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PEEFACE

THIS book is designed for students who, having acquired a good

working knowledge of the calculus, desire to become acquainted

with the theory of functions of a complex variable, and with the

principal applications of that theory. In order to avoid making
the subject too difficult for beginners, I have abstained from the

use of strictly arithmetical methods, and have, while endeavour-

ing to make the proofs sufficiently rigorous, based them mainly

on geometrical conceptions.

The first two chapters are intended to familiarise the student

with the geometrical representation of complex numbers and

of the simpler rational and irrational functions of a complex

variable.

In Chapter III. the properties of holomorphic functions

are established; these properties are then used to define the

Exponential, Circular, Logarithmic, and other transcendental func-

tions for the domain of the complex variable, their properties as

functions of a real variable being assumed to be known. It is

thus possible in Chapter IV. to make use of these functions in

examples on integration ;
such examples are both interesting and

important, and it seems desirable to introduce them to the student

in a manner that does not involve the difficulties of complex

series. As a preliminary to Green's Theorem I have given a

short account of curvilinear integrals. Two proofs of Cauchy's

Theorem are given, only the first of which depends on Green's

Theorem. A large number of examples on contour integration

are worked out, and here, as throughout the book, the text is

plentifully illustrated by diagrams.
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In view of the very full exposition of the subject given by
Dr. Bromwich, it has been thought unnecessary to give a de-

tailed account of infinite series. A summary of those theorems

which are used in the book will be found at the beginning of

Chapter V.
;
the theory of uniform convergence is dealt with in

Chapter VI.

The remaining chapters are devoted to the applications of the

subject. Chapter VII. includes, among other matters, the theory

of Analytical Continuation
;
various examples of the applications

of that theory are given there and in Chapters VIII. and XV.

The asymptotic expansions of the Gamma Function in Chapter
VIII. and of the Bessel Functions in Chapter XV. are worked

out for complex values of the variable.

Chapters IX. to XI. deal with Elliptic Integrals and Functions.

In Chapter IX. the student is shown how to reduce and evaluate

elliptic integrals. In Chapter XI. I have established the exist-

ence of the Jacobian Functions by considering the values of the

Weierstrassian Function when one period is real and the other is

purely imaginary.

The last four chapters of the book contain a discussion of the

theory of linear differential equations. As the most important

of these equations are of the second order, it has been thought

unnecessary to consider equations of higher order than the second.

The Hypergeometric Function and Spherical and Cylindrical

Harmonics are discussed as they arise through the solution of

their differential equations; other properties of these functions

are given in examples, with, in most cases, hints as to the methods

of solution. No attempt has been made to deal with the applica-

tions of these functions to physics, but it is hoped that the

applied mathematician will find in these pages ready access to

the instruments which he requires.

Numerous examples have been given throughout the book,

and there is also a set of Miscellaneous Examples, arranged to

correspond with the order of the text.

The writing of the book was undertaken at the suggestion

of Professor George A. Gibson, LL.D., to whom I have been



PREFACE vii

indebted for important criticisms at all stages of the work. I

have also to thank my colleagues, Mr. Robert J. T. Bell, D.Sc.,

and Mr. Arthur S. Morrison, M.A., B.Sc., for their assistance in

correcting the proofs.

Acknowledgment has been made, in foot-notes to the text, of

various sources from which I have derived assistance. Of the

books which I have found helpful I would particularly name
Lindelofs Calcul des Residus, Cauchy's Mtfmoire sur les inte-

grates definies, Jordan's GOUTS d'Analyse, and Forsyth's Theory

of Differential Equations. I have also made use of lectures by
Mr. R. A. Herman, M.A., and Professor E. W. Hobson, Sc.D.

In conclusion, I would express my thanks to Messrs. MacLehose

for the excellence of their printing work.

THOMAS M. MACROBERT.

GLASGOW, September 1916.
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CHAPTEE I.

COMPLEX NUMBERS.

1. Definition of Complex Numbers. A number of the form

p+ iq, where p and q are reai.and i is a root of the equation
i
z
-fl=0, is called a Complex Number. If g = the number

is said to be purely real, and if > = it is said to be purely

imaginary. The complex numbers p+ iq and p iq are called

Conjugate Numbers. The number p+ iq is zero if and only if

p = and q = 0.

If p=p+ iq }
it is frequently found convenient to write B(p) for p and I(p)

for q, where B()o) stands for the real part of p and I(/o) for the imaginary

part of p.

Complex Numbers are subject to the same algebraical laws

of addition, subtraction, multiplication, and division, as real

numbers. These operations, when applied to real and complex
numbers, produce real and complex numbers only; and it will

be shewn ( 6, 20) that this is also true of the remaining

algebraical operation of root extraction.

YA

X' O

Y'
FIG. 1.

2. Geometrical Representation of Complex Numbers. The

Complex Number s = x+ iy can be represented geometrically by
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means of a Rectangular Coordinate System X'OX, TOY (Fig. 1).

The point P(x, y) corresponds uniquely to the number z, and is

called the point z. In particular, points on the #-axis correspond
to purely real numbers, and points on the ^/-axis to purely

imaginary numbers. The figure is called the Argand Diagram,
and the coordinate plane is spoken of as the 0-plane.

Example. If z
1
and z2 are conjugate numbers, shew that the straight line

joining the points z
1
and 22 is bisected at right angles by the #-axis.

3. Modulus and Amplitude. In polar coordinates P is the

point (r, 0), where r denotes the positive value of OP, and

the angle XOP. The angle XOP is defined as the angle
traced out by a radius-vector which revolves either positively

or negatively from its initial position along OX till it coincides

with OP. OP or r is called the Modulus of 0, and is written

mod or
|

z
\

;
is called the Amplitude

* of 0, and is written

amp 2. The amplitude can evidently have an infinite number of

values differing from each other by multiples of 2-Tr: that value

which satisfies the inequalities

-7r<0^7T
is called the Principal Value of amp z.

The rectangular and polar coordinates are connected by the

relations x= rcosO, y = r sin 0,

r= Jx2+ y\ tan =
y/x.

From these it follows that

z x+ iy = r(cos 4- i sin 0),

an equation which expresses z in terms of its modulus and

amplitude.

Example 1 . Prove
|

cos + i sin 6
\

= 1 .

^
Example^. If z= x+ iy, shew that |#|^|z| , \y |^| z\.

Vectors. A line AB (Fig. 1), equal to, parallel to, and in the

same direction as OP, may also be used to represent the number z ;

mod (AB) and amp (AB) are then identical with z
\

and amp z.

AB is called a Vector. It follows that

BA=-AB.
* The word Argument is used by some writers in place of Amplitude.
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4. Geometrical Representation of Addition. Let P
l
and P

2

(Fig. 2) be the points z
l
= x

l -{-iyl
and z

z
= x

z -\-iyz . Then

YA R,

FIG. 2.

Through Pj draw P
1
P

3 equal to, parallel to, and in the same

direction as OP
2

. P
3
has coordinates (fl?1+ a?

2 , yi+ y2),
and is

therefore the point z^-{-z2 . In vectorial notation

OP =
3
= O?!+ OP2

= OP2

Subtraction. Since
X 2

= z
l+ ( 2 ),

a subtraction can always
be treated as an addition. Thus, if P

3 (Fig. 2) is the point %

THEOREM I. The modulus of the sum of any number of

complex quantities is less than or equal to the sum of their

moduli : that is, if n is any positive integer,

|^+ 2+...+0n ^l^l + l^l + .-. + l^n .

This follows from the geometrical theorem that a side of a

triangle is less than or equal to the sum of the other two sides :

thus (Fig. 2)

mod (OP8)^ mod (OPj)+ mod (P^g).

Therefore K+^l^l^ |
+ K| .

Hence z+2 + 2f = 2 + z + z

and so on.

THEOREM II. The modulus of the difference of two complex

quantities is greater than or equal to the difference of their

moduli.

The verification of this theorem is left as an exercise to the

reader.
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5. Multiplication and Division. Let z
1
= r

1(cos01+isin01 ),

z
2
= r

2(cos 2+ i sin 2),
. . .

,
zn = rn(cos 6n+ i sin

Then, by De Moivre's theorem,

, Hence, the modulus and amplitude of a product are equal

respectively to the product of the moduli and the sum of Ihe

amplitudes of the factors.

In particular, if n is a positive integer, and if z= r(cos 6+ i sin 0),

then
zn = rw(cos nO+ i sin 710).

Example. If p+ iq is a root of the equation

a 2
w+ a

]
2
M-1+ ... + an= 0,

where the coefficients
,
a

t ,
...

,
an are real, prove that p -iq is also a root.

Again, ^=^ {cos (0X
-

2)+ i sin (0t
-

2)} ;

%2 f%

so that the modulus and amplitude of a quotient are respectively

the quotient of the moduli and the difference of the amplitudes
of the numerator and denominator.

It follows that the equation

zn= rn(cos nO+ i sin n6)

holds when n is a negative integer. In particular,

mod (1/0)
=

I/ 10 1

and amp (1/0)= amp0.

v Example 1. Give a geometrical construction for l/z.

J
Example 2. Shew that amp ( } =BAG.

VAB/
Let OP and OQ be parallel to and in the same direction as AB and AC.

Then amp (==}
= ampAC - ampAB

= ampOQ-ampOP
= BAC.

If the angle so obtained is a positive {Fig. 3 (a)} or a negative (Fig. 3(6)}
reflex angle, the principal value of the amplitude of the quotient is obtained

in the first case by subtracting and in the second case by adding 2?r
; the

resulting amplitude is in the first case negative and in the second case

positive. As a rule, when the amplitude is mentioned, it is to be understood

that the principal value is referred to.
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. / \ / \

*/ Example 3. Shew that, if amp (
^ ?

)
= amp (

-?
) ,

the points 23 and 24
\z1

z3/ \Zi zJ
are on the same side of the line joining z

l
and z2 ,

and 1? 22 ,
^3 ,

^
4 ,
are coneyclic.

Let Pj, P2 ,
P3 ,

and P4 be the points zlt z
2 ,

z3 ,
and 2

4 respectively. Then

amp

Therefore P
1
P3P2

=P
1
P4P2 .

J^Ioreover, the points P3 and P4 must be on the same side of the line

for if not, the angles P!?^ and P^^P^ would have opposite signs.

Hence the points P1} P2 ,
P3 ,

and P4 are coneyclic.

Fio. 3.

6. Root Extraction. If n is a positive integer there are n

distinct values of zn .

For, since, if K is any integer,

/ O+ ZKTT . . + 2/c7rY* . .

1 cos \-^ sin -
)
= cos + ^ sin 6,

\ n n /

it follows that rn (cos
+ 2/C7T

-fisin
2*-7T\

)
is

I /
an 7i

th root of
n n

Now, if for AC the numbers 0, 1, 2, 3,...,
i

Ti1, are substituted in succession, n distinct values of zn are

obtained. The substitution of other integers for K merely gives
rise to repetitions of these values; and there can be no other

values, since zn is a root of the equation xn= z, which has not

more than n roots.

Similarly, if p and q are integers, and q is positive,

where K = 0, 1, 2, . . . , q 1.
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/ Example. Shew that the nth roots of any number can be represented by
n equidistant points on a circle with centre at the origin.

EXAMPLES I.

1. Shew that the straight line joining the points z
l
and z2 is divided in

the ratio m : n at the point (mz2+ nz-^l(m+ ri).

2. Prove that the centroid of the triangle whose vertices are zlt z2 ,
and

z3 is(z1+ z
2+z3)/3.

N/ 3. Prove that the modulus of the quotient of two conjugate numbers
is unity.

4. Prove that amp z - amp (
-

z)
= TT according as amp z is positive or

negative.

v/5. If
|
z
1 1

=
j

z2 1 ,
and amp21+ amp^2

=
0, shew that z

l
and z2 are conjugate

numbers. v

* 6. If 2 cos = a+ lfa, shew that 2 cos n6=an+ l/a
n

.
~~^~*/U

7. Prove algebraically that
|

z
1 +z2 \ ^> \

z
l \
+

|

z
2 \

.

8. Shew that, if \z1 + z
2+ ...+zn

\

=
\z1 \+ z2 \

+ ... + \zn \,
the Z'B must all

have the same amplitude.

9. Shew that, if amp |p
~ zv(zi

~ ZV
j-

=
TT, then z

3 and z4 are on opposite

sides of the straight line joining % and z2 ,
and zlt z

2 ,
z3 ,

24 ,
are coneyclic.

10. Let A, B, C, and D be the points zlt z
2 , z3 ,

and 4 . Shew that, if

z^z2+ 2324
= and z

1 + z
2
=

0, then A, B, C, and D are coneyclic and the triangles

AOC and DOA are similar.

11. If AC : CB : :
-AD : DB, and if A, B, C, D are the points z

l5
z2 ,

z3 ,
z4 ,

shew that A, B, C, and D are coneyclic, and prove (zl + z2) (z3+ z4)
= 2 (z^z2+ z324) :

also prove triangles AOC and DOA similar, where O is the mid-point of AB.

12. Prove that the two triangles whose vertices are the points a
l ,
a2) a3y

and blt 62 ,
53 , respectively, are directly similar if and only if

= 0.

13. Prove that the curves - constant and amp( -j
= constant

are orthogonal circles.

^/ 14. Prove that the imaginary nih roots of a real quantity can be arranged
in conjugate pairs.

\/ 15. Picture on a diagram the roots of the equation s5+ 1 = 0.

16. Shew that the equation 3 <

2,z = (z+ l)
6 has four complex roots, two of

which lie in the second quadrant and two in the third. Shew that all the

roots lie on a circle.

(See also Miscellaneous Examples, 1-9.)
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CHAPTEE II.

FUNCTIONS OF A COMPLEX VAEIABLE.

7. Uniform Functions. When a variable complex quantity
w is connected with another variable complex quantity z in such

a way that to each value of z there corresponds one value of w,

w is said to be a Uniform or Single-valued function of z. For

example, a polynomial in 0, or the ratio of two polynomials, is

a uniform function of z. The formal definition of a Holomorphic
function of a complex variable will be given in Chapter III.

The values of 0, for which w is a function of z, may be limited

to some assigned region of the plane. Thus the equation

where x is real, defines y as a function of x for those values of x

and those alone which satisfy the inequality 1 < x < 1.

Multiple-valued Functions. If several values of w correspond
to each value of z, w is said to be a Multiple-valued or Multiform
function of z. For example, >Jz is a two-valued, and V0 an

^-valued function of z.

Path of Variation. In the theory of functions of a real

variable, the independent variable x can only vary by values which

correspond to points on the #-axis : in the theory of functions of

a complex variable, on the other hand, the independent variable

z can vary by values corresponding to the points of any path

connecting the initial and final points.

8. Transformations. If w is a function f(z) of z, the relation

between w and z may be interpreted geometrically, and the

relation may then be called a transformation : the point z is said

to be transformed into the corresponding point or points w by
means of the transformation w=f(z). If iu= az+ b, the trans-

formation is called a linear transformation. If W<f>(z)/\fs(z),
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where 0(0) and \fr(z) are polynomials, the transformation is said

to be rational. Transformations of the type w = (az+ b)/(cz+ d)

are known as bilinear transformations.

We proceed to investigate the geometrical meaning of linear

and bilinear transformations.

I. w= z+ b. Let P, Q, and B (Fig. 4) be the points z, w, and

b. Then, since PQ = OB, it follows that the effect of the trans-

formation is to impose on every point z a translation equivalent
in magnitude and direction to OB.

YJ

'P i

FIG. 4.

II. w = az. This transformation gives |

w
\

=
\

a
\

.
\

z
,
and

amp w= amp a -f- amp z.

Consequently, if P and Q are the points z and w, the point

Q can be derived from the point P by turning the radius-vector

OP through an angle amp a and then multiplying it by |

a
\

. It

follows that any figure in the plane is changed by the trans-

formation into a similar figure.

III. w= az-\-b. This, the general linear transformation, can

be effected by applying transformations II. and I. in succession.

X<ike transformation II. it transforms any figure in the plane
into a similar figure. The ratio of the distances of corresponding

points is given by the equation

and the angle between corresponding lines by the equation

amp(to1
w

2) amp(01
z
z)
= amp a.

IV. w=l/z. Here |w]=l/|0f, and amp w = amp 0. Now
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let P (Fig. 5) be the point z and P' the inverse of P with regard
to the circle [0|

= 1. Then the modulus of P' is l/\z\ and its

amplitude amp z. Again, let Q be the image of P' in the cc-axis
;

then the modulus of Q is 1/|0|, and its amplitude is amp z.

Hence Q is the point w. It follows that the transformation is

equivalent to an inversion in the circle of unit radius with the

origin as centre, followed by a reflection in the #-axis.

Point at Infinity. As z tends to infinity, w approaches the

origin. In the theory of the complex variable, infinity is regarded
as a point ; namely, that point which is related to the origin by
means of the transformation w=l/z.

V. w = a/z. This can be regarded as a combination of trans-

formations IV. and II.

VI. The general bilinear transformation w = (az+b)/(cz+d),
where a/b =f= c/d. (If a/b = c/d, then w is a constant.)

This transformation can be written
V

(bc ad)/c
2 a

It can therefore be effected by combining the three

transformations z
1
= z+ d/c, z

2
=

k/zlt where Jc = (bc ad)/c
z

,
and

w =
2 4- a/c. It should be noted that z can also be derived from

w by the bilinear transformation z = ( dw+ b)/(cw a).

Since the inverse of a circle is a circle or a straight line,O '

it follows that bilinear transformations transform circles into

circles or straight lines.
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V Example 1. Apply the transformation w= (22+ 3)/(2-4) to the circle

Since w= 2 + ll/(z-4), the transformation can be effected by applying
successively the transformations

(i) ^ = 2-4, (ii) 22
=

1/2!, (iii) %=H%, and (iv) w=
From transformation (i) we get

#=#i + 4, y=^.
Hence fo+ 4)

2+yi
* - 4^ = 0.

Transformation (ii) gives

.Therefore 16(^2
2
+3/2

2
)+ 8^2+ 4y2+ 1 =0.

Again, from transformation (iii),

so that 16 (>3
2+y3

2
) + 88^73+ 44y3 +121=0.

Finally, if w=u-}-iv, transformation (iv) gives

#3
=^-2, y3 =-y.

The given circle is therefore transformed into the circle

I6u2+ 16v2+ 24w + 44v + 9= 0.

Example 2. Shew that the transformation of Example 1 changes the

circle ^2+y
2 -437=0 into the line 4^+ 3 = 0, and explain why the curve

obtained is not a circle.

9. Geometrical Representation of Functions. It is often

convenient to represent the dependent variable w on a different

plane from the independent variable z. This plane is called the

u>-plane, and w = u+iv is represented on it by the point (u, v)

referred to rectangular axes U'OU, V'OV. If w is a uniform

function f(z) of z> and if z moves from a to b by different paths in

the 0-plane, w will move from /(a) to /(&) by different paths
in the w-plane. In the case of multiple-valued functions, how--

ever, it will be shewn that the final point attained in the tu-plane

depends on which value of w is selected as initial value, and

also on the path followed by z in the 0-plane.

Example 1 . Let w= z\ so that u x9--y
2
,
v = 1xy.

Then, if #=0, u= -y2 and v= 0. Hence as z moves up the y-axis from
- co to 0, u increases from oo to 0, and therefore w moves along the w-axis

from - oo to 0. Again, as z moves up the y -axis from to +00, u decreases

from to oo
,
and therefore ^ moves back along the -M-axis from to oo .

Similarly, it can be shewn that as z moves along the #-axis from - oo to

+ oo
,
w passes along the w-axis from +00 to 0, and then back from to +00.

Likewise, the positive and negative parts of the v-axis correspond respec-

tively to the lines y x and y= x.
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Again, if we put z=r(cos 6+ isin 6} and w= p(cos<f>+ isin <), we have

p= r2 and < = 20.

Hence, if z lies on the circle ABCD (Fig. 6) of radius a, w will lie on the

circle PQRS of radius a2
. Let 0=0, < = initially, so that A and P are the

initial positions of z and w. Then as z passes round the quadrant AB in the

anti-clockwise direction, Q and
<f>

increase to 7r/2 and TT respectively, so that

plane
A

LU - plane

FIG. 6.

w passes round the semi-circle PQR. Similarly, it can be shewn that, as z

passes round the quadrants BC, CD and DA, w passes round the semi-circles

RSP, PQR and RSP respectively. Thus, when z describes the circle ABCD
once, w describes PQRS twice.

\/ Example 2. If w= z2
,
and if z describes the line #= c, shew that w

describes the parabola u= c2 -v*/4c
2

. Trace on a figure, for the particular
case c= 1. the course of w as z moves up the line x= 1 from - oo . to +00.

In applications it is often important to trace the change in

the amplitude of w when z describes a closed curve. We shall

consider some particular cases.

Y

M

( 1 ) w = z. Here amp w= amp z. Let z describe a closed curve
LMN (Fig. 7) about the origin. Then, if z passes round LMN
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once in the positive direction, amps, and consequently ampw,
will increase by 27r. Similarly, if z passes round the curve once

in the negative direction, amp z and amp w will each decrease by
2?r; while n successive revolutions in the positive or negative
direction will alter the amplitudes by + Znir or 2mr.

Again, if the origin is exterior to the closed curve APBQ
(Fig. 8) described by 0, the amplitudes of z and w will increase

Y

from ^.XOA at A to ^XOB at B, and then decrease from 1.XOB
to ^XOA; so that the total change is zero.

(2) w = a(z z
l ),

where a and z
l
are constants. Here

so that, since amp a is constant, the change in amp w is equal to

the change in amp(0 zj. Hence, if z describes a closed curve

surrounding z
l
in the positive or negative direction, amp w will

alter by +27r or 2?r; while, if z
1

is exterior to the curve,

amp w will return to its original value. In the first case w will

describe a closed curve in the w-plane about the origin ;
while

in the second case it will describe a closed curve not enclosing
the origin.

(3) w = a(z %)( Zz)(z 3),
where a, zv z

2 ,
and z

3
are

-constants.

Here amp w = amp a+ amp (z X)+ amp (z z
z)+ amp (z z

3).

If z passes round the curve C (Fig. 9), which does not contain

any of the points z
lt

z
z ,

Z
B ,

then ampw will return to its

initial value
;
so that w will describe a closed curve not enclosing

the origin. If z passes round C^, C2 ,
or C3 , ampw will be altered

by 27r, 47r, or 6?r, and w will pass round the origin once, twice,

or thrice as the case may be.

(4) w = a(z z^)(z z
z)...(z zn).

If in this case z describes a

closed curve within which none of the points 15 2 , ..., zn lies,
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it follows, as in cases (2) and (3), that ampw will regain its

initial value, and w will describe a closed curve which does not

surround the origin ; while, if z describes a closed curve within

which r of these points lie, amp w will be altered by 2r7r, and w
will pass round the origin r times.

(5) w = a(z-z1)/(z-zz ).

Here amp w= amp a+ amp (z z^) amp (z %).

It follows that, if z describes the curve C
x (Fig. 10) or C2

in the

positive direction, amp w is increased or decreased by 2?r
; while,

O

Fio. FIG. 10.

if z describes either of the curves C or C8 , amp0 regains its

initial value.

In all these cases it is obvious that the change in amp w due

to the description of any closed curve is independent of the

shape of the curve, so long as the same set of points z
lt

z
2 ,

z
s ,

...

lies inside or outside it. It is often found convenient to take the

curve in the form of a circle.

(6) w = s/z. If z= r(cos + i sin 0), then w has two values,

w^r^cos (0/2)+ i sin (0/2)}

and w
2
= r1 /2

{cos(0/2 + 7r)+ 'i sin(0/2+ ?!)}
= -w^

Each of these two quantities wl
and w

2
varies with z, and is

therefore a function of z : they are called the Branches of the

two-valued function w.

Let z start from the point P(r, a) (Fig. 11), and let the initial

values of w
1
and w

z
be

w = r1/2
(cos (a/2)+ i sin (a/2)} and w

z
= wr

Then w^ and w
2
will be represented by the points P^r

1 /2
, a/2)

and P
2(r

1 /2
, a/2 -f TT) in the w-plane. Now, if z moves round the

circle PQR of centre and radius r, 6 will increase by 2?r, and
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amp w by TT. Consequently wl
will move round the semi-circle

PjQiRjP.2 and w
z
round the semi-circle P^R^ in the w-plane :

the final values of w
l
and w

2
will be w

z and w
l

. A revolution

of 2 about the origin therefore interchanges the branches of w.

Two such revolutions bring back w
l
and w

z to their original
values

; or, graphically expressed, if z moves round the circle

PQR twice, wl
and w

z
each move round the circle P

1Q1
P

2Q2
once.

w- plane
Q

FIG. 11.

If the circuit described by z does not enclose the origin, will

regain its initial value a, and w
l
and wz their initial values w^

and w
2

.

The point O is called a Branch Point of w, because a circuit

about it interchanges the branches of the function.

(7) w= -Ja(z z
l ).

Here amp w= \ amp a -f J amp (z X ).

This is again a two-valued function. A single circuit about z
1

interchanges the branches, while a double circuit brings them

back to their initial values. On the other hand, the description

of a circuit which does not enclose z
l
effects no alteration in the

branches. Hence z
l
is a Branch Point of w. .

Here amp w= J amp a+ \ amp(0 z )+ i amp (2 z
2).

Hence the description of Cx (Fig. 12) or C2 interchanges the

branches, while the description of C or C3
leaves them unaltered.

Thus 0J and
2
are Branch Points of w.

(9) w y(z a). If z a = r(cos -f- i sin 0), w has n branches
!/ 0+2S7T 9+ 2STT\

w,, w9) .... wn ,
where ws rn (cos h^sm -I. A

\ n n /

positive circuit round the branch-point a increases by 2?r, and
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therefore changes u^ into wz ,
w

2
into w

s ,

which do not enclose a leave the branches unaltered.

15

Circuits

FIG. 12.

Example 3. Let w= \/(l -z)(l +2
2
), and let the value of w when z is at O

be + 1. Then if z describes the curve OPA_(Fig. 13), where A is the point 2,

shew that the value of w at A will be ~is/6.

The three zeros of w are 1, i, and i. Let B, C, and D be the corre-

sponding points, and through C and D draw CL and DM parallel to OX.

Y

C

A X

M

FIG. 13.

Let the moduli and amplitudes of BP, CP, and DP be r
lt r2 ,

r
3 ,
and < 1} </>2 ,

<
3 , respectively, where z_XBP= ^> 1 ,

^LCP= ^>2 ,
and ^MDP= <

3 . Then

/ 1 \T "2^. ^,,

It has still to be determined which of the two possible values +TT or -TT

is to be assigned to amp ( 1). Now, when 2 is at O, <f> l
=

7r, </>2
=

?r/2, (/>3
=

7r/2 ;

so that <
1+ <

2+ <
3
= 7r. Hence, if amp(-l)= 7r, amp^=?r at O; while, if

amp(-l)=-7r, ampw= at O; but 10= +1 when z is at O, so that the

latter value must be chosen. Therefore

Now, as 2 passes from O to A, ^ decreases from TT to 0, </>2 increases from

-7T/2 to -tan" 1

-!,
and

<j>3 decreases from ?r/2 to tan" 1

.}.
Therefore at A

amp ?0= -7T/2 ;
also ^= 1, r.

2 =\/5, r
3
= \/5. Hence

w = x/5 { cos (
-

7T/2) + 1 sin (
-
~/2) }

- - i \/5.
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10. Roots of Equations. In works on the theory of equa-
tions it is shewn how, by means of Sturm's Theorem, it is possible
to find the number of real roots lying between any two real

values of the variable. We shall now shew how to find the

number of real or complex roots of an equation which are

contained in various regions of the 2-plarie.

Consider the equation

We assume that every equation has a root : a proof of this

important theorem will be given later (33). It follows that

f(z) can be put in the form

^0(Z-Zl)(z -%>... (2-Zn).

If z be taken positively round a closed circuit in the 2-plane
which encloses r of the points z

lt
z
2 , ...

,
zn ,

the amplitude of f(z)
will be increased by 2r?r. Consequently the number of roots of

f(z)
= which lie inside a given circuit can be ascertained by

det rmining the change in the amplitude of f(z) when z passes
round the circuit.

The following theorem will be found useful in locating the roots.

THEOREM. If z be taken round any part of a large circle with

the origin as centre and radius R, and if be the change in

FIG. 14.

amp z, the change in the amplitude of f(z) will differ from nO by
a quantity which tends to zero as R tends to infinity.

For f(z)= zn(aQ+ ajz+ a2/z*+ . . . + an/z
n
).

Hence amp/(0) =n amp z -\-amp (a + ajz+ a
2/z

2+ . . . + &n /0n)-

Now
| ajz+ a

2/z*+ . . . + an/z
11

\

<
p,

where P = \ c^ j/R+ |

a
2 |/R

2+ ... +| On|/R
n

.

Let R be chosen so large that /3<| I-
Then the point

...+an/z
n must lie inside a circle of centre a or A
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(Fig. 14) and radius p. If OP be a tangent to this circle,

amp(a +a1/2+...+a 7l/z
n
) differs from ampa by an angle rj,

which is not greater than ^AOP, and which can be made as

small as we please by increasing R, and thus decreasing p.

That is, amp/(0) = n amp z+ amp a
Y\.

Hence Lim amp f(z) = n amp z -\- amp a .

Therefore, when R tends to infinity, the change in amp/(z)
tends to n times the change in amp z.

Example. Investigate the positions of the roots of the equation

Let w= 4+ 2
3 + l, and let z describe a contour consisting of the three

portions :

(1) the .t'-axis from to + QO
;

(2) the first quadrant of a circle of centre O and radius infinity ;

(3) the y-axis from +00 to 0.

(1) At points on the .v-axis, w = u+ iv=at+ x? + l, so that u=
and v= Q. Hence, as z passes along the .r-axis from to + QO

,

the w-axis from 1 to +00, and therefore amp w remains constant and equal
to zero.

(2) On the great circle ampz increases by ?r/2, and therefore, by the

theorem above, amp w increases by 2?r.

(3) At points on the ?/-axis, u=y*+ l and v= -y3
. Hence w lies on the

infinite curve LMN (Fig. 15), given by these equations, and as y decreases

VI

FIG. 15. FIG. 16.

from +00 to 0, w passes along this curve from infinity below the u-axis to

the point M(w= l) in the direction indicated by the arrows. Hence the

initial and final values of amp?0 are equal, both being zero.

The total change in amp w as z passes round the complete circuit is there-

fore 2?r, and it follows that one and only one root of the equation lies in the

first quadrant.

Similarly it can be shewn that only one root lies in each of the other

quadrants.

Again, let z describe the contour OABCO (Fig. 16), where A and C are

the points 1 and
2',
and ABC is a quadrant of the circle || = 1.
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Then, firstly, the description of OA gives rise to no change in amp u\

Next, for points on a circle of centre O and radius R,

z=E (cos $+ i sin 0)
= R(l - P+ 2&)/(l + *

2
), where t = tan ((9/2),'

Accordingly, at points on ABC, z= (l + it)/(l it), so that

Hence amp w= amp{(3- 12 2+ *
4
) + z'(2 + 2 3

)}-amp(l -it)*.

Now, as 6 varies from to ?r/2, t varies from to + 1
;
so that amp (1

-
it)

decreases by ir/4. Hence amp (1 it)* decreases by TT.

Again, let =3-12 2+ *
4 and ^ = 2^+ 2^.

Then the curve given by these equations is of the form shewn in Fig. 17,

FIG. 17.

the arrows indicating the variation of the point (, rj)
as t increases from

oo to + oc .

Now, when =
0,

= 3 and
77
=

0, so that amp( + ir/)
=

; also, when t = l
y=8 and

?7
=

4, so that amp ( + 117)
= 6, where is the angle in the

second quadrant for which tan#= 1/2. Hence the change in arupw due

to the description by z of the quadrant ABC is

7r+(9=27r-tan--1
(l/2).

Finally, at points on OC, u=y*+ l and y= -y3
,
so that w lies on the

curve LMN (Fig. 15). When y = l
t
wia at the point K(?0= 2 i), and

amp w tan-1 (l/2) ;

while, when y= 0, w is at the point M(w= l) and arapw= 0: so that the

change of amplitude due to path CO is tan-1(l/2).
Hence the total change of amplitude due to the circuit is 2?r, and there-

fore the root which lies in the first quadrant lies within the unit circle.
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Similarly it can be shewn that the root in the fourth quadrant lies within

the unit circle, while the other two roots lie outside it.

Again, it can be shewn that all the four roots lie inside the circle |s|
= 2.

For, if z= 2(l+it)l(l-it),

Now the curve 25 - 102 2+ 9 4
, 77

= 76* - 44Z3
,

is of the form shewn in Fig. 18, the arrows indicating the variation of the

point (, 77) as t increases from oo to + 00. But as amp z varies from - TT

FIG. IS.

to +TT, t varies from - oo to +00 ,
and therefore amp(f+ ITJ) increases by 4?r

Also amp{l/(l -it)*} increases by 4;r. Hence ampw increases by STT, and
therefore all the four roots lie inside the circle.

EXAMPLES II.

1. If w and z are connected by the bilinear transformation

and if the points u\ and ?/;2 correspond respectively to the points z
l
and z2 ,

shew that

2. If iv= (az + b)/(cz+ d), and if the locus of z is an arc of a circle

standing on the chord joining the points z
l
and z2 ,

shew that the locus of w
is an arc of a circle standing on the chord joining ^ and w2 .
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3. If w= (az+ b)l(cz+ d), and if the points wlt w2 ,
w

3 , and u\ correspond

respectively to zlt z2 ,
z
3 ,
and 2

4 ,
shew that

w
1
-

?/;3 w2
- w4 z

1

4. Shew that the constants in the transformation w= (az + b)/(cz+ d) can

be so chosen that three arbitrary points wlt w^, and w3 correspond respectively

to three arbitrary points zlt z%, and z3 .

5. Find the bilinear transformation which makes the points a, 6, and c

in the z-plane correspond respectively to the points 0, 1, QO in the w-plane.

z a bc
A ns. w=-- T- .zc b-a

6. Find the bilinear transformation which makes the points 1, i,
- 1 in

the 2-plane correspond respectively to the points 0, 1, oo in the w-plane.

Shew that the area of the circle z\=l is represented in the w-plane by the

half-plane above the real axis. ATIS. w= i(z !)/(* + 1).

7. Prove that the relation w= (l+iz)/(i+z) transforms the part of the

real axis between z=l and z= 1 into a semi-circle connecting w=l and

w 1. Also find all the figures which, by successive applications of the

relation, can be obtained from the originally selected part of the #-axis.

8. Let w=*J(2 2z+ &2
'),
and let z describe a circle of centre z= l + i and

radius \/2 in the positive direction. If z starts from O with the value \/2 of

u\ what are the values of w

(i) when z returns to O
;

(ii) when z crosses the ^/-axis ?

Ans. (i)
- V2 ; (ii) V20 { cos (3:r/8 + A/2)+ i sin (3;r/8 + A/2) } ,

where A is

the angle in the second quadrant for which tan A= -3.

9. Let w= N/(5
- 2z+ 22), and let z describe a circle of centre 3= 1 + 2*' and

radius 2 in the positive direction. If z starts from the point + 1 with the

value +2 of w, find the values of w at the first and second crossings of the

^-axis.

Ans. (i) \/2t/(20+ 8\/3){cos(7r/3 + a./2) + isin(Tr/3 + ./2)}, where a. is the

angle in the second quadrant for which tan a.= 4 \/3 ;

(ii) \/2^(20-8\/3){cos(27r/3 + ^/2)+ isin (27r/3 + ^/2)}, where /3 is

the angle in the second quadrant for which tan (3= -4+ >/3.

10. If vP=z+l, shew that, when the point z describes the circle |l=c,
each of the points w describes the Cassinian ?v*.2

=
c, where r

t
and r

2
are the

distances of w from the points +1 and - 1.

