not exceed 1, and one of them
isactually equal to 1. Also the highest term in this polynomial is
of degree 2.4, whereas the lowest term in the next polynomial
is of degree 47+1. Hence, if we expand f(z) in powers of z, each
term is a single term of one of the above polynomials. The
radius of convergence of this series is 1, since |a,] < 1 for all n,
while a,, = 1 for an infinity of values of n.

In particular, the above series of polynomials is convergent
for |z] < 1. But, since it is formally unchanged by the substitu-
tion z = 1—w, it is also convergent for (w| < 1, i.e. for [1—z| < 1.

* Ostrowski (1), Zygmund (1), Estermann (2).
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The special sequence of partial sums obtained by taking each
polynomial as a whole is therefore convergent in a region which
lies partly outside the unit circle.

A power series which has a sequence of partial sums con-
vergent outside the circle of convergence of the series is said to
be ‘over-convergent’. Of course a power series can only be
over-convergent in the neighbourhood of a point of the circle
where the function is regular. We shall next define a class of
functions which have this property of over-convergence in the
neighbourhood of every point of the circle where the function
is regular.

7.41. Suppose that the power series
f (z) = § a,z"
n=0

has the radius of comvergence 1, and that there are an infinite
number of gaps in the sequence of coefficients, i.e. there are
sequences of suffixes p,., q;, such that a,, = 0 for p, <n <gq,; and
qi = (14+-3)p,, with a fixed positive 5.

Then the sequence of the corresponding partial sums

7
8p,(2) = nz=0 @, ="

18 convergent in a region of which every regular point of f(z) on
the circle of convergence is an interior point.

To prove this it is sufficient to consider the point z=1.
Suppose that f(z) is regular at z = 1. Then, if 3 is small enough,
it is regular in and on the circle with centre } and radius }4-8.

We apply Hadamard’s three-circles theorem to the function

95(2) =f(z) ~_'g;pk('?')’

and the circles with centre } and radii $—3, ¢, -3, where
0<e<$d. If M,, M,, M, are the maximum moduli of ¢(z) on

these circles, then
5-_2_8_ 1 ]i@ 0; iZ_E 1
M g1—-255<_M 8 t2e _M g1—-28 1)

In order to prove that s, (2) > f(z) in a region including z=1,
it is sufficient to show that we can take e so small that M, -~ 0
when p;, — co. The idea of the proof is that, while M is sub-
stantially of the order (14-8)?¢, M; behaves like (1—38)%, and

Io;
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50, since g, is greater than p;,, the right-hand side of (1) is small
when p;, is large.
To every positive 7 (say with 5 < 43) corresponds a K such
that 2] < K(1—7)".
Hence, as k - 0, o
M, < lag 2%+ |ag 4 29 |+ ...

1—58\%
<K(1_’7) ,=0{(1-—3)ck} _ 0{(1-—5)(%)1%}.
. 1— 1—-3% l1—9 1—n

1—y
Also, if A is the maximum modulus of f(z) on the outer circle,

My < M+ |ag| ...+ @y, 2%
sl 2 (87 ol

7 1—7
Hence the right- hand 51de of (1) is

ofl6=2 =)
d—n 1—y

When ¢ - 0, 5 - 0, the expression in brackets tends to
(1—8)-+9Nog1+28)( ] |- §)~logl-25)

which is less than 1 if § is small enough; for its logarithm
~ —248% as § - 0, and so is negative for small §. Hence we
may take ¢ and 7 so small that the original expression is less
than 1; and the result then follows.

7.42. The occurrence of gaps in the series is not merely a
useful device for producing over-convergence. It has an essen-
tial connexion with it. This is shown by the following theorem,
" which is a sort of converse of the preceding one.

If a sequence s, (2) of partial sums of the series f(z) =3 a,z2",
with radius of convergence 1, is uniformly convergent in the neigh-
bourhood of a point on the unit circle, then

f@) =9@)+r(),
where the power series g(z) has an infinite number of gaps vy, i,
where g;. > (14-8)p;, and the radius of convergence of the power
series r(z) s greater than 1.
We shall not give the proof, which is more dlﬂicult than that
of the direct theorem.
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7.43. Hadamard’s gap theorem. .If, in the power series

f (=Y =n§0anzna

a, =0 except when n belongs to a sequence m; such that
Ny > (1), where & > 0, then the circle of convergence of the
series 15 a natural boundary of the function.

This is an almost immediate corollary of the theorem on over-
convergence. For, if f(z) were regular at any point of the circle,
the series would be over-convergent at that point, i.e. the

sequence -
Sy k(z ) = z anzn
n=1

would be convergent at a point outside the circle. But for a
series of the given form this sequence of partial sums is the
same as the whole sequence of partial sums. Hence over-con-
vergence is impossible, and consequently every point of the
circle of convergence is a singularity of f(z).

7.44. Mordell’s proof of the theorem.* This is a very
simple direct proof. Suppose that the radius of convergence is
1. Let z=aqwP-+bu?+l, where 0<a<<1l,a+b=1,and pisa
positive integer. Clearly |2| <1 if |w| < 1; and it is easily seen
that |z{ <1 if |w| <1, except that z=1if w=1. Let

$lw) =fl2) =3, a, (awd 4 bup+iy
= > a,(@"wPr~...4-bru®+n) = 3 b wm,
Then ¢(w) is regular for jw| < 1, except possibly at w=1. We
shall show that the radius of convergence uf the power series
for ¢(w) is 1, and hence that w =1 is a singularity of ¢(w).

We observe that, in the last expression but one for ¢(w), no

power of w occurs twice if

(o1 <Py,
et y)>1
Le. ])( g )>

throughout the series; and this is true'if p > 1/&. The expression
> b,w" is then obtained by simply omitting the brackets in the
previous expression.

- * Mordell (1).
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If the series for ¢(w) had a radius of convergence greater than
1, it would be convergent for a real w > 1, and therefore the
series for f(z) would be convergent for a real z > 1, which is
false. This proves the theorem.

There is still another proof,* depending on the criterion
of § 7.23.

The theorem of § 7.41 can be proved in a similar way.t Let
the series for f(z) satisfy the condition of § 7.41. Then ¢(w) can
have no singularity for |w| < 1 except possibly at w = 1.
Hence if f(z) is regular at z = 1, $(w) is regular at w = 1, and
so in |w| < 14-8 for some positive 3. Hence > b, w" converges

(@+1)p,
for |w| < 148, and in particular > * b, w™ converges for
n=0
. Px
|w] < 1+48. Hence Y a,z™ converges in a region of whichz =1

n=0
is an interior point.

7.5. Asymptotic behaviour near the circle of conver-
gence. If the coefficients in the power series satisfy a suffi-
ciently simple law as n-> o0, we can deduce an asymptotic
expression for the function f(z) as z approaches the circle of
convergence along a radius vector. The simplest case of this
process is given by the following theorem.

Let fl@)= goanxn, glx) = ibx

where a, = 0, b, > 0, and the series converge for 0 < x < 1 and
diverge for x = 1. If, as n - oo,

_ @, ~ Cb,, 1)
then as z — 1 f@) ~ Cg(x): @)
Given €, we can find NV such that

le,—Cb,| < eb, (n > N).

* See Landau, Ergebnisse, § 19,
1 Pointed out by Mr. M. M. Crum.
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Then 7
@)= Cate)| =| 3 (@,—Cb, )"

N
< 2. (an—0b )x"[-i— . (a,—Cb,)am
n= +1
N
<Z ]an—Obnl—}‘E 2 bnxn
n=0 n=N+1
N
< E la,—Cb,|+eg(z).

n

Having fixed N, we can, since g(z) - 00, choose & so that

§o|an—06nl < Gg(x) (x> 1-—-8)

Then fe)—Cg@)| < 2eg(x)  (a>1-8),
which proves the theorem.

The same result, however, holds under more general condi-
tions. Let the series converge for 0 < x < 1; let

8, =0y+0ay+...4a,, t, =bg+by+...4+b,,
and let s, and t, be positive, and 3 s, and > t, divergent, and let

s, ~ Ct,. (3)
Then (2) is still true.
Forasin §7.22, for0 <z <1

f(x) = (l—x)nzosnxn’ g(@) = (1—=) zotna‘-"',
= . =
and by the previous theorem
f: span~C i £
n=0 n=0

Hence the result.
In particular, if s, ~ Cn, then

f@: | ©

Examples. (i)Ifp<l,asz—>1
} 0

I~

2t T(1—p)
~ 1=z

n=1

Ln—p+1) .,
[We have (1—=)?- I‘(l—-p)z Tnt1) n

and we can use the lemma of § 1.87.]
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(ii) Show that if
(et 1BBE+D) ,

1 ﬁ
F(a,ﬁ,‘y, 1+ + 1.2. 7(y+1) +--~y
then, asz — 1, T\ T (e fmy) 1
yitleTpg—y
Fles s > 2) T(@I(B) (I—z)xtB—y
if a+B > y; and that
Fle, B atB,x) ~ a+‘?) lo -._1_.

7.51. The converse problem. It is easily seen that there
is no general converse of the above theorems; from the asymp-
totic behaviour of f(z) we cannoc deduce that of a,, or even of
s,. Consider, for example, the function

f@) =

- (T ~ 9 & e

— f (n1)(z2n—22n+1),

Here s,,,., = 0, while s,,, = m+1; hence s, oscillates infinitely,
though f(z) ~ /(1—z).

The coefficients in this example are, of course, not all positive;
and this is, in a sense, the cause of the failure of the converse
theorem. If we assume that all the coefficients are positive, we
can state a precise converse of the last result of the previous
section.

If a, >0 for all values of n, and as x - 1

. 1
f(x) = Z a,x" ~ 1“_‘_",
7n=0

x

then as n - o0 sn=2av I M.

This theorem is due to Hardy and Littlewood.* We shall
give an extremely elegant proof which has recently been ob-
tained by Karamata.f

7.52. In order to appreciate the point of the proof, it may
be well to see what can be proved by fairly obvious arguments.
In the first place

flx) > z ax > ans,

* Hardy and Littlewood (2). 1 Karamata (1).
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for all values of z and n. Taking z=-e"V", we obtam since

els, < - 4 4 < An,

l—z 1—eYn
say s, < A4yn. (1)
On the other hand, using (1), we have
@)= 1—2)3 S, ™
< (l—x)s Z a4+ A4,(1—z) i mxm
m=0 m=n

< 8,,+A1nx’b+- ]

—z
Taking #=e-A", we obtain, since f(x) > A/(1—z)> An/\ if
n > 2,
%1?' <s,+Ane?4 Ane
Hence, if A is sufficiently large,
8, > Agn. @)

What we have to show is that 4, and 4, can be replaced by
14¢ and 1—e respectively. The above argument is too crude
to do this, and the method actually used is far from being an
obvious one.

7.53. Karamata’s proof. The proof depends on the well-
known theorem of Weierstrass, that we can approximate uni-
formly to any continuous function by a sequence of polyno-
mials.* Let g(z) be continuous in (0,1), and € a given positive
number. Then there are polynomials p(z), P(z), such that

- pE@)<gle) < Plx), (1)

and  [{ge)—p@}dz<e, [{P@—g@}da<e (@)

This is obviously true if p(z) and P(z) differ by at most e from
g(x)—%e and g(x)+%e respectively.

If g(z) has a discontinuity of the first kind in the interval,
say at x=c, we can still construct polynomials satisfying (1)
and (2). Suppose, for example, that.g(c—0) << g(c+0). Let

* A proof is given in §13.33. For another proof see Goursat, Cours
d’ Analyse, t. 1, § 206.
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é(x) = g(z)+ e for z < c—38 and for x > ¢; and, forc—3 <z e,

let $(x) = max{l(z),g(x)+ e}, where [(z) is the linear function

of z such that l(c—38) = g(c—3)+3e, Uc)=g(c+0)+3e. Then

#(x) is continuous, and ¢(x) > g(x). It is easily seen that, if § is

small enough, a polynomial P(zx) which approximates suffi-

ciently closely to ¢(x) has the required properties. Similarly

we may construct p(z).

To prove the theorem of Hardy and Littlewood, we first

prove that - 1
lim(l—z) 3 @2 P@E") = f P(t) dt @3)
s x—>1 n=0

for any polynomial P(z). It is clearly sufficient to consider the

case P(x)=2%. Then the left-hand side is

0 X l_x . )
—_ tkn . T —k y
(1—2) 3 @ n = 3~ (A=) 3 0, (k42

1 1
' . k—-_i-—l = f xk dx,
and the result follows.

Next, we have - 1
lim(1—2) ¥ a,2"g(") = [ g(t) s &)

if g(t) is continuous, or has a discontinuity of the first kind. For
let p(x) and P(x) be polynomials satisfying (1) and (2). Then,
since g(z) < P(z), and the coefficients are positive,

li‘ﬁa-_x)éoanxng(xn) < Hm(I —d)ngoanx”P(x")
= f P(t)dt < f g(t) dt +e.
Making € - 0, it fo]lo:vs that '
: H(l—x)ngnanxnggx”) < f g(t) dt.
Similarly, arguing with p(z), we obtain

lim(1—2) 3 a,a"g(z") > [ g(¢) d,
n= <
and (4) follows.
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Now let
gy=0(0<t<ed), =1fi(et<<t<).
Then f g(t) dt = d—t= 1. (5)
0

i
1/e

Let z = e~YN, Then

. N
a,x"g(x™) = a,= > a, =38y
ngo " n<1/gg(1/:c) " ngo nT

and so, by (4) and (5), sy~ 1/(1—z) ~ N. This proves the
theorem. .
7.6. Abel’s theorem and its converse. In this section we

return to a subject already discussed in Chapter I. In §1.22
we proved Abel’s theorem for real power series: if the series

2
n=9y
conwerges to the sum s, then
f@)=3 a,z">s
n=0

as x— 1 through real values. In §1.23 we proved Tauber’s
theorem, that the converse deduction holds, provided that
a, =o(1/n). We shall now consider a number of generalizations
of these theorems.*

7.61. If

Ms

a, =3, (1)

n=0

then f@)="3 gz >s @)
n=0

as z - 1 along any path lying between two chords of the unit circle
which pass through z= 1.

- As in § 1.22, it is sufficient to show that the power series is
uniformly convergent, but now we must prove uniform con-
vergence in a region included between two chords through z =1,
and a sufficiently small circle with centre at z=1.

We have to adapt the argument used to prove Abel’s lemma
(§ 1.131) to the present conditions. Let

8, p = Ottty
* Landau, Ergebnisse, Ch, ITI, and Hardy and Littlewood (1), (2), (3), (4).
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so that |8, , <e (ny<n<p). Then
'S n+1 m
2 a-,,z" = 'Sn, nzn+ (sn, n+1_sn, n)z + '{_ ‘l" (S-n, m_sn, m-l)z
v=n .

=8y B2 A8y g (BT —2) -8, 2T

Hence for n = n,

'
2 a2

=0

< {”}f e —2 41+ e )

<e{l1— 3 [21+1)

1—2
=<t
The result now follows as in the previous case, provided that
[1—2]
1—le]

is bounded as z— 1 on the path considered. It is this that
makes it necessary to restrict the path, for this function can
be made large by taking z near to 1, but still nearer to the
circumference.
Suppose, then, that
l—z| <E1—f)  (k>1). @3)
This inequality is satisfied in a region bounded by the curve
[1—z| = k(1—[z]).
Putting 1—z = pe#, the equation becomes
. p=k—k|1—pe$|,
ie. (p—k)? = k(1 —2pcos d-+p?),
k2 cosp—Ek
B2—-1
This represents a curve with two branches through z=1, each
making an angle arccos(1/k) with the real axis. By choosing
k sufficiently large we can make the curve include any region

of the required type. Since (3) is satisfied inside the curve, the
theorem now follows.

1.e.

7.62. We can also obtain a similar extension of Tauber’s
theorem. .

If f(z) > s as z— 1 along a path satisfying the same conditions
as before, and a, = o(1/n), then 3 a, converges to the sum s.
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In view of the above analysis, the proof given in § 1.23 now

requires little modification. We have to prove that
N

8;—8,= 2 az"— > a,(1—z") >0,
n=0

n=N+1
where N =[1/(1—|z!)]. As before, if |na,| < € for n >N,

Sol = > na, 2 N-lelzl <= <

N+1
Now  [1—2*|=[(1=2)(1+2+...+2" )| < [1—z|n.
Hence, if 7.61 (3) is satisfied,

N A
1851 < 3 Ina,(1—-2)| < b1z Z ] %l < 2 mlel

and this tends to zero, by the lemma of § 1.23.- This proves the
theorem.

7.63. Tauber’s theorem for regular paths. It is not
possible to extend Abel’s theorem, at any rate in its obvious
form, to paths which touch the unit circle; for example, it is
known* that the series

> nbein  (0<a<l)

n=1

is convergent if b > 1—a; but, if b < 1—4a, the function

f)= Z nbetnzn

does not tend to a limit as z — 1 along an arc of a circle touching
the unit circle at z=1. '

On the other hand, we can obtain an extension of Tauber’s
theorem to paths which touch the circle, provided that they
are sufficiently regular. '

A path will be called ‘regular’ if it is defined by equations
x = x(t), y = y(t), where '(¢) and y’(t) are continuous and never
both 0, so that there is a definite tangent at each point.

If f(z) > s as z— 1 along a regular path inside the circle, and
a, = o(1/n), then > a, converges to the sum s.

We may suppose without loss of generality that s=0 Let

* See Hardy and Littlewood (3), p. 207.
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C be the path in question. Then the integral

[ ) dn,

taken along C, exists; and it is o(|]1—z]|) as z > 1. For, givene,
we have |f(w)] < e for w sufficiently near to lon C. Hence

% [ ftw) @ < o

where {(z) is the length of C from 2z to 1. But [(z) ~ |1—2] as
z - 1; for if ¢ =0 corresponds to z=1,

4
0 2 [ ey @ du > e OF -+ O

'() and y'(u) being continuous; and

=loro Ysyo.

1

Hence ff(-w) dw=o(|1—=z]). 1)

Now if z and 2" are points on C,

o0

ff(w) dw= 2 7—:_:-_’1-1 (/nl—zn ),

n=0
This series converges uniformly with respect to 2 for 2|1
(since a,, = o(1/n)). Hence, making 2’ > 1,

J.f(?«U) dw = z ﬁl (1—Z7"+1). )

Let ¥ =[1/|1—2[]. Then

1 N o
- ) AW = o _& __ynt+ly :
[fordo= 2+ 5 52 0= =Bt T

n=0

and 2= é o(;ié)zo(—lﬁ\)zo(ll-—zl). 3)

Also

1—ztil = (1—z)(1+24...+2")
= (1=2)(n+1)— (L—2)*{n4(n—Dz+... 42"~}
== (1—2)(n+1)+0(|1—2[*n?).
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3, —(l—z)Ean-FO(ll—dzEnla )

= (1—2)sy+o(|1—z[2N)

= (1—2)sy+o(|1—z]). | @)
From (1), (3), and (4) it follows that sy =o0(1), and this proves
the theorem.

7.64. Littlewood’s extension of Tauber’s theorem. We
now pass to an extension of quite a different kind. In all the
forms of Tauber’s theorem so far considered, the condition
a,=o0(1/n) has played an apparently esscntial ‘part. It was,
however, discovered by Littlewood that it can be replaced by
the more general condition @, = O(1/n). Here we shall restrict
ourselves for the sake of simplicity to the real axis, though it
is possible to prove the theorem for complex paths.

Hence

7.65. We use the following lemma:

If f(x) is a real function wath differentiul coeﬁicz,enta of the first
fwo orders for 0 <Lz <1, and, as z —> 1,

f@y=o(),  f'@=0]
then fx)= O(ii_:c)'
Let 2’ = z+8(1—=), where 0 <8 << }. Then
f@') = f(x)+3(1—z)f () +18%(1—2)* " (€),
where 2 < ¢ <2’. Hence

(1—a)f ) =T TD 151 —appre

of L)
=7/

" 1 ] 1 1 ]
since 3 =0{._____..‘.\ =0{___,.6}=0{ g
0= =) = Y\ ~ %l

By first choosing § sufficiently small, and then z sufficiently

near to 1, the right-hand side of (1) can be made as small as we
please. This proves the lemma.

7.66. Littlewood’s theorem. Iff(z)=> a,2" >sasz—>1,
and a,, = O(1/n), then 3 a, converges to the sum s.
The proof * depends on the theorem of § 7.51, and in proving
* The original proof, Littlewood (3), was different.
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that theorem we have really overcome the most serious diffi-
culties. We may obviously suppose, without loss of generality,
that the limit s is zero. Then

f (x) =ﬂ§oanxn =0 (1)
as z - 1. Also, since a, = O(1/n),
" —_ < — -2 — > — n—2{ 1
@)= Entn— -+ = 0{ S -t} = Oy o).
Hence, by the lemma,

fx)= z na,x" 1 = 0(1_—1-—95) .

n=

‘Suppose that |na,|<c. Then
P (s SR L
c l—z ¢ l—z

n=1
But the coefficients in this series are all positive, and so, by the

theorem of § 7.51, n
va
R
c
v=1

or iva,,:o(n). (1)

This is an asymptotic formula for a finite sum, and so is a
considerable step in the right direction. To get exactly the
required result, still another argument is required.

Lét w, denote the left-hand side of (1) if > 0, and let w, = 0.

Then o +1
Wy —Wy—y o — A
flw)—ay= 2 = > w(5-25)

n=1
_z {:v"———x"“*l x’fn, }
=] n+1 " n(n+1)

w )
— 1__ n n n 7
( x)g;n—{—lx +Zn—~——(n+l)x
Since w, =o(n), the first term on the right is o(1) as z - 1.
Hence, since f(x) - 0,

i Yn " > —a,
n(n+1) o

n=1
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But w,/{n(n+1)}=o0(1/r), and so, by the ordinary form of

Tauber’s theorem,
w'n

b D)
The left-hand side is

o
_h w, | = —
S 2 i)

w,—W w y
= lim { e }= lim Y a
N—>w z N+1 N—>x ngl "

and the theorem is therefore proved.

7.7. Partial sums of a power series.* The study of the
partial sums of a power series is facilitated by the use of the
formulae of the theory of Fourier series. We shall use some of
these formulae, and quote them from Chapter XIIT; but in each
case where they are used here the proof is an immediate con-
sequence of uniform convergence.

Let fey=3az  (d<1),
and 8,(2) = ao-l—alz-{—...-i—anz”.
Let 1—g2
, 2,
k(r,0) = 2(1—2rcosf+1%) = }4rcosf + r2cos 260+-...
_ 1—7r2—2ym+lcos(n-+1)f—r cos 6}
and  ky(r,6) = 3(1—2r 008 6+77)
= }-+rcosf+...4+rmcosnd.
Then

s freif) =L f f(peﬂﬂ-@)k( ) 0<r<p<D. M

This may be proved directly by term-by-term integration. It
is a case of Parseval’s formula (§ 13.54).
Also, by Dirichlet’s integral (§ 13.2),

1 [ sin(n+3)6—9)
k,(r,0) = j m k(r, $) d. 2)

* Landau (2), (3), (4), and Ergebnisse, Ch. I.
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‘We can thus express s, as & repeated integral involving f and £,

o F o s D@ (7

)= o | o) a8 [ ST o(Cy) s @
2m2 Ld—
= J Tami—h

We consider also the arithmetic means of the partial sums,

0a(2) = {80(2) +81(2) - Sna (@} /-

By, o)=L [foe K () 26 @
1 n—1
where K, (r,0)= - Z; k(r,6);
and, by Fejér’s integral § 13.31),
2m
1 (sinn(0—¢),
-K'n.(rs 9) - onar j‘ sing%?(a_¢) L(T, 4)) dd" (5)

7.71. Bounded power series. Suppose now that f(z) is
bounded in the unit circle.

If 1f@)| < M for 2| < 1, then |o,(2)| < M for all values of n
and |2 < 1; and, conversely, if |o,(z)| < M for all n and |z| <1,
then |f(z)| < M.

1t is clear from the above formulae that k(r,0) and K,(r,0)
are positive for r<1. Hence, if |f(2)| <M, it follows from
(4) that

loalre®)| <~ TMK,,. (—Q qs) 4.

But the right-hand side is what o, reduces to in the case
fz) =M, viz. M. This proves the first part.

Again s,(z), and so also o,(2), tends to f(z) as n — 0. The
second part follows at once from this.

7 72. The corresponding results for 8,(2) are not so simple.
This is due to the fact that k,, unlike K, is not always positive.
It is nob necessarily true that |s,(2)] < M for all values of n
and 2. In fact it is known* that the upper bound of |s,(2)], for
all functions f(z) such that |f2)| < M, tends to infinity with 7.
We have, however, the following result:

* Landau, Ergebnisse, § 2.



PARTIAL SUMS 237
There s an absolute constant A such that
s, (2)] < AM logn

for all functions f(z) such that |f(z)| < M.
If |[f)| <M, by § 7.7 (3),

i <25 o) | e

The inner integral is equal to
1/(n+1)

J‘ism(n—}- 1d <2J‘ (n—[—“,)d 1y J‘ -(lcc
J | J sin

sin 3« Lo sin 3o

t/(n+1)
— 0(1)+0(logn);
and, putting n = 0in 7.7 (2),

e

This proves the theorem.

7.73. 1t is easily seen that s,(z) is bounded in a circle of
radius 7' less than 1; for &,(r,6) is obviously bounded in such
a circle. The upper bound for s,(z) depends on M and on 7.
What is not so obvious is that we can choose 7/, independent
of M, so that the upper bound is exactly M.

If 1f@)| < M, then |s,(z)] < M for 2] < 3.*

It is clear that
1—r2—2rm+1(14-7)
= >
kn(r,¢) = SA—1)
and if r < &, #» > 1, the numerator is not less than
1—1—2.3(1+3) =o.

Hence k,(r,$) >0 for r< }, and we can now proceed as in
§7.71. We have

lsn(re®)] < f Mk( ) (r<3p).

and the right-hand 51de is what s,(z) reduces to when f(z) = M,
viz. M. This proves the theorem. '

* Fejér (5).
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The number } is the greatest number with this property.
For consider the function

fa=="% (0<a<l).

Then |f(e¥f)] =1, so that |f(z)| <1 for |2{| < 1. Also
8 (2) =a-+(@*—1),
1)\ _a*+1
81(.—55) T T2 >1,

and the point —}/a where s;(2) > 1 is arbitrarily near to |z| = },
since @ is arbitrarily near to 1.

7.8. The zeros of partial sums.* Let

f2) = ap+az+... (ay #0),
be a power series with radius of convergence 1, and let
8,(2) = agt+ae+...+a,2"

Then s,(z), being a polynomial of degree n, has n zeros.

If f(z) has zeros inside the circle of convergence, then by
Hurwitz’s theorem (§ 3.45) every such zero is a limit-point of

zeros of the polynomials s,(z).
Now consider the simplest function of the above type,

~_ ' _ 2
f(z)—l_:;— 1424224,

1—zn+l

Here 8,(2)=1+424+...42"=

1—z

Hence s,(2) has zeros distributed evenly round the circle, and
it is plain that every point of the circle is a limit-point of
such zeros.

It is somewhat remarkable that the general case is so nearly
like this simple case. This was discovered by Jentzsch, who
proved that, for every power series, every point of the circle of
convergence 18 a limit-point of zeros of partial sums.

We shall deduce this from some quite simple ideas depend.mg
on the theory of equations.

Let & be a given positive number, # a number such that

' 1%]
l2a| > TERYY ®

* Jentzsch (1).
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This is true for arbitrarily large values of n, or the radius of
convergence would be greater than 1.
Let 2z, 2s,..., 2, be the zeros of the corresponding s,(z). Then
' 2202, = (—1)"ay/a,
and 80 [2129...2, | < (1-4-8)".
Let 24,..., 2, be the zeros of s,(z) in the circle 2] <1—5. By

Hurwitz’s theorem (§ 3.45), % is constant for sufficiently large

values of n, and
lzlz2"‘zk[ >Ka

where K depends on § only.
Let 2,,_p11,---> 2, be the zeros for which [z| > 1+e. Then

24292, < (14-8)» )
212 g1 Rp—p  K(L—B8)"P

n{log(1+8)—log(1—38)}—log K <Am$—logK
log(14€)—log(1—3) Ae
By choosmg first e, then 8, and then %, we can make p/n
arbitrarily small.
Hence, for given 9, €, and =, the number of zeros in the circle
|2| < 14-¢ is greater than n(l—x), if n is a suﬁczently large
integer for which (1) 18 true.

(I+er< *zn—p-i-l"'znl =

Hence

7.81. Tt is clear from the above result that the zeros of partial
sums have at least one limit-point on the circle of convergence.
We can obtain a little more information by considering the

sum n
No=-4,
Yoy B @

Putting z, = r,e", we have

i cosf, _ ——R(%). )

v=1
If 0,> }nta, or §,<—}wr—a, where >0, for every v, the
left-hand side is less than
—n(l—n)sine
14-¢
by the above theorem. This is inconsistent with (1), if » is large
enough. Hence there must be zeros in any angle including
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(—%m,%m7). Similarly there must be zeros in any angle greater
than a.

To prove Jentzsch’s theorem we have to replace such an
angle by an arbitrarily small one. This is done by using a con-
formal transformation which magnifies the effect of the zeros
in the immediate neighbourhood of the point considered.

"7.82. Let

we— coSA—z zz__zg_—b:gs_}\_ ()
zcosA—1’ 1-4+wcosA’

where 0 <A < 3, and where f(cosA) %= 0. This transforms the
unit circle in the z-plane into the unit circle in the w-plane.
The point z = 1 becomes w = 1. The point z = ¢** becomes
1 (e-i,\__ ez:)\)
and similarly z= e~ becomes w=e=¥@-D, Thus, if z=re?,
w=pe'$, the arc —A<< O <A of the unit circle is transformed
into the arc —7+A<< p <m—A.

The zeros z, of s,(z) are transformed into the zeros w, = p,eié,
of the function

w-cosA )

(14+wcosd)s, (m
= 8, (cosA)+w{n cos s,(cosA)+sin®A s, (cosA)}+...
- b0+b1w+...,
say; and corresponding to § 7.81 (1) we have

2 99—%’-53 = —R(ZO) = —n cosA — sinA R{ Eigzg} )

The last term tends to a limit as » <> o, since s,,(cosA) — f(cosA),
which we have supposed is not 0, and s (cos)) - f'(cosA). Hence

w2 G‘M — ez(w——)\)

as n— o
z cos¢,,~ —ncosA. 3)
— Py :
Suppose now that the region of the w-plane
l—e<p<lte —(mAta)<P<m—Ata, . (4)

where 0 <e<< 1, 0 < a <A, is free from zeros. Pub
n
cos ¢,
Db s 4. S 43 =5 45,43, (

= Py 8,S1—e¢ 1-e<p,<l+e p,=>1l+e

Since p = 1 corresponds to r = 1, it follows from considerations
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of continuity that the circles p = 1—e¢, p = 14-€ correspond to
curves (in fact circles) inside and outside 7 =1 respectively,
which can be made as near to it as we please by taking e small
enough.

The number of terms in Y is less than K = K(§,¢,1); and
p, has a positive lower bound, since the zeros of s,(cos]d) in
question tend to zeros of f(cos2). Hence

2<K. (6)

The number of terms in Y is, by § 7.8, less than yn, where

n = 7(n,8,¢,A) tends to 0 as n — oo through a certain sequence
of values. Hence

3, < ()

8 T 14€
In 3, the number of terms exceeds n(l—=)—K, and by
hypothesis cos¢, < —cos(A—a) for each term of this sum.

Hence 5 < _nl—g)—K
2 1+-€
From (5), (8), (7), (8) it follows that

n
i 1 cosd, < _cos(A—oz).
n—s0 N~ p, 1+4e

yv—1

cos(A—a). (8)

This contradicts (3) if « > 0 and ¢ is small enough. There are
therefore zeros in the region (4), and hence, since € and o may
be as small as we please, in any region containing the arc p =1,
—m+A<¢ <mw—A. Hence, in the z-plane, there are zeros in
‘any region containing the arc r =1, —A <8 <A. Finally, since
A may be as small as we please, it follows that z=1 is a limit-
point of zeros. Similarly every point on the unit circle is a
limit-point of zeros.

MISCELLANEOUS EXAMPLES
1. If |a,/a,+,] = R, then the radius of convergence of 3 a2" is R..

o) = i oGl

where ¢ > 1, then 3, a,2" converges absolutely everywhere on its circle
of convergence. :
3. If a,/a,; — 1, then

2. If In

nye G2"  2—1 _

uniformly for |z] > 148 > 1, Hence show that all the limit-points of

the zeros of partial sums are inside or on the unit circle. [S. Izumi (1).]
3730
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4. Show that as z — 1
od 1 ar
I~~ =
DS 2«/ (1—x)’

and that, as z — e¥m/¢ along the radius vector,

q
Sl S

5. If a, ~ logn, then, as x — 1,
1

n — —
nzua,‘x ~ il
1
[The right-hand side is Z (1+ -; ot ﬁ)x]
6. Ifa,~ l/iogn, then, as z — 1,
o
25 e =a)}

[If 3, denotes a sum over the range ep/log(1/x) < n < e(p-+1)/log(1/z),
then

1

xn - ee” :Pi - te.]
» logn ~ log(1/z)log{1/log(1/=)}* °

7. Show that if a, > 0, and

1
flz) = Z @, z" (1 ==’
then 8 ~;l;n.2
a,xr® 1
[We have filx) = ff(t)dt Zn+1 -2
n=0
‘n
Hence Z‘);}—v‘i ~n,
o

and the result then follows by partial summation.]
8. Generally, if a, > 0, and f(z) ~ (1—z)~%, where « > 1, then

n«
, ™~ Tatl)
[We have
. < Ttl) . X et
fnz-:l(“') I‘(oz l)f(x t 2f(t) dt = nz nr(n+a)w+ INZIZ&-:]-.’

and, on the other ha.nd
Jo—s(w) ~ I,(a y f (x—2)%~2(1—2)~x ds

21

‘T()(1—2) T()(l—z)
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n
a,
Hence Z v_a“:i - f‘@ s
v=1
and the result now follows without difficulty.]

9. If f(z) is regular in a region including the origin, and f(0) = 1,

then f(2) can be expanded in the form
J2) = (1+az)(1 +nga)(1+a3z3)
for sufficiently small values of z.

[Ritt (1): Assuming an expansion of the above form, we write
F(@)[f(z) = cy+c5z+..., and determine the numbers g, in succession by
equating coefficients in the equation
-]

M.Z”_l
C+cpzten = l—{-—a;z_ﬂ'

n=1

I p, _ma,x]a,,]llv we deduce from the recurrence relation that

pr< np,{,,—l—] ¢,|- Hence py, is bounded, and the process can be justified.]

10. Show that the circle of convergence of the above product is the
same as that of the series 3 a,2”, but that the power series for f(z) may
have a larger circle of convergence.

11. If each of the series
o
S a2, > b, > abe2"
n=0 n=0 n=0
has a radius of convergence equal to 1, then so have the series

S a b2z, > ab,zn.
n=0

n=0

12. If each of the series
f@) =3az, 9@ =3bz, F) =3abz
n=0 n=0 n=0

has a radius of convergence equal to 1, if f(z) is regular on its circle of
convergence except at z =1, and b, > 0 for all values of n, then F(z)
has a singularity at z = 1.

[Bohnenblust (1): the series

Be) = 3 o)
n=0

has the radius of convergence 1, and so by § 7.21 has a singularity at
z = 1. By Hadamard’s multiplication theorem (§ 4.6) the singularities
of ¢(z) are products of those of F(z) and of

f(z) = i dnzn'

Thus 1 = of, where « is & singularity of F(z), B of f(z); and B must be
1. Hence x = 1.]
- R2
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13. If f(z) = 3 u,z" is regular on its circle of convergence except at
24 then every series which consists of a selection of tef'ms fm.m S a,zn,
and which has the same radius of convergence, has a singularity at z;

14. Show that the theorem of § 7.21 is still true if the coefficients a,
are complex, provided that |arga,| < « < {7 for all values of n.
[We have |a,] < scea Ra,.]

15. The function Z f__

is continuous in and on the unit circle; but every point of the cirele is
a singularity.

16. 1f f(z) is bounded in the unit circle, then ¥ |a,|* is convergent.
[See § 2.5.]

The following exumples are on the border-line between theory of power
series and theory of real functions. 1t scens most convenient to insert

them here, but some of them assuine the theory of mean convergence given.
in § 12.5.

17. If 3 |a,|? is convergent, then

L f Fe®) — ey 8 = 3 [ayrr— .
= n=0

Hence, show that, as r —> 1, f(re"a) converges in mean to a limit-function
F(8) of the class L0, 27).

18. If f(z) = u+iv, F(f) = U+iV in the previous example, show
that Poisson’s formulae

27

1 1—r2
rb =5 { =g L@
0

27 .
. 1 2rsin(f0—d¢) ‘
?.(7. 0)"'1(0) Gl §-7—T "( m:7'2 U(qS) ([¢
0
hold for r < 1.

19. Show that, in the above examples, u(r, 8) = U(f) as r = | for
every value of § in the Lebesgue set of U(6). Deduce that f(rei®) - F(§)
as 7 — 1 for almost all values of 6. :

[The analysis is similar to that of § 13.34.]

20. Show that a bounded analytic function tend% to a limit radially at
almost all points of its circle of convergence.

21. If U(6) » 0 for all values of §, then u(r, 8) > 0 for all values of
r and 6.
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22. If f(z) is regular and bounded for || < 1, and f(z) >0 asr—>1
throughout an interval of values of §, then f(z) is identically zero.
[If 0 < 8 < 2m/p is part of the interval, consider the function
9(2) = J(2) f(ze*7I?)... f(ze2P-Dim[p) ]
23. More generally, if f(z) is bounded and tends to zero radially for
values of f in a set of positive measure, then f(z) is identically zero.
[See Bieberbach, ii, p. 156. Let E be the set where f(z) — 0, and let
m(E) =p > 0. Let uy(f) =A/p in E, and = —A/(27r—p) in CE. Let
g(z) be the corresponding analytic function defined by the formulae of
ex. 18. Then g(0) = 0. Let h(z) = e®, so that ~(0) = 1. Then
1 dz 1 dz
= f(0)r(0) = —— h(z) — = — o
70) =F(OR(0) = o f Fehiz) - LEf(z)h(z) Z,

z 2
~ 1F(0)] < Ae-Aem—,
Since A may be as large as we please, f(0) = 0. Applying the same
argument to f(z)/z, f'(0) = 0, ete.]
24. If U(#) is any function integrable in the Lebesgue sense, and
2w

o) == f L= paras (bl <,

I R——

then f(z) tends to a limit as » — 1 for almost all values of 6.

[Plessner (1): We may suppose without loss of generality that
U(¢) > 0. Then R{f(z)} > 0. Hence the function 1/{1-+f(z)} is bounded
in the unit circle, and so tends to a limit for almost all values of f. This
limit is different from zero almost everywhere.]



CHAPTER VIII
INTEGRAL FUNCTIONS

8.1. Factorization of integral functions. An integral
function is an analytic function which has no singularities
except at infinity. The simplest such functions are polynomials.
A polynomial f(z) which has zeros at the points z,, 2,,..., 2, can
be factorized in the form

fa=fo1-Z)(1-Z). (1_3)

The zeros of integral functions in general are equally im-
portant. An integral function which is not a polynomial may
have an infinity of zeros z,; and the product

[1(-)
zn
taken over these zeros may be divergent. So we cannot always
factorize an integral function in the same way as a polynomial,
and we have to consider less simple factors than 1—z/z,.

The expressions
2 ur

B, 0)=1—u,  Bup)=(1-we** 2% p=1,2,.)
are called primary factors. Each primary factor vanishes when
u=1; but the behaviour of E(u,p) as « -0 depends on p.
For [u| <1, g
NG T
Hence, if k> 1, and |u| <1/k,
llog E(u, p)| < [u[PH+- [u[P+24-...

<wPaflqgt gt =
It is this inequality which determines the convergence of a pro-
duct of primary factors.

8.11. The theorem of Weierstrass. If f(z) is an integral
function, what can we say about its zeros ?

Since f(z) is analytic except at infinity, the zeros can have no
limit-point except at infinity. In general, this is all that we can
say. This follows from the following theorem of Weierstrass.

Gliven any sequence of numbers 2, z,,... whose sole limiting-point
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s at mﬁmt y, there is an integral function with zeros at these points,
and these points only.

We may suppose the zeros arranged so that 2] < J=ol <
Let |2,| =17,, and let p;, p,,... be a sequence of positive integers

such that the series "
z 7\P»
7,

n=1 ' "
is convergent for all values of ». It is always possible to find
such a sequence; for r, - oo, since otherwise the zeros would
have a limiting-point other than infinity; and we may take
P, ="n, since A1
(7)<

for r, > 2r, and the series is therefore convergent.

Let fo=TT5(22m1). m

n=1 n

“This function has the required property; for, if |z,| > 2|z|,
7 \Pn

tog E(2,p,—1)| <2(Z)" @)
rn

_hence the series z log £ ( » P )
2
leal>2R
is uniformly convergent for |z| < R, and hence* sois the product

n

1

oA

H E (zl s Pp— 1) .
leal>2R n

Hence f(2) is regular for |z| < R, and its only zeros in this region

are those of 2
1= (;’f’n‘l)’
lzal<2R n

i.e. the points 2,, 2,,.... Since R may be as large as we please,
this proves the theorem.

The function f(z) is, of course, not- uniquely de’oermmed by
the zeros, since we have a wide choice of the numbers p,,.

8.12. It is possible to factorize any given integral function
in the fo]lowmg way.
If f(2) is an integral function, and f( 0) # 0, then

f(2) =f(0) P(z) e”®

* See § 1.43, end.
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where P(z) is a product of primary factors, and g(z) is an integral

Sunction.
We form P(z) as in the above theorem from the zeros of
f(z). Let _fe) P

Then ¢(z) is an integral function, since the poles of one term
are cancelled by those of the other. Hence also

9(e) = [ $(t) di =1og f(z)—log f(0)—log P(2)

is an integral function, and the result stated follows on taking
exponentials. :

If f(z) has a zero of order p at z=0, a factor z? has to be
inserted. »

This factorization is not unique.

8.2. Functions of finite order. The general factorization
theorem is not precise enough to be of much use; in general the
numbers p, increase indefinitely with n, and we can say little
about the function g(z). There is, however, one case in which
we can put the theorem into a perfectly definite form, that of
functions of finite order.

An integral function f(2) is said to be of finite order if there
is a positive number 4 such-that, as [2| =r > o0, '

1) = 0(e).
The lower bound p of numbers 4 for which this is true is called
the order of the function. Thus, if f(z) is of order p,

_ fz)=0(e*™)
for every positive value of e, but not for any negative value.
In this, and similar statements throughout the chapter, e is
thought of as taking arbitrarily small values, and the constant
implied in the O depends in general on e. If it were mdependent
of ¢, we could replace € by 0 in the formula.

Funections of finite order are, after polynomials, the simplest
integral functions. A polynomial is of order zero; some of the
properties of functions of small order are similar to those of
polynomials.

Many familiar functions are easily seen to be of finite order;
¢ is of order 1; so are sin z and cos z; cos vz is an integral function
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of order 1; ¢* is an integral function of order k,if k is a positive
integer (if k is not an integer, it is not an integral function).
The function e is of infinite order.

In what follows we shall suppose generally that.f(0) is not 0.
This simplifies the analysis a little, and division by a factor z*
does not affect the order.