11. Shew that the equation 2^+2+ 1 = has one root in each quadrant,

and that the root belonging to the first quadrant lies outside the circle
!
z

\

1

and inside the circle
|

z
\

= 2.

12. Shew that the root of z*+ z+ l =0 belonging to the first quadrant lies

inside the square whose sides are ^= 0, x\, y= 0, and y= l.

13. Shew that the equation 24+ 4(l + i>+l = has one root in each

quadrant.
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14. Shew that two of the roots of the equation z5 -z+ l6=0 have their

real parts positive, and three their real parts negative. Also shew that all

five roots lie outside the circle |^|
= 1 and inside the circle |z|

= 2.

15. Shew that the only root of z+ 1021=0 inside the circle z\
= l is

real and positive.

16. Prove that z^ + lOz- 1 = has no root the modulus of which exceeds 2.

17. If w= { (2 + i)z+ (3 + 4i) }/*, shew that :

(i) as (x, y) describes the circle x2
+y^= l positively, the point (u, v)

describes the circle (w-2)
2+ (v-l)

2= 25 negatively ;

(ii) as (#, y) describes the circle sfi+y
2

4. Qy 12=0 positively, the

point (u, v) describes the circle (i*-l/2)
2
-f (v-13/12)

2
=(25/12)

2

negatively.

18. Apply the transformation w= l/z, (i) to the set of straight lines

through the point (a, 0), and (ii) to the set of circles with this point as

centre : and shew that the set (i) is transformed into a set of coaxal circles

through the points w=0, w= l/, while the set (ii) is transformed into a set

of coaxal circles, of which these two points are the limiting points.
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CHAPTER III.

HOLOMOKPHIC FUNCTIONS.

11. Limits. A single-valued function f(z) is said to tend to

the limit L as z tends to the value z
l if, corresponding to any

assigned positive quantity e, however small, a positive quantity

v\
can be found such that \f(z) L|<e for all values of z (except

Zj) which satisfy the inequality |

z z
l |
< 77.

For brevity we write

I

L

This condition can be represented geometrically as follows : if y (Fig. 19)

be a circle in the w-plane of centre L and assigned radius e, a positive

z -
plane

YI
LU - plane

X

FIG. 19.

quantity 77 can be found such that, so long as z remains inside the circle C
in the 2-plane of centre z

l
and radius

77,
the corresponding point f(z) in the

w-plane will remain inside y.

The limit L is clearly independent of the path by which z

approaches zr
The limit L has not necessarily the same value as /(^) : for,

consistently with the definitions of 7, any arbitrary value can be

assigned to the function at the point zr

Limit at Infinity. If, corresponding to any positive quantity

e, however small, a positive number N can be found such that



11, 12] LIMITS AND CONTINUITY 23

|/(0) L <e for |#|>N,/() is said to tend to the limit L as z

tends to infinity : that is, Lim f(z)
= L.

Example. Lim 1 jz
= 0.

z >oo

Infinite Limits. If, corresponding to any positive number N,

however large, a positive number ^ cato be found such that

\f(z) |> N for z
l |< //, /(s) is said to/tend to the limit infinity

as z tends to zr

Example. Liml/0=co.

The branches of multiple-valued functions generally tend to

different limits as z tends to r
If the limit L is a function L^) of z

lt
and if an

rj
can be

found such that, for all points z^ in a given region, \f(z) L(01 )| <[ e

provided |

z z
l \
< /, /(z) is said to tend uniformly to the limit

L(01 )
in the region.

12. Continuity. The function f(z) is said to be continuous

at z
1
if /(^) has a definite value, and if Lim f(z) = f(z^).

If f(z^) is infinite, f(z) has not a definite value, and is therefore

discontinuous at the point z
:

.

The condition for continuity can be expressed as follows: if,

corresponding to any e* an 77* can be found such that
/-e for

/(z) is continuous at zr
A function is continuous in a region, if it is continuous at all

points of the region.

If f(z) has a definite limit at z
l
different from /(%), f(z) is said

to have a Removable Discontinuity at zlt and the function can

be made continuous by replacing the value at z
l by the limit at

that point.

To investigate the continuity of a function at infinity, put
=

!/ and test for f=0.

THEOREM 1. The sum of a finite number of continuous

functions is a continuous function.

* In this book e will usually be understood to represent an arbitrarily small

positive quantity, and T? a positive quantity.
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THEOREM 2. The product of a finite number of continuous

functions is a continuous function.

THEOREM 3. The ratio of two continuous functions is

continuous except for values of z which make the divisor

zero.

The verification of these three theorems is left to the reader.

The proofs are almost identical with those for functions of a real

variable.

THEOREM 4. If f(z) is continuous and has the value I at zlf

and if
<j>(z) is continuous at I, <f>{f(z)} is continuous at zr

For, \f(z) l <, if
\

z zi\<^*i', and e can be chosen so that

>
if |f-J|O. Now let g=f(z); then

provided |

z z
l |< >/.

Hence [f(z)} is continuous at z = zv

THEOREM 5. The real and imaginary parts of continuous

functions are continuous functions.

For, if w= u+ iv is continuous at z = z
lt and if its value at

that point is w
1
= u

l+ iv
l ,

an
r\

can be found such that, for

Thus J{(u>-u1y
t+(v-vl)*\<e',

so that
|

u u^ |
< e,

|

v v
l |
< e.

Hence u and v are continuous functions at z zv

13. Uniform Continuity. A function f(z) is said to be

Uniformly Continuous in a given region, if, corresponding to

any e, an
17
can be found such that, for every point z

l
in the

region, \f(z) f(zj |
< e, when \z %]<;; i.e. if /(0) tends

uniformly to /(%) in the region.

THEOREM. If f(z) is continuous in a given region, it is uni-

formly continuous in that region.

The proof of this theorem depends on the following Lemma :

Lemma. If \f(z)-/K) |< e for \z-zl \<rj, then

l/<X>-M)l<2e for |*-*2 |<J*
where 2

^8 any point interior to the circle \z z
l
= | y.
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Let G! (Fig. 20) and C2
be the circles \z

- z
l
=

>/
and

Then, if z and z
2
lie within Cv

!/(*)-M) I

=
!/(*)-M)+M)-/W I

But if z9 be restricted to lie within C
2 , every point z such that

^ J>; will lie within Cr Hence the Lemma holds.

Fir,. 20.

Now suppose that f(z) is not uniformly continuous in a region

within which it is continuous. Divide the region into smaller

regions by means of sets of equidistant lines parallel to the two

axes. In one, at least, of these smaller regions f(z) is not uni-

formly continuous. Divide this smaller region into still smaller

regions in the same way as before. In at least one of these

regions f(z) is not uniformly continuous. By continuing this

process a series of rectangular regions is obtained, each of which

is contained in the preceding one, and is a region of non-uniform

continuity. Now let z^ be a point interior to all the regions of

this series; then, since f(z) is continuous at z
l ,
an ^ can be found

such that |/(0) /(%)(< e/2, provided \z z^\<r\. Hence, by
the Lemma above, \f(z)f(zz ) <e for

interior to the circle I z

], where z.2
is

\
^rj\ so that this circle is a region

of uniform continuity of the function. But if the subdivision of

the given region be continued till a region of the series obtained

above is reached which lies entirely within this circle, this

rectangle is a region of non-uniform continuity for/(z). Also,

since the rectangle lies within the circle, it is a region of uniform

continuity for f(z). Thus two mutually contradictory results

are obtained. Hence f(z) must be uniformly continuous in the

given region.
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Functions of Two Real Variables. A function u(x, y) of x

and y is said to be uniformly continuous in a given region if,

corresponding to any e, an
tj
can be found such that, for every

point (x, y) in the region,

\u(x+ Ax, y+ Ay)-u(x, y)\<e,

provided Ax
\
< 17,

| Ay |
< r\.

A function u(x, y) which is con-

tinuous in a given region is also uniformly continuous in the

region. The proof of this theorem is left as an exercise, to the

reader.

Again, let the continuous function u(x, y) have continuous

partial derivatives of the first order in the region. Then, if

+ Ay) u(x, y),

u(x, y+ Ay)}

{u(x, y+ Ay)-u(x, y)}
~\ r-\

u(x + O^x, y+ Ay) + Ay O, y+ 2Ay),

where 0<01<1, 0<02<1.

Now and are con

therefore, from the property of uniform convergence,

Now and are continuous in the given region, and

where a |< e,
| /3 |< e, provided |

Aa5 1< 17,
| Ay |< jy.

Hence Ait =
ox

where a and ft tend uniformly to zero with AOJ and Ay at all

'points in the given region.

14. Differentiation. The Derivative of any function f(z\
obtained by applying a finite number of the algebraical operations
considered in 4, 5, and 6 to z in succession, is

These limits are obtained by the same rules as when the

independent variable is real. It is important to notice that the

value of the derivative is independent of the amplitude of Az.
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Example 1. Prove
-^-

=M2li~1

, (i) for a positive integer, and (ii) for n a

negative integer.

Example 2. Prove -j- = nzn
~ l for TI a positive fraction.

Let n=p/q, where p and q are positive integers ; then, if

z= r(cos + i sin 6),

~
/ + 2rt?7r . . i/ -r ^-"-

\ i2=r(cos hesm
1,

where &= 0, 1,2, ...,^-1.

Now let i=zll
,
where f represents the branch of zl/* corresponding to one

particular -value of k.

Then, if the increment Az of z correspond to the increment Af of
,

Hence
dz qf9-i q q

where the same value of zl/<Jt is taken on both sides of the equation.

Example 3. Prove -j- = nzn
~l for n a negative fraction.

15. Holomorphic Functions. Any function of x and y can

be regarded, according to the definition of 7, as a function of z :

for if z be given, the corresponding values of x and y are known,
and therefore the corresponding values of the function can be

found. For example, one value of x iy or of x2
y
2
corresponds

to every value of z. But these functions cannot be expressed in

terms of z, and it is much more satisfactory to regard them as

functions of the two independent variables x .and y.

Let w= u+ iv, where u and v are real functions of x and y.

Then, if z' = x iy, x = (z-\-z
f

)j% and y = (z z')/2i; so that u and

v can be regarded as functions of the independent variables z

and z'. Hence, if u and v are continuous functions
%

of x and y
with continuous partial derivatives, the condition that w should

be independent of z is

'du'dx
, c. .'dv?>x .'dv 3

or _ _ -_ -cto J__+1 %7 ~

and this is equivalent to the two equations

'du'dv ?>u cw
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Thus, if u and v are continuous, and possess continuous partial

derivatives which satisfy equations (A), w is a function of x and

y in which x and y occur only in the combination x-\-iy z\ it

may therefore be expected that the function w, like the functions

considered in 14, will have a derivative which does not depend
at all on the way in which Ax and Ay tend to zero, i.e. which

does not depend upon -f-.
It will be shewn in the following

doc

theorem that this is the case.

THEOREM. If iu = u+ iv, where u and v are uniform con-

tinuous functions which possess continuous partial derivatives,

the necessary and sufficient condition that w should possess a

definite continuous derivative is that these partial derivatives

should satisfy equations (A).

Let the increments Alt', Au, Av ,
and Az, of w, u, v, and z,

correspond to the increments Ax and Ay of x and y. Then

Aw_ Au+ iAv

Az
~
Ax -\-iAy

Ax+ i Ay

where a, /3, a', /3',
tend uniformly to zero with Ax and Ay. Thus

div r . Aw
-T-=Lim-: = ,

dz A2_>0 Az -, , .ay
J-

|
t/ 7

eta;

Hence the necessary and sufficient condition that
-^-.

should be
7 3

CtlJ

independent of -r- is

'du . *dv _ 1 /du

which is equivalent to equations (A).
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div 'dw 1 'dw
COROLLARY 1. -?-==*--dz ?)x i 3y

COROLLARY 2. Since the partial derivatives of u and v are

continuous, -j- is also continuous.
az

Definition. If a function is uniform and continuous, and

possesses a definite continuous derivative at any point, it is said

to be Holomorphic
* at the point.

A function is said to be Holomorphic in a given region, if it is

holomorphic at all points of the region.

Equations (A), expressed in terms of polar coordinates, become

, ,.

and the derivative is then obtained as follows :

dw c)w 'dw "dr 'dw W

sin= cos r +ir
or \ or or./ r

/ A ' ^W= (cos 6 i sm 6)
Ôi

Example 1. Shew that the function e
x
(cosy+ i sin?/) is holomorphic, and

find its derivative. Ans. e
x
(cos

Example 2. Shew that logr+ i'# is holomorphic unless r=0, and find its

derivative. A ns. (cos 6 - i sin Q)/r.

Note. From the definition of a derivative the rules for

differentiating products and quotients follow as in the case of

the real variable.

THEOREM. If f(z) is holomorphic in a given region, then, for

all points z
l
in the region,

where A tends uniformly to zero as z tends to zr
The proof of this theorem is left as an exercise to the reader.

*The words Regular and Analytic are used by some writers instead of Holo-

morphic. The sense in which we shall use the word Analytic will be explained
in Chapter XII. 82.
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COROLLARY. If f(z) and
<f>(z) are holomorphic, and if f(zj = 0,

and 4>(zl )
= (\ while ^'(

Function of a Function. If w=f(g) and =<f>(z) are holo-

morphic functions of and z respectively, w is a holomorphic
P (. dw dw d
tunction of z\ tor ^ = -T? -f-.dz dg dz

Simply-Connected Regions. If any two points in a region can

be connected by a curve which lies entirely within the region,

the region is said to be Connected. A connected region which is

such that any closed curve lying entirely within it can be con-

tracted to a point without passing out of the region is said to be

Simply-Connected. Connected regions which are not simply-

connected are said to be Multiply-Connected. The region

enclosed by the curve C
x (Fig. 21) is simply-connected, while

the region between the curves C
x
and C

2
is multiply- connected.

FIG. 21.

The branches of multiple-valued functions can be treated as

uniform functions in simply-connected regions which do not

enclose any branch-points. No path in such a region can enclose

a branch-point ;
so that, after describing a closed path, the

function regains its initial value. For example,-each branch of

w= \/0 is holomorphic in the simply-connected region obtained by

making the negative real axis a barrier which z cannot pass.

Such a barrier is called a Cross-cut. The derivative l/(2/s), of

course, takes the value corresponding to the value of *Jz under

consideration.

Inverse Functions. If w=f(z) is a holomorphic function such

that w=w
l corresponds to z = z

l3
'z can be regarded as a function

of w with z
l corresponding to w

l
: if this function is uniform

and continuous in a region of the w-plane which encloses w
lt
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then, since -y I -, -, it is a holomorphic function of w at all
dw

I
dz ,

points of the region except those for which
-y

= 0. This

function is called the Inverse Function of f(z).

Example 1. If w= 2
,
there corresponds to any value z

l
of z one value

w
1
of w: conversely, one of the branches of z= *Jw gives the value z

l
of z

corresponding to w= iv
l

. Now the only value of w for which -^-=0 is w= 0.

Hence, if u\ + 0, w can be enclosed in a region in which the branch is

holoraorphic, and therefore z= <Jw is the inverse function of w=z2
.

Example 2. For what values of z do the functions w defined by the

following equations cease to be holomorphic ?

(1) 2= e"(cos v + i sin v) ;

(2) z = log p + i(f>,
where w= p(cos( + isin

</>).

Jws. (1)
=

; (2) None.

Laplace's Equation. It will be proved later (35) that if

w = u-\- iv is a holomorphic function, w, u, and v have continuous

derivatives of the second and higher orders. The reader can

easily verify that u and v both satisfy Laplace's Equation

The solutions of this equation are called Harmonic Functions,

and are of great importance in Mathematical Physics.

It follows that, if a function u or v is given, a corresponding

holomorphic function w will not exist unless the given function

is harmonic. If, however, this condition is fulfilled, the function

w can be found by means of equations (A) : for example, if u is

a uniform continuous function which satisfies Laplace's Equation,

, 'dv .'dv -.

is a complete differential, and v can therefore be found.

Example. Shew that u=xz
3^/

2+ 3.ii2 3?/
2 +l is a harmonic function,

and find the corresponding holomorphic function.

A us. z* + 322 + 1 + ^C, where C is a real constant.

Conjugate, Functions. If u+ iv is holomorphic, u and v are

called Conjugate Functions. These functions possess two im-

portant properties : firstly, they satisfy Laplace's Equation ;
and

secondly, the curves u = c
l ,

v = c
2 ,

where c and c., are arbitrary

constants, intersect at right angles, since the product of their
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,. , . . mi. p

gradients ( ~) and
(

-
/ )

is 1. The systems of
\dxj?iy/ \dxjcyy

curves obtained by varying the constants c
x
and c

2
are called

Orthogonal Systems.

Example. Picture on a diagram the orthogonal systems given by

16. The Exponential Function. The function u+iv, where

u+ iv = ex(cos y+ i sin y)

is holomorphic for all finite values of z, since u, v satisfy

equations (A), 15. When y is zero, the function becomes the

ordinary exponential function ex : it is therefore regarded as

the extension of ex to the domain of the complex variable, and

is denoted by fcxp (z). Obviously

Again, since

i sin y) x ex
'

(cos y'+ i sin y')

exp (z) x exp (Y)
= exp (z + z).

Hence exp (z) x exp ( z) = exp (0) = 1
;

so that exp ( z)
= 1/exp (z).

Thus, exp(z) satisfies the index laws. It is often found

convenient to write ez for exp (3): in particular, eiy stands for

cos y+ i sin y.

Derivative,
-j- (expz)= {e

x
(cosy+ i sin y)} = exp z,

az ox

*W
dz

Periodicity. Since cos y and sin y have the period 2?r, exp (z)

has the period Ziir : i.e.

ez+2kin= gz(cos 2/C7T+ i sin 2/c?r)
= ez

,

where k is any integer.

Zeros and Infinities. Since ez ex
,

ez can only have zero

and infinite values when ex is zero or infinite. But ex is only
zero when x ~ oo

,
and only infinite when x = + oo . The

Exponential Function is therefore finite and non-zero if x is

finite.

Example. Shew that every period of exp (z) must be an integral multiple
of Ziir.
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17. The Circular Functions. Since eix = cosx+ ismx and

g
- = cos x i sin x,

eixt e -ix eix_ e -ix

cos x ~ , sin 0;= ^- .

2 2t

These functions can therefore be extended to the domain of

the complex variable by means of the equations

COS2= 77 , Sin 5= =-: ,
*

2i\>

which define them as holomorphic functions.
r

riie following well-known formulae can be derived from these

definitions :

sm22+cos2 2= l
;

sin (2^+ 2
2)
= sin z

1
cos 2

2+ cos z
l
sin 2

2 ;

008(0!+ z
2)
= cos z

l
cos z2 sin z

l
sin z

2 ;

d sin z d cos z

.]

= cos z
5

j
= sin z

;

sin( z}= sin z\ cos( z)
= cosz.

Note. If /( z)= f(z) for all values of z for which f(z) is

defined, /() is said to be an odd function of z : if /( z) =f(z\

f(z) is an even function of z. Thus, sin z and cos z are odd and

even functions respectively.

Zeros. If sin 2 = 0,

where k is any integer ;
therefore is= iz+ Skirl.

Hence the values of z which make sin z zero are 0, TT, 2?r,

3-7r, ----

Similarly, since e- /z = e- l
'

s+<2*+ 1> ir

*, the values of z which make
cos z zero are given by z = (k+ J)TT, where k = 0, 1, 2, ____

The other circular functions are defined by means of sin z and

cos 2: e.g. tan = sin z/cos z. The inverse functions are written

sin" 1

s, tan" 1
^, etc.

The Hyperbolic Functions. These functions are defined by the

equations :

ez+ e~ z
. . ez e~ z sinh z

cosh z =
9 ;

smh z
^ > tanh 2 =

^
; etc.

A . , , .. . , .,

Example. Prove: ---.
= cosli2:; j =8inhz; cosh-i-sinli-r

dz <(~-

M.K.
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18. The Logarithmic Function. If y = ex
,
where x and y

are real, the inverse function is x = log y : for complex values of

the variables, the inverse of the Exponential Function is defined

as follows :

'^j

Let z = r*(co8 + i sin 9) = exp (w) = e"(cos v+ i sin v}.

Then e
1*= r, so that i&= log r and v = + 2&7T, where & is any

integer. Hence the inverse function is

where may have an infinite number of values differing by

multiples of 2-Tr. This function is denoted by Log z.

If z passes round the origin once in the positive direction,

increases by 2?r and Log z by 2i?r. The origin is therefore a

branch-point of Log z. Each of the infinite number of branches

of Log z is uniform and continuous in the simply-connected region

formed by taking a cross-cut along the negative real axis; and

therefore, since it satisfies equations (A') of 15, it is holo-

morphic in that region. That branch for which TT < 5: + TT

is denoted by log z
;
for positive real values of z this branch is

the ordinary Naperian logarithm.

Zeros and Infinities. Since log r is infinite when r is zero or

infinite, Log z has infinities at the origin and infinity. Log z is

only zero when both log?
1 and are zero

;
i.e. when 0=1.

Derivative. ogg = e -**
j- (logr+ ifl)

= J
d* arV ?K

^.WV
Example. Shew that Logos')= log z+ log /+ 2fe'.

1 g*>_ ~
!'"'

Function tan~ l
z. If = tan w = - -.- -.

,
then

^ e
lw+e~ M

so that w = s~. Log f,
where f= Now Log f is uniform if a

2i \%z
cross-cut is taken in the f-plane* along the negative real axis.

But the transformation =(l + iz)l(Iiz) is bilinear, so that

one point in the -plane corresponds to each point in the s-plane,

*The notation ^=^+ ir] is adopted ; , rj, f, then correspond to x, y, z.
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and conversely. Accordingly, if a cross-cut be taken in the

0-plane corresponding to the cross-cut in the -plane, the function

Log f will be uniform in the s-plane. Now, since

to the part of the -axis between and 1 corresponds the

2/-axis from i to +ix> ,
while to the ^-axis from 1 to oo

corresponds the 2/-axis from ice to i. Hence, if a cross-cut

is taken along these parts of the y-axis, the function

tan~ 1 =^

is uniform throughout the 3-plane. That branch which has the

value zero when = is the Principal Value, and is equal to

-r--- -; its real part lies between Tr/2 and
-rr/2, while---r-

1 ~~%'Z/

its imaginary part varies from oo to + x . For any other branch

1 . l

where in is an integer.

It follows that

d
2, and that

1

19. The Transformation w = Log z. Since u = log r, to circles

run^tt.int in the 0-plane correspond lines u = constant in the

z - plane
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To the origin and infinity in the z-plane correspond u oo

and u= -h oo in the w-plane.

Again, since v= 6, to the rays = constant in the s-plane

correspond the lines v = in the w-plane ;
so that, if a cross-cut

be taken in the 0-plane along the negative #-axis, the entire

s-plane is represented by that part of the w-plane which lies

between the lines v= TT and v = + TT. If now the cross-cut be

removed, and 6 increase from -w to STT, the entire 0-plane corre-

sponds to the strip of the w-plane which lies between the lines

v= TT and v= STT. Similarly the entire w-plane can be divided

into strips of breadth STT, on each of which the entire z-plane is

represented. Points in these strips which correspond to the same

point in the -plane lie on the same parallel to the r-axis, at

distances 2?r from each other. To each point in the i^-plane,

however, corresponds only one point in the 2-plane, since

exp (w) is a uniform function of w. Each strip of the w-plane

represents one of the branches of w, the boundary in each case

being assigned to the strip below it.

Example. Shew that, for all values of m,

-

provided K( > 0.

20. The Generalised Power. Up to this point zn has only

been defined for rational values of n ( 5, 6). We are now in a

position to define it for all values of n, rational or irrational, real

or complex.
If w Log 0, then z= exp (w) ;

hence

z = exp (Log 0)= exp (log z+ 2&7ri),

where k is any integer. Accordingly, for all values of n, we

^define zn by means of the equation
zn= exp (n log z+ ZnltTri).

COROLLARY 1. If n is an integer, zn lias only one value,

exp (n log z), (cf . 5).

COROLLARY 2. If n is a fraction pjq (q positive), zn lias q

values given by

exp ( log z]e**, where k = 0, 1, 2, . . .
, q
- 1 .

^\q
The reader can easily verify that this agrees with the results

of 6.
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COROLLARY 3. If n is irrational or imaginary, zn has an

infinity of values.

Example 1. Prove -i-=nzn
-1 for all values of n, where the same value

of z
n

is taken on both sides of the equation.

Example 2. Shew that, for all finite values of rx,

; >

where s tends to infinity in any direction whatever.

We have (15, Cor., p. 30)

so that, if = l/, Lim 2 log(l + OL/S)
= ou

2->OC

Thus, since the exponential function is continuous ( 12, Th. 4),

Lira (1 + -Y=Lim e*
l<* < 1+a'2 > = e.

2_>oo \ Z J z_>.x

See also Examples III. 13, 14, 15.

21. Conformal Representation. Let w be a holomorphic
function of 0; then, if the points w t

wlt W2 (Fig. 23), in the

w-plane correspond to the points z, z
l}

z
2 ,

in the z-plane,

T . w,w dw r .

Lim = ^-
2l^2 z^-z dz

T . w
2
w T . 0.2

z
or Lim = Lim .

w
l
w z

l
z

Hence, if the two triangles of vertices w, wlt
w

2 ,
and z, z

lt 0.
2 ,

w - plane z -plane

FIG. '23.

are infinitesimally small, they are directly similar. Also, since,

to the first order of infinitesimals,

x dw ,

(wl-w)= dz (zr -z\

the first triangle can be obtained from the second by turning it

through an angle amp (dw/dz) and magnifying it in the ratio
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\dw/dz\. It follows that two intersecting curves in the 0-plaiie
are represented in the w-plane by curves which intersect at the

same angle.

Each plane is said to be represented Conformally on the other.

Examples of Conformal Representation have been given in

9 and 19. The representation breaks down if
-^-

is either

zero or infinite.

Example. Deduce, from the principle of Conformal Representation, the

theorem that the curves u= constant, v= constant, intersect at right angles,
where u and v are Conjugate Functions.

22. Singular Points. A point at which a function ceases to

be holomorphic is called a Singular or Critical Point, or a

Singularity of the function. For example, 2 = is a singularity
of 1/z.

If a circle can be drawn with the singular point as centre, so

as to enclose no other singularity of the function, the singularity
is said to be Isolated. The function I/sin (1/z) has a non-isolated

singularity at z = Q: for, since sin(l/0) is zero for z = l/(Jc7r),

where k is any integer, it is impossible to surround the origin
with a circle which does not contain an infinite number of these

points.

A point which can be made the centre of a circle enclosing no

singularity is called an Ordinary Point. If the radius of the

circle is equal to the distance of the point from the nearest

singularity, the interior of the circle is called the Domain of the

point.

Poles. If Lim (z z^)
n
f(z)= C, where C is a non-zero constant

n a positive integer, z
1
is said to be a Pole of f(z) of order

n, and f(z) </>(z)/(z Zi)
n

,
where

<f>(z) is holomorphic at sr If

n = l, z
l

is a Simple Pole of f(z). For example, l/z
n has a

pole of order n at z= 0.

Example. The function I/sin (B ZI) has a simple pole at z
l

: for ( 15)

Lim ! (z -,) 7
M
tJ- s=H-7

-it =1.^V "sm (*-*,)/ \cos(* -*!)/,

The function f(z) will have a singularity at infinity if =0 is

a singularity of /(1/f). For example, az2+bz+ c has a pole of
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the second order at infinity. If infinity is an isolated singularity
of f(z), f=0 will be an isolated singularity of /(1/f), and a circle

If |

= e can be drawn to enclose no singularity of /(1/f) except

f=0. Hence a circle \z =l/e can be drawn which will have

within it every singularity of f(z) except infinity.

Meromorphic Functions. A function which is holomorphic

throughout a region except at isolated poles is said to be Mero-

morphic in that region.

Essential Singularities. If no value of n can be found such that

Lim( z
l )
n
f(z) = C, then z

l
is said to be an Essential Singularity

of f(z). Poles are Non-Essential Singularities.

Example. The function e
1

-'-' has an essential singularity at 2= 0.

Branch-Points. The branch-points of multiple-valued func-

tions are Singular Points : for example, z = Q is a singularity
of Log z.

Zeros. If f(z) = (z z
l )
n
(^(z\ where n is a positive integer and

</>(z)
is holomorphic and non-zero at z

l}
then z is said to be a Zero

of f(z) of order n
;
a zero of order 1 is also called a Simple Zero.

If z
l
is a zero of f(z) of order n

t
it is a pole of l//(z) of order n.

THEOREM 1. A pole is an isolated singularity.
If z

l
is a pole of f(z) of order n, the function (z z

l )
n
f(z) is

holomorphic at z
l ; consequently, if C is its value at that point,

an
r\

can be found such that \(z z
l )
n
f(z) C\<^e ) provided

|

z z^ I < r\. Hence f(z) must be finite at all points except z
l
in

the circle z z
l \

=
>/, so that the singularity is isolated.

COROLLARY 1. The zeros of f(z) must also be isolated, or the

function ~L/f(z) would have non-isolated poles.

COROLLARY 2. If infinity is a pole of f(z), a circle can be

drawn which encloses all the singularities of f(z) except infinity.

THEOREM 2. No region can contain an infinite number of

isolated singularities.

Let a given region contain only isolated singularities, and let

it be divided up as in 13. If there is an infinite number of

singularities in the region, one at least of the divisions must
contain an infinite number of singularities, and by continuing the

process of subdivision a point can be found such that, in every
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neighbourhood of it, there is an infinite number of singular

points, i.e. it is a non-isolated singularity, which is contrary to

hypothesis.

COROLLARY. If a function is meromorphic throughout the

plane, and has an ordinary point or a pole at infinity, it follows

(Th. 1, Cor. 2) that it has only a finite number of singularities.

EXAMPLES III.

1. Shew that l/{(z a)(z b)(z c)} is holomorphic except at
, &, and c.

2. Shew that the following functions are holomorphic, and find their

derivatives :

(i) e~y (cos#+isin#). Ans. ie~y (cos x+ i sin x).

(ii) cosh # cosy+ ^sinh#siny. Ans. sinh x cosy+ i cosh x sin y.

(iii) sin # coshy+ i' cos #sinhy. Ans. cos # coshy z'sin^sinli?/.

(iv) cos x coshy i sin x sinh y. Ans. sin x cosh y i cos x sinh y.

3. If n is real, shew that rn (cosnd+ isinn@) is holomorphic except

possibly when r=0, and that its derivative is nr-1
(cos n - 1 d+ i sin n - 1 0).

4. For what values of z do the functions w defined by the following

equations cease to be holomorphic 1

(i) z=e~ v
(cosu+ isinu). Ans. 2= 0.

(ii) z sinh u cos v+ i cosh u sin r. Ans. z i.

(iii) 2= sin % cosh v+ i cos w sinh v. Ans. z= 1.

5. If
<f>

and
T/T are functions of x and y satisfying Laplace's Equation,

shew that s+it is holomorphic, where * a
?
B *5~ o^ an(i ^ ==:^T^"^^'

6. Shew that w= e* (# cosy -y sin y) is a harmonic function, and find the

corresponding holomorphic function. Ans. ze*+ iC.

7. If w=z2
,
shew that the curves u= clt v= c2 ,

are rectangular hyper-

bolas, and represent them on a diagram for different values of c and c2 .

8. If z = sin u cosh v+ i cos u sinh v, picture on a diagram the orthogonal

systems uc^ v= c2 . Shew that the first system consists of confocal

hyperbolas, and the second of confocal ellipses.

9. Shew that, (i) sin iz= i sinh z, (ii) cos iz= cosh z.

10. Prove (i) sin (z1 izz)
= siuz

l
cosh z

2
i cos

z^^
sinh z.2 ,

(ii) cos (zl
iz2)

= cos z\ cosh z.2 T i sin 2
X
sinh z.

2
.

11. Prove (i) |

sin (x ty) |

=
*J (sin

2 #+ sinh2
y}= cosh y

(ii) |

cos (# + ^y) |

= x/(cos
2 x -\- sinh2

y} cosh y
Sij sinhy |.

12. Prove Log (
- 1 )

=
(2^-+ 1 ) TT/, where -1 is any integer.

13. If w is real and z = re
ie

,
shew that 2

n = r" e
ni^+2{'n

\ where rn is real

and positive.
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14. Shew that z
n
z
n = z" +n

'

for all values of n and ri, where suitable

branches of the functions are taken.

15. Shew that (z
n
)
n '

=znn> for all values of n and ri, where suitable branches

of the functions are taken.

16. If w={(z-c)/(z+ c)}
2
,
where c is real and positive, find the 'areas of

the 2-plane of which the upper half of the w-plane is the conformal

representation.

Ans. (i) The lower half of the circle \z =c
; (ii) that part of the plane

above the #-axis which is exterior to the circle
|

z
\

= c.

17. If 10= -iccot(zf2\ shew that the infinite rectangle bounded by #=0,
#= TT, #=0, #= 00, on the 2-plane is conformally represented on a quarter of

the w-plane.

18. Shew that infinity is a simple zero of (az
2+ bz+ c)/(lz

3+ mz2
+nz+p).

19. Shew that the ratio of two polynomials is a meromorphic function.

20. Shew that sees, cosec?, taii, and cot?; are meromorphic in the

finite part of the plane.

21. If w= sin-1 2, shew that w= /nr :Fi Log {1^+ ^(1 -z2
)} according as the

integer k is even or odd, a cross-cut being taken along the real axis from

1 to oo and from - x to -1 to ensure that Log{?^-f x/(l -z2
)\ should be

uniform.

Deduce that 7
- sin"1 z= --j-

-^ ,

dz V(l-s-)

where the branch of
-j-
- is chosen which corresponds with the branch

of sin-1
.* under consideration.

22. Prove (i) Ljm-*i; (ii) Lta = - 2 ;

z-n (-1)" ,

(in) Lim --=
,
where n is an integer ;'

x T . tan A: .

(iv) Lim -= A.
c-0 -

23. Shew that all the values of i
l are given by g-O^+iJ*, where / is any

integer.

24. If w=\jz, shew that the curves it = c
lt v = ct ,

are orthogonal circles

which pass through the origin, and have their centres on the ?/-axis and
^r-axis respectively.
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CHAPTER IV.

INTEGRATION.

23. Limit of a Sequence. Let z
lf

z
2 ,

z
s ,

... be an infinite

sequence of real or complex numbers; the sequence is said to

converge to a limit I if, corresponding to any assigned e, a

number m can be found such that zn < e, when n^ m.

If zn xn+ iyn a,udl = a+ ib, then \xn a < e and yn b <e;
hence it follows that the sequences xlt

x
2 ,

~x
s , ... and ylt y%, y3 , ...

converge to the limits a and b. Conversely, if these two

sequences tend to the limits a and 6, the ^-sequence tends to the

limit a+ib.

THEOREM. The necessary and sufficient condition that the

sequence should have a limit is that, corresponding to any e,

an n can be found such that zn+p zn \ < e, where p is any

positive integer.

This condition is necessary, for, if I be the limit,

It is also sufficient, for it involves the conditions

which determine the convergence of the x and y sequences.

Uniform Convergence of a Sequence. It may be that all the z's

are functions of a variable f : this is indicated by writing zn (g)

for zn . Then if, at all points f in a given region, the sequence

is convergent and has the limit (), and if an in can be found

such that, for all points within the region, ^n(D"~^(DI < e

when n^m, the sequence is said to converge uniformly within

that region.