8.21. The function n(r). Let n(r) denote the number of
Zeros 2z, 2p... Of an integral function f(z) for which |z,| <.
Then n(r) is a non-decreasing function of » which is constant
in intervals; it is zero for r < |2,, if f(0) is not zero.

This function is, as we have seen in § 3.61, connected with
f(z) by means of Jensen’s formula. In {fact

2T
f”ff) de = _I_J lg| fire")| 48 —log! ). (1)
0
If f(z) is an integral function, this holds for all values of r.
If f(2) is of order p, then n(r) = O(rr+<). For
log|f(re®®)| < Kre+,
K depending on.e only. Hence, by (1),

2r
j f’%gc-) dx < Krp+e, 2

. - 5 j .
‘But, since n(r) is non-decreasmg,
2r

J‘n(_x) dm>n(r)f = n(r)lo

r
2r

Hence n(r) < lgir—é f (@) dx < Krete
by (2).

We may thus say, roughly, that the higher the order of a
function is, the more zeros it may have in a given region.

8.22. If r,, 7,,... are the moduli of the zeros of f(z), then the
series Y 1% 1§ convergent if o> p.
Let B be a number between o and p. Then =(r) < ArB.

Putting r =r,,, this gives
n < Ar.
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Hence oo < An—olf,
and the result follows.

The lower bound of positive numbers « for which Y r;¢ is
convergent is called the exponent of convergence of the zeros, and
is denoted by p;. What we have just proved is that p; <p. We
may have p, < p; for example, if f(z) = €%, p= 1; but there are
no zeros, so that p; = 0.

Notice that p, = 0 for any function with a finite number of
zeros; thus p, > 0 implies that there are an infinity of zeros.

8.23. Canonical products. An important consequence of
the above theorem is that, if f(z) is of finite order, then there
is an integer p, independent of 7, such that the product

[12(Z) (1)
n=1 n
is convergent for all values of z; for by 8.11 (1), with p, = p+1,
this product is convergent if

r\ep+l ' 2)

2(%) .

is convergent;* and this is true for all values of 7 if p41>p,,
and so it is certainly true if p+1> p.

If p is the smallest integer for which (2) is convergent, the
product (1) is called the canonical product formed with the zeros
of f(z); and p is called its genus.

If p, is not an integer, then p =[p,]; if p, is an integer, p=p,
if 3 77 is divergent, while p=p,—1 if it is convergent. In

ey case p<n<s

-8.24. Hadamard’s factorization theorem. If f(2) is an
integral function of order p, with zeros 2, 2,,... (f(0) % 0), then
f(z) = e%@P(2),
where P(z) is the canonical product formed with the zeros of f(z),
and Q(z) is a polynomial of degree not greater than p.

We can now take the P(z) of § 8.12 to be the canonical pro-
duct. It follows from the factorization theorem of § 8.12 that
there is an expression for f(z) in the above form, in which Q(z)
is an integral function. What we have to prove is that in this
case @(z) is a polynomial.

* Compare § 1.43, ex. (vii).
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Let v =[p], so that p <v. Taking logarithms and differen-
tiating v+ 1 times, we obtain

(@) ) - oo 2 2

To prove that ¢(z) is a polynomial of degree v-at most, we have
to prove that Q@+(z) = 0.

Let on) =TE T (1_.3)‘1.

f(O) IZ”IQR z‘l&
Since [1—=z/z,| > 1 for |2| =2R, |z,| < R, we have
92| < [fR)/f(0)] = O(eR*™) (1)

for |z| =2R. Since gx(2) is an integral function, this holds for
|z] < 2R also.

Let hp(z) = log gp(2), the logarithm being determined so that
hg(0) = 0. Then hg(z) is regular for [z| < R, and, by (1),

Rihg(2)} < KRPte. )
Hence, by § 5.51
v+2
()| < v+ (V+1)!RKRP+€

T (R—ryt?
for |2| =7 < R; and for |z| = }R this gives
BEt(z) = O(Rp+e—v-1), 3)
Hence QUHI(z) = A+ (2) 4! 1, -
12 l>R( )

= OB +0( 3 [2l)

for |z|=%R, and so also for |z| <1R. The first term on the
right tends to 0 as B — oo if € is small enough, since v+1 > p;
and the second term tends to 0 since > |z,|™~! is convergent.
Since the left-hand side is independent of R it must be zero,
and the theorem follows.*

8.25. The order of a canonical product is equal to the exponent
of convergence of its zeros.

We know that, for any function, p; <p. Hence we have to
prove that, for a canonical product P(z), p <p,. Let ry, 7,,...

* Hadamard (2). This proof is due to Landau (5). For an alternative proof
see § 8.72. .
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be the moduli of the zeros, and k a constant greater than unity.

Let
(ze)| 2,

log|P(z)| = 2 log
ra>kr

ra<kr

(2
seoaes
In 3, we use the inequality 8.11 (2), and obtain

5o S0t 34

m>kr ra>kr n
I p=p—1, this is O(P+l) = O(rP). Otherwise p;+e<p+1
if ¢ is small enough, and then
yp ¥l 2 7«;19—1=,-p+1 z 7~£1+E-p—1¢;m—e
ra>kr mokr
< ppri(fr)pe Pl Y rohme = O(rprte).
Againin Y we have terms involving E(u,p), where |u| > 1 [k,
so that
P
tog B, )] <Log(1-+ )+l .+ 5 < Kl
where K depends on & only. Hence

< Q(ﬂ’ S r;l’) = 0(7*1’

—Dp—p1—€
2 ¢7I:1+€ prnpz )

ra<kr ra<kr

= O{rp(kr)91+€—p 2 fr;Px—E} = O(r~*e).
Hence log|P(z)| < O(rerte),
and the result follows. '

8.26. If p is not an infeger, py=p-

We have in.any case p; << p- Suppose that p; < p. Then P(z)
is of order py, i.e. of order less than p. Also, if @(z) is of degree
q, €9 is of order ¢; and ¢ < p, and in this case ¢ <p, since q is
an integer and p is not. Hence f(z) is the product of two func-
tions, each of order less than p. Hence f(z) is of order less than
p, which gives a contradiction. Hence p;=p. -

In particular, a function of non-integral order must have an
infinity of zeros. In fact, if the order is not an integer, the
funetion is dominated by the canonical product P(2); whereas,
if the order is an integer, P(z) may reduce to a polynomial or
a constant, and the order then depends entirely on the factor e,

In any case, since P(z) is of order p,, and €9 of order ¢,

we have
P= max(q, Pl)-
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8.27. Genus. The genus of the integral function f(z) is the
greater of the two integers p and ¢, and is therefore an integer.

Since p < p and ¢ < p, the genus does not exceed the order.
The actual determination of the genus of a given function is
sometimes not easy.

Example. Prove that the genus is not less than p—1.

8.3. The coefficients in the expansion of a function of
finite order. A mecessary and sufficient condition that

=3 az (1)
n=0
should be an integral function of finite order p is that
Jim J08(1/la,]) 1

e nlogn  p’
The argument depends on the fact that > |a,2"| does not
differ very much from its greatest term, and that |f(z)| lies
between the two. This is further illustrated by the example

which follows.

o lim 1281/ 12)
(i) Let I = Togn nlogn —

where p is 0, positive, or infinite. Then, for every positive e,

log(1/la,|) > (i—e)nlogn  (n>ny),
ie. @, | < n—me—e),
If p > 0, it follows that (1) converges for all values of 2, so that
f(2) is an integral function. Also, if  is finite,

If@)| < drot 3 -0 (r>1).

"nu+1

Let Y, denote the part of the last series for which 7 < (2r)#i-e
>, the remainder. Then in 3

7 < exp{(2r)r—¢ e log 7},
so that
2. < exp{(2r)f*-€log 7} S n-2e-9 < K exp{(2r) #—elog r}
In 3, ra~#=9 < 4, so that
: 2, <Z@Er<L

Hence fe) <K exp{(2r)ﬁ73-—€log 7},
ie. p<1/(u—e). Making e—>0, p<<1/u. In the case pu=o0,
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the argument, with an arbitrarily large number instead of p,
shows that p=0.
On the other hand, given e, there is a sequence of values of

n for which log(1/la,)) < (p+e)nlogn,
o] > 77
ie. [aplr > g,

Taking r = (2r)**5, this gives
1
@, |rm > 2ren = exp{%(p-l— ¢)log 2.r#+€}.
Since by Cauchy’s inequality M(r) = |a, |, it follows that, for
a sequence of values of r tending to infinity,
M(r) > exp{dri/e-+o}.

Hence p > 1/(p-+e), and, making € >0, p=>1/p. I p=0, the
argument shows that f(z) is of infinite order.

(i) Let f(z) be 2 function of finite order p. Then @, >0, 50

" that p, defined as before, is not negative. The argument then
shows that p=1/p. :
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8.4. Examples. (i) Prove that the order of the function

o
. z 2"
Nx
= (n!)
is 1/a.

[We may use the above theorem, or proceed more directly as follows.
Suppose z real and positive. The terms of the series increase until » is
approximately zt=, and then decrease. Hence, if z = n*, we get a’
maximum term

nre nne enc eu'll @
pe— = =
(nt)  (nrtie=mginde  nle(gipd)e  2H(gig)
Sinee | f(z)] is greater than this term, its order is at least 1 /.
On the other hand, |f( z)] < f([z]), and if z is real

fz) = (n,)u + Z o

n=0
N

Joyar (n')‘” Zt {(N+ l)l Nn—zv e
zN+1
{(N+1)}x(1—2z/N=)’
provided that N* > z. Taking N = [(22)4/%], we obtain
f(z) O(zN O{z(‘k)”“} = ( zlla+e)

so that the order does not exceed 1 Ja. Hence p =1 /cx (See Hardy’s
Orders of Infinity, ed. 1, p. 55.)]

(ii) Discuss in a similar way the function

-]

< Az¥ 4

zn

nan

(iii) Tf A # 0, and p(z) is & polynomial, e¥—p(z) has an infinity of
2eT0S. ' ’

[If not, e —p(z) = %+ P(z), where P(z) is a polynomial. By com-
paring rates of increase in various directions we find that ¢ = A, then
€M = rational function.] ‘

(iv) If f(z) is of order p, and g(z) of order p’ < p, and the zeros of
g(z) are all zeros of f(z), then f(2)/g(z) is of order p at most.

[For f(z) = Py(2)e%®, g(z) = Py(2)e%), and P,/P, is either the canonical
product formed with the zeros of f,/f,, or this product multiplied by an
exponential factor of order not exceeding p. Hence the order of F,/P,
does not exceed p.]

(v) cosz and sinz are of order 1; the product formulae (§ 3.23) are
cases of Hadamard’s theorem.

(vi) 1/T'(z) is of order 1; deduce the product formuls (§ 4.41) from
Hadamard’s theorem.
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[With the notation of § 4.41, f(1—2) = —2¢7/T’(2), and

) = O{e”f’f(l-i- [ e dt)} - O{e"!=1<1zl+1>l=l+1}.]
N 1 :

(vii) &) = 3s(s—1)m~¥T(3s){(s) is an integral function with p = 1,
[

[To prove that p < 1, use § 4.43 (3) and ex. (iv); and p > 1 since
log {(s) ~ 2, log é(s) ~ }slogs as 8 — o by real values. Next the
functional equation gives £(s) = §(1—s). Hence E(z) = £(3+12) is even,

d Z(+z) is an integral function of order , and so has convergence-
exponent }.]

(viii) z%J,(z) is an integral function with p =1, p; = 1. Verify the
result of § 8.3 in this case. [See p. 60, ex. 5.]

(ix) F(z) = | e-tcoszt dé (« > 1) is of order a/(a—1).
0
[Either directly from the integral, or from the power-series.]

(x) Hy(2) = —1 z JrginHrentlis, where |g| < 1, is an integral
function with p —EZ_:_I =2.
[If A = (2[z|-+log 2)/log|1/g| 4,
H(z) < 2 E !ql(ug-i)le(zn+1)1z]+ 2 2 (%)ﬂ-i = O(e@dl) = 0(ex|z|s)_

~ #y(2) has snnple zeros at z = m1r+n1n', where m and » run through all

integers (see e.g. Whittaker and Watson, Modern Analysis, § 21.12).
Hence p; = 2.]

(xi) $4(2) is an integral funetion of sinz of order 0.
[If 2sinz = w, $,(2) = g(w), then

g(w) = qu(""'i)'{wz"“—(%—}—l yw-14 )
Ne=

- O{ng:0 ||+ [w[-l;1)2n+1} — OfeEmsHjul+D),

It was proved by Pélya (2) that if g and % are integral functions, and
g{h(z?} of finite order, then either % 4s a polynomial and g of finite order,
or A is not a polynomial but of finite order, and g of zero order.]

0

(i) If m=1] (1+§)~ (ra > 0)

1
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is of order p, 0 < p <1, thenforp <o <1

- [ee]
logf(z) , _ z 1 [ loglf(—=)] e T N1
zoH osinmo : 73’ 20+1 T otanmo L 13
o 1

0

[We have

0 . ©
log(l4+-=z) , = log|l —z| s
f = = Coinme f P

8.5. The derived function. Many of the properties of the
derived function of an integral function are the same as those
of the primitive function. The following theorems are examples
of this.

8.51. The derived function f'(z) is of the same order as f(z).
Let M'(r)= Ilr1|§x|f’(z)[. Then

M) =170 < pyr(y < HE) )
X SR

For =0 @ +50),

the integral being taken along the straight line. Hence
M(r) < rM'(r)+1£(0)].
On the other hand,
1 [ _fw)
1O =5z | e

where C is the circle lw——,,l = R—r (lz[ r < R). Hence,
choosing z so that |f'(z)| = M'(r), we have .
i <HB
The result stated now fo]lows on takmg, say, R=2r in (1).

8.52. The well-known theorem, that if f(z) is a polynomial
with all its roots real, then f’(z) has the same property, can be

* Pélya (2).
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extended to a certain class of integral functions. The result is
expressed by the following theorem of Laguerre:

If f(2) is an integral function, real for real z, of order less than 2,
with real zeros, then the zeros of f'(z) are also all real, and are
separated from each other by the zeros of f(z).

We have flz) = c¥eo= 1_.[ ( 1— __)ei

where k is zero or a positive integer, and ¢, @, and z,, z,,... are
all real. Taking logarithms and differentiating,

T =trer 2 (ta)
Hence, if z = -1y, v
{78 =it 2 amnmr

which is zero if y = 0 only. Hence f’(z) cannot be zero except
on the real axis.
. f'(z) Eo< 1

sein G- 2y
which is real and negative if z is real. Hence f’(z)/f(z) decreases
steadily as z increases through real values from z, to z,,,, and
so it cannot vanish more than once between z, and z,,,,. Clearly
it changes sign, and so vanishes just once in this interval. This
proves the theorem.

It is clear from the above result that, if the zeros of f'(z) are
2}, 25,..., then the series

1 1
25F 2R

converge or diverge together. Hence the zeros of f’(z) have the
same exponent of convergence as those of f(z). It may be shown
further that f(z) and f’(z) have the same genus, but this is not
quite so easy to prove (see ex. 16 at the end of the chapter).

Since f'(2) is of the same order as f(z), and has real zeros only,
the theorem may now be applied to it, and we see that f”(z)
bas real zeros only; and so for f(z), etec.

The proof also applies to a function f(2) of order 2, but of
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genus 1. In this case, however, we cannot extend the result to
f"(2),... without considering the problem of the genus of f'(z).
It is easily seen by means of examples that the theorem is
not true for functions of genus 2. For example, in the case
fe)=z¢",  [&)=(22+1)e,
the zeros of f'(z) are complex; and in the case
fe)=@@—4)e",  f(z)=32(*—1)e},
the zeros of f’(z) are real, but are not separated by those of f(z)
Example. The differential equation
dzy
Yo = —sin?

has no real solution, other than y = 4 sin¢, which is an integral func-
tion of finite order.

[Suppose that y is a function of finite order p. Then
y = ¥OP(),

where P(t) is a canonical product, and Q(¢) a polynomial of degree not
greater than p. Since the zeros of P(t) are zeros of sin?, P(¢) is of order 1
at most.

Now % = eQO{P’(t)-+ P()Q"(t)}

Y = cenPr(e)+ 2P 0@ (0)+POQ O+ PO @)} = e29F(0),

where f(t is of order 1 at most. Hence
f(&) = e**By(t),
where Pj(t) is a canonical product. Hence
820(1)+at+bP(t) (t) —_ —smgt,
ie. 20 +atb P(4) = —gin%/P,(2)

is of order 1 at most (§ 8.4, ex. (iv)). Hence P(¢) is of order 1 and Q(2)
is linear.

Hence y is a function of order 1.
We can now use Laguerre’s theorem. ¥ is a function of order 1 with

real zeros. The zeros of % are separated by those of ¥, o that, as y has

no triple zéroé, all the zeros of -fid—:: are simple. So all the zeros of %—g are
simple. Hence y has zeros at all the zeros of sin¢. Suppose y has a double

zero at t = kwr. Then %-yt- has a zero between (k—1)7 and %, a zero at
: 2,
ki, and a zero between &k and (k- 1)m. ‘fig has two zeros between
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(k—1)m and (k+ 1), which is impossible. Hencey has all the zeros of sin#

just once. Hence .
. y = e¥*Bsin .

Inserting this in the differential equation, we obtain

(a2—1)sint+2x cost = —e—2w—2B gin ¢,
Since the left-hand side is bounded for real ¢, so is the right-hand side,
and hence o = 0. Then 8 = 0 or =i.]

8.6. Functions with real zeros only. A number of im-
portant functions have no complex zeros; for example, all the
zeros of 1/T(z) are real. On the other hand it is sometimes very
difficult to decide whether the zeros are real or not; for example,
it was conjectured by Riemann, in 1859, that all the zeros of
the function E(z) of § 8.45 are real, but this has never been
proved.

8.61. The theorems of Laguerre. In some cases the ques-
tion can be decided by the following theorems of Laguerre.*
Let f(z) be a polynomial,
f2) = agt-az+... 402",
all of whose zeros are real; and let H(w) be an integral function of
genus 0 or 1, which is real for real w, and all the zeros of which
_are real and negative. Then the polynomial

9() = 3o $(0)+ 0y $(V)2+ ..+, $(B)2P
has all its zeros real, and as many positive, zero and negative zeros

as f(z).
Let = qew Ll P
$(w) = ae E(l—i-%)e ,
where «, > 0 for all values of n. Consider the function
0:(2) =F@&) += £ (2)
o §

21

=T 2ElE) >0

o
= ao—{-al(l+£—)z+...+ap(1+£-)zp.
1 1

Obviously g,(z) has as many zeros at z=0 as f(z); and the
second expression for it shows, by Rolle’s theorem, that it has

* (Huvres, t. 1, p. 200.
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the same number of positive zeros as f(z). Similarly it has the
same number of negative zeros.

By repeating the argument, we can obtain the same result
for the function

gn(z) = Qg+, p(1)2+... 0y b, ()27,
where  Palw) ='(1+—)...(1+_1;).

Next, the transformation z= e*~’, where k,=k— z 1/,
shows that the same result holds for

Go(2)= 0@, (0)+a,D,(1)2+...-+a,D,(p)2?,
where @, (w)= ae» I—.[ (1 + )(;%’ = aekd, ().

v=1
Finally, @, (w) - ¢(w) uniformly in any finite region. Hence
G,(2) > 9(2) uniformly in any finite region; by Hurwitz’s
theorem (§ 3.45) the zeros of g(z) are the limcits of the zeros of
G,(2); it is clear that g(z) has the same number of zeros at
z=0 as f(z); and this completes the proof.

8.62. Suppose that ¢(w) satisfies the conditions of the previous
theorem, and that f(z) is an integral function of the form

fo=e= ]| (1+2)

n=1

the numbers a and z, being all positive. Let
1) =nz=0anz”.

Then g(z)= S_oan P(n)z"

18 an integral function, all of whose zeros are real and negative.
In the first place, ¢g(z) is an integral function;. for, since
(14=x)e=*< 1 for >0,
l$(n)] < lale®,

and so the series for g(z) is everywhere convergent.

. ' D
= 2210 @y, 2™
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All the zeros of this are real and negative, and hence, by the
previous theorem, so are the zeros of

00(2) = ﬁﬂan.p B(nyen.

Finally, g,(2) - g(2) uniformly in any finite region. In fact it
is clear from the expression

(1 +“_z.)p —1+az+ (1—_) @ zz+ +
») P

that a,, , > @, as p — oo for every fixed n, while [a,,,,p| <a, for
all values of » and p. Hence, if N < 2p,

N ® ) ep
l92)—g,(2)] < lnél (@, )2+ ;Nz_‘_lanznl + ,Aglan, 2

N .
< > (an—-an,p)z"'+2‘Z‘[anzn'l.

We can now choose NV so large that the second term is less than
any given e, and then, having fixed N, the first term tends
to zero. Hence gp(z) —g(2).

As in the previous proof, the result now follows from Hur-
witz’s theorem. '

8.63. The simplest case is that of the function f(z)=e.
From this we deduce that if ¢(w) satisfies the conditions of the
previous theorems, then

F(z)= 2 $(n)

8 an mtegml function, and all of 1t8 zeros are real and negative.
Examples. (i) Let
$w) = 1Tw+v+1) > —1).
This is an integral function of genus 1, with zeros at w = —y—1,
~—y—2,... . These are all real and negative, and hence the zeros of

- i o  J(2inz)
I Tntv+1)  (ive)y
n=0
are all real and negative. Hence the zeros of J,(2) are all real.
(ii) The function* ©

Fy(z) = f e~*coszt db
o
* Pélya (1).
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has no zeros if « = 2, and an infinity of real zeros, but no complex
zeros, if « = 4, 6, 8,... .
[We have, by § 8.47,

2n+1
cx()~—Z< 1 PS‘,,L )

If « = 2, we have, as in § 8.41,

E(z) = Jme=,
which has no zeros.
If o = 2k, where k is a positive integer, let

(w) = T{(2w+1)/26T(w+1)/T(2w+1).
Then ¢(w) is an integral function satisfying the conditions of Laguerre’s
theorems of § 8.6. Hence the zeros of

. Z "%"i) 2n = 2k By(ink)
n=0

are all real and negative, so that the zeros of F,(z) are all real. Also
(§ 8.47) p = 2k/2k—1, so that 1 < p < 2, and there must be an infinity
of zeros. v

If « is not an even integer, it can be proved that there are an infinity
of complex zeros, and a finite number of real zeros.]

8.64. Functions with real negative zeros. If all the zeros
of a function are real and negative, the modulus of the function
is related to the distribution of its zeros in a specially simple way.

Suppose that f(z) is such a function, and that its order p is

less than 1. Then’
fo=T1(1+Z2)

m—1

Hence, if z is real,

logf(z) = i log(l +§:) = i n{log(l-}-:)—log(l —}-—_——)},l

Zn+1
_ Z zdt f n(t) db
tett) ) tz+1)
where n(f) has its usual meaning.
Suppose now that as t — oo, n(t) ~ Mr. Then

log f(x) ~ mAcosec mp 2.
For we have A—e)tr < n(t) < (A+e)t?

* The reader should justify this step, which is a simple example of partia
summation.
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for £ > ty(¢). Hence

()t F (Ae)te

m-{—t) ‘z(x+t)

_, [r=0ta (Ot
__.xf ————(—x:_?)—— t-,—xf ~~~~~~~~ dt.

log f(z) < f

The first term is plainly O(1), and, puttmg ¢t = zu in the second
integral, we obtain

uP du
Itu

by § 3.123. A similar result holds with A—e, and the theorem
follows.

More generally,*

xP(A+e€) 2P(A-+€)w cosec mp
0

log f(re®) ~ €'z} cosec mp rP
for any fixed 8 in (—u, ), log f(z) denoting the branch which is
real on the positive real axis.
Infact the above expression for log f(z) as an integral, obtained
for real 2, holds by analytic continuation for —7 < argz < .
Hence we obtain as before

log f(ret) ~ rei f AP dt
' 0

treib41)"

Turning the line of integration to ¢ = ue®, we obtain

]

Arepi® % )= ArPeri®r cosec mp
. as before. ’

It is also possible to prove theorems of the converse type,
viz. to deduce the asymptotic behaviour of n(r) from that of
log|f(z)]. The most interesting is that if, as - o0 by real
values, log f(x) ~ A cosec wp 2, then n(r) ~ M. This theoremt
is closely connected with the Tauberian results of §§ 7.41-7.44,
but the proof is too complicated to give here,

* Pdélya and Szegd, Aufgaben, IV Abschn., no. 61.
T See Valiron (1), Titchmarsh (5), (6)
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8.7. The minimum modulus. Let m(r) denote the mini-
mum of |f(z)| on the circle |z| =7.
The function m(r) cannot be expected to behave in as simple
a way as M(r), since it vanishes whenever 7 is the modulus of
a zero of f(z). But we shall see that, if we exclude the immediate
neighbourhood of these exceptional points, we can set a lower
limit to m(r); and, in general, m(r) tends to zero in somewhat
the same way as 1/M(r). .

8.71. Consider first a canonical product P(z) of order p, with
ZETOS 2y, Zgyeers Zyyers «

If about each zero z,(|z,| > 1) we describe @ circle of radius
|2,|~", where h > p, then in the region excluded from these circles

P@|> e (r>rqe)).
Following the method of § 8.25, it is clear that

| - 1

log|P(z)| = Z logtl—i\_ Z O{(.’;)p}_ 2 0{(!.)“

' ra<kr Zal e \Tm raskr WV -

= 2 log 1—= —O(rp+e),
rasSkr

Since Y r;? is convergent, the sum of the radii of the circles
is finite, and so there are circles with centre the origin and

arbitrarily large radius which lie entirely in the excluded region.
Now if z lies outside every circle [z—z,| =r;%, and 7, < kr,

1—Z >l (k)10

Hence log 1— = > —(1+h)logkr.n(kr)
1<rp<kr
> —Klogkr.rpte > —rpt3e,
Finally zlog 1-2>0  (>2),

sl

and the result follows.
8.711. If f(2) is a function of order p, then
m(r) > e
on circles of arbitrarily large radius.
For f(z) = P(2)e?®,
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where ()(z) is a polynomial of degree ¢ < p; hence
|696)| > =t > g-Ar®,
for sufficiently large values of r; and by the previous result
[P(z)] > e > """
on cireles of arbitrarily large radius. Hence the result.

8.72. Another proof of Hadamard’s factorization
theorem. The theorem of § 8.71 leads to an alternative proof
of Hadamard’s factorization theorem. Let

f2) = P(z)e??
where P(z) is the canonical product formed with the zeros of
f(z). Then @Q(z) is an integral function. Let p be the order of
f(z), p, the exponent of convergence. Then P(z) is of order p,,
and p, < p. Hence
[P@)] > e > e
on circles of arbitrarily large radius. Also

fl) = 0(e*™).

Hence  R{Q(z)}=log | ((z)) log{O(e”")} < Krp+e
on circles of arbitrarily large radius. Hence, by the theorem of
§ 2.54, Q(z) is a polynomial of degree < p.

8.73. In special cases it is possible to prove much more pre-
cise results than the theorem of § 8.711.

If p <3, there is a sequence of values of r tending to infinity
through which m(r) — co.

In the first place, there is no line argz = constant on which
f(z) is bounded; for the whole plane, bounded by this line, forms
an angle 27, and 27 <=/p if p <. Hence, by § 5.61, if f(z) is
bounded on this line it is bounded everywhere, and so reduces
to a constant.

Suppose now that

w

f(2) = ce* H (1—-;-),

n=1 n

and let b(z) = c2¥ n ( 1 -}-;),
n=1 n.
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where 7, = |z,|. Then

min | f(z)] > $(—1),

zi=r

[
Y
(4]

since 1I—= >i—21|

for every n. Also ¢(—r) is unbounded, since ¢(z) is an integral
function of the same order as f(z). This proves the theorem.

8.74. The following result is still more precise.

If 0 < p < 1, there are arbitrarily large values of r for which

7-) > {M r)}cos Tp—€,

The following proof is due to Pélya (3). Define f(z) and ¢(z)
as before, and we may plainly take ¢ = 1,k == 0. It is sufficient
to prove the theorem for ¢(z). If 0 < p < . ie. cosmp > 0,
this follows at once from the relations m(r) > ¢(—r)},
M(r) < ¢(r). In any case, if 2’ is a point where | f(z)! = m(r),
we have

s = T (1=5) < U= <m0,
n=1
Hence, if the theorem is true for ¢(z), then
m(,.)M(r) ,qg(,.)!l-x»cos‘np-e > {JI }1+cos—rp—e
for arbitrarily large r, and the result for f(z) follows.

If the theorem is false for ¢(z), there are positive constants

e and a such that
log|$(—2)| < (cosmp—ellogd(@) (x> a).
By § 8.4, ex. (xii), for p < 8 <1, and so also for p < R(s) <1

j?{cos wslog p(z)—logid(—x) |}~ dx = 0.
°

Since the integral over (0, ) is regular for 0 < R(s) <1, so is
the integral over (a,c0). Hence

— [ i) Hpapuletet a2,

where

$i(@) = (cosmp—e)log(x)—logld(—2)|,  ¢y(x) = log (),
Y(s) = cosms—cosmpte, o = loga,
is regular for 0 < R(s) <1, and in particular at s = p. Here
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é, and ¢ are positive for z > a, and ¥(s) is positive for s real
and sufficiently near to p.

Let A > 0, D = d[ds. Then

l(l"“‘ F( )l_ —h)* m(m—1)...(m—p+1) Fe(s)

].L' me
< |F(8)+ —IF(S)H- IF” $)|+... =M,

k=0

say, the series being convergent for sufficiently small positive
h and s—p. Also

(1_@)’."1,&( s)e~of = e—sf(1+hf hD) Ws)

m

e

e“f(H— f) $s)— e*sf(1+ ) i?
ol

Since |i#(s)| < =+ for real s, this plainly exceeds
Yot (1 + ng) "s)

if 1 is small enough. Hence

m

(hﬁff w>§j@wnﬂmwwm@+§y}%%.
In particular for any o > «
[ suen(132) et at < 2210)

Making m — 00, then w — 00, it follows that

f¢éwwﬁ fbwm

xs—lz+1

a

is convergent for a value of s—A less than p. Hence Y r;°*" is
convergent, contrary to § 8.26. This proves the theorem.

8.75. A similar result holds for functions of order 1 and exponential
type, i.e. such that f(z) = O(eF).
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If f(z) = O(e¥¥), then m(r) > e~®+<r for some arbitrarily large r. If
are the moduli of the zeros of f(z), we find as in § 8.21 that
n(r) = O(r), 1/r, < Kjn. Hence

¢(z)=1—[(1+r2) —OH(IT@ Su%i(fffr«/r).

Define k(6) (§ 5 7 for ¢(z) with I (r) = «7. Then h(8) < =K for all .
Since |p(z)| = 1 if R(z) > 0, h(f) is finite for —}7 < 6 < 3w, and so
everywhere (§ 5.712). Also h(—8) = k(f); and § 5.713, with 8, = —m,
0, =0, 8 = m, p =}, gives h(m) > 0. Hence

@S (—2)] > [f(0)[2lg(—r2)| > e~
for some arbitrarily large values of 7, and the result follows.

8.8. The a-points of an integral function. Our discussion
of integral functions has so far centred round the distribution of
the zeros of the function. A more general question is that of
the distribution of the points where the function takes any given
value a—the ‘a-points’, as we may call them.

There is one case in which we have already obtained fairly
precise results, namely, that of functions of finite non-integral
order. If f(2) is of order p, where p is not an integer, then it
has an infinity of zeros, and the exponent of convergence of the
zeros is p. But clearly f(z)—a is also of order p, where a is any
constant. Hence f(z) has an infinity of a-points, and their
exponent of convergence is p; i.e. their density is roughly the
same for all values of a.

A similar argument may be applied to functions of zero order.
Such a function has an infinity of zeros unless it reduces to
a polynomlal and f(z)—a is a polynom.lal for every value of
a or for none.

If f(z) is of positive integral order, and # a, then f(z)—a = ¢9®,
where Q(2) is a polynomial. If b 7 a, then @(z) = log(b—a) for
some z, i.e. f(z) = b for some z. Hence f(z) takes every value
with one possible exception.

8.81. Picard’s theorem. The main theorem of the subject
is due to Picard; it is independent of any considerations of
order. _

An integral function which is not a polynomial takes every value,
with one possible exception, an infinity of times.

Picard’s proof of the theorem depends on the properties of
the elliptic modular function. This function, which we shall
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denote by wr(z), has the following properties: i is regular every-
where except at z=0, 1, and c0; and its 1maginary part is never
negative. . ,

By means of this function we can easily prove that an infegral
function which 18 not a constant takes every value, with one possible
exception, at least once.

Suppose that f(2) is an integral function which does not take
either of the values a or b, where a@ 2 b. Then

_Jf@)—a

gy =17

is an integral function, which does not take either of the values
0 or 1. Consider the function w{g(z)}. It is regular except at
infinity, since g(z) does not take either of the finite values for
which = is singular. Also its imaginary part is positive. Hence,
by § 2.54, it is a constant. But = is not constant, and so g(z)
must be constant. This proves the theorem.

As we have not discussed the construction of the modular
function, we shall not complete this proof, but shall give a more
direct proof, depending on a theorem of Schottky.*

8.82. The characteristic feature of Picard’s theorem is that
it admits the possibility of there being an exceptional value.
This exceptional value may actually exist; for example, the
function ¢ never takes the value 0. A value with this property
is said to be ‘exceptional P’.

There is another sense in which a value may be exceptional.
A function may take the value a, but only at points which have
a convergence-exponent less than p. For example, the function
e?cos vz, of order 1, has zeros, but their convergence exponent
is 3. A value with this property is said to be ‘exceptional B’,
i.e. exceptional in the sense of Borel. It is clear that a value
which is exceptional P is a fortiori exceptional B.

8.83. For functions of positive integral order, Picard’s
theorem is a consequence of the following theorem of Borel,
which shows not merely that there is at most one value ‘excep-
tional P’, but at most one ‘exceptional B’.

* Another direct proof, depending on a theorem of Bloch, is given by

Landau, Brgebnisse . . ., ed. 2 (1929), Ch. VII, and by Dienes, The Taylor Series,
Ch. VIIIL
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Borel’s theorem. If the order of f(z) is a positive integer,
then the exponent of convergence of the a-points of f(z) is equal to
the order, except possibly for one value of a.
Suppose that there are two exceptional values, @ and 5. Then
fz)—a =251e%@P,(z) 1)
and f(z)—b = 2ke@@)P,(2), (2)
where Q,(z) and @,(z) are polynomials of degree p, and P,(2)
and P,(z) are canonical products of order less than p.
Subtracting, we have
b—a = zklte(z)Pl (z)_ zkzeoz(z)Pz(z), (3)
or 21 P, (2)e@-Q:&) = 271 P, () -+ (b—a)e-9:@),
Since Q,(z) is of degree p, the right-hand side is of order p.
Hence so is the left-hand side, and so @,(z)—@,(2) is of degree
p, since P;(z) is of order less than p.
Differentiating (3), we have
(P, @+ k21— LP, 2% P} e
= (2P, Q}+ ko211 P, +-2F2 P)es, 4)
Now the order of P} is the same as that of P, and so is less
than p. Hence the coefficient of e is of order less than p, and,
similarly, so is that of e%:.. Hence we may write (4) in the form
zksPseox+Qa p— zk.ﬁeQwQ.,
where @, and @, are polynomials of degree p—1 at most, and
P, and P, are canonical products. The two sides must have the
same zeros, so that ky=£k, P;=P,, and so @;+@s= Q,+@Q,,
ie. @;—@, = @,—Q,, which is of degree less than p. This con-
tradicts the previous result, that Q,—@, is of degree p, and so
proves the theorem.

8.84. For the proof of Schottky’s theorem we require the
following lemma.:
Let ¢(r) be a real function of r for 0 < r < Ry, and let

0< (<M (0<7r< Ry, (1)
andalso  $r) < éjffﬁg (0<r<R<R). @)
Ace

Then W<y O<r<R). 3)
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The actual form of the result (3) is not particularly important.
What is important is that it depends only on r, R,, and C, and
not on M. '

From (1) and (2) we obtain

< goms  (O<r<RE<R) @)

so that the upper bound M given in (1) is reduced at once to
a multiple of VM. If we repeat the process, using first (4) with
7y, 7o for 7, R, and then (2) with », for B, we obtain

o c \t
<Gl M O<r<n<n<h)
So generally o oo - L
i Yo,
#r) < (ry—1)? {(7'2"'7'1)2} {("'n"”rnﬂ)z}2 :

Taking r; = }(B,+7), o= }(R;+7y),..., this gives
= C \1+3-

o)<+ (et

and, making % -> 00, the result follows.

' 8.85. Schottky’s theorem. If f(z) is regular and does not
take either of the values 0 or 1 for |z| < R,, then for |z| < R< R,

1M2

KRt
[f(z)] <exp {m},
where K depends on f(0) only. For all functions which satisfy the
given conditions and are such that 8 < |f(0)] < 1/8, [1—f(0)] > 8,
we can take K to depend on 8 only. :
We shall not require the actual form of the upper bound for
f(z), which could be considerably improved if necessary; what

‘is important is that it depends only on f(0) in the manner
stated, and on R/R,.

Let 9:1(2) =log{f()},  gu(2) =log{l—f(2)},
where each logarithm has its principal value at z=0. Then
91(2) and g,(2) are regular for |z| < R,. Let M,(r) and M,(r) be
the maxima of |g,(z)| and |g,(2)| respectively on |2| =7, and let

| M(r) = max{M,(r), My(r)}.
L e
| Bi)=—minR{se)) = maxlog o
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Then Carathéodory’s theorem (§ 5.5), applied to g,(z), gives

M) < 2 B+ i) (0 <p<n. ()

There are now two pos51b1htles. Either B,(r) is not large—
say B,(r) < 1, in which case (1) is a result of the required type;
or By(r) is large, in which case there is a point 2’ on |z|=7
where |f(2’)] is small. But if |f(2')] is small, g,(z’) is (apart from
a term 2nwt) approximately equal to —f(z'); and then Cara-
théodory’s theorem, applied to logg,, gives on the left A, (not
log M; as we should in general expect), and on the right
log M, = O(¥M,). We thus obtain an inequality of the type
considered in the elementary lemma. This is the general plan
of the proof, and we now proceed to fill in the details.

Suppose that B,(r) > 1, and let 2’ be a point where

By(r) =log 1/ fz")].
Then /&) = e B < el < L. )
There is therefore an integer » such that ' '

9ol )—2nmi = — z {f }m

Hence [92(z)—2nmt| < 3 2 m=1,
m=1
and so 2nlr < 14 |go(2")| < 1+My(r). 3)
Let h(2) = log{g,(z)—2nmi},

where the logarithm has its principal value at z = 0. Then A(2)
is regular for |z| < R,, since f(z) % 0 and so g,(z) 5 2nmi; and
Carathéodory’s theorem gives

max log|gy(z) — 2nmi| + ﬁj: h(0)]. (4)

lel=

i 2r
max [h(z)| < jo
The left-hand side is not less than

1 ~
>1
108 )\ —2nmi =18

z)H—If 1@ P+ @) P

> logzlf(zl)l =:B1(T)—10g 2’

by (2). On the right we have
max log|g,(z)—2nmi| < log{M,(R)+2|n|m} < log{2M,(R)+1},
lz2l=R . .
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by (3); if » 5 0, |g5(0)—2nmi| > = > 1, and so

[5(0)] < loglge(0)—2nmi|+7 < log{lgs(0)| 41+ My(r)}+a.
Ifn = 0, }h )| < [loglgo(0)||+7. Hence (4) gives

By(r) < [’log{’Mz )+ 192(0){+ 1} +|loglga(0) || +7]+log 2

[h»g{zfvfz ) 195(0) |+ 1}+|loglg,(0) || +7].  (5)

This mequahty, proved for By(r) > 1, is obviously true for
B,(r) < 1. Hence (1) and (5) give in any case

Myp) < SET — [loB {2 )+Igs(0) -+ 1)+

(R—
+[log|g5(0) ||+ lg1(0) | +=].

Since we may interchange g,(z) and g,(z) in the whole argu-
ment, the inequality is still true if the suffixes 1 and 2 are
interchanged. Combining the two results, we have

| Mp) < ot Qg M(R)+ K},
where K dependson |g,(0)| and |g,(0) | only. Talingr = }(R+p),
we obtain

: 32R} KR:VM(R)
M) < m{logM(R)+K} <G
since log M(R) = O{vM(R)}. Hence, by the lemma,
KR
M) <
and |f(2)] < eM? < exp { & KR4)4}

Since K depends on |g;(0)| and |g,(0)| only, the last part of
the theorem also is true.

8.86. Picard’s first theorem. An integral function which
18 mot constant takes every value, with one possible exception, at
least once.

Suppose that f(z) does not take either of the values @ or b
(@ #b). Then g(z) = {f(z)—a}/(b—a) does not take either of the
values 0 or 1. Hence, by Schottky’s theorem,

KR!
o <expltill (el<R<R).

Taking B, = 2R, |g(z)| < K. Hence g(z) is a constant.
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8.87. We can also prove the following generalization of
Picard’s theorem.

Landau’s theorem.* If « is any number, and B any number
other than 0, there is @ number R = R(x, B) such that every function

J@) = atfeta24az®+...,
reqular for {z| < R, takes in this circle one of the values 0 or 1.
We may suppose that o # 0, « 54 1, for otherwise we have the
result at once. If f(z) does not take either of the values 0 or 1,
then by Schottky’s theorem |f(z)| < K(«) for [z| < iR. Hence

_ 1 f(z) K(x)
Bl= 55 f : ®<Tp>
Z|=%R

R < 2K(0)/IBl,
and the result follows.

8.88. We have so far stated Picard’s theorem in terms of
integral functions, i.e. functions with an essential singularity at
infinity. But a corresponding theorem holds for any function
with an isolated essential singularity.

Picard’s second theorem. In the neighbourhood of an iso-
lated essential singularity, a one-valued function takes every value,
with one possible exception, an infinity of times.

In other words, if f(z) is reqular for 0 < |2—z,| < p, and there
are two unequal numbers o, b, such that f(z) #a, f(z) £, for
|2—2,| < p, then z, is not an essential singularity.

We may suppose that z,=0, p=1, a=0, and b=1. We
prove that there is a sequence of circles |z| =r,, where r,, > 0,
on which f(2) is bounded. By § 2.71 this precludes the existence
of a singularity at z = 0.

We start from Weierstrass’s theorem that, in the neighbour-
hood of an essential singularity, a function approaches arbi-
trarily near to any given value an infinity of times. Thus there
is a sequence of points z;, 2,,... such that |z|> |z5] > ...,

[z, > 0, and fle,)—2| < 3. )

It is clear that Schottky’s theorem would enable us to con-
struct a sequence of circles, with these points as centres, in
which f(z) is bounded. These circles do not, of course, include

* Landau (1), and Ergebnisse, § 25.
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the origin; but this is, so to speak, an accident arising from the
fact that we have proved Schottky’s theorem for a class of
convex curves (viz. circles). We can remove the difficulty by
making a conformal transformation, which has the effect of
replacing a circle by an elongated curve which, though it
excludes the origin, passes right round it and overlaps itself on
the far side.

Let z=¢e¥ (w=u+), and consider the half-strip of the
w-plane < 0, —7 <v< 7. This corresponds to the interior
of the circle |z| =1. Let w71 =logz, (—m <I(w,) < 7), so that

R(w,) - —o0; and let f(z) = g(w).
We a,pplv Schottky’s theorem to the function
h(w') = g(w,+w').

This is regular for |w'| < 4n if n is large enough, and it does
not take either of the values 0 or 1. Hence

)| < K=K{h(0)}  (lw'|<27);
and, the numbers h(0) =g(w,)=f(z,) satisfying (1), we can
replace the right-hand side by an absolute constant. Hence
lg(w)| < 4 for lw—w,| < 2’)7', and in particular for « =R(w,),
a<Lv<w Hence

, fRl<d (2= [z,
and the result follows.

8.89. Asymptotic values. A number a is said to be an
asymptotic value of an integral function f(z) if there is a con-
tinuous curve from a given point to infinity, i.e. along which
|z] = o0, and along which f(z) >a as z—>oco. Thus 0 is an
asymptotic value of ¢, since ¢# - 0 as z - 0o along the negative
real axis. The function B '

f e~V dt,
where ¢ is a positive integer, has the ¢ asymptotic values
gmik
e? |etdt (k=01,..,q—1),
0
as z > o0 along the lines argz = ez,
We may define the ‘asymptotic value oo’ similarly.
We shall now prove the following theorems.
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Every function with an isolated essential singularity at infinity,
which is not a constant, has the asymptotic value infinity.

By Laurent’s theorem, such a function is of the form
f(z)+g(z), where f(2) is an integral function, and g(z) tends uni-
formly to a limit as |2| = co. Hence it is sufficient to consider
integral functions. For an integral function not a constant, the
maximum modulus M(r) tends steadily to infinity. Consider an
indefinitely increasing sequence of numbers X, = M(r,), X,,....
It follows from Liouville’s theorem that there is a point outside
the circle |2| = 7, at which |f(z)] > X,;. The set of points where

|f(z)] > X, constitutes the interior of one or more regions
bounded by curves on which |f(z)] = X,; and these regions
must be exterior to the circle |z| = »;. Let one such region be
D,. Now D, must extend to infinity; for otherwise we should
have a finite region with |f(z)] = X, on the boundary and
|f(z)| > X, inside, contrary to the maximum-modulus theorem.
‘Further, f(2) is unbounded in D;,. For otherwise the principle
of Phragmén and Lindelof would also show that |f(z)| < X,
at all points inside D,. In fact, the argument of § 5.6 applies
with P at infinity and w(z) = 7{/z. Hence there is a point of D,
at which |f(z)|- > X,, and consequently a domain D,, interior
to D,, such that |f(z)| > X, at all points of D,. We can now
repeat the argument with X;,.... Hence there is a sequence of
infinite regions D,, D,..., each interior to the preceding one and
such that |f(z)| > X,, in D, and |f(z)| = X,, on its boundary.
Now, take a point on the boundary of D,, and join it to a point
on the boundary of D, by a continuous curve lying in D,; then
this point to a point of D; by a continuous curve lying in D,,
and so on. We clearly obtain a continuous curve along which
fz) - c0.

If an integral function does not iake the value a, then a is an
asymptotic value. '

For 1/{f(z)—a} is an integral function, and so has the asymp-
totic value co.

The argument of § 5.64 shows that if an integral function
has asymptotic values on two curves, and is bounded between
the curves, then these asymptotic values must be the same.
Asymptotic values not so connected we should consider as
distinet, whether they are equal or not.
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It was conjectured by Denjoy that an integral function of
finite order p can have at most 2p asymptotic values. The theorem
with 5p instead of 2p was proved by Carleman; and Denjoy’s
conjecture was finally proved by Ahlfors. The general proof is
not easy. It is, however, easy to see that there can be at most
2p straight lines from 0 to co along which a function of order p
has distinet asymptotic values. For by § 5.61 the angle between
two such lines must be at least equal to =/p.

8.9. Meromorphic functions. We shall now give a short
introduction to the theory of meromorphic functions, i.e. funec-
tions whose only singularities, except at infinity, are poles.

The theory depends largely on the general Jensen formula
(§3.61 (4)). Let f(z) be a meromorphic function, with zeros
@y, @g,... and poles by, by,... (other than 0) arranged with non-
decreasing moduli. Suppose that in the neighbourhood of the
origin it is of the form ¢z%+..., where £ may be any integer.
Then Jensen’s formula for z-%f(z) is

a2
byby o _ 1 . B

0
Asin § 3.61 la, 1]

lglal f dx+ J'

|@m]
Let n(r, 0) be the number of zeros of f(z) in 2| < r. If &k > 0,
v = n(x,0)—Fk for |a,| <z <|a,,|; hence

o f n(z, 0)—
oy, | x

If n(r,o0) is the number of poles of f(z) in [z| < 7, we obtain
similarly

»

n(x, )
log ——2— T bn] f - dx.
0

If k is negative, it appears in the second integral instead of the
first. Writing ,

N(T, a) = f ﬁ@%ﬂ_@ dx +n(0’ a)]ogr

~
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we obtain in any case

N(r, 0)—N(r, ) = — f log|f(re®)| 48 —logicl. (1)

Let us write logta = max(log o, 0)
for any positive «. Thus
log o = logta—Ilog+1 /a.

Let mr,a) = m(r f_) = — flog f(re’e)—a de

2
and m(r,0) = m(r,f) = -2-1;7 f log*|f(re')| dé.
0

Then (1) may also be written
m(r, 0)+N(r,0) = m(r,0)+N(r,c0)—loglec|. (2)
Now apply this formula to f(z)—a, where a is any number.

If f(z)—a = c,2%+... in the neighbourhood of the origin, we
obtain

m(f, a)+.N(T, a‘) = m(r,f—“)‘f‘N(ﬁ w)—logx[cals
the term N(r,c0) being unaltered since the poles of f(z)—a are
the same for each a.
Now we have
f1+1al < 2ifal, 21f], 2la] or 2
according as |f| >1and |e| =1, |f| =1and |o| <1, |fi <1
and {a| >1, or [f| <1and |a| <1. Hence

log(|f [+ la]) < log*|f|+log*|a|+log 2.

Hence log*{f—a| < logt|f|+log*|a|+log2,
and similarly )

logt|f! < logt|f—a|+logt|a|+log 2.
Hence |m(r, f—a)—m(r,f)| < logt|a|+log 2.

It follows that
m(r,a)+N(r,a) = m(r,0)+N(r,0)+¢(r, ),
where |$(r, a)| < [log|c,||+log*|a|+log 2.

Hence if f(z) is a meromorphic function and not a constant, the
T
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values of the sum :
m(r,a)+N(r,a)

for two given values of a differ by a bounded function of .
All the sums being to this extent equivalent, we can represent
them all, e.g. by the one with @ = co. Thus if we put
T(r) = m(r,00)+N(r, c0), (3)
we have for all values of a _
m(r,a)+N(r,a) = T(r)+é(r,a),
where ¢(r,a) 18 (for each a) bounded as r — co.

T(r) is called the characteristic function of f(z).
We shall next show that T'(r) is an increasing convex function

of logr.
Jensen’s formula for f(z)—e? (X real) is

2m
N(r, %) —N(r,c0) = 5 [ Toglfire®)—e| a0 —log|f(0)—e,.
, 0 4)
if f(0) # €. Also, for any a,
2
1 f log|e?—a| df = logt|al,
2
0
e.g. by Jensen’s theorem with f(z) = z2—a,r = 1. Hence, multi-

plying (4) by 1/(2n), and integrating with respect to A over
(0, 27), we obtain

21 27
- f Nir, é) dh —N(r,0) = o f log*|f(rei®)| &8 —log*|f(0)],
0 0 N

27
ie. TM=%meWMH@MW.
(1}
- Now, for any @, N(r,a) is an increasing convex function of 7,
since ‘
dN(r,a) _
Flogr "

which is non-negative and non-decreasing. Hence 7'(r) has the
same property. : ‘

In the above formulae N(r,a) measures the number.of times
the function f(z) takes the value a. Since the largest contribu-
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tions to m(r,a) come from arcs where f(z) is nearly equal to a,
m(r, @) measures in a sense the intensity of the approximation
of f(z) to . We could describe m(r,a)+N(r,a) as the total
affinity of the function f(z) for the value a.

For a given function, certain values may be exceptional, e.g.
in the sense that the function does not take these values. The
above theorem shows that there can be no exceptional values
in the sense that the total affinity of the function for every
value is the same, apart from bounded functions of 7.

Examples. (i) Let f(z) be a rational function, say = P(z)/@Q(z),

where P(z) is of degree u, Q(z) of degree v, P and Q having no common
factor. If u > v, then

m(r,a) = O(1), N(r,a) = plogr+0(1)
for every finite a, while
m(r,0) = (u—v)logr+0(1), N(r,0) = vlogr+O(1).
If p <, then
m(r,a) = O(1), N(r,a) = vlogr+0(1)
for a % 0, while
m(r, 0) = (v—p)logr+O(1), N(r,0) = plogr+-0(1).
If p = v, let a and b, be the coefficients of z# in P and Q. Then if
a 7 ay/bo, m(r,a) = 0O(1), N(r,a) = plogr+0(1),
while, if a,@—b,P is of degree «,

m(r,?) = (p—a)logr+0(1), N(r,gﬂ) = alogr+4O(1).
o o
In any case T'(r) = O(logr).
(ii) The function e? does not take the values 0 or co; on the other
hand these are limiting values of the function as z  co. Here
N(r,0) = N(r,0) = 0,  m(r,0) = m(r,0) = ;_r’
while for ¢ # 0, oo, '
m(r,a) = O(1), N(r,a) =
Here T(r) = r/m.
(iii) Consider similarly tanz (4% are exceptibnal values).

+0(1).

1
T

8.91. Order of a meromorphic function. The mero-
morphic function f(z) is said to be of order p if
Fm 108 () _
r>o logr
so that T(r) = O(rr+e)

3
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for every positive e, but not for e < 0.

To show that this agrees with the definition of order in the
.case of an integral function, we shall prove:

If f(z) is an integral function,

T(r) < log"M(r) < 21 +’ T(R)
for 0 <r < R.
For an integral function, N(r,c0) = 0, and T'(r) = m(r, c0).
The left-hand inequality is thus
2mr
52 | 1og*1f(re®) | @8 < log+max|f(re®),
0

which is plainly true. Also by the Poisson-Jensen formula

Log| fre)| = J‘ R2— 2cho_s—2 —¢)+r 2logjf(Ref¢)] % —
m Rz_a;b ret?
- Z log R(Re’—a,)

- ,1_.—_1
Each term in Y is negative, and

R2—2Rrcos(f—¢)+72 = (R—r)2
Hence, taking § so that the left-hand side is a maximum,

R—{—-r 1

log|M(r)| < j log f(Re)| dg
R—[—-r
R
and the second inequality follows.
Taking R = 2r, the identity of the two definitions of the
order of an integral function is clear.
Now let ,(a) be the moduli of the zeros of f(z)—a, 7,(c0) the
moduli of the poles of f(z). Then we have the following results.
If f(z) is of order p, then for every a

m(r,a) = O(rr+e), N(r,a) = O(re+e), n(r, @) = 0(7-p+¢)>

and 2 @)

s convergent.

CT(R)
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The first two results are immediate since

m(r,a) < T(r)+0(1), N(r,a) < T(r)+0(Q1).
The remaining results then follow from that on N(r,a) as in the
case of an integral function.

More precise results of the same kind are given by Nevan-
linna, Fonctions Méromorphes, Ch. I1.

8.92. Factorization of meromorphic functions. Let f(z)
be a meromorphic function of order p, with zeros @, and poles
b, (f(0) # 0). Then it follows from the above results that there
are integers p; and p, not exceeding p such that

Ro=T]E(Zm) Bo=T]5(Zn)

n=1 n n=1 n
are convergent for all values of z. Hence P(z) and Py(z) are
integral functions of order not exceeding p. Also

h(&) = Fe)Re)

is an integral function. Now
T('r?fl) = m(”: Oo’fl) < m(r, oo,f)—l—m(r, g, P2)
< T f)+ T, B) = O(re+e)+ O(rpe).

Hence f,(z) is of order p at most, and hence

fi(z) = e®®P(z),
where @(z) is a polynomial of degree not exceeding p.

We have thus proved that
fz) = e?OR(z)[B(z),

an extension of Hadamard’s factorization theorem to mero-
morphic functions.

A slightly deeper theorem, in which the numerator and de-
nominator do not necessarily converge separately, is proved by
Nevanlinna, Fonctions Méromorphes, Ch. III.

Further developments of the theory of meromorphic func-
tions are largely concerned with extensions of the theorems of
Picard and Borel. For these we must refer to the books of
Nevanlinna.
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MISCELLANEOUS EXAMPLES
1. Prove that, if ¢ is not a multiple of =,

3]
2 O
i —_—2z) = af - zcota 1— ga+am,
sin(a—z) = sinae l I ( 2 mr)

N= —o0

2. Show that the equations
sin z = 22, logz = 25, tanz = az+b,
where a and b are any complex numbers, each have an infinity of roots.
3. Find all the zeros of the function
ef—1,

and show that they have no finite exponent of convergence.
-]
4. If f(z) = z a,z" is a function of non-integral order, show that the

coefficients in the polynomial @(z) = bjz+...4b,2? of Hadamard’s theorem
can be expressed in terms of a4, a,,..., @,

[If p is not an integer, ¢ < p-+1, and P(z) = 140(z#*1) as 2 — 0.
Hence on equating coefficients P(z) is not involved.]

5. If f(z) = X a,2" is of order p, what is the order of F(z) = 3 [u,[rz=?
6. The gencralized hypergeomstric function is defined by the formula,

S ()0 2" =

pﬁ;(al’“-say;ﬂlsn"ﬁg; Z) (ﬁl)n (Bq)"

where (a), = o{a+1)...(a+n), (@) = 1. Show that it is an integral
function if ¢ > p, and find its order.

7. Show that I
fey= 3 g’e

n=—00
is an integral function if |g] < 1, & > 1, and find its order.
8. If ¢ > 1, the function

EG) l_I (1+n”)

ns=1
is an integral function of order 1/g. [For further properties of the
function see Hardy (4).]
9. The function ©
[T+
eﬂ,
n=1
is an integral function of zero order.
10. Show that, if o > 0,
]

r&=1T(+5)

n=1
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is an integral function of order 14-1/a; and express it in the standard
factor form in the cases x = 1, o = 2.

11. If a > 0, the function

Bz = ;ﬂ‘mﬁ)

is an integral function of order 1/a. [Several memoirs on this function
are to be found in Acta Math. 29.]

12. If a is real, all the roots of the equation I'(z) = al'(z) are real.

13. Show that w
coshvn __
n! z

n=0

is an integral function of order 1, and that it has an infinity of zeros,
all of them being real and negative.

14. A function f(z) of order } has all its zeros real and negative, and
such that n(r) ~ k+r logr. Determine the asymptotic behaviour of M(r).

[Use the method of § 8.64.] )

15. Show that, if f(z) is a canonical product with zeros z, such that
2 1/|z,] is convergent, then f(z) = O(ec'), and |f(z)] > e~ on circles

of arbitrarily large radius.
-]
(2 )
N+1

[We have N
el <] [(r+
n=1

whence the first result easily follows. The second part then follows from
§ 8.75.] :

16. In Laguerre’s theorem of § 8.52, show that f’(z) has the same
genus as f(2).

[The only case in which there is anything to prove is the case p = 1,
when the genus may be 0 or 1. Then we use the fact that the series
> 1/jz,| and X 1/[z;] converge or diverge together, compare M(r) and
M’(r) by § 8.51, and apply the previous example.]

17. Show that the genus of a function of exponential type (§ 8.75) is 1.

o0
18. Show that, if f(z) = 3 a,2" is of exponential type, f™(0) = O(e4*),
: 0

z

2y

2
Zn

and hence that ¢(z) = 3. nle,2" has a finite radius of convergence.
19. In order that f(z) should be of exponential type, it.is necessary
and sufficient that it should be expressible in the form

1
flz) = 5 Le""x(w) dw,

where y(w) is regular for sufficiently large values of w (including infinity),
and O is a circle with centre the origin and sufficiently large radius.

[We have y(w) = 1/w(1/w), where ¢ is the function defined in the
previous example.]
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20. Let f(z) be of exponential type, and let h(#), supposed > 0, be
the Phragmén-Lindeldf function associated with f(z§, with V(r) = r,
Consider the radii vectores of length h(f) making angles —8 with the
real axis, and the perpendiculars to these radii vectores at their ends
(ef. § 5.72). Then y(w) is regular if w lies on the side of one of these
perpendiculars opposite to the origin.
[We have ©
$(z) = [ e=if(et) at
0
by term-by-term integration, if |z| is small enough ; turning the contour
through an angle A, o
é(z) = J‘e"‘“f(zte"‘-)ei'\ dt.
0
Here the integrand is O(e—teosd+nf@+N+e}),

and the integral is convergent if
rR{B+A) < cos. (1)

Hence ¢(z) is regular at z = re¥ if (1) holds for some value of A. If
w = e, then y(w) is regular if 7’ > h(A—8')sec A for some A. This is
equivalent to the above statement.

For a detailed discussion see Pélya (4).]

21. The function

- o
z (n+a)n!
n=0
is of exponential type [For further properties of the function see
Hardy (2).]
22. Show that the funchon

1) = [ esg(e)
where g(¢) is continuous, is of exponential type, and that the corre-
sponding function y(w) is regular except in the interval (¢a, 4b) of the
imaginary axis.

23. Show that the function f(z) of the above example tends to zero
as z — o0 in either direction along the real axis, and deduce that f(z)
has an infinity of zeros.

24. A function f(z) is said to be of zero type if f(z) = O(e).

In order that f(z) should be of zero type, it is necessary and sufficient
that

1
i =5 f;’*x(w) dw,

where x(w) is an integral function of é
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[The situation is similar to that of examples 18-19, except that here
F®(0) = O(e*).]

25. A necessary and sufficient condition that f(z) = Z a,z* should

be an integral function of 1/(1—z) is that there should be an integral

function g(z) of zero type such that a, =g(n) forn =1, 2,....
[Carlson (1), Wigert (1), Hardy (14). If there is such a function g(z),

let: .
g(z) = 5 fc ey(w) dw

Then f(&)—ay = Z a,z2" . x(w) dw,

if C is a contour enclosing the origin, and on which R(w) < log|l/z].
This is an integral of the type used in §4.6, and by deforming it we can
show that any branch of f(z) is regular except at z = 1 (where the
contour is nipped between 0 and log 1/z). Also

Fe)—ay = x(log) + 5 f T x(w) du,

where C’ is a contour enclosing w =log 1/z. This shows that f(z) is
one-valued near z = 1, and so an integral function of 1/(1—z).
Conversely, if f(z) is of the type prescribed, we have
@) 4,

2,"% Znt+ 1

and we can put z = e~¥, and deform the resulting contour into any
simple closed contour which encloses the origin but lies entirely inside
the circle |w| =27. Finally f(e-*) is regular except for w =0 and
w = +2kmi (k =1, 2,...), and so f(e~*) = g(w)+(w), where g(w) is an
integral functxon of 1/w, and (w) is regular for |w| < 27. Hence the
result.]






CHAPTER IX
DIRICHLET SERIES

9.1. Introduction. By a Dirichlet series we mean, in this
chapter, a series of the form
% 1
. (1)
n=1

where the coefficients @, are any given numbers, and s is a com-
plex variable. The more general type of series

2 ane—A,‘s

is also known as a Dirichlet series. The special type is obtained by
putting A, =1logn. For the theory of the general type we must
refer to Hardy and Riesz’s General Theory of Dirichlet’s Series.

Throughout the chapter we shall write s = o, where o and
tarereal. If the Dirichlet series is convergent, we shall denote
its sum by f(s). We have already had one important example
of a Dirichlet series, the zeta-function of Riemann,

0

=S )

"?;s‘n

w]ﬁ

Dirichlet series are not of such importance in general analysis
as power series because they only represent a very special class
of analytic functions. They are, however, of great importance
in applications of analysis to theory of numbers. In several
ways their theory is more complicated than that of power series.
For examﬁle, the circle of convergence, circle of absolute con-
vergence, and circle of regularity of sum-function are all the
same for a power series. In the theory of Dirichlet series, in
which ‘circle’ must be replaced by ‘half-plane’, the three corre-
sponding half-planes may be all different.

9.11. The association of half-planes with a Dirichlet series
depends on the following theorem:

If the Dirichlet series is convergent for 8 = s, then it 'is uni-
formly convergent throughout the angular region in the s-plane
defined by the inequality

Jarg (s—s;)| < $7—3,
where § 18 any positive number less than 3.
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It is sufficient to consider the case where s, = 0; for

zns Zns’

where @y = a,n"%, : §—8y,
and the latter series is convergent for s’ =0.
We suppose, then, that 3 a, is convergent. Let
Tn =01t lpiatee

so that r, - 0. Then
S @ S S 771 Tx
2 = n-1"" r -1 _-“-“ . 1
n=ZMns Z ; {(n‘l"l)s ns}+ Ms (N+1p (1)
Now

n+1

(+Ip w f S ifum—“ 0{ Wl_l)a}, (2)

and |r,|<e for n=n,= no(e), n, being independent of s.
Hence for M >n,

N
[8[ Z {;zl——(n+1)°}+M°+ (N41)°
E

Pl
_<lsl [ 1 } €
o \ 35 N+1) it W
< 2¢ls|[/o-2e.
If |largs| < 3n—3, i.e. tfo < tan(im—8) = cot 3, we have
8]/ = \[(1+1?/a%) < cosecd.
N
Hence Z % < 2e(cosec 3-+1).
n=M
The right-hand side is independent of s, and tends to 0 with ¢;
and this establishes uniform convergence.
In particular, if the series is convergent for s,= o,-+ity, it is
convergent for 8 = o-it, provided that ¢ > a,. For we can choose
the & of the above proof so small that |arg(s—s,)| < 47—3.

9.12. The region of convergence of the series is a half-plane.
For we can divide values of o’ into two classes, those for which
the series is convergent for ¢ > o', and other values of o’. By
the above theorem, every member of the first class lies to the
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right of every member of the second class. Let o, be the real
number defined by this section. Then the series is convergent
for o > o,, divergent for o < g,

The number o, is called the abscissa of convergence of the series.

The series may converge for all values of s (e.g. a, = 1/n!), or
for no values of s (e.g. a, =n!).

The sum f(s) of the series is an analytic function of s, regular
for o > o,. Forevery term of the series is analytic, and any point
s with o > g is included in a domain of uniform convergence.

The questions of the convergence of the series, and the regu-
larity of the function, on the line ¢ = ¢,, remain open; and (as

in the case of power series) various different cases are possible.

We have, however, the following analogue of Abel’s theorem
for power series:

If the series is convergent for s = 8o, and has the sum f(s,), then
J(8) = f(so) when s s, along any path lying entirely inside the
region |arg(s—s,)| < 37—38.

This follows at once from the theorem of uniform convergence.

9.13. Absolute convergence. The region of absolute con-

vergence of the Dirichlet series is a half-plane.
For the series is absolutely convergent if the series

S 1]
nO’

is convergent. If this is convergent for a particular value of o,
it is clearly convergent for any greater value. Hence, as in the
case of convergence, there is a number & such that it is con-
vergent for o >4, and divergent for ¢ < 4.

‘Hence the original series is absolutely convergent for o > &, and
not absolutely convergent for o < 6.

The number & is called the abscissa of absolute convergence.

The numbers o, and & are not necessarily equal, i.e. there may
be a strip of the plane in which the series is convergent, but
not absolutely convergent.

This is shown by the following example. If o >1, we have

(1= )t = (g g+5+-) —2(G+5+-)

111 1
=F_§+§§—E+....
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The last series, as it is arranged here, is convergent for ¢ > 0
(and uniformly convergent in any finite region to the right of
o=0). For, by a well-known theorem (P.M. § 188), it is con-
vergent if s is real and positive. Hence, by the theory of
analytic continuation, the formula holds for ¢ > 0.

In this case gy=0,6=1.

In any case 6—oy < 1.

For if ¥ a,n~¢ is convergent, |a,|n~" is bounded as % — co,
and hence Z .,

ps+1+S

is absolutely convergent if 8 > 0, which gives the result.

In the above example, 6—oy=1, so that the strip of non-
absolute convergence may be as wide as 1, though it can be
no wider.

- 9.14. The abscissa of convergence. The formula for Gy,
analogous to the formula (§ 7.1) for the radius of convergence
of a power series, takes slightly different forms according to
whether Y a, is convergent or not. Let

Sy =0 +ay+...4a,,
and, if 3 a,, is convergent, let r, = a,,,;+a, ,+.... Let

— Tim 0815l log|s,| ___]_lr-nloglrnl
n—>0 logn n—> logn

2

B being defined only if ¥ @, is convergent.

Then 6y = o if 3 a, is divergent, and otherwise o, = .

In the former case o, >> 0, and in the latter case o, << 0; for
> a, is convergent if o, < 0.

(i) Let 3 a,, be divergent, and let s have a real positive value
for which the Dirichlet series is convergent. Let

b, = a,n"s, B, =b;+by+...4b,, By=0,
so that B, is bounded, say |B,| < B. Then

N N
Sy = g bnns = z (-Bn—Bn—l)ns

n=1

Z (18— (n+4 1))+ By Ve,
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N=1
Hence syl < B 3 {(n+1)*—ns}+ BN* < 2BN?,
n=1

loglsy| < slog N + log 2B,
and so « < 8. Hence a < q,.
A similar argument holds if ¥ a,, is convergent. If s has a real
negative value for which the Dirichlet series is convergent,

rv= Y bmt= 3 (B,—B, )
n=N+1 n=N+1
= g s —(n+4-1)}— By Ve,

sothat  |ry|<B z {nS— (n+1)3}+ BN* = 2 BN".

Hence, as in the other case, B < op-

(ii) Since s, = O(n*t€), and, if s is real,
n+1

_1____.1__._ du — —8—1
s <n+1)s—8f o = 007,
we have v n
N
S Cﬁ}_ Z Sp—Sp-1
n M+1%8 = : n
= n=M+1
N
1 1 Sy Sar
— S {— —_— - 1
; Rt cy sy L
N

= > O(nre=s-1)- O(N+e=)4- O(M*+<)
M+1

= O(M+=)=o0(1)
if >« and e is small enough. Hence the Dirichlet series is
convergent if s > «; hence o, < «. Since a,=r, ,—7, if > a,
is convergent, we find similarly that o, <<B. This proves the
theorem. '

If o =co, the series is nowhere convergent, and if f= —o0
it is everywhere convergent. This easily follows from the above
argument.

9.15. The abscissa of absolute convergence. We have

E_log({aﬂ‘f‘lazH‘ 'Ha'nl
R0 1ogn
mlog(lan+l‘+la'n+2l+ )
n—>w logn

Ql

or
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according to whether ¥ |a,| is divergent or convergent. This
is a particular case of the previous result.

Example. Determine o, and & for the series in which a, = 1, (—1)»,
n~t, (—=1)"n-3%, a*(0 < a < 1), logn, 1/logn, respectively; and for the
series in which a, = 1 (n a perfect square), a, = 0 otherwise.

9.2. Convergence of the series and regularity of the
function. The region of convergence of a power series is deter--
mined in a perfectly simple way by the analytic character of
the function which it represents—the circle of convergence
passes through the singularity nearest to the centre. There is
no such simple relation in the case of Dirichlet series. There
is not necessarily any singularity on the line of convergence,
and in fact f(s) may be an integral function even though the
abscissa of convergence of the series is finite. This is shown by
the above example of the series for (1—21-%){(s). This is an
integral function, since the pole of {(s) at s =1 is cancelled by
the zero of 1—21-%. But the corresponding series converges for
o >0 only.

On the other hand, the series for {(s), § 9.1(2), has a singu-
larity on its line of convergence. This is a particular case of the
following theorem:

Ifa,>0 for all values of n, then the real point of the line of
convergence 18 a singularity of f(s).

The proof is similar to that of the corresponding theorem for
power series (§ 7.21). ,

We may suppose without loss of generality that o, = 0. Then
if 8=0 is a regular point, the Taylor’s series for f(s), at the
point s =1, has a radius of convergence greater than 1. Hence
we can find a negative value of ¢ for which

=1 e (L—s) < (logn)a,,
—Zo v! f()(l)_; vl 1»21 n

But every term in this repeated series is positive. Hence the
order of summation may be inverted, and we obtain

f(s) = Z Z (l—s)"(logn

a0
= z In p1-a)logn — N %
n : “n°

m=1
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Thus the Dirichlet series is convergent for a negative value of
s, contrary to hypothesis.
9.3. Asymptotic behaviour of the functionas ¢ —co. The
function f(s) is bounded in any half-plane included in the half-
plane of absolute convergence.

For [f&) < o < Z
n=1 n=1
for o > a > &, and all values of .
If the series E’:’-‘
na'
n=1
is convergent, we can take a = ¢, and the function is bounded
in the half-plane of absolute convergence. This is true, for
example, of the function .
1
fs)= nzz m'
But in general the half-plane of absolute convergence is not
a region where f(s) is bounded, even if we exclude the neigh-
bourhood of singularities on the line o =& (see § 9.32).
Even in the half-plane of absolute convergence, the behaviour
of f(o+1t) as t - o0 is, in general, rather complicated. Take, for
example, a series with real positive coefficients in which

e
> a,n0 < a2~
n=3

for a certain value of ¢. Then

]

R(s) = z a,, cos(tlogn) S al_}_%_ S‘ a,

ne 2 £ n®
n=1 n=3

for ¢ = 2mm/log2, m=1, 2,.... Also
a’ a".
Rf(s) <a—Z24 > 2
n=3

for i = (2m-+1)n/log2, m=1, 2,.... Hence Rf(s) oscillates as
t — c0.
9.31. The following theorem is due to Dirichlet: Given N real
numbers ¢q, Cy,..., Cy, @& pOSitive inleger q, and a positive number =,
U
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we can find a number ¢ in the range <t << 7¢V, and integers
Tyseesy Ty, SUCh that

lio,—az, | < (n=1,2,.,N).

2

The proof is based on the argument that if there are m--1
points in m regions, there must be at least one region which
contains at least two points.

Consider the N-dimensional unit cube with a vertex at the -
origin and edges along the coordinate axes. Divide each edge
into ¢ equal parts, and thus the cube into ¢V equal compart- .
ments. Consider the ¢¥V--1 points in the cube

(Aey—[Ae;], Acg—[2c],. .. Aey—{Aey]),
where A takes the values 0, 7,..., 7¢”. At least two of these
points must lie in the same compartment. If they are given by
A=Ay, A=A, (}; < A,), then there are integers zy, 2,,... such.that
(AZ—'}‘I)Gn_xn < llq (’i’b =1, 2,.., N):
and so £=A;—A, gives the required result.

'9.32. We can now deduce the following theorem.

If f(s) = a,n=, where a, > 0 for every volue of n, and where
> a,n~? is divergent, the function f(s) is not bounded in the region
o>q, |t| =t,>0.

That there may be no singularities on the boundary of this
region is shown by the function {(s) =Y »~%, which is regular
except at s = 1. We make [t| >{, to exclude the neighbourhood
of the point § = &, where there is a singularity.

We have, for every value of N, and o >4,

f(,g Z e—-'dlogn+ 2 - hai S

N+1
a
n it %n
and so [fs)|>Rz g-itlogn__ —
IN+1
N a @
> z# cos(tlog n)— n_%
: n=1 N+1

By Dirichlet’s theorem there is, for given N and ¢, a number
t(r<t << mg") and integers Zy,..., Ly, sSuch that
|tlogn

o {<_ (n=1,2,.., N).
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Hence cos(tlog n) > cos(27/q) for these values of », and so

N RS
a 2 a
z ~Z cos(tlogn) > cos— z -z
n° q ne

9,
> cos 1'-;1 flo)—

Hence, taking ¢ = 6, say, so that cos2n/g =1,
X
Lf(g)—2 S Zn,
@)} > 1(0) \Z"
Given any positive number H, we can choose c—& so small
that f(o) > 4H (since f(c) - 0 as o - §). Having fixed o, we
can choose N so large that

NT1
Then |f(s)| > H, and the result follows.

9.33. In the half-plane of convergence, the function may, for
certain values of ¢, become as large as a power of . For example,
the function f(s) = (1—21-%){(s), referred to in § 9.13, satisfies
the inequality l f(s)l > Api-o

for some arbitrarily large values of ¢, and values of o between
0 and }.*

On the other hand, the function cannot have values greater
than every power of £. This is shown by the following theorem.

We have fls) = O(jef~te-o0+<)

as |t| = oo, for any value of o between o, and s4+1; and also
uniformly in the half-planc to the right of any such line.

Suppose first that Y a, is convergent.- Then a, and s, are
bounded. Now (§9.14 (1))

Nan_ia,n is {l_ 1 Sar $ B
Zv’e? Tl gl <n+1>s}—(M+1)s (I

If o > 0, the last term tends to zero as N — 00, and we obtain

M -
BTN N LR B
fe) = Z ns+gls" {n (1) (M1
* See Miscellaneous Examples, no. 18.
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Hence, by §9.11 (2),if 0 <o <1,

lf(3)|<Az +A MZ{ - . )}+(M:1_1)u

M+1
< AM-o4 AtM-o+ 4.
Taking M = [¢], we obtain
fO=0#") (0<o<1),

and similarly f(s) =O0(f~%) (0<« <1, 6>>0). In the general
case, the series > @,n~* is convergent for s=o,+¢, and we
obtain the above case by changing the origin to this point.
Hence the general result follows.

9.4. Functions of finite order. At this point we adopt a
slightly different point of view. We have so far considered f(s)
as being defined by the series 3 a,n~%, and we have conﬁned
our attention to the half-plane of convergence of the series. It
may, however, be possible to continue the function outside this
half-plane. The function, so defined, may be regular in a wider
half-plane; or it may be regular in a wider half-plane except for
a certain finite region. We shall now consider the relations
between a function defined in this way, and the Dirichlet series
from which it originated.

The theorem of §9.33 suggests that it will be particularly
interesting to consider functions which satisfy the condition

f(s) = O([t}4)
for some positive value of 4. A function which satisfies this
condition for a particular value of ¢ is said to be of finite order
for that value; if the condition is satisfied uniformly for
0y <0< 0, we say that the function is. of finite order in
this strip. Similarly we can define a function of finite order
in a half-plane ¢ > o;.

We have seen that any function defined by a Dirichlet series
is of finite order in'a half-plane included in the half-plane of
convergence. It may be of finite order outside this half-plane;
for {(s), for example, o, = 1; but (§ 9.13)

()= a-2-23 W o5
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and hence, by § 9.33,
LE)=O([tjt-o)  (0<o<1).

9.41. The function p(s). The lower bound p of numbers £
such that f(s) = O(|t[¢) is called the order of f(s) for that par-
ticular value of 6. Thus p is a function of o.

The main properties of the function u(c) follow from the
Phragmén-Lindelof theorem proved in § 5.65. Suppose that f(s)
is regular and of finite order for o, <o <oy, =1, and let
ploy) = py, 1(03) = py. Then, if € is any positive number,

floy+it) = O(tm+e),  fla,--it) = O(tr=+e).
Hence, by the theorem referred to,
[ =00 (0, <0< ay),
where k(o) = (02_0)0"1‘1"5)‘]‘(0—01)(#2+€)_
Go—0,

Making € - 0, it follows that

poy< PTTEmo o ooy )
Hence fhe function u(o) is convex downwards.

Tt follows also that u(o) is continuous (§ 5.31).

Secondly, u(c) = 0 for sufficiently large values of o; for since
f(s) is bounded for ¢ > G, (o) < 0 for o > &; on the other hand,
if @, is the first coefficient in the Dirichlet series which does

not vanish, and ¢ < o < o, ©
© - ~ [
i(lm[ la‘n! ia‘mll x—0 {an!
ol == > E e S L
n=m+1 R=m-+1

which can be made positive by taking o large enough. Thus
|f(s)], considered as a function of £, has a positive lower bound
if o is large enough. Hence p(o) > 0, so that in fact u(c) = 0.

Ifnow (o) were negative for any value o, in the region where
f(s) is of finite order, it would follow from (1), with o, so large
that u, =0, that (o) <0 for o; < 0 < 0,; and we have shown
that this is impossible if o, is large enough. Hence p(o) is never
negative.

In particular, u(s) = 0 for 6 > &; for we have already shown
that u(c) <0 for 0 >6.
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Again, take o, > & in (1), so that p, = 0. Then if u, >0,

o) S - #1 <p1  (oe>0y).

Hence u(s) is a steadzly decreasmg Sfunction of o.

9.42, Perron’s formula. We next require an expression for
the sum s, as an integral. This is a particular case of ‘the
following theorem.

If = is not an inieger, ¢ is any positive number, and ¢ > Gy—¢,
then c+io

ns =5 f fis +w) 2 . (1)
n<z c—in

Suppose first that ¢ >&—c. Then the series for f(s+w) is
absolutely and uniformly convergent, and we have

1 c+il c+iT
xw

N — d -:_- _— AL C R, ]

s [ferw S a=g [ 3 S

e—iU c—'LU

= 53;7, Z n® f (n\)w Lf:f ()

-~ ATT

Now by § 3.126

¢-+i0
1 j’ gwdw__l (n < x)
2mi n, w 0 (n>z).
¢—i®n
1t is therefore sufficient to prove that we can replace U and T'
in (2) by co; that is, we want
© wo-+iT

lim In z\rdw _ 0
T-—» né 7n —’I;; -
c+iT
with a similar result for U.
Now for a fixed z,
e+t e
f (—‘) @-— —( )C'{"LT 1 1 z 1
n) w  \n logm/n)(c+iT)+logx/n f (’7&) w?
1T : c+iT

ol 1 dv |\ /1
=0(zeg)* O(E [ c“*z+va) =0(ze7)
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H vdw_ (1 1ol
ence z ns f ( ) @w O(TZnU%'C 4
n=1 i n=1

and the result (for o > 6—c) follows.
Suppose next that gp—c < o < 6—c¢. Let a>§—o, and con-

sider the integral 20
f fls+w) - dw

taken round the rectangle formed by the lines R(w)=e¢,
Rw)=q, I{w)= —U, I{w)=T. By the theorem of § 9.33, the
integrand is O(t_(g+¢_g“)+€)’

and so the integrals along the horizontal sides tend to zero as
U - o0, T - co. The integrand is regular inside the rectangle,
and so, by Cauchy’s theorem,

e+iw i atio
— J. f(,se—i-w)x—wdw——:i f f(s—l—w)zﬁdw.

Since o > G—a, the right-hand side is equal to Z a,n=5, by the
first part. This completes the proof.
The particular case s =0 is

¢+io

S o= _1_ f(w) P (6> ay) 3)

This is Perron’s formula.
9.43. There are several other formulae of the same type as
Perron’s. One which we shall use later is
© 1 ‘ctin
o w
Dnogmd — w —w
> e . J' r( A) fls+w)s~ dw,
n=1 c—1i0
where 8 >0, A>0, and ¢>0, ¢ >&—o. To prove this, write
the right-hand side as
ctHio

i | T(5) 2 e

c—i®

and observe that we can invert the order of summation and
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integration by ‘absolute convergence’. We therefore obtain

¢+i0

ns ‘)mA f ( ) (nd)™ du,

c—io
and the result follows by the calculus of residues.

9.44. The theorem of § 9.42 enables us to obtain a result of
the opposite type to the previous ones—we can pass from the
order of the function to the conver gence of the series.

The Dirichlet series is convérgent in the half- plane where f(s)
s regqular and u(o) = 0.

Let s be a point in the interior of this half-plane, and let § be
apositive number so small that c—38 isstillin the same half-plane.
Let ¢ > G—o+1 (so that the simpler case of the theorem of § 9.42
can be used). We deform the contour of § 9.42 (1) into the form

¢c—ioo, c¢—iT, —38—1iT, —8-+¢7, ¢+, c+ico,
where T > |t|. In doing so we pass over a pole at w = 0, with
residue f(s). Hence

DERC

n<e
e—iT —3—iT —=3+iT c+iT c+io

.__;.{ j + + f + f }f<s+w)’“"—“’dw.
77y
¢—io0 c—iT —8—iT —3+iT c+il

Since we are in the half-plane where u(c)=0, we have
f(s) = O({t|¢) for every positive . Hence

~3+iT T
flot+0) 2 dw= J O{(lt1+Io1)S \/2;2 _f”z) O(z-4Te),
~§—iT -7
c+iT w
and f fls+w) % dw = f O(T*) %c du = O(@cT1).
—s%ir 5

A similar result holds for the integral over (c—i7', —8—iT).
Finally, as in § 9.42,

cj‘mf(s—!-w) —dw= i a,: ( )
c+iT ”—ln

o3 ki)



THE MEAN-VALUE FORMULA 303
We may suppose without loss of generality that  is half an
odd integer. Then :

llogz/n| > log{(n+1)/n} > A/n.
Hence the above expression is

2 lay] ol
O(T MZ o 1) = 0(7)’
since o+¢c—1 > 5.

A similar result holds for the integral over (c—i0,¢c—iT);
and adding; we obtain

g a,n-—f(s) = O(x—3T¢)+- O(x¢T<-1),

Taking 7' = 2%, this is
O(x—8+2ce) + O(x-c+2.cs),

which tends to zero as # - o0 if € < §/2¢ and € < }. This proves
the theorem.

A more general theorem of the same type is given in Landau’s
Handbuch, §:238, Satz 57. )

9.45. Let o, be the abscissa limiting the half-plane where
f(s) is regular and of the form O(f¢). Then we have proved that

0K 0. X3

It is not easy to give an example where these numbers are
all different. There is some reason to suppose that, for the
function (1—21-%){(s), we have o, = 1, so that the three numbers
are 0, %, and 1 respectively. But this has not been proved.

9.5. The mean-value formula. If o > ¢,
}iﬁﬁf (s dt = z lanlz.

Ror fOF= 3 5> o
l91,1";‘1’ +zzm"n"( ) ’

the series being absolutely convergent, and uniformly con-
vergent in any finite -range. Hence we may integrate term by
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term, and obtain

7
1 |2, mOn 28i0(T log n/m)
ETJ |fls)® di = Z s+ Zz mn® 2Tlogn/m ~

-7

The factor involving 7 is bounded for all 7', m, and n, so that
the double series converges uniformly with respect to 7'; and
each term tends to zero as 7' - co. Hence the sum tends to
zero as T — oo, and the result follows.