24. Curvilinear Integrals. Before defining definite inte^

grals of functions of a complex variable, we shall define curvi-

linear integrals, and prove Green's Theorem.
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Consider a curve C (Fig. 24) joining two points A and B in

the (x, y) plane. This curve can be divided into segments AL,

LM, MN, . . .
,
such that, for each of these segments, only one

value of y corresponds to each value of x
;
and thus in each

segment y is a uniform continuous function of x. Denote these

functions by ^(x), <f>z (x), $%(%),

Now let f(x, y) be a uniform continuous function of x and y
in a region of the plane containing the path C. Then the

FIG. 24.

functions f{x, ^(x)}, f{x, <j>2 (x)}, f{x, </>B (x)}, ..., are uniform

continuous functions of x on the arcs AL, LM, MN, ...
, respec-

tively, and the integrals

fl

Cm Cn

f{x, ^(x)} dx, f{x, </>2(x)} dx, f{x, </>B(x)} dx, . . .
,

a J I J m

where a, I, in, ... t b, are the abscissae of A, L, M, . . .
, B, are

ordinary definite integrals. They are the Curvilinear Integrals

J A
M y) dx,

J ^
f(x, y) dx,

jjffa
y)dx, ...

,

and their sum is the Curvilinear Integral

\
f(x, y)dx.

Jc

Similarly, by dividing C into segments in each of which x is

a uniform function of y, we can define the curvilinear integral

I \lr(x, y) dy. By combining these a third type of curvilinear

is obtained.
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COROLLARY 1. If x and y are uniform functions of a para-
meter t, the integral becomes

where t
Q
and t

t correspond to the initial and final points of C.

COROLLARY 2. If x and y are uniform functions of f and q,

and if the curve T in the ( rf) plane corresponds to the curve C
in the (x, y) plane,

COROLLARY 3. If C be divided into n segments by points

(x^ y^\ (x2 , y2),
...

, (xn+1 ,yn+1 ),
taken in order on the curve, where

(a?!, T/J)
and (ajn+1 , 2/n+i) are the points A and B, and if (, i^),

(2* %)' (f> tfnX are points taken at random on these seg-

ments, the sum

tends to the limit f {/(aj, y)dx+\js(x, y)dy} when the law of
Jc

division is made to vary in such a way that n tends to infinity

and the greatest of the segments tends to zero.

COROLLARY 4.

f {f(v,y)dx+ ^(x) y)dy}=-[ {f(x, y)dx+ ^(x, y)dy}.
J BA J AB

COROLLARY 5. If K is any point on C,

f {f(x, y)dx+\f,(x, y)dy} = \ {f(x, y)da+^(x, y)dy}
J AB J AK

>, y)dx+\Is(x, y)dy}.

COROLLARY 6. If C is a closed curve, the value of the integral

is independent of the position of the initial point, but its sign

depends on the direction in which the curve is described.

Differentiation under the Integral Sign. If f(x, y, a) and

-
f(x, y, a) are continuous functions of x and y on the curve C,

eta.
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and of the real parameter oc between assigned limits for oc, and if

1

J

= 1 f(x, y, CL)dx, then
<J>(OL)

has a derivative given by
c

For

= {/(# y> a+Ao.) f(x, y, a.)}dx.
Jc

Now, for points on C, f(x, y, oc) is a function of two variables

x and oc
; hence ( 13)

f(x, y, oc+ Aoc)=/(a, y , oc) +
|^/(^,

2/, aj

where A tends uniformly to zero with Aoc.

Therefore

Aoc,

and the latter expression tends to zero with Aoc.

Thus 0(oc) has a derivative, given by

25. Green's Theorem. This theorem gives an important
relation between a double integral and a curvilinear integral.

Let the functions P(#, y) and Q(&, y) be uniform and con-

tinuous, and possess continuous partial derivatives, in a simply-

.V

Fio. 25.

X X

connected region containing a closed curve C. Consider the

taken over the simply-connected area enclosed by G.

Assume in the first place that C (Fig. 25) is a curve such that
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no line parallel to either of the axes cuts it in more than two

points.

Let yl
and y2 (y%^ y{)

be the values of y on C corresponding
to any value of x, and let A and B be the points on C of

minimum and maximum abscissae x and X .

Then ~
If

dxdy= ~ft 7(x ' &>- p <*'

The latter expression is the sum of the two curvilinear integrals

-f P(x,y)dx, \ P(x,y)dx;
J AQB J APB

and therefore, since I P(x, y) dx =\ P(x, y) dx,
J AQB J BQA

~
J J ^ dX dy =

J c
P (X ' y) dX)

the integral being taken round C in the positive direction.

Similarly
J J ^ dx dy = \ Q (x, y) dy.

Hence Green's Theorem,

holds for the region considered.

Next, if C does not satisfy the condition that no line parallel

to either of the axes cuts it in more than two points, the region
can be divided into regions each of which possesses this property.
For example, if in Fig. 26 the points A and B, at which the

YJ

o

FIG. 26.

tangents are parallel to the y-axis, are joined by a straight

line, the two regions so obtained are of the type required.
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Hence

f((-^+!
Q
)<fo%=( (Pdx+ Qdy)+\ (Pdx+ Qdy)

JJV ay ox/ JAQBA JABPA

=
{ (Pdx+ Qdy),.
Jc

since the sum of the integrals along AB and BA is zero.

Thus the theorem can be shewn to hold for all simply-connected

regions bounded by closed curves.

COROLLARY. The area of the region enclosed by C is given by

any of the three integrals

Multiply-Connected Regions. Consider the region between

the curves C and C' (Fig. 27). This region can be made simply-

FIG. 27.

connected by drawing a line LM from C to C'. Hence

=
\J

+ Qdy),
G J C'

where the latter integral is taken positively round C'.

Similarly, for the region between the curve C (Fig. 28) and
the ?i curves c

lt
c
2 ,

ca , ..., cn ,
it can be shewn that
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Example. If Pd.v+ Q,dy is a complete differential, she\y that

D
wlrere C is a closed curve.

, I

FIG. 28.

26. Definite Integrals. Let f(z) = u(x,y)+ iv(x,y) be a

uniform continuous function of z in a given region, and let ACB

(Fig. 29) be a curve in this region connecting the points z and z.

FIG. 29.

Let z
lt

z
z , ..., zn ,

be n points taken in order on this line, where

zn is z, and let fx , f2 , ..., fn be arbitrary points on the segments
SUm
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the real and imaginary parts be separated, we obtain

where =
Now if the law of division of the curve ACB varies so that

n tends to infinity and the greatest of the segments tends to

zero, this latter expression tends to the limit ( 24),

I (u dx v dy)+ i
\
(vdx+ udy),

J ACB J ACB

or I (u+iv)(dx+ idy).
JACB

This limiting value of Sn is called the integral of the function

f(z) taken along the curve ACB, and is written

JACB

COROLLARY 1. From the theory of limits it follows that,

corresponding to any e, an n can be found such that

COROLLARY 2. f f(z)dz= - { f(z)dz.
J BCA J ACB

COROLLARY 3. [ f(z)dz~\- \ f(z)dz= [ f(z)dz.
JAC JC'B JACB

COROLLARY 4. {fi(z)+A(z)+ ~-+fn(z)}dz

= f A(z)dz+ [ /()(&+...+[ f(z)dz.
JACB JACB JACB

COROLLARY 5. I kf(z)dz=1c\ f(z)dz, where A: is a constant.
JACB JACB

COROLLARY 6. I f(z)dz= \ /{0(f)} <}>'()d, where
J ACB J ayft

s a

holomorphic function of
f, and the path ACB in the 2-plane

corresponds to the path ocy/3 in the f-plane.
M.F. D
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For f(z)dz= I (u dx v dy) -f- i \(vdx+u dy)
J ACB J J

since z is a holomorphic function of

COROLLARY 7. The modulus of the integral is finite.

For, let M be the greatest value of \f(sm on ACB ; then, since

where I is the length of ACB.

COROLLARY 8. If F(z) is a holomorph c function whose

derivative is f(z\ \f(z)dz
= F(z)-F(z ).

Jz

For, let F(z)= U(x, y)+iV(x, y) ;
then /

Therefore

I f(z)dz = \(u dx v dy) -f'i \(v dx+ udy)

K3U

Now the integrands are complete differentials; therefore the

integrals are the limits of the sum of the increments of U(#, y)
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and V(aj, y) obtained in going along ACB from (oj , y ) to (a;, y).

Hence

Since F(z) is single-valued, it follows that the value of the

integral is independent of the path.

Example. Shew that I z
n
dz=(z

n+l
-ZQ

H+l
)/(n + l) for all integral values

J*9

of n except
- 1. If n is negative, the path must not pass through the origin.

See also Examples IV. 1-4.

Consider now the integral I f(z)dz, where the path C goes to
-/". Jc

inimity.

By means of the transformation z c = l/f, where c does not

lie on C, C is transformed into a finite path C' with f=0 as

final point, and the integral becomes

In order that the integrand /(c+ l/f)/f
2 should be continuous,

Lim/(c-f l/f)/f
2 or ~Limz2

f(z) must be finite. Hence the given
f >0 z <

integral has a definite value if Lim z2f(z) is finite.
2 >!

^Example. I -7=
-
J ^C= l> provided that the path in the z-plane does

not go through the origin.

27. Cauchy's Integral Theorem. If a function f(z) is holo-

morphic in a simply-connected region A, and if C is a closed

contour lying entirely within A, I f(z)dz= 0.

Jo

'Letf(z)=u+ iv; then, by Green's Theorem,

ff(z)dz=\
(udx vdy)+ i\ (vdx+udy)

c Jc Jc

the double integrals being taken over the area enclosed by C.

Hence (equations (A), 15)
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Example. From the integral / -
,
where C denotes the circle \z =1,

deduce JcZ '

l+2cos0 T/1

The following important theorems are corollaries of Cauchy's
Theorem :

THEOREM 1. Let f(z) be holomorphic within a simply-

connected region, and let the paths ABC (Fig. 30) and ADC

2-0 A
FIG. 30.

joining the points z and z lie entirely within the region. Then

Jf(z)
dz+ I f(z) dz= 0\

ABC J CDA

so that f(z) dz = \ f(z) dz.
JABC JADC

The integral is therefore independent of the path, so long as

the path lies entirely within the region.

THEOREM 2. Under the conditions of Theorem 1,F (z)
= \ f(z)dz

is a holomorphic function of z.

Let the increment AF(0) of F(0) correspond to the increment

A0 of z
;
then

fz+Az fz fz+Az

AF()= /(*) dz
-

f(z) dz = /(f) df
J ZG J ZQ

^ s

|*z+Az fz+Az

Iz+Az

Now take A0 so small that lf()f(z) \
<e for all points f on

the line joining z and z+ Az
;
then

Therefore <.
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Hence F(z) has a definite derivative f(z) ;
it is therefore

holomorphic throughout the region.

From this theorem the method of Partial Integration can be

derived exactly as for the real variable.

As in the theory of integrals of real functions, we say that a

function F(z). which is such that
^-^ssf(z)t

is an Indefinite

Integral of f(z) ;
and we write

Example. Prove I log z dz= z log z z.

THEOREM 3. Let/(z) be holomorphic in* the ring-space bounded

by the curves C and C' (Fig. 27); then

the integration in both cases being in the positive (or negative)

direction.

For, by Cauchy's Theorem,

f f(z) dz+ f f(z) dz- \ f(z) dz+ [ f(z) dz = 0.
Jc JLM Jc' JML

But
f /()<&= -f fa)dt.
J ML J LM

Therefore f f(z) dz= { f(z) dz.
Jc Jc'

Similarly, if f(z) is holomorphic in* the region between C

(Fig. 28) and the n curves c
lt

c
2 , ..., cn ,

it can be shewn that

THEOREM 4. If a is a point enclosed by a curve C,

tdz = 27Tl.

c z a

Round a describe a small circle c of radius r
;
then (Theorem 3)

f
dz _f dz

Jc^'Jc^V
*
Here, as in Cauchy's Theorem, it is to be understood that the boundaries lie

inside a region in which /(z) is holomorphic.
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On c let z a = reie
;
then dz= reiei dO. Therefore

[CH. IV

Gz-a

28. Cauchy's Theorem : Alternative Proof.* The following

proof of Cauchy's Theorem does not depend on Green's Theorem.

The proof will be taken in three parts : firstly, for C a

triangle ; secondly, for C an arbitrary polygon ; and, lastly, for

C any closed curve.

(1) Let C be a triangle A (ABC in Fig. 31), and let the mid-

points D, E, and F of the sides be joined, so that the triangle is

divided into four congruent triangles A', A", A
7

", Aiv
.

D
FIG. 81.

Now integrate round these four triangles in succession in the

same (positive) direction, as indicated by the arrows. The two

integrals along each of the lines DE, EF, and FD cancel each

other, so that the net result is the integral round A in the positive

direction. Hence

-

[ /(*)<fo=f /(*)<**+[ f(z)dz+\ f(z)dz+\ f(z)dz;
JA JA' JA" JA'" J Alv

so that f(z)dz fJ
z)az

There must therefore be at least one of these smaller triangles

we denote it by A
x

such that

f(z)dz

Cf. Knopp, Funktionentheorie, Vol. I.
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Dealing with A
a
in the same way, we obtain a triangle A2

such that

[f(z)dz ^4 \f(z)dJ A! J A2

\f(z)dzJ A
and therefore

Proceeding thus, we obtain a sequence of similar triangles

A, A!, A2 , ..., each contained by the preceding one, and such that

i-An ,
and

\f(z)dz
^4

J

As n tends to infinity, the triangle An shrinks to a point, f say,

which lies within every one of the triangles A, A
x , A2 ,

Now, corresponding to any e, an y can be found such that

|

X |< c if z f |
< >7,

where

Let ti be chosen so great that An lies entirely within the

circle
|

z f |

=
v\ ;

then

f f(z)dz= \ f(Qdz+ f fJA JA JA

The first two of thes integrals vanish ( 26, Corollary 8),

so that ., .,

f(z)dz=\ \(z-)dz.
J An J A,,

Therefore
If f(z)dz ^f \\\\z-\\dz\
I J Au J A,,

O

=
-jc8

n ,
where sn is the perimeter of An ,

Hence

Therefore

e / -s
1

\'
2

.

}
( ^j ,

where s is the perimeter of A.

f f(z)dz = 0.

JA
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(2) If C (Fig. 32) is a quadrilateral, it can be divided into two

triangles A and A' by a diagonal which lies within it
;
then

f f(z)dz=\ f(z)dz+\ f(z)dz = 0.
Jc JA JA'

Similarly, if C is any polygon, it can be divided into triangles

FIG. 32.

by diagonals lying within it, and, since the integrals along these

diagonals cancel each other, I f(z) dz = 0.
Jc

(3) Let C be any closed curve
; then, as in 26,

< n

f(z)dz = LimSn> where Sn= ^f(zr)(zr-zr . l ).

JG r=i

Now let f(z) =f(zr) 4- r]r for points z on the straight line joining
zr -i and zr ,

and let the law of division of C vary so that, for

r=l, 2, 3, ..., n, |^r |<e/(2L), where L is the length of C,

and also

Then, if P is the polygon of vertices
,
z
lt

z
2 ,

... , zn ,

\ /(*> <fo=s r </w+ *> dz = s +s r ***
JP r= \Jzr-i r= lJ2r_!

But f(z)dz= Q; therefore
Jp

11
Therefore

Jo"

Hence
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29. Cauchy's Residue Theorem. If the point a is the only

singularity of f(z) contained in a closed contour C, and if

V
has a value, that value is called the Residue of f(z) at a.

From Theorem 3, 27, it follows that, if encloses several

singularities, the sum of the residues at these points is

The following cases are important :

CASE 1. If n is any integer except 1, the residue of (0 a)~
n

at a is zero.

CASE 2. The residue of (z a)~
l at a is unity. .'

CASE 3. If

f(z)
= &J(z- a)+A2/(z

-
a)

2+ . . . + An/(z
-

a) + 0(),

where 0(2) is holomorphic at a, the residue of f(z) at a is Ar

Example. Shew that the residue of (2s+ 3)/(s I)
2 at 1 is 2.

CASE 4. If f(z) is holomorphic at a, the residue of f(z)/(z a)
at a is /(a) : for

i
(

f(Z ) _ i r /(a) i r

X
c

Now take C so small that for all points on it X <e; then

where i is the length of C.

Hence -Uf -dz=f(a).ZtnJQZa
This is equivalent to the following theorem :

THEOREM 1. If Lim {(z-a)f(z)} is a definite number A, the
z >a

residue of f(z) at a is A.
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It follows that, if
<f>(z) and \fs(z) are polynomials in z, and if

z a is a non-repeated factor of \Js(z\ the residue of <f>(z)/\ls(z)

at a is <f>(a)l\l/(a).

Example. Shew that the residues of (pz
2+ qz+ ?)/{ (z

-
a) (z

-
b) } at a and b

are ( pa
2+ qa+ r)/(a

-
b) and (pb

2+ qb+ r)/(b
-

a).

See also Examples IV. 5-7.

Multiply-Connected Regions. If f(z) satisfies the conditions

of Theorem 3, 27, except for isolated singularities at points
in the space between C and the curves c

l}
c
z , ..., cn ,

the sum
of the residues at these points is

Residue at Infinity. If f(z) has an isolated singularity at

infinity, and if C is a large circle which encloses all the singu-
larities of f(z) except infinity, the residue of f(z) at infinity is

defined to be

taken round C in the negative direction (negative with respect

to the origin), provided that this integral has a definite value.

If the transformation 2=l/f be applied to the integral, it

becomes

taken positively round a small circle about the origin. Hence

it follows that, if Lim
{ /(!/)/} or ^^m

{
~ zf(z)} nas a definite

value, that value is the residue of f(z) at infinity.

Example. Shew that the residues of z/{(z-a)(z-b)} and (z
3 -

at infinity are - 1 and 1.

Xote. Both of these examples shew that, if a function is holomorphic at

infinity, it does not necessarily follow that its residue there is zero.

THEOREM 2. If a uniform function has only a finite number of

singularities, the sum of the residues at these singularities, that

at infinity being included, is zero.

Let C be a closed contour enclosing all the singularities of

f(z) except infinity: then the sum of the residues at these

singularities is I
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But the residue at infinity is

59

Hence the sum of the residues is zero.

Example. Evaluate the residues of z*/{(z- l)(z- 2)(2-3)} at 1, 2, 3, and

infinity, and shew that their sum is zero. Ans. 1/2, -8, 27/2, -6.

See also Examples IV. 8-10.

30. Evaluation of Definite Integrals. Many definite in-

tegrals can be evaluated by means of integrals round closed

contours.

Example 1. Prove T cos x d*=
,
where >0.

Jo x't+ a'1 2a

Integrate f(z)
= e*

z

/(z*+ a2
) round the contour (Fig. 33) consisting of :

(1) the A'-axis from R to R, where R is large ;

(2) that half of the circle
]
z

\

=R which lies above the #-axis.

O R X
Fio. 33.

The only pole of f(z) within the contour is ia, at which the residue is

Lim \(z-ia
z-^ia \

e
~a

55"

Hence /

/(.,-)

But

^c 1

P

TrR

Hence the integral along the semi-circle tends to zero aa R tends to

infinity.

Therefore

so that f" - S>Y
dx-

v*~*
Jo x*+ a* 2a

'
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THEOREM 1. Let AB (Fig. 34) be that arc of the circle z\
= E

for which 0^0^ 2 ,
where = amp3; and let zf(z), as R tends

FIG. 34.

to infinity, tend uniformly to the limit K, where K is a constant ;

then f
Lim

JAB

For, let zf(z)=K+ X, and choose R so great that X
| < e ;

then

f K+ X . IP2

=
\

9

\dO

<e(02-01 ).

Hence Lim f(z) dz= i(0 0,)K
R->< J ÂB

For example, in Example 1, | zf(z) \

^ R/(R
2- a2

),
so that K = 0.

Example 2. If m > 0, prove

T

Jo

cos mx dx TT -V m
;

[Integrate eimz/(l+z
2+ z*) round the contour of Fig. 33.]

From Theorem 1 it follows that, if f(z) = (j>(z)/ifs(z), where

\fs(z) is a polynomial of degree n, and 0(0) is a polynomial of

degree less than n,

Limf f(z)dz = i(0^0l)^,R^^JAB o

where a and b are the coefficients of z11 ' 1 and 2n in 0(2) and

\fs(z) respectively.

In particular, if the degree of
</>(z) is ^n 2, a is zero, and

therefore the integral of f(z) round the contour of Fig. 33 gives

r:
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where 2 denotes the sum of the residues of f(z) at points above

the #-axis.

Example 3. Prove
/ /

x =v
'

,
where a> 0.

Jo XT+ a* 4er

The residue of l/(2
4 + 4

) at a pole a. is

But the poles above the #-axis are aeln/* and ael37r/4
.

Therefore
|_ _^_i

= 2 MA e-' :

Hence / -^-.-^.

The inequality sin^^20/7r, where 0^0^7r/2, is frequently
found useful.

Example 4. Prove
J

-
2

'

^ dr=^ e~a
,
where a> 0.

Integrate /(2)=ze
<z

/(,2
2+ a 2

) round the contour of Fig. 33. The only pole
within the contour is m, the residue at which is e~a/2. Hence

f m
J-K/W

But r f(Re)Reide ^ I *T^"'7 dO

2R2

22 - 2a ./ o

JR2 ri

^R2

2R2

f
2 -a2

Jo

TrR

Hence Lim
[V(Re

ie
)R^'^<9=0.

Thei'efore / y
-

so that r^ sil

>'o ^24

>. Integrate e'* over the following contour (Fig. 35) :

O R X
Fin. ;;;..

(1) the .f-axis from <) to I! ;
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(2) the circle |2|
= R, from 0=0 to #=<x, where . j ;

(3) the line #=., from |s|
=K to O.

When R tends to infinity (1) gives I e~ x<idx or .

/ ^

On (2)e-z
2=e- R2 cos20e -iR2sin20 ;

so that, if 20=7r/2-<,

*dz = e
~ & si

d<, where /?
= Tr/2

- 2o.

Accordingly, when R tends to infinity, this integral tends to zero.

Again, on (3)z=re
la

,
and therefore, when R tends to infinity, thejjntegral

becomes r00

-
e
~ ' C08 2a

{ cos(r
2 sin 2cx)

- i sin (r
2 sin 2a.) }

ela-dr.
Jo

But the integral is holomorphic within the contour ; hence

/" e-
J(\

E. (cos rx - 1 sin (/.).

Therefore, if the real and imaginary parts are equated,

I e~ x" cos 2<x
cos(#

2 sin 2o.)dx ^- cos a.,
Jo 2

and /

~ x2cos2a
sin(.r

2
sin2a.)o?^=-^sina..

Jo 2i

If a.=7T/4, these integrals become the Fresnel Integrals

r 2 r ^^
I cos SV* d\v ~^

\ sin '?'*"' ct-& == ~

A

Jo Jo 4

Example 6. Prove / --J= -r-^ ,
where < a < 1.

Integrate f(z)= eaz/(I+e
z
) round the contour (Fig. 36) consisting of the
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If *=R + z)/,
then \f(z) \ ^ enR/(e*

- 1
),

so that Lim/(*)=0; hence the
R >oo

integral along #=R vanishes when R tends to infinity.

If z=-R+ iy, then
| fts) ^ e -"R/(l -e~

R
),

so tha,t Lim /"()= 0; thus the
R->oo

integral along x= R vanishes when R tends to infinity.

1 f

Therefore ^j

Hence

Therefore

The transformation 6^=^ changes this integral into

l+y sm TT

Two methods can be employed to evaluate integrals of the

type I /(cos 0, sin 0) clO, when f(x, y) is rational in x and y.
J -7T

The first is to use the transformation #= tan ^0. The integral

{+00
R,(x)dx, where R(a?) is

rational in x.

The alternative method is to apply the transformation z = eie
,

and integrate round the circle \z
= 1 .

Example 7. Prove
/
-^ ;

=-^"~
, ,

where the sign of *J(
2 -bz

)
J a + bcosti ^/(*-6*)

is chosen to satisfy the inequality |

a - *J(a'
2 - b2) \

<
\

b
\

;
it is assumed that

a/6 is not a real number such that - 1 =a/b^. 1.

!*=
'

d dz dz
-

ib Jc (z
-

-

Jo + 6cos(9 i c bz*+ 2az+ b ib c (z
-

OL)(Z
-

/

where C is the circle \z\ =1, and a. and /? are the roots of

Since ./?
=

!, it follows that either |o. or \/3\ is less than 1, or that

1
a.

|

==
| ft I

= 1. The latter alternative is excluded, however, since in that case

a/6 would be real and such that -l^a/6^1. Let a.=(-a + Ja*-b'*) /6,

where the sign selected for \/
2 - b'

2 is that which makes
|

a.
|
< 1. Then

THEOREM II. If Lim(z a)f(z) = K, where A: is a constant,

fz->af(z)dz, the integral being taken round the arc

^O., of the circle z a\ r, is i^ O^K.
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For, corresponding to any e, an
r\
can be found such that

if
|

z a < rj, A
|
< e, where (z a)f(z) = K+ A. Hence, since

Therefore

Prove

Lim (f(z) dz= i(02
-

/->o J

f'iiEf^^f.
Jo # 2

Integrate f(z)
= e

iz
/z round the contour (Fig. 37) consisting of

(1) the ,^-axis from r to E, where r is small and R large

(2) the upper half of the circle
|

z
\

= R
;

(3) the .r-axis from R to r
;

(4) the upper half of the circle \z\
= r.

-R R X
FIG. 37

Let I be the integral duetto (2) ;
then

=f<
iRcosfl E sinfl n

i

Hence
e de

Therefore Lim I= Q.
R-o

Again, Lim2/(2)=l, so that (Theorem II.) the integral along (4) tends to

ITT as r tends to zero.

Hence Lim
| J

e-dx+
^ ^-ctoj=7n.

Therefore

\\
T
hen, in the description of a contour, part of a small circle is

described to avoid a singularity of the integrand, the contour
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is said to be 'indented' at the singularity: for example, the

contour of Fig. 37 is the contour of Fig. 33 indented at O.

Example^. If 0<v< 1, prove / - dx=-
o

= 2p
~"1

/(l +z) round the contour (Fig. 38) consisting of :

(1) the ^-axis from r to R ; (2) the large circle
|

z
|

=R
;

(3) the .?;-axifi from R to r
; (4) the small circle

|

z
\

T.

FIG. 38.

Within this contour f(z) is uniform. Consider that branch for which

amp 2=0 on (1).

Since p >0, Lini2/(2)
=

: hence the value of the integral along (4) tends
*-*o

to zero as r tends to zero.

Again, when \z
= R, 2/(2)|^R

p
/(R 1) : therefore, since jo<l, the

integral along (2) tends to zero as R tends to infinity.

At the point 1 amp 2= 77: hence the residue at this point is eCf--*)**.

Also on (3) amp ,s= 27r. Therefore

r^B-l cfe*ftrttfP- 1K
1 -\-x

Hence f^^^' .

Jo \+x sinpTr

The substitution x= ey transforms this integral into

Principal Value of an Integral. If /(z) is holomorphic in a

region containing that part of the ic-axis for which a= x= b,

except for a simple pole at a point c on the #-axis, where

a < c < 6, then
"

tl-nds to a definite limit as e tends to zero.
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r& ^7/v,

=
log (b c) log (c a).

cfceT .

Hence Lim

Now, let/(s) = 0(2)/(2-c); then ( 15, Theorem, p. 29)

where X is continuous in the region. Therefore

Lim {

f

f(x)dx+ i f(x)dx\
e->0 Ua Jc+e J

This limit is called the Principal Value of I f(x)dx, and is

ritten -
6

P /(aj)do;.
Ja

Example 10. If < a < 1, prove

rx
a~i- dX= 7T COt 7T.

1-.^

Integrate z?~l
/(z-l) round the contour of Fig. 38 indented at 1 (Fig. 39).

Example 11. If TT < a < TT, prove

rsinh
ax 7 1 a

-^ dx -^ tan -
smh Tr.r 2 2

Integrate e
a2
/sinh (TTS) round the rectangle (Fig. 40) of sides ?/

=
0, y= l

t

x= R, indented at O and' 2.
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Example 12. Integrate eibzl(r-\-iz)
a

,
where 0< < 1, r >0, b >0, round

O
FIG. 40.

R X

the contour of Fig. 41, where it is assumed that amp (r+ iz) is zero at points

on the i/-axis between and ir
;
and thus prove

- 4* 27T ,_,_,r

r;

Prove also f

+* *'** =0
J
and shew that

o
PIG 41.

If r= 1, .r= tan ^, deduce

F

(cos 6)
a-'2 cos ad cos (6 tan 6}dd

'*T(a)
(

31. Theorem. Let C be a closed curve such that f(z) is holo-

inorphic within and on C and 0(0) is meromorphic within and has

no singularities or zeros qn C ;
then

where n
1 , a.,, a

:i ,
... are the zeros of 0(0) writhin C of orders

r
i

r
2' rs-" respectively, and 6

1?
6
2 ,

63 ,... are the poles of <j>(z)

within C of orders sp *.,, ,s.,, ... respectively.
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For (p(z)
=

(z a
l )

ri
\Is(z), where \fs(z) is holomorphic at a

x ;
hence

so that
<p(z) z-a,

The residue of the integrand at a
x
is therefore

Similarly, since (2? 6
1 )*

1^()= x( X where x(^) i-s holomorphic
at b

lt
the residue at 6

X
is

Hence

OOBOLLA.T1.

OOBOLLABY 2.

Example 1. If ^>(^) is a polynomial of degree ,
shew that 2^ = ?^.

Example 2. If <^(*) is a polynomial with factors 0., z
/3, ..., shew that

oc~*
:

+)8~
A: +...= -B, where /: is any positive non-zero integer, and R is the

residue of -i$fe) ats= 0.

*^()

32. Liouville's Theorem. A function which is holomorphic
at all points of the plane, including infinity, must be a constant.

Let f(z) be such a function; then, if a and b are any two

distinct points, the only singularities of the function

are a and &, and possibly infinity. But since LimzF(2) = 0, the
.-> ce

residue of F(z) at infinity is zero ( 29, p. 58). Now the sum

of all the residues is zero ( 29, Theorem 2) : hence

so that /(a) =/(&) ;
and therefore, since a and 6 are arbitrary

points, f(z) is a constant.

COROLLARY. Every function which is not a constant must

have at least one singularity.
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33. The Fundamental Theorem of Algebra. If f(z) is a

polynomial in z, the equation /(z)= has a root.

For, if not, the function I/f(z) would be finite and holomorphic
for all values of z, and would therefore be a constant (Liouville's

Theorem). Hence f(z) would be a constant, which contradicts

our hypothesis.

34. Differentiation under the Integral Sign. Let the func-

tion f(z, f) of the two independent complex variables z and f be

holomorphic with regard to both z and f so long as z lies in a

region A of the z-plane and in a region A' of the f-plane. Then

the function #().= I f(z, )dz, where C lies entirely in A, is holo-

f 7^

morphic at all points of A', and 0'(f)
= I

^/(z, f) dz.

Let f(z, )
= u-\-iv and 0() = P-f-

/

iQ,

so that P = I (udx v dy), Q = I (vdx+u dy) ;

then ( 24),

3P_f Cdu, 'dv_,
\ 9P_f fdu

3?~JcW 3?
y

)' ^~Jr

3Q f /9v 7 ,

9^ 7 \ 3Q f
^l = V^^+ ^^2/J' ^=
Sf Jc^f 3 y ^ J

Hence (equations (A), 15),

Thus 0(f) is a holomorphic function of f : its derivative is

given by

JExample. Integration under the Integral Sign. Shew that, if C' and
C' lie in A and A' respectively,

( ff(z,C)dzd{=[ i f(z,t)d{dz.
Jc f Jc Jc Jc f

Let
{"
and f be the lower and upper extremities of C'; then/ / f(z,t)ddz

is holomorphic in
,
;ind J ^c '
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Hence
( </>(K= ( I /(*, C)d(dz-[ f

I f(z, {}d{dzl
JC' JG JC' I 'C -'C' Ib

= bO

=
f f /(z,
Jc ./c'

35. Derivatives of a Holomorphic Function. A function

f(z) which is holomorphic in a simply-connected region enclosed

by a curve C, possesses derivatives of all orders at every point

interior to C.

For, if z is any point interior to C,

Now let A be a region which contains the point 0, and whose

boundary is interior to C. Then the function /()/( 2) is holo-

morphic with regard to both f and so long as f remains on C
and z in A. Hence ( 34),

Similarly, by means of repeated differentiations, it can be

shewn that

COROLLARY 1. If C is a circle of centre z and radius R, and M
is the maximum value of \f(z) \

on C, |/M()|

COROLLARY 2. If f(z) is continuous at all points of a finite

('not necessarily closed) path C, the function

is holomorphic in 2 at all points which do not lie on C, and its

n derivative is

COROLLARY 3. If ^(a;, y)+iv(x t y) is a holomorphic function

of z = x+ iy, then t6(aj, y) and v(o5, 2/) have partial derivatives

of all orders.
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EXAMPLES IV.

1. Prove / =
log ,

a cross-cut being taken along the negative real

axis.
J* z zo

2. Under the same restriction as in the previous example, prove

where n may have any value except 1, and the same branch of z
n

is taken

on both sides of the equation.

3. Prove
\*e

azdz= (e -!)/.

f
4. Prove

/
cos az dz= sin (az)la.

Jo

5. Shew that the residue of e
az
/(l + e

z

) at -i is - ea7ri
.

6. If K is any integer, shew that the residue of cot z at KTT is 1.

7. Shew that >\% residues of ezi

/(z
2+ a'2) and zezi/(z

2+ a2
) at ai are e~a/2ai

and e~a/2 respectively.

8. Shew that the sum of the residues of any rational function is zero.

9. If /(,)= A_ +_^* + ... + ,- f
"

,
shew that the residue of f(z)l(z-x)

at a is /(.')

10. If /"(2)
=2Ar/(2-a)

r+ <(2), where ^(2) is holomorphic near a, shew
] n

that the residue of/()/(*-*) at a is -2 Ar/(^-a)
r

.

11. Shew that, if m and n are positive integers, and m<.n,
M

12. Integrate ze
imz

/(z
4+ a4

), where m and a are positive, round the contour
of Fig. 33, and shew that

ma

= ^<f^sin"!-.

IQ T>^^,13. Prove rCQ&ma; , JT . /7a TT\
/ _^6;= -

^e
V2sm( + T

Jo ^4+ 4 2 3 V/2 4/

14. Integrate eiz

/(z-ai), where >0, over the contour of Fig. 33, and
shew that

{+* a COB x+ x sin x ,

(L:
J-a, .C

2+ (l
2

15. By integrating eiz

l(z+ ai\ where a>0, prove

acoBx+xmnx 7

ifi p,., ,

^ in ll1 -'
7

TT ~rr ma
L *+& <f-'' =

2
e C08

'
where
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17. If < a < 2, shew that
/27T. + 7T\

(i)
r af^dx 2?r

C S
\ 6U

Jo

sin (**)
f

o lx+x* tJ3 sin^ra

[Integrate - - round the contour of Fig. 37, and equate real and

imaginary parts.]

Prove
j[ i -^_ _-^_-2

^ c?^= ^log(l4-r), if -l<r<l

f-), if r<-l or r>l.

[Integrate ^ ^g^
1 ~J!> round the contour of Fig. 33, and

put ^7= tan ^.]

19. If > 0, and -
Tr/2 < ^ < 7r/2, prove

and

[Integrate s"-^-2 round the contour consisting of the positive .?>axis, the

line amp2=#, and part of an infinite circle.]

20. If ^0, prove
x.x /"^(l-f.r^cosa^ , TT _y? a
l) --^= e 2 COS

2
;

/;;\ r* ^s
J. 1+

[Integrate etez/(l'+2+ 2
) round the contour of Fig. 33.]

21. Integrate e~ z~ round the rectangle of sides y= 0, 2/
=

,
x= E, and

show that /+ /+
/ e-(-+w>

2^^ e -W.r = N/TT.
J-X J-OD

Deduce:

= \7r, where c is any constant.