9.51. The mean-value half-plane. Let o,, be the least
number such that f(s) is regular and of finite order, and the
mean-value formula holds, for every o greater than o,. We
shall call the half-plane o > o, the mean-value half-plane. - This
expression is justified by the following theorem:*

If f(s) is regular and of finite order for o > «, and

T
5 f \flerit)|2 dt M)
T

18 bounded as T — oo, then

f | floit)ft de= 2 s @)

for o >a, and umformly in any strip o < oy < 0 < 0y
Starting with the formula of § 9.43, and moving the contour.
to R(w)= a—o, where o >, we pass a pole at w=0, with
residue A f(s); and if A > oc—a, no other pole is passed. Hence
a—0o+1io

i pr % g-md —f(s) = 2_7( J. ( ) fls+w)s—» dw

=1 a—g—1io

=o{aw—a f e=Al| flo it v)}] dv}

~—0

by the asymptotic formula for the I'function (§ 4.42, ex. (i)).
Now if |t| < T, ‘

fe—ﬁ”[ flotit-Fo)}| do= o( fe—Ava dv) — O(e-47),

2T 2T

* Carlson (1). The theorem is analogous to Parseval’s theorem for Fourier
series (§ 13.54).
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and a similar result holds for the integral over (—oo0, —27').
Also, by Schwarz’s inequality,*

2T
{ f e~ 4| flati(t+v)}| dv}
- ar Py
< [ el flatitol}2do [ e do
—-27 —2T
T
<A f =40 flat-i(t-Lv)} |2 dv.
Hence -

| 2 eudl )

_ 27
< A8%-2 [ o) flat-i(t+o)} |2 do + 4520247,
—27
and integrating with respect to ¢ over (—T,T),

f ]Z - n o—nd)' -—f(s)] dt

<A82°—2°‘fe-4'”’ dv J' [ Flekile-o)}[2 de -+0(320-22).
Now

T'+v
[ 1flatit+o}rdi= [ |ftinpdi=o0T)
-T -T+v
uniformly for |v| <27, Hence

o [[S2eo—sef

uniformly with respect to 7'. Hence}

T . p ,
o7 | IZ o o ‘”} —{517 [ECh dt] = 0@ (3)
T ) )

uniformly with respect to 7'.

* See P.M. Ch. VII, ex. 42; or § 12.41 below.
1 By Minkowski’s inequality (§ 12.43), but only in the case where p= 2
and the functions are continuous.

dt = O(32-2)
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If 8> 0, the series Za,nn"se“”w is absolutely convergent,
and so, by § 9.5,

Taking, say, § = 1, it follows from (3) and (4) that

EITJ fs) 2 de< A.
T

Hence by (3), with any positive 8,
> lonl e-aa < 4,

and $o, since 8 may be as small as we please,

|2, |?
n2o

is convergent, and

z Ianl e_z(nS)" z la’nlz.
3—-)0 .n20

Given ¢, we can choose 6 so that the absolute value of the
left-hand side of (3) is less than e, for all values of 7', and so

that
l [an[2 e_z(nsy\} { |, |2}
o T n2e

Having fixed 8, we can, by (4), choose 7} so large that

T
]
1 By i |2 l? o\t
-7

for T > T,. Then

T
3
1 e gl [ 1210
4
for T > T, and the theorem is proved.

9.52. If | f(s)|? has a mean-value for o = «, then the Dirichlet
series is absolutely convergent for o > a+%. In symbols,

<L o,+1.




THE MEAN-VALUE HALF-PLANE 307
It follows from the above theorem that

la.. 2
2, i
is convergent for every positive e. Now
Sl S 1o S 1
{ Z e } < z n20+2e Z n2o—2a—2¢
n=1 n=1 n=1
and this is bounded if ¢ is small enough and o—a« > 4. This
result was obtained in another way by Hardy (10).

9.53. If f(s) is bounded for o> a, then Y |@,|*n~** is con-
vergent; if |f(s)| < M, then

@, |? 9
Z -ng“‘ < M.

This also follows from the theorem of § 9.51. For

Z!Zz _11m—-f{f (6)[2 dt < M

for every ¢ > «; and making ¢ — « the result follows.

If we assume that f(s) is bounded, the analysis of § 9.51 can,
of course, be very much simplified.

9.54. Another consequence of these theorems is that a strip
in which f(s) is bounded, but in which the Dirichlet series is not
absolutely convergent, can be at most of breadth }.

9.55. The Dirichlet series converges in the half- plcme 1n which
f(s) is regular and of finite o'rder and

lim f \f(s)]2 de

exists. That is, oy < oy,

We have first to deduce an ‘order’ result for f(s) from the
given mean-value result

We have f(3) = O(|t]}) uniformly in any smp o< o< B, where
o >0

Let 8 be a point of the strip («, B), R a number less than 1 and
less than a—o,,, independent of £. Then, if 0 <p< R,

f f@) dz Tf(s—i—pei*’s) dg.

lz—SI =p
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Hence, by Schwarz’s inequality,

O < o f a4 f flo+pei®) |2 dp = o f | fls-+pe]? dg

Multiplying by p, and integrating with respect to p from 0 to
R, we have R om

YEIOIP < [ [ Ifstoehit dpds

o+tR i+R o+ R +1

1 . 1
<o [fetiy)Pdedy <o | do | |fe+iy)? dy.
2"0;['1’ t;’l; 2 GJI; —-ltI-[I
l#l4+1
Now [ etipPdy= o

—If~1
uniformly in z; hence
1R\ f(s) |2 = O(),

which gives the required result.
We use the same contour integral as in §9.44, s and o-—S
now being in the half-plane ¢ > s,,. Then

~3+iT T
v | fls+w)|? v
| fe+m o <“”‘3{_1, V&) d”l :/zﬂ“az‘)}

~§—iT

Let $(0) = [ |fo+u-+iy)[? dy = O().
Then ’

Tk $(T) 24(v)
J<82+w2 v=Terrs T f o 7

0@ . _
—0Q)+ f St = O(log T).
Similarly the integral over (—17',0) is O(log T'). Hence
| 8T »
f(s+w) % dw= O(z-3log T').
—3—1iT ’
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Also, by the lemma,

c+iT c .
J' flo+0) 2 do = f O(T) ?‘q_f du= 0@ T-Y),
—8+iT -8

with a similar result for the integral over (c—¢7", —8—147T'). As
in § 9.44, the remaining integrals are O(z*7"-). Hence

> 2t_f(s) = O(a-3log T)+0@T ),

n<z
and, taking 7' = 2%+ this tends to 0 as z— o0, so that the
result follows.

9.6. The uniqueness theorem. A function f(s) can have
at most one representation as a Dirichlet series. More pre-

cisely, if ® )
D=2
n# ns
1 1
in any region of values of s, then a, =b, for all values of n.
For the series Y (a,—b,)n~* is uniformly convergent in a
region including part of the given region and extending arbi-
trarily far to the right; and so its sum is the same analytic
function, viz. 0, in the whole region. But, if m is the first value
of n for which a, #£b,,

Iz (an_bn)n_sl > Iam*bmlm—o—gl_llan—bnlnba:

and, as in'§ 9.41, this is positive if o is large enough. This leads
to a contradiction, and so proves the theorem.

9.61. The zeros of f(s). The above argumént shows that
f(s) always has a half-plane free from zeros.

The problem of the distribution of the zeros of any given f(s)
is usually a very difficult one, and the results for different func-
tions may be very different. For example, it is supposed that
all the complex zeros of the function

1 1 1 _

18 2¢' 8
lie on the lines o =1 (zeros of 1—2'-%) and o = } (zeros of {(s) );
the zeros on o = 1 are easily identified, but the remaining state-
ment has never been proved.

On the other hand, it is known that the function {'(s)/{(s),

= (1—219){(s)
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which is represented by an absolutely convergent Dirichlet
series for ¢ >1, has no zeros in a certain half-plane o> &
(E > 1), and zeros on lines o = o’ which are dense everywhere
in the interval 1 <o < E.

It is interesting to compare the general problem with the
particular case where a, =0 except when =« is a power of 2.
Then the function is of the form

-]
b, &
fle)=> sa= 3,
n=0 n=90
where z.= 2-%. The series is a power series as well as a Dirichlet
series. To each zero 2, of the power series corresponds a sequence

of zeros
lo 2
s,,.u=——g'§;';‘-—3ﬁ‘1’—’ (b =0, £1, £2,..)
of f(s). If 2, is the zero of smallest modulus (other than 0) f(s)
has no zero to the right of the line
__log 1/1z|
log 2
there being an infinity of zeros on this line.

9.62. The function N(o,T). Let £, be a positive number
such that f(s) is regular for ¢ >4, and o sufficiently large, and
let N(o,T) be the number of zeros o'+t of f(s) such that
¢’ >a,t,<t' <T. Then we have the following theorems:

9.621. If f(s) is of finite order for o = a, then
N(o,T)=O0(TlogT) (o>a).

We can find a number 8 so large that |f(s)| has positive lower
and upper bounds on the line o= . Let 0 <38 < }(B—a). We
apply Jensen’s theorem to the circle with centre f+4ind and
radius f—a. If n(r) is the number of zeros of f(s) in the circle
[s—(B+1m8)| < r, Jensen’s theorem gives

H

B—a 2m . '
[Mar—o f log|f{f-+inb+ (B—0)e| 48 —log] f(8-+ind)
Now f(s) = (tA) for ¢ > «, and so

log| f{B+ind+ (B—a)eif}| = log|0{(n8+ﬁ—a)*“}[ < Klogn,
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where K depends on w, B, §,... only. Also log|f(8+ind)| = O(1);
hence

B-«

f 71@ dr < K logn.
r

0

But

B—a

B—«
J. ’i(:_) dr > n(ﬁ‘“—a)ﬂ f %Z > Knfp =

and n(f—x—3) is, if § is small enough, greater than the number
of zeros in the strip

o = at+28, (n—3)8 <t < (nt+-4)8.
Denoting this number by v,, we have therefore
v, < K logn.
Hence N+28, 7)< 3 v, <ATlogT,

1o/ S<T< TS
and the theorem follows.

9.622. If f(s) is bounded for ¢ > «,
N(o,T)=O(T) (o> a).

The proof is similar to the previous one, but here the factor
log T' obviously does not occur. The example at the end of
§ 9.61 shows that we may have N(c,T) > AT.

9.623. If f(s) has a mean value for ¢ = o, and is of finite order
foroza then N Ty _O(T) (0> a).

We use the following lemma.:
If ¢(t) is a positive continuous function in (a,b),

f log $(t) di < log{ f (0) dt}

Divide the interval (@,b) into n equal parts by the points
a = Ty, Xy;..., T, =0b. We have

(Bl (@) (e, P < (B + (@) + .+ blo .
Hono > logd(w) <log [ > ¢(w.),

X
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ie.

b > e, lopd(w) <log [ 1 > (o—,0)4(z,).

Making n — co, the result follows.

The theorem may be deduced from Jensen’s theorem by an
elaboration of the argument of § 9.621, but it is more con-
venient to use the theorem of § 3.8. Applying it to the function
f(s) and the rectangle («, 8y, T'), we have, on taking real parts,

B8 T
2 [ N, T) do = f log| flat-it)| dt —

— j log|f(B+it)| dt + f arg f(o-+iT) do — f arg f(o+ity) do.

(1)
Applying the lemma to the first term on the right of (1),
we have

f log| fla-t-it)] dt__ 11 f log| flatit)|? dt

<%log{T_l__t0f 1f(cx+it)12dt}<A

by hypothesis. Thus the term in question is less than A7.

Secondly, as in § 9.621, log|f(8+it)| is bounded if £ is large
enough. Hence, if B is suitably chosen, the second term on the
right of (1) is O(T").

To deal with the third term, suppose first that f(s) is real for
real s. We can take B so large that R{f(s)} does not vanish on
o= f. Then, as in § 3.56, argf(s) is bounded on ¢ =g, and, on
- t="T, argf(s)= 0(g), where ¢ is the number of times R{f(s)}
vanishesoné=T,a<o<B. Nowont=1T

R{f(s)} = +{f(o+iT)+fle—1T)} = g(o),

say, and g is the number of zeros of g(z) on the real z-axis such
that a <z<<B. Since g(z) = O(T4), it follows from Jensen’s
theorem as in § 9.621 that ¢ = O(log T'). Hence the third term
on the right of (1) is O(log 7').
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If f(s) is not real on the real axis, we can consider instead

the function =
file) =2 22> 2= f(s)fle)

and apply the same proof to this.
Fmally, the last term on the right of (1) is a constant. Hence

f N(o, T) do = O(T).

a+d

But J' N(o, T)do > j N(o, T) do > 8N (a8, T),

and the result now follows.

9.7. Representation of functions by Dirichlet series.
What sort of function can be represented by a Dirichlet series ?

It would take us much too far to give anything like an
adequate answer to this question, but we can give some indica-
tions. It is not difficult to see that a Dirichlet series can only
represent functions of a very special kind.

If f(s) is representable by a Dirichlet series, it must, in the
first place, be regular and bounded in a certain half-plane (viz.
o = 6-+¢). Further, it must have a mean-value

T
lim f flotit)P de
-7

for all sufficiently large values of o, and the value of the limit
must decrease steadily as o increases.
Again, if f(s) =3 ann-s and 2 is real, then for o >¢&

by [roram i [(S a5 55 )

a, 2sin(Tlogz/n)

=%F 2 as 2T logafn

the term a, occurring if z is a posmve integer only. The last
series, being uniformly convergent in 7', tends to zero as T' — co.
Hence

(z a positive integer),
(otherwise).

f floyor de =2
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This, therefore, is a necessary condition for f(s) to have the form
> a,n~¢ (the formulae are due to Hadamard). It is, however,
not sufficient. But it shows what special properties a function
representable by a Dirichlet series must have.

If the Dirichlet series reduces to a single term, say f(s) = ak-s,
then f(s) is periodic, with period 2miflog k. The general Dirichlet

series with period 2ni/log k is Z b, ks, If we insert other terms,

the property of periodicity d1sappears but f(s) always retains
a certain more general property, -which resembles that of
periodicity, and any such function is said to be ‘almost periodic’.
It is in the study of almost periodic functions that answers to
the question which we have raised are to be found. We have
no space to go into this question further. But we may say
roughly that, if an almost periodic function takes a certain
value, it repeats this value, not exactly, but approximately, an
infinity of times; and the points where it does this are distri-
buted in much the same way as the periods (a, 2a, 3a....) of a
periodic function.

The theory of almost periodic functions is due to H. Bohr

(1), (2), (3)-

MISCELLANEOUS EXAMPLES

-]
1. Prove that, if ¢(z) = 3 a,e"*, then

#(s) _1,_(15 f w1 () deo

(i) foro > 0, ¢ > g, (ii) for ¢ > 0, o > o,.
2. If 0 < 6 < 2, the function f(s), defined for o > 0 by the equation

Z\ gind
& 78!
oy => 2,
- . n=1
is an integral function.
[Use ex. 1 and proceed as in the case of {(s).]

8. The functions defined for o > 1 by the series

o 6ain.5 & eoillogn)?
Zn‘ (a>0,0<b<1l), z (@ > 0),

nl

n=1

are both integral functions. [Hardy (7), (10).]
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4. A function represented by a Dirichlet series cannot tend to a limit
(in the half-plane of absolute convergence) as t— o, unless it is a
constant.

-]
[If fi6) =3 a;n~, then for ¢ > 5

hm—— ~I‘f(s) dt = a,, hm_f [fs)2dt = 3 a2

Hence, if f(s) — a, a, =a, > la? = ]a] .
Hence las2+lag)2+... =0,
ife. a; = 0, ag = 0,.... Hence f(s) = al.]

5. Show that ®
1 win)
Z(_" 2 T (0 - 1),
n=1

where pu(l) = 1, u(n) = (—1) if » is the product of r different primes,
and otherwise u(n) = 0. Show also that

Us) _ 5 et
[(@s) v
n=1

[The infinite product for {(s) is given in § 1.44, ex. 1.]
6. Verify the formulae*

L ) LEF N dnd) e~ )
{&(s)} "'Z PR 7(2s) _21 n Z(2s) = Z PP

n=1 n= n=1

where d(n) denotes the number of divisors of n, and ¢ > 1.

[If the expression of n in prime factors is

n = pThpP...prr,

then d(n) = (my+1)(my+1)...(m,+1).
d(n2) < (2m+1)
Hence =
z " ].—me—o 7
' rd(n (m-+1)2
and z n z pm ]
» m=

7. Verify the formulae

L(s)(s—a) = z E‘;—(L?—) (6>1,0>a+1)s

n=1

* A number of other formulae of this kind are given by Pélya and Szegs,
Aufgaben, VIII. Abschn., nos. 49-64.
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and¥

o) s—a)l(s—b)(s—a—b) _ i a,(r)oyn)

L(2s—a—1b) "

n=1
(c>1,0>a+1,0>b+1,0>a+t+b+1),
where ¢,(n) denotes the sum of the ath powers of the divisors of n.
[The second formula follows from the identity

l_pz-,‘b-—‘a

(1=p=*)(1—p*=)(1—p**)(1 —p*+*%)

_ 1 & (l__p(m+1)a)(l__p(m+l)b)
T T—(1—2) ; e ]

8. Let dyn), where k = 2, 3,..., denote the number of ways of ex-
pressing 7 as a product of k factors, the order of the factors being taken
into account. Then

U~ o o> 1)

n=
L
n I I i—p—
n=1 »
where p runs through all prime numbers, and F,(z) is the Legendre

polynomial of degree n. [Titchmarsh (8).]

9. Show that, if f(s) has the period 2mi/logk, Hadamard’s formulae
for the coefficients a, (§9.7) are equivalent to Laurent’s formulae for
the coefficients in a power series.

10. A necessary and sufficient condition that a function f(s) should

be of tae form ©
>
kne
n=0

is that f(s) should be regular and bounded for sufficiently large values
of o, and have the period 277/log k.

and

11. If a, = 0 unless n is a power of &, then

Gy =0 =0, = G

o0
12. The function f(s) = z 2-m" has the line o =0 as a natural

boundary. [See § 4.71.]

13. The function f(s) = ¥ p~* where p runs through all prime num-
bers, has the line o = 0 as a natural boundary.

[This is a more recondite example than the prev:oug one! see Landau
and Walfisz (1).]

* Ramanujan (1). B. M. Wilson (1).
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(s) Z &:“)_}'
n=1

is meromorphic if 7 =1, or if r =2, k = 2; for other values of r and
k it has the line ¢ = 0 as a natural boundary. [Estermann (1).]
15. Show that, for the function {(s),

wo)=0(>1), =1—20 (0 < 0),
and that p(c) < l—ofor0<o < 1.
[The result for o < 0 follows from the functional equation for L(s)

The actual value of p(o) for 0 < ¢ < 1 is not known.]
16. Calculate the mean value

14. The function

11m-—f|f SPd (o> 1)

for the functions f(s) = (s), 1 /§ , {Us)P?

17. Show that, if f(s) is unbounded on any line ¢ =« in the half-
plane where it is of finite order, it is also unbounded on every line
¢ = B < o in the same half-plane.

18. Show that the function f(s) = (1—2'-*){(s) is unbounded on every
line ¢ = < 1; and that &"—¥f(s) is unbounded on every line o =,
where 0 < ¢ < .

[The theorem of § 9.32 shows that {(s), and so also (1—2-#){(s), is
unbounded for ¢ > 1, [f] > 1. The theorem of § 9.41 then gives the first
result, and the second result then follows from the functional equation
for {(s), § 4.44, and the asymptotic formula for the I'-function, § 4.42.]

k3
19. If s, = > @, is bounded, then f(s) = 3 a,n~* is regular for ¢ > 0;
v=1
and, if f(s) has a pole on ¢ = 0, it is at most of the first order.
[If B(u) E @,, we have

=

du s
fls)y=s fégl-d = 0( Juoﬂ) 0(5)-]
1
20. If s, ~ n, then f(s )~ 1/(.3-1) as s —> 1 by real values greater
than 1.
If s, ~ nlog*n, where k is a positive integer, then
k!
fis) (‘s":l—)k—_;l-



CHAPTER X

THE THEORY OF MEASURE AND THE
LEBESGUE INTEGRAL

10.1. Riemann integration. In the theory of analytic
functions we have used the familiar definition of an integral
due to Riemann. In the theory of functions of a real variable,
however, Riemann’s definition has been almost entirely super-
seded by a more general one, due to Lebesgue.

Lebesgue’s definition enables us to integrate functions for
which Riemann’s method fails; but this is only one of its
advantages. The new theory gives us a command over the
whole subject which was previously lacking. It deals, so to
speak, automatically with many of the limiting processes which
present difficulties in the Riemann theory. At this early stage
it is difficult to say anything more precise.

Let us begin by recalling the definition of the Riemann
integral of a bounded function. Suppose that f(z) is bounded
in the interval (, b); we subdivide this interval by means of the
points x,, Zy,..., Z,, 80 that

A=y <y < .. <%Zp_y <%, =Db.
Let m,, M, be the lower and upper bounds of f(z) in the interval
z, <<, and let

n—1
§= zm Zy11 x 8 =v§0Mv(xv+1—xv)'

When the number of division-points is increased indefinitely so
that the greatest interval z,,;—=, tends to zero, each of the
sums s and S tends to a limit. If the limits are the same, their
common value is the Riemann integral

b
[ fi@) da

In certain cases, e.g. if f(z) is continuous, we can say definitely
that this integral exists.

Suppose in particular that f(z) takes the values 0 and 1 only,
say f(z) =1 in a set E, and f(z) = 0 elsewhere. Then it is easily
seen that s is equal to the sum of the lengths of those intervals
throughout which f(x) =1, ie. intervals consisting entirely of
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points of E; while § is the sum of lengths of intervals which
include any point of Z. If the set £ consists of a finite number
of intervals, there is no difficulty in proving that s and § tend
to the same limit, viz. the sum of the lengths of the intervals
of E.

The Riemann integral of such a function (f(z)=1 in Z,
0 elsewhere) may be called the extent of the set E. Extent is
thus a generalization of the length of an interval. The extent
of E, if it exists, is written e(E) so that

E%Jﬂmh

Whether the extent exists or not, the limits of s and S exist.
These limits are called the interior and exterior extents* of E,
and are written e,(E), e, (E).

The function f(x) is called the chamctemstw furiction of the
set E. |

It is easy to define a set which has no extent. Let E be the
set of all rational values of z in (a,b). Since every interval con-
tains both rational and irrational numbers, we have m,= 0,
M,=1, for all modes of division and all values of v. Hence
§=0, S=b—a, and consequently

((B)=0, e(B)=b—
The extent of this set is therefore undefined, and the charac-
teristic function f(z) has no Riemann integral.

In the general case we may say that the definition of the
extent of £ depends on the consideration of certain sets of
intervals related to E the number of such intervals being
always finite.

Lebesgue’s generalization is in the first place a generalization
of extent; and it consists fundamentally in removing the restric-
tion that our sets of intervals must be finite. Before we can
introduce it formally we must make some further remarks about
sets of points.

10.2. Sets of points. For the fundamental ideas concerning
sets of points we refer to Hardy’s Pure Mathematics, Chapter I.
We usually denote sets of points by Z, Ej,... and suppose

" * The exterior extent is sometimes called the content.
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them all to lie within a finite interval (,5). We denote by CE
the complement of E, i.e. the set of all points of the interval
(a,b) which do not belong to E.

If E, and E, are two sets, we denote by E,+ E, the set of
all points belonging to E, or E,, and by E,E, the set of all
points belonging to both E; and E,. The notation is suggested
by the fact that, if f,(x), fy(x) are the characteristic functions
of E, and E,, then f,(x)fs(x) is the characteristic function of
E.,E,; while, if E; and E, have no common points, f(z)-+f,(z)
is the characteristic function of E,+ E,.

Note that C(E,+E,) = CE,.CE,.

The notation extends in an obvious way to any finite number
of sets; also, if there are an infinity of given sets E,, E,,..., then
E,+E,+... denotes the set of points belonging to any of the
given sets, and E,E,... denotes the set of points belonging to
each of the given sets.

By E, < E, we mean that every point of E, is a point of E,.
Two sets are said to ‘overlap’ if they have common points.

An infinite set of points is said to be enumerable if it is possible
to define a one-to-one correspondence between the points of the
set and the integers 1, 2, 3,...; that is, we must be able to arrange
the points in a sequence z;, Z,, Z,,... such that every point
occupies a definite place in the sequence. For example, the set
of numbers 1, §, %, 1,... is enumerable; so is the set }, 1, 1,....

The set of all proper rational fractions is enumerable; for we
can arrange them as follows:

taking the denominators in order of magnitude, then the
numerators.

The ‘sum’ of two enumerable sets is enumerable; for if
consists of the points z,, z,,..., and £, of £, &,,..., then all points
of E,+ E, are given by the sequencé

xl’ 61, x2a 52)'“ .

A similar argument applies to any finite number of enumer-
able sets. Further,he sum of an enumerable infinity of enumerable
sets 1is enumerable; for let the sets be £, E,,..., and let E,, consist

of the pointa
P xl,'m xZ,n" xm,m
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We can arrange the double infinity of points z,, as a single
infinity in various ways, e.g. by taking together points for which
m+n=1Fk (k=2,3,...), and in each such group taking m in-
creasing; thus

1,15 T1,25 %2, 15 1,35 T2, 95 £3,15 L1, 40000«
This proves the theorem.
Finally a sub-set of an enumerable set is enumerable. For any
sub-set of xz,, z,, «;,... clearly has a first member, a second

member, a third member, and so on, and this gives the requlred
enumeration.

10.201. The reader might begin to suspect that all sets were
enumerable; but this is not the case. The set of all numbers
between 0 and 1 is not enumerable.

To prove this, suppose on the contrary it were possible to
arrange all such numbers in a sequence z,, Z,,.... Suppose each
such number expressed as an infinite decimal (‘terminating’
decimals end with an infinity of 0’s; we exclude a recurring 9).
We then form a new decimal ¢, such that, for every value of n,
the nth term in the decimal for ¢ exceeds by 1 the nth term in
the decimal for z,,if it is 0, 1,...,7, and is 0 if it is 8 or 9. This
rule defines ¢ completely, and ¢ does not end with a recurring
9. But £ is a number between 0 and 1, and is different from
any of the numbers x,. This contradicts the assumption that
the sequence x, contains all the numbers between 0 and 1.

A similar argument applies to any interval. We call all the
points of an interval a continuum. Our result is that a continuum
18 mot enumerable.

10.202. A point ¢ is called a ‘limit-point’ of a set & if, how-
ever small 8 may be, there are points of E, other than £, in the
interval (£—38,£+8). (See P.M., p. 30, where a limit-point is
called a ‘point of accumulation’.)

A set which contains all its limit-points is called a closed set.
Thus an interval together with its end-points is a closed set.
Such an interval is called a closed interval.

An open interval is an interval without its end-points. An
open set is the complement of a closed set with respect to an
open interval.

An open set consists of an enumerable set of non-overlapping
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open intervals. For let E be an open set, and let 2 be a point
of E. Then, for sufficiently small values of 3, the interval (z, z+-§)
consists entirely of points of £; for otherwise  would be a limit-
point of CE, so that CE would not be closed. Let 3; be the
upper bound of values of & with this property. Then £ belongs
to B for x <& < z+3;; but 38, is not a point of E, since, if
it were, the interval of points of Z would extend beyond it, by
the above argument.

Similarly there is a number §, such that ¢ is in F for
x—38, < ¢ < x, while x—8§, is not in &.

Thus z is a point of an open interval (z—=8,,2-+8;) of points
of E. .

Similarly all points of  fall into open intervals. To arrange
these intervals as an enumerable sequence, take first the inter-
val, if there is one, greater than 4(b—a); next, in the order in
which they occur on the line, those whose length is < 4(b—a)
and > }(b—a); and so on. Every interval of E has a definite
place in this enumeration.

The ‘sum’ of two open sets is an open set. For if E = E,+E,,
and E, and E, are open, every point of Z is an interior point
of an mterval of points of Z.

The same argument shows that the sum of any ﬁmte number,
or of an enumerable infinity, of open sets s open. In particular
(the converse of the above theorem), the sum of an nfinity of
open intervals is an open set.

Also if E, and E, are open sets, then E,E, is open. For a
point of E,E, is an interior point of intervals both of E; and
of E,; and so it is not a limit-point of C(E,E,), which consists
of points of either CE, or CE,.

This argument cannot be extended to an infinity of sets;
e.g. if F, is the open interval —1/n <z < 1/n, then E,E,... is
the single point z = 0.

10.21. The measure of a set of points. We are now in a
position to define a new generalization of ‘length’. Instead of
starting from a finite number of intervals, we start from an
open set, which may contain an infinity of intervals.

The measure of an open set is defined to be the sum of the
lengths of its intervals. This sum is, in general, the sum of an
infinite series. It is always convergent, since the sum of any
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finite number of terms is the sum of the lengths of a finite
number of non-overlapping intervals, all contained in an interval
(a,b), and so is not greater than b—a. Hence the measure of
any open set contained in (a,b) does not exceed b—a.

The exterior measure of a set E is the lower bound of the measures
of all open sets which contain E. It is denoted by m(E). It is

clear that 0 < my(B) < b—a,
and that, if B, < E,, then m (E,) < m(E,).
The interior measure, my(E), is defined by the formula
my(E) =b—a—m,(CE).

If my(E)=myE), then the set E is said to be measurable, and
the common value of m,(E) and m,(E) is called its measure, and is
denoted by m(E). :

We have also m(CE) = b—a—m,(E).

If E is measurable, so that m,(E)=m,E), it follows that
my(CE)=m, (CE). Hence CE is measurable, and
m(E)+m(CE)=b—a.

Notice that we have given two definitions of the measure of
an open set, one direct and one indirect. It will appear before
long that they are equivalent. Meanwhile, in arguments in-
volving open sets, we use the direct definition.

10.22. For any set B we have

my(B) < m,(E).

For, by the definition of exterior measure, there are open sets

0 and O’, including E and CE respectively, and such that
m(0) <m(B)+e, |
m(0") <m (CE)+e.

If € > 0, every point of the interval (a-+e¢, b—¢) is an interior

point of an interval of O or of 0’; and so, by the Heine-Borel

theorem,* we can select from these intervals a finite set, say @,

which together include (a+¢,b—e¢). Then plainly

: m(Q) = b—a—2¢
and m(Q) < m(0)+m(0').

* P.M. §105. In the proof there given we start with an interval ending at
a, whereas here there is an interval including . This does not affect the proof.
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Combining these inequalities we have
b—a < m(E)+m(CE)+4e.
Making € - 0, it follows that
b—a < m,(E)+m(CE),

which is equivalent to the result stated.

If my(B) = 0, 1t follows that my(E) = 0. Hence I is measurable,
and its measure 13 zero.

10.23. We now come to the two fundamental theorems in
the theory of measure.

First fundamental theorem. If E,, E,.., E,... are
measurable sets, then the set B = B~ B, E;+-... is measurable,
and m(B) < m(By)+m(By)+.... )
If E,, E,,... do not overlap, then the equality holds. (Otherwise the
series may diverge.)

Second fundamental theorem. If E,, E,,... are measurable
sets, then the set B\ E,E,... i3 measurable.

That is, the set of points belonging to any of the sets E,, B,,...
is measurable, and so is the set of points belonging to all of them.

We shall begin by proving two lemmas on open sets, the first
of which is the first fundamental theorem for open sets. We
next prove a general theorem on exterior measure, and deduce
from it the first fundamental theorem for the case where the
sets do not overlap. Then we obtain the second theorem for
two sets, and use it to complete the first theorem. Finally we
use this result to complete the second theorem.

10.24. If O,, O,,... are open sets (overlapping or not), and

0= 0,+0,+0;+...,
then m(0) < m(0y)+m(0p)+.... 1)

We assume the convergence of the series on the right, since
otherwise the theorem is meaningless.

Let the intervals of O, be (a, ,,b,,) (m=1,2,.), and
let those of O be (4,,B;) (k=1,2,..). Let ¢ be a positive
number less than }(B,—4,). Then every point of the interval
4 k+e, r—¢€) is an interior point of one of the intervals
(@, s b, ») Which make up (4, B). If 3, denotes a summa-
tion over these intervals, it follows from the Heine-Borel
theorem, as in the previous proof, that
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-Bk Ak_zf Ek moan m,n)'
Making € - 0, we obtain

-Bk Ak Zk (bm T ,n): (2)
and, summing with respect to k,
m(0)< 3. 5, G 3)

Since a convergent double series of positive terms can be
summed in any manner, the right-hand side of (3) can be re-
arranged in the form

)3 Z (b, n—m, n)

n=1 m=1
This proves the theorem.

If none of the sets overlap, each interval (4;, B,) coincides
with one interval (a,, ,, b, ), and the inequalities (2) and (3),
and so also (1), become equalities.

An enumerable sét is measurable, and its measure is zero. For
let the set be 2, 2,,.... Include z, in an open interval of length e.
If this does not include z,, we can include z, in an interval of
length }¢; and so generally z,, in an interval of length ¢/2%. Thus
the given set can be included in an open set of measure not greater
than 2e. Since ¢ may be as small as we please, the exterior
measure of the set is zero. Hence its measure is zero.

10.241. If O and O’ are open sels which together include all
points of the interval (a,b), then

m(00') < m(0)+m(0')—(b—a).
By the Heine-Borel theorem we can select finite sets of the
intervals of O and 0’, say @ from O and Q' from O’, such that
@ and @’ together include the whole interval (a+¢,b—e¢); and
we may, by adding further intervals if necessary, suppose that
0= Q+-R, 0'= Q’+Rl»
where m(R) < e, m(R') <e. Now
00'< Q@' +ER+FR,
go that by the previous lemma

m(00") < m(QQ")+m(B)+m(B") <m(QQ)+2e.

m(0y)-

1

”
T8
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But m(Q)+m(Q')—m(QQ’') = b—a—2¢, from elementary con-
siderations, and m(0) = m(Q), m(0') = m(Q’'). Making ¢ - 0,
the result follows.*

10.25. If E,, E,,... are any sets, and
E=E,+E,+...,
then my(EB) < m(E)+m(Ey)+....
We can enclose Z,, in an open set O, such that

m(0,) < Ep) 45

Summing with respect to n, and using the result of § 10.24,
m(0) < m(0;)+m(0g) ... <mo(E)+me(Ey)+...+e.
But O is an open set which includes Z. Hence
m(E) < m(0).
Hence my(E) < m(E,)+m,(Es)+...+e
and, making e - 0, the result follows.

10.26. If E,, E,,... are non-overlapping measurable sets, and
E=E -+E,+..,
then E is measurable, and
m(E)=m(E,)+m(Ey)+....
‘We may suppose that all the sets are included in (a, 5).

(i) Consider first the case of two sets, £ = E,+ E,. We know
already that ' '

my(B) < my(By)+my(Bg) = m(E;)+m(E,).
Hence it is sufficient to prove that
my(E) = m(E,)+m(By),
ie. that my(CE) < m(CE;)+m(CEy)—(b—a).
Now we can include CF;, CE,, in open sets Oy, O,, such that
m(0) <m(CEy)+e,  m(0y) <m(CEy)+e.
Since , and E, have no common points, CE, and CE, together
include the whole interval, and hence so do O, and 0,. Hence

m(0,0,) < m(0,)+m(0y)—(b—a).

* Actually the two sides .are equal. This follows in due course from the
first fundamental theorem.
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But 0,0, includes CE. Hence
my(CE) < m(0,0,) < m(0,)+m(0,)—(b—a)
< m(CEy)+m(CEy)+2e—(b—a),
and, making e - 0, the result follows.

(i) The theorem for any finite number of sets follows by
repeated application of (1).

(iii) In the case of an infinity of sets, we have, for all values
of n,

m(Ey)+m(By)+...+m(E,) = m(E,+...+E,) < b—a.

Hence > m(E,) is convergent.

Let 8, = E,+...4+E,. Then CE < C8,, so that

m(CE) < my,(C8,) = m(CS,) = b—a—m(Ey)—...—m(E,).
Making n — co we obtain

m(CF) < b—a— 3 m(E,),

ie. my(E) =3 m(E,).
Combining this with § 10.25, the result follows.

In particular, taking E,, E,,... to be open intervals, it follows
that any open set is measurable in the general sense, and that
the two definitions of the measure of an open set agree. Also
any closed set, as the complement of an open set, is measurable.

If E, and E, are measurable sets, E, being included in E,, then
E,— E, i3 measurable.

For C(E,—E,) = E,+CE,.

10.27. If E and F are measurable sets, so is EF.

Let both sets be included in (a, b), and suppose first that F is
an interval (a,8). Let E, be the part of £ in («,p), E, the
remainder. Similarly, if O is an open set containing E, let
0= 0,+0,. O, and 0, are open sets containing respectively
E, and E,, if we neglect the points « and B, as we obviously

may; and clearly
m(0) = m(0y)+m(O,).

Taking lower bounds,
mc(E) = me(E1)+me(E2)‘ (1)
Similarly, if e= CE = e, +e,,
me(e) = me(el)"‘me(ez)' (2)

Y
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But, since E is measurable,

me(E)+mc(e) = b—a, 3)
and by § 10.25

my(By)+my(ey) = m(Byt-ey) = b—a—(B—a). (4)

From (1), (2), (8) and (4) it follows that

me(El)+me(el) < ﬁ_‘o‘,
and hence E, is measurable.

The result is therefore proved if F' is an interval, and so, by
the previous theorem, if F' is an open set. In the general case
we can include F' in an open set O, and CF in O’, so that
m(0)+m(0') < b—a-+e. Then

EF < EO, C(EF)=CF+F.CE< O0'+0.CE,
so that
m BE)+m{C(EF)} < m(EO)+m(0')+m(0 . CE)
= m(0)+m(0') < b—a+e.
Making € - 0, m(EF)+m{C(EF)} < b—a, whence the result.
If E, and E, are measurable, the set E of points belonging to

E, but not to E, is measurable.

For E=E,.CE,.

10.28. We can now complete the proofs of the fundamental
theorems. Let E,, E,,... be any sets, overlapping or not, and
let E be their sum. Let

bi=E,. C(E1+E2 Ey),
and so on. Then E,, E}, E,... are non-overlapping measurable
sets, and E = E,+E,+E;+.... Hence E is measurable, by
§ 10.26, and the proof of the first fundamental theorem is com-
pleted, the inequality then stated following from § 10.25.
Again, if F = E,E,E,..., then
CF = CE,\+CEy+....
Hence, by what has just been proved, O'F is measurable, and so
F is measurable. This proves the second fundamental theorem.

10.29. Limiting sets. If E,, E,,... are measurable sets, each
contained in the following one, and E is their sum, then
limm(E,)=m(E).
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For the sets E,—E,, E;—FE,,.. are measurable and non-
overlapping, and

E=E\+(E,— E)+(Ey—Ey)+ ...,
so that

m(E) =m(E,)+m(Ey—E,)+...
= im{m(B,)+m(Ey— By)+...+m(E,— E,_,)} = limm(E,).

The set K is called the outer limiting set of the sets E,, E,,....
If each of the sets E|, E,,... contains the next, and E = E,E,...,

then limm(E,) =m(E).

This follows by complementary sets from the previous
theorem. In this case the set £ is called the tnner limiting set.

Unlike most of the theorems on the measure of sets, the first of
these results holds if ‘measure’ is replaced by ‘exterior measure’,
whether the sets are measurable or not. This remark will be
useful in the next chapter, where it happens to be inconvenient
to verify that certain sets are measurable.

If E is the outer limiting set of a sequence E,,, then

limm(E,) =m(E).
N—>00 i

Let E, be included in an open set O, such that

m(0,) < myE,)Fe.
Let 8,=0,0,,10,.5..., and let 8= 8,+8,+.... Then
E,<8,< 0,, E< §,and 8§, < 8,1, so that § is the outer
limiting set of the sets S, (this is not necessarily true for O,
which is why we introduce §,). Hence

m(E) < m(8) =limm(S,) <limm/(E,)+e,
and, making € — 0, m,(E) <limm,(E,). But since a set which

includes E also includes E,, m (&) = m(E,) for every n. This
proves the theorem.

10.291. Cantor’s ternary set. The following set of points,
defined by Cantor, has many interesting properties.

Divide the interval (0,1) into three equal parts, and remove
the interior of the middle part. Next subdivide each of the two
remaining parts into three equal parts, and remove the interiors
of the middle parts of each of them; and repeat this process
indefinitely. Thus at the pth,step we remove 27~ intervals.
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We denote these intervals, from left to right, by 3y, 1» Where
k runs from 1 to 27-1. For each k the length of §, ; is 3-2.

Let F be the set of points which remain. Then Z is the set

of points represented by the infinite decimals

Uy y...0p...(3)
in the scale of 3 (indicated by the final figure), where the
numbers @, as,... take the values 0 or 2 only, never the value 1;
for example, ¥ includes Z=-200..., and also , which can be
represented as -0222.... In fact the first step described above
removes from the interval all points for which the first figure
is a 1 (except -100...=-022...); the second step removes all
remaining points for which the second figure is a 1 (except
-010... =-0022..., and -210... = -2022...); and so on. Notice also
that the end-points of the intervals 3, , consist of all decimals
“04@,...(3), where the digits after a certain point are all 0’s or
all 2’s. This is obviously true for 8, ,; then 5, ;, 3, ; are obtained
by taking the first decimal as 0 or 2 and then the rest as the
decimals corresponding to the ends of 3, ;; and so on. Thus the
general form of the end-points of a 3,  is
“ay...0,0222...(3), "0y...2,,2000...(3).

The set E is not enumerable; this may be proved in the same
way that it was proved that the continuum was not enumerable.
On the other hand, the measure of E is zero; for

-1
m(B) =1 S m(d,)=1— > 2" =0.

p=1
We shall refer to this set again in § 11.72.

Example. Prove that the measure of the set of points in the interval
(0, 1) representing numbers whose expressions as infinite decimals do
not contain some particular digit (say 7) is zero.

10.3. Measurable functions. Let f(x) be a bounded func-
tion of z in the interval a <z << b. We denote by E(f > c) the
set of points in (a,b) where f(x) > c; and similarly with other
inequalities. '

The function f(x) is said to be measurable if any one of the sets

E(f=zc), E(f<c), E(f>c), E(f<c)
18 measurable for all values of c.
Any one of these four conditions implies the other three.

(-3
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Suppose, for example, that the first holds. The second follows
by complementary sets. Hence also the sets

B,=B(f<oty) (=12.)

are all measurable. Hence the set
(By—Eo)+(By—Eg)+...= Elc <f<c+1)
is measurable. Hence
E(f=c)=E(f>c)—E(f=c+1)—Elc<f<c+1)
is measurable, and the result clearly follows from this.
10.31. General properties of measurable functions.
(i) Let f be a measurable function, k a constant. Then k-+f, kf;

and in particular —f, are measurable.
This is obvious.

@) If f and ¢ are measurable functions, the set B(f> @) is
measurable.

If f> ¢, there is a rational number r such that f>r>¢.
Hence E(f>¢)=§E(f>r).E(¢<r)
where 7 runs through all rational numbers. Hence the result.
(iii) If f and ¢ are measurable, so are f-+¢ and f—¢.
For B(f+4>0)=EB(f>c—9)
and the result follows from (ii). Similarly for f—¢.

(iv) If f and ¢ are measurable, so is fé.
The function {f(x)}? is measurable, for, if ¢ >0,

E(f*>c)= E(f > Ne)+ E(f < —~).
The general theorem then follows from the fact that
Jo=1(f+4)—1(f—¢)*
) If f,(x) is @ sequence of measurable functions, then
limf,(z),  Imf(),

supposed finite, are measurable. In particular, if the sequence
tends to a limit, the limit is measurable.

Let. f(z) = limf,(x). Let c be any real number, let

1 1
E. y = E(fn >c+;‘n')+E(fn+1 >c+‘1;&")+ )
and let B, = E, ,E, ,E, s.. By the fundamental theorems
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E,, , and E,, are measurable. Now E,, the set of points com-
mon to all the sets E,, ,, is the set where f, >c-+1/m for
arbitrarily large values of v. Hence

f=Tmf,>ct>e

in B,,. Let B = E,+E,+E;+.... Then E is measurable, and
f>c at all points of E. Conversely, if f(x) > c, then there is
an integer m such that f,(z) > ¢+ 1/m for arbitrarily large values
of v, and so z belongs to one of the sets £,,. Hence £ = E(f > c),
which proves the theorem.

(vi) A continuous function is measurable. For if f(z) is con-
tinuous, it is easily seen that E(f < ¢) is closed. Hence E(f > c¢)
is open, and so measurable.

All the ordinary functions of analysis may be obtained
by limiting processes from continuous functions, and so are
measurable. The same thing is true of some of the more arti-
ficial functions. For example, '

lim{cos m!ma}?"
NnN—0

is the limit of a continuous function, and is equal to 1 if m!x is
an integer, and otherwise is zero. If z is rational, m!zx is an
integer if m is large enough. Hence
f(z) =1lim Lim{cos m!mz}*»
m—>0 N—>R0

is equal to 1 if z is rational, and to 0 otherwise. The fact that
this function is measurable has, of course, been proved more
directly (§ 10.22).

10.4. The Lebesgue integral of a bounded function. We
are now in a position to define the Lebesgue integral of any
bounded measurable function.

If f(x) is the characteristic function of a set E, ie. f(z) =1
in K and 0 elsewhere, a natural definition of the integral is

b
f f(@) dz = m(E).
If f(x) = k in E and 0 elsewhere, then we take

b
[ fi@) dz= km(B).



INTEGRAL OF A BOUNDED FUNCTION 333
In the general case, let « and 8 be the lower and upper bounds

of f(z). As in the case of Riemann integration, the integral is
defined as the limit of the sum; but this time the sum is obtained
by dividing up the interval of variation of f(x). We take
numbers yg, Y1,-..s Yns1 Such that )

A=Y <Y <Y< . <Yp1 <Y =5
Let e, be the set where 9, < f(x) <¥9,,;(v=0,...,72—1), and ¢,
the set where f(z) =B. Since f(x)is measurable, all the sets e, are
measurable. Putting y,., =8, let

s =V=ZO yvm(ev)’ N =v—20 yv+1m(ev)'

The Lebesgue integral of f(x) over (a,b) is the common limit of the
sums s and S when the number of division-points y, 1s increased
wndefinitely, so that the greatest value of y,.,—y, tends to zero.

To justify the definition we have to prove that the two limits
exist and are equal.

Suppose the interval (a,B) divided up in two different ways,
each difference y,,,—, in each way being less than . Let the
sums formed in these two ways be s, S and s’, 8. Then

S—s=3 Wu—vIm(e) < e 3 mle,) = <(b—a)

and similarly 8'—s’ < e(b—a).

We now divide up the interval («, 8) by taking all the division-
points of the first two ways at once. This gives two more sums,
s” and 8”. Now the insertion of a new division-point does not
decrease a lower sum or increase an upper sum; for example, if
we insert a point 7 between y, and y,,, we have

gm(e,) < gm{E(y, <f < n)Hm{B(n <f <y
so that the lower sum is not decreased. Applying this prmc1ple
repeatedly, we obtain

v s < S”, 3, < 8”,
and similarly S"< 8, S'< 8.

It follows that the intervals (s, S) and (s, 8’) have points in
common, e.g. all points of the interval (s”,8”). Hence the
numbers s, §', S, 8’ all lie within an interval of length 2¢(b—a).
The existence and equality of the limits then follow from the
general principle of convergence.
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10.41. Comparison with Riemann’s definition. Perhaps
the most obvious difference to the beginner is that, in Lebesgue’s
definition, we divide up the interval of variation of the function
instead of the interval of integration. This, however, is com-
paratively unimportant. What is essential is that we use the
general theory of ‘measure’ of sets instead of the more limited
theory of ‘extent’. It would be possible to build up an integral
from integrals of characteristic functions, but using extent
instead of measure. This would be substantially equivalent to
Riemann’s definition. On the other hand, it is possible to define
an integral equivalent to Lebesgue’s by dividing up the interval
of integration in a suitable way.

In both Riemann’s and Lebesgue’s definitions we have
upper and lower sums which tend to limits. In the Riemann
case the two limits are not necessarily the same, and the fune-
tion is only integrable if they are the same. In the Lebesgue
case the two limits are necessarily the same, their equality
being a consequence of the assumption that the function is
measurable.

Lebesgue’s definition is more general than Riemann’s. For
the characteristic function of the set of rational points has a
Lebesgue integral, but not a Riemann integral; and we shall see
later that, if a function has a Riemann integral, then it also has
a Lebesgue integral, and the two are equal.

‘We use the same notation

fu f@) dz

for a Lebesgue integral as we have done for a Riemann integral.
When it is necessary to distinguish a Riemann integral from
a Lebesgue integral, we shall denote the former by

R f f(z) de.

10.42. Integral over any measurable set. Let E be any
measurable set contained in an interval (a,4). The integral of
f(x) over E may be defined in the same way as the integral
over an interval. The sets e, of § 10.4 are now the sub-sets of
E where y, <f(x) <y,.,; the proof of the existence of the
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integral is practically unchanged. The integral is written

fE flz) de.

Any integral over a set of measure zero is zero. For all the sets
e, are of measure zero, and so the sums ¢ and 8§ are always 0.

We might also define the integral by putting f(z) =0 in CE,
and then using the definition of the integral over an interval.
It is easily seen that the two definitions are equivalent.

10.43. Henceforward we shall assume that all sets and func-
tions introduced are measurable, without always saying s0
explicitly.

10.44. Elementary properties of the integral of a
bounded function.
(i) The mean-value theorem. If « <f(z) <P, then

om(B) < fE f(x) dz < pm(E).

For it is easily seen that om(E) < s < pm(E), and the result
follows in' the limit.

(i) The integral is additive for a finite number or for an
enumerable infinity of non-overlapping sets included in a finite
interval. That 18, if

E E +E 2+ 2]
the [ @ do= [, f@) dz + [ flz) do +....
Suppose first that there are two sets, £, and K, Inserting
division-points 9,, the sets B, E,, K, are divided into sub-sets

e,, el €2, such that

m(e,) = m(e})+m(e}).
‘Hence fE + fE =1lim ¥ y,m(e})+lim ¥ y,m(e?)
j=lim 3 y,me,) = .
Similarly for any finite number of sets.

If there are an infinity of sets, let S, be the sum of the first
n, R, the remainder. Then

[o= ot [x
But, by the mean-value theorem, if |f(z)| < M, then
|5, /@) da| < Mm(B),
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and this tends to zero as n — oo, since the series > m(Z#,) is con-
vergent. Hence

Jo=tm [ = [o ¥ [e+
(iii) If, in a set B, f(x) < $(x), then
f flx) dz <f () du.

Take division-points ¥,, and define the sets & by means of
f@). Then, in e,, ¢(x) > f(x) >y,. Hence

[po@dz=3 [ $@) de> 3 ymie,)
The right-hand side tends to fE f(z) dz, whence the result follows.

(iv) The integral of the sum of a finite number of bounded
measurable functions is the sum of the integrals of the separate
functions.

In the first place, if % is a constant,

[, (F+0 o=, fdo+ [ hde=[_ fdu+im(B).
For calculate the sum s relative to f(x) with the scale y,, y;,...,
and the sum ¢’ relative to f(z)+k% with the scale y,+%, y,+£,....

Then s'= 3 (y,+kym(e,) = s+km(E),
and the result follows in the limit. :
Now consider any two functions f(x) and ¢(x). We have

f o f@)+@)}de= 3 fev (f+¢) de

>3], @+ de
=s+ [ $du
by what has just been proved. Similarly, replacing y, by ¥,.1,
we obtain v
[oG+d de <8+ [ ¢ de

The result now follows in the Limit.
The result for any finite number of functions is obtained by
repeated application of the result for two functions.

(v) If k is a constant,

[pf@) de=k [ flz) da.
This is obviousif £ = 0. If £ > 0, calculate the second integral
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with the scale y,, and the first with the scale ky,. Then the sets
e, are the same in each case, and s = ks, whence the result.

(vi) We have

[, S da|< [ 1f@)] do.
Let E, be the set where f(z) >0, E, the set where f(z) <O.

Then fE fdx=fE1fdx-—fE2 \f| da,
[plflde=[, faz+ [ 11| d,

and the result is obvious.

(vii) A relation which holds except in a set of measure zero
is said to hold almost everywhere. \

Two functions which are equal almost everywhere have the same
integral. _

Let f(x) = ¢(x) at all points of Z, except in a set e of measure
zero. Then

[gU—)de=[ (f—$)dz+ [ (f—$)dw.

The first term is zero because m(e) = 0, and the second because
the integrand is everywhere zero. Hence

[, rde=]_¢dx.

(viii) If f(z) >0 and fE flx)dz=0, then 'flx)=10 almost
everywhere in K.
Let By= E(f=0), and

E,=E(M|/n+1)<f< M), n=12,..,
where I is the upper bound of f. Then E = E\+E,+Ey+...;

and
I m(E,) < n-[—l fd n—]—lJ‘fdx_

Thus m(E,)=0forn=1, 2,..., and the result follows.

10.5. Lebesgue’s convergence theorem (theorem of
bounded convergence). Let f,(x) be a sequence of measurable
functions such that |f,(x)| <M for all values of n, when  is in

a set E, and let lim f,(z) = f(x)
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for all values of x in E. Then

lim [ o) do= [ flo) de.

Since sets of measure zero can be omitted from the integrals,
it is sufficient that the conditions should hold aimost everywhere.

Since |f,(x)] < M for each =, |f(z)] < M. Hence f(z) is
integrable, and we have to prove that

lim [ {f(z)—f,(@)} dz =0.
Let g, = |f—f.|; let € be any positive number, and let
Ey = E(e > g,9s,--.), Ey=E(g; > €>9593...),
EBy=E(9, > €> g3 94--)s

and so on. Then the sets E, are measurable; they are non-
overlapping, since g, > € in K, but not in E,,..., E,, so that
E, ., has no point in common with E,,..., £;; and every point
of E belongs to some E,; for g,(x) - 0 for every z, so that to
every « corresponds a first number £ such that g, g;.q,... are
all less than ¢, and then z belongs to Z,.

It follows that -
fE In tzl:z::J‘E1 g, dx +.sz g, dx +....
Now g, <ein E,,..., E,, and g, < 2M everywhere. Hence
[ 9n 42 < elm(By)+-..A-m(B )+ 2M{m( B )+ ).
Making n — oo, it follows that
Hm fE g dx < em(E).
Hence, making € — 0, it follows that
| Hijgndx=0,

and the theorem follows.

The theorem is not true for Riemann integrals, because the
function f(z) is not necessarily integrable in Riemann’s sense,
even if each f,(x) is. For example, let r;, 7,,... be the rational
pointsin (0, 1), and let f,(x) = 1 if & = ry, r,,... or 7,,, and f,(x) = 0
elsewhere. Then

R ffn(a:) dx=0
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for every. n; but f(z) =1 for every rational z, and f(z) = 0 for
irrational z, so that f(x) is not integrable in Riemann’s sense.

10.51. The theorem of bounded convergence may be stated
as a theorem on term-by-term integration of series. If the series

Uy (@) Up) ..

converges in a set E to s(x), and its partial sums
Sn(x) = ul(x)+"+un(x)
are bounded for all values of n, when x is in E, then

fE 8(x) dz = JE u,(z) de + fz«: Uy(z) dz +....

This is the final form of the theorem of bounded convergence
proved for Riemann integrals in § 1.76.

10.52. Egoroff’s theorem.* If a sequence of functions con-
verges to a finite limit almost everywhere in a set E, then, given §,
we can find a set of measure greater than m(E)—3§ in which the
sequence converges uniformly.

Let f,(x) be the sequence, let E’ be the set where f,(z) con-
verges, say to f(z), and let g, = | f—f,I-

Let ey,..., €,,... be a sequence of positive numbers tending to
zero. Let S, , be the sub-set of E' where g, <e, for v >n.
Then each of the sets §; ,, S, ,,... is contained in the next, and
their outer limiting set (§ 10.29) is E’, since g, - 0 everywhere
in E’. Hence we can determine n{r) so that

" R
m(E —Sn(r),r) < §-1_.

Let S = Sn(l), IS?L(2),2"'Sn(r),r"' -

Then, in 8, g,<e, (n>=n(r)) for all values of 7, ie. g, 0
uniformly in §; and

m(E—8) =m(E'—8) < 3 m(B'~Sy,1) < Z =3.
= r=1

b
xr
This proves the theorem.

Example. Use Egoroff’s theorem to prove Lebesgue’s convergence
theorem.
10.6. If f(x) has a Riemann integral over (a,b), then it has
a Lebesgue integral over the same interval, and the two are equal.
The result is easily proved if we assume that f(x) is measurable;
* Egoroff (1).
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for then it certainly has a Lebesgue integral. Dividing up
the interval (e,b) by the points x,, %;,..., Z,, and denoting by
m,, M, the lower and upper bounds of f(z) in z, <z < x,,,, we

have
Zyi1

n=1 n—1 n=1
> m@yn—2)< 3 [ f2) de< 3 M (0,0,).

The middle term is the Lebesgue integral, while each of the
extreme terms tends to the Riemann integral. Hence they are
equal.

To prove that f(z) is necessarily measurable if it has a Rie-
mann integral, let

56(:1}) =m, (xv <z xv+1)’ @(x) = Mv (xv <zr< xv+1)‘
Then

S @) = [ $(2) d,
v=0 P

Consider now an enumerable infinity of modes of division of
the interval (a,b) such that max(z, ;~—=x,) = 0; and let each
set of division-points contain the previous set. Let E be the
set'of all the division-points. E is enumerable and so of measure
zero, and 50 may be neglected in integration. At any point x not
in E, ¢(x) does not decrease, and ®(x) does not increase, as we
insert division points. Hence ¢(z) = m(x), ®(x) - M(z), where
m(x) and M(x) are the ‘lower and upper bounds of f(x) at 2,
ie. the limits of the lower and upper bounds in indefinitely
small intervals containing x. Also ¢(z) and @ (z) are measurable,
and hence so are m(x) and M(z); and, by Lebesgue’s con-
vergence theorem, '

w1

2 M (2,0 —2,) = [ O@) de.

]imf é(x) dx=fbm(x) dz, limf(D(x) dx=fM(x) dz.

But if f(x) has a Riemann integral, each of these limits is equal
to it. Hence b

f {M()—m(z)} dac = 0.

F :

Since M (x) = m(z) it follows by § 10.44 (viii) that M(z) = m(x)
almost everywhere; and since M (z) = f(x) > m(z) it follows that
f(x) = m(x) almost everywhere. Hence f(x) is measurable.
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10.7. The Lebesgue integral of an unbounded function.
Let f(z) be an unbounded measurable function, and suppose
first that f(z) > 0. Let {f(z)},, or simply (f),. denote f(z) at
points where f(z) <n, but n where f(z) >n. Then {f(z)}, is
bounded and measurable, and so integrable. We define the
integral of f(x) over the set & to be the limit, if it exists, of the

integral of {f(z)},,
[ f@) de=1im [ {f(@)}, do.

For a positive function f(z) to be integrable over E, it is
clearly necessary and sufficient that

[ {f@)n da

should be bounded.

The integral of a negative function may be defined in a similar
way. In the general case, let f(x) >0 in E,, f(x) <0 in E,.
Then we define the integral of f(x) by the equation

[y @ da=[_f@)di + [ fie) da.

A function which is integrable in this sense is ‘absolutely
integrable’, i.e. |f(z)| is also integrable. In fact it is clear that

g\l dz= [, f@)dz — [ fi@)da.

It would of course be possible to define integrals which are not
absolutely convergent; but we shall see that integrals of the
above kind preserve all the characteristic properties of integrals
of bounded functions, whereas this would not be true of non-
absolutely convergent integrals.

We shall henceforth use the word ‘integrable’ to describe any
function, bounded or unbounded, which has an integral in the
above sense.

The use of the expression ‘infinity’, introduced in § 5.701, is
also very convenient here. For example, if

[ {f@h de

tends to infinity with n, we write

fE f(@) de = co.



342 THEORY OF MEASURE AND LEBESGUE INTEGRATION
1
Examples. (i) Show that fx“ dx exists as a Lebesgue integral, and

isequal to 1/(1—~a), if 0 < @ < 1; but is infiniteif @ > 1
[The Lebesgue definition of the integral is

n-1/s
hm{ fnd:n—l— fx'“dx}

n—>0 n-1a

and the results are the same as in the elementary theory.]

(ii) More generally, let f(x) be positive, and bounded in (¢, 1) for every
positive-e. Then 1 1
J'f(a:) de = lim ff(x) dz
0 0%

in the sense that both sides are finite and equal, or both infinite.

(iii) The function

— 2 (sinl) = sosin ], Zeos
j(z)—a—x 2?sin— —2acs1nm2 Ze0S

is not integrable in Lebesgue’s sense over (0, 1).

1
[The function is continuous over (e, 1), and lim f S(z) dz exists. But
€0

€

1
f[f(x)| de = o;

for | f()] cos— —2z > i— 2z

in each of the intervals {(2n+})7}~* < @ < {(2n—¥)7}~}, and it is easily
seen from this that

1 .
[ 5@ dz > a10gn)
0

(iv) Let f(z) be any measurable function in E, and let ¢, be the sub-set
of E where n—1 < f(z) < n. Then the necessary and sufficient con-
dition that f(x) should be integrable: over E is that Z [n|m(e,) should
be convergent. e

(v) We might define the integral of a positive unbounded function
f@) by taking {f(z)}* = f() if f(x) < n, and otherwise {f(x)}" =0, and
substituting {f(z)}" for {f(z)}, in Lebesgue’s definition. Show that this
definition is equivalent to that of Lebesgue.

(vi) If |f(x)] < ¢(x), and ¢(z) is integrable over E, then f(z) is in-
tegrable over E.

(vii) If f(2) is integrable over E, and E, is the part of E where
|f(@)] > n, then m(E,) = o (1/n).
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(viii) If f(x) = 0 at every poirft of Cantor’s ternary set, and f(z) = p
in each of the complementary intervals of length 3-7, then

ff(a:)d.z:
0

exists in Lebesgue’s sense and is equal to 3.

10.71. Elementary properties of integrals. The infegral
18 additive, i.e. if E,, E,... are non-overlapping sets, and
E=E,+E,+.., then

[pfde=]_ fdo+ [0z +...

We may suppose without loss of generality that f > 0; for if
the result is true for positive functions it is true similarly for
negative functions, and so by addition in the general case. This
remark simplifies many of our proofs.

We define (f), as before. The integral of (f), is additive,

80 that . ) )
[pnda=3 [ (Made<3 [, fd

Now make n — co. If there are only a finite number of sets,
the result follows (from the equality). If there are an infinity
of sets we obtain (from the inequality)

. fEfdxg szkfdx.
But for any value of K

E
[onde= 3 [ (Dade
Making n — oo first, and then K — oo, we obtain

fEfdx> zJ'Ekfdx.

Hence the result. (Notice the analogy with the proof given in
§ 1.62 that a double series of positive terms may be summed
by rows or by columns to the same sum.)

10.72. The sum of a finite number of integrable functions is
integrable, and the integral of the sum is the sum of the integrals
of the separate functions.

It is sufficient to consider two functions, say f(z) and g(z).
Suppose first that they are both positive, and let ¢ = f+g. Then

Z
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Hence

[c@nde< |, f>ndx+f @ 82 < [ (B d,

and making n - oo
[pde<[ fdo+ [ gde<| ¢ da.

which gives the required result.
It f >0, g <0, consider the set where ¢ > 0. Here

f=¢+(—9),.

and the result follows from the previous case. Similarly where

$ < 0 we consider —g = f+(—¢).
Having proved the result for the sum and difference of
positive functions, the general result now follows.

10.73. The following results can easily be deduced from the
corresponding results for bounded functions:
(i) If k is a constant,

fEkfdm=kafdx. |
(i) | rae|< [ 111 e

(iii) T'wo functions which are equal almost everywhere have the
. same integral.

(iv) If fz)>0, fE f@)=0, then f(x)=0 almost everywhere
in E. '

(v) If f(x) is integrable over E, and E, E.,... is a sequence of
sets contained in E such that m(E,) - 0, then f f@) dx - 0, and

indeed uniformly for all such sequences of sets.
For, supposing, as we may, that f(z) > 0, choose n so that

[ @) —{f@)] do <e.
Having fixed n, we have

[ N do<nm(B)<e (k> k).
Hence

[af@ do= [ {feh dz + [ [fe)~{f@h] do

<[, @l dz + [ [f@)—{f@)] do
<2 (k > kO):
and the result follows.
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Example. Let f(x) be integrable, and ¢(x) integrable in Riemann’s

sense, over (a, b). Dividing up the interval (a, ) by points z, as in
§ 10.1, prove that, as max(z,,—z,) = 0,

Lvi
lim > $(z,) f f@) do = j $@)f(@) da.
[Titchmarsh (1).]

10.8. The general convergence theorem of Lebesgue.
If f(x) is @ sequence of functions such that | f,(x)| < F(x), where
F(x) is integrable over E, for all values of n and all values of z in

£, and lim , (2) =f(e)
Sor all values of x in E, then
lim [ f,(@) de=[_ flo) da

As usual, it is sufficient that the conditions should hold almost
everywhere. The proof is almost the same as that of the theorem
of bounded convergence. We define the sets Z, as before; by

§ 10.71 the series
b f F(z) da
is convergent, and we have
f I Az < e{m(E)+.. -{—m(En)}—l—
+2 J’Em F(z)dz +2 fEHs F(z)dx +....
Making 7 — oo it follows that
hme g, dx <L em(E),

and the result now follows as before.

The above theorem enables us to prove a new theorem on
term-by-term integration of series. We may multiply a boundedly
convergent series by any integrable function, and integrate term by
term. For if s,(x) is the nth partial sum of the series, and
[8,(®)| < M, and ¢(z) is the integrable function, we have

()8 (@) < M |()],

which is integrable, and may be taken as the F(x) of the above
proof.
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10.81. The following theorem is often useful. Its original
form is due to Fatou.*
If f.(x) >0 for all values of n, and x in E, and f,(z) — f(x)
as n - oo, then

[ f@) du<lim [ £, (z) do.

The statement implies that, if the right-hand side is finite,
then f(z) is finite almost everywhere and integrable; while, if
f(x) is not integrabie, or is infinite in a set of positive measure,

then
lim [ f,(@) dz=co0

It is easily seen that with the usual notation,

i {f w(@ = {f@)h-
Hence, by the theorem of bounded convergence,

tim [ {fo@h do = [, {f@)} dz. .

But [ {fehd< [, S de
and hence lim fE fo(@) de > fE {f@)} da.

Makjng k — o, the result follows at once if f(x) is finite almost
everywhere, the set where f(z) is infinite being omitted from the
integral. If f(x) =co in a set e of positive measure, then

[ @) dw > km(e)
fqr all values of %, and the result follows.

10.82. A convergence theorem for monotonic sequences.
Let f,(z), fx(2),... be a sequence of positive integrable functions,
non-decreasing for every value of x in E. Let f(z) be the limit,
finite or infinite, of the sequence. Then

lim [ f,(0) do= [, fiz) da

in the Jollowing sense:
(1) of the left-hand side s finite, then f(x) is finite almost every-
where and integrable, and the equality holds;

* Fatou (1), p. 375.
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(ii) if the right-hand side is finite, so is the left-hand side, and
equality holds;

(iii) #f the left-hand side is infinite, then f(x) is not integrable
or 8 infinite in a set of positive measure;

(iv) the converse of (iii) holds.

If the left-hand side is finite, so is the right-hand side, by
Fatou’s theorem; and equality in cases (i) and (ii) follows from
Lebesgue’s convergence theorem, since f,(z) < f(x). Then (iii)
follows from (ii) and (iv) from (i).

10.83. We can now put the theorem of § 1.77 on integration
of series into a more satisfactory form.
If u,(x) > 0 for all values of n and x, then

b b
[ Suende=3 [u, @) dz,

provided that either side is convergent.

For the partial sum s,(z) = %,(z)+...+%,(z) is positive, and
non-decreasing for every value of z.

In particular, the convergence of the right-hand side implies
the convergence of ¥ u,(z) for almost all values of .

We have still to consider the case where the range of integra-
tion is infinite; but as we have not yet discussed infinite
Lebesgue integrals of this kind, we must postpone the complete
result until the end of the next section.

10.9. Integrals over an infinite range. Let f(x) be a func-
tion which is integrable over the interval (a,b), for all finite
values of b. Let fi(z) =f(z) where f(x) > 0, and f,(z) = 0 else-
where; and let fy(x)= —f(z) where f(x)<<O0, and fy(x)=0
elsewhere. Then

b b b
[ f@) de = [ fifa) dz — [ fof2) da.
a a a
Each integral on the right is a non-decreasing function of 5, and
o tends to a finite limit or to positive infinity as b —cc. We

write

) b o0 b
f fy@) de=1lim j () dz, f Jiw) dz=lim f fol) da,
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if both the limits are finite; and we then define the integral of
f(z) over (a,c0) by the equation

ff(x) dr = ,Tfl(x) dé — j? fa(z) dz.

It is clear from the definition that a convergent integral of
this kind is absolutely convergent; for

T |f@)| dz = Tfl(x) dz + ffz(x) da.

Thus f 0P G

x
i8 not, in the strict sense, a Lebesgue integral, because it is not
absolutely convergent.

Naturally many of the properties of finite integrals can be
extended to infinite integrals. It is usually quite easy to see
when this can be done, and we leave the details to the reader.

The theorem of §10.83 has an immediate extension: if
U, (2) >0, then ‘ ‘

[ue =3 [ ue s

provided that either side is convergent.

The convergence of either side implies the convergence of the
corresponding expression in which the upper limit is replaced
by a finite b. Hence, by § 10.83, the equation with upper limit
b on both sides holds; and the required result now follows as
in § 1.77.

It may be well to remark finally that the-examples given in

§ 1.75 and § 1:78, where
>[#[3

are just as cogent with the Lebesgue as with the Riemann
integral. The same sort of restrictions still have to be made,
though the theorem as a whole takes a simpler form.



CHAPTER XI
DIFFERENTIATION AND INTEGRATION

11.1. Introduction. The ‘fundamental theorem of the integral
calculus’ is that differentiation and integration are inverse pro-
cesses. This general principle may be interpreted in two dif-
ferent ways. If f(z) is integrable, the function

F)= [ foae ()

is called the indefinite integral of f(x); and the principle asserts
that y
* F@)=f@) @)

On the other hand, if F(z) is a given function, and f(z) is
defined by (2), the principle asserts that

[ f) de= F&)—F(a). 3)

The main object of this chapter is to consider in what sense
these theorems are true.

As in elementary theory, (2) follows from (1) for every value
of z for which f(z) is continuous. For we can choose %, so small
that |f(t)—f(x)] <e for [t—z| < hy; and then

z+h
F(x+h}1:‘F(x)_f(x) % f (fty—f@)dt <« (bl <hy),

by the mean-value theorem. This proves (2).

- However, in the Lebesgue theory we consider functions which
are in general discontinuous, so that the above argument does
not apply to them. Actually the interesting question is, not
whether (2) holds at particular points, but whether it is true in
general; and to this we can give a satisfactory answer.

If f(x) is any integrable function, its indefinite integral F(x) has
almost everywhere a finite differential coefficient equal to f(x).

The problem of deducing (3) from (2) is much more difficult.
We require in the first place that F’(z) should exist at any rate
almost everywhere, and, as we shall see in § 11.22, this is not
necessarily so. Secondly, if F'(z) exists we require that it should
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be integrable. If we were relying on the Riemann theory, we
should find a fundamental difficulty here; for Volterra has
shown by an example* that F'(z) may exist everywhere and
be bounded, and yet not be integrable in Riemann’s sense. In
the Lebesgue theory, a differential coefficient is measurable, and
so integrable if it is bounded. But, if it is unbounded, it is not
necessarily integrable in the Lebesgue sense. The problem has
received a satisfactory answer, but it requires a more general
process, known as totalization, or Denjoy integration, which we
have not space to consider here. The result is that if F'(z) is
finite everywhere, then (3) follows from (2) if the integral is
taken in the Denjoy sense.

11.2. Differentiation throughout an interval. The
ordinary functions of analysis are differentiable in general, i.c.
for most values of the variable, though there may be special
points at which they are not differentiable. The exceptional
points are usually isolated. This seems to have created the
impression at one time that a continuous function necessarily
has a differential coefficient in general. It was, however, shown
by Weierstrass that this is quite untrue. There is a continuous
function which has no differential coefficient anywhere.

Nevertheless, the idea that an ‘ordinary function’ has a dif-
ferential coefficient in general is correct, if we attach this vague
expression to a differcnt class of functions. We shall see that
it is true in the sense that a monotonic function has a finite
differential coefficient almost everywhere.

 We shall first consider non-differentiable functions, and then
proceed to the constructive side of the theory.

11.21. Continuous non-differentiable functions. There
are many simple examples of continuous functions which are
not differentiable at particular points; for example, if f(z) = |z|,

the ratio f(h)—£(0)
h

tends to different limits, 1 and —1, as 2 —> 0 by positive or
negative values; and if f(z) = zsin 1/z (x # 0), f(0) = 0, the ratio
does not tend to any definite limit.

We can next, by a method known as the condensation of

* Hobson, vol. i, p. 461.
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singularities, construet continuous functions which are not dif-
ferentiable in a set which is everywhere dense, for example in
the set of rational points. Let 7, 7,,... denote the rational
numbers between 0 and 1, and let

F(x) =§1anf(x_rn):

where f(x) bas an assigned singularity at = 0, and the coeffi-
cients a, tend to zero sufficiently rapidly. Then F(z) will have
the assigned singularity at every rational point. For example,

S [2=7,]
37
n=1
is continuous, since the series is uniformly convergent; but it

is not differentiable at any rational point; for

Fr+h)—=Fr) ' rth—r,|—lra—ral | |B]
= 737 That

[reth—rul—Ire—"al.
+ %2 ;
k41
and as A — O the first term tends to a limit, the second term
tends to +1/3* according as » >0 or h < 0, and, if |h| < 1, the

third term does not exceed

> 5=
3n k
| el 3 2.3
in absolute value. Hence F'(r;) does not exist.
To obtain functions which are everywhere non-differentiable

we have to use quite different methods. The first example of
such a function was given by Weierstrass.

11.22. Weierstrass's non-differentiable function. This
function is defined by the geries

f(x z b» cos(ammzx),

where 0 <b< 1, and ¢ is an odd positive integer. ’I‘he series
is uniformly convergent in any interval, so that f(z) is every-
where continuous. On the other hand, if ab>1, the series
obtained by term-by-term differentiation is divergent. This in
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itself does not prove that f(x) is not differentiable, but it sug-
gests possibilities in this direction. We shall prove that if
ab > 1+4-§n, the function has no finite differential coefficient for’
any value of x.

We have | ,
f(x_i—k)_f(m) _ i bn_COS{an’]T(x—l—h)}——cog(qﬂwx)
IR T . h
m—1 0
=3+ 5= st R
say. Now

|cos{amn(z+h)}—cos(armx)| = |a*mhsin{ara(@+6h)}| < arm|hl,

go that m—1 mpym mpm
. g — & bm—1 a™b
e St

‘We next obtain a lower limit for R,, giving 4 a particular
value. We can write

where a,, is an integer, and —}<<¢,, <%. Let

am
o
Then O<h<§cﬁ'

Also  a"n(z+h)=a*". a"n(z+h) = a""n(x,+1).
Since a is odd, it follows that
cos{amm(x+h)} = (—1)@ " @m) = (—1 )oz,,,-l:I.
Again
cos(a™nx) = cos{a™ M (o, +E,,)} = cos(an—mra,,)cos(@n-mnt,,)
= (—1)*=cos(a an—mgf, ).

M)}

Hence R, =

A]l the terms of this series are posmve and hence, taking the
first term only, 2

IR, > lhl ambm
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Hence

flet+h)—f(2)
h

> Bl 80l > (3~ gy ) b
If ab > 1-+%m, the factor in brackets is positive; and when
m —> 00, h — 0, and the expression on the right tends to infinity.
Hence {f(x-+h)—f(x)}/h takes arbitrarily large values, so that
f'(x) does not exist or is not finite.

The graph of the function may be said to consist of an infinity
of infinitesimal crinkles; but it is almost impossible to form any
definite picture of it which does not obscure its essential feature. *

11.23. The following example of a continuous non-differen-
tiable function is due to van der Waerden.f The function is
similar to Weierstrass’s, but the result is obtained in quite a
different way.

Let f,(x) denote the distance between x and the nearest number
of the form.m/10™, where m is an integer. Then the funciion

fa) =3 1o

18 a continuous non-differentiable function.

Each-f,(z) is continuous; and |f,(x)| < 10", so that the
series is uniformly convergent. Hence f(z) is continuous.

Let z be any number in the interval (0,1), and suppose
it expressed as a decimal. If the gth figure is 4 or 9, let
a’ =x—10-2; otherwise let 2’ =102 Then if n <gq, the
nearest number m/10” is the same for z and z’, and = and z’ lie
on the same side of it; while if n > ¢, the numbers m/10* and
m’[10" corresponding to x and 2’ differ by x—z’. These rules
may be verified by considering simple examples, such as g =2,
x =326, -346, or -396.

It follows that

fle)—fu@) = (@ —2)  (n<q)
—0 (n>q).

Hence  f)—fe) = 3 £('—e) =plz'—a),

* For further properties of this function see Hardy (7), where the same result
is obtained for ab>1. A genera.l method of constructing continuous non-
differentiable functions is given by Knopp (2).

1 Van der Waerden (1).
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where p is an integer, and is odd or even with ¢—1. Hence
{f(@")—f(x)}/(x’—=) cannot tend to a finite limit as 2’ — .

11.3. The four derivates of a function. Whether the dif-
ferential coefficient

exists or not, the four expressions

I fEtD=fE)  y SIS

h=+0 h h>Fo
i fE+R)—f (x)’ lim &R —f()
b—>—0 h - h

always have a meaning, being either finite, or positive or negative
infinity. They are called the upper and lower derivates on the
right, and the upper and lower derivates on the left, respectively.
We shall denote them by

Df(x),  D.fx), Dfz), D_f(z)
respectively, the sign referring to that of % in the above ratio,
and its position corresponding to the ‘lower’ or ‘upper’ limit.
If D+f= D, f, the function is said to have a right-hand deri-
vative, if D—f = D_f{, a left-hand derivative. The necessary and
sufficient condition for the existence of the ordinary differential
coefficient is that all the derivates should be equal.

We denote the left-hand and right-hand derivatives, when
they exist, by f.(z) and f(z).
Examples. (i) The function ~z2%, where the positive value of the

square root is always taken, has different left-hand and right-hand
derivatives at = 0.

(i1) Let f(z) = 2sinl/z (x 54 0), 0 (z = 0) Then at z = 0

D.f=-1, Dif =1, D_f=-—1, D-f=1.
(iii) Let f(z) = ax sin®l/z-+bx costl [z (x> 0)
' 0 (z=0)

a’z sin®1 /z+-b'x cos?l [z (x < 0),
where a < b, a’ < b’. Thenatx =0
D.f=a, D+f = b, D_f=ua, D-f =¥
(iv) If f(x) is continuous in (a, b), and one of its derivates is non-
negative in the interval, then f(a) < f(b).
{Let D*f > 0, for example. Suppose that f(b)—f(a) < —e(b—a), and
let ¢(x) = f(x)—f(a)+e(x—a). Then $(b) < 0. Also ¢(z) > 0 for some
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sufficiently small values of z—a, since D+f(a) > 0. Hence ¢(x) = 0 for
some values of & between a and b. Let £ be the greatest such value.
Then D*¢(€) < 0, D+f(£)+e < 0, contrary to hypothésis. Hence
f(®)—f(a) > —e(b—a) for every positive ¢, and the result follows.]

(v) The derivates and incrementary ratios of a continuous function
have the same bounds in any interval; i.e. if any one of the derivates
satisfles « < Df < B, then’ a < {f(@,)—f(%)}/(x;—=,) < B, and con-
versely.

[Consider ¢(x) = f(x)—ax, and use the previous example.]

(vi) If one of the derivates of f(x) is continuous at a certain point,
then f(x) has a differential coefficient at the point.

11.4. Functions of bounded variation. We say that f(z)
is of bounded variation in (a,b) if, in this interval, it can be
expressed in the form ¢(z)—i(x), where ¢ and ¢ are non-
decreasing bounded functions.

It is easily seen that the sum, difference, or product of two
functions of bounded variation is also of bounded variation.

An alternative definition is obtained by assuming that, if the
interval (a,b) is divided up by points a =z, < 2, < ... <2z, =2b,

then et
ugo If(xv+1)_f(xv)l

is less than a constant independent of the mode of division.
The upper bound of these sums is called the total variation.

It is easily seen that, if the first condition holds, then so does
the second. For

1f(@y4)—F(@,)] < (@y42)—$(2,) F(@y00) —(2,),
S 1)) | < $0)—$la)+(6) (@)

To prove the converse, let p be the sum of those differences
f(z,,1)—f(x,) which are positive, —n the sum of those which are
negative. Then, if v is the sum ¥ |f(x,.,)—f(z,)|, we have

v=p+n, [fb)—fl@)=p—mn,
andso v =2p-+f(a)—f(), v = 2n+f(b)—f(a).
Hence, if v is bounded for all modes of division, so are p and n.
Let V, P, and N be the upper bounds of v, p, and ». Then

V =2P+f(@)—f®), .V =2N+fb)—f(a)
Let V{(z), P(z), and N(z) be the corresponding numbers for

so that
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the interval (a,z). They are obviously bounded non-decreasing
functions of z; and
V(z) = 2P(@@)+f(0)—f), V(x) = 2N (z)+f(x)—f(a),

so that . f@)=f(@)+ P(x)—N(x).
This is the required expression for f(x)

The functions V(z), P(z), and N(x) are called the total varia-
tion and the positive and negative variations of f(z) in (a, z).

If f(z) is continuous and of bounded variation, its variation
V() is continuous. We can find a mode of division of the interval
(@, %), with a point of division " as near z as we please, such that

v >V (zr)—e.
and also |f@)—f@)] <e.
Let v -v-lf(x)—fw )

Then v’ is a sum corresponding to ‘the mterval (a,2'), and 50
VE')z=v >V(x)—

Since V(z’) is non-decreasing, it follows that V(') = V(x) as
z’ - z from below. Similarly V(z') — V(z) as " - x from above.
Hence V(z) is continuous.

A continuous function of bounded variation tis the difference
between two continuous non-decreasing functions. For if f(z) is
continuous, so are P(x) and N(z).

11.41. The differential coefficient of a function of
bounded variation. The object of the next three sections is
to prove that a function of bounded variation has a finite dif-
ferential coefficient almost everywhere.

Our proof depends on the following lemmas, due to Sier-
pinski.* They are of the same type as the Heine-Borel theorem,
but apply to sets which need not even be measurable.

Levma 1. Suppose that each point x of @ set E in (a,b) is
the left-hand end-point of one or more intervals (x, z-h,) of @
family H. Then there is a finite non-overlapping set S of intervals
of H which includes a sub-set B’ of E such that m(E’) > my(E)—e.

Let E,, be the set of points of Z-which are associated with some
hy>1/n. Then E is the outer limiting set of the sets E,, we
bave limm,(&,) =m,(E) (§10.29), and we can take » so large
that m,(E,) > m,(B)—}e.

* Sierpinski (1). A similar lemma is given by W. H. and G. C. Young (1).
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Let a, be the lower bound of E,, b, its upper bound, and let
l=>b,—a,. Let n=}e/(nl+1). Then there is a point z, of £,
such that a, <z, <a,+7%. Let (z,,z,+h,) be an associated
interval for which %, > 1/n.

If there are points of &, to the right of z,+%,, let a, be their
lower bound. Then there is a point z, of E, in (a,,a,+7). Let
(g, x3+hy) be an associated interval with h, > 1/n.

Continuing the process, we reach b, in a finite number of
steps, since each step takes us at least 1/n nearer to it. In fact,
if there are N steps, then (N—1)/n <1, i.e. N <nl4-1.

Let S denote the set of intervals (z,,2,+%,) so constructed,
and T the set of intervals (x,—7,2,). Then E, < S+7T, and
m(T) < Nn < %e. Hence

me(B)—%e <my(B,) < mo(B,S)+my(B,T) < my(B,S)+3e,
and the set £’ = E,S has the required property.

Lemma 2. Suppose in addition that for every x there are
arbitrarily small intervals (x,x-+h,). Then we may conclude in

addition that m(8) < m(E)+e.

The additional condition is necessary; we might, for example,
take E to be a single point z, and associate with it the interval
(,2-+1). Then Lemma 1 would hold, but not Lemma, 2.

Let O be an open set containing Z, such that

m(0) < my(E)+e.

Let H, be the sub-class of the family of intervals H consisting
of those intervals that lie in O. In view of the additional
condition imposed in Lemma 2, every point of Z is the left-
hand end-point of one or more intervals of H,. We can now
apply Lemma 1 with H replaced by H,. We obtain a new set
of intervals § which has the same property as that constructed
in the proof of Lemma 1. But now § is a set of non-overlapping
intervals included in O. Hence

m(S) < m(0) < m,(E)-+e.
This proves the lemma.
In these lemmas the intervals of which S consists may be
regarded as either open or closed, whichever is most convenient

in any particular case. For if the result has been obtained with
S consisting of closed intervals, we can replace them by open
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intervals by removing a finite number of points, i.e. a set of
“measure zero. This clearly does not affect the result.

Lemma 3. We may suppose S in the above construction to be
included in any given set of intervals G which contains E.

For we may replace O by O@ in the construction.

11.42. If* f(x) is non-decreasing in (@,b), it has almost every-
where in (a,b) a differential coefficient f'(z).

Let E be the set where D, f < D+f. We shall first prove that
my(E) = 0.

Now E is the sum of the sets E(u,v) where

D,f<u<v <D,

« and v running through all rational numbers (z <v). Hence
it is sufficient to proveé that m{E(u,v)} =0 for every pair of
such numbers.

Suppose on the contrary that one of these sets E(u,v) has
a positive exterior measure, say . Every point z of it is the
left-hand end-point of arbitrarily small intervals (z, x+h) for

which fla+h)—f(x) < hu.
Hence by Lemma 2 there is a finite set § of such intervals,

containing a part E’ of E(u,v) such that m,(E’) >pu—e, and
such that > h < p+e, where 3 denotes a summation over .

Henee 5 (et —f@)<u 3, h<ulu-te).

Again, every point of £’ is the left-hand end-point of intervals
(z,z-+k) such that ,

f+k)—f(x) > kv,
and by Lemma 3 there is a finite set of these intervals, 1ncluded
in § and of measure greater than m (E')—e > ,u.—-2e If 3,
denotes a summation over these intervals,
3, (f@+B)—~f@)} > v 3, k> vu—2e).

But since f(x) is non-decreasing, and the %-intervals are included
in the A-intervals,

2, {fe+b)—f@)} <3, {fe+h)—f(z)}

Hence v(u—2¢) < u(u+e¢), which is false if ¢ is small enough.
Hence f., (x) (and similarly f’ (x)) exists almost everywhere.

* This proof is due to Rajchman and Saks (1).
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Further, we can argue in the above way with D+ replaced

by D-; every point of E’ is then the right-hand end-point of
arbitrarily small intervals (x—k, ) such that f(z)—fle—%) > kv,
and the conclusion follows as before. Hence almost everywhere
D, f = D-f, i.e. almost everywhere f’, (x) > f_(z). Similarly we
can prove the reversed inequality, and the result follows.

11.43. There is a more general theorem on the possible sets
where f_(x) # f..(x), and the result has nothing to do with
monotony.

The set of points where the right-hand and left-hand derivatives
‘of any function exist and are different is enumerable.