22. Integrate e
iz

l(z+ a\ where >0, round the square whose sides are

,r= 0, #= B, y=0, ^= R, and shew that :

ii)
r <fe=rj^i (fa.
Jo ^+ Jo l + ,r-'
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23. Integrate e~ j2 round the rectangle whose sides are .^= 0, .v= R, y= 0,

?/
=

>,
where 6>0, and shew that :

'

(ii) [%-* sin 2&r dx= e
- 6

'

2

/

*

Jo /o

24. Integrate e
nz
/cosh TTZ round the rectangle of sides .r= K, v/

=
0, y=

and shew that

r
cosher 7

1 a
dx= - sec = , wnere

coshw.r 2 2'

f2r ^Q- a -bi J/}= 27TI, if 6 > 0,
25. Prove cot c7^ .' ...

7

'

Jo 2 = -
2?ri, if 6 < 0.

r2ir

26. Prove I cos"^o?^= 0, if n is odd, and

27. Prove that, if y is the unit of circular measure :

k
T+x sin x , IT ,

r+ ao
1 - cos x

I1) L T^-i
28. If a is positive, prove

TT . ,,.v /"" .r sin aa; , TT

=-2 Smm'

; (u)P
/o ^-^^=

2

29. If r and 6 are positive, and < a < 2, prove

[Integrate (i) zf
t~l

eibz

/(z
2+ r^) round the contour of Fig. 37, and

(ii) z
a~l

e
ibz

/(z
z -r2

) round this contour indented at r and -r.]

30. If -l<a<l, prove

Deduce that, if -!<<!,

I

^
" /"^

Jo Jo

[Integrate J.A '",
^

~
, '* round the contour of Fig. 37, and put

- < >S ArtTT
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31. Prove
7fi /1-r.V'.

-1

[Integrate
_ round the contour of Fig. 37.]

32. If >0, prove f^D^ Jl
(1 _,-).

Jo .v(x
2+ a2

) 2a2V

33. If a > 0, prove

_ a

[Integrate -^ -^-r round the contour of Fie:. 37.1
2(logZ- ITT/2)

34. If a > 0, prove

{ 1 - cos (a tan 0) } + log (cos (9) sin (a tan 6>)

J_
~
f

~
(log cos By

2+ <9
2

1 _ giaz

^ -r-r round the contou
z\og(l-iz)

35. If b>0, r>Q and 0<a<2, shew that

1 _ giaz

[Integrate ^ -r-r round the contour of Fig. 37.1

z\og(l-iz)

[Integrate s
a - 1

eei67(^
2+ ^2) round the contour of Fig 37.]

36. If 0<a<2, prove /

^_^ 2
^

Deduce (

.... f .^- 1 -^-1 dx A Tra / 7r6
(11) / ,

= log tan
, / tan -

x
Jo log^? \-\-x1 \ 4 / 4

where 0<6<2.

37. Let P(-s) and Q(z) be polynomials of degree m and n respectively,
where m^n 2, and let Q(z) have no positive or zero real roots. By means

of the integral of P(z)~Logz/Q,(z) taken round the contour of Fig. 38, prove

r^Mdv- R
Jo Q(^)^

where H denotes the sum of the residues of P(^)Log2;/Q(2:) (0 < amp s< 2?r)

at the zeros of Q(z).

38. By integrating (Log^)
2
/(l+^

2
) round the contour of Fig. 38, prove

floga? ,

I ,^0^= 0.
Jo l+.r2

39. By integrating log(4-t)/(2
2
+l) round the contour of Fig. 33, prove

Deduce
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40. Prove / --^ dj;= 7r

r -

J smh.t' 4

41. If a is real, show that

sinew?, TT .
, aw

42. If i > -
1, w > 1, and m - n is an even positive integer, prove

j"

00
sin n# sin 7i.# , _ e~'

1 e~m

J "(l + #2
)sin#

r
e-tf- 1

r (logo?)
2

, 16
43. Prove / 2

^= QT~^S 7r -

Jo 1+,P+^2
81v/3

[Integrate (LogzY/(I + z+ z2) round the contour of Fig. 38.]

44. If Kjt?<l and - TT < A < TT, shew that

p jy-^dla? TT sin;?A

Jo 1+2^ cos A+ x-
~

sin pir sin A

45 '

[Integrate zl(u-e-
iz

) round the rectangle of sides 0;=
TT, y=0, y=

46. If r>0, s>0, 0<a<l, 0<6<1, a + 6>l, shew that

<b ' +X dx
9 ^ a. M--

_~

Deduce
//(cos ^) ^(fe

47. By integrating e
z
'

22

/s round a suitable contour, shew that

=
<fo=f

.

x 4

Deduce / dx**^*
Jo ^ 2

48. By integrating e'
:

/\/* along a suitable path, shew that

rcos.g
. _ /""sin

x

V/# - *JX

49. If < . < 7T/2, shew that

/"-t-
00 t&n~lxdx TTOL

[Integrate log(l -^)/(5
2 -22sino.+ l) round the contour of Fig. 33.]

50. Integrate ^"/(e
2'2

-!), where a is real, round the rectangle of sides
= 0, .i?=R, y= 0, .y=l, indented atO and i, and shew that

/" sin'/.v . 1 , /a\ 1

Jo ^ -\'
f'''= T

'
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CHAPTER V.

CONVERGENCE OF SERIES: TAYLOR'S AND LAURENT'S
SERIES.

36.* Convergence of Series. Let Sw denote the sum of the
cc

first n terms of the infinite series 2 wn> where the w's are real
51=1

or complex quantities ; then, if Sn tends to a finite limit S as n

tends to infinity, the series is said to converge or to be convergent
and to Have the sum S. The necessary and sufficient condition

for this is ( 23) that a number m can be found such thai, when

n^im and p is any positive integer,

Sn+p &n
i

<C Or
j

Wn+l+Wn+2+ . . . 4-Wn+p \
<C *

Ii wn = un+ ivn ,
the series Sttn and ^vn converge to the

real values U and V, where U+ iV = S; for I ^un ~U

I
i

V are both less than |Sn S|. Conversely, if the
I

series Sun and 2/yw converge to the values U and V, the series

ivn) will converge to the value U+ iV, since

Absolute Convergence. If the series of moduli ^ I

w
71=1

convergent, the series Zwn is also convergent, since

a series of this kind is said to be Absolutely Convergent. The

series *Lun and 2vn are then also absolutely convergent, since

*In this and the following paragraphs some definitions and theorems on

infinite series which will be found useful in the course of this work are

summarised ; for fuller proofs and for further information on the subject

reference may be made to Bromwich's Theory of Infinite Series.
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\vn \

= \Wn\- Conversely, if 2wn and 2)vn are

absolutely convergent, 2iv }l
will be absolutely convergent, since

.AWe. The value of an absolutely convergent series is inde-

pendent of the arrangement of the terms.*

Multiplication of Series. Since

(un 4- ivn)(u'm4 iv'm)
= unu m- vn v'm4 iunv'm4 ivnu'm ,

the product of the two absolutely convergent series 1/wn and

Sw'n is equivalent to

Zwn 2u'm 2-Vn 2/v'TO4 i S^n Zt/m 4- * 2vw 2u'm .

Hence the product is the absolutely convergent series

W^W\4 (Wj -H/2 4-WzW\)4 (tVj t(/34 ^2^'24 ^3^'i )4 . . . .

Most of the series with which we shall have to deal will be

absolutely convergent series. The tests for convergence of series

of positive terms apply also to absolutely convergent series : the

most important of these is :

GO

The Ratio Test. If Lim wn+l/wn\< 1, the series Vw7l is

,l->co i*

absolutely convergent: if Lim [t0n+1/wll |>l j
the series is

divergent.
If Lim iwn+1/wn

\

= l, further tests must be applied: one such
/i > />

testt is the following:

If
IV,n+1 n n

where
/u,

is a constant and
|

con
\

is less than a fixed number A
for all values of ??, the series 2| wm

'

is convergent if /m ]> 1 and

divergent if /x ^ 1.

1. Shew that the Hypergeometric Series

1'snlutely convergent if \z\<l and is divergent if \z\>l ; while, if

|

s
|

=
1, it converges absolutely if E (y

- rx - (3) > 0.

*Cf. Unnnwich. 75. tCf. Bromwich, 12, 79.
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Example 2. If R (y -.-/?)> 0, prove

F(, ft y, l)
= (y

(-^_-^F(, ft y + 1, 1).

Let Tw denote the nth term of F(o., ft y, 1) ; then, if n = 1, 2, 3, ...
,

T _T ^" 1

y/ 1.8...(y+l)(y+8)...(y+)

_Yl /AT '

rp"

\ y/
M+1

~
M+2 '

where Tw
' and T" are the wth terms of F(., /3, y + 1, 1) and F(.- 1, ft y, 1)

respectively. Also

Hence, since LimT,, = 0,
"

yF(o.-l, ft y, l)
=(y-F(o, ft y + 1, 1).

Again, if w= l, 2, 3, ...
,

so that (y-o.-/?)F(a,fty, l)
= (y-o.)F(cx.-],fty, 1).

Hence F(o, ft y, l)
=(y

,"'

)

F(, ft y + 1, 1).

Example 3. Shew that, if the series ^,wn is absolutely convergent, the-
00 1

series Zlog(l +wn) is also absolutely convergent.

Choose n so large that
|

wn
\

< 1 : then

Hence an m can be found such that, for n^w,

where C is a constant independent of n.

Therefore, if "2f |

wn
|

< c, "z" | log (1 +w) |

< Ce ;

m m

so that the series Zlog(l +wn) is absolutely convergent.

37. Convergence of a Double Series. If ^ and o>.
2
are com-

plex quantities such that CD.,/^ is not real, the double series

+ CO +00 1SY1^
is absolutely convergent. The accent indicates that the term

for which m = ti= is omitted. It is convenient to assume

I(ft>2/ft>1)>0 : if this is not the case, interchange w
l
and w

2
.
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Divide up the plane (Fig. 42) by parallel and equidistant lines

into parallelograms similar and equal to parallelogram OABC,
where A, B, and C are the points 2^, 2w

1+ 2o>
2 ,
and 2<o

2
. Since

the angle AOC lies between and TT. One term of

FIG. 42.

the series corresponds to each angular point of the net-work,

except the origin.

Consider those angular points which lie on the parallelogram

PQRS, the mid-points of whose sides are 2ptoly 2pw<,,

where p is a positive integer. There are 2p+ I points on

each of the sides, and therefore, since the four vertices

eacli lie on two sides, there are Sp angular points on the

parallelogram.
Xo\v let i/ be the shorter of the two perpendiculars from O on

AB and BC. Then for each of the angular points on PQRS
1 _ 1

so that
8

wheiv tlir summation rxtnuls to all the points on PQRS.
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Now, if the values 1, 2, 3, ...
,
be assigned to p in turn, all the

angular points in the plane will be included. Hence

ri
3< ^3 \r2+ 22

+
3*
+<

and therefore the series is convergent.
00

38. Power Series. Let ^cn (z a)
n be a power series, and

7t=

let the ratio cn/cn+1 tend to R as n tends to infinity. Then
from the Ratio Test it follows that the series is absolutely con-

vergent within and is divergent without the circle
|

z a
\

= R.

This circle is called the Circle of Convergence and R the Radius

of Convergence.

Example. Shew that the radius of convergence of the geometric series

+ z3+ ... is unity.

At a point on the circle of convergence the series may or may
not be convergent. A test for absolute convergence is given in

36. The following test is sometimes useful when the series is

not absolutely convergent.

Abel's Test. If the coefficients c
1 ,

c
2 ,

c
3 ,

...
,
form a decreasing

sequence of positive numbers, cn tending to zero as n tends to

00

infinity, the sum 2 cnZ
n
converges at all points of the unit circle

i

except possibly at z= 1.

For, consider the series

qcos + c
2
cos 20+c8

cos 30+ . ..
, < < ZTT.

Let Smi _p=
m+l

and let sr= c

so that cos

cos (m+ 2)
=

2
s
l ,

Then Sm> P
= cm+l 81+ cm+z (s.2 8

1)+ ... Jf-cm+p(sp -sp .
l )

Si (tfjH+l
~~ cm+->) H~ *-2(

cm+-2
~ Cm

i Sp - 1 V^m+p -
1

Now sr= sin(ir0)cos {

so that -I/sin J0^sr^ I/sin J0 . (r= l, 2, 3, ...).
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Therefore, since all the quantities

^m+i Cin+2> ^m+2 ^m+3> > ^m+p >

are positive,

Sm
, p= ^ m+1 ~~

nnrl Q > m+l

^^-sinp'
But, by making in large enough, cm+1 can be made arbitrarily

small. Therefore, since < W < TT, the series is convergent.

Similarly, since

the series (^sin #+c2
sin 20+c3sin30+... ,

can be proved con-

vergent if < 6 < 27T. Hence the series

sn ^

converges if 0<$<27r.
This theorem can be illustrated as follows :

If amp z =^= TITT (n integral), the terms of the series can be

(a)

(b)
O A 2 A 3 A, X

O A, A
2
A

3

>
X

FIG. 43(o)(6)(c).

represented by OA1? AjA.,, A2
A

3 , ..., {Fig. 43 (a)}, where each line

makes the same angle amp z with the preceding one. These lines

M.F. F
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form a kind of spiral, and An tends to a point, which represents
the sum of the series. If amp z TT the lines will be alternately

positive and negative {Fig. 43(6)} and the series will be convergent;
but when amp =

{Fig. 43 (c)} the method does not apply.

Example. Shew that z+ z2/
<

2,+z?/3+ ... converges for \z\
= l except at

2=1
; and deduce that the series

cosW cosW
COS0+ ^ +^ + .-,

a ,

sinW sin 3(9
,sm0+

^
+

3 +...,

are convergent if = S^TT.

Multiplication of Power Series. If the two series

2^w and 240"
o o

are convergent within the circle
|

z = R, their product
coc'o+ (coc'i+ c

i
c/o>+ (coc/2+ c

i
c
'i+ C

2
c/o)^

2+ -

is also convergent within that circle (cf. 36).

39. Taylor's Series. Let f(z) be holomorphic in the region

bounded by a circle C of centre a and radius R, and let z be any

point within C such that
|

z a r < R : then

n\

Now, since
| f ^R r for all points f on C, it follows

( 26, Cor. 7) that

M

where M is the maximum value of |/(f ) |

on C. But this quantity

can be made arbitrarily small by increasing n : hence
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for all points within C. This is Cauchy's extension of Taylor's

Theorem.*

The convergence is absolute, for (35, Cor. 1) the modulus of

each term is not greater than the modulus of the corresponding
term of the absolutely convergent series

Let z be the nearest singularity to a : then if z be any point
within the circle of centre a and radius

|

z
l

a
\ ,
R can be chosen

so that z a <R<|01 a\. Thus the Taylor's Series converges

absolutely at z, and therefore its radius of convergence is
|

z
l

a
\:

that is, the circle of convergence of the Taylor's Series is the

domain of the point a.

COROLLARY 1. If f(z) and its first TI 1 derivatives vanish

at a, while f(n)
(a) is not zero, a is a zero of f(z) of order n.

For example, z= kir is a zero of sin 2 (17): this zero is a simple zero

since cos*, the derivative of sin 2, is not zero at the point.

COROLLARY 2. If f(z) and
(j>(z),

and also their first n-1
derivatives, vanish at a, while <n>

Example. Prove
z-*-0

COROLLARY 3. If /<*>(a)
=

(71
= 0, 1, 2, ...), f(z) vanishes

identically at all points in the domain of a.

Example 1. Shew that, for all points within the circle
|

z
|

=
1,

and deduce that
j log(l+s)|^-log(l -

z\).

Example 2. Prove / Iog(sin7r.r)cfa;= -log 2.

Integrate log (sin TT*) round the rectangle of sides .r= 0, .r=l, ^ = 0, y= R,
imputed at and 1.

The integrals round the small quadrants at and 1 vanish in the limit
;

hence
/ log(sin7TA-)c?^

= il [log (sin 7T/y)- log {sin (Tr+ Triy)}]dy + I log { si n (TTV
jo

*Cf. 43, Note.
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Now, since w= sin ITZ= sin TTX cosh Try + i cos TTX sinh Try,

as x increases from to 1, (#>0), w passes round the curve PQR (Fig. 44),

FIG. 44.

from P(i sinh Try} when ^= to Q(cosh Try) when #= 1/2, and to R( - i sinh Try)

when x= \ : hence amp (sin TTZ) decreases by TT, so that

log (sin Triy) log { sin(7r+ Triy)}
= TTI.

Again si

Therefore

Hence
J log(sin irx)dx= -

log 2 +
J

log(l
- eZwxi

- 2irR
)dx.

But T log(l
_ e2^-2ff

B)^. < -log(l -e-^R),

which tends to zero as R tends to infinity. Therefore

P
/ log (sin TTX)dx= log 2.

Jo

Example 3. If
|

z
\

< 1, prove

(i) tan~^= z - 03/3 + ^5/5 r (Gregory's Series)

where the principal value of tan"1^ is taken in each case.

JGL

FIG. 45.

40. Laurent's Series. Let f(z) be holomorphic in the ring-

space bounded by two concentric circles C
x
and C

2 (Fig. 45) of
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centre a and radii R
t
and R

2 , (R1<R2 ).
Then if z is any point

within the ring-space, so that

f(z) can be expanded in a series of the form

J_f ./Cf)Wc^

Now let Mj_ and M
2
be the maximum values of \f(z)\ on

and C
2 ;

then ( 26, Cor. 7), since \z a\=r,-

,n+l

l-r/R2
VR

2
/

^r/Rj-1 \r

But these two quantities can each be made as small as we

please by increasing n ;
hence

where

A - --

1. Since

and

and R
1 <|2 a -<R2> it follows that the series is absolutely

convergent for all points within the ring-space.

*
Cf. 43, p. 95, Note.
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Note 2. Since f(z) is holomorphic between C^ and C
2 ,

the

integrals round these contours can be replaced by integrals round

any concentric circle C of radius R, such that R^R^Rg. It

+ GC

follows that f(z)= 2 A^(0 a)^, where
p - co

Note 3. Let <j>(z; a) and ty(z\ a) represent the series
00 CO

^Ap(z a)p and ^A_P(3 d)~p respectively.
o i

Then /()$(*; a)+\fs(z', a\ where 0(0; a) is holomorphic
within the circle |0 a| = R2 ,

and \K0; a) outside the circle

|0-a| = Rr
Principal Part at a Pole. If the only singularity within

|

z a R
x

is at a, Rj can be made arbitrarily small. Then if

n

\/s(z; a)= 2-A-_p(0 a)~
p

> where n is finite, f(z) has a pole of

fml
order TI at a, and \/r(0 ; a) is called the Principal Part at the

pole. If ifr(z
m

, a) is an infinite series, f(z) has an essential

singularity ( 22) at a.

Example 1. If f(z) is holomorphic in the region bounded by a closed

curve C except at the poles alt 2 >
a

>
an(i ^ Gr{l/(z-ar)\ is the principal

part of f(z) at ar(r= 1, 2, ...
, ), shew that

where f is any point interior to C. [Cf. Exs. IV., 9.]

Example 2. If
|

z
\
> 1

,
and the principal value of tan" 1 z is taken, shew that

according as

41. Fourier Series. A uniform function F(z) which satisfies

the equation F(0-fQ) = F(2;) for all values of 0, where Q is a

non-zero real or complex number, is said to be a Periodic

Function, and to have the period Q. It follows that, if ra is

any integer, positive or negative, F(0-j- ?nf2)
=

F(0). If no integer

2>(j?=/=l) can be found such that Q/p is a period of F(0), Q is

called a Primitive Period of the function. A function which

has only one Primitive Period is said to be Simply-Periodic.
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Now let the function f(z) have the period 2&>, and let =einz/<a
.

To each value of f corresponds an infinite number of values of

z, differing by multiples of 2o>. Therefore to each value of f

corresponds one and only one value of f(z), so that f(z) is a

uniform function of
f.

Let A (Fig. 46) be the point 2&>, and let R denote an infinite

region of the z-plane, bounded by two lines parallel to OA,

FIG. 46.

in which f(z) is holomorphic. Now if z is any point on a line

through z
l parallel to OA, z = z

l+ \u>, where X is real, and there-

fore ^ einzil^eiir^, so that |f |

is constant. Hence such a line is

represented in the f-plane by a circle with the origin as centre,

and as z increases by 2o>, passes round the circle once in the

positive direction. Any portion of the region R bounded by
two straight lines perpendicular to OA, and at a distance OA
from each other, is therefore represented on the f-plane by
a ring-space bounded by concentric circles with the origin as

centre.

In this ring-space f(z) is holomorphic since

'*_ df(z)

if'-* * '

Hence, by Laurent's Theorem,

+ 00 +00

where A,=

C being any circle in the ring-space with the origin as centre.
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Therefore

where ap = - [

2

"f(z)cos^dz, and 6.= -
o)Jo' o> co

This is Fourier's well-known expansion : it is valid for all

points within the region R. The function /(z), it must be noted,

is holomorphic in R.

42. Classification of Uniform Functions. Functions which

are holomorphic for all finite values of z are called Integral
Functions. Such functions are developable by Taylor's Series

throughout the plane. From Liouville's Theorem it follows that

every integral function which is not a constant must have a

singularity at infinity.

THEOREM 1. An Integral Function for which infinity is a

pole of order n is a polynomial of degree n.

For, if f(z) be such a function, then by Laurent's Theorem

where 0(f) is holomorphic at f=0. Hence

Therefore
<j>(I/z)=f(z)- (B1

s+B2
z2+ ... + Bn

n
).

Accordingly 0(1/0) is holomorphic for all finite values of z.

Hence, since 0(1/0) is holomorphic at infinity, it must, by
Liouville's Theorem, be a constant, B say.

Therefore f(z)= B +B^+ B2
2+ . . . + Enz

n
.

Polynomials are also known as Rational Integral Functions.

An integral function which is not a polynomial is called a

Transcendental Integral Function. The Taylor's Series contains

an infinite number of terms, and thus the function has an essential

singularity at infinity. Examples of such functions are ez
,
cos z,

and sin z.

An integral function f(z) which has no zeros in the finite part

of the plane can be put in the form eG(z\ where G(z) is integral.

For the function G (0)3= log {f(z)} has no singularities in the
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finite part of the plane, and is therefore an integral function :

hence f(z) = eG(z) . For example, ez has no zeros except at infinity.

The ratio of two polynomials is called a Rational Function.

THEOREM 2. If f(z) is meromorphic throughout the plane,

and if infinity is either an ordinary point or a pole, f(z) is a

Rational Function.

Let there be m poles 04, 2 , ..., am ,
in the finite part of the

plane ( 22, Th. 2, Cor.), and let the principal part of f(z) at ar be

<t>r (z)
= AfVC*- Or)+A

(

2

r)

/(s
-

a,)
2+ . . . +A/(Z- ar)*v,

(r=l,2, ...,m).
7)1

Then /(2)~#r(3) is finite at all finite points of the plane.

Accordingly, since ^(z), <
2( )> > $(2)> are all zero at infinity,

m
must be a constant or a polynomial, say

Hence /(0)
=

0r(^)+ V^( )' which is a Rational Function.

COROLLAEY. A meromorphic function other than a Rational

Function must have an essential singularity at infinity.

EXAMPLES V.

1. Shew that the series :

are absolutely convergent for all values of z.

oo oo

2. Shew that the series ^cnz
n and the series of derivatives y,ncnz

n~ l

o i

have the same radius of convergence.

3. Shew that the radius of convergence of the series ^nlz
11

is zero.

[Such series do not define functions.]

4. Shew that the product of the series ft
z
n
/n ! and f>"Y?i ! is 2(*+ z')

n
ln\ .00

oo
zn+l

5. Shew that the series S / . ^ is absolutely convergent at all points

on its circle of convergence. ^ $
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6. Shew that, for all finite values of z :

(ii) cose ^l- +i...;

(iii) sma =z- - + --...;

(iv) cosh* =
1+^ +^ + ....

7. Shew that, for all values of ??, the Binomial Theorem,

...,

holds for all points within the circle |s|
=

l, that branch of (l + z)
n
being

taken which has the value unity when z= 0.

8. If the function /(*) has an essential singularity at a, shew that l/f(z)

has also an essential singularity at a.

9. Shew that the series

is convergent if R (-&)>. 1/2, and find its sum. Ans. I+z.

10. Prove that, if\z\<l,

T . 6:r

11. Prove

l-coss 1 /.-XT- s -sin 2 1

12. Prove that, if R(s)> -
1,

13. Prove that, if
|
s

|

< 1,

l{log(l+2)}2

14. Shew that the series

converges if
|

z
\

< 1, and that its sum is z/(l
-

z).

15. Shew that the series

z z* z* z*

is convergent if |s|<l and also if |s|>l, and that the respective sums are

*/(!-*) and !/(!-*).

16. Shew that the series 2 q^e?" converges for all finite values of z
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17. Shew that, with the notation of 37, the series

is absolutely convergent if A> 2.

18. Shew that the series

a
.
2?n + 2

2
/ ...-

1 ! 2 ! % !

where w is a positive integer, is absolutely convergent if \z\ <mm
/(m+ l)

m+1
.

19. Shew that the radius of convergence of the series

20. Shew that the series

2 ! 3 !

is convergent if
|
z

\
< 1/4.

21. If a > 0, shew that

[Integrate (**'- 1 -i2+ ^
2
/2)/{2

3
(a

3+ 22)} round the contour of Fig. 33.]

cos .^
2+ sin o^l 7rtrt -TV /

22. Prove /

Joo x

[Integrate (e**- l)/z
2 round the contour consisting of the positive x and y

axes and a quadrant of an infinite circle.]

23. If a and b are positive, prove

30

24. Shew that, if a and m are positive,

fa
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CHAPTER VI.

UNIFORMLY CONVERGENT SERIES: INFINITE
PRODUCTS.

43. Uniformly Convergent Series. Let Sn (z) denote the
GO

sum of the first n terms of the infinite series 2 wn (z )> whose
n= l

terms are functions of z
;
then if, at all points of a region A, the

sequence S^z), S
2 (0), S

3 (0), ..., converges uniformly (23), the

series is said to be Uniformly Convergent in A. The necessary

and sufficient condition for this is that, corresponding to any e,*

an m can be found such that, for all points of A,

where p = l, 2, 3,..., and n^m. The region A is a closed

region ; i.e., the points on the boundary are included.

Example. If the series 2 ^n(z) converges uniformly in a region A, and if
n=l

,

f(z) is finite in A, shew that the series 2f(z)wn (z) converges uniformly in A.

In the following three theorems it is assumed that the series
oo

s
n

W,>n(z) is uniformly convergent in the region A.

THEOREM I. If Wi(z), w2 (z), w3 (0), ..., are continuous in A,
CO

the function S(z)=^wn(z) is also continuous in A.
n= l

For, if z and z+ kz are points of A, an m can be found such that

where n^m. But, since Sn(z) is continuous, an
17
can be found

such that, for
|
Az

| < 17,

* It should be noted that e is independent of z.
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Hence, if
|

Az < >?,

93

z)
- Sn(z) |

<.
Therefore S(z) is continuous in A.

CO
f

THEOREM 2. The series ^ 1
wn(z)dz, where C is a path i

.ic
j.

the region A, is convergent and has the sum I S(z)dz.

For, since at all points of A

= f {S(z)-$n(z)}d
IJo .

<el.

where is the length of C.

COROLLARY. If the initial and final points of C are ZQ and 0,

S(z)dz, Wi(z)dz, w
z (z)dz, ...,

Jzo Jz Jz

CO /3

are functions of z, and 2 I
*pw(*)dfe converges uniformly in A,

n = l Jz

since a maximum value can be assigned to I. Accordingly, if a

uniformly convergent series be integrated term by term, the

resultant series is also uniformly convergent.

THEOREM 3. If w^z), w2 (z), w3 (z), ..., are holomorphic in A,

S(z) is holomorphic at all interior points of A, and

Let f be any interior point of A, and let C be the boundary of

a simply-connected portion of A of which f is an interior point.
\n+

Then if, for all points of C,

^ wn(z)(z-

n+]

i+p

wliere cZ is the shortest distance from f to C, and 7c+ 1 >0. Thus
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)~
k ~ ldz converges to the sum

Jc c

and therefore, since

In particular, if fc

Now, this integral is holomorphic (35, Corollary 2) at

Accordingly S(f ) is holomorphic at and has derivatives given by

Ad*u>() ,,

COROLLARY. If C (Fig. 47) is the boundary of a simply-
connected portion of A, and if C' is the boundary of a region A"

interior to C, the series of functions of f,

will be uniformly convergent in A', provided d> 0, where d is

the shortest distance between C' and C.

FIG. 47.

Example. If the terms of the series S(z)=^wn (z) are holomorphic in the

region contained by a closed contour C, and if the series converges uniformly
on C, prove that 8(2) is holomorphic within C.

S
a

v

nd uniformly convergent in the region A, provided that a con-

Weierstrass's M Test. The series 2jWn(z) will be absolutely
i
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CO

vergent series of positive constants ^ M can be found such that,
i

for all points z in A, |wn(|^Mri , (71
= !, 2, 3, ...).

For, if Mn+ i 4-Mn+2+ . . . +Mn+p< 6,

. Since the moduli of the terms of the series

employed in the proof of Laurent's Theorem ( 40), are
Jess

than

the corresponding terms of the series S(r/^W^ anc^ x](^i/^)
n

>

the series integrated are uniformly convergent on the paths of

integration. Thus the consideration of the remainder can be

omitted from the proof, provided that the M Test has been

previously proved. The proof of Taylor's Theorem ( 39) can

then be contracted in a similar manner.
00

Kxample 1. Shew that the circle of convergence of the series ^zn
/n

2 is a

region of uniform convergence.
00

Example 2. Shew that the series SVC2
" - w2^2

) represents a meromorphic

function with poles at the points TT, 77, 877, ____

Let z be any point of the region bounded by |s|
= R, where

Then
j

* mr
\
^ mr R, where n=m + l, m + 2, ... ;

and therefore

1 1

Accordingly, since the series 2)l/(ir B)
1 is convergent, 2 l/(2

2 wV2
)

converges uniformly at all points of the region.
TO

Now the function 2 l/(s
2-wV2

) is holomorphic at all points of the region

except the poles TT, 27r, ... , WITT. Hence the given series is holomorphic
in the circle except at these points. But R can be chosen so large that any
assigned point lies in the circle

;
therefore the series is holomorphic at all

points except TT, 27r, 877, ____

44. Power Series. Let R be the radius of convergence of the
QO

power series2 cn(z a)
n

. Then if R^R, the area of the circle

I : n = R
x
is a region of uniform convergence.

For, corresponding to any e, an in can be found such that

^m,

! V+i-< t (P = 1
, 2, 3, . . . ).
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Therefore, if z a =R1?

cn+l(z-a)
n+ 1+ cn+2(z-a)

n+ 2 +...+en+p (z-a)

^
|

cn+1 1 V+ 1+
|

cn+2 1 V+ 2+ . . . + c +1 ,
|

R
1
+*

Since any point within the circle of convergence can be

enclosed in a region of uniform convergence bounded by

|

z a =R-p where
| f a <R1<R, it follows that the series

gives a holomorphic function at all interior points of the circle of

convergence.
+ CO

COROLLARY 1. If the series 2 cn(z a)
n

converges for
CO

; a
I
< R

2 ,
it will be uniformly convergent for

Example. If f(z) is defined by the series ^cn(z-a}
n

^ convergent for

<
|

z a
|

< R, shew that the residue of f(z) at a is c^ .

COROLLARY 2. If f(z) is holomorphic and has the Laurent
00

Expansion ^ Apz
p in the region R^I^I^Ra, and if infinity

00

/is the only singularity exterior to 0|=R2 ,
the residue of f(z)

at infinity is A_ 1
.

Example 1. Prove that the residues of e
l
iz at the origin and at infinity are

+ 1 and - 1 respectively.

Example 2. If n is integral and ^ 1, prove that the residue at infinity of

that branch of
*
"

which is positive when z is real and > 1 is

/1.3.6...(2n-3) 1.3. 5. ..(2 -5)
+( _ 1)

n-i\

12.4.6. ..(2w-2) 2.4.6.,.(2-4)T

Undetermined Coefficients. Let /(z) and <(0) denote the series

which converge in the region R
x< |

2; a
\
<^ R2 ,

and let the

coefficients cn , (n = 0, 1, 2, ...) be unknown. Then if

</>(z)=f(z) for all points of tliis region,

cn = Anj (n = 0, 1, 2, ...)
'
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For, if C is the circle
|

- a
|

= R (R1<R< R,),

In particular, if /(,?)
= for all points in the region,

cn = (n = 0, 1, 2, ...).

COROLLARY. If f(z) is odd, all the coefficients of even powers
CO

of z in the Laurent Series f(z)
=^ cn

?l are zero
;
while if f(z)

- rs>

is even, all the coefficients of odd powers of z are zero.

For, if f(z) is odd,

while, if f(z) is even,

Example. Consider the function l/(e
z

-l) : it has simple poles of residue

+ 1 at the points 0, %7ri, 4?, Hence, if < 1
z

\
< 27r,

(1)

where the coefficients c
, e,, c2 ,

...
,
are to be determined.

If the sign of z be changed,

Adding these two equations, we have

so that c = 1/2, c2
= c4

= c6 =...=0.

Next, multiply both sides of equation (1) by e
z

1 : then

(11--2
z2 z3

2j
+
3 1

Hence, equating coefficients, we obtain the equations

"'-2;2l
+

3!
=

'

\\liich the coefficients c^, c3 ,
c5 ,

...
,
can be found.

45. Additional Contour Integrals. The calculation of resi-

dues by means of expansions in series is found helpful in the

evaluation of many definite integrals.
M . F.
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Example 1. Prove

where m and a are real and positive.

Integrate f" 2 .,
over the contour of Fig. 37 ( 30). When E tends to

infinity, the integral along the large semi-circle tends to zero. When r

tends to zero, the integral along the small semi-circle tends to -
in/a*.

To calculate the residue of the integrand at ia put z=ia + : then

6

Hence the residue at f=0 is -

and therefore f */

"

"

Jo xx^
.fa- = -W

from which the required result follows.

Example 2. Evaluate f*

Consider that branch of

is real and > 1.

-, where n is a positive integer.

which is real and positive when z

This function is uniform in the region between the great circle C (Fig. 48)

FKJ. 48.

and the closed contour y consisting of small circles about 1 and 1, and the

real axis between these circles. There are simple poles at +i and - i.

At z= i, amp(z-l)= 37r/4 and amp(z+ l)
=

7r/4 : therefore
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Hecce the residue at z= i is(- l)"-
1

^2^2
)- Similarly the residue at z= -i

is -l"-1 ^. Thus

where the integrals along C and y are taken in the directions indicated by
the arrows.

But ( 44, Corollary 2, Example 2)

.fl,3.5...(2n-3) 1 . 3 . 5 ... (2tt-5) ,/_ iy
.-i

ITi
r

\2.4.6...(2w-2) 2. 4. 6. ..(271-4)

and

^*
\r c^-UW rT .

46. Legendre Polynomials. Consider that branch of

in the domain of z= which has the value + 1 when = 0. Since

the function has singularities at f>/(f
2

1), it can (39), for

values of z such that \z\ is less than the smaller of the two

quantities fv/f2 1
1,
be expanded in a series

in which the coefficients are polynomials in
f.

The coefficient

Pw (f ) is called Legendre s Polynomial of order n.

Shew that

If we expand both sides of the equation

{l_ 2(
_ f)2+8

2
}
-J = {i_2f(_

:uul <M|uate the corresponding coefficients, we obtain
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Again, from the expansion for (1
2

,
it follows that

where c is a small circle about the origin.