Let K be the set where f” (x) <fi (), and let all rational
numbers be arranged in a sequence 7y, 7,,.... Then if « is a point
of E, there is a smallest integer % such that

FLi@) <rp <[ ().
There is then a smallest integer m such that r,, <, and such

that
{fE)—f@)}(§—=) <
for r,, < £ < x; and a smallest integer n such that », > #, and
{fO)—f@)}/(E—=) > 7
for a < ¢ << 7,,. The two incqualities together give
fE)—flx)>rf—a)  (rn<&<ry EFx) 1)

Thus to every z corresponds a unique triad of numbers
(k,m,n); and no two values of z correspond to the same triad;
for if z; and x, correspond to the same triad, we have, on putting
w=2y, E==2, i (1), fl@y)—f(2;) > r(2,—2,), and, on putting
X == &y, £ == ¥, the same inequality reversed.

Since the set of triads (k,m, n) is enumerable, it follows that
E is enumerable or finite. This is the required result. Since
the measure of an enumerable set is zero. this theorem can be
ased to give an alternative ending to the proof of the theorem
of the previous section.

11.5. Integrals. A function which is the Lebesgue indefinite
integral of another function is called an infegral.

An integral is continuous. For if F(x) is the integral of f(x),
then c+h

Fth)—F@)= | [ dL,
which tends to 0 with A, by § 10.73 (v).
AA
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The integral of a positive function is @ non-decreasing function.
For if f(x) >0, >0,
@4k

Fle+h)—F(z)= f f(t) dé>o.
z
An integral is a function of bounded variation. For let
x
F@)=F)+ [ fo)dz,
a

and let f,(z) = f(x) where f(x) > 0, and f(x) = 0 elsewhere, and
—fa(*) = f(x)—fy(x). Then f,(z) >0, fy(2) >0, and

F(z)=F@)+ [ i) di — [ f0) dt

= F(a)+Fy()—Fy(x),
where F(z) and F,(z) are bounded non-decreasing functions.

11.51. Differentiation of the indefinite integral. Let
f(x) be integrable over (@, b), and let

F(z)= f f(t) dt.

Since F(x) is a function of bounded variation, it has a finite
differential coefficient F'(x) almost everywhere. Our next object
is to prove that F'(z) = f(z) almost everywhere.

11.52. The proof depends on the following lemma.
x
If () is integrable, and f () dt =0 for all values of z in

a
(a,b), then $(x)= 0 for almost all values of x in (a,b).
If this is not so, then either ¢(x) >0 in a set of positive

measure, or ¢(z) < 0 in a set of positive measure—suppose, for
_example, the former. Any set of positive measure contains a
~closed set of positive measure, since its complement can be

included in an open set less than the whole interval. Hence

¢(x) > 0 in a closed set of positive measure—say E.

- Now the integral of ¢ over any interval is zero; hence, by

§ 10.71, the integral over any open set is zero. Hence the integral

over any closed set is zero, and in particular

[ , $@) dz=0.
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Hence, by § 10.73, ¢(x) = 0 almost everywhere in E, contrary
to hypothesis. This proves the lemma.

11.53. If f(x) is bounded, and F(x) is s integral, then
F'(z) = f(x) almost everywhere.
Let |f(z)| <M. Then

F(x+h)—F
W+£ @) hffndr<M
h—>0 k

almost everywhere. Hence, by the theorem of bounded con-
-vergence,* as b — 0,

x
J F(t-l-h}) ) 4 fF, ®) dt.
2
a
But the left-hand side is equal to
a,+h, ) > lz»{-h at+k
1 ;

f Fit) di— f (0 di= f F)di—3 f Flo) ds,
a+h a x a

which tends to F(x)— F(a), since F is continuous. Hence

fF’(t) dt = F(x)—F(a), (D)

Le. f (F'(t)—f(t)} dt =0, 2)

for all values of .. The result now follows from the lemma.

11.54. To extend the theorem to unbounded functions, we
require another lemma.

If $(x) is continuous and non-decreasing in (a,b), then ¢'(x) is
integrable, and »

f # (@) dz < $(b)—(a).

For {$(z-+h)—¢(zx)}/h =0, and {¢( w—l—h) $(x)}/h tends to

* To apply the theorem as given in § 10.5, we make h —> 0 through an
enumerable sequence; so also in the next section.
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¢'(x) almost everywhere as 2 — 0. Hence, by Fatou’s theorem

G050 S th)—gz) [
. x-+h)—d(x ,
%J——T——dx>&f¢(x)dx.

Also, since ¢ is continuous, the left-hand side is equal to
#(b)—¢(a), as in the above proof. Hence the result.

11.55. If f(x) is any integrable function, F'(x) = f(x) almost
everywhere.

We may as usual suppose that f(z) > 0. We define {f(2)},, as
in,§ 10.7. Since f(t)—{f(¢)},, = 0, the function

f ro—gen a

is non-decreasing, so that its differential coefficient is never
negative. Hence

a { [ 7 dt} %%{ [EOX:

wherever these differential coefficients exist. Hence, by the
theorem for bounded functions, F’(z) > {f(x)}, almost every-
where. Making n - o0 we see that F'(z) > f(x) almost every-
where. Hence

be’(x) dx >fbf(x) dz.

The above lemma, however, gives this inequality reversed.
Hence in fact the two sides are equal, i.e.

b

[ {F'@)—f@)} dz=o.

a
Since the integrand is never negative, it must be zero almost
everywhere. This is the required result.

11.6. The Lebesgue set. The theorem that F'(z)= f(z)
almost everywhere was extended by Lebesgue as follows.
If f(x) 1s integrable,

z+h

.1
lim j 1f(t)—a] dt = | fz)—a]
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Jor all values of «, except when a belongs to a set of measure zero;
that s, | f(x)—a| is the derivative of its indefinite integral for all
values of o and almost all values of z.

If « were fixed there would be nothing to prove, since
| f(x)—«| is integrable, and the result follows from the above
fundamental theorem.

Consider next all rational values of «, say o, ®y,.... The sets
in which the theorem is false for «;, a,,... are all of measure zero,
and so their aggregate is of measure zero. Hence |f(z)—«] is
the derivative of its integral for all rational values of «, except
when 2z belongs to a set £ of measure zero.

Now let « be a point not in E, « an irrational number, and
B a rational number near to «. Since

|1/ —al—170)—BI| <

we have
1w+h 1a:+h
[ 110—ald—3 [ 170810 < lp—ol.
’ 1:c+h ) :

But 7 | 10—s1a—1i@—p1 <

if |h| < ho(B, €). Hence

z+h

1
7 | 1r0—al d— i)

1 z+h 1x+h .
<[ 1ro—aig—3 [ 1ro—pia +
z+h

+ 7 | 1761 & —1f@)—B) +1 @) —B1—1f@) ol

< |B—afte+[B—al,

which may be made as small as we please, by choice first of
B and then of . Hence |f(x)—c| is also the derivative of its
indefinite integral for all irrational «, if # is not a point of E.
This proves the theorem.
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We may, in particular, take o = f(x). Hence

h .
[ Ife+0—f@) di=o()

as h—> 0, for almost all values of . The set where this holds is
called the Lebesgue set.

All points of continuity are of course included in the Lebesgue
set.’

The interest of the Lebesgue set lies in the fact that many
theorems which hold at all points of continuity are also found
to hold at all points of the Lebesgue set, and so almost every-
where. We shall have examples of this in the chapter on Fourier
series.

We note finally that if the modulus sign is omitted from the
formula, the « disappears, and the result reduces to the previous
theorem.

11.7. Absolutely continuous functions. A4 function f(z) is
said to be absolutely continuous in an interval (a,b) if, given e,
we can find & such that

Vgl lf(xy+h,,)~—f(x,,)| < €

for every set of non-overlapping intervals (x,,x,+h,) such that
2 h,<8.

An absolutely continuous function is confinuous, since we can
take the above sum to consist of one term only.

An absolutely continuous function is of bounded variation,
since its total variation over an interval of length & is at most
e, and consequently its total variation over (a,b) is at most
(b—a)e/s.

On the other hand, there are continuous functions of bounded
variation which are not absolutely continuous. An example of
such a function will be given in § 11.72,

11.71. A necessary and sufficient condition that a function
should be an iniegral is that +t should be absolutely continuous.
If F(x) is the integral of f(x),
zy+hy

S 1reAn)-Fe)<E | 1@l =], Ife)d,

V=1 ..
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where E denotes the set of intervals (z,, z,+5,). The right-hand
side tends to zero with 3 %, in the sense of the above definition,
by § 10.73 (v). Hence F(z) is absolutely continuous.

To prove the converse we require the following lemma.

If ¢(x) i absolutely continuous in (a,b), and ¢'(z) = 0 almost
everywhere, then ¢(x) is a constant.

Let E be the set where ¢'(z) = 0. Every point z of E is the
left-hand end-point of arbitrarily small intervals (z, z-A), such

that (@) — $(@)] < eh.

By the lemmas of § 11.41, we can select a finite set S of these
intervals which do not overlap, and which contain all F except
a set of measure 8, and so all (2, b) except a set of measure 3.

Let #,, @,,... be the end-points of the intervals of S, and let
Y,-denote a summation over the intervals of 8, and 3, over
the complementary intervals. Then

195(5)—95(“)] < 21 I¢(xv+1)_¢(xv)|+ Zz l¢(xv+1)_¢(xv)l‘
Now 3, [¢@1)—8@,)] <e 2, (@,11—2,) < e(b—a).
Also ¥, (#,4,—%,) <8, and so, by the property of absolute

tinmaty,
ol 3, 14(@1)—$@,)
tends to zero with 6. Hence, making 60,
$(0)—¢(a)| < e(b—a).

Making €0, it follows that ¢(b)=d¢(a); and similarly
${x) = $(a) for every value of x.

Suppose now that F(z) is any absolutely continuous function.
Then it is continuous and of bounded variation, and we may

ite
™ F(@) =Fy(e)—Fya)

where F, and F, are continuous non-decreasing functions. By
the lemma of § 11.54, F,(x) and F,(x) are integrable, and hence
so is F'(z). Hence

frmﬁ

is absolutely continuous, and so also is

$(z) = F@)— [ F() dt.
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But ¢'(z) = 0 almost everywhere. Hence, by the lemma, ¢() is
a constant, i.e.

F(z)— f F'(t) dt == F(a).

Thus F(xz) is the integral of F'(z).

11.72. A continuous increasing function which is not
an integral.* We can define a function of this type by means
of Cantor’s ternary set (§ 10.291).

Let a,, always take the values 0 or 2, and let b, = a,, so
that b, is always 0 or 1. If

T = Qys...(3)
is a point of Cantor’s set I, we define

fl@) = bybbs...(2)
(in the scale of 2). :
_ At the ends of an interval 8, f(z) therefore has the values
by, 0111...(2),  -b,...b,,1000...(2),
and these are equal. We define f(z) throughout the interval §,
to be equal to its value at the end-points.

The function f(z) ts nom-decreasing. In proving this it is
sufficient to consider points x of E, since f(x) is constant in the
intervals of CE. Let

' =-010,...(3), = "= -aja;...(3)
be points of E, z" >2z'. Then there is a suffix n such that
a,, = a,, (m <n), a, <a,. Hence
f@') =-by..by,_;b;,...(2) < -b]...b, _1b5...(2) = f(z").

The function f(x) i8 continuous. We have to prove that
f&') = f(x) as 2’ + «, and again it is sufficient to consider points
z, 2" of E. Let

X = 0y8y...(3), 2 = -ajay...(3).
If now 2’ — x, there will be a value of n, which tends to infinity
as 2’ - z, such that a,, =a, (m <n). Hence
f(@)—f(") =-00...0b,,...—-00...08,,... - 0.
On the other hand,

[ £ @ f)—500).

* A detailed discussion of this function is given by Hille and Tamarkin (1),
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For the right-hand side is 1, sincef(l) =-111..(2) =1, f(0) = 0;
but f(2) is constant in the intervals 8, so that f'(x) = 0 in the
interior of any of these intervals. Hence f’(z) = 0 almost every-
where, and the left-hand side is 0.
It follows that f(x) is not the integral of its differential
coefficient, and so is not absolutely continuous. It is easy to
see this directly. Consider the sum

2. |f(Br)—f(ou)]
taken over the intervals (a;, B;) which remain after the pth step
of removing intervals §,,. It is equal to

2 {f(Br)— (o)} =F(1)—f(0) = 1.
But 3G =1y i = (2]

which tends to zero as p - 00. Hence f(z) is not absolutely
continuous.

11.8. Integration of a differential coefficient. If f(x) has
a differential coefficient almost everywhere, or even everywhere,
in an interval (a,5), the formula

[1r® d=f@)—f@) (@<z<b) (1)

is not necessarily true. It may fail in one or other of two ways.
Consider, for example, the function

f@)=stsing @>0),  f0)=0,

already referred to in § 10.7. Here

, .1 02 1 yoy
f(zzc)=2;cs;1na—c-2—;30035§ (x> 0), f(0)y=0,

so that f'(x) exists everywhere; but, as we saw in § 10.7, it is
not integrable in the Lebesgue sense, so that (1), on the Lebesgue
theory, has no meaning.

If we can imagine a function with this kind of singularity
distributed everywhere in an interval, we shall obtain some idea
of the nature of the problem of integrating a differential coeffi-
cient. The problem has been solved by means of the Denjoy
integral. This is a highly general type of non-absolutely con-
vergent integral, and it would take us too far to discuss its



368 DIFFERENTIATION AND INTEGRATION
properties here. The result is that, if f'(x) exisis everywhere, the
formula (1) is true, the integral being a Denjoy iniegral.

If we do not assume that f'(x) exists everywhere, but merely
‘almost everywhere, the formula (1) may break down still more
completely. The integral on the left may exist as a Lebesgue
integral, but be unequal to the right-hand side. We have
already had an example of this in § 11.72—in fact an example
where f'(x) =0 almost everywhere, without f(x) being a con-
stant.

In order to obtain the formula (1), the integral bemg a
Lebesgue integral, we have therefore to impose further condi-
tions on f(z) or on f'(z). There are several theorems, varying
in difficulty according to what is assumed. Their common
feature is that we suppose that f'(z) exists everywhere. The
example of § 11.72 shows that no set of conditions which is
merely given almost everywhere is sufficient.

11.81, If f'(x) exists everywhere and is bounded, then 11.8 (1)
18 true. '

If | f ()| < M, then (P.M.§ 125) there is a number 8 between
0 and 1 such that

f(m+h —f(z) =|[(z+6h)| < M. (1)

Hence { f(w-{—h)—f(x)}/h converges boundedly to f'(x), and the
proof is now the same as that of 11.53 (1) (with f(z) instead
of F(x)).

- Alternatively, we may observe that it follows from (1) that

vgl lf(wv_}—kv)_f(xv)l < Mglhv

Hence f(x) is absolutely continuous, and the required result
follows from § 11.71.

11.83. If f(x) is any function such that f'(z) is finite every-
where and is integrable, then 11.8 (1) is true.

This evidently shows in particular that 11.8 (1) holds if f()
is of bounded variation and f’(z) is finite everywhere; for if
f(z) is of bounded variation, f'(z) is integrable (see § 11.54 and
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example 12 below).

The following proof is substantially that given by Schlesmger
and Plessner.¥ It depends on the two following lemmas.

LemMa 1. Let E be any set in (a,b) of measure zero, € a given
positive number. Then there is a mnon-decreasing absolutely
continuous function x(x) such that y'(z)= +oo in E, and
x(b)—x(a) <e.

We can include £ in a sequence of open sets O; > 0, > .

such that m(0,) << ¢,, ;+e€+... = e. Let f,(x) be the charac-
teristic function of the set O,. Then

b
{ 1.0 dt=m(0,) <e,.
Let é,(2) = fi(@)+folx)+.. A+ (@)

Then ¢,(t) is non-decreasing as n — oo for every ¢, and

f ¢n(t) dit < e;+e+...4e€, <e

Hence by § 10.82 ¢,(¢) tends to a finite limit ¢(f) almost every-
where, and

lim J b, (t) dt = J H(t) di = x(),

n—os
say.

This function y(z) has the required properties. Since it is the
integral of a non-negative function it is non-decreasing and
absolutely continuous, and

(b)——xa)—-fcf; )dt < e.
Also % f £ di=1

in 0,, and so, if y, (z)=| ¢,(t) dt,

2'——>'-s

Xa() = ny tydt=n

+ Lebesyuesche Integrale, pp. 166-74.
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in O,. Hence

@+ —x(2) S xnl@+D)—xa(2) _ . o
h = 3

for |h| < ho(3) and z in O,,. Hence Dy > n for each of the four
derivates and z in O,. Since a point of £ belongs to O, for
every n, it follows that x'(z) = +co in E.

Lemma 2. If f(x) is continuous in (a,b), and D+f > 0 almost
everywhere in the interval, and D+f is nowhere —co, then f(x) is
a non-decreasing function.

It is sufficient to prove that f(b) > f(a), since the general
result then follows by a similar argument.

Let E be the set of measure zero where D*f < 0. By Lemma 1
there is an absolutely continuous function y(z) such that
x' ()= +co in E, and x(b)—x(a) <e.

Let g(@) = f(z)+x(@).

Then in E, Dtg= +oo, since D,y = +oc0 and D+f is finite,
and D+g > D,x+D+f. Alsoin CE
D+g =D >0
since x is non-decreasing. Hence D+g > 0 everywhere, and so,
by § 11.3, ex. (iv), g(b) > g(a). Hence
fO)—f@) =2 —{x()—x(@)} > —¢,
and, making € - 0, the result follows.

11.84. We can now prove the theorem stated in § 11.83. Let

n be any positive number, and let
gu(@) =min{f'(),n},  @,(v) =max{f (), —n}.

Then g,(x) < f'(*) < G,(x), and, since f'(x) is integrable, so are
g.(x) and G, (x). Let

fa@)=[gu0)dt,  Fy@)=| e,(t) dt.

Then . lim f, (x) = lim F,(x) = f f(®) dt = (),

say. Now  DHF,@)—f(@)} > D+E,—DHf.
This is almost everywhere equal to @, (z)—f'(x), i.e.
DH{F,(2)~f=)} >0
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almost everywhere. Also

z+h
F(w+h)—Fy(z) _ 1

so that D+F, > —n, and so D+(F,—f) is nowhere —co. Hence,
by Lemma 2, F,(x)—f(x) is non-decreasing, i.e.

F(x)—f(x) = F,(a)—f(a) = —f(a).

Making n —> 00, we obtain

$(@) =f)—f(a).

A similar argument with f, (x) gives the reversed inequality,
and this proves the theorem.

MISCELLANEOUS EXAMPLES

1. For & = } the function f(z) of § 11.23 has the derivative 4 co.
2. The density of a set E at a point  may be defined as
. m(EH)
o B
where H is the interval (z—h, z--h).
Prove that the density of a set is 1 almost everywhere in the set, and
0 almost everywhere outside it.
[Consider the integral of the characteristic function of E.]
3. A set E in (0, 1) is such that, if («, B) is any interval, then
m{E(a, )} > 3(B—a)
where 8 > 0. Show that m(E) = 1.
4. If, as h >0,

[ 7@+ m—fa) do = o0,

then f(x) is almost everywhere equal to a constant.
&
[Consider f {f(@+4h)—f(x)} dz. See Titchmarsh (7), where, however,
2
the proof is unnecessarily complicated.]

5. Let o and B be positive numbers, f(z) = z%sinz=8 (0 <z < 1),
and f(0) = 0. Then f(z) is of bounded variation in (0, 1) if & > 8, but
not if o < B.

6. A function f(z), defined for 0 < # < 1, is absolutely continuous in
every interval (0, £), where £ < 1, and its total variation in (0, £) is
bounded as £ — 1. Show that f(z) tends to a limit as £ — 1, and that,
if we define f(1) to be equal to this limit, then f(x) is absolutely con-
tinuous in the whole interval (0, 1).
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[The point of this example is that the difference between ‘continuity
plus bounded variation’ and absolute continuity is a property of a whole
interval, and cannot be traced to the behaviour of the function in the
neighbourhood of any one point.]

7. The theorem of § 11.83 remains true if f'(z) = + 00 in an enumer-
able set.

8. A necessary and sufficient condition that a function should be
convex in an interval (g, b), in the sense of § 5.31, is that it should be
the integral of a bounded increasing function over any interval interior
to (a, b).

9. If f(x) is absolutely continuous, so is | f(x)[?, where p > 1.

10. A necessary and sufficient condition that f(z) should be almost
everywhere equal to a function of bounded variation in (a, b) is that
ash -0

h
[ 17@t+m—e) dz = o)

[where f(z) = 0, say, outside (a, b)].*

[If f(z) is of bounded variation, we have f(z) = ¢(x)—y(z), where
¢ and i are positive, non-decreasing and bounded in (@, b). Then, if
h >0,

b b b
[ 1@+ h—f@) @ < [ etn—ge) do + [ Gath)—ia) do
a a a

b+h a+h b+h a+h

= f (8 dt — f 0 + [ ooy ai — f J(t) dt = O(h),
b a ] a

so that the condition is necessary.
Suppose now that the condition is satisfied. Let

z+1/n

@) =n [ s as
Then

[ [ roa

xz+h

f[gﬁ,(w—l—h)*gﬁn(w)l dr =mn f dx
a a

1/n

b
=nfd:c j
a 0

{flx+t+h)—f(x-+2)} dt

1

-

n

AN

dz

n

| fl+t+R)—fa-+0) de

R

bt

n
-nf dt
1}

* Hardy and Littlewood (5), pp. 599-601, and (8), p. 619.

Hl

S o O,

|f@4-t4+h)—f(x+1)| dz ~ O(h).
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If (x,, #,+hy) is any set of non-overlapping intervals,
| xot+hy

Slbimt) =@l =3 [ $iw)do
xp+hy ’
<3 [ Wil < [ |400) .

and, by Fatou’s lemma and the above result,
b b
f[qs;(x)] dx < L,Efl‘én(_x’&ﬁﬁfﬂ dx = 0(1).

Hence 2 |@u@vthy) —¢u(z)| = O(1).
But ¢,(x) — f(x) almost everywhere. Hence
2 | f@y+hy)—fl=)] < 4

if none of the points z,, z, &, belong to a certain set X of measure zero. If
a does not belong to , it follows as in § 11.4 that f(z) = f(a)+ P(z)—N(x)
in CE, where P(x) and N(z) are bounded and non-decreasing in CE. In
E we can define P(z) as lim P(z’), where 2’ — 2 from below through CE.
The result follows without difficulty from this.]

11. In § 11.4 the existence of f’(z) at a point does not imply that
of V'(x).

[Consider f(x) = z?cosz> (0 < 2 < 1), f(0)=0,1 < x < 2.]

12. In § 11.54 the condition that ¢(x) is continuous can be omitted.

[The proof shows that if « and B are any two points of continuity

B8
[ #@) do < 48— (.

But for any non-decreasing function points of continuity ace everywhere
dense. Hence, making a —a+0, 8 — b—90, through such points, we
obtain

b
[#@) dv < po—0—g(a+0)]
a

1

e . 1 ) _
13. The set consisting of the intervals (m, 5 "= 1, 2,..., has

density } at z = 0.
~ 14. A convergent series of non-decreasing functions can be differen-
tiated term by term almost everywhere.
Fubini: see Rajchman and Saks (1).
[Let Uy () Fug(2)+ oo Fu (2) = 8,(x) > 8(x) (a < x < D)
Then 8(z) is non-decreasing; and
N
s(z+h)—s(x) <O Up(x+h)—u,(z) Up(T-+h)—u,(%)
TS D WSS D

n=1 n=1
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for every N. Making h—- 0, it follows that
s'(z) = %uﬁ(-v)
n=1

almost everywhere. Hence 3 u,(x) converges almost everywhere, to
¢(z) say, and ¢(z) < s'(z).

Suppose that the set B(u,v), where ¢(z) < u < v < §'(x), has positive
measure u. Almost everywhere in E(u,v)

siz) < u<v<s(x)
so that S(x+h)—s,(x) < hu < hv < s(v+h)—s(x)
for sufficiently small 4. This holds over a finite non-overlapping set of
intervals of total length I > 4u > 0. Summing over these intervals
lv—u) < 3 {s(x+h)—s,(c+h)}—{s(xr)-—-s,(x)}
< {s(b)—s,(b)} —{s(a) —s,(a)}

since 8(x)—s,(z) is non-decreasing. Making n— oo, | < 0, a contradic-
tion. Hence ¢(x) = s’(2) almost everywhere.]

15. If f'(z) is finite everywhere, and equal to a continuous function
almost everywhere, it is equal to it everywhere.

1

16. Show that  lim | JETI/@=0 4
30
exists for every z if f(x) is Weierstrass’s non-differentiable function.

Show that the limit does not exist at x = 0 if f(x) is the continuous
function 0 (x < 0), 1/log(1/z) (xz > 0).

[This limit exists almost everywhere if f(z) is any integrable function.
See Titchmarsh, Fourier Integrals, Theorem 105.]



CHAPTER XII
FURTHER THEOREMS ON LEBESGUE INTEGRATION

12.1. In this chapter we adopt a slightly more practical point
of view than in the two preceding ones. We have carried the
general theory of definite and indefinite integrals as far as we
shall require it, and we shall now prove a number of theorems
which are useful in the manipulation of integrals.

12.11. Integration by parts. The formula of integration
by parts in the Lebesgue theory is, of course, the same as the
ordinary one: if G(z) is an indefinite integral of g(x), then

b . b
[ f@)9(@) de =[f@)G@]— [ f(2)6(@) da

The formula holds if g(x) is any integrable function, and f(z)
18 an integral.

The proof depends on the fact that the product of two absolutely
continuous functions is absolutely continuous. For let ¢(zx) and
() be absolutely continuous in (a,b), and let M and M’ be the
upper bounds of |4(z)| and [¢i(z)|. Let (z,,z,+5,) be a set of
non-overlapping intervals in (#,5). Then

2 1b(@,+h, )@, +h,)—b(z; l/'(xv)l
=3 |$(@,+h, )Y@, +h)—d @)@ N @+ h) —d @)
<M Z'I'/'(%—l-h;)—sl‘(xv)l-l-M "2 1@, +h,)—(@,)]-
The last two sums tend to zero with 3 %,, and so ¢(x)(x) is
absolutely continuous.

In the g1ven formula, f(z) and G(z) are absolutely continuous,
and hence so is f(x)G(z); and '

j L 1l0)Ga)} de = [fl@) G-

But —{f )G ()} =f' ()G (z)+f(x)g(

wherever f'(z) and G'(z) exist, and G'(xz)=g(x). Since this is
true almost everywhere the result follows.
‘BB '
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12.2. Approximation to an integrable function. The
following theorem is often useful.

If f(x) is measurable over a finite interval, then, given two positive
numbers 8 and e, we can define an absolutely continuous function
¢(x) such that |f—d| << & except in a set of measure less than e.

Suppose first that f(z) is bounded. We may suppose without
loss of generality that f(z) > 0. Divide up the interval of varia-
tion of f(z) by the scale

0, 8, 25,..., nd.

Let e, be the set where 186 < f(xr) < (v+1)8. Let §,(x) =15 in ¢,
and zero elsewhere. Then the function

_ P@) = @)+ Fthp-a(2)
differs from f(z) by less than 3.

Let E, be an open set, including e, of measure less than
mfe,)+¢/3n. Let S, be the sum of a finite number of the
intervals of E,, such that m(E,—8,) <e/3n. Let ¢,(x) =18 in
8,, and zero elsewhere. Then ¢, =1, except in a set of measure
less than 2¢/3n; also ¢, is discontinuous at a finite number of
points, viz. the ends of the intervais of S,. To remove these
discontinuities, we join the graph of the function to zero at the
end of each interval by a straight line inclined so that the
modifications all occur in a set of measure less than ¢/3n. Thus
if ¢, is the modified function, ¢ is absolutely continuous, and
#, =1, except in a set, of measure ¢/n.

Let $(@) = $opt+-di+- -

Then ¢(z) is absolutely continuous, and ¢(z) = (x) except in
a set of measure e. Hence ¢(x) has the required property.

I f(z) is not bounded, let {f(z)}, = f(z) where |f(z)| <, and
{f(z)}, = 0 elsewhere. We can take k so large that {f(z)}; = f(z)
except in a set of measure 4e. By the first part, we can deter-
mine ¢(z) so that [{f(x)},—¢(x)| <3 except in a set of measure
1e. Then ¢(z) has the required property.

Notice that, if f(x) is bounded, ¢(x) can be constructed to lie
between the same bounds as f(z).

If f(x) is integrable, we can construct ¢(x) so that, in addition o
the above properties,

[ 1f@)—4@)| de <, (1)
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where v 18 arbitrarily small. If f(z) is bounded, say |f(x)| < M,
then |¢(x)| < M, and

b
[ 15@)—$(@)| dv < 3(b—a)+2¢M,

giving the required result. If f(z)is unbounded, we define {f(x)},,
as above, and then determine ¢(x) so that [{f(z)}—d(x)| <&
except in a set of measure }¢/k. Then

b b b
[ 1f@)—$(@)] dz < [ 1f@)~f{@hl dz + [ |{f@)}—d@)] da.

The first term tends to zero as k — oo, and the second term does
not exceed 3(b—a)-+e. Hence the result.

Example. If f(z) is integrable over (a—¢, b-4¢), then
b
limf |fl@+h)—f(2)| d = 0.
h—0
‘a

12.21. Change of the independent variable. Here again
the formula is familiar, but the conditions under which it holds
are novel. :

If f(x) and g(x) are integrable, g(x) >0, and G(z) is an in-
definite integral of g(x), a = G(x), b = G(B), then

b B
[10)de= [ £{6@}g@) dz,

where f{G(x)}g(x) is defined as 0 if g(x) = 0.

The inverse function of £ = G(z), of which « and B are values,
is not necessarily one-valued, since G(z) may be constant in
some intervals. But if more than one value of z corresponds to
a given value of {, these values of z form a closed interval, and
we can make the inverse function one-valued by taking z to be,
say, the left-hand end-point of the interval.

‘We next observe that if ¥(z) and G(x) are absolutely continuous
functions, and G(z) is monotonic, then F{Q(x)} is absolutely con-
tinuous. For, since F is absolutely continuous,

3 |F{G(x,+h,)}— F{G(x,)}|
tends to zero with 3 |G, +h,)—G&,)
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and, since G(z) is absolutgly continuous, this tends to zero with

> by

1t follows that, if F(z) and G(z) are integrals of f(z) and g(=),
then F{G(z)} has a finite differential coefficient for almost all

. values of z, and

3 b
2 F(6@)] ds= PEE-F(EE) = [ 10d

a

The result will now follow if |
4 [Fia@) = el M

for almost all values of z. But this is not obviously true. For

F{G@+h)—F{Gx)} _ F{G+h)}—F {G(z)} Gla+h)—G(x)
R =~ Ga+h)—Gr) h ’

and the second factor on the right tends to g(x) for almost all
values of z, while the first factor tends to f{G(z)} for almost
all values of G(z); and the difficulty is that the exceptional set
of values of G(x), of measure zero, does not necessarily corre-
spond to a set of values of x of measure zero.

Let f(z) be bounded, say |f(z)| < M. Divide the interval
(o, B) into sets E,,..., E, as follows. In Ej, G'(x) = g(x) > 0,
and the first factor on the right tends to f{G(x)}; in Ej,

¢(x) = g(x) > 0

but the other condition is negatived; in Ej;, G'(z) = g(x)=0;
in E,, G'(x) # g(z). Clearly (1) holds in Ej; and it holds in
E,, since there

F{G(z+h)}— F{G()}
h .

G(z+h)

and each side of (1) is zero; m(E,) = 0; and we have to prove
that m(E,) = 0. :
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Let E,, be the part of E, in which G'(z) > 1/n. Enclose the
corresponding ¢-set in an open set O of measure less than a given
e. With each z of £, associate an interval (x,2z+%,) such that
( G(x+h,)—G(x) > hy/n, and such that the interval G(x),
G(x+h,) is in 0. By Lemma 1 of § 11.41, there is a finite non-
overlapping set S of the intervals (z, z-A,) such that

(B ) < m(S)+e = Ty hte.

This is less than
n 3 {G@+h,)—G(@)}+e < nm(0)+e < (n+1)e.

Hence m(H, ,) = 0, and, since E, is the outer limiting set of
the sets B, ,,, m(E,) = 0.

Lastly let f(z) be any integrable function. We may suppose
without loss of generality that it is positive. Defining {f(x)},
in the usual way, the theorem holds for {f(z)},, and it is suffi-
cient to prove that

B B
lim [ [f{G(@)}].9@) de = [ f{G@)}g(@) da.

But | [A(G@}.g() do=[ {fO} &< [ f0)de

The result therefore follows from the convergence theorem of
§10.82 (regarding f{G{z))g() as 0 if f{G@)} = oo, g(a) = 0).

12.3. The second mean-value theorem. If f(z) is in-
tegrable over (a,b), and ¢(x) is positive, bounded, and non-
tncreasing, then

b

3
[ f@)$(@) de = $la+0) [ f@) du

a

where £ is some number between o and b.
Let ¢ be a positive number less than ¢(a-+0)—¢(d—0). Then
there is a point z, such that

pa+0)—d@@)<e (@<zT<®H)
Zze  (x>x)
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Similarly there are points %, #,... such that

qS(o:,,_l—(—O)——qS(x) <e (xv—l <z < m,,)
e (z>z),

so long as ¢(x,_,+0)—¢(b—0) > e. Otherwise we take z, =b.
The point & is thus reached in a finite number of steps, since
the variation of ¢(z) in each interval (z,—,,x,) is at least e.

Let (x) =¢(x,+0) in each interval », <x<z,,;. Then
0 < J(x)—¢(x) < ¢ except possibly at the points a =z, =z,
Xg,..., b, and

b Ty 41

[t de="5 $@,+0) | f@) .

v=

Let F(z)= j' f(8) d¢; then, if m and M are the lower and upper
a
bounds of F(x), it follows from Abel’s lemma (§ 1.131) that

ma+0)< [ Y@)f(e) do < M(a-+0).
But b ‘ b »
[ ¥0ife) a2 — [ $@)f(e) do| << [ 1) az,

which tends to zero with e. Hence, making ¢ — 0, it follows that
b
m(a+0) < f $(@)f(x) de < Mp(a+0).
‘ a

Since F(z) is continuous, it takes every value between m and
M, and so, at x =¢ say, the value

9,,(“1;5)— f $@)f(@) da.

This proves the theorem.

If ¢(2) is positive and non-decreasing, the corresponding
formula is

[ fa)pa) de=go—0) [ fiz) da,
a £

where a < £ < b.
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If ¢ () is any monotonic function, there is a number £ between
a and b such that

b b
[ fw)p (@) dz = $(a-+0) f f@) dz +4(b—0) [ f(z) da.
a a ¢

This is obtained from the previous results by considering

$()—¢(a+0) or p(z)—$(b—0).

12.4. The Lebesgue class* L?. We denote by L?(a,b) the
class of functions f(x) such that f(z) is measurable, and |f(z)?,
where p > 0, is integrable over (@,b). If it is not necessary to
specify the interval, we denote the class by L? simply. The
class L' is the class of functions integrable over (a,5), and is
denoted simply by L.

We may classify functions defined over any set, or over an
infinite interval, in the same way; for example, the function
(1+4=)~* belongs to L?(0,c0) if p > 2.

If f(x) belongs to L7, and |g(z)| < |f(z)|, then clearly g(z)
also belongs to L».

Examples. (i) A bounded funection belongs to L?(a, b), where (a, b)
is a finite interval, for all values of p.

(ii) If f(x) belongs to L#(a, b), where (a, b) is a finite interval, then it
also belongs to L#(a, b) for ¢ < p.

(iii) If f(x) belongs to L?(0, o) and to L0, o), where p < g, then it
also belongs to L7(0, o) if p < 7 < gq.

[Consider separately the sets where | f(z)] < 1 and | f(z)] > 1.]

(iv) The sum of two funections of L? also belongs to L2.

[For | f(z)+g(x)|P < max{2?|f(z)[, 27|g(x)[?}.]

(v) The function {zlog®l/x}~ belongs to L(0, }), but not to any
L~(0, }) for p > 1.

(vi) The function {z¥(1+ |log 2])}~* belongs to L0, «), but not to
L?(0, o) for any other value of p.

12.41. Schwarz’s inequality. If f(x) and g(x) belong to L3,
then f(x)g(x) belongs to L, and -

|[ 1@y de|<{[ Ife@)Pds | |g(z>|2dx}
The interval of integration may be finite or infinite.

* See in particular F. Riesz (2).
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Since 2|fg| < f2+¢? fg belongs to L. Hence the integral

[ 0f@)+rg@) da
=2 [ {f@))? de+2 [ f@)g(@) dotp? [ fg@)} do

exists for all values of A and p. It is evidently never negative.
But the necessary and sufficient condition that aA?+ 2hAp-bu?
should be never negative is that A%< ab,a2 >0, b = 0; and this
gives the inequality stated.

Examples. (i) The case of equality in the above theorem occurs only
if f(z)/g(z) is almost everywhere equal to a constant.

(ii) If f(x) and g(x) belong to L*, where p > 2, then f(z)g(x) belongs
to Li»,

12.42. Holder’s inequality. This is a generalization of
Schwarz’s inequality.

If f(x) belongs to L?, and g(x) to Lrle-D ywhere p > 1, then
f(@)g(x) belongs to L, and

|[ fedot@) da| <{ [ f@)IP da)™ ([ g(@)PloD de] . (1)
The interval of inlegration may be finite or infinite.
Let E be the set where |g(x)| < |f(z)[?-1. Then

|f(@)g(@)| < |f@)]?
in E; hence f(x)g(x) is integrable over E. In the complementary
set CE, |f(x)| < |g(x)2@-D, Hence

[f@)g(=)| < lg(x)[Plo—D
in CE; hence f(z)g(x) is integrable over CE, and so over the
- whole interval considered.

This argument can be used to obtain an inequality similar to
(1), but with a factor 2 on the right-hand side. Let

b b
I=[|fe)pds, J=lga)Plo-Dde.
Then ‘ ’

b
va <[, Vol da+ [, 1ol de

<[ 1fPde+ [ lglo—Dde < T4J. V)
It we replace f(x) and g(x) in this inequality by
e @),  (I]])e-br'g(z),
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respectively, the left-hand side is unchanged, and each term on

the right-hand side is replaced by I»J1-U», Hence
{ f fg do < 21R J1-Up, 3)
The inequality (1) can be deduced from the well-known
inequality
. am—1 <m(z—1) (x>1,0<m<]). 4)
Putting x =a/b (a > b), and multiplying by b,
ambt-m < b+m(a—b).
Putting m=o, 1—m =g, so that a+B=1, this takes the
form a%bB < ao--bp, (5)

and since this is symmetrical it holds if @ and b are any unequal
positive numbers. If @ = b it becomes an equality.
Using (5), we have, if F(z) >0, G(x) >0,

F@) \«; G) \p aFl@) | BG(x)\
UF(t) dt) U G dt) dz < fF(t) dt fG(t) dt
—aHp=1,
ie. f (F@))4{G(@) de < { f F) dx} { f G() dx}
Finally, putting « = 1/p, F(z) = |f(z)[, and G(z) = |g(z)|*@-D,

the result (1) follows.*
Example. The vase of equality occurs only if | f(x)[?/|g(z)[?/®~ is
almost everywhere equal to a constant.

12.421. Holder’s inequality for sums. This is

1S a.b,] < (3 la, [P)UP(3 |b, [Ple-D)1-Up,
The proof is similar to that of the integral inequality. We have

A, \¥ B, \P 4, . B,
62 ) ) <2 sz +A55)
— a+ﬁ — 1,
ie. S A2BE (3 4,)43 B,
and writing o=1/p, 4,=|a,|?, B,=|b,[Pl*-Y, the result

follows.
* This proof is given by Hardy (20).
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12.43. Minkowski’s inequality. If f(z) and g(x) belong to
L?, where p > 1, then

(] oot ]’ < (] 52 4] o 2]
For
[+l do<[If1.1f+glp= dz + [ lgl. If+gi~ da

<([ 1f 1> da”( [ 15+gIP daf' "+

+([ lgle @) ([ 1f+gp da)'
by Holder’s inequality. Dividing each side by

([ 1f+glp a7,

the result follows.
The corresponding inequality for sums

(3 0, Fba2 V2 < (3 la,2P+(S oo (2)

can be proved in a similar way.

12.44. The integral of a function of L. We have seen in
the previous chapter that a necessary and sufficient condition
that a function should be an integral is that it should be abso-
lutely continuous. There is a corresponding condition that a
function should be an integral of a function of the class L#.

A necessary and sufficient condition that a function F(x) should
be the integral of a function of the class L?, where p > 1, is that
the sum 3 1F@,+h)— B (@) Ph,
taken over any system of non-overlapping intervals (z,,z,~+h,),
should be bounded.

If instead of ‘should be bounded’ we say ‘should be bounded
and tend to zero with > 2,’, the theorem is still true, and in
this form it is true for p =1 also, and so includes the theorem
on absolute continuity as a particular case. For p > 1 the two

conditions, one of which appears to be more restrictive than the
other, turn out to be equivalent.

To prove that the condition is necessary, suppose that

F(z)= F(a)+ f ) dt,
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where f(¢) belongs to L#. Then

|2y +hy

P, +h)—F@) = [ fod
Tyt ’

{)

s

Zy+hy Zy+hy

| dt}l"m’_—_ k},*llp{ [ e dt}”p.

-~

)P dt}””{

-~

Hence
2y+hy

3 1P, +h)—Fa)Pie <3 [ |forda< [ 1foPd,

so that the condition is necessary. Since

xp+hy

> [ Ifeea

Zy

tends to zero with > k,, the alternative condition is also
necessary.

Suppose now that the condition is satisfied, and let M be the
upper bound of the given sums. Then, by Holder’s inequality
for sums,

3 1P @, A-h)—F@,)| =3 (e, +h,)—Fa,) -1 B
<{S 1P@,+h,)—F(w,) PR#R (S by )i-le < M2(S B,

which tends to zero with 3 %,. Hence F(x) is absolutely con-
tinuous, and so is an integral, say

Flo)= Fl@)+ | 1) dt.

It remains to prove that f(f) belongs to L?. Consider a
sequence of finite sets of points in the interval, the mth set
being x,, 1, ,, 9;---s Ty, 4, Such that '

lim max(xm, v+1 " Tm, y»)=0.
m—>o0 14

For example, if the interval is (0,1) we may take x,, , = v/2™.

jF(xm, v+1)'— F(xm, v)

T, 1 %m, »

Let Im(@)=

in each interval z,, , <% <, ,.;. If z is not one of the points
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Tp,y, and F'(z) exists, and z,, , <z <, ,.;, then

f (.’Z)= F(xm, v+1)_F(x) L, y+1—% +
" T4 "% Ty i1 — Ty,

Fz, )—Fx) z—=x

m, v
Z.

myv % L, v+1'—xm, v
Z, —x r—x.
= {F'(x)4-§} Zruril = F'(z)+8,) ———"“m
{ ( )+ 1} mm.v+1_xm,v+{ ( ) 2} Tom, v41 T, »
= F’(x)+83, »
where |85] < [8,]+3,/, and §; and §, tend to zero as
' T, v+1— %, » —> 0.