Now c can be replaced by the contour of Fig. 49, described in

the direction indicated by the arrows, where A and B are the

ii^

FIG. 49.

points \/f
2

1, C is a large circle, and y and y are small

circles about A and B.

The only case in which this cannot be done is when AB passes

through O. But in order that this may be so,

must be real and negative. Therefore, since

the two quantities f+v/f
2 1 and f Vf

2 1 must be purely

imaginary.

Hence, by addition, it follows that f is either zero or

purely imaginary. We therefore exclude the case in which f

lies on the imaginary axis.

The integrals along the circles C, y, and y vanish in the limit,

while the integrals along DB and BD cancel each other : thus

pjo-*V ds

_ cos
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where z = + \/
2 1 cos (

The branch of Vf
2 1 considered does not matter, since

cos (TT 0) = cos 0.

The integrand has a singularity if /\/f
2

1 is real and

numerically less than 1. In that case 2
/(f'

2
~~-0 must be real

and less than 1, and therefore f
2
is negative. Hence is purely

imaginary. The imaginary axis is therefore a line of singu-
larities for the integral.

If f=l, Pn(f)
= l, so that the + sign must be taken: if

f= 1, Pn(f)
=

( l)
w

,
and therefore the sign must be taken.

Hence, for points to the right of the imaginary axis,

pn(f) =

while, for points to the left of the imaginary axis,

Again, in the equation

PB( )
= M - _<**

put 1/2 for 2 : then

~2S
since the integrand is holomorphic between C and the contour-

made up of y, y', and AB described twice.

Thus Pn(f)=
1

(V+v/r^cos
7T Jo

Since P u(l) = l, we take the + sign: thus

1

TC Jo

Again, let f=cos#, (0<#<7r), so that A and B become the

points (Fig. 50) e iB and e~ ie
. Then if, in replacing the path c
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by the contour of Fig. 49, the arc AB of the unit circle is taken

instead of the straight line AB, we obtain

Thus, if z =

TT J_0 N/(2cos0-2cos0)
2 f cos(_ 2_

f

~7rJ7rJoV(2cos0-2cos#)

A

In this equation let and
<f>

be replaced by IT and TT
;

then

Example 1. Prove

(-l-

Differentiate (1
-

n(f) with regard to s : then

Now multiply both sides by (1
- 2fs+2

2
) : then

But

~^
Hence equating coefficients, we have

(^+ l)Pn+1(0-(

Example 2. Prove , -w, 1, i-Jf\ (Cf. 36, Ex. 1.)

" 1

(-!)!. 3... (2^-
(l-)2 2
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Therefore, equating the coefficients of z'\ we have

1.1 1.2.1.2
4

!';.'> < mple 3. From Example 2 deduce

47. Expansion of cotz in a Series of Fractions. The
function cot /(), where g=/=mr, has simple poles at f and

,777, (?i
= 0, 1, 2, ...): the residues at these points are cotf

and l/(gmr) respectively.

Now consider the integral I
- - dz taken round the rectangle

ABCD (Fig. 51) of sides x= (w + l/2)w, y=b, where n and

b are chosen so that f lies within the rectangle.

To each point z on AB or BC there corresponds a point -2 on
CD or DA: therefore

(cot
sdz

ABCDA

where j'-l oofesv^sdv, I.,=
|

JAB ^"-^- J BC
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On AB, z= x+ ib
; therefore

cot z
\

=

Hence 1 1, 1
;

To avoid discontinuous values of the integrand, we choose

>r] then

Therefore

LH= l_ e -26 I
3.2 4. 7)2 _ r2 T_ p -2i> ~rp o

w
/ _ co t^ |^ C' / JL

^^
C/ v/ /iw -^ /T1^

Lim^^O.

Again, on BC, 0= (71+ 1/2)^+ ^, so that

cot 01 = 1 tan i

f&w ZrdyHence I

where ^ is chosen so great that (w+ )& ]> r. Thus

i
2 |s

Therefore LimI
2
= 0.

ABCDA

and
a~~2^

a definite value as ?i tends to infinity
\>

( 43, Example 2). Accordingly, when n and 6 tend, to infinity,

we have

and therefore cot f= ~

Example 1. Shew that cosec2 =

Example 2. Integrate L _ round the contour of Fig. 51, and prove
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48. Mittag-Leffler's Theorem. It is possible to construct a

function which shall be holomorphic except at isolated simple

poles a
lt a.2 ,

a
3 ,

...
,
these poles being arranged in order of ascend-

ing moduli, provided that, for some integer n, the series 2 1/<V
1

'

is absolutely convergent.
00

Consider the series ^]wr(z\ where

Let C be the circle z = R, where R< ap+ i
\

; then, for all

points z in the region bounded by C,

R
Or

= /u, where //
= !

r

and r=p+ 1, p+ 2, . . . . Therefore

n ,

Hence, by Weierstrass's M Test, the series 2U>(2 ) converges
P+I

'

absolutely and uniformly in the region bounded by Q.
Vj

Accordingly, the series ^jWr(z) represents a function of the
r= l

re<[uired type in this region. But R can always be chosen so

large that any assigned point lies in the region : hence the series

represents a function of the required type.

COROLLARY 1. If f(z) and 0(0) are two functions with simple

poles of residue unity at a
lt a2 ,

a
3 ,

... , f(z)-~ <p(z) is holomorphic
at all finite points, and is therefore an integral function. Hence

any function of this tyjfe-ei^be put in the form

where G(z) is an integral function.

COROLLARY 2. If the function

is differentiated
/>

1 times, a function is obtained with poles of

order
i> .at the points 04, ".,, ".......
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Note. These functions have all essential singularities at in-

finity, since there is an infinite number of poles exterior to

every circle
|

z
j

= R, ( 22, Theorem 1, Cor. 2).

00

Example 1.' Since the series 2 V*'
2

^s convergent, the function

is holomorphic at all points except 1, 2, 3, ...
,
where it has simple poles. \

Example 2. Shew that

1 \

). [Use ^ 47.]
jz -K z-mr mr

+ 00

Weierstrass's Zeta Function. If ^SS'V^8
*s the absolutely

C

convergent series of 37, where Q= 2mt>
1 -h2?ta2 , then, by

Mittag-Leffler's Theorem,

,.

is a meromorphic function with simple poles at the angular

points of the network of Fig. 42. This function is Weierstrasss

Zeta Function, and is denoted by g(z), (cf. 75).

The function is odd. For, if the order of summation is

reversed
;

i.e. if m and n are replaced by in and n
;
then

Hence -,)- -{1+SS'(rV 5

Weierstrass's Elliptic Function. Differentiating the Zeta Function,

we have i + ^

This is Weierstrasss Elliptic Function $>(z), (cf. 72), so th;

It is holomorphic except for poles of the second order at th<

points 2mfc>
1+ 2'fto)

2 ,
where m and n take all integral valw

Since ( z)
=

$(%), 1p(z) is an even function.
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,

n

49. Infinite Products. Let Pn denote the product II wr ,
where

the w's are complex quantities no one of which is zero. Then if

the sequence P
I}

P.2 ,
P

3 ,
...

,
tends to the non-zero limit P as n

tends to infinity, the infinite product ILwr is said to converge to

the limit P.

If P is zero, the product is defined to be divergent.

If Iiwr is convergent, Lim^n =l; for Wn =*~Pn[Pn. l} and Pn

and Pn _! both tend to the limit P.

THEOREM I. If the series S = y)u
' is convergent, the pro-

i

duct Iiew will be convergent and will have the value es .

For, since the exponential function is continuous, an
r\
can be

found such that, if n

2>,-s

e l
(

Hence IIew converges to es .

i

Unconditional Convergence. If the series 2wn is absolutely

convergent its value is independent of the order of summation

of the terms, and therefore the value of the infinite product
II'-"'" is independent of the order of the factors. When this is

the case the infinite product is said to be Unconditionally

'ergent.

K.i'mnple. Shew that, if the series w,, is absolutely convergent, the

product 11(1 + w tl) is unconditionally convergent.
i

- Example 3, 36.]
00

THEOREM II. If the terms of the series S(z) =^wn(z) are
i

holomorphic in a given region, and if the series converges
00

uniformly in that region, the infinite product P(s)= H> ?r" (:) will

!>' holomorphic at all interior points of the region.
Kr S( : ) is holomorphic at all such points ;

hence P(z) = es(z) is

.ilso holomorphic (15, p. 30), and its logarithmic derivative i^>

'ivi-n by PY?^ /-/S^j i \ - i
' ' o

v,
-^

) '^~\ / / \

\\:)
=
~dz~

=:^Wn(Z) '
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50. Weierstrass's Theorem. It is possible to construct an

integral function with zeros of the first order at the isolated

points a
lt

a.
2 , a

3 , ..., these points being arranged in order of

ascending moduli, provided that, for some integer n, the series

-

n
i absolutely convergent.

Let v(,)_^+
I +Jp+ ... +5;, (,= 1,2,3,...).

CO

Then the series ^wr(z) converges (48) absolutely and uni-
P+I

formly in the region bounded by the circle |0|
= R, where

Now let

(r=p+ 1, p+ 2, . .
.),

where the path of integration lies in the circle.

CO

Then the function ^Wr(z) *s holomorphic in that region, and

therefore ( 49, Theorem II) so is the infinite product II

Hence the function

n |Yi -~
1 l\ <^r

is holomorphic in the circle, and has simple zeros at the points

^1 > ^2 *' ^P '

Now R can be chosen so large that the circle includes

any assigned point; hence the theorem holds for all finite

points.

Again, let f(z) be any function of the required type. Then

if
(f>(z)

denotes the infinite product above, f(z)l<p(z) will be an

integral function without zeros, and will therefore ( 42) be

expressible in the form eG&, where G(0) is integral.

Accordingly, the most general function of the required type is

if there is a zero at the

{(i
-
J)
e^ + +

--^},
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Example. From Example 2, 48, we have

1 -j-ao / 1 1 \

cot*-i=Z'(
--- + -).

_,. \z mr inrj

Hence f(cots-i)<fe= 2? [' (
-^ + } dz -

9

Jb\ z) _ Jo \z-mr mrj

Iog
!in =

{log(l--l) + J-).2 -oo I \ ttTT/ ttirj

Therefore sin = ff' f(l
- )e^l = *fl(l

- -. -A
_,o vA mr/ ) i V **/

Note. "VVe cannot put nn**II'(l -
z/mr) : for, since the series 2{l/(2

-
WTT)}

00

is not convergent, the infinite product is not convergent.

The Gamma Function. We define the Gamma Function F(0)

by means of the equation

where y is Euler's Constant. The expression on the right-hand
side of the equation is integral, and has simple zeros at the

points 0, ], 2, 3, ... : thus T(z) is holomorphic except at

the isolated simple poles 0, 1, 2, 3, ... ,
and has no zeros in

the finite part of the plane, (cf. 61).

The Sigma Function. The method employed in the proof of

Weierstrass's Theorem, when applied to Weierstrass's Zeta

Function ( 48), leads to the integral function

with simple zeros at the points 2??^+ 2 ?io>2 ,
where in and n

take all integral values. This is Weierstrass's Sigma Function,

denoted by <r(z).' By logarithmic differentiation, it follows that

<T'(Z)I(^(Z}
=

^(Z )' As in the case of the zeta function, it can

be shewn that <r( z)= o-(z), so that o-(z) is odd, (cf 76).

EXAMPLES VI.

1. Shew that the series

1_1_J_4.1J_ 1 !

z 1! 2+ 12! 2+ 2 3! 8+3
it presents a meromorphic function with poles at the points

0, -1, -2, -3,....
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00

2. Shew that the series ^znjn\ represents a holomorphic function at all

finite points of the plane, and deduce that

3. If l.Kl, prove

4. If z
1

lies within the circle of convergence of the series 2cn(z-
shew that the Taylor's Series for the function at z

l
is Sc,/^-^)", where

5. . Prove that the residues of e
z at the origin and at infinity are both zero.

6. Shew that, if A and B are the residues of el/z z
n
/(l + z) at z= and z = oc :

(i)

7. Shew that the residue of e
2

log ^ at infinity is (e
a -

8. Shew that

[Integrate eiz

/(z
2+ z+ l)

2 round the contour of Fig. 33.]

9. If a >0, prove f dx *
Jo I

10. If > 1, prove ^ ^..-^^
11. If a > b > 0, shew that

^-TsCaJaPIP).a+ b cos

14. If a and 6 are positive, shew thafe

dx

15. Shew that, if w^O,

16. Shew that
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17. Shew that, if a and m are positive,

P s*n2
.f

l 'r
^'

V
2

-.= . {
e~2ma(2ma+ 3) + 4wa - 3 }.

18. If - 2r < c < 2?r, prove
r
30
cosh ex ^ c

Jo cosh 2
7r.r

'

~27rsin(c/2)

19 Integrate
gl g(l~ ?g) round the contour of Fig. 33, and shew that

(1 + 2z2
)
2

I
x ai '

9 .,^= I -;

' '

=^^2 1).

20. Integrate
x^Log

/, where 0<amp2<27r, round the contour of

Fig. 38, and shew that

/ y^ <L_c?l
=

7T, /
j-^-

'

i
^-.

" a sinh 2a

23.' Prove

2 1 20 22 2s
and deduce -:=-

*'"

24. If ?i is a positive even integer, prove, by integrating ^ .
round

a suitable contour, that

si H94 .97 dx e" l
: ~. r == 7T"

25. Prove cosecz= - + ( -1)"Y -+ V
2-9i7T ?i7T/

26. Construct a function f(z) which is holomorphic except at the poles

s= 1, 2, 3, ..., and is such that f(s)
- z cot TTZ tends to zero at each of

thesepoints. Am 1 Ig
7T

27. Prove

J. Shew that t&uz= -

(294-l)7rJ
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29. Prove that, if \s\< 1,

(!+*)(!

30. Verify that :

31. Prove that, if wn=

ie product IIw /?
is converg

32. If \z \
< TT, shew that

the product Hivn is convergent provided k= l and 2

Deduce that, if < z < TT,



CH. VII, 51]

CHAPTER VII.

VARIOUS SUMMATIONS AND EXPANSIONS.

51. Expansions in Series by means of Residues. The theory
of residues has been applied in 47 to the expansion of various

functions in series of fractions. The following theorems enable

us to shorten this process considerably.

THEOREM 1. Let z= 'Re i0 lie on that arc of the circle js|
= R

for which O
l
= = 2 ,

and let zf(z\ as R tends to infinity, tend

uniformly to the limit K, a constant, at all points of the arc, with

the possible exception of the points for which ot e= = oc-f-e

( e arbitrarily small). Also let
| zf(z) = M, where M is finite, at

all points of the arc. Then

Lim

For (Theorem I. 30),

Limff f(z)dz+
R_>^ U0j

and

a+e
f(z) dz}

= i(0
- 0J K- 2ieK ;

Hence

Therefore

Lim

T
'f(z)dz = 2eM.

Ja-e

*/(*)*].-<(4-4)K

Lim
f /(0)<7s

= i(ft,-ei)K.

'I'lu' tlieorem also holds if there is a finite number of excep-

tional values of such as oc.

Integrate f(z)
= eiz

/z round the contour of Fig. 5^, consisting
of the positive x and y axes and quadrants of the circles

|

z
|

= 11 and
|

z
\

= r.

On tlie large circle, if e^# T--:>, :/'(:) !^e^
Ksllie

;
so that zf(z) tends

M.F. H
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uniformly to the limit zero as K tends to infinity. Also, for all points on

the quadrant = e--R*e< L .

Therefore

Hence

/-/B
Lim

/ f(z)dz= 0.
R .tr, lan

2

so that, if the real and imaginary parts are equated,

/"* cos x - e~x
7

Jo .r 2

FIG. 52.

Lemma. The function cot-Trs has simple poles at the points

0, 1, 2, Let these poles be surrounded by circles of

radius r, where r<[l/2; then a positive quantity M can be

found such that cot TTZ = M for all points exterior to these circles.

For (Examples III., 11), cot TTZ =\cot\nry : hence, if

y = a, (a> 0), or = ,
|

cot TTZ
\
= coth ira.

Now consider the region (Fig. 53) between the rectangle of

sides x= rfcl/2, y= a, (a>r), and the circle s =r. In this

region,- since
|

cot 7r2;
|

= cosh ^/^/(sinVaj+ sinh2
7r?/)

cot 7T0
1

= cosh 7ra/sin(7rr/x/2) if a? = r/^/2 or = r/v/2,

and |cot7r2;| = cosh7ra/sinh(7rr/N/2) if y = r/j2 or =r/J2.

Accordingly, since unity is a period of cot TTZ,
\

cot TTS
\

= M,

where M is the greatest of the three quantities

coth Tra, cosh 7ra/sin('jrr/A/2), cosh Tra/sinh (7ny v/2 ).

for all points of the -plane exterior to the given circles.
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We leave the reader to prove that analogous properties hold

for the functions : sec TTZ, cosec TTZ, tan TTZ
;

S)TTZ 1 p"^Z I 1
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Also, by the Lemma above, \zf(z)\= 'M. at all points of \z |

=BH . Hence

Lim

and therefore, as in ^ 47,

Example 2. If < r< 1
, prove

&
rx

j
*

2.^x=+ ~~

52. Summation of Series by means of Residues. Since the

idue of TT cot TTZ at each of its poles is unity,

'

where C is a contour enclosing the poles m, m-hl, ..., n, 01

cot TTZ, and no others^/^j^is meromorphic, and 2 denotes the sum

of the residues of TT o8E\ir$)f(z) at the poles of f(z) within C.

Similarly

y f(r)={ f^ dz
v'=f
^ dz

2"

where 2' and Z" are the residues of

respectively at the poles of f(z) within" C.

+ 00 1 'I

Example 1. Prove 2 7 vt
= "~2 *

[Integrate TrcotTr^-. (x+ z)~
2 round the circle \z\ =B,,= M + l/2, and make n

tend to infinity.]

Example 2. If a is positive, prove

V-M*-L e -7TH2/.
- Va -

Integrate e-^^Ke-^-l) round the rectangle of sides x-

y= 1. Then, when m tends to infinity,

+ =0 -+i

2-*a 3=- I

,+c

4--
"S

- 7r " 2/". (Examples IV.
,
21 .)
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Example 3. Gauss's Sum. Let SM= 2 Tr ,
where Tr =2irir/H. Then

r=0

Tu_,.=Tr ; so that SM=22n ,
where 2n stands for iTo+ Ti + .-.+TV-i or

^T +T 1
+ ... +TM_o+|TH according as ? is odd or even.

2

Now, 2,,-ro or 2n -|T -T(l/2,
as the case may be, is equal to the

integral of **//(** -1) taken round the rectangle ABCD (Fig. 54) of

sides #=0, #=w/2, y= E, indented at O and n/2.

Yyl
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Another Summation Formula is

=^ f-7T6 J

where C is a contour enclosing the poles in, ra+1, . .., n, of

cosec TTZ, and no others, and 2 denotes the sum of the residues

of TT cosec (irz)f(z) at the poles of f(z) within C.

Example. Shew that, if a is any non-zero real quantity,

If a is small, the second series converges rapidly, while the first

converges slowly.

53. Roots of Equations. The following three theorems lead

up to the proof of Lagrange's Expansion.
-

THEOREM I. If
(j>(z)

is meromorphic in a simply-connected

region of boundary C, then, with the notation of 31,

where A<1? denotes the total increment of amp {$(2)} when z

describes C positively.

17 ^< -^ 1
I (^0 ^ 1 A Tr or 2*p 2*$ = ^: -. 1 , 'dz=- :ALo2Td)(0),

27T^J C 0(2;) %7Tl

where A Log <p(z) is the increment of Log 0(0) when z passes

round C. Hence, if
<j>(z)

=

But A log R= 0, since log R is uniform on C
;
therefore

THEOREM II. Let f(z) and 0(0) be holomorphic in a simply-

connected region of boundary C, and let f(z) be non-zero on C.

Then, if
| <i>(z)+f(z)\<\ for all points on C, f(z) and f(s)+ <t>(z)

will have the same number of zeros within C.

For, let w= l + <t>(z)jf(z)\ then, as z describes C, w describes a

closed contour in the w-plane about it'=l, not enclosing the

origin, and amp w returns to its original value.

Hence the increment of amp {/(0)+ 0(0)} is equal to the

increment of amp {f(z)} ;
and therefore, by Theorem L, these

two functions have the same number of zeros within C.
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THEOREM III. If f(z) is holomorphic for < r, and is not

zero at the origin, a finite quantity p can be found such that,

if w ^-p, the function \^(z,w) z wf(z\ regarded as a func-

tion of z, has one and only one zero in the circle \z\
= r'< r : and

this zero is itself a holomorphic function of w for w
\
= p.

For, let p be chosen so that, if \z\
= r,

^(z, w}-^(z, 0) =>/(*) <r',

provided ;

i<; = p. Then

(z,w)-+(z,0)
'

+(*, 0).

so that, by Theorem II., if w\^p, \f/(z, w) has one and only one

zero, f say, within
j

z = r.

Now, the integral

_
f.

-Trij
.

2-Trij \[r(z, w) 27ri Z wf(z)
'"

taken round
j

5; = /, is a holomorphic function of it; ( 34). But,

if w\^p, this integral has the value f ( 31, Corollary 2).

Hence f is a holomorphic function of w for
|

^
|

= /o.

COROLLARY. If F(z) is holomorphic for \z <^r, F(f) is a

holomorphic function of w for
|

w = p, and

F(f)

wliere the integral is taken round
|

z
\

= r, ( 31).

54. Lagrange's Expansion. The results obtained in Theorem
III. of the previous section can be stated thus : let f(z) and F(z)
be holomorphic for \z\<r, and let f(z) be non-zero for = 0;

then, if z denotes that branch of the function of w given

by z = wf(z), which vanishes when w = 0, a finite region |

w
\

^ p
of the ^<;-plane can be found in which F(z) is hdlomorphic. The

Taylor's Series for F(z) in this region can be found as follows.

Let C denote the circle \z\-r\ then
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since \wf(z)/z\<^l,

if ?

2iriJ

since all the integrals in the first series have the value zero,

(26, Cor. 8).

In particular, if F(s) = 0,

These are the well-known expansions of Lagrange.
If the origin be changed to the point -f, and 0(z) be written

for /(0 f), these expansions become

and

where z is that root of z = g+w<f>(z) which has the value

when w = 0.

Example. Shew that the root of 2(1+2)"*= ^?, which is zero when v;= 0,

is given by

.. ,# i

, .

"2T 3! 41

Rodrigues Formula for PM (f). If 2; is that root of

*f+w("-i)A
which has the value (=/=l) when u = 0,

Before differentiating this series with regard to f, we must

shew that a region can be found in the -plane in which the

series is uniformly convergent.
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Let f be replaced in the expansion by \ = ik, where k

is real and positive; then it follows from the theory of

Lagrange's expansion that a value of p, say p-p l ,
can be

found such that the series

is absolutely convergent if \w
strass's M Test, since

2

= p l
. Accordingly, by Weier-

provided | f \

= k, the series of equation (i) is absolutely and uni-

formly convergent in w and f for
|

w
\
= pl

and for
| f |

= k
;
and

/c can always be chosen so that
| f |<&. Hence (43, Th. 3)

-

Now

where that branch of ,/(! 2w-}-w~) is taken which has the value

1 when w =
;
therefore

1 + W"P - 46 >

Hence, equating the coefficients of iun in the two expansions

for
-^,

we have Rodriguez' Formula,

By differentiating the product (f
2 -

l)
n =

(f
-

1 )
M
(f+ l)

w n times

it can be shewn that the formula is also true in the exceptional
cases f

= 1.

COROLLARY.

S
"
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Example 1 . If m i= n, I* PIH (x)Pn(x)dx= 0.
.'-i

For let m>n : then, by repeated partial integrations,

(,)p,^

= 0.

Example 2. Shew that Pn
'
2
(^) <&,-= 2/(2w + 1).

J-

As in Example 1 we have

-* 1 where A'=2*
1 -

Example 3. Shew that

s=AHPn()+AH_aPII_()+ A <l
_ 4P>,_4(s)+

where An=2B
(w!)

2
/(2w)!.

Example 4. Shew that :

(i) T 3wPn (,s)cfe=0, where
'

55. Analytical Continuation. If f(z) is holomorphic in a

region S, if ^(2;) is holomorphic in a region S', which includes S

and if <l>(z)=f(z) for all points of S, (/>(z)
is said to give the

Analytical Continuation of f(z) in the region S
7

.

00

For example, the function f(z)
= ^zn is holomorphic at all

o

points within the circle |z|
= l, the function </>(z)

=
l/(l z) is

holomorphic except at z = 1, and 0(0) =f(z) within z\
= l. Thus

<j)(z) gives the continuation of.f(z) over the rest of the plane.

Example. If f(z)
= ^llz

tl

,
over what region is/(0) holomorphic, and what

function gives its analytical continuation ? ^4?is. Outside |0|
= 1; !/( 1).
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The following theorems are useful in determining the ana-

lytical continuations of functions.

THEOREM I. If a holomorphic function f(s) and all its deriva-

tives vanish at a point a, f(z) and all its derivatives will vanish

at all points in the domain of a.

For f(z)
= ^cn(z-a)

n
,
where cn=fn

\a)/nl, (n = Q, 1, 2,...);
o

thus c = e
1
= c

2 =...=0, and therefore f(z)t f(z), f'(z),..., all

vanish at all points of the domain.

COROLLARY. If two functions and all their derivatives are

equal at a point a, and if they are both holomorphic in a circle

of centre a, they are equal at all points of the circle.

For the differences of the two functions and of all their deriva-

tives vanish at a.

THEOREM II. If f(z) and all its derivatives vanish at a point
of a connected region E in which f(z) is holomorphic, f(z) will

vanish at all points of E.

Let A (Fig. 55) be the given point, and P any other point of

E. Let a path AP in E join A and P, and let d be the shortest

FIG. 55.

distance from any point on AP to the nearest singularity of

A*) i
s that the domain of any point on AP must be at leas

of radius d. On AP take successive points A, P
lt
P

2 ,
P

3 , ...,

such that each lies within the domain of the preceding point.
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They can be selected so that, after a finite number of steps, a

domain is reached which contains P. Then (Theorem I.) f(z)

and all its derivatives vanish at P
1?
P

2 ,
P

3 , ..., and therefore

at P.

COROLLARY. If two functions and all their derivatives are

equal at a point of a connected region in which they are holo-

morphic, they are equal at all points of the region.

THEOREM III. If two functions f(z) and 0(0) are equal at all

points of a line L in a region E in which they are both holo-

morphic, the functions are equal at all points of E.

For, if the points z
l
and z

2
lie on L,

Lim = Lim

Thus the first derivatives of f(z) and <j>(z) are equal at all

points of L. Similarly all the other derivatives of f(z) and (j>(z)

can be shewn to be equal at all points of L; and therefore the

functions are equal at all points of E.

This theorem is particularly important, as it enables us to

extend theorems which have been proved for the real variable

to complex values of the variable. For example, let

and s = l:

theu, if we assume that the equation

sin'2#+ cos2 a; = 1, or f(x) = <f>(x),

has been established for x real, it follows, since f(z) and 0(0) are

holomorphic for all finite values of z, that /(z) = 0(z) for all

finite values of z; i.e. that si

Example 1. Prove P.(f)-A*

Since the zeros of 1 2zf+{
2 are i(l \/2), the expansion

is valid if f!<\/2-l. Hence the- series of positive terms 2|Pn(z)|R*,
where R=0'4<\/2-], is convergent.

But, if
|

z
\
^ 1, | P(*) 1

^
|

PM (t) |, ( 54, Corollary).

Tims the series ^fr^-p^ 2P()f"

is uniformly convergent with regard to both z and provided |

z
\ ^- 1, ! f | = H.
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Now differentiate with regard to z and in turn
;
then

so that (

Accordingly, if the coefficients of " are equated,

P.fr)-,g-<L)-'*
P
r' (

'>. where |K1.
Cfo CT2

But the functions on both sides of this equation are holomorphic for all

values of the variable
; therefore, for all values of z,

Example 2. If ze
bz= w, shew that

provided ?0
|
< e~l

/\
b

\

.

[Apply Lagrange's expansion for F(z)=e
az

. Since the series is convergent
for 'w\<Tl

/\b\, it follows, by the principle of analytical continuation, that

the equation holds for that region.]

56. Abel's Theorem. A power series represents a continuous

function at all points within its circle of convergence. If the

series also converges at points on the circle of convergence, the

following theorem shews that the region of continuity includes

these points.
XI

THEOREM. If the power series ^cnp
n =

<f>(z)
be convergent at

o

a point on its circle of convergence, and if z be a point within

the circle,

?enzQ
n =

Um<j>(z),
,.

--^o ^
where z tends to Z along a radius.*

Let ^ = /o(cosO-hisin 0): then

cnz
n = cttp

n
(cos n + i sin nO)

=2c
/>o

naj" cos nO+i^Cnp^x" sin nO,

where x =
/o//o

. <

Hence it is only necessary to prove that if the series s^

wnere O =cco87 or

is convergent, the function 2^a nx
n will be continuous for O^x^l.

*
Cf. Brninwich, Infinite X-/Yx, 83.
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Now let r
llt p
= aH+l+ an+2+ . . . -f an+lt

.

Then for any particular value of n, finite quantities H and h
can be found such that H>rMf ,,>/*, where p is any positive
integer. Hence

a.

tl p
- rn p

-a^
if 0a;

Similarly, a,l+1^i+1+ aH+2fc+
2+ . . . + a

B+Jlaj
N +J'> //..

But an m can always be found such that
|

H |<e and
|

h

forn^m; so that
l^^^a^^^/.^o,^^ <

Hence the series converges uniformly for O^a-^1. Conse-

quently the theorem is proved.

COROLLARY. If the series converges at all points of an arc
of the circle of convergence, <j>(z) will be continuous on that arc.

Example 1. Consider the function

rendered uniform by a crosscut along the negative real axis from - 1 to - oc .

V,

FIG. f>(j.

Let A and P be the points
- 1 and z respectively, and let the circle of

centre A and radius AP cut OX in E (Fig. 56). Let the integral be taken

along the path ORP : then

where > denotes z_OAP.
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Now, if |*1<1,

and this series converges at all points of the circle
|.*|
= 1 except A, (Abel's

Test, 38). Thus it represents the continuous function log(l+^) in the

region of Fig. 56, bounded by the circle \z\
= l indented at A. Accord-

ingly, if P is the point z= e
ie

,
where -TT< #<TT,

so that, if real and imaginary parts be equated,

cos 20
.
cos 30

3

^ UUS^f UU t>l/

COS r- "I -... = .

rO]
2 J

2

. sin 20 sin 3
ui6 2" +~3~

^= in the first equation gives log 2= 1 - 1/2 + 1/3- ....

The two series

of 38 are uniformly convergent in the interval e^0= 27r e,

They can therefore be integrated term by term.

H '-ample 2. If - TT g^ ^ zr, prove

. COS26' COS 36* 0-

3. If A, B, P (Fig. 57) are the points ?', i, and z respectively
shew that, for all points of the region bounded by the circle \z\

= l indented

at A and B,
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Deduce

,

cos SO cos 50
f

^M, if cos is positive;
(i)cos0- + _

l

_...= ,
o, ifcos<9=0;

[
-

7T/4, if cos is negative :

EXAMPLES VII.

1. Integrate -{- -e~ 2

J
round the contour of Fig. 52, and shew that

'

2. Prove

3. P,ove

4. Prove
] -UU* ^

5. If - TT^ r^ TT, shew that :

1

2
(i) ^T

e
''"+ 6

~''2

_ 1 1 cos r cos 2r cos 3;-

' 8 - -"z
~

2 2

cosr cos2r cos3/ %

6. If - - < r < TT, shew that :

(i) ? g
r2 e~" sin r 2 sin 2r 3 sin 3r

/\ TT sinrz sinr 2sin2r 3sin3r
*

"V-1+ 38-4 a-9

7. Shew that P/
Jo .r 2

8. If - 6 < ' < />,
shew that

/.% p /"" sin aA' dx TT sinh

,'o sin bx 1 +,v2 2 sinh b

cos ax x d% TT cosh a
("\ P /

Jo

(iv)P

,

/*" sin era? dx _ TT sinh a
.

.'o cos bx x(\ +,v2
) 2 cosh b

'

cos ax dx TT cosh a

(v)P

.'o cos bxl+x* 2 cosh 6
'

""sin ca? .rc?^; TT sinh

Jr> cos fejt; 1 +#2 2 cosh //
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9. If m > 0, prove
f*

3 dx
I cos 4mx tanh x = log (coth ?/ITT).

10. If a and b are real, and TT< b < TT, prove

r cosh fca: cosh(/2)cos(6/2)
/ r- cos ax dx=--\^--^4-**
Jo cosh TTX cosh a+ cos 6

11. Prove

12. Shew that, if m is a positive integer, the root of z= + wzm+l which has

the value when w=0 is given by
+ 3) . . .

| ^2m + l
, ^ ,

. . . ^nm + l
|

provided |

w
\

< mm
(m + 1)-"*-

1
1 ^|-'

rt
.

13. Prove that the coefficient of z
tl~l in the expansion of {2/(e*-l)}

H
is

(
-

I)"-
1

. [Use Lagrange's Expansion for w=ez -
1.]

14. Prove that the coefficient of z
n~^ in the expansion of

is 1/2. [Use Lagrange's Expansion for iv=z(2 + z)/(l + z)
2
, F(2)=log(l +z).]

15. If m and w are distinct positive integers, shew that

1, Prove

17. Prove
/P-+i(*)P^(^^

18. Prove

19. Shew that n_^^ =
(2

.

?
_
1)Pn_l(4

20. If
1

10 <l/4, shew that

where w=z(l z).

21. If
[ '"|</3-

1

,
shew that

where z is that root of log z= wz which has the value +1 when w=
[In Ex. 2, 55, puta=l, b= -l,^=

22. If n is a positive integer, shew that

[In Ex. 2, 55, multiply by e$~~, and equate the coefficients of 2".]

M.F. I
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23. If is real and
| 1

< e~\ shew that :

1 2- *3
3

(i) cos 0=1 -0sin0+^0
2 cos 20+^03 8^30-^04 cos 40-..

[CH.

[In Ex. 2, 55, put a=b=i.\

24. Prove that, for all points within and on the circle
|

z
\

1,

and deduce that

... cos 20 cos 30 cos 40w 1.2 2.3
^

3.4
/ /9\ fi= (l+cos0)logf 2

cos-J
-cos 0-^sin ;

.... sin 20 sin 30 sin 40
2

/ n\ a
= sin log (2 cos - }

- sin + -5 (1 + cos 0).

rJn =log2.25. Prove

[Integrate
561

'

26. If -
1/2 <m < 1/2, shew that

f
30

sinh2 wi# , , ,

^r dx= i log sec mir.
Jo x sinn x

27. Shew that, if < amp z < 27r,

Deduce :

round the contour of Fig. 33, and use Ex. 1

Graph the functions represented by these two series for all values of 0.

28. Shew that

sin 30 sin 50
H-- ~

29. Shew that

7T/4, if sin 0>0.
_ . . /,^ sin 0=0.

-7r/4, if sin0<0.

!T /9 if _!r -< #<iT
4V 2=^ = 2'
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30. Shew that, if - Tr/3 < < Tr/3,

f.
COS 50 COS 16 COS 11 # _ 7r

v/o~
^5~~ ~T~ 11

=
6

31. Shew that the locus represented by

I tlt'sin^sin^O

consists of two orthogonal systems of straight lines dividing the (#, y) plane
into squares of area 7r

2
.

32. Shew that the equation

2 I
sin ttycosft#=0

represents the lines y=mir, (ra
=

0, 1, 2, ...), together with a series of

arcs of ellipses whose axes are of lengths TT and 7r/\/3, placed in squares of

area 7r
2

. Draw a diagram of the locus.