Hence lim f,.(2) = F'(x) = f(x)

-+

almost everywhere. Also
jb @2 A2 =3 [ F(@p, 1) = F @ P12 i1— i, 12 < M.
I‘:'z[enCe, by Fatou’s theorem (§ 10.81), f(») belongs to L?, and
| f 1o do<tim [ 5,001 a < a1

a a

12.5. Mean convergence. If we are given a sequence of
numbers, say s,, we have usually to consider the behaviour of
the difference s, —s between s, and a given number s. In dealing
with a sequence of functions, say f,(z), and a given function
f(=), it is often not the difference but the mean or average value
of the difference which is important. This can be defined in
various ways. If the functions belong to the class L?, where
P =1, we consider the integral

b
[ 1@ —f@) P de. ()

If this integral tends to zero as n — oo, we say that f,(z) con-
verges in mean (en moyenne, im Mittel), to f(x), with index p.

b
I [ 1@ —Fo@)? da (2)

tends to zero as m and n tend independently to infinity, we say
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that the sequence f,(x) converges in mean, with index p. Here
the function f(z) is not involved explicitly.

The fundamental theorem* of the subject is that if the
sequence f,(x) converges in mean, with index p, then there is a
Sfunction f(x) of the class L?, defined uniquely apart from sets of
measure zero, to which f,(x) converges in mean.

The theorem is analogous to the ‘general principle of con-
vergence’, that if s,,—s,, — 0, then there is a number s to which
s,, tends.

A word of explanation is necessary with regard to the ‘unique-
‘ness’ of the limit-function f(x). Suppose that we have found
a function f(z) which satisfies the given conditions. Then
obviously any other function g(x) which is equal to f(x) almost
everywhere also satisfies the conditions. So at any particular
point the value of f(z) is undetermined, though its general
aggregate of values is in a sense determined. The function f(x)
should be regarded as a representative of a class of functions,
any two of which are equal almost everywhere, and so all of
which behave in the same way in integration.

The theorem for a finite interval and p > 1 may be proved
as follows. To every integer v corresponds a smallest positive
integer n, such that

b Rl
[t de<s  m>n,n>n,).
In particular,
b
[Vnn@—faoPdo<s  G=1123,.).

If E, is the set where |f, . (¥)—f, ()| > 2P, it follows that
m(E,) < (%)’. Hence the series

o0

2 |fay @) =10, ()]

v=1
is convergent, by comparison with ¥ 27, if, for some value

of N, x does not belong to the set By, ;+ By o+.... Since the
measure of this set tends to 0 as N — oo, it follows that the

* TFischer (1), F. Riesz (1), (2); W. H. and G. C. Young (2), where several
alternative proofs are given ; and Hobson (1).
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above series is convergent for almost all values of z; hence so is

PATIRCIE A
i.e. there is a function f(x) (defined almost everywhere) such that
lim f,, () = f()
almost everywhere.

This function f(z) has the required property. For by Fatou’s
theorem

b b ,
lim [ |£,,@)—fn,@P do > [ |f,, (@) —f@)? da;

V>0

b
but [ @—fu@Pde<e  (#>wr>v).
. ‘ b
Hence  [Ifp,@—f@Pdr<e  (n>w),

Le. lim f | fr (@) —f@) P dz=0

i.e. the sub-sequence f, (¥) converges in mean to f(x)
Also, by Minkowski’s inequality,

{f | f@)—Fu(@)I? dx}””

{ f et e )7+ { [ i @—fop ],

which tends to zero as n and , tend to 1nﬁn1ty, by what has
just been proved and the original hypothesis. Hence the whole
sequence f,(x) converges in mean to f(x).

Finally, suppose that f, (x) converges in mean to f(z) and also
to g(x). Then

(f fopds) (f Ao ds)” +() f o~ paz)” o,

Hence the left-hand side is 0, and so f(x) = g(x) almost every-
where.

If p = 1 the proof is simpler, since it is not necessary to use
Minkowski’s inequality.
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12.51. The proof applies almost unchanged to an infinite
interval. We find that the above series are convergent almost
everywhere in (a,b) for every b, i.e. almost everywhere in (2, 00);
and Fatou’s theorem holds for an infinite interval; for, taking
the set K of § 10.81 to be the interval (a, b),

b

[ fl@) de <lim fb Fal@) dz < lim ffm) da,

a

and, making b - oo, we obtain the required extension of Fatou’s
theorem. The proof for an infinite interval now follows.

12.52. We have also (for a finite or infinite interval)
lim {11, (z)}? do = [ |f@) P de..
For by Minkowski’s inequality .
( [ 1) a)”< | [ 1f@)e do)"” + | [ |f@)~fu(o)e daf™,
a,nd also

([ 1@ dw}””< [ [ 1@ da}? +{ [ 1f@)—fa(@) P da)™.
Hence  lim{ [ |f,(0) o} ={ [ (e}l dx}”p

n—r

and the result follows.

12.53. If f,(x) converges in mean to f(x)y with index p, and
g(x) belongs to LrI®-Y), then

lim [ f,(2)g(e) do = [ f2)g(@) da. (1)
For " ' '

|[ ) —f@g@) da|

< ([ 11—y ao)™| [ lg@ 1o daf 2,

which tends to zero.
. In particular

lim ffna) dt=ff(t) i @)

Jor all values of x in the mterval conszdered -
For the function g(f)=1 (@ <t<z), =0 (t>2), belongs to
Lple-D,
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Examples. (i) If f,(z) = f(x) boundedly over a finite interval, then
fa(x) converges in mean to f(x) with any index.

(ii) Consider the closed intervals (0, %), (3, 1), (0, %), (3, %), (%, 1),
(0, 3), ete. Let f,(z) =1 in the nth interval, and f,(x) = 0 in the re-
mainder of the interval (0, 1). Then f,(x) converges in mean to zero
in (0, 1), with any index ; but f,(x) does not tend to zero for any value
of z.

(iii) If f,(z) converges in mean to f(z), and f,(x) — g(x) almost every-
where, then f(x) = g(x) almost everywhere. [Use Egoroff’s theorem.]

(iv) If f,(x) converges in mean to f(x) with index p, and g,(x) to g(z)
with index p/(p—1), then | f,g, dx — [ fg dz.

12.6. Repeated integrals. As in the elementary cases con-
sidered in § 1.8, the equation

b B B b »
[ do [ fw.9) dy=[ dy [ flo,y) da (1)

is in general true in the Lebesgue theory. The general discussion
of this, however, depends on the theory of the double integral

[ [ fw.y) dady,

which in turn depends on the theory of two-dimensional sets
of points. It would take us too far to carry this out in detail.

-There is, however, a particular kind of repeated integral which
includes many cases of interest, and which can be dealt with
by the theory already developed.

Let f(x) be integrable in the Lebesgue sense over (a,b), and g(y)
over (a, B), and let k(z, y) be a continuous function of both variables,
or, if it has discontinuities, let them be of the type descmbed in
§1.82. Then

B B b
f f@) de | gy)k(z,y) dy= [ 9y) dy [ f@)k(zy) do.  (2)

o

Suppose first that f(x) and g(y) are bounded, say |f(z)| < M,
l9@)| < M. Let [k(z,y)| < K.

Let ¢(x) be a continuous function satisfying 12.2 (1); and let
|$(x)| <M. Let (y) be a continuous function related in the
same way to g(y).

Call the left-hand side of (2) I and let

f¢(x)dxj¢ (9)k(z,y) d
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Then

I-I' = [ {f&)—$(@)} d [ g(o)kia,y) dy +

b B
+ [ $(2) dz [ {gl)— b ()}, y) dy,

and hence ,
[I-I'| < [ f@)—¢@)|(B—) MK daz +(b—a)Mn

< MK (B—a+b—ayn.
Similarly, if the right-hand side of (2) is J, and

B b
J' = [ dy) dy [ $@k(z,y) dz,

then |J—J’| tends to 0 with .

But, by the theorem of §1.81, I'=J’, since ¢(x)h(y)k(x,)
is continuous, or has discontinuities of the restricted type.

Hence |I—J| tends to 0 with 5, and so I =J.

The extension to unbounded functions may be left to the
reader; we suppose first that f(z) and g(x) are positive, and argue
with {f(z)},, and {g(x)}, in the usual manner.

12.61. If f(x) is integrable over (0, 1), and g(x) over (0, 2), then
the integral

[ f@)g@+t) de
0

exists for almost all values of t in (0,1), and represents an in-
tegrable function of t.

It is sufficient to consider the case where f and g are positive.
Define {f(z)}, as usual, and let

1

F () = [ {f@hge+1) de.

This integral exists for all values of ¢, and, for a given n, F,(f)
is bounded, and for each value of ¢ it is a non-decreasing func-
tion of n. Also

1 1 1 1 ' 1
f F(0)di= [ di [ {f@hg@+1) do= [ {f@)}, do [ g+t a,
0 0 0 0 0
if we may invert the order of integration, (1)
cc
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To justify this, approximate to ¢ by a continuous function
#, as in the previous proof, and let

= [ {f@h dle+1) da.

1 1 1

Then [ ) dt= [ {f@h, dz [ bt dt, 2)
0 0 0

' this inversion being justified by the above theorem. Now

B0 —x®)] < [ {f@halglett—le-+1)] dz <,

g0 that the left-hand side of (1) differs from that of (2) by less
than ny. Similarly the right-hand sides differ by less than ns.
Hence, making 7 - 0, we obtain (1).

Hence f F () dt< fl flx) dz f 9(y) dy

Hence, as n — o0, F,(f) tends to a finite limit for almost all
values of ¢ (§ 10.82). The result now follows from the theorem
of § 10.82. :

12.62. Repeated infinite integrals. If f(x), g(y), and k(z,y)
are positive, and the conditions of § 12.6 are satisfied for all values
of b> a and B> o, then

ff dxfg o(z,y) dy = fg(y dyff(xk(xy) (1)

promded that ezthe.r side 18 convergent.

The theorem is similar to that of § 1.85, but the supplementary
conditions which appear there are now a consequence of the
main hypothesis.

Suppose that the right-hand side of (1) is convergent. Since

f f@)k(z,y) do < f f@)k(z,y) de, (2)

and the left—hzmd side of (2) is a measurable (in fact a con-
tinuous) function of y, it follows that

) X
[ o) dy [ f@)k(@,y) da
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is convergent. Hence

7 X X n
lim [ 9(9) dy [ flak(z, ) do=lim [ f(@) do | gy)i(z, ) dy

is finite. Also
fg () dy

is a non-decreasing function of n for each value of z. It there-
fore follows from § 10.82 that F,(x) tends to a finite limit, as
n — o0, for almost all values of x in (a, X); i.e

[ 9@, y) dy

is convergent for almost all values of z in (a, X); and by § 10.82
X n

ff(x dx[gmux y)dy=lim [ fie) dv [ g@ktr.y) 4y

N>R
X

9@ dy f fla)k(z, y) dz = f 0(y) dy [ fak,y) dz. (3)

¢

By (2) the right- hand side of (3) is bounded as X > c0; hence
s0 is the left-hand side, and therefore the left-hand side of (1) is
convergent.

We can now prove in a similar way that the order of integra-
tion in

*E Re

= hm

f 9ty) dy f f@)k(z,y) do
may be inverted. The final result then follows as in § 1.85.

MISCELLANEOUS EXAMPLES.
1. If f(x) is integrable over (@, b), and ¢ =y < x; < Xy < ... <t X, = b,
then Zoa1 '

'ff dt]

Zy

lft>l dt

as the greatest partial interval tends to zero.

[The proof is elementary for continuous functions; and then the
general result may be deduced by means of the theorem of § 12.2.]

2. If F(x) is absolutely continuous in (g, b), its total variation in the
interval is

b
f |F(a)] da.

[Use the result of the previous example.]
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3. Show that, if f(x) and g(z) belong to L2,

@y s [ Gy ds —{ | st aa)’
= [ ay [ (@)~ dz,

and hence obtain another proof of Schwarz’s inequality.

4. We use log’z to denote logz if z > ¢, and log’z = 1 if x < e.
Show that if {f(z)}?log’f(x) and {g(x)}*/log’q(z) are integrable over
(@, b), then f(z)g(x) is integrable over (a, b).

[Let E be the set where f < g/log’g. Then

{g9(x)}?
fEfg %< | fogia)

In CE, g < flog’g. If g < e this gives
9 < f<flogf.

If g>e +~g<Ag/loglg<Af, logg< Alogf, and hence again,
g < Aflog’f. Hence

op 175 < [ U@ logf(e) do]

5 If fP(log"f)ﬂ and g*/#- (log’g)-4/*~1 are integrable, then f(z)g(z) is
integrable.

6. Prove that ww < wlogu-4ev- (w>1,v>1).

Deduce that if f(x)log’f(z) and /@ are integrable, so is f(x)g(x).
[W. H. Young (4). The inequality may be verified by putting w = ez,

v =y+1]
7. Iax>0,8>0,y>0,a+B+y =1,

| [ gan dx‘ ( [17 daa)*( [ lglue as)’ ([ mpr )"

8. I A>0, u>0, Au<1, and f(z) and g(x) belong to suitable
L-classes, then

(141 —Aw)
U fg dx

< J1g1tglton do ([ 17 o da) 7 [ pgpon g 00w

[W. H. Young (2); the result may be obtained by suitable sub-
stitutions in ex. 7.] )

9. If F(x) is the integral of a function of the class L», where 2>1,
then as A— 0 Fla+h)—F(z) = o (WA-102).
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[If F(z) is the integral of f(z),
| 2+h
|P@+h)—F(z)| = f f) de

-+

fl

and the last factor tends to zero with A.]
10. If f(x) belongs to L*(0, o), where p > 1, the integral

z+h z+h

b 1/» -~ ~1/p
lf(t)l”dt} { | dt}l ”=hl-w’{ | lf(t)l"dt}l ”,

z

f Fla) B gy
x

is uniformly convergent in any finite interval.

11. If f(z) belongs to L7, where p > 1, and ¢(y) is the integral defined
in the previous example, then as 2 — 0

Py+h)—d(y) = o (Wl7).

[For  dw+n—gw) = f 19 fsina(y-+ 1)} — sin 2y} da
]

=2 f f—(:—) sin 4k cos z(y + th) dz.
Hence °

b(y-+h)—d(y)] < 2 f 'f(w sin jzh

© ypr © . 2 olp=D 1-1/p
<2{ J if<x)1rdx} { f sin 3 dz

The first factor is a constant, and the second factor, on putting = = £/h,
is seen to be a multiple of ht/». This gives the required result with O
instead of o. If, however, we apply the above argument to the integrals
over (0,8) and (A, ), where § is arbitrarily small and A arbitrarily
large, and notice that

f L(;? sin }ah cos z(y + k) da L’f(—fl{ |sin §zh| dz = O(h)

for fixed 8 and A, the required result follows.]
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12. Show that the integral

= sinzy
$(v) f @) ¥ dw
is absolutely convergent if f(x) belongs to L?, where 1 <p < 2; and
tl’lat, as y -—» 0, 56(!/) =0 (y‘l/p_.i).
13. If f(x) is uniformly continuous over (0, ©), and belongs to a class

L?(0, ), then f(x) — 0 as x ~ 0.
14. If f(x) belongs to L*(0, o), where p > 1, so do the functions

1 [ _ [
Px) = e f J@) dt, Y(z) = f - dt.

[Hardy (17) and (19). Consider ¢(x), for example. It isbounded except
asx — 0 or 2 — co. Hence b
f |p() do
a
exists for 0 < @ < b < w; and it is sufficient to prove that this integral
remains bounded as a — 0 and b — .
We may suppose without loss of generality that f(f) > 0. Let

fa@) = [ £t de.
0

Then a1-?{f,(x)}? tends to zero, both as z — 0 and as x — co; for

ey < [ (o dt( | dz)p* =t [ (flyp a,
0 0 0

whence the result for 2 = 0 follows. Again, if 2 > ¢, a similar argument
shows that

¢ " o
@) < [y ae + {w [ ey dt! :
0 £

and we can choose ¢ so large that the last factor is arbitrarily small,
for all # > £. This gives the result for x — co.

b b
We write f (@) de = f (fu@)P2-? de,
a a
and integrate by parts, obtaining

[{fl(w)}’x"’_]b+

b
e s f (@) @k du

a

b
=0+ 225 [ i) e
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Hence

- p v 1-1 /p 0 1/}'
[y e <o)+-2. { [ @y dx} { [ Fape dx},
. p__l
a

a

a
and dividing by the factor

b 1-1/p
{ [ @ dw} :

and making @ — 0, b — 0, we obtain

< ip < 1/p
¥4 r 1p

We leave the corresponding process for J(x) to the reader.]

15. Prove that, with the hypotheses of the previous example, the
integrals

[ B@latrrdz, [ st d
0 0

are convergent for ¢ > p.
16. If f(x) belongs to L?(0, co), where p > 1, and

L

$@) = [ e sty dy,
0

then y'-2/? ¢(y) belongs to L2
1z

[F°r Ip(z)] < f 17| dy + f !J;gn a,

0
and the result follows from ex. 14.

17. If f(x) belongs to L?(a, b), there is a continuous function , g(x)
such that .

13
[ 1@ —g@p o < c.
[The result for bounded f(x) follows at once from § 12.2, and the

general result may then be deduced from this.]
" 18. If f(x) belongs to L? over an interval including (a, b), then

b
lim ['| f(o-+h)—f(@)e do = 0.

[The result is immediate for continuous functions. For the general
result use the previous example.]
19. If f(x) belongs to L#(—co, ), then

lim [ |fa+h)—fa)e do = 0.
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20. If f(x) belongs to L?(— o, o), and g(x) to L2/*-1(— o, o), then

Fi) = [ fwti)g@) do

-— 00
is a eontinuous function of 2.

[For |7-+1)-Fo0)
([ Us( & 1-1/p
< l f | f(z+t4Rh)—flz+t) dx} { f lg(z)|pip-D d:z:} .]

21. The function F(¢) of the previous example tends to zero at infinity.

[Wricej {i t+_}; ]

22. If f(x) belongs to L?(—co, ), then

_ £
F(z) = f g &

is continuous, and belongs to L#(— oo, ).

[Use the inequality

0

ot ~1
| feey de ca Y
1@l < {1+(x—t)‘~’}%1’{ f{l-}-(m—-t)z}h/(p-l')} ]

-0

23. If f(xz) is integrable, the integral
1 -
S e L
0

exists almost everywhere, and f,(x) is integrable.

[The function f (z) is the integral of f(x) of order «; for some pro-
perties of such integrals see Hardy (12) and Hardy and Littlewood (5).]

24, If f(x) belongs to L?(p > 1), show by the method of ex. 20 that
fo(z) is continuous if « > 1/p.

25. If fa p(x) denotes the integral of order 8 of f.(x), then

Jup@) = furplx)  (x>0,8>0),
wherever the right-hand side exists.
[We have to invert the repeated integral
x

t
f (@—2)8=1 i f (t—w)-tf(w) du
‘ 0 - 0 s
and use Ch. I, ex. 18. The integral g { may be inverted by § 12.6.

o
We can then make 8 — 0 and use the theorem of § 10.82.]



CHAPTER XIII
FOURIER SERIES

13.1. Trigonometrical series and Fourier series. A
trigonometrical series is a series of the form

3a,+ i (@, cosnz +b, sin nx), 1)
n=1

where the coefficients a,, a,, b,,... are independent of z. The
problem of representing a given function f(z) by a series of this
form was first encountered by Fourier in a problem of the con-
duction of heat. Subsequently it was found that these series
play an important part in the theory of functions of a real
variable, and it is from this point of view that we shall consider
them here.

‘We naturally begin by trying to find formulae for the coeffi-
cients a@,, b,, in terms of the given function f(z). Suppose that
the series converges uniformly, or even boundedly, to f(z); we
may then multiply by cosmz, where m is a positive integer, and
integrate term by term over the interval (0, 27). Since

2m
fcosmxcosnxdx=rr(n=m), =0 (n #m)

2

and f cosmxsinnz dr =0

for all values of n, we obtain the result

am;% f f(x)cosmx dx. (2)

The same formula also gives a,; and similarly, multiplying by
sinmz and integrating term by term,

27
b, =% f f(z)sinmz da. (3)

The formulae (2) and (3) are known as the Euler-Fourier
formulae for the coefficients.

There is, however, no a priori reason for supposing that a
given function can be expanded in a boundedly convergent
trigonometrical series. The above process is therefore not a
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proof that the coefficients necessarily have the above form.
What it really suggests is that we should adopt a different point
of view. Instead of starting with the series, and assuming that
it has a certain property, we start from the function, and define
the coefficients by the above formulae. We then consider the
properties of the series so formed.

Suppose, then, that we are given a function f(z), integrable
in the sense of Lebesgue over the interval (0,27). Then the
integrals (2) and (3) exist, and the numbers a,, b, defined by
them are called the Fourier coefficients of f(x). The trigono-
metrical series of the form (1), with these coefficients, is called
the Fourier series of f(z). :

The scheme of the chapter is as follows. We first try to
determine conditions under which the Fourier series converges

to f(x). A number of these conditions are found, but they are
all rather special ones (§§13.11-13.25). We next consider a
generalized kind of convergence (summability (C, 1)), and find
that it enables us to put the theory into a more systematic
form (§§ 13.3-13.35). In the following sections we consider some
problems of term-by-term integration; and this leads us to con-
sider properties of the Fourier coefficients themselves, apart
from the Fourier series. In §§ 13.8-13.86 we return to the
question of the relation between Fourier series in particular and
trigonometrical series in general. Lastly we give some of the
corresponding theory of Fourier integrals.

13.11. The convergence problem. The first problem which
we have to consider is whether the series formed in the above
manner converges, and, if it does, whether its sum is f(z).

At the time when Fourier series first came into use, there
seemed to many mathematicians to be something paradoxical
in saying that an ‘arbitrary’ function could be represented by
a series of functions, each of which is continuous and periodic.
The reader who has examined the peculiarities of some of the
series in Chapter I is perhaps prepared to believe that even this
is possible; and we shall show that the series does, substantially,

- dowhat is required of it. We mustnot, however, expect too much.

In the first place, every term of the series has the period 2m;
hence the sum of the series, if there is one, also has the period
2. We therefore define the function f(x) first in thé interval
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0 <2 < 2m; outside this interval we define it by periodicity,
i.e. by the equation
f@+2m) = f(z).

Secondly, it is impossible that, whatever f(z) is, the series
should converge to the sum f(z) for every value of z. Con-
sider, for example, two functions f(z) and g(z) which differ at
one point only. They have the same Fourier series, so that it
cannot represent both functions at every point. More generally,
two ‘equivalent’ functions, i.e. functions which are equal almost
everywhere, have the same Fourier series, which therefore can-
not represent them both if they differ anywhere.

Actually we shall see that the series does represent the func-
tion, provided that the function is not too complicated; and
even in the most complicated cases, the series still represents
in some sense the main features of the function.

13.12. Fourier series and Laurent series. There is a
close formal connexion between a Fourier series and a Laurent
series. Let F(z) be a one-valued analytic function, regular for
R’ < |2| < R. Then

-]

F(z)= Z CrR",

where Cp= 2; gf(g dz (R'<r<R).
|2|=2»

Putting z = re?, we have
F(reif) = i A e,
N

n=—
27 .
where 4, =21 f Flreib)e-n$ dg.
2

The expansion may also be written

F(re®) = Ayt 3 {(4,+A4_)eosnf-+i(d,—A_,)sinnf},
n=1
where

2m 2m
4y=5 [ Fee g Ayt dy= [ Pretoosng a4,
(1] 1]

i(An—A_n)=% f Flre)sinng dé.
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We have thus expressed the Laurent series in the form of
a Fourier series. The fact that in this case the series represents
the function, and indeed converges uniformly to it, follows from
the théory of analytic functions. In general we assume much
less about the function than that it is analytic, and the problem
requires quite different methods.

13.2. Dirichlet’s integral. Let 0 <z < 27, and let
n
8p = 8, () = Yay+ > (a,,cosmz + b, sin mz). (1)
m=1

This partial sum can be represented as a definite integral. We
have '

2n
=g [F0 2+
2
1]

=

1

2w 27
{co‘s mx f f(t)cos mt dt 4 sin mz f Sf(t)sinmi dt}
0 0

=% f {Hmi:lcosm(x—-t)}f(t) dt=§1;; f S——————m;i’:;(i)_(f; D i) at.
0 ' 0 - .

Putting ¢ = x-+u, this becomes
1 " sing+3)
sin(n+34)u ,, .
]
or, since the integrand has the period 27, and so takes the same
values in (27—, 2) as in (—a, 0),

2m

s | f’%ﬁ%‘mw du. )

This formula is known as Dirichlet’s integral. It may also be
written in the form

T

=g | m’%%‘{ﬂxw)mx—u)} . @)

0
This is obtained by writing % = —v in the range (, 27), so that
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this part of (2) becomes

“sin(edo o fsinetbu
f e f T fle—u) du
—2m 0 .
by periodicity.

Suppose, in particular, that f(z) = 1 for all values of . Then
a, =2, and all the rest of the Fourier coefficients are zero, so

that s, =1 for n > 0. In this case the above formula becomes

1= f s +3)% 9 gy,
%

sin $u
1]

Multii)lying this by s, and subtracting from (3), we have
1 (sin (n+-$)w

8,—8=—
27r smlu

{f (@+u)+fle—u)—2s} du.  (4)

A necessary and sufficient condition that the series should
converge to the sum s is, therefore, that this integral should tend
to zero. The ‘convergence problem’ is the problem of deter-
mining under what conditions the integral tends to zero, and,
when it does so, whether s =f(x). We may consider the con-
vergence problem for one particular value of z, for all values of
2, or for almost all values of z; or for some other set of values
of 2. We begin by considering one particular value of .

13.21. The Riemann-Lebesgue theorem. The following
theorem is fundamental in the theory.
If f(x) is integrable over (a,b), then as A - oo

b b
J. f(z)cos Ax dx — 0, f f(x)sin Az dz — 0.

Consider, for example, the cosine integral.” If f(z) is an
integral, we may integrate by parts, and obtain

J?f(x)coskx dx = [f( )

a

The last integral is bounded, so that the whole is O(1/}).

El_)\_x] — ff (z)sin Az de.
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In the general case, given ¢, we can (§ 12.2) define an abso-
lutely continuous function ¢(x) such that

b
f f(2)— (@) do < e.

Then f{f(x) z)}cos Az dx|< J[f ()| dz < e
la
for all values of A; and, by the ﬁrst part,

b
f d(z)cosAr dx < e (A > Ay).

b
Hence j flx)eos Az dx < 2¢ A>A),

the required result. A similar proof applies to the sine integral.
There is an alternative proof on the lines of § 13.72, using
the example of § 12.2.

13.22. The Riemann-Lebesgue theorem has the following
important consequences:

The Fourier coefficients of any integrable function tend to zero.

This is the particular case of the theorem where A =n, and
the limits are 0 and 2.

The behaviour of the Fourier series for a particular value of z
depends on the behaviour of the function n the immediate neigh-
bourhood of this point only.

Let & be a positive number less than =, and let ¢(t) = f(¢) in
the interval x—8 <t <z-8, and g(f) =0 in the rest of the
interval (z—m, z4-7). Let the partial sums of the Fourier series
of g(f) be denoted by 8,. Then

8, —% W{gww)ﬂ(w—“)} du
- %, %i%f (@tu)tfle—u)} du.
Hence '
=k (IO ey au,

277 sin $u



CONVERGENCE TESTS 405
Now the function

coseo Juf fla+u) +fle—wu)}

is integrable over (3, n) if & > 0; and hence, by the Riemann-
Lebesgue theorem, 5,—8, - 0.

Hence, however small § may be, the behaviour of s, depends
on the nature of f() in the interval (z—8§,z-8) only, and
is not affected by the values which it takes outside this
interval.

It is this property which makes it possible for the series to
represent an arbitrary function; but the series only represents
the function at the point z as a sort of limit of its average value
over the interval (z—38, 2+8), and this will be equal to f(x) only
if the behaviour of the function is sufficiently simple. As we
have already remarked in § 13.1, the value of f(¢) at the point
t =z itself does not determine or affect in any way the sum of
the series.

13.23. Convergence tests. We first put the ‘necessary and
sufficient condition for convergence to the sum &’ into a more
convenient form. Let

¢(u) = flr+u)+flz—u)—2s.
Then the condition, by § 13.2 (4, is

. sin(n+1%)
=0. 1
iﬂf e ) du=0 m
We may replace this by
8
. sin(n-+3)u _ 2
lim [ SR ) du =0, @

where 0 < & << ; for, by the Riemann-Lebesgue theorem, the
difference between the integrals in (1) and (2) tends to zero.
Next we may replace (2) by

]

lim f gr%__—{-_}dy P(u) du =0; 3)

n—>w
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for (cosec ju—2/u)d(u) is 1ntegrable over (0,3), and so, by the
Riemann-Lebesgue theorem,

1

8
lim | sin(n+3)u {—— —
(n+3) sinfu w

n—>0
0

We are now in a position to state some tests for convergence.

13.231. Dini’s test. If ¢(u)/u is mtegmble over (0,8), then
the series converges to the sum s.

This theorem is at once obvious from the above formula (3)
and the Riemann-Lebesgue theorem. It should of course be
remembered that the integrability of ¢(u)/u in the Lebesgue
sense implies ‘absolute integrability’ The existence of

fawdu

is not a sufficient condition for convergence.

Examples. (i) At any point where f(z) is differentiable, the series
converges to the sum f(x).

[At such a point, ¢(u)/u is bounded.]

(ii) More generally, if f(x) satisfies the ‘Lipschitz condition’ of order
& 1.6 fle+h)—f(z) = O(Jhl*) (0 <a<1),

then the series converges to the sum f(z).

13.232. Jordan’s test. If f(t) is of bounded variation in the
neighbourhood of t = x, then the series converges to the sum

Hf@+0)+flz—0)}

Since ‘bounded variation’ means ‘bounded variation over an
interval’, this condition is really one for convergence over an
interval.

We know that, if f(z) is of bounded variation, the limits
f(z+0) and f(z—0) exist. Hence

$(w) = f(z-+u)+fl@e—u)—f@+0)—flz—0)

is of bounded variation in an interval to the right of w = 0, and
¢(u) = 0 as u - 0. Hence we may write

b(u) = ¢y (w)—ps(w),
where ¢, and ¢, are positive increasing functions of u; each of
these functions tends to the same limit as » — 0; and we may,

2} gy au=o.

e—->0
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by subtracting a constant from each function, arrange that this
limit shall be zero.

Suppose that 8 is so small that ¢(u) is of bounded variation
in the interval (0,8). Then

3
sin(n+%)u
oty
8 . 5 .
_ J‘ sm(n;-é)u é4() du——-f sm(nj—%)u Bo(u) du
0
=Jy—J,, 0

say. Consider the integral J,. Given ¢, choose % so small that
1(n) < e. Then, by the second mean-value theorem,

7
sin(n+4)u
fantrtin,

7] .
=) [ LG 0<gy)
. f N

(i

=) [ .

(n+h)§
The last integral is bounded for all values of », £, and %, so that

s‘i(n_;-ﬂ ¢y (u) du < Ae.

Having fixed 7, by the Riemann-Lebesgue theorem
8

f s PO du<e  (n>n)

Hence J; - 0; and similarly J, — 0. This proves the theorem.
In particular if f(x) has only a finite number of maxima and
minima and a finite number of discontinuities in the interval
(0, 27), its Fourier series is convergent for all values of x to the
sum ¥ f(x+0)+f(x—0)}. For such a function is of bounded
variation in the whole interval. These conditions are known as
Dirichlet’s conditions. They are, of course, satisfied in many
cases; but they have the disadvantage that the sum of two
functions which satisfy them does not itself necessarily satisfy
them.
DD
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In connexion with Jordan’s test, it is interesting to note that
if f(z) is a function of bounded variation over (0, 27), its Fourier
series 18 boundedly convergent.

For let 0<{x < =, and write Dirichlet’s integral for s,(z) in

the form i
1 [ sin(n+3) —t)
2n J‘ - sin(z— t) f@) ds.
_i”
Since 1

sin §(z—1) $(xz—*) .
is bounded for —ir <x—t<<im, this differs by a bounded

function from 3ar
f s1n(n+ 2)(93 t)f t) dt.
77'

x—t
._)_,-n—

Let f(£) = f1(¢2)—f2(¢), where f; and f, are positive non-decreasing
in (—}m,37). Then, by the second mean-value theorem,

sin(n+3)(2 (x t) '"sin(n—{—%,-)(x—t)

[fantotite= 1y g [intt b=,
r— _ z—t

o : (—im <€ <im),

which is bounded for all » and 2z, as in the above proof. A
similar result holds for f,. Hence the series is boundedly con-
vergent over (0,#), and similarly over (m, 27).

13.233. de la Vallée-Poussin’s test.* If the function

4
1
0=3 | () du
]

18 of bounded vartation in an interval to the right of t =0, then
the series is convergent. If s is so chosen that J(t) > 0 as t > 0,
the sum of the series is s.

For HO= & {40} =90)+140)

Since #(f) is of bounded variation and tends to zero, the part
of the integral §13.23 (3) involving it tends to zero, as in
Jordan’s test; and since #'(f) is integrable (§ 11.54), the part
involving ¢3'(f) tends to zero, as in Dini’s test.

* The same test was given previously by du Bois-Reymond, but of course
with Riemann integrals.
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13.24. Relations between the above tests.* Consider the
function .

fay=, 1

log 1/
.This function is bounded and monotonic in the neighbourhood

of x =0, so that Jordan’s condition is satisfied, and the series
converges. But Dini’s condition is not satisfied, since the

integral o
A
tlog 1/t

is divergent. Thus Dini’s condition does not include Jordan’s.
On the other hand, Jordan’s condition does not include Dini’s.
For censider the function

O<z<m), =0 (r<z<2n).

fle)=z*sinlfz O<z<m), =0 (<< 2n),

where 0 <a<<1. Then Dini’s condition for convergence at
x = 0 is obviously satisfied. But the function is not of bounded
variation (Ch. X1, ex. 5), i.e. Jordan’s condition is not satisfied.

Lastly, de la Vallée-Poussin’s test includes both Dini’s and
Jordan’s, i.e. if either Dini’s or Jordan’s condition is fulfilled,
then so is de la Vallée-Poussin’s.

We first remark that if g(x) s of bounded variation in (0,35),
then so is

G() =$ f g(t) dt.

For g(z) = g,(x)—g,(x), where g,(x) and g,(z) are positive, non-
decreasing, and bounded; and

6) = f () do — f 92(z) do = Gy (a)— Gofa),

say, and it is easily seen that G,(x) and G,(z) are both positive,
non-decreasing, and bounded. Hence G(x) is of bounded varia-
tion.

The relation between Jordan’s test and de la Vallée-Poussin’s
test follows at once; if ¢(¢) is of bounded variation, so is (t).

* For a detailed discussion of this question see Hardy (13).
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Now consider Dini’s test. If (u)/u is integrable,

t
0= [#a

is a function of bounded variation; and

t 12
b= [ g iy du= 30— [ 3w s

which is also of bounded variation, by the above remark.
Hence de la Vallée-Poussin’s condition is satisfied.

13.25. Convergence throughout an interval. If one of
the above conditions is fulfilled at all points of an interval, of
course the series converges throughout the interval; and if the
condition is fulfilled uniformly, the convergence is uniform. The
simplest case is as follows.

The Fourier series of f(x) converges umformly to f(z) in any
interval interior to an interval where f(x) i8 continuous and of

- bounded variation.

For in such an interval we can write f(z) = f,(x)—f,(x), where
fi(z) and f,(z) are continuous and non-decreasing. Then, by the
property of uniform continuity, we can find » so that

[file+h)—fi@) <e (Bl <m)

the choice of 7 depending only on ¢ and not on the value of
z in the interval. It will be seen on referring to the proof of
Jordan’s test that this implies the uniform convergence of the
integral dealt with in proving the test. We have also to show
that the parts of Dirichlet’s integral which have been shown to
tend to 0, actually tend uniformly to 0; the reader should have
no difficulty in verifying this.

The property of uniform convergence is, however, not so
important as might be expected in the case of Fourier series,
because questions of term-by-term integration can be dealt with
under much more general conditions (§ 13.5).

No simple restriction on f(x) which ensures that the Fourier
series shall be convergent almost everywhere, without obviously
proving more than this, appears to be known. It might, for
example, be conjectured that continuity would be such a con-
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dition; but no result of the kind suggested has been proved.
On the other hand, a condition bearing not on the function
itself, but on the Fourier coefficients, has been given: the Fourier
series is convergent almost everywhere if the series

2 (a5 +b3)logn

18 convergent.*

13.3. Summation of series by arithmetic means. If a
series u;+u,+... is not convergent, i.e. if s, = u;+...+u, does
not tend to a limit, it is sometimes possible to associate with
the series a ‘sum’ in a less direct way. The simplest such
method is ‘summation by arithmetic means’. We take the

arithmetic mean _8 48yt

" n
of the partial sums of the given series. If s, s, then also
o, —>s; for if s, =s+4§,, then

. —s +81—|—82—Z...+3n’

and the last term tends to zero if 3, — 0, by the lemma of § 1.23.

But o, may tend to a limit even though s, does not. Con-
sider, for example, the series

1—14+1—1+....

Here the partial sums s, are alternately 1 and 0, and it is easily
seen that o, — 3.

A series for which o,, tends to a limit is said to be summable
by arithmetic means, or by Cesaro’s means of the first order,
or (C,1).

Examples. (i) The series 1+0—1-+1+0—1+... is summable (C, 1)
to the sum 3. .-

(ii) The series sin x + sin 2z 4 sin 3% +... is summable (C, 1) for all
values of z; the sum is } cot 4z if z is not an even multiple of 7, and
otherwise is 0.

(iil) The series } 4 cos z + cos 2z + cos 3z ... is summable (C, 1) to
the sum zero if z is not an even multiple of =.

(iv) If ¥ u, is summable (C, 1), 5, = o(n).

[For 8, = no,—(n—1)o,_;.]

(v) Let ¢, = u,+2uy+...-+nu,. If 3 u, is summable (C, 1), a neces-
sary and sufficient condition that it should be convergent is ¢, = o(n).

[For ¢, = (n+1)s,—n0o,.] )

* Plessner (2).
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(vi) If ¥ u, is summable (C, 1), and u, = o (1/n), then I u, is con-
vergent.

[For ¢, = o(n), by the lemma of § 1.23. The result is analogous to
Tauber’s theorem.]

(vii) A necessary and sufficient condition that > u, should be sum-

mable (C, 1) is that ;
Z n(n-+1)
should be convergent.

[For Z _4 h_zi_ aN.]
n(n+1) N-+1
n=1

(viii) If ¥ u, is summable (C, 1), and u, = O(1/n), then ¥ u, is con-
vergent.

[Hardy; this is analogous to Littlewood’s extension of Tauber’s
theorem. If 3 u, is not convergent, then ¢y > 4;N, or iy < —A4,N, for
an infinity of values of N—say e.g. the former. Since

tn+1 = tn+ (n_l'l)uu > tn'—A2’

we have tysr > AN (0 <v< iNA,/4,).
N+3N4y/4,
Hence nin1) > A4,
n=N

and by (vii) the series is not summable (C, 1).]

(ix) A series of positive terms is summable (C, 1) only if it is con-
vergent.

[If s, = o0, then ¢, - .]

13.31. Summability of Fourier series. It was discovered
by Fejér* that the method of summation by arithmetic means
applies particularly well to Fourier series. We write

%+ﬁ+m+%ﬂ

n
where s, is given by § 13.21 (3). Hence

1 J‘smzu—}-sm%—{— .+sin(n

Op ==

{f(x+u +fle—u} du

2na sindu
1 >
o [ s »

This formula is known as Fejér’s integral. Its importance is due
to the fact that the factor sin®4nu/sin?}u is positive. This makes

* TFojér (1).
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it much easier to deal with Fejér’s integral than with Dirichlet’s,
in which the corresponding factor, sin(n-+4)u/sin }u, oscillates
between positive and negative values.

In the particular case where f(z) = 1, the formula becomes

T
1 [ sin?lnu
1=— | =—2—2du,
2n77f sin’tu . v
p g
since now o, = 1 for n > 0. Hence, multiplying by s and sub-
tracting,
0, —5= 1 [sin sin®*}nu
T 2na | sin?lu
0

A necessary and sufficient condition that the series should be
summable (C,1) to the sum s is, therefore, that the integral
(2) should tend to zero.

As in the convergence problem, we can simplify the condition.

We write $(w) = fla-+u)+fle—u)—
as before. Then, if § is any positive number less than =, a

necessary and sufficient condition that the series should be
summable (C, 1) to s is

{flet+u)+fle—u)—2s}du. ()

3 .
1 [ sin®jnu A
R f gy P =0 3)
1 sngnu l¢(u)|
= <
for nf sin?}u $(u) du n sm%fu,

which plainly tends to zero. Finally, the condition may be put
in the form

8
lim 1 f smu’f”“ $u) du = 0; @)

n—o0 N

for

S|

b
1
<z f {sm2lu (3w }l¢(u)l du,
which tends to zero.
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13.32. Fejér’s theorem. The Fourier series of f(x) 18 sum-
mable (C, 1) to the sum

#{flx+0)+f(x—0)}

for every value of x for which this expression has a meaning. In
particular, the series is summable (C, 1) to the sum f(x) at every
point where f(x) is continuous.

We now put s = {f(x+0)-+f(x—0)} in the above formulae.
Then ¢(u) — 0 with u, and we have to prove that 13.31 (4) is
true. Suppose that |$p(u)| < e for uw < 7. Then

. R
1 [ sin®}nu 1 [ sin?snu 1 J‘ sin?}nw
L[S gy au <, [ TR edut S [ SR )] du

n u“

< Jsm%nud wt] flsﬁz(:;)ldu

=1 1+ I 2>
say. Now
&n
1  sin? tnu sin v sm v
— du == —
n)  ur 2
0 0

which is a constant. Hence I} < 4e. Havmg fixed 7, it is clear
that I, > 0 as n — c0. This proves the theorem.

13.33. Summability throughout an interval. The fol-
lowing theorem is an almost immediate consequence of Fejér’s
theorem.

The Fourier series of f(x) ts uniformly summable in any interval
included in an interval where f(x) is continuous.

For f(z) is uniformly continuous in any such interval, and 80,
in the above proof, the choice of % depends only on € and not
on 2. The result follows at once from this.

Weierstrass’s approximation theorem. If f(z) is con-
tinuous in (a,b), and € is a given positive number, there is a poly-
nomial p(x) such that

lfe)—pl) <e  (a<2<b).

We can make a preliminary transformation so that the
interval considered lies within (0,27). Then, by the above
theorem, there is a ‘trigonometrical polynomial’ o, () such that
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[f(x)—o,(z)| < }e throughout the interval. If we replace each
sine and cosine in o,(z) by a sufficiently large number of terms
in its power series, we obtain a polynomial p(z) such that

lon(x)—p(2)| < }e throughout the interval. This proves the
theorem.

13.34. Almost everywhere summability. As long as we
restrict ourselves to ordinary convergence, we cannot show that
the Fourier series of a function represents the function in
general, without imposing some rather heavy restriction on the
function. The theory of summability removes this defect.

The Fejér-Lebesgue theorem. The Fourier seties of f(z)
18 summable (C, 1) to the sum f(x), for every value of = for which

11
[ 1f@+w)—f@)| du=o ). (1)

In part'iculcir, 1t 18 summable (C, 1) to f(x) almost everywhere.
We have shown in § 11.6 that the condition (1) is satisfied for
almost all values of z, for any integrable function. The second
part of the theorem therefore follows at once from the first.
Let « be a point where (1) is satisfied, and take s =f(z) in
the formulae of § 13.31. Then

f |$(a) f |fle+u)+fle—u)—2f(@)| du

[ 1 f+u)—fe)| du + f |fle—u)—f@)| du=o0 ().