*> / _ ly*- 1

33. If f(x, y, z)
= 2 i

1
sin nx sin wy sin 7?^,

i=l W

shew that, within the octahedron bounded by the planes xyz=Tr>

34. If

shew that, for < 6 < Tr/6, r=2 cos (0+ 7T/3).

Graph the curve foi 1 values of between and 27r.

35. If w= z(l +22
),
and the principal value of tan" 1 * is taken, prove that

4 w3 6 . 7 w5 8 . 9 . 10 w7

ten-if-^-jy 3-+-^ T - ^y 7
+-.. ,

provided |w|<f\/3.

36. Shew that the two functions 4? tan 2 each possess only one zero

within the unit circle.
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CHAPTEE VIII.

GAMMA FUNCTIONS.

57. The Bernoulli Numbers. The Bernoulli Numbers B
1?

B
2 ,
B

3 ,
...

,
are defined by the expansion

v * T^
= i -+ VC IV1

- 1 -
n^zLn

e*-} 2
+2/

(2w)|
*

considered in 44. Their numerical values can be found by the

method established there
;
thus

"i
=

ib ^2 = inr BS= TV>

From the expansion it follows that ( l)
n ~ 1Bn/(2ii)! is the

residue of l/{z*
n
(e*-l)} at = 0. But (Theorem II, 51)

where c
v
denotes the circle \z

= (2i/+l)7r. Therefore
T5 oo -I co 9

(_l)n_E!!_ = y/ L, = (_l)ny ^_

".-' j-
Example. Shew that J^+i^ + J^+ ... =

|:.

T/te Bernoulli Numbers as Definite Integrals. If a is positive,

.+6-''
a = ?r cot OTS). <?-"<&, (52)

'C

where C denotes the rectangle ABCD (Fig. 58) of sides x = 0,

x=b=n+ 1/2, y = R, indented at O.

The integral of (l/2i)cot (TTZ). e~ a "

along the small semi-circle

tends to -J, (30, Th. 2). On the contours ECDF and GABE
replace (l/2i) cot (TTZ) by

i i
and A-f n

-
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respectively. The integrals arising from the terms J and + J

tend to
p P

^ e~ az dz and ^1 e~ az dz
"JECDO "JOABE

respectively. But, since e~ az is holomorphic in the rectangle,

each of these integrals is equal to

Thus we find

where

and

Now

so that

p=
J

- ax dx.

Y,

'
1

i
t

A B

FIG. 58.

Hence LimI
1
= 0.
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2 f
6 2

Again, 1

1
5

'

LimI = 0.

.-a = l_l^r2sinat/
a 2

Hence

Accordingly

But

Hence, expanding sin at/ in powers of a (cf. Bromwich, Inf.

Ser., 176, B), and equating coefficients, we have

B,

Example. Prove

58. The Asymptotic Expansion of Euler's Constant. Let

O Til I L.
\AJ% / Q C? O \

where C is the rectangle ABCD (Fig. 59) of sides o;=l, x =

y = R, with small semi-circles at 1 andvjt,.

D C

i t

FIG. 59.

The integrals of (l/
/

2i)cot(7r2;).2;-
1

along the small semi-circles

at z= 1 and z= n tend to J and l/(2n) respectively (30, Th. 2).

On the remaining portions of C replace (I/2i)cot(7rz) by
'

e -zmz_
or
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according as z lies above or below the #-axis. The integrals

arising from the terms ^ and + i each tend to
"

Thus we find

= l
\

l
\ (

ndx
i r 2y dy

f

R

2~
h
2tt~

h
J 1 aj+Jol+^e2"*-! J

T _ dx C
n 1 dx-

v 2 dx
--

so that Lim 1 = 0.

R-oo

Hence

S .

But f _?SL _^_/l rgy^y -

Jo 7i
2+ y2 e^-l^?i2

Jo e2^-!
'

therefore, as n tends to infinity, Sn log n tends to the limit

If" 2y q

This limit is Eider's Constant, and is denoted by y. Thus

Bo

where

= r 2y2k+i dy ^ i r
Jo W2

*(w
2+ y

2
) e2^- 1

< ^'+^ J
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00

V* -I
/r2fc+2

Now Bw = (2fe+l)(8fc+8) r4r
"

r=l

but lr*Slt*=^6 and lr2*+ 2 >l, so that

CO T>

Thus the infinite series 2 ( I)*'
1 srA. is divergent

^i 2kn2k

Nevertheless, if sufficiently large values of n are taken, the

sum of a few (say k) terms will give the value of y to any

approximation required. For R^ can be made arbitrarily small

by increasing n. An expansion such as this, consisting of

a finite number of terms and a remainder which can be made

arbitrarily small by sufficiently increasing the variable, is called

an Asymptotic Expansion.

Example. If n= 10 and k= 2, shew that E fc< '000000004.

59. Convergent Integrals. In our definition of an integral

we assumed that the path of integration did not pass through
a singularity of the integrand /(). It is sometimes possible,

however, to extend the definition to include cases in which

an extremity z
l
of the path is a singularity of f(z).

Let %' be a point on the path of integration ; then, if the

ftf(z)dz tends to a definite value as tends to zlt this
z

(X
limit is taken as the value of I f(z)dz, and the integral is said

JZo

to be convergent. The necessary and sufficient condition for

Jz"
f(z)dz should tend to zero as z and z" tend to zr

The following two rules are useful for determining the con-

vergency of integrals.

RULE I. Let z
l
be a finite point ;

then if a number n < 1 can

be found such that (z z^)
n
f(z) tends to a definite limit L as z

tends to z
l , the integral I f(z) dz will be convergent.
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For if z be chosen so that
|
(z z^)

n
f(z) L < e, provided

|0 Zi\ = k, where k= z' z^\ t

*!
d/) , where P =|*-,|

and this quantity can be made arbitrarily small by decreasing k.

Example. Shew that the integral f~
2

-r is convergent.
-fci vUz-ZiX2 -^)}

RULE II. Let the point z
l
be at infinity ;

then if a number

n> 1 can be found such that znf(z) tends to a definite limit L
as z tends to infinity along the path of integration, the integral

will be convergent.
For if z' be chosen so that, for points z on the path of integra-

tion between z' and infinity, znf(z) L
|
< e,

,
where >=s, K=

|L|+e

and this quantity can be made arbitrarily small by increasing K.

Example. Shew that the integral /
e~z

z
n
dz, taken along a straight line

making an angle < with the .r-axis, converges if ?r/2 < (f> <7r/2, and n> 1.

60. Uniformly Convergent Integrals. Consider the integral

ff(z
t f) cZ0, where /(0, f) is holomorphic with regard to both 3

c

and f at all points of a region A in the z-plane which contains

the curve C and at all points of a region A' in the f-plane,

except for a singularity at the (upper) extremity % of C.*

Let z be a point on C, and let C
t
be that part of C which

has z' as its (upper) extremity. Then if, for all points f of A',

I f(s, Qdz tends uniformly to the limit 0(f) as z tends to z
lt

the integi'al is said to be uniformly convergent in Ar

.

*
It is assumed that the path C is independent of f.
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THEOREM. If f(z, )dz is uniformly convergent in A', it is a
J c

holomorphic function of f at all interior points of A', and

ajjsf
A* f)<fc=J |^/<*.

f)<fe, <=i, 2, 3, ...).

Let z' be chosen so that, for all points f in A',
| >/ 1

< e, where

Then 0(f) is continuous in A', since \Kf) is continuous (34)
and |i;|<e.

Again, let f be any interior point of A7

,
and let K be the

boundary of a simply-connected portion of A' of which f
'

is an

interior point. Then

o that

.+

- eL

where d is the shortest distance from f
'

to K, and L is the length

of K.

Hence I =~= f(z t ?)dz or \!s
M(n

converges to the limit ^ -*
I rffT^i as s' tends to 2

l ;
and

therefore

In particular, if ?i = 0, /(^, f')^ converges to the limit
Jo

,
So that 0(r) = - - Now this integral

^TT'UK ^

is holomorphic (35, Corollary 2) at f. Hence 0(f) is holo-

morphic at f ', and has the derivatives

Example 1. Integration under the Integral Sign.

If C' is any path in A', f <(0^= f ( /(*,
Jc'* ~'c J<y
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For (
<t>(Qd=l VKCK+f rjdf

Jc' Jcr JGf

= 11 fa K<fe+ f V<%, (34, example).
JCi J0 Jc'

Now
/ 7?d <eL, where L is the length of C'. Hence / / /(z, {)ddz

\ Jc' J<h JO

tends to the limit
/ </>(O^C '

so that
-'C'

f <KK= f f /(*, Mi**.
Jc1 Jc Jc'

The following two rules, the proofs of which are similar to

those of 59, are useful for determining the uniform convergency
of integrals.

RULE I. Let the extremity z
l
be a finite point ;

then if, for

all values of in A', a number n< 1 can be found such that

(0 z^
n
f(z, f) tends uniformly to the limit L(f) as z tends to z

lt

the integral I f(z, )dz will be uniformly convergent.
Jc

RULE II. Let the extremity considered be at infinity; then

if, for all values of f in A', a number n^> I can be found such

that znf(z, f) tends uniformly to the limit L(f) as z tends to

infinity along C, the integral I f(z, g)dz will be uniformly

convergent.

Example 2. Consider the integral 4>(z)= / e^^dt^ where R(2)>0.
Jo

Let a^x= R(2)^ 6, where a> ; then, if *> 1,

|

re-*?'1

1

= e-$*+n
-1^ e- f

t
b+n-1

.

But Lime~ i!

;
6+n-1 =

; hence the integral converges uniformly at its
t >-QO

upper limit.

Again, if t < 1,
|

t
n
e-*t

z-1

\^ e~'r+n-1
.

Now choose a and ?* so that a < I and (1
-
a) < < 1. Then

hence the integral converges uniformly at its lower limit.

Now, if R(2)>0, a and b can be chosen so that a^~R(z)^b ;
hence

isholomorphicfor R(2)>0 and has the derivative f e^^
Jo

It is easy to verify, by partial integration, that: (i)

(ii) </>(!)=! ; (iii) if m is a positive integer, <j>(m
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Example 3. Consider the integral

taken along a straight line which makes an angle ^ with the .r-axis. If

satisfies the inequalities

where r is positive, all the values of f are excluded which make 2 +22 =0.

Now, if \z\=p>Il,

fel'g* <"^
which tends to zero as p tends to infinity if l<w<2 ;

hence the integral

converges uniformly at its upper limit.

Again, if \z\
=p<r,

which tends to zero as p tends to zero if 1 > n> ;
hence the integral

converges uniformly at its lower limit.

Accordingly, <(f) is holomorphic, provided ^r ir/2 <ampf<^r+ 7r/2,

Example 4. Consider the integral

taken along the path of Example 2, where - 7r

Let f be confined to the region defined by

Then, if || = /

ir/2.

where x (
= /acos^) tends to infinity with

/>.

Now, if n< 2,

hence the integral converges uniformly at its upper limit.

Again, log
( 1 _^27r?)

= -
log z+ log/(s),

where /(0) is holomorphic at 2=0. Therefore, by Example 2, the integral

converges uniformly at its lower limit.

Accordingly, <() is holomorphic, provided



60, 61] THE GAMMA FUNCTION 141

61. The Gamma Function. Gauss's Definition. Let T(z)
denote the function

n ! nz

Then

so that this definition is equivalent to that of 50.

The following properties can easily be deduced from the

latter definition :

(ii) r(m+ l) = m!, where in is a positive integer;

(iii) T(z)T(l-z) =-^;SmiTZ

(iv) the .residue at z = in, where in is zero or a positive

integer, is ( l)
m
/m!.

The Function ^r(z). Similarly, if \[s(z)
= -=- log T(z+l ),

we have:
dz

(ii) ,/,((>)= -y;

(iii) ^() = l+l+ ...+l

(iv) \fs(
z l) = \ls(z)+ 7r

Gauss's Function II (z). The notation 11(2;) is frequently used

instead of T(z+ 1) : thus

U(z)= zli(z-l\ n(m) = m!, and U(z-l)TL(-z) = Tr/sm TTZ.

Euler's Definition. The Gamma Function may also be defined

as the integral I e'^3 ' 1 ^, provided R(2;)>-0. We shall now
Jo

prove that the two definitions agree for values of z which satisfy

this condition.
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If R(z)>0, and n is a positive integer, then, by partial

integration,

+

Thus, writing y u/n, we have

so that r(2;)

Now let /(t*)
= 1 -&

(l
- -Y,

\ lu/

where Q^-u^n', then

Thus /(^) is an increasing function
;
so that

I- >Q, or 6-^(1--) .

n/
~

Again,

fu
fw / ^,\n-l^, x,w fu

f(v)dv=\ ^(l--) -^<-
o Jo \ n/ n nJo

Accordingly, if ^ u^ n,

(fii\n

n,2

1-) <1L.W ~2n
Now we can write

vdv eu-^~

o

f'' f'' / ii\n
- e-"^- 1^- [l-.-W- 1^

o \ Ja J\ n/

Let a be chosen so large that, for all values of n greater than a,

j

n

e- uuz -

a

Cn / n, \ ?i

and therefore
( 1 -- ) uz ~ 1du

J \ n/
< e ;
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f/to n

Hence, if R(V)>0,

r(z) = Limf'Yl--Y
l

-*J<A n/

Gamma Function expressed as a Contour Integral.

Euler's expression for F(0) can be replaced by the following,

which holds for all values of z.

Consider the integral I e~
Jc

t
where C is the contour of

Fig. 60, with its initial and final points at infinity on the posi

FIG. 60. FIG. 61.

tive -axis. The initial and final values of amp f are taken to

be and 2?r respectively.

Now replace C by the contour of Fig. 61, consisting of the

-axis from + oc to e, the circle
| f |

=
e, and the -axis from e

to +x . Then, if R(V)>0, we have, when e tends to zero,

Now the functions on both sides of this equation are holo-

morphic for all values of z. Hence the equation holds for

all values of 0, and

1. Prove that _
1 ()

where C denotes ;i
]);itli

which starts from - oo on the J-axis, passes round

the origin in the positive direction, and ends at - oo on the -axis. The
initial and final values of amp are taken to be -TT and TT respectively.
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Example 2. Gauss's Theorem. IfR(y-.-/3)>0

For ( 36, Example 2)

F(oc, ft y, 1)

xF(a, ft y+ rc+1, 1).

C

= Lim
-~

and Lim F(o., ft y + w+ 1
, 1)

= 1.

Example 3. If E (y) > 0, R (y
- a. - /?)> 0, shew that

F(--, -ft y-a.-ft l)
=
F(oc,fty, 1).

62. The Beta Function. Consider the integral of

f(z)= zP-\l-z)<i-i

taken round a closed contour which starts from a point A
(Fig. 62) on the #-axis between and 1, and is composed of :

FIG. 62.

(i) a circuit APA round z = 1 in the positive direction
;

(ii) a circuit AQA round z = in the positive direction
;

(iii) a circuit ARA round z = 1 in the negative direction
;

(iv) a circuit ASA round z= in the negative direction.

After describing this contour /(z) returns to A with its initial

amplitude, which we assume to be zero. The integrand is a

multiform function
;
but since, at every point of the path, the

branch integrated is uniform and continuous, the definition of

26 holds for the integral. The notation

rd+.o+.i-.o-)

f(z)dz

is used to denote this integral.
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The path APA can be deformed into the contour consisting

of : the ic-axis from A to 1 e, the small circle z 1
1

= e described

positively, and the #-axis from 1 e to A. Such a contour is

called a (positive) Loop. If it had been described in the opposite

direction, the loop would have been negative. Similarly the

circuit AQA can be replaced by a positive loop about the origin,

and the circuits ARA and ASA by negative loops about z 1 and

z = () respectively. As z describes the circular part of the first

loop, the value of f(z) changes from f(x) to f(x)e
2qiri

; similarly,

the descriptions of the circular parts of the other three loops

give/(z) the values J-(x)e
2(̂ +^ iri

) f(x) e*piri
,
and f(x) respectively.

We now make the radii of the circular parts of the loops tend

to zero
; then, if p and q are real and positive,

f(l+, 0+.1-.0-)

*-i(l-.*)r-i<Zs
J p

*1

***} xP- l
(l -x)*-

1 dx
Jo

, q)

Now the functions on both sides of this equation are holo-

morphic in p and q ;
hence the relation holds for all values of p

and q. Accordingly, if we define ~B(p, q) by the equation

we have, for all values of p and q,

m+,o+, i-,o-)

Example 1. With the same initial conditions, shew that

/(!+, 0-.1-.0+)

Example 2. By means of the transformation #=(2-l)2
,
shew that,

if R(p)>0,

Deduce that, for all values of p,

(i)

The latter equation gives the Duplication Foi-mula for the Gamma
Function.

I.F.



146 FUNCTIONS OF A COMPLEX VARIABLE [CH. vm

63. The Asymptotic Expansion of the Gamma Function.

From the expression

we derive the equation

Now let C be a closed contour (Fig. 63) consisting of a semi-

FIG. 63.

circle of radius p+ 1/2, where p is an integer, part of the ^/-axis,

and a small semi-circle at O
; then, if R(2;)>0,

V 1 J_
V(^+ ^)

2~27ri

The integral of (l/2i) cot (TT^ ) . (z+)~ 2 round the small semi-

circle tends to l/(2z
2
), ( 30, Th. 2). On the remaining part of C

replace (l/2i) cot (xf ) by

or

according as I(f)<0. The integrals arising from the terms I

and -f \ each tend to
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Thus we find

V l 1W

where Lim 1 = 0. Thus

Hence

(60, Ex. 1),

where the constant K must be real, since all the other terms are

real when z is real. Therefore

where K x

is a real constant, and

(60, Ex. 4)

Now, since T(x

so that K=-(a5-f-i)logl + - + l+ J(aj)-J(aj

hence LimJ(oj)= 0, and therefore K = 0.

X >-co

Again, since T(z)F(lz)= Tr/simrz,

TQ I iiQiy iu)=
^e

~

Therefore

where tan~ 1

(2it) denotes the acute angle whose tangent is 2u.

- f log(l-e-2m?)^77= _^_r
i

iog(i_ a;)^j where x= e-27rr,
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Now, if x and y are positive,

xdrj

-vX^+ rf-

Thus LimRJ(J+m) = 0; so that (40, Ex. 2), K'= logv/27r.

Therefore

Again, let J^(z) denote the integral ( 60, Example 4),

taken along a straight line making an angle \]s
with the -axis,

where 7r/2 < i/r< 7r/2 and z=f=Q. Then, since, for values of

amp f between and
\/r,

tends uniformly to zero as f tends to infinity, J^(a?)
=

J(cc

(30, Th. 1).

Now J^(0) is holomorphic for the region R^ defined by

Also, corresponding to any point z for which TT< amp z< ?r

YA

FIG. 64.

and z=f=Q, & value of
i/r

can be found (Fig. 64) such that the

positive aj-axis and the point z both lie in R^,. Accordingly, by
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the principle of analytical continuation, since T(z) and Iog0
are holomorphic provided ?r < amp z< TT and z=f=Qt

= log \/27T+ (Z %) log

where J.W -

But,(30,Th. 1),

Hence

Also the least value of |dfif |

is the perpendicular distance

of z from the line uQvJ (Fig. 64). Thus, zi\^\\z\, where

X = cos
((j) i/r), (amp z =

<p)',
so that < X = 1

;
hence

1

Therefore

1

j^-L^ldfl, (39,Ex.l)

Bn+,

The infinite series

B 1 B 1

is divergent (cf. 58) ;
but Jn (z) can be made arbitrarily small

by increasing z, so that, for sufficiently large values of z\,
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a finite number of terms gives the value of the function to

any approximation required, provided ?r < amp z < TT. The
series is therefore asymptotic.

COROLLARY 1. For all values of amp z such that

-
1/2e- z

) tends uniformly to the limit unity as z tends

to infinity.

COROLLARY 2. If z is real and positive, we can take
i/r
= 0.

Then X = l, and T> T

I T (z\ I ^ "
*W I

^
so that the remainder after any term in the series for logT(z)
is numerically less than the succeeding term.

COROLLARY 3. m!=
\/27rra( j

e
12m

,
where < 6 < 1 : this is_/771\m

known as Stirling's Formula. The expression \f2jnni
J

is

usually spoken of as the approximation to m! when m is large.

Example I. Prove tan-1
1 _ ^

=\(\ -

where the principal value of tan"1
^ is taken.

Let C denote the rectangle of Fig. 59
;
then

log(l .2.3...w)=T- .

ATTl c

Hence, by the process employed in 58, we obtain

Again, log(l . 2.3 ...

so that

Hence, if ?i tends to infinity, we have

fStM
Example 2. Shew^that, if - ?r < amp z<ir,

,-a =1.
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Example 3. Shew that, if -
?r/2 < amp < Tr/2 and f =f 0,

j
a+xi

^ ra+Xi
{* TTdz_ _

2irtV_ fl_.,
U ^

2iriJ-a-i r(z+l)iin~~'
'

where a> and the path of integration is a straight line.

If z=~ReM, where -7r<0<7r,

Lim
2->00

! 1= Lim
i -r,. . = Lim 1

IZ^zW*

:Lim . g
R cos 0(1- log R)+R sin 0.0

Hence, if = pe^ and 6 + 0,

=v/2^Lim A- gBcos(l+logp-logR)+Rsin(-*Tir)^Lim
,_>*>

according as sin is positive or negative.

Accordingly, if 7T/2^ 6^ e, or if -
Tr/2^ (9^ -

e, or if - a^R cos ^^ 0,

tends uniformly to zero as z tends to infinity. Thus (60, Rule II.) the

given integral is uniformly convergent.

Next, if -e^ifl^e, let z=Hm ei0
,
where Rm=m+ l/2 and ra is an integer ;

then

Lim -

+ 1 ) Sin 7T2

where 2M^ ! cosec 772; ! ( 51, Lemma). Hence

tends uniformly to zero as m tends to infinity.
It follows ( 30, Th. I.) that the given contour can be replaced by a closed

contour consisting of the line x -a and that part of the circle |s|
=

where m may be increased indefinitely, which lies to the right of this line.

Now the only poles within this contour are those of 1 /sin TTZ
;
hence

TT^Z _ _ i
*

_~ + "

Example 4.* Shew that the integral

2^'J

where -TT< amp(- ^)< TT, and the integral is taken upwards along a

straight line (Fig. 65) parallel to the y-axis, with loops, if necessary, to

ensure that the poles 0, 1, 2, 3, ...
,
are to the right of the contour, while the

poles -a., -0.-1, -0.-2, ..., -/?, -/?-!, -/3-2, ..., are to the left of

the contour, is uniformly convergent. Negative integral and zero values

*Cf. E. W. Barnes, Proc. Land. Math. Soc. t Ser. 2, Vol. 6, Parts 2 and 3,
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of <x and ft are excluded, since the curve could not, under such conditions, be
drawn. Also shew that, if

| f < 1, the integral has the value

while, if
| f |
> 1, it is equal to

-a * -a-3 -a-2

-jS-2 -/3-1 -j8

X

-

yj

Y

FIG. 65.

Firstly, let - =/>e^, where p< 1
; also, let z=~ReiQ

. Then, if e^ O^TT/^

or if - 7T/2^ ^^ -
e, where tan e< i

log (1/p),

Lim

according as sin 6 is positive or negative. Accordingly, since TT

T( -*)<-) or -^
r(y+z)

tends uniformly to zero as z tends to infinity. Thus the given integral is

uniformly convergent.

Again, if - e^ 6^ e,

so that, if R= m-f 1/2, where m is integral,
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tends uniformly to zero as in tends to infinity. Hence it follows, as in

Example 3, that the integral has the value

oL
o

r(y)

Secondly, let p > 1 . Then, since

T(l~y-z)T(-z)
V *' --L-2l --* sn 7r

it can be shewn as before that the integral is uniformly convergent, and that

the path can be replaced by a closed contour consisting of the given line and

an infinite semi-circle to the left of the ?/-axis. The required expression for the

integral is then obtained by taking the sum of the residues within this contour.

An exceptional case occurs when a. and j3 are zero or differ by a positive

integer. Let a.=/3+ 7n, where m is zero or a positive integer; then

the integrand has poles of the second order at the points -., -oc-1,

-0.-2, ____ Now the integrand can be written

so that the residue at the point a. n is

/ iv n*_r(
'

Hence the integral is equal to

003+ 1). ..

.--.
Let amp =

i/r ; then, since - TT < amp (
-

) < TT, it follows that, if < \ff^ TT,

mp(-^)=i/r-7r ; while, if > ^= -TT, amp(-^)=i/r+ 7r.

Accordingly, the analytical continuation of F(a, j8, y, ) when | f |

> 1 is

according as 0<amp^7r or -7r^amp^<0. If OL and ^8 differ by an

integer, the corresponding changes must be made in the expression.
If a cross-cut is taken along the real axis from 1 to + oo

,
the function is

then uniform in the whole -plane.

Example 5. Prove

j*

+
\og{r(z)}dz=]og^+z \ogz-z.

If x is real and positive,

,

where 0<6'<1.
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Hence
*+l

\og{T(x)}dx

where

= log -s/277+ x log x - x+ t(x\

where t(x) tends to zero as x tends to infinity.

Again, / log { F (x} }dx= log x ;

(jL$Gj&

so that
J log { F (x) }dx=K + x log # - #,

where K is a constant.

Thus K must be log >/27r, and therefore

/
1og { F (#)}<&;= log \/27T+ .# log #-#.

J*

Now the functions on both sides of this equation are holomorphic for all

values of the variable, provided that a cross-cut is taken along the negative

real axis from to - x . Hence (55)
fZ+l I

I log{F()}c?.s=log\/27r + zlog2 z.

h

EXAMPLES VIII.

1. Shew that
^4-n...^4.9.-n __ = 2 2-1

.

1.3. 5. ..(2/i-

2. If 2a=26 (Examples VI. 31), shew that

Where

3. Prove that

4. Prove that

5. If m is an integer, shew that

6. If a and 6 are real and >0, and K()>() shew that

(i\
1_ / ei(t>+xi)

MX

(ii) f e-*^**,. .^1= 0.
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[In (i) integrate e
azz~n

~l

along x= b, and shew that this path can be

deformed into that of Example 1, 61 ;
in (ii) integrate e-^-"-1 round

the contour consisting of x=b and an infinite semi-circle.]

7. If p is a positive integer and E(w)> -
lj shew that

~ [+>

z?(z
2 -

I)
ndz=2i sin (^

where is the initial point, and the initial value of amp(2
2
-l) is TT.

Deduce that, for all values of n, the integral vanishes when p is odd, and

that its value when p is even is

8. . Shew that, for all values of z,

10. If ft is a positive integer, shew that

11. If R(2)>0 and amps=\/r, shew that

Deduce that the expansion is asymptotic if -7r/2 < ^<7r/2.

[Replace the path of integration by a straight line from O to infinity
which makes an angle ^ with the positive real axis, and shew that, for

points on this line, t
2+ l

\
i^cos2

^.]

12. If -
7T/2 < amp z=yjs< Tr/2, prove the asymptotic expansion

f
Jo

n-i .....
-1

where
|

Rn
|

13. If s< 1 and -?r/2< amp2=^<7r/2, prove the asymptotic expansion

where
| B. |

<

14. If E(v-oL- /8)>0, prove

Bin ra
r

^
\.

-
y+ a, 1 - g+ a. 1)
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15. If R(y-o.-/3)>0, prove

A y, l)-co8,ra^ffiF(a, 1 -

16. If R(gO>l, prove

17. If RQo - a) > 0, prove

EQo-a, g)

18. If R(p + s) > 0, prove '

s(s-l)

19. If = a+ ^y, where 5 is a positive constant, shew that the limiting

value of
| F(l +2) |

when y tends to + oo is

20. Shew that the analytical continuation of F(o., /?, y, 1/z) for
|

z
\

< I is

according as < amp Z^TT or w~ amp z < 0.

21. Shew that

where the integral is taken along a contour similar to that of Example 4,

63. Values of OL, j8, y, 8, which would make it impossible to draw the

contour, are excluded.

22. If RQt?)>0, shew that

pT(n)

23. Prove r(z)= ~Limnz

B(z, n).
n *oo

24. If R(s)>0, shew that

25. Shew that, if R(s)> -
1,

and deduce that y =
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26. Shew that, if R(z)> 0, R(f)> 0,

Deduce f e-'
Jo

27. Shew that

(iii)

28. Shew that

r(a)ro8)

29. If R(y-o.-j8)>0, prove

30. If a. and /3 are real, shew that

f
r(<x) Infill |

l|r(oL+ l/?)|J nlo I

31. Shew that, if z+ -1, -2, -3, ...,

deduce that ^(^)+ 7 = 2 - 2 log 2.

e-u t
z-l dt is holomorphic in

,
and that

r(e)-e%' T e-*f~*dt
Jo

[Integrate e-$
z~ l round the contour of Fig. 52, 51, and apply the

inequality r
- >- to the circular part of the contour.]

u TT

33. If < R(2) < 1, shew that

34. If < R(s) < 1, shew that

fcos ^ . ^^= T(z) cos

35. If - 1< R(z) < 1, shew that

jTsin
. ^rf<= F(a) sn

36. If < R(s) < 1, shew that
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37. If < R(s) < 2, shew that

'sint ,

38. If B() > 0, shew that

(i) i=

(iii) i
= (_

39. If r > 0,
-

7T/2 < $ < 7T/2, shew that

(i)

(ii) 0=
o t

40. If - TT < < TT, shew that

t
(i) log

(ii) =

[Put 2= 1 +e^e in Example 38, (ii).]

41.

42. If R() >- 1, shew that

r p. I _ /z

LI ir?*

l-

Also, if M is the maximum value of for 0^ t^ 1,

/o 1-*
Now make ra tend to infinity, and use Example 31.]

43. If 27^0, -1, -2, ..., prove

deduce that ^(z)
_ iog g= f (log ( 1 + J_ )

I ) .

n=o I \ z+ nJ z+ n + 1)

44. If E(g) > -
1, shew that
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t_ e -tz\ e-tz_ e -t(z+l)\ /e-t(z+n)_ e-t(z+n+l)\

_ -t(z+l) _ -. (z+2)___ -

Now make n tend to infinity, and use Example 43.]

45. Prove ,=

46. If < R(s) < 1, prove
ri /- i _ # 2

^= H^F^JJo 1 ^

fr

47. If E(^)>-1, prove

_ o/ 1/2

(ii)

deduce

.Apply the transformation l-f. = e
T
to the third of these integrals, and

use Ex. 44.]

48. If H(z) > 0, shew that

49. If R(^) > -
1, R(z2)> -

1, R^ + 2.
2)> -

1, shew that

50. If

shew that



[CH. IX

CHAPTER IX.

INTEGRALS OF MEROMORPHIC AND MULTIFORM
FUNCTIONS : ELLIPTIC INTEGRALS.

64. Integrals of Meromorphic Functions. If f(z) is holo-

morphic in a simply-connected region C, F(V)=| f(z)dz is

Jz

liolomorphic in that region, provided that the path of integration

lies entirely within C. If, however, the region C contains one or

more poles of f(z), the value of F(z) will not necessarily be

independent of the path of integration, and F(z) may be a multi-

form function. Each branch of F(Y) will be holomorphic in a

simply-connected region containing no singularity of f(z). The

path of integration, of course, must not pass through a singularity

For example, consider the integral 1 z~ ldz taken along the

FIG. 66.

path C of Fig. 66 from 1 to z. This path can be replaced by a

positive loop from 1 round O and the straight line L from 1 to z.
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The integrals along the straight parts of the loop cancel, while

the circular part gives the value 2-Tri
;
hence

f dz f dz
-=|

Jc s JL zc L

Now any path from 1 to z can be replaced by a number of

positive or negative loops from 1 about O and the line L. Hence

the most general value of Log z I z" ldz is

J
-f 271? = log z+ 2mri,

L 2

where ^ is an integer. This agrees with the results of 18.

Similarly, if a uniform function f(z) has poles a
1?
a

2 , ..., of

residues Rlt
R

2 ,
...

,
in C, the path from to z can be replaced

by a series of loops from z about a
lt
a
z ,

...
,
and a straight line L

from to z. The most general value of the integral will then be

where 77^, m2 ,
...

,
are integers. If, however, the residue at the

pole is zero, the integral round the corresponding loop is zero, so

that the integral is uniform in the domain of the pole. Thus

r- = z~ l
is a meromorphic function throughout the plane.

Example. Verify, by integrating round suitable loops, that

where m is an integer.

65. Integrals of Multiform Functions. If the path of inte-

gration of a multiform function f(z) does not pass through any

singularity of f(z), f(z) will vary continuously along the path,
and the definition of 26 still holds for the integral. As in the

previous section, the values of F(z)=l f(z)dz may differ with
J-o

the path ;
and the path can be replaced by a series of loops about

the singular points, followed by a straight line from z to z.

]. Let F(s)= / z~ l!
-dz, where the initial value of

- 1/2 is unity ;

the integrand has branch-points at the origin and infinity.
M.K.
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The loop about 2=00 consists of the line AB (Fig. 67), where A and B are

the points z= \ and 2=R (E large) respectively, the circle BCD or U| =R

FIG. 67.

described negatively, and the line BA. But this path can be deformed into

a negative loop from A round O. Hence we need only consider the effect of

the loops about O.

Let L denote the positive loop from 1 about O
; then, since Lim z X 2~ 1/2=0,

2->0

the integral round the circular part of L tends to zero with the radius ( 30,

Th. II.). Also, as z describes the circle, amp z increases by 2?r; so that

amp2~ 1/2 decreases by TT. Thus z~ l/2
changes from 1/V.r'to 1/V# ;

hence

c dz _ ro dx ri dx .

JL Jz }\ \/# Jo ^x

A description of L- 1
, by which we denote the loop L described negatively,

gives the same result.

Since z~lf2 returns to A with the value -1, a second description of L or

L" 1 will give the value 4, and bring z~ l/2 back to A with the value + 1.

Thus an even number of loops gives the value 0, and brings z~ l/2 back

to A with the value + 1
;
while an odd number of loops gives the value -

4,

and brings z~ l/2 back to A with the value - 1. Hence the general value

ofF(z)is 2

where w denotes the integral / z~ 1!2dz along a straight line from A to z, with

+ 1 as the initial value of 0~ 1/2
.

Example**. LetP()= )<&,where/(*)=W(l -22
)and/(*)=l initially.

Also let A and B denote positive loops round the branch points + 1 and - 1

respectively.

Since Lim (z-l)-jr- ^=
0,

z->i vU-^v
the value of the integral round A or A"1 is C, where
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and f(z) returns to O with the value 1. Two successive integrals round
A or A" 1

give the value zero, and bring f(z) back to O with the value +1.

Similarly B or B" 1
gives the integral C, and two successive descriptions

give the integral zero. Successive descriptions of A and B or of B and A
give 20 or 2C, while f(z) regains its initial value +1 at O.

Accordingly, if w denotes / f(z)dz taken along a straight line from O to 2,

with initial value +1, the general value of ~F(z) is mC+ (-l)
m
w, where m is

an integer.

To evaluate C we proceed as follows : make f(z) uniform by a cross-cut

from - 1 to + 1, and choose the branch of f(z) which has the value +1 at the

origin on the lower side of the cross-cut. Then, at a point on the #-axis to

the right of 2=1, amp^/(l 22)^=7r/2 ;
so that

/w-
>

where *J(j? 1) is positive.

so that //()<&, taken positively round an infinite circle, has the value 2;r.

But the great circle can be deformed into the loops A and B taken suc-

cessively, and the value of the integral is then 2C
;
hence C= TT.

Thus the general value of sin"1 z is given by

=
( T

It follows that the inverse function 2= sin w has the property

sm{w7r+ ( l)
m
w}=sinw.

rZ
Again, since / f(z)dz= -w, it follows that z=ain( w). But z= si

thus sin( w>)= sin w, so that sinw is an odd function. Many of the other

properties of the sine function could also be deduced from those of the integral

/ dz

JON/(l-2
2
)'

66. Legendre's First Normal Elliptic Integral. Let

= f(z)dz,
o

where /(z)= {(1 z2
)(l k*zz

)}
7

,
and k is a positive proper

fraction. The initial value of f(z) at z = is taken to be +1.
The integrand has four branch-points, +1, 1, +l/&v -^lfc
The loop A from O about 1 gives the integral 2K, where

Ii

flx

o S/{(1 -a2)(l-fe2
)}'

and f^ returns to with the value

1. Two successive integrations round A give the value 0, and
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bring f(z) back to O with the value 1. Similarly the loop B
about 1 gives the integral 2K, and two successive integrations

round B give the value 0. Successive integrations round A and

B or round B and A give the values 4K and 4K respectively,

and f(z) regains the value + 1 at O.

Since a straight line cannot be drawn from O to l/k without

passing through the singularity +1, the loop L
x
about l/k is

formed by means of a curved line (Fig. 68) above the a?-axis and

FIG. 68.

a small circle about l/k. This loop can be deformed into the

contour (Fig. 69) consisting of :

(i) the ic-axis from O to 1 e y

(ii) a small semi-circle c of centre 1 and radius e above the

a>axis, described negatively ;

(iii) the ic-axis from 1+e to 1/k e;

(iv) a small circle C of centre l/k and radius e, described

positively ;

(v) the ic-axis from I/A; e to 1 + e;

(vi) the semi-circle c described positively ;

(vii) the ce-axis from 1 6 to O.

FIG. 69.

Since Lim (z l)f(z)
= and Lim (z l/k)f(z)

= 0, the integrals
->! s->lfk

along (ii), (iv), and (vi) tend to zero with e.

The integral along (i) gives K. As z passes round c, amp (z 1)
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decreases by x, and (1 x) changes to (x l)e~
iir

; hence the

integral along (iii) is

CtX . -r-r f

1where TT<K =

Again, as z passes round C, amp (z 1 /k) increases by 2x, and

(1 kx) becomes (1 kx)e
2iir

;
hence (v) gives the integral

dx
jW*

Finally, as z passes round c, amp (z 1) increases by x, and

(x 1) becomes (1 x)e
iir

;
so that (vii) gives the integral

dx =K _

Thus the value of the integral round the loop is,2K+2iK',

and/(;s) returns to O with the value 1.

It can be proved in a similar manner that the integral round

the loop L
2 (Fig. 70) is 2K 2^K'. This follows more simply,

Y,

FIG. 70.

however, from the fact that L
2
can be replaced by A, L1?

A' 1
,

taken in succession : the value of the integral along this contour

is then 2K-(2K + 2iK/

)+ 2K = 2K-2iK
/

.

Similarly, the contour C
x (Fig. 70) can be replaced by A and Lj

taken in succession
;
so that the integral round C^ has the value

2K-(2K+2iU
/

)=-2^K
/

,
and /(z) returns to O with the value +1.

Finally, the integrals round the loop L3
and the curve C2 have

the values -(2K+ 2iK/

) and 2iK' respectively.

Hence, if w denotes the integral || f(z)dz taken along a
Jo

straight line from O to z, with the initial value + 1 at O, the
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general value of F(z) is 2mK+ 2niK'+( I)
m
w, where m and n

are integers.

The value of the integral when z is infinite can be found

as follows. Let the integral be taken round the contour (Fig. 71)

consisting of : (i) the straight line from O to z
; (ii) a semi-circle

of centre O from z to z
; (iii) the line from z to O. Since

this contour is equivalent to the contour C2 (Fig. 70), the integral

has the value 2iK'. But the integral along (ii) tends to zero

when z tends to infinity (30, Th. I.), and
[ f(z)dz= [* f(z)dz,
J -z Jo

since the final value of/(z) is equal to its initial value. Therefore,

when z tends to infinity, I f(z)dz tends to the value -&K'; so that
Jo

f(z)dz = i

If in the integral
fl/A

Jl *

dx

we put y=-^/(\kV)/k', where k'= *J(l k2
),
we obtain

K--P dy
Jo

It follows that K' is the same function of k' that K is of k.

Inversion of the Elliptic Integral. In Example 2 of the

previous section we deduced from the properties of the integral

w = 1 -^ ^\ various properties of the inverse function z= sin w.
o
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Similarly, if iv=\ /f/1 2\?i 72 2\v z can ^e regarded as a
Jo v I \

^
/ \

^
/ /

function of w, and from the properties of the integral those

of the function can be deduced. We shall here make two

assumptions : (i) that the function exists for all real or complex
values of w ;

and (ii) that the function is single-valued. These

assumptions will be justified in Chapter XL The function is

denoted by z = saw: from the general value of the integral it

follows that

Accordingly, sn w has two periods, 4K and 2^K', the one purely^
^

real and the other purely imaginary, and sn(2K w)= sn^. -"

Again, since f(z)dz= \ f(z)dz= w, it follows that
Jo Jo

z= sn ( w)= sn w ; so that sn w is odd. The properties of

the integral also give :

snO = 0, snK = l,

Instead of sn w the notation sn (w, k) is frequently employed :

k is called the Modulus and k' the Complementary Modulus
of sn (w, k).

Example. Shew that K'= log (4/&)+ <(&), where <j>(k) tends to zero with L
We have

-f ( -
J* WO-#2

)

where y = kx.

Hence

= log2;

from which the required theorem follows.

67. The Weierstrassian Elliptic Integral. Let

t(;-l^ = f(z)dz,
J ZQ

^liQref(z)={4>(z e
l)(z e

2)(z e
s)}~^: here w=w corresponds

to Z = Z
Q) and one of the two values of f(z ) is selected as initial
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value. There are four branch-points of f(z) (Fig. 72), e
l} e,

2 ,
e
3 ,

and oc . The loop L about oo
, however, consisting of the line from

z to f and a large circle described negatively, can be replaced by
the loops L

x ,
L

2 ,
L

3 ,
about e

lt
e
2 ,

e
3 ,

described negatively in suc-

cession
;
so that it is only necessary to consider the effects of these

three loops. Let A1= f(z)dz t
A

2
=

f(z)dz, A
3
= f(z)dz\

Jzo **9 ^ Z

then integrals round the loops Lu L2 ,
L3 ,

or Lf
1

, L.J
1

, L^
1

, give

the values 2A
15
2A

2 ,
2A

3 , respectively. Two successive integra-

tions round a loop give the value zero. Successive integrations

round loops L,, and L6. give the value 2Ar 2A S . Again, the

description of an even number of loops brings f(z) back to z

with its initial value f(z ),
while an odd number brings it back

with the value f(zQ).

Hence, if I denotes the integral I f(z)dz taken along a straight

line from z to z, the general value of the integral is given by

^XXq \~ \ / '

where nlt
n

2 , n^ are integers such that ?i
x -f ii

2+% has the value

or 1 according as the number of loops described is even or

odd.

Now let n^ in
2 ,
ns
= w\, so that either /n

2
=m

1+m2
or

n%= ?7i
1+m2 -f 1 ;

then either

w-w =-2^- A
2)-2m1 (.A 3

- A
2)+ I
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|% re,

Again, if Wi=\ f(z)dz and oo.2
= I f(z)dz,

JeS J
<>!

A i A A r$\A
2

A
3
= w

1
and A

2
A

1
= o>

2 ;

hence either i# = u> +2??i1 ft)
1+ 2??i

2
ft>

2+ I

or w =

Thus the inverse function z = (j>(w) is doubly-periodic, with

periods 2co
1
and 2co

2
.

Next, let the integral be taken along the contour consisting of

the loops L, L3 ,
L

2 ,
L

1?
taken in succession. This curve encloses

no singular point, so that the value of the integral is zero. But

the integral round the large circle tends to zero as the radius

tends to infinity ;
hence

= 2 /0)<i2;-2A3+2A2
-2A

1 ;

so that
f f(z)dz = A3

- A
2+Ar

J*o

Now take w = \ f(z)dz= A
3 -fA2

A
x ;

then w= I f(z)dz.
J t J CO

Hence, if z = e
lt

w= 2??!^+ 2?^
2

ft)
2
A

3+A2 Aj + Aj = <

2m
jr
w

1+ 2m.7w2+^
or w = 2m

t
co

x+ 277i
2
w
2
A

3+A2
A

1+ 2A
2

A
x

= 2?^^+ 2m2
ft>
2+ 2o>

2+ w
1

.

Therefore ^
1
=

0(ft>1 ). Similarly 6?
2
=

0(ft)1+ ft)
2) and e

2
=

<p(a).2 ).

Again, if W = ty H- 1, .

te;= 2m
x &>! -f 2m2

w
2+W

or w = 2m

Thus <f>(iv) is an even function of iv. It will be shewn in

Chapter X. that <f>(w) is Weierstrass's Elliptic Function ^(w).
It should be noticed that the signs of the two periods 2co

l
and

2o>
2 depend on the initial value selected for f(z ).

68. Elliptic Integrals in General. Any integral of the type

JR(z,
Jfydz, where R(#, y) is a rational function of x and y and

Z is a polynomial of the third or fourth degree in z with real

coefficients and no repeated factors, is called an Elliptic Integral.
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When Z is a cubic. the integral can be transformed into an

integral in which Z is a quartic as follows.

Let Z= (2 /3)(az*+ bz+ c), where
/5, a, 6, c, are real; then,

if *-=,

which is an integral of the required form.

Again, let R(#, y) = P(x, y)/Q,(x, y), where P(#, y) and Q(&, y)

are polynomials in x and y ; then, since (\/Z)
2
^, where p is a

positive integer, is a polynomial in z, we can write

where K(z), L(z), M(z), N(z), are polynomials in z.

Now multiply numerator and denominator by M(z)

where U(2) and V(2f) are rational in z.

But U(2;) can be integrated by elementary methods. Hence

we need only consider integrals of the type

or

where S (2) is rational in 2.

Again, by the method of partial fractions, S(0) can be put
in the form

Hence the integral J{S(2;)/\/Z}cZ2;
can be expressed linearly

in terms of integrals of the types

zn
-,

, dz
dz and

Now (

f^n
:= dz can be expressed in terms of the four integrals

f*
3

7 f*
2

7 f* ,7 f^2

JTI^ J^* JTI^ J72-

But
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where Z = az'i -}-bz
s+cz2+dz+ e; therefore 1

T^-
can be expressed

in terms of the three integrals

[z
2dz

[zdz [dz
1*7

'

\ /7
'

1/7'J V " J \ J J V "

Similarly, since

dz (Z
-

OL)
m
~

(z-OL)
m+ l

v/Z

j= can be expressed in terms of

JO-afv/Z
f dz Ccte C(z-oi)dz Kz-a.)

zdz

JO-(x)v/Z' JN/Z' J \'Z J VZ
Thus every Elliptic Integral can be expressed in terms of

integrals of the types

dzdz Czdz Cz2dz

7z' J7z' J7I"'

Again, since imaginary factors of Z always occur in pairs,

Z can always be written a(z
2
+pz+ q)(z

2+rz+ s), where p, q, r,

s, are real. Now in the transformation z= (/-f<7 )/(! + )> ^
f and g be chosen so that the coefficient of in each quadratic
is zero

;
then Z will take the form

It is always possible to find real values for in and n. For

^. n Q s * ps or
f+q= 2+-, fq = --- ;

r-p'
J*

r-p
'

so that / and g are the two roots of the quadratic equation

O- P)f
2+ 2 (s

- #)/+ (ps
-

gr) = 0.

Accordingly, if the roots are real, we must have

(s-q)
2
-(r-p)(ps-qr)>0. (A)

Now let the two equations

x*+px+ q= Q, x2+rx+ s= 0, (B)

have roots x
: ,
x
z ,
and x

s , x, respectively; so that

Then inequality (A) can be written

(xl
- a;

3) (x1
- aj

4 ) (x.2
-
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This inequality holds if one at least of equations (B) has

imaginary roots
;
for then the four factors consist of two pairs

of conjugate complex quantities. Also, if both equations have

real roots, the factors of Z can always be chosen so that

Thus the inequality holds in this case also. It follows that

real values of / and g, and therefore of m and n, can always be

found.

Accordingly, every Elliptic Integral can be expressed in

terms of integrals of the types

where Q =

But

and this integral can be evaluated by elementary methods.

Also

d .

,
f d?

-ifl w->vo'
and the last integral can be evaluated by elementary methods.

Hence we need only consider the integrals

There are four cases to be considered (we assume a

In case (i) put =x/a, k= b/a', then the integrals are trans

formed into integrals of the forms

x*dx f dx

fc^
dx

In cases (ii), (iii), and (iv), make the substitutions

l-a2
f
2= a2

, l-W^ = x, and l + fe
2
f
2 =

respectively ; then all these cases reduce to case (i).
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dxNow
JVUi-^Xi-/^)} A^JVUI-

| r //I _ 7.22

dx.

" ""'
icHence all Elliptic Integrals can be expressed in terms of Ellipti

Integrals of the three types,

dx

The three definite interals,

f*

Jo(^
2-

dx

are called Legendre's Normal Integrals of the First, Second, and
Third kinds.

Example. Prove

f
1 3^+ 2^2

, _ /r ? /

Jo v^+^+i 1*

3jo

-

But

P
'

dx
Jo ^PT

'
where ^

2 /vs/s ^ 3

3 Jo3

Hence the required equation follows.

69. Complete Elliptic Integrals. If in the First and Second

of Legendre's Normal Integrals the substitution x= sin is made,

they become
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respectively. In particular, if x = l, then
<f>
=

ir/2, and these

integrals become

E = E(&, 7T/2)
= a - A? sm*<p)dfa

Jo

which are known as Legendre's Complete Elliptic Integrals of

the First and Second kinds. Similarly we write

K' = F(F, 7T/2), E'= E(#, 7T/2).

These functions can be expressed as hypergeometric series in

k and k' : for, since k< 1,

^^
Similarly K'= F(J, }, 1, 7c'

2
),

E = -F(- J, J, 1, A;
2
),

2j &

The numerical values of K, E, K', and E' can be easily evaluated

by means of these series, except when the value of k or k', as the

case may be, is nearly unity, in which case the convergence is

siow.

Landens Transformation. If in the integral F(k, 0) we
make the substitution

tan(01 0)= &'tan0 or tan
1
= sin 20/(&1+ cos

,
7

1 k' k 7^7 T , .

where A;
1
=

-._, y
/
=

/1 7
/V;^<C^> we obtain

l + /c ( 1 + /c )"

and

so that Y(k, 0) =

Thus the integral is expressed in terms of an integral of

smaller modulus. In particular, if =
Tr/2, then fa = TT, so that
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Accordingly, if the modulus of k is nearly unity, the value of

F(k, 7T/2) can be deduced from that of F(/<;1 , 7r/2) by means of

this transformation.

Bmmple. Prove

and deduce from the example of 68 that

P3.^+2^^. -1/1 TT

Jo

70. Legendre's Relation. A relation can be established

between the four quantities K, K', E, E', as follows.

We have

dK_W* ksm*<}>d<j> _1W2

d<f> _K
dk

~
J o ( 1

- /c
2 sin2

0)
3/'2
~
k] ( 1 - /c

2 sin2
^)

3/2 k
'

1z d sin0cos0 7c'
2

. 79 .

But k2
~j- -rrtj r, . y =

7^ 79 . 2j vo/.2+ v/( 1 &2 sm2
0).2 2 23 /2

Th, fore

Hence ^^Jl _f C'/M &M tt&
Accordingly, since 7c

2+ 7c'
2 = l,

rfK E VK ,'ti
, , ,
= T77T-/+ -TIT A JT^ ^

Therefore, interchanging 7^ and /c', we have

Again,

dK'= _E' +&K; //-

1 f-/
2

7/1
1 f

ff/2 d0 E-K
J(l k-sm2

d))d<j> f . = -
/.'J /^Jo l A;

2sm2
/

,_ K
'>.

CvK 1C

f /\Y
Accordingly, if W = KE r

-h K'E - KIv, -^-
=

;
therefore \V is

a constant.
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Now consider the value of (E K)K' when k tends to zero.

Also

Hence |(E- K)K' < (^&
2 +.

so that Lim {(E-K)K'}=0.

But, when fc= 0, K = 7r/2, and E'= l
;
therefore

W=KE'+ K'E-KK'=
|.

COROLLARY. K and K' satisfy the equation

where x= k2
. This equation is known as the differential equation

of the Quarter Periods of the Jacobian Elliptic Functions.

EXAMPLES IX.
rZ 7

1. If w= I
4>

and if w is any value of w corresponding to z=z
0t

shew that the general value of w for z=z is w +m>/2ir/4-f'N^7rt/4, where
m and n are integers, such that m+ n is even.

ri
+s2

3<5?2,
shew that, with the notation of the previous example,

the general value of w is w -H773 + mr\/3/3, where m+ n is even.

3. Find the most general value of / f , for any path of integration,
JO ^(Z'+ I)

where the initial value of the integrand is unity.

Am. wn + (-l)nlog(l+\/2), .(w
=

0,. 1, 2, ...).

5. Prove that, for the ellipse #2
/a

2 +y2
/6

2
=l, the length of an arc

measured from the point (0, 6) in the clockwise direction is aE(e, <), where

e is the eccentricity and ^'=asin <.

6. Prove that [Vws".r^=2v/2E(4='\2
where cos ^= cos2
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7. If a 1 > b- > c2
,
shew that

y"

00
f^A 2

'-+ A)}~v'O
2 - c2)

8. Shew that
Ji

where = sin 15.

[Shew that the integral is equal to

2 rx o?y

where A= (l
-

9. Shew that

where ^=cos!5.

10. Prove

f flLy 2 / . TT\

- =Fsml5
'

11. By means of the substitution ./;= (4
-

T/
3)^2

,
shew that

dy .

deduce that K'= V3K, where /fc=sin 15.

^ Stan3 + 8 tan 2 # -2 tan 0+4AH,, V(l + 2sin2^)
-

B

prove that

13. Prove that the length of the lemniscate r= a\fcos20 is 2\/2F( -
, J )

\V2 /

14. If -s' denotes the length of an arc of the hyperbola x*i

\a,
i

y
1
\l>

1 =\
measured from the point where it crosses the ^-axis, shew that

where J

15. Shew that, if K = ^ and K'= /'-,

''K liKK (*K ZK

I 'rove tliat (K K'!\) satisfies the differential equation

4KK
1

-j^-_
t y.

M.F. M
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16. Shew that, if n>l,

(i) n T knWdk=(n -
1) T "-2 E'<tt

;

Jo Jo

(ii) (n+ 2) r y^EW/j= (n + 1) T LMK'dL
Jo Jo

17. If P is any point on that branch of. the hyperbola .r-/a
2 -

which crosses the #-axis at A, shew that the difference between the arc AP
and the portion of the asymptote cut off by a perpendicular on it from

P tends to the limit

as P tends to infinity. [Cf. Example 14.]

18. Shew that

Y2 dx__ *

J* V{(i-^)(^'
2+^2

)}"
where ^= x/(l-^7

2
).

19. Shew that

dy

where ky= *J\-xz
.
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CHAPTER X.

WEIERSTRASSIAN ELLIPTIC FUNCTIONS.

71. Doubly-Periodic Functions. A uniform function F(z)

which has two primitive periods 2 and Q' is said to be Doubly-
Periodic. For all values of z,

so that

where m and m can have any integral values.

THEOREM. The two primitive periods Q and Q' cannot have

the same amplitude.

For, if they have the same amplitude, let Q = pe
ie

, Q' ==//**,

and assume /o>/o'. Then, if tt" = tt-Q' = (p-p)e
ie

, IT is a

period of modulus less than p. Let this process be repeated
with the two periods Q' and Q"'; and so on. After a sufficient

number of steps a period is obtained either of modulus zero

or of modulus less than any assigned quantity.

The first case cannot occur, however; for if u> denote the

value of the two equal periods subtracted in the last step of

the process,

where p and q are integers ;
but this is impossible, since Q and

Q' are primitive periods.

In the second case, if denote the period, the function

{F(z) F(z )} has zeros at z and z +et>. Accordingly, F(0) has

essential singularities at all points of the plane ( 22, Theorem I.

Corollary 1). Such functions are excluded from consideration.

Congruent Points. The points z+ mil + m'l', where in and

IK' may have any integral values, are said to be congruent to

the point z.

/'< ,'iod-Parallelograms. A parallelogram of vertices a, a+ Q,

a 4- 2', <t + fi+ !Y, is called a period-parallelogram. It is sufficient
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to study the behaviour of the function in one period-parallelo-

gram in order to know its properties for the entire z-plane. If

the whole plane be divided up by two sets of equi-distant

parallel lines into a net-work of period-parallelograms, corre-

sponding points of the parallelograms form a set of congruent

points. An example of such a net-work was given in 37.

72. Elliptic Functions. A doubly-periodic function with no

singularities in the period-parallelogram except isolated poles is

called an Elliptic Function. It is convenient to choose the

periods 2^ and 2o>
2 so that, as in 37, I^/o^) is- positive.

Weierstrass's Elliptic Function. If we differentiate the series

Z)=-s

we obtain

From this series the equations

?'(z+ 2Wl )
= p'CO, p\z+ 2o>

2)
= v'(z\

follow immediately; so that <@>(z) is an Elliptic Function.

Again, integrating, we have

Now let z= W then

so that C = 0. Thus #> (z+ 2^) = p(z).

Similarly %>(%+ 2o>
2)
=

p(2;).

Accordingly, p(z) is an Elliptic Function.

COROLLAKY. If n is any integer, {$>(z)}
n
is an elliptic Junction.

Note. The notation <p(z\ co
1 ,
w

2)
is sometimes used instead of

P(*>

THEOREM I. The derivatives of an elliptic function are

elliptic functions.

For, if f(z+ 2^) =f(z), f(z+ 2w
2) =f(z),

it follows that

THEOREM II. An elliptic function must have at least one

pole in a period-parallelogram.
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For if not, the function would be finite at every point of the

plane, and would therefore, by Liouville's Theorem, be a constant.

Thus the function $(z) has poles of the second order at the origin

and congruent points ;
while at all other points it is holomorphic.

The principal part at the origin is 1/z
2

. Similarly p'(z) has a

pole of the third order at the origin, with principal part 2/z
3

.

COROLLARY. If two elliptic functions have the same periods
and the same poles, and if their principal parts at the poles are

equal, they can only differ by a constant.

Note. An elliptic function has an essential singularity at

infinity : for it has an infinite number of poles in any neighbour-
hood of infinity (cf . 48, Note). This holds true for all periodic
functions

; e.g. cot z.

THEOREM III. An elliptic function can have only a finite

number of poles in a period-parallelogram ( 22, Theorem 2).

THEOREM IV. The sum of the residues of an elliptic function

f(z) at points in. a period-parallelogram is zero.

Let y denote the parallelogram ABCD (Fig. 73) of vertices

Fio. 73.

((, r/,H-2o)1 ,
a -f 2^+ 2o>

2 , a+2a>2 ,
drawn so that none of its sides

passes through a singularity of f(z). Then the sum of the

residues of f(z) in y is given by

a+2o>2

= 0.

For example, the residues of p(z) and $(z) at 2 = are zero.

COROLLARY. An elliptic function cannot have a single simple

pole in a period-parallelogram.

Oi'der of an Elliptic Function. The number of poles of an

elliptic function in a period-parallelogram, a pole of order s
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being counted as s poles, is called the Order of the function.

It follows from Theorem IV. Corollary, that the order of an

elliptic function must be not less than 2.

The two simplest types of elliptic functions are :

(i) functions with a single pole of order 2, at which the

principal part is of the form A/(z-oc)
2

,
in each period-parallelo-

gram ; q>(z) is a function of this type :

(ii) functions with two simple poles of principal garts

A/(z a) and A./(z (3) in each period-parallelogram ;
it will be

shewn in Chapter XL that the Jacobian functions snu, cnu,
dn u, are of this type.

THEOREM V. The number of zeros of an elliptic function f(z)

in a period-parallelogram, where a zero of order r is counted

as r zeros, is equal to the order N of f(z).

For (31, Corollary 1)

where y denotes a period-parallelogram. But, since f'(z)/f(z) is

an elliptic function, this integral is zero (Theorem IV.). Hence

Sr= 2s= N.

Thus, since p'(z) has one pole of order 3 in the period-

parallelogram, it must have three and only three zeros in

the parallelogram. Now, substituting z = ^ in the equation

$(z+ 2ft*!)
=

$>'(z), we obtain ^'(^i)
=

%>'( o^). But from the series

for $>'(z) it follows that %>'(z) is odd : hence ^'(^i)
= 0- Similarly

/(o>2)
= 0, ^(col -\-(az)

= 0. Thus the only non-congruent zeros of

p'(z) are co
lt
w

2 ,
and o^+ o^.

COROLLARY. Since the elliptic function {/(z) C} has the same
-

poles as f(z). the number of its zeros in a period-parallelogram

will be N. Hence the number of points in a period-parallelogram

at which /(z)
= C is N.

THEOREM VI. If the elliptic function f(z) has p zeros a
1?

a
2 , ..., dp, of orders rl9

r
2 , ..., rpt and q poles 6

1?
6
2 , ..., b

q ,
of

orders 8
lt

s
2 , ..., sq ,

in a period-parallelogram,

m=l 7i

where X and /x are integers.
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/\

For, if y denote a period-parallelogram (31, Corollary 2),

= - 2o>
2 Log 1 -f2^ Log 1

Hence 2 r a
l = l

Example. Prove that ^= ^ irisa simple zero of

This is an elliptic function in u of order 3, its only pole being at u=Q.
Two zeros are u= v and tt,= w, so that the third must be congruent to -v w
(Theorem VI.). Also (Theorem V.) each zero must be of the first order.

73. Relation between $(z) and p'(z). We shall now prove
that $(z) satisfies the differential equation

where #2
and

</3 are constants.

Near z= we have

( (z-

Accordingly

/ A
-=

But if ii is odd, 22 =
'
therefore

where fc-

' =
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From this equation we derive the following equations :

Hence, if
<j>(z) denotes the function

near 2 = 0, cj>(z)
= Dz2+ E,24+ ....

Thus the elliptic function <f>(z)
has no pole at the origin. But

the origin is its only possible pole. It is therefore a constant

(Theorem II. 72) ;
and since 0(0)= 0, the constant is zero. Thus

The quantities g2
and g3

are called the invariants of #?(z).
It

sometimes found useful to use the notation $(z ; g^g^) fo

COROLLARY. By differentiating equation (A) we obtain :

Thus every derivative of <p(z) can be expressed as a polynomial
in z and 'z.

Example. Prove that the function {jp(u)fl(u)+ $P(u) 1} has five zeros,
r=5

wi> U2t Usi u
i
u&> in a period-parallelogram, sucli that S^-^SAwj + S/zwo,

r=l

where A and /x are integers. Verify that, if 2= >(), these values of u give
the five roots of the equation

If /(z)
= 0, equation (A) becomes

Now we know (Theorem V. 72) that 0>'(
w
i) ^'(^2)' P

/

(wi

are all zero. Hence the three roots of this cubic in p(z) are elt

e
2 ,

6
3 ,
where *e

1
= P(i) ^ = ^(^1
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It follows that equation (A) can be written

If the coefficients in equations (A) and (B) are equated, the

following important relations are obtained :

The Weierstrassian Elliptic Integral. Let z $>(w) : then, since

Now when w = 0, z = cc
;
therefore

w= I

J r

The two branches of the integrand give equal and opposite
values of w, which correspond to the same value of z, since

is even.

74. The Addition Theorem. Consider the elliptic function

The functions p(u+ v), $>(u), and p'(u) have poles at u= v.

u = 0, and w = respectively; while {p(u) <p(v)} has zeros at

u=-v. Hence the only possible non-congruent infinities of

f(u) are -it = 0, u= v.

Near u = (),

Accordingly, when u = 0, f(u) is finite and has the vahu-

zero.
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Again, let u = v+ e ;
then

Hence /( 16) is finite when u = v.

Finally, let u = v+ e
;
then

Hence /(u) is finite at u= v.

Thus f(u) is constant (Theorem II. 72). But when u = 0,

f(u) has the value zero
;
therefore

This is the Addition Theorem for the Weierstrassian Elliptic

Function.

COROLLAKY. p(u-v)= -y

Prove

Duplication Formula. If u= -v+ e, the addition theorem gives
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Therefore, if e = 0,

Example. Shew that

The following three formulae can be deduced from the

addition theorem :

The proof is left as an exercise to the reader.

Example. Prove

75. Properties of the Zeta Function. Integrating the equa-
tion

we have f(u+ 2^) = f(w)+ 2

where 2^ is a constant.

Now, let u= - w
l ;

then f(o^)
=

so that ^i
=

Similarly f(t6+ 2o,2)
= % ,

where
/72
= f(o)2 ).

It follows that

f(u+ 2???.^+ 2^w2)
=

and that f(mo^+ 7io)9)
=

The Zeta function is not an elliptic function. It possesses,

however, a sort of periodicity, and is called a Periodic Function

of the Second Kind. In each period-parallelogram it has a

simple pole congruent to 16 = 0. The residue at this pole is

unity ; for, if we integrate

we obtain
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But, since g(u) is odd, C = ;
therefore

Example. Shew that f(2w)= 2f(u)+
X ^'

j& .

2 <? vv

Again, let f(u) be integrated round the period-parallelogram y
(Fig. 73) ;

then

r ra+2a>! |*a+2a>2

I ^(^)^^ ==
l {(^) (^ ~l~ 2ft> )}cfat I {(^0

J v J a J a

=
2-Tri,

since there is only one pole in y. Thus

This is Legendre's Relation for the Weierstrassian Elliptic

Functions.

THEOREM. Any elliptic function can be expressed linearly in

terms of zeta functions and the derivatives of zeta functions.

Let f(u) be an elliptic function of periods 2^ and 2o>
2 ,

and

let a, 6, c, . . .
,
& be its poles in a period-parallelogram. Also let

the principal parts of f(u) at these poles be

_Ai _L ^2 , , A"i
u- a

"*"

(u- a)
2 "*" ^

(w- .)"i

'

B~D "D
i JDO D.

U /C (U ,

Then consider the function
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This function is finite at all points of the period-parallelogram.

Also

= 0(w). (Theorem IV. 72.)

Similarly <j)(u+ 2a>
2)
=

0(u).

Accordingly, <j>(u) is a constant (Theorem II. 72); therefore

(A)
(74 1)!

Example. Shew that

2f(2w)+ 2rh + 2r?2
= () -4- f(w+ CD,)+ {(u+ w, + o>2)+ f(w+ o>

2).

76. Properties of the Sigma Function. Integrating

we have log{<r(u-h 2^)} =log{<r(t6)} + 2%u+ C; (cf.50)

or o-(u+ 2w
1 )
= CV(u)6

2
''i it

.

*

Now let u = w
l ;

then o-(fo)1 )
= CV( a)

l)e~
27?i a)

i,

so that C'= -e2l
ii.

Therefore o-(w+ 2^)=

Similarly <r(u+ 2o>
2)
=

By the method of induction it can be deduced that

ar(u+ 2771^+ 27K
2)
=

( l)
wl ''l+

The Sigma function is called a Periodic Function of the

Third Kind.

Near u= Q we have

Ih-nce

But Lim {-^ [
=

1, so that C=
; therefore

->0 v * J

Thus
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THEOREM. Any elliptic function can be expressed in terms of

sigma functions.

Let /(it) denote an elliptic function of periods 2u>
lt

2a>
2 , having

in a particular period-parallelogram zeros a
lt

a
2 , ..., apt of orders

m
lf
m

2 , ..., mp ,
and poles b

lt b.
2 , ..., b

q ,
of orders %, 7i

2 , ..., nq
.

Then consider the function

We choose the a's and fe's so that 2?rfcct 2^6 = 0, replacing, if

necessary, some of them by congruent points (Theorem VI. 72).

Now (it) is finite at all points of the period-parallelogram. But

(Theorem V. 72.)

Similarly </>(u+ 2o>
2)
= 0(u).

Thus (Theorem II., 72), 0(u) is a constant
;
so that

*/ \ / I ./ /i ,

For example, the function {^(^) ^(^)| has two simple zeros

t>, and a pole of order 2 at u= 0; therefore

In this equation let u be small
;
then

Hence, equating the coefficients of ,, we have
TV

so that P(tt)-P< ff)=-

COROLLARY. If in equation (A) we put v = it+ e> and make

tend to zero, we obtain

Example 1. Shew that

n'f \
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Again, if equation (A) be differentiated logarithmically,

In this equation interchange u and v
;
then

'

-
{(u

-
v)
- 2(v).

Hence
-

= u+ v - u - v . (B)
2

COROLLARY. If in formula (A) of -75 we make the substitution

2 #>(u)

and similar substitutions for (u b), ..., f(t& &); then, since

2A
1
= 0, it follows that f(u) can be expressed as a rational

function of >u and >'u.

Example 2. From equation (B) deduce the addition theorem

EXAMPLES X.

1. Find, the zeros of

and shew that they are all simple zeros. Ans. vr w.

2. Find the poles and zeros of

Ans. Simple poles, v, w\ simple zeros, 0, v-w.

3. If %>(z) is constructed with 2<itl9 2w2 ,
as primitive periods, while $>i(z)

is similarly constructed with 2d>
1/72,.2(o2} as primitive periods, prove that

4. Shew that V
+ ((i)

(ii) ^

5. Shew that

(i)
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6. Prove

7. Shew that

8. Prove ff>(2y)-p(2w)=-

9. Shew that

(ii)

10. .

,~

11. Prove

12. Shew that

i

13. If *()=f
and ^(^=

shew that

14. Shew that

15. Prove

16. Prove

(r(a+ b)(r(a b)(r(a

17. Shew that ?
(7

18. Shew that a-(2u)

19. Prove

-
d)
- v(a+ c)v(a

-
c)v(b+ d)<r(b

-
d)

u^(u -<tfiMM- Q)2)<r(m-<u 1 + u>2)

o-(w1)cr((o2)fr((o 1 -f w2)

= 2-
(0
-
w)<r(w

-
u)<r

tr
3
(?*) (T

3
(v) or

3
( M;
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20. Prove

-z)<r(y-w)

21. Prove

22. Shew that

23. Shew that

24. If M + v+ ?^= 0, prove

{ f()+ f(^+ f(

25. Shew that

2^(2?*)
=

f(*) + f(
-

26. Shew that

=P()+P

u - o>2).

1 p(w) tf*(w)

27. Prove

f(w-*0-f(**-w)-(*-> / \ / V-
2v)ar(u

-
v)v(u

-
w)

M.F.



[CH. XI

CHAPTER XL

JACOBIAN ELLIPTIC FUNCTIONS.

77. The Values of <p(w) when o^ is Real and o>2
is Purely

Imaginary. Let
(0^
=

0,^ ft)2
= iQ2 ,

where Q
x
and Q2

are real and

positive ;
then

i=0 m= -<

The two terms in this bracket are conjugate complex
numbers, so that g2 is real. Similarly it can be shewn that

#3 is real, and that, if w is real, $>(w) and <(p'(w) are real
;

while if w is purely imaginary, $(w) is real and $?(w) is purely

imaginary.
Thus e

1
= p(Qx)

and e
3
= $>(ilz)

are real
; also, since e%

= e
l

e
B ,

e2
= ^(Q1+ ^Q2) is real. Hence the three roots of the equation

4#3
g2
x gs

= are all real.

Now consider the values of $(w) at points on the rectangle

OABC (Fig. 74), where A, B, C are the points Qj, S^+ iQ^ ^Q
2 ,

respectively.

v/k

FIG. 74.