':'—'sn

Let o) = | 16601 4,

and, given ¢, choose 7 so that ®(f) <et for t<y. We suppose
that » > 1/7], and write,
1{n 17

fsm%nu(ﬁu)du__f_i_ +J‘ J1+J2_|_J

Then, since sin20 < 62,
i/n

2l < () [ 1$(u)] du < Fen,
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7 7
) 1 @
A <f l(ﬁf;)l du = 7;;])—712(1)(%)—!—2 f TSI;) du

i/n 1/n

7
<S12 f d_'2,2_L< €/n+2en < 3en,
) u

A
and obviously |J5] < ey
1 [ sin%
sin2inw A
Hence o f 2 $(u) du < }e+3e +77&;2;

and the required result follows on choosing first ¢, then 7, and
then n.

13.35. An immediate corollary is that a trigonometrical series
cannot be the Fourier series of two functions which di ffer in a set
of positive measure. For if it is the Fourier series of flz) and of
g(x), it is summable (C, 1) both to f(x) and to g(x) almost every-
where. Hence f(z) = g(z) almost everywhere.

13.4. A continuous function with a divergent Fourier
series. While we have seen that the continuity of a function
is a sufficient condition for its Fourier series to be summable
(€, 1), for convergence we have had to assume other conditions.
That this is really in accordance with the facts is shown by the
following example, due to Fejér,* of a Fourier series which is

divergent at a point, although the function which gives rise to
it is continuous.

13.41. We first require a lemma.

The sum
_ p_oi(r—{— )z | cos(r4-2)x cos(r-+n)x
e e sl
__cos(r+n+ 1)x__cos(7~+n+2)x_ cos(r--2n)z
1 3 7

18 bounded for all values of m, r, and z.

* Fejér (2), (3), (4).
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We have
_ < cos(r+n—v+1z < cos(r+n-+v)
p(n.r.) = z 2v—1 - 2 2v—1
— PR sm(v-—o)x
sin 7‘+n—!— )z ,,Zl 2y

. 1 sinfdz 1 <+sin
2sin(r4+n-+ g)w{z 3 z }
and each of the sums in the bracket is bounded (§ 1. 46).

13.42. Let G, denote the group of 2z numbers
S SIS SR U S
2n—1"20—3"""3" 77 7877 2p—1°
Let Ay, A,,... denote an increasing sequence of integers. Take the
numbers of the groups @), G),,... in order, and multiply each
of the numbers of the group GA; by »—2. We obtain the sequence

1 1 11 1 1
122X, —1""7 7 1223, — 1" 25(2A,—1)” 22(22,—3)"
SAY 0y, Qgyee s

Now consider the series

i o, COS . 1)

n=1
Suppose first that the terms corresponding to each group &,
are bracketed together. The bracketed series is

i S s 24+ 225+ .21, 5, 2) ?)
nd
which is absolutely and uniformly convergent, by the lemma.
The sum of the series (2), say f(z), is therefore a continuous
function. '
‘We next observe that the series (1) is the Fourier series of
f(x). For since (2) is uniformly convergent, we may multiply it
by cosmz or sinma and integrate term by term. The integral
of each term is zero, except that of the one containing the term
o, cosmz; and from this we obtain
2m

J- f(x)cosmx dx = moy,y,.
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The numbers o, are therefore the Fourier cosine coefficients
of f(x).

We show finally that the numbers A, can be chosen so that
the series (1) is divergent at the point = = 0, i.e. that the series
oy+ay+... is divergent. Let s, be its nth partial sum. Then

1 1 log A
82A1+21\2+ +2)\v—1+Av V2(2A + + + + ) Oéguzv.

If the numbers A, tend to mﬁmty sufficiently rapidly, e.g. if
A, =", it follows that s, - o0 as n—oco through a certain
sequence of values. Hence the series is divergent.

13.43. Fejér’s example, together with a simple argument
depending on Dirichlet’s integral, enables us to say how large
the partial sums s, of a Fourier series of a continuous function
can be.

If f(z) is continuous, then

s, =o (logn);
and no more is true, since, if f(n) 18 a function which decreases

steadily to zero, however slowly, there is a Fourier series of a con-
tinuous function for which

8, >(n)logn

for arbitrarily large values of n.
For the first part, we have to prove that

8 .
j ~qir-ﬁfl—l'_t—%—)-’t—t<7S(u) du = o (logn)
0
if ¢(u) > 0 as-u - 0. Suppose that |p(u)| <e for u < ; and,
if n4+%> 1/, put

3 (-1 1/(n+4) 7 3
[ gman= [+ [ + [=ntl1
0 0 1/n+t) 1q
1/(n+1)
Then LIS m41) [ 1g@)]du<e,

K/]
I, < f , du<clog(n+3)
1/(n+¥)
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)
1
and [ 1] <—ﬁ |(u)| du.

The result clearly follows from these inequalities. .
The second part is obtained by taking A, sufficiently large in
Fejér’s example. Suppose that A, > 2v, and let

n= 22+ gt -20,_ A,

Then A<, <.
Now s, > i(n)log n for sufficiently large values of v, if
log A” > i(n)logn;

and since (n) logn < zﬁ()\,, log A2, thls is true if
‘p(Av) < 4 2’

and this will be so if the numbers A, tend to mﬁmty rapidly
enough.

13.5. Integration of Fourier series. Any Fourier series,
whether convergent or not, may be integrated term by term between
any limits; that is, the sum of the integrals of the. separate terms
18 the integral of the function of which the series is the Fourier
series.

Let f(z) have the Fourier coefficients @, b,, and let
T
F(z)= [ {fit)—4ac} d.
(1] .

Then F(z) is periodic, continuous, and of bounded variation.
Hence it can be expanded in a Fourier series, say

F(z) = 34,+ él(An cosna - B, sinna),

convergent for all values of x. Here

An=;lrfF(x)cosnxdx

=1 [Fo ] jﬂ{fm—%a@}sinm dz
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Zm
1 b
— f flx)sinnx dx -
0
2w
and Bn=% f Fla)sinne do

1[ F(x )c_qs_@:] if{f(oc)—»lg-oao}oosmc dx
ks nar

___"
n’

= Jf (z)cos nx dx =
the integrated terms vanishing since F'(27) = F(O) =0. Hence
— 1A+ i @y, Sin nx — b, cos nx
Putting x = 0, we obtain
i by,
n’

and, adding, -
& 2 s1nnx+b 1—cosnz)

This proves the theorem

13.51. An interesting particular case is that the series

b

at ‘
18 convergent. This remark enables us to write down convergent
trigonometrical series which are not Fourier series. A simple
example is

z sin sinnz
logn

This is convergent for all values of z, but it cannot be the
Fourier series of its sum, since the series

anolgn

is divergent. Actually the sum of this trigonometrical series is
not integrable in the sense of Lebesgue, and it is easy to prove
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directly that the sum of the integrated series 3 cosna/nlogn
tends to infinity as x — 0.

13.52. The following alternative proof of the above integra-
tion theorem is also interesting. We know that the series
sin(zx—i%) = sin2(zx—t)

T ST =40

is boundedly convergent. Hence we may multiply by f(¢)/= and
integrate term by term over (0,2n). On the left we obtain

Z fsmn(““t)f(t) dt_ @ Smnz;b cos na

n=1 -

the integrated series. On the right we get

f¢(t)f t) di=* f B)f) di= = f%w—x-i-i)f(t) dt

z-—27r =2

._-—[(w—-x—l-t)F(t)]m_%—-—— J Fl)di=TF x)__ f 7)) d

z—2m
since F(z—2n) = F(z). The result now follows as before.

13.53. A similar method leads to the following more general
integration theorem.

A Fourier series may be multiplied by any function of bounded
variation and integrated term by term between any finite limits.

Let g(x) = Yo+ S (o, cO8 MU + B, Sin nx)

be a function of bounded variation. The series being boundedly
convergent (§ 13.232), we may multiply by any integrable func-
tion f(z) and integrate term by term over (0, 27). We obtain

j @y o) do =Yt 3 (@Oasatbaba), (1)

where a,, b,, are the Fourier coefficients of f(x). This is the
same result as we should have obtained by multiplying the
Fourier series for f(z) by g(x) and integrating term by term over
(0, 2a).
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A similar result may be obtained for other ranges of integra-
tion by replacing g(z) by 0 outside the required range.

13.54. Parseval’s theorem. If f(z) is of bounded varia-
tion, we may put g(z) = f(x) in 13.53 (1), and obtain

: [ey de= 1+ 3 @+,
0

This is known as Parseval’s theorem. We shall show in § 13.63
that it is true under much more general conditions than those
we have so far assumed.

13.6'. Functions of the class L2: Bessel’s inequality. Let
f() be a function of the class L*(0, 27), with Fourier coefficients
@y, b,. Then

d(x) = f(z)—10,— rni:l (@, cosmz + b, sinmz)

also belongs to sz and

[ wopas=l o as s § s

ff clac-—g i j" @ oosmw+bm31nmx)f(x)

o

m= 10
= 1—7- f {f(x)}2 dx —-715(1%— mi—.l (a’?n_'_b )s
0

by the Euler-Fourier formulae. Since the left-hand side is not
negative, it follows that

2 '
i+ 3 @) < [ (o o)
0

for all values of n. This result is known as Bessel’s inequality.
Since the right-hand side of (1) is independent of =, it follows
that the series’

$af+ E (@5 +b7) (2)

18 convergent. Also

it 3 @i <L f (@) . @
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13.61. Parseval’s theorem for continuous functions.
We have seen that, for functions of bounded variation, the
above inequality becomes an equality, viz. Parseval’s theorem.
The same result for continuous functions may be proved as

follows. If f(z) is continuous, o,(x) tends uniformly to f(z),
and hence

lim [ {f(e)—o,(2)}f(@) dz =0,
0

n—1 \
. m
Now  o,(x) = ia,+ E (a,,cos mz -+ b, sin mz) ( 1— %),
m=1 :

and, evaluating the integral as in the previous section, we obtain
1 [ < m
- M2 Jpr 12 2 2 _m
= f {f(@)}? do —ag mzl (am+bm)(1 n) - 0.
0 =

Parseval’s formula therefore holds if the series is summed (C, 1).
Since by § 13.6 the series is convergent, it follows from § 13.3
that it holds in the ordinary sense.*

There is no difficulty in extending this proof to functions
which have simple discontinuities. Actually Parseval’s theorem
holds for all functions of the class L2. We shall prove this as
a corollary of the theorem of the next section.

'13.62. The Riesz-Fischer theorem. Let
e+ i (a, cosnz + b, sinnx) (1)

be any trigonometrical series with coefficients such that the
series 13.6 (2) is convergent. Nothing that we have proved so
far in this chapter enables us to decide whether such a series
is a Fourier series. The problem is solved by means of the
theory of mean convergence (§ 12.5). This theory was in fact
originally constructed to deal with this very problem.

The following theorem was proved almost simultaneously by
F. Riesz and Fischer.}

If the numbers a,, b, are such that the series 13.6 (2) 18 con-
vergent, then the series (1) is the Fourier series of a function f(x)

* A number of different proofs under various conditions are given by Julia,
Ezxercices d’analyse, 180-6.
-+ F. Riesz (1), Fischer (1).
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of the class L2. The partial sums of the series converge in mean

to f(x).
Denoting the nth partial sum of (1) by s, (x), we have

f{sn(x —8p(2)}? dx~f{ (a cosvz + b, smvx)} dz

_a § @,

v=m+1
all the product terms disappearing on integration. The right-
hand side tends to zero when m and » tend independently to
infinity. Hence s,(x) converges in mean to a function, f(x) say,
of the class L2
Also, by § 12.53,

lim f W{x)cosve dz = f f(x)cos vz dx.

n—>00

But the integral on the left is equal to ma,, if » >v. Hence
: 2
a, =1 f f(x)cosvx dx,
ku
0

ie. a, is the vth Fourier cosine coefficient of f(x). Similarly &,
is the vth sine coefficient. Hence the given trigonometrical series
is the Fourier series of the function f(z).

It is important to observe that it is here that the Lebesgue
integral first plays an indispensable part in the theory. Most
of the previous analysis is true for Riemann integrals and
elementary generalized absolutely convergent integrals. Here
the result shows that the extension to Lebesgue integrals is
really necessary.

13.63. Parseval’s theorem for functions of the class L2.
Let f(x) be any function belonging to Z?*(0,2n), and let its
Fourier series have the usual form. Then the series 13.6 (2) is
convergent. Hence, by the Riesz-Fischer theorem, the partial
sums s,(x) converge in mean to a function g(x), of which the
given series is the Fourier series. Hence, by § 13.35, g(z) = f(x)
almost everywhere. Also, by § 12.52,

lim Tr {s, @) dx = TT{ f(x)}? de,
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and on evaluating the integral on the left-hand s1de we obtain
Parseval’s formula.

The more general formula 13.53 (1) also holds if flx) and g(x)
are any two functions of the class L?. For Parseval’s formula
holds for the functions f(z)+-g(#) and f(z)—g(x), and the result
stated follows on subtraction.

13.7. Properties of Fourier coefficients. Originally the
Fourier coefficients were merely the material out of which the
Fourier series was constructed. But the coefficients have some
interesting properties of their own. In fact Bessel’s inequality,
and the theorems of Parseval and Riesz-Fischer call attertion
to the problem of the behaviour of the Fourier coefficients of
given classes of functions and give some important mformatlon
about it.

The first theorem of this kind (§ 13.22) is that the Fourier
coefficients of any integrable function tend to zero. On the other
hand, they do not tend to zero in any definite order; that is,
any theorem such as ‘e, == O(1/logn) for all integrable func-
tions’ is certainly false. For consider the series

Z cosk,x
n=1 n2 ,
where k,, denotes a sequence of positive integers which tends to
infinity rapidly as » - co. The series is uniformly convergent,
and so is the Fourier series of its sum; and
Qp = —1— s

‘ * p?
which falsifies any theorem of the kind suggested, if %, tends
to infinity rapidly enough. '

13.71. Suppose next that f(x) belongs to the class L2 This
does not enable us to prove any more about the order of the
coefficients; in fact the function defined by the above series is
clearly continuous, and so belongs to L?. But we do obtain
a definite result about the average order, viz. that

2 (@+b7)
is convergent (§ 13.6).
This result has been generalized so as to apply to other
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Lebesgue classes; if f(x) belongs to L7, where 1 < p < 2, then the

series - _
3 (la, 0D+ b, [2lo-D)

18 convergent.
The proof of this theorem is, however, too long to be given

here.*
There is also a corresponding extension of the Riesz-Fischer

theorem: if the series S (la, |7+ b 17)

where l<p 2, 18 convergent, then the numbers a,, b, are the
Fourier coefficients of a function of the class LvI®~D),

Both these theorems cease to be true if p > 2, so that they
are not converses of each other unless p = 2.

13.72. If we make still more special assumptions about the
function, we obtain new results about the coefficients. Suppose
that f(x) satisfies a Lipschitz condition of order «, i.e. ash — 0

f@+h)—fl@)=0(h]*) (0<a<])
uniformly with respect to . Then
a, = 0(n—%), b, = O(n=9).

For ] ‘ 12'rr-—1r/n
.=_f f(x)cosnz da = — = f f(q—T-H)COSMdt
ke K n
0 ~a/n
1 27
== f f(z + t) cosnt di,
T n
) 0
and hence also o

a"=§l;rj{f( 2) f( —{—”v)}cosmc(lx

and similarly for o,,.

13.73. The next result of this kind is that if f(z) is of bounded

variation, then a, = 0(1/n), b, = O(1/n).

* W. H. Young -(2), (8), (5), (6), Hausdorft (1), ¥. Riesz (4).
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For f(x) = fi(z)—f,(z), where f,(z) and f,(x) are positive and
non-decreasing. Hence, by the second mean-value theorem,

2T

f filz)cos nx dz = f,(2n) f cosnedr  (0<&<2m)-
0 3

= —en == o(1),

and a similar result holds for the other integral.

An alternative proof of Jordan’s theorem (§ 13.232) can be
deduced from this result. If f(z) is of bounded variation, its
Fourier series is summable (C, 1) to the sum }{f(z+0)-+f(z—0)},
by § 13.32. Since a, = O(1/n), b, = O(1/n), the series actually
converges to this sum (§ 13.3, ex. (viii)).

If f(x) is an integral, and has the period 2m, then

anzo(l/n): bll=o(1/n)'

Forit  f@)=fO)+ | 40 & (o30)

2
then T, = [f(x) s nx] - __;12 f (x)sinnx dz,

7 |

cos mc] Im

b, [—— fla f $(x)cos nx dx.
«The integrated terms are zero, since f(27) = f(0) and the in-
tegrals on the right tend to zero, by the Riemann-Lebesgue
theorem. This proves the theorem.

If f'(x) satisfies special conditions, such as a Lipschitz con-
dition, still further results of the*same kind can, of course, be
obtained.

13.8. Uniqueness of trigonometrical series. At the be-
ginning of the chapter we associated with an integrable function
a particular trigonometrical series, viz. the Fourier scries of the
function; and we have shown that the Fourier series does, in
various ways, represent the function. The reader might, how-
ever, still contend that we had attached undue importance to
Fourier series, and that there might be other types of trigono-
metrical series in which a given function could be expanded.
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It is difficult to give a complete solution of this problem. If,
however, we assume enough about the set of points where the
series converge, we can show that, if a trigonomsetrical series
converges to a given function, it is the only such series which
does so; and therefore that, if the function can be expanded in’
a convergent Fourier series, it cannot be expanded in a con-
vergent trigonometrical series of any other form.

The theory is due to Riemann, du Bois-Reymond, and Cantor.
The theorem which we shall prove is as follows.

If two trigonometrical series converge fo the same sum in the
interval (0, 2w), with the possible exceptzon of a finite number of
poinis, then corresponding coefficients in the two series are equal,

4. the series are identical.

This is not all that is known, and more general theorems will
be found, e.g., in Hobson’s Theory of Functions, §§ 420-50. But
some extensions which might naturally be suggested are not
true; if we say ‘are summable (C, 1)’ instead of ‘converge’, the
theorem becomes false, as is shown by § 13.3, ex. (iii).

The question whether a given trigonometrical series is a
Fourier series is really a problem of integral equations. We are
given numbers a,, @, by,..., and it is required to determine
whether there is an integrable function f(z) such that the Euler-
Fourier formulae § 13.1 (2), (3), are true. The question is not
-settled by mere convergence, since a trigonometrical series may
be everywhere convergent without being a Fourier series
(§ 13.51). But if it converges uniformly, or boundedly, or in
mean with index p (p > 1), then it is a Fourier series; and the
theorems of § 13.62-13.71 enable us to state conditions for
mean convergence, with p >2

Another theorem which would naturally suggest itself is that
if a trigonometrical series converges almost everywhere to an
integrable function, then it is the Fourier series of the function;
but this is not necessarily true, and the state of affairs is rather
complicated. -

The proof of the theorem stated above depends on a number
of lemmas.

13.81. Cantor’s lemma. If a,cos nx -+ b, sinnz tends to 0
Jfor all values of x in an interval, then a, and b,, tend to 0.
Suppose that a,cosnz + b, sinnz - 0 in the interval («,B).
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If the lemma is false, there is a constant A and a sequence of
values of n for which a2-b2 > 4. Hence, as n — o through
this sequence, the function

n b, sin nz)*
fn(x)—(a cosn:z:—_]-}:b2 SN 7T)

converges boundedly to 0 in (o, 8). Hence, by the theorem of
bounded convergence, ,

f (@) da > 0.

But, evaluatmg the mtegral we find that

. 16—o)+0(5)
and this gives a cZntradiction. This proves the lemma.
13.82. Suppose now that the series
$a,+ ni(an cos nx -+ b, sin nz) 1)

converges to the sum f(x) in (0, 2x), except possibly at a finite
number of points. Let

Fla) = Jag’— za . COSNT + b, smnx 2)

n2

n=1
Since by Cantor’s lemma a, and b, tend to zero, this series is
uniformly convergent, and F(z) is continuous, for all values of
. If we could differentiate twice term by term, we should have

F”(a:) =f(r). We cannot necessarily do this, and instead have
to proceed as follows.

Riemann’s First Theorem. If
—2h)—2
Gz, h) = F(x—]—2h)+F4(}::2 )—2F(x) 3)

then G(xz,h) - f(x) as b — 0, for all values of x for which the series
(1) converges to f(x).
We have
cos n(x+2h)+ cos n(x—2h)—2 cos nx = —4 cos nx sin’nk,
gin n(x4-2h) -+ sin n(z— 2h)— 2 sin nw = — 4 sin nx sin’nh,
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and hence -

G(x,h) = Lo+ $ (@, cosnx + b, sinnx) sz}zz . 4)

n= 1

The nth term of (4) tends to the nth term of (1) as 2 - 0. Hence
it is sufficient to prove that the series (4) converges uniformly
with respect to &. Let r, denote the remainder of the series (1)
after the term in sinnz. Then r, - 0, say |r,| <e for n > N.
Hence

o0

. sin®nh sinnh
Z(ancosnx+bn51nnx — Z("n n+1( h )

n=N

—(*5) = 2 (R

and the modulus of this does not exceed

&

E+€2 [ (s1ni)‘dt< te f’ sxr;"t i,
nh

the last integral being convergent. Hence (4) is uniformly con-
vergent, and the result follows.

13.83. Riemann’s Second Theorem. If a, and b, tend to
zero, then ) 1’7( —{—"k)—i—F(x 2]2) 2F(x)
lim ==
h—>0 2h

for all values of .
We have to prove that

agh+4-2 Z (@, cosnx + b, sinn. )qmq;:h

n=1
tends to zero. Given e, we have

la, cosnx + b, sinnx| < e (n>N).

Since sin®nh < n%? for n < 1/h, the modulus of the sum does
not exceed

A|+2> Alb|-F2 h-+2 &
Il 'ng A1+ <nz<1/ne + n>1/hn2h

-]

du

< AN |h|42¢ + ( ~i

< AN|h|--Ae,
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and the result follows by choosing first e and then % sufficiently
small. ‘ '

13.84. Schwarz’s theorem. If F(z) is continuous in an
wnterval (a,b), and
lim F(x+h)+ F(z—h)—2F (x)
h—0 r?
for all values of = in the interval, then F(x) is a linear function.
The expression on the left is called the generalized second
derivative of F(z). If F(x) has an ordinary second derivative,
the generalized second derivative is equal to it, and the result
follows at once.
To prove the theorem, consider the function

=0

$(@) = F(a)—F (@)~ —{F(b)—F (@)}

We have ¢(a) =0 and ¢(b) = 0. If ¢(x) = 0 for all values of z,
the result follows. Otherwise it takes values different from zero,
say, for example, positive values. Suppose that ¢(c) > 0. Let

| U(e) = $(z)—helz—a)(b—z),
where ¢ is positive and so small that #(c) > 0. Then (z) has
a positive upper bound, say at x =¢, which it attains, since it
is continuous. Hence
PE+h)+P(E—h)—2(£) < 0.
But
PE+R)+HE—h)—20() _FE+h)+FE—h)—2F()

h? . h? te
and the right-hand side tends to € as 2 — 0. This gives a con-
tradiction. Similarly the supposition that ¢(x) takes negative
values leads to a contradiction. Hence ¢(z) =0 for all values
of z, which is the desired result.

13.85. The proof of the main theorem now follows from
Schwarz’s theorem. It is sufficient to prove that, if a trigono-
metrical series converges to zero except at a finite number of
points, then it must vanish identically. If the series 13.82 (1)
has this property, the function F(z) is continuous, and its
generalized second derivative is zero except at a finite number
of points. Hence F(z) is linear in the interval between any two
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exceptional points, and the straight lines which form the graph
join at the exceptional points. Now, taking z in Riemann’s
second theorem to be an exceptional point, it follows from the
lemma that the slopes of the lines on the two sides of the
exceptional point must be the same. Hence F(x) is linear
throughout the whole interval (0, 2x), say

' F(x) = ax+-b.
Hence z @n 008 m;:; businnz _ ta 2 —ax—b.

Since the sum of the series is periodic, @, and @ must be zero.
Then, the series being uniformly convergent, we may multiply
by cosmx or sinma and integrate term by term; and we obtain
o b
ﬂ—~—bJ cosmz dx =0, Z———bfsinmxdxz—_o,
m? m?
0

for m > 0. This completes the proof.

13.9. Fourier series for any range. All our series so far
have represented functions with the period 2=. A series of the
form

f@) = 3a,+ Z (a cos--{-b sin. )\)

represents a function thh the perlod 2zA. Formulae for the
coefficients may be calculated as before; we obtain

7A 7A
1 ) 1 . nl
=~ f}\ f(t)cos—x‘ at, b,= = f A f(#)sin Y dt.

Naturally the whole theory can be applied to series of this kind.

13.91. Fourier’s integral formula. The above expansion
may be wntten

fla)= f fb) dt + 2 f fieos™ 0 at
—-m\
Suppose now that A —>00.. Then the series on the right behaves
very much like one of the sums by which a Riemann integral
is defined. In fact, if we write %, = n/}, it is

ﬂgl(un+1_‘un)¢(un)s
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I 7A .
where du)=—- f f(t)cos u(z—t) dt.
w

1f, therefore, we make A — oo, and ignore such difficulties as the
fact that ¢(u) depends on A, and that the approximating sum
is an infinite series, we obtain

] ©

f(x):% f du f cosu(@—2)f() dt.
0 —00

This is Fourier’s integral formula. It represents a function
defined over (—o0,00) in the same way that a Fourier series
represents a function with a finite period.

The difficulty of justifying a proof on these lines would be
considerable. A direct consideration of the formula suggested
is comparatively easy.

13.92. Suppose that f(z) is integrable in the Lebesgue sense
over (—o0,00). Then the integral

L]

f cosu(x—i)f(t) dt
converges uniformly with respect to « over any finite range.
We may therefore integrate with respect to « over (0, U), and
invert the order of integration. Thus

<]

f du f cosu(e—t)f(E) dt — f sin U(z t) 0 U@—1) o9 g

— —

Given ¢, we can choose 7' so large that

-T o)
[lfona<e  [ifoldi<e
o T

and we may suppose that 7' > |z|+1, z being supposed fixed.
Then !

-T

f sin U(x—t)f(t) dt <e, J‘ sin U(x_t)-f(t) it <e,
z—1 z

for all values of U. Having fixed 7', the integrals

z—3 T
sin U(zx—t) sin U(z—i) 1) dt

[ 2 me [ =25 50

—_m z+8
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tend to zero as U — o0, by the Riemann-Lebesgue lemma.

Hence
U w .'r-'i‘-a U
lfdu f cosu(z—)f(t) di =1 J Lt)ft) dt +o(1)
v k xrx—
0 —o T

&

=_J‘smUt{f( w8)+-fle—1)} dt +o (1

0
The value of the limit, as U — oo, therefore depends only on
the behaviour of f(¢) in the immediate neighbourhood of ¢ = z;
and the problem has been reduced to the discussion of an
integral similar to Dirichlet’s. Any of the convergence criteria
of §§ 13.231-3 apply equally well to this problem. Iz particular

U 00
hm du f cos w(x—1)f(t) dt = { f(x+0)+f(z—0)}

U T
0

3

)
if f(t) is integrable over (—o0,0), and of bounded variation in an
wnterval including t = x.

13.93. Fourier transforms. If f(z) is an even function,
Fourier’s integral becomes

0 0

flz)= 2 f cosau du f cosutf(t) dt, (1)
i 0 0
the term involving sinu¢ vanishing identically. This is Fourier’s
cosine formula. Similarly for an odd function we obtain
Fourier’s sine formula

o )

f(x)=;2; f sin o du f sinut f{(¢) dt. )
If we write g(x):A/( ) J coszt f(t) (3)
then (1) gives  f(z)= A/ (%) f coszig(t) d. (4)

There is therefore a reciprocal relation between the functions
f(x) and g(z); a pair of functions connected in one sepse or
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another by these formulae are known as Fourier cosine trans-
forms of one another. Thus, for example, if f(z) belongs to
L(0,00), and is of bounded variation in any finite interval, then
(3) is absolutely convergent, and (4) holds in the sense that the
integral converges (not necessarily absolutely) to

Hf(@+0)+fz—0)}

Similarly from (2) we obtain the reciprocal formulae

h(z) = A/(%) jo sinztf(t) dt,  flz)= A/(;72.) Of sinxth@ dt, (5)

and f(x) and h(x) are Fourier sine transforms.

13.94. Integration of Fourier integrals. It is convenient
to notice at this point a theorem similar to that of § 13.5: the
formula obtained by integrating 13.93 (1),

¢ ® w
ff(ﬂc)dw=§r f s-lf;—f—%f du f cos utf(t) dt,
1] 1) 0

holds for any function f(t) integrable over (0,00).
For

] 0

U . U .
f singu du f cos utf(t) dt = Jf(t) di f §m_§%___cosw5 du

uw
0 (1]

by uniform convergence; and the inner integral on the right is
bounded for all U and ¢; for it is equal to
U
1
:|

0

0

U
sin(é-4-t)u 1 [ sin(¢—t)u
0

1U(§+t> . 1Ul§-‘—t1 )
sinv sinv

== — - —d
3 f - WEs f v
the sign being that of £—¢, and

YV .

f Y v

v

is a bounded function of V. Hence, by Lebesgue’s convergence
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theorem, we may make U — oo under the integral sign. Since

o0

fﬁﬁ_n%mfduz-%ﬂ (t<$), =0 (t>9),
0

the result now follows.
A similar result may be obtained from Fourier’s sine formula.

13.95. Fourier transforms of the class L2 The analysis
of § 13.93 gives conditions under which the reciprocal formulae
connecting Fourier transforms hold; but they suffer from the
defect that, while the formulae are symmetrical in f(z) and g(x),
the conditions which these functions satisfy are quite different.
‘An alternative set of conditions, which has perfect symmetry,
can be obtained by considering functions of the class L2, and
using the theory of mean convergence.*

Let f(x) belong to the class L*0,00). Then the formulae for
cosine transforms hold in the sense that, as a — co, the integral

ga(x)-—::A/(T—zT) fcosxtf(t) dt (1)

converges in mean to o function g(x) of the class L*(0,00); and

f.(2) = A/(7_27) f cosatg(t) dt 2)

converges in mean fo f(x).
We prove this by a method suggested by the formal process

of §13.92. Let .

a, = f f(z) dz (m=1,2,..).
a/A

Then, as A — o0, the sum
3

®, = @, cos e
. V‘—-%:-H A
tends to the integral

f cosux f(u) du,

a

if0<a<b, and m =[], n= [Xb]—— 1; for the difference is

* Plancherel (1), (2), (3); Titchmarsh (1), (3); Hardy (12); Pollard (1).
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n  FLIA
Z (cos UL — COS — ) flw) du +
v=m+1 "\
(m+1)/A b
+ f cos ux f(u) du + cosux f(u) du,
1A '
and COS UT — COS o2 T < % ;

so that the sum is O(1/A), while the last two integrals plainly
tend to zero. Further, the convergence is clearly uniform with
respect to x for 0 <z < X.

Now we can apply to ®,, ,, an argument similar to that used
in proving the Riesz-Fischer theorem. We have

(n+1)/A (n+1)/A (nt+1)/A
i< [ (ope [ sy [ ey
A
and hence n/ n/A n/A
) n (n+1)/A
[@rndz=im > a<ir [ {f@Pde<in f {f(x>}2 dz,
- v=mtl (m+1)//\

x
and a fortiori fd: do <] ﬂf{f (@)} dz
if m\ >X. Keepmg X fixed and makmg A — 00, we obtain

j {0(@)—g,@))? de < f {f)p de,
and then, making X — oo, ’

®© : b
[ os@) =g, do < [ {f@)p da. 3)

Since the right-hand side tends to zero as @ — co, b — 00, so does
the left-hand side; that is, g,(x) converges in mean to a function,
g(z) say, of the class L2(0,00).

The same argument now shows that the integral (2) converges
in mean, to a function ¢(z), say. We have to prove that
#(x) = f(z) almost everywhere, and for this it is sufficient to
show that

¢ £
[ (@) dz= [ f(a) da @)
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for all values of § Now

qux)dx—hm fa (z) dx == lim (%)fdxfcosxtg t) dt
I

a—>®

) [ ran ) 20

On the other hand, for 0<é<a,

=}

ff ) dac ——f51n§udufcosutf dt-A/( )fSInfuga(u)du,

0
by§ 13.94, f(x) being mtegrable over (0,a). N[aklng a — oo, and
observmg that sin éu/u belongs to L2, we obtain, by §12.53,

f x)dx—J( )fsmfu (w) du.

This proves (4) and completes the proof of the theorem.
There is, of course, a similar theorem for Fourier sine trans-
forms.

13.96. We can also obtain a formula corresponding to Par-
seval’s theorem. Putting ¢ =0 in 13.95 (3), we have

0 b 0
[{o@)y dz < [ {f@) dz < [ {f@@)}? de,
0 0 0
and making b - oo, by § 12.51
[ @) dz< [ {f)p do.

But since the relation between f(x‘) and g(z) is reciprocal, the
opposite inequality also holds. Hence in fact

f {g()}? dx = f {f(x)}? dz. (1)

Finally, if ¢(x) also belongs to L2, and i(x) is its transform,
then g(z)4-i(x) is the transform of f(z)+4(z). Hence

Jo@+i@p de= [ (f@)+o@Pds,
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and, subtracting (1) ang the corresponding formula for ¢ and

4, we obtain

[ 9@)p(z) de = [ fz)ier) d )
0 0

MISCELLANEOUS EXAMPLES

1. If f(») is first defined in (0, 7), then in (—u, 0) by the equation

f(—=z) = f(#), and elsewhere by periodicity, show that f(z) has the
Fourier cosine series

el
ia,+ X a,cosnz,
n=1

where a, =

J Sf(t)cos nt dt.

0
Similarly, if f(—%) = —f(z), then f(z) has the Fourier sine series

Z
ko

> b,sinnz,

n=1
where b, = z J Sf(t)sin nt dt.
T

2. Show that 0

2ma__1 (1 - —nsi

o e {~+ Z a,cosm‘c' nﬂsmm:} (0 <z < 2m),
7r 2a a’i+n?
n=1

em—1 2
o +7—7 Z {(—1)mesm— 1}‘;21_.5__::: O<z<m),
n=1

o0
2 7 sin nx
0L — 1—(—1)reomy """~ .
e o E{ (—1)re }az—i—n"- O<z<m)
n=1

Find the sums of the series when = = 0.

3. Sum the series
o0 0 .
a cosnx nsinne
———n ’ —_— 0 <2< 2n).
Z a?-+n?’ Z a?+n? ( ™)
n=1 n=1 :
4. Expand in Fourier series valid over (0, 27), and also in Fourier
cosine and sine series valid over (0, 77), the functions
1, x, 2, 8, COS Az, sin az, cosh ax, sinh az,
% cos b, e*sin bz, [z /], [2z/n].
Consider the values of z for which the series converge to a value different
from the value of the function expanded.
FF



440 FOURIER SERIES
5. Prove that, if —1<r<1,
1—r2 ® -
T roosdT e =142 n§1 rrcosnf
for all values of §.
6. If a,, b, denote the Fourier coefficients of f(x), then for —1 <r < 1
2m

1 .
$a,+ z (a, cos nx + b, sinnx)r* = f i 2rc<1)s(:: P f(¢) dt.
7. Prove that
2
lim - Lo f)dt = 3(f@+0)+f(w—0)
rs1 27 | 1—2rcos(z—1t)+7%

0
for all values of = for which the right-hand side exists.
[The discussion is similar to that of Fejér’s integral.]
8. Show that, if f(z) is bounded, then
8, = O(logn).
9. Show that, if m < f(a:) < M, then

< o,(7) <
for all values of » and z. -
10. Show that, if m < f(z) < M, and

A
] < —n—‘ [bal < 2
then m—A;—A, <8, < M+4,+4,.
[Use the formula
n
8y = Opy1— 1 3 z v(a,cosvx + b.,sinvm).]
v=1

" 11. Show that

T3 775£a+sm2x+sm3x+ . 0 <z < 2m),

and deduce that
lsmm 8in 2z sinnx

+ 25 4 < dr+1

for all values of #» and z. ‘ ,
[Compare §1.76. The actual upper bound of the partial sums is

f-S-EE dx = 1.85...; see Gronwall (1).]

12. Use Parseval’s theorem to sum the series
o0

: o 0
2w 2 D @
= n=1

n=1
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13. A necessary and sufficient condition that

a, = O(e—%-om), b, = O(e—%-9m),
where. k& > 0, for all positive values of ¢, is that f(x) should be almost
everywhere equal to the value on the real axis of an analytic function
J(z), which is regular for —k < y < %, and has the period 27.

14, Construct a Fourier series for which
5,(0) > _logn

loglogn
for arbitrarily large values of n.

15. Show that if, in the Fourier series of § 13.42, we substitute v!z
for z in the terms corresponding to the group of numbers G,,, we obtain
a series which is also the Fourier series of a continuous function, and
which diverges for all values of z such that x/r is a rational number.

16. Show that, if the series

o0

3 «,cos(2mx)
0

m=
is a Fourier series, it is convergent for_almost all values of .
[In this case the formula used in example 10 becomes

k-1
Ogk—8gk = '217= Z 27y, cos(2mr),
' m=1 .
and since a,, ~> 0 the right-hand side tends to 0 for all values of z.
Hence s8,x tends to a limit wherever o, does, i.e. almost everywhere.
See Kolmogoroff (1).]

17. If f(x) =2—% where 0 <a <1, for 0 <z < 27, show that, as
7 —> 0, a-1 «—1

. . a” ~ ————L——— ’ b’l ~ __n____._. .

2T (c)cos 3o 2T (a)sin ro
Show that f(x) belongs to L? if p < l/x, and that 3 (|a,|¢+[b,]9) is
divergent if ¢ < 1/(1—a).

[See Bromwich, Infinite Series (2nd ed.), § 174, Ex. 5, and Haslam-
Jones (1). The result should be compared with the extended Riesz-
Fischer theorem referred to in § 13.71. It shows that the exponent of
convergence of the series of coefficients is the ‘best possible’.]

18. A function f(x) is equal tov®cos(v*z) in the intervals

T
(v+1)ﬁ<x<;§, V= ]., 2,...,
where 0 < « < 8 < 1, and is defined in (—r, 0) by the relation
f(—=) = —f(2). .
Show that f(x) is integrable in the Lebesgue sense, and that its Fourier

sine coefficients satisfy b, = O(ni=—tlogn).

By taking « small enough and B/x near enough to 1, show that the
convergence of 3 |b,|¢, where ¢ > 2, is not sufficient to ensure that f(z)
shall belong to L#, where p = p(q) > 1.
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[The point of the example is that if ¢ = 2 the convergence of ¥ [5,|¢
does imply that f(z) belongs to L?, and there is an abrupt change in the
state of affairs when g becomes greater than 2.

We have

0 a/vB

=%_ Z Ve {sin(n+r?)x + sin(n—v?)z} da.
V=L )P

The terms for which Vn—2 < v < ¥n+2 are

O(v=—B-1) = O(nite-p-1)y;

the terms for which v < An—2 are

in—1

0 Z ) =0(nt= du

n—y? n—ul

v<Vn—2 0
, 1-n7 ‘
dv
- a1 2 )= to—}
O(n f 1_02) O(n¥*-tlogn),

0

and a similar result holds for the remaining terms. See also Titch-
marsh (2).]
19. Show that the function
x

flz) = -2+ lim | (l14-cost)(14-cos4t)...(14-cos4m-1t) dé

m—>o0
0

is continuous and of bounded variation, and has the period 27; but
that, if b, is its nth Fourier sine coefficient, nb, does not tend to zero
so that f(z) is not an integral.

[This example is due to F. Riesz (3). Let 7,(x) denote the integrand.
It is a cosine polynomial of order

1444 +4m-1 = J(4m—1).
On multiplying by 1--cos 4™z, the first new term involves
cos{4m— }(4"— 1)}z = cos (2.4 1)z,

which is of higher order than any of the terms in 7,(z). Hence 7,,,4(2)
is obtained by adding new terms to 7,(x) without altering the existing
ones. Also it is easily seen that all the coefficients lie between 0 and 1.

Let «,, be the number of non-vanishing terms in 7,. The recurrence
relation o,,,; = 3a,,—1 is easily verified. Hence o,,;; —0,, = 3(0t—p_1),
Qi1 —0, = 3™ Hence, if 0 < z < 27,

x

J. {Tmua®)— 1,2} dt < 27 i@l .

Hence ffm(t) dt tends uniformly to a limit, i.e. f(z) is continuous. Also
0



FOURIER SERIES 443
Tn(%) 18 non-decreasing, and so is its limit. Hence f(z) is of bounded
variation. Finally by = 1/4™.]
20. Show that, if a,cosnz + b,sinnz—> 0 in a set of positive measure,
then a,— 0 and b,— 0.
21. Show that the reciprocal formulae

Fle) = f = (1) d, f(x)=§l;_ f e-=F (1) dt,

hold under the same conditions as Fourier’s integral.
22. SHow that Mellin’s inversion formulae

[ c+iwo
é(s) = fx"lz/r(x) dex, Plz) = 51-1” f P(s)x—*ds,
0 c—iw

may, with suitable conditions, be deduced from the formulae of the
previous example.

23. Show that the functions

z=¥ e ¥,  sechz(in)

are their own Fourier cosine transforms, and that
2 1. 1
v zem¥E, FETL  z(3n)
are their own sine transforms.

24. Express e-d4%, where a > 0, as a Fourier integral. Verify the
formula 13.96 (2) in the case where f(z) = e~%, ¢(z) = e~%.

25. Evaluate the integral

o

J smaxsmbx d

2

l'by means of the formula 13.96 (2).

26. Let f(z) belong to L(0, ), and be continucus and steadily de-
creasing to zero as £ — co (or be the difference between two functions
of this type). Let a > 0, of = 27, and let g(z) be the Fourier cosine
transform of f(z). Then

{30+ 3 fna] = Blig(0)+ 3 g(nB).
n=1 n=1
[This is known as Poisson’s formula. It is easily verified that

Blig+ 3 gomf)

« em+1)r

No [ oft\sin(r )t . sin(n+3
:gff(ﬁ)”sinét Z f () sin ¢

=1 (em—1)m
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This differs from the left-hand side of Poisson’s formula by

Vo 4 ¢ sin(n+3)¢
52 [ {rlp)-so) it s
0 u . em+1)mr
o 1) _p(*mm)|sintnt 3yt
23 T A
=1 em-1)7

The given conditions ensure that this series converges uniformly with
respect to »m; in fact, it is easily seen from the second mean-value
theorem that the general term is O[f{(2m— 1)=/B}] independently of n;
and each term tends to zero as n — o (as in the proof of Jordan’s test),
and the result follows. '

For other conditions for the formula see Linfoot (1), Mordell (2).]

27. Verify Poisson’s formula for the function f(z) = 1/(1+?). [The
result is equivalent to that of § 3.22, ex. (iii).]
. 28. Deduce from Poisson’s formula that if 2 > 0

E e—nia? i’f _2- e—ntn?[z?,

n=-o z

29. Sum the series 3 n~J, (n8), where §> 0, v > }, by means of
n=1

Poisson’s formula and the first result of Ch. 1, ex. 5.
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