(i) If w u is real, small, and positive, %>'(u) is, large and

negative ; also, when u= l
l , $>'(u) vanishes. Between these points

on the real axis %>'(u) is continuous, and has no zero values

( 72, Th. V.). Accordingly, between and Qlt $>'(u) is negative ;

so that $>(u) decreases continuously from +oc to er
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Now ^
/2
(^)

Therefore since, as u increases from to Q
x , ^(u) decreases

continuously from +x to and $>(u) decreases continuously
from +x> to e

lt
e
l
is the greatest root of ^xs g^cgs

= 0.

Again, p'(u) = <J{4<$
B
(u) g$(u) gs } ;

but between and

Q1? ^X^) is negative and 4{p(u) j}{|i(it) ^}{p(u) e8} is

positive. Therefore

Hence, if x <^(u),

r dx
U=\ ,

3
J % v/ "j

T?i/ "

\j
rt!

provided a;^^. In particular,

c?o?

feee,

(ii) Let w = iv, where v is real
;
then

'

where 0^(^) = 40
3
(t;)

As in (i) it can be shewn that e
1
= 0(Q2)

is the greatest root

of 4x^g2x-\-g3
=

)
and that

dxf*=
J

^i

Thus
j_

or e
3
is the least root of 4#3

#2
# ^3

= 0, and

Also, as v increases from to Q
2 , 0(v) decreases from -f x to

ep so that ^(w) increases continuously from oo to e
3

.

Since ^+ 62+63= 0, and e
l '^>e f> '^>e3 ,

it follows that e
l
must be

positive and e
s negative.

(iii) Let w = u+ il.
2 ,
where u is real

; the% since
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and p'(u+ i&2) are real- As u varies from to Q I}

increases from e
s to e

2>
and p'(u+iQ2)

is positive.

Therefore, between and f21?

/7r
so that Q1=

'"

(iv) Let w= Qj+ w, where v is real
; then, since

iv) is real and ^'(Q^iv) is purely imaginary. As v

varies from to Q2 , ^(Q^w) decreases from 6
X
to e

2
. Thus,

if 0(v)= ^(Qj+ iv), between and H
2 4>(v ) varies from e

x

to e
2
and 0'C^) ^s positive. Therefore, since

da;
Hence

Accordingly, as i; passes round the rectangle OABC, p(io)

decreases continuously through all real values as follows : from

+ 00 at O to e
1
at A

;
from e

1
at A to e

2 at B ;
from e<> at B to e

3

at C ; and from e
3 at C to oo at 0.

Let p be any real quantity, and let f be the point on the

rectangle for which p(f)=JP- Then, since $>( )=p and <p(w)

is of order 2, every point w such that #>(tt;)=^) must be con-

gruent to f or Therefore, for every point within OABC,

p(w) is imaginary or complex.

Example. Shew that

(i)

(ii)

78. Geometric Application.* Consider the curve given by

*
Cf. Appell et Lacour, Fonctions Elliptiques, 68-63.
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To each value of x correspond two non-congruent values w
of the argument. But #>'( w)= ^'(w); hence to each point

(x, y) on the curve there corresponds only one non-congruent
value of w, and the curve is symmetrical about the aj-axis.

Condition that three points should be 'collinear. Let MI}
M

2 ,

M
3 ,

be the three points in which the line y mx c= Q cuts the

curve. The corresponding values w
l ,
w

2 ,
W

B ,
of w are zeros of

$>'(w) m$(w) c.

Now the only pole of this function is at the origin, and is

of order 3
;
thus

Wi+ ,,+,,

where X and
//,

are integers.

This relation is necessary, and it is also sufficient. For, if

w
l+w2+wz

= 2\co
l+ 2yuft>2 ,

let the line M^Mg cut the curve

again in the point M' of argument w'\ then

w
l+wz+ w'= 2X'o>1+ 2yu'ft>2

.

Hence w
3 and w' are congruent, so that W coincides with M

3
.

Tangents. If the tangent at 'w^ meets the curve again at
' w '

w+ 2w
1
=

Thus w
l
= w/2 + Xo)!

Accordingly, from any point
' w '

four tangents can be drawn
to meet the curve in the four points whose arguments are

Points of Inflection. At a point of inflection

3it; = 2Xft)
1+ 2^(o2 ;

so that ^ = 2Xa>
1+ 2Ma>2

o

Thus there are nine points of inflection with arguments

2^ 2a>
2 4fa?

f
4o)

2
2~~ ~

~3~' ~3~' 3
'

~3~' 7 :>
'

3
'

~~~3
'

~
~~3~

and they lie three by three on straight lines.

Case in which ca
l
is real and wz

is purely imaginary. Let

then
2

where gj, e
2 ,

e
3 ,

are real, and ej
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As w varies along OA (Fig. 74) from to Qlt
the point (x, y)

passes up the right-hand branch of the curve of Fig. 75 from

PIG. 75.

y= o to A(e1? 0). For values of w between Qj and

y is imaginary. As w varies from Q
1+ iti2 to iQ2 , (x, y) passes

from B(e2 , 0) round BCD to D(c3 , 0). For values of W between

iQ2 and 0, y is imaginary. The corresponding negative values

of w give the other two arcs.

There are only three real points of inflection, 0, 2Q
x/3, and

2QJ3, the first being at infinity : they are collinear.

Example 1. Shew that the necessary and sufficient condition that the

six points whose arguments are wlt w2t ...w6 ,
should lie on a conic is

Example 2. Shew that the necessary and sufficient condition that the 3n

points wlt W<L, ... wsn ,
should lie on a curve of degree n is

Consider the three79. The Jacobian Elliptic Functions,

functions:
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They satisfy the equations :

ft)
2)
= -

<h(

ft>
2)
=

2ft),)
= -

3(u), ^8(w+ 2o>
2)
=

<fa(u).

Again, by formula (A) of 76,

Thus the two values of x/{^(X)~~ ei}> *J{p(u)~~ ez}t

are the uniform functions <j>i(u), $>2(u), ty^u), respectively.

If those values of the three functions are taken which are large

and positive when u is small and positive,

Now p
/

(^)
= 2

Also, it is easy to shew that

f'(u) = - 201(w)02(w)08 (w). (Cf. 76, Example 1.)

Hence ^iX^) = ^(u}^(u)-

Similarly <j>2'(u)= -^(u)^^), ^3

/

(^)= - 0iO)02 (u )-

Next, let to! be purely real and co2 purely imaginary, and denote

them by Q
x
and iQ2 respectively ; then, since p(u) ^ e

l >- 6
2 > 6

3 ,

provided < it^ Qj,

-
ViC^i) = 0,

Similarly

Accordingly, if

these three functions will satisfy the equations :

^)= -S(tt), S



200 FUNCTIONS OF A COMPLEX VARIABLE [CH. xi

S(0)= 0, C(0)= l, D(0)=l;

^= 1, 0(00 = 0,

Also S(, C(u), D(u), have simple poles at u= il2 \
and

is odd, while C(^), D(u), are even.

Thus S(u), C(u), D(u), are elliptic functions of periods
2i02 ; 4Qlf 2Q1+ 2iQ2 ; 20! , 4i02 ; respectively.

Now let S(u) = sn(v),

where ^

and let

so that & and /<;' are positive proper fractions such that k2+ A/
2 = 1 .

Then sn(i>), cn(v), dn(?;), satisfy the equations :

sn (v+ 2K) = - sn v, sn (v -f '2iK')
= sn (v) ;

en (v+ 2K) = - en v, enO+ 2^K')= - en (v) ;

dn (v+ 2K) = dn v, dn (v+ 2iKx

)
= - dn (v) ;

sn' (v)
= en (v) dn (v) ;

en' (v)
= sn (v) dn (v) ;

dn'(-u)
= - 7c

2 sn (v) en <V) ;

sn2 (v)+ en2
(v )

= 1
;

k2 sn2
(v)+ dn2

(v)
= 1

sn(0)= 0, cn(0) = l, dn(0) =

sn(K) = l, cn(K) = (),

/

Also sn(v), cn(V), dn(v), have simple poles at v = iK'; and

sn (v) is odd, while en (v) and dn (v) are even.

Again, since
<f>3(u) or <J(^(u) e

s ) decreases continuously from

to V(ei"~ 63) as u increases from to O15 sn.(v) increases
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continuously from to 1 as v increases from to K
; accordingly,

if z = sn(v),

where the positive value of the radical is taken between

and 2=1. Hence
dz

and therefore sn (v) is the inverse function of 66. In particular,

K -

so that K is identical with the K defined there.

Moreover, since

*--mz*s=&='
r dx

(77)

Q2 can be obtained from Q
x by replacing e

lt
e
2 ,

e
s , by e

s ,
e
2 ,

I /Q g
e
lt respectively. Thus K' is the same function of /v/(

J

or k' that K is of
A/(

J
)
or &; so that K' is identical with

the K 7

of 66.
Vei-V

These three functions sn(^), cn(f), dn(t;), are the Jacobian

Elliptic Functions
;
their periods are : 4K, 2iK'; 4K, 2K+ 2iK';

2K, 4iK'; respectively.

Since ^(^) e
3
= ^(u),

/? m ._, /?
/ \ ^1 ^Q

(f\(f)j\ /> * '

e3 -sn2
(.a)'

//g g \

where v = ,J(el e^).u and ^ =
/y/(

2 3

j-
This equation gives

the relation between the Jacobian and the Weierstrassian elliptic

functions.

Example. Invert the function

rdxv
,
\ H).
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Poles of sn(v), cn(v), dn(v). From the equation

it follows that

w^ = <f 2 = -
i, ( 75)

CQ)_ fa(u) D(u)

so that Lim ;.r^
2

-^ = e
~w^^

and

Accordingly, if I is the residue of sn(t>) at tQ2 ,
the residues of

cn(t;) and dn(v) at this point are II and ikl.

The function su(v) has poles at iK' and 2K-f iK
r

,
at which the

residues are I and I respectively; it is therefore of order 2.

Similarly cn(t>) and dn(v) are both of order 2.

Note. The two periods K and iK' are not, like o^ and o>
2

in the case of the Weierstrassian functions, independent of each

other : they are connected by the relations

T7-_
1 dx '~

where

Example. Prove

(i) E== (
K
dn2

(w, lc)du ; (ii) E'= \*'&u?(u, k')du.
Jo Jo

80. The Addition Theorems. Consider the functions of u,

\(u+ v) and cn(u)cn(u+ v) cn(V): they both have

periods 2K and 2iK', and simple poles at iK' and v+ iK'.

Hence they are of order 2, with simple zeros at u= and

u =
'

v ;
so that

where C is a constant.
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When u is. small,

...){cn( usn(v)dii(v) +...} cn(t>)
7 r

;

-
usu(v)-\- ...

Now let 16= 0; then C= dn(v); so that

cn(V) cn(t6+ 1>)+ sn (u) dn(v) sn(ic+ v) cn(-y)
= 0.

If in this equation u and -y are interchanged, it becomes

cn(t>) cn(u+ v) -f sn(v) dn(u,) sn(i6+ 1?) cn(u)= 0.

Hence, solving these two equations for sn(w+ v), and writing
c
1? cZj, s

2 ,
c
2 , cZ

2 ,
in place of sn(u), cn(u), dn(u), sn(^), cn(v),

v), respectively, we have

.

1
d

l
s
l
c.2

c/
2

Similarly

In like manner, by considering the functions sn(u)sn(u-\-v)
and dn(u)dn(y+ i>) dn(v), it can be shewn that

_ cZj d.2 k2s
1
s
2 Cj

<?
2

COROLLARY. If in these formulae v is written for v, they
become

Example. Prove
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Duplication Formulae. In the addition formulae make v = u;

then, if sn(u), cn(u), dn(u), be written s, c, d, respectively,

/tt . 2scd
SEE sn(2tt) = = _,

J. K S

From these formulae the following can be derived :

^FTTC
=F

"
D-C '

D+ C 7c
/2 1-D

7/2 l-C
r+c

=^D^c
Example. Shew that

From the addition formulae it follows, since

sn(K)=l, cn(K) = 0,

that

, ,

-

dn(^) . dn(u) dn(u)

Hence, if u tends to iK',

su(K+ iK')=
jj

cn(K+ 'iK
/

)= -^, dn(K+iK
/

)-0.

Now in the addition formulae put v=K+ iK'
;
then

By repeated applications of these formulae the following can

be derived :

= cn(V),

K x

)= -dn(u);
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2iK/

)= cn(u),

Sample. Prove

Again, in the addition formulae let i> tend to iK'
;
then

sn(u)

Thus the residues of sn(u), cn(w,), dn(i(,), at iK' are I/A;, i/k,

i, respectively.

81. Jacobi's Imaginary Transformation. Letx = sn(iu,k')',

then

Now put x = iy/J(I 2/

2
) ;

then

so that y = sn(u, /c).

Thus sn(iu,k')=i
su(H ' J

;\
cn(it, A;)

To determine the sign let u tend to zero
; then, since

T . sn(m, k')Lim . V ?

7
: = 1,

n^o t sn(u, /c)

the + sign must be taken
;
so that

1
.

, k)

Again, cn(m, k')
= J{l sn'

2
(m, &')}

= -

To determine the sign let u
;
thus

cn(m, &')
=

-, j-.
cn(u, k)

Similarly du(iu, Jc)
=

/

>

?
.

GU(U, k)

Example. Shew that
sn2

(m, k') sn2^, k)
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EXAMPLES XI.

1. Prove
/

.

Jo

2. Shew that, if sn 11= sin <,

rdu sn u dn u

iTcn^
3. Prove the following identities, in which D denotes 1 -J

(i) sn (u+ v) sn (u -v} = (c2
2 -

Cl
2
)/D= (Sj

2 - s2
2
)/D :

(ii) {Icn(u+v)UIcn(u-v)}= (Cl c2yiT>',

(iii) {ldn(u+ v)}{ldn(u-v)}= (dl
d.

2)
2
ID;

(iv) sn (u v) en (u qp v)
= (s^d^ s2c2c 1)/D ;

(v) sn (u v) dn (u T v)
= (s^c^ s^c^/D ;

(vi) 1 + en (u+ v)cu(u-v)=(cS+ c2
2
)/D 5

(vii) sn (u+ v) en (u -v) + tm(u- v) en (u + v)
=

4 Prove
\ 2 / V 2

en ?6+ en v
en

2

5. Shew that, with the notation of Example 3,

D3

-v}an(u-v) an"(u-v)

6. Verify the identity

where S = sn (u+ v) sn (u
-

v) sn (u + w) sn (u
-
w),

C= en (u + v) en (u v) en {u+ w) en (w w),
D= dn (w+ v) dn (u -v)du(u+ w)dn(u- iv).

7. If S= sn u sn (u+ K), verify, that :

(ii)

(iii)

( 1 _ v
Deduce that

8. Shew that the function of M,

snu cnu dn w(sn
2 y sn2

2<;)+ snv cnv dn v(sn
2^ sn2

^)

+ sn -^ en ?<; dn w(sn
2^ - sn2

v),

has periods 2K and 2i'K'
;
and prove that u= iK f - v-w is a simple zero.

9. Prove that the function of u,

sn4
w(sn

2v - sn2
w) + sn4

v(sn
2w - sn2

w)+ sn4
'w(sn

2
*i - sn2

#),

has periods 2K and 2^K'
;
and shew that it has four simple non-congruent

zeros, i\ w.
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10. Verify that

11. Prove l-dn(2n) gV

12. Prove dn(w, k)
= 'sn(K'

- iK -
iu, k).

13. Let w=sn2
(z, k\ and let A, B, C, be the points K, K + ^K', ^K', respec-

tively, in the 2-plane. Shew that, as z passes round the rectangle OOAB,
w passes through all real values from - cc to 4- oc . If COAB is a square,
what is the value of k ? Ans.

14. The coordinates of two points are connected by the equation

~

Shew that, as (#, y) describes the boundary of the rectangle COAB of the

previous example, (X, Y) describes the complete boundary of a quadrant
of a circle of unit radius.

15 Prove
dn ( u + v) dn (u

-
v) k'~

cn(u+ v) cn(u-v) afi

17 Shew that (i) Lim
Bn "u
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CHAPTER XII.

LINEAR DIFFERENTIAL EQUATIONS.

82. Continuation of a Function by Successive Elements.
03

Let P(z, a) denote a Taylor Series ^cn(z a)
n with circle of

o

convergence C ; then, if z
1

is any point within C, this function
CO

can be expanded at z
l
in a Taylor Series ^jCn(z z^)

n
,
which we

o

denote by P-^2, z^). The circle of convergence C
x
of this series

will either touch C internally or lie partly outside C : in the

latter case P^z, zj gives the continuation of P(z, a) in the part
of Cj outside C (55, Th. II. Cor.). The two expressions P(z, a)

and P^z, Zj) are called Elements of the function. The radius of

C
x
will be the distance from z

l
to the nearest singularity of the

function
;
so that, if C

x
touches C internally, the point of contact

must be a singular point.

It may happen that no part of the circumference of C can be

found, however small, which does not contain singularities of the

function : in this case the function cannot be continued beyond C.

If, on the other hand, the function can be continued beyond C,

the process can be repeated with each new domain so attained.

The aggregate of the elements thus obtained defines an Analytic
Function.

Note 1. If the only singularity of the function is at infinity,

the original element gives the complete function.

Note 2. If f(z) is holomorphic at infinity, the corresponding
element is obtained by continuing /(1/f) to a domain of centre

f-OL
A particular point b can usually be approached by different

continuations from a; and it is possible that the function may
thus attain different values at 6. If the values are always the
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same, the function is uniform. The case of multiform functions

requires more particular investigation.

Join a and b by a path L: on L take points a, zv z
2 ,

z
3 ,

...
,

such that each point lies in the domain of the preceding one.

Then the corresponding elements give a value of the function

at each point on L. If no singularity lies on L, the points

z
i>

z
z>

z
s>

"
>
can ^e chosen so that, after a finite number of steps,

a domain is reached which contains 6, and thus a value of the

function at b is obtained.

This value is independent of the set of points z
lt

z
z ,

z
s ,

... ,

selected. For, let a set of points z
ni ,

zn_2 ,
...

,
z
Ur ,

be interpolated

on that arc of L which joins zn and zn+l ; then, if the elements

corresponding to these points are employed in the process of

continuation, the same value is attained at zn+l ,
since the arc lies

entirely in the domain of zn ( 55, Th. II. Cor.). Now, any two

sets of dividing points, z
lt

z
2 ,

z
3>

...
,
and z^, z

2', z
s', ..., can

be combined, and other points, if necessary, interpolated between

them, in order that each point of the new set may lie in the

domain of the preceding one. Hence it follows that each of the

original sets gives rise to the same functional value at b. Thus,

if the function varies along a line which does not pass through
a singularity, the set of values obtained at points on the line

is always the same.

Again, since the points zv z
2 ,

z
3 ,

...
,
can be chosen so that each

not only lies in the domain of the preceding point, but also in the

domain of the succeeding point, it follows that, if the value at b

be taken as initial value, and if the path L be retraced from b to

a, the same set of values will be obtained at all points of the line.

Finally, if any two paths L and L' are drawn from a to 6,

such that no singularity lies between them, they will lead to the

same value at b
;
for otherwise the closed contour made up of L

taken from b to a, and of L' taken from a to b, would enclose at

least one branch-point of the function, which contradicts our

hypothesis.

83. Homogeneous Linear Differential Equations. A linear

differential equation

dnw .dn
~ lw .d ll-*w
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which involves no terms independent of w
t
is said to be Homo-

geneous. We shall assume that the coefficients are uniform

functions with no singularities except poles in the region con-

sidered. A point which is an ordinary point for all the coefficients

is called an ordinary point of the differential equation, while a

point which is a singularity of any one of the coefficients is

called a singularity of the equation. If f is an ordinary point,

and if a is the singularity of the equation nearest to the

interior of the circle z
|

=
|

a f |

is called the domain of

If the equation is of the first order, its solution is

where C is an arbitrary constant. Accordingly, it is only

necessary to consider equations of order higher than the first,

We shall, indeed, confine our attention to equations of the second

order; but the methods employed can be applied, with suitable

modifications, to equations of higher order.

THEOREM. In the domain of an ordinary point f the differ-

ential equation
c

L^p(^z\
(

-+ q(z}w (A)

possesses a unique integral w(z), which is a holomorphic function,

and which, with its first derivative, acquires arbitrarily assigned

values (the initial values) when z=
f,

Let Mj and M2
be greater than or equal to the greatest values

of |_p(z)| and q(z) on the circle z f|
= R, where R<|a fl

and a is the nearest singularity of the equation to f.
Then

(35, Cor. 1) the functions

M

*-jpb ^(z) =

R

satisfy the inequalities

where n = 0, 1, 2, ____ The functions <p(z) and \fr(z) are called

Dominant Functions, and the equation

z)^

is called the Dominant Equation.
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Now, if a function w(z) is holomorphic in the domain of f, it

can be expressed in that region in the form of a convergent series

c + c
1(z-)+ c

t(z-&+..., (I)

where < = !, *^>, (=0, 1, 2, ...).
Tl :

But if this function w(z) is an integral of equation (A), and

if arbitrary values have been assigned to w(g) and w'( ), the

corresponding value of w"(f ) can be obtained by substituting

for 2 in the equation. Likewise, if the equation is differentiated

repeatedly, and f substituted for z, equations

are obtained for n = %, 4, 5, ...
;
thus the coefficients c

,
c
lt

c
2 , ...,

can be found.

Similarly, if W(z) is a solution of equation (c), holomorphic
within

|

z f |

= R,

where cn
'=

, /&!

and

Now let
I

iv (g )
|

and
| to'(f ) I

be assigned as initial values to

and W(f) J
tnen

'
^rom equations (A), (B), (c), (D), and (E), it

follows that, for all values of n, W(n)
(f ) is real and positive, and

Accordingly, if the series (n) can be proved to be convergent,
the series (l) will also be convergent, and w(z) will be holo-

morphic in the domain of
f.

Let 2-f=RZ; then

.
, (m)
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where cn
" = Rn

cn
'

;
and equation (c) becomes

so that l-

In this equation put Z =
; then, since

we have

Now let M
x
be chosen so great that RM

X> 2
;
then

so that c'nlc"n+l <^\..
H - T> TIT "D^lXf

T) , Cn 9 n-t-KtM-, . JtvlYl*
But

therefore

Thus series (in) converges if
|

Z
|
< 1

;
hence series (n), and

consequently series (i), converges if
|

z f |
< R.

Now, if z is any point in the domain of f,
R can be chosen so

that |z f|<R< a,
|- Accordingly an integral w(z) exists,

which is holomorphic in the domain of f,
and is such that

arbitrary values can be assigned to w(g) and w'(g).

COROLLARY 1. The integral is unique. For, if any particular

values are assigned to w(f) and w\g), only one set of values for

<>
C
3>

C4> '
>
can ^e deduced from equations (A) and (D).

COROLLARY 2. The integral is of the form CQWI(Z)-\-C^JO^(Z\

where c
,

c
x ,

are arbitrary constants, and w^z), w
z (z), are

integrals of the equation. For, by means of equations (A) and

(D), all the constants c
2 ,

c
3 ,

c 4 ,
...

,
can be expressed linearly in

terms of c and cr Also, by making c and c^ zero in turn, we

see that w^z) and wz (z) are integrals of the equation.

Integrals at Infinity. To determine whether infinity is an

ordinary point of the equation, the transformation z = l/ is

employed. The equation then becomes

a(MF\
w,
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so that it is necessary that p(z)+ 2/z and q(z) should have zeros

of orders 2 and 4 respectively at infinity. If this condition is

fulfilled, holomorphic integrals w() or w(l/z) can be found.

A nalytical Continuation of the Integral. Let f
'

be any point
in the domain of f,

and let P(z, f) be the element of the integral

w(z) corresponding to the domain of f '. Then, since the function

Jp(Z ,

n-j(*)^p(-
n-?(*)p<*. r>

vanishes at all points common to the domains of f and f, it

vanishes at all points of the domain of f (55, Th. III.); thus

P(X f) satisfies the differential equation, and has the initial

values w(') and w'(') at f. Similarly it can be shewn that

every element obtained from w(z) by analytical continuation

satisfies the equation.

84. Solution by Infinite Series. An integral w(z) can be

obtained by assigning values to c and c^ and then finding
C2> C

3>
ct>'-> by means of equations (A) and (D) (83). In

practice, however, it is usually simpler to proceed as follows :

(i) if an integral in the domain of z = is required, substitute

the series

for w in equation (A), and equate the coefficients of powers of z
;

a series of equations is thus obtained which enables us to deter-

mine c
2 ,

c
3 ,

c
4 ,

...
,
in terms of c and c

l ;

(ii) if an integral in the domain of any point a is required,

apply the transformation z= a+ to the equation, and use

method (i) ;

(iii) an integral in the domain of infinity can be obtained by
applying the transformation z = l/f and using method (i); it is,

00

however, simpler to substitute the series ^cn/z
n in the equation

and equate coefficients.

Note. The theorem proved in the previous section, and the

method of solution just given, apply also to equations of higher
order than the second.

Legendre's Equation. Consider the equation

-z2
) and q(z)= -7i(n+l)/(l-z

2
); thus z =
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is an ordinary point of the equation, its domain being the

interior of the circle z
\

1.

Let <iv = c + c
l
z+ c

2
z2
+...

be substituted in the equation ;
then

so that 2.1.

3.2.03-2^+ 71(71+ 1)^ =

^+2)^+1)^+2-^-1)^-2^+ 71(71+ 1)^ = 0, (,,
= 2, 3, 4, ..,).

Hence .
2
=-

~
2.3 1J

>

Therefore w= c
Q
w

l+ c^v2 , where

w =F(-- n+l - z2
] w =*

\ 2 *w /

If 7i is an even positive integer, the first, and if n is an odd

positive integer, the second of these series contains only a finite

number of terms
; so that, if n is a positive integer, one integral

is a polynomial.

Now, if n is even,

2' 2 '2' (!) 2(2-l)
n(n-l)(-2)(-8) ^

1
" "

'(z); (54, Cor.)

while, if n is odd,

m *i _l_ 9 Q \ \9
sF( - ,

+
, -,

^

Thus, if n is a positive integer, one integral is the Legendre

Polynomial ~Pn(z\ which is also known as Legendre s Function

of ike First Kind.
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Example. Find integrals for

Ans. Wl= l- + 6 -

'2.5
7 2.5.8

I ,-fl __
7! 10!

85. Fundamental System of Integrals.

THEOREM I. The integral w(z) of equation (A), 83, cannot

have a zero of the second order at any ordinary point of the

'equation, unless it vanishes identically.

For if it has a zero of the second order at the point z, w(z) =
and w'(z) = Q', hence the equation gives w"(z) = Q. Similarly, if

the equation is differentiated repeatedly, it follows that

so that the integral is identically zero.

THEOREM II. If w (z), w2(z), w3(z), are integrals of the differ-

ential equation holomorphic in the domain of f,
a relation of

the form c^z)+ c
2
w

z(z)+ c
3
w

s(z)
=

exists, where c
lt

c2 ,
c3 are constants not all zero.

For if c
lt c.

2 ,
c
3 ,

be chosen to satisfy the two equations

w
3(f )

= 0,

(f)
= 0,

the integral w(z)= c
l
iu

l (z)+ c
2
w.2(z)+ c^v3(z) and its first deri-

vative vanish when z = . Hence, by Theorem I., w(z) is

identically zero
;
so that

c
l
w

1 (z)+ c
z
w

2(z)+ c
s
w

3(z)
= 0.

DEFINITIONS. Two integrals are said to be linearly inde-

pendent if their quotient is not a constant. Two linearly

independent integrals are said to form a Fundamental System

of Integrals. Such a system can always be obtained by making

From Theorem II. it follows that if the integrals w (z) and

w
2(z) form a fundamental system, any integral can be expressed

in the form c
l
w

l(z)-i-c2w2(z) t
where c and c

2
are constants.
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Again, if c
l
w

1(z)+ c
2
w

2(z)
= Q, then A(2) = 0, where

A(z) =

Conversely, if A(z)= 0, a relation C
1
w

1

for, if A(3) = 0,

wi(z )_wz(z)

= exists:

and the integral of this equation gives a relation of the type

required.

THEOREM III. If the integrals w^z) and w
2 (z) form a funda-

mental system in the domain of f, A(z) cannot vanish in that

domain.

For let W
1(^), W2(z), be another fundamental system ;

then

so that
' Jl

'

(z) ' Wl(z)

where
'12 >

The determinant D cannot vanish, since W^z) and W
2(0) are

linearly independent. But W-^z) and W
2 (z) can always be

chosen so that, at any assigned point z in the region,

W
1()= l, W^) = 0, W

2 (2;)
= 0, W

8'(*)
= l.

Hence A(z) is non-zero at every point of the region.

THEOREM IV. If two linearly independent functions w^z)
and w

2(z) are holomorphic in the neighbourhood of
f, and are

such that A(f ) =^= 0, a homogeneous linear differential equation of

the second order can be constructed, of which they are integrals,

and of which f is an ordinary point.

For if the functions p(z) and q(z) are defined by the two

equations w^ -p(z)Wl'(z)
-
q(z)w1 (z)

= 0,

then

where

p(z)
= \(z)/A(z), q(z)= - A2(^)/A (z),

^'(z\ w
2(z) ,

2
Z
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Now the numerators and denominators of these two fractions

are holomorphic, and A(f)^0; hence p(z) and q(z) are holo-

morphic near z = g. Accordingly w^z) and iu
2(z) are integrals

of the equation w" =p(z)w'+ q(z)w,

of which f is an ordinary point.

Example. Find an equation which is satisfied by

w -I ^.Lif! 1 . 3 . 26 1 . 3 . 5 . 2s

Ans. w"= zw' + w.

EXAMPLES XII.

1. Find integrals wlt w2 ,
for w"+ a2

tv= Q, such that, when 2=0, ^ =
1,

Wi = 0, w2
=

0, w2

' = 1 . A ns. w
l
= cos az, w2

=a~ l
. sin az.

Find integrals in the domain of 2= for equations 2-10.

23 4 2 4.7 29

3. (2
2 - F) /'+ zw' -w=0. Ans. w

l
=

z, w2
=V(^2 - 22

).

4. (l+2+ 22)w"+ 2(l + 22)?^'+ 2w= 0. Ans. ie
1
=

^ 5 , wa
=

-g.

5. (2-l)(2-

6.

7. (l-

8. (l-2
2
)w"-(

W =F +M) _

9. (1
- 2

s
)M'

^7M. ^=^,t^=F(-, -f, , 2^), ^3

10. ^"-22z^"+ 22?^-2w=0.
22s 22

11. Find integrals in the domain of 2=1 for 2(2-2)%'"
A ns. w

1 =2(2 - 2), w2
= 2(2

-
1)+ 2(2

-
2) log {2/(2

-
2)}.

12. Find integrals in the domain of 2= - 1 for w" - (1 +z)w' -w=0.
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Find integrals in the domain of infinity for equations 13-15.

13. %"= (l-2s)3V+ 2w. Ans. w^e1

'*,
w2=e~2/

*.

14. Z4w"+ 2z3 iv'+ a2iv=0. Ans. w
1
= coB(a/z)J

w2 =sin(a/z).

15. z*(z*-l)w"+ 2z(z*+ I)w'-2w=0. Ans. iv^z^-l), iv2 =z/(z
2
-!).

16. Find an equation which is satisfied by

Ans.

17. Find an equation which is satisfied by iv
1 =z, w^e1

.

Ans. (z-l)w"
- ziv + iv= 0.

18. Shew that, if n is a positive integer, the equation

has integrals P(^) and P(^)log (
i!^+Q(z),

where P(0) and Q(z) are

polynomials of degrees n+ 1 and n respectively.
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CHAPTER XIII.

REGULAR INTEGRALS OF LINEAR DIFFERENTIAL
EQUATIONS.

86. Integrals in the Neighbourhood of a Singularity.
Consider a homogeneous linear differential equation of the

second order, of which f is a singularity and of which w
lt
w

z ,

form a fundamental system of integrals at z. Let z describe

a closed circuit which encloses f but no other singularity of

the equation, and let w
l
and w

z
be the analytical continua-

tions of w
l
and w

z
obtained when the variable has completed the

circuit. These two integrals ~w
lt
w

z , form a fundamental system ;

for, if not, a relation c
1
i(;

1+ c
z
w

z
= would exist. Consequently

the function cjwl+ c
z
w

z
would vanish at all points to which it

can be continued (55, Th. III.); and therefore, retracing the

circuit, we would obtain the relation c^w^c^w^O, which con-

tradicts our hypothesis. Accordingly

w^ = c
ll
w

l+ c
lz
w

z ,
w

2
= c

z]
w

l

where D=

_Now let W = Xw1+ /*U'2 ,
and choose the constants X, yu, so that

W, the value attained by W after the description of the closed

circuit, satisfies the equation W = pW, where p is a constant
;
then

Therefore, since wlt wz ,
form a fundamental system,

cn -p, c
21

so that
''12

= 0.
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This is known as the Fundamental Equation belonging to the

singularity If a root of this equation is substituted for p in

equations (1), values of X and
JUL
are obtained such that W^pW.

Neither of the p's can be zero, since D=/=0. If
/o
=

l, the

corresponding integral W will be uniform in the vicinity of

THEOREM. The fundamental equation is independent of the

original fundamental system selected.

Let W
x ,
W

2 ,
be any other fundamental system, and let

so that the new fundamental equation is

'21

6
12 ,

0.

&22-P

Now, if W
1
=

ail
w

l+ a12
w

2 ,
W

2
=

a_

then W
x
= anwt+ a12

w
2 ,
W

2
=a^^+ a

22
w

2
.

= an(cnwi+ c
iz

Accordingly bnau+ 612a21
=

anCj!+ a
12c21 ,

Similarly

Therefore

(2)

21
an+ 622a21

= aacu

'12

a.

21

^12'

1 >

'21

Hence
600 p'2-2

Cu /O,
C,
21

C22~~P

Fundamental System associated with the Fundamental Equation.

There are two cases to consider : (I.) when the roots of the

fundamental equation are distinct, and (II.) when they are equal.
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I. Let the roots plt p.2 ,
be distinct

; then there are two integrals

W
lt
W

2 ,
such that

Now let r

Then, if Oi
=

(z -^rl) Oz
= (z-ft\

1
=

p^O-L , 9%
= p2

9.2 ;

so thatW^ and W
2/02

are uniform functions in the vicinity of f.

Accordingly W, = (z-
f)^W,

W
2
= (z-fl^2 (3),

where ^iC21 ) an(i ^C2) are uniform in the vicinity of

The integrals Wj_ and W
2
are linearly ^ndependent. For, if

not, an equation c
x
W

1+ c
2
W

2
= 0, and consequently an equation

ci/iW1 4-c2/o2
W

2
= would exist. But these equations can only

exist simultaneously if p1
= p2 ,

which contradicts our hypothesis.

II. Let the roots be equal; then (cn c
22)

2
-f 4c12

c
21
= 0.

We distinguish between the cases: (i) when c
12

and c
21

are

both zero
;
and (ii) when they are not both zero.

(i) In the first case p = cn = c
22 ,

and w
l
= pw1 ,

w
2
= pwz

. From

equations (2) it follows that, no matter what system is originally

selected, these equations hold. Accordingly

^l = (^-D r^lW> ^ = (*-?)
r
^2(3)>

where V'l^)* ^2(2), are uniform in the vicinity of f,
and

(ii) In the second case, let W be the integral found to satisfy

the condition W = pW, and let w be any linearly independent

integral. Then w = c
l
W+ c

z
w

t
and the fundamental equation

becomes
p_^ Q

C
l> C2~ (

where <r is the quantity to be determined.

Accordingly, since the roots are equal, c
2
= p ;

therefore

w = c^W+ piv.

Now replace W by Wlf
where pWl

= c
lW, and write W

2
for

Then W
1?
W

2 ,
form a fundamental system such that
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Hence W^z
where ^(z) is uniform near f.

W
Again, I

but, if = - log (2;
-

f),
= + 1. Therefore

sothat

is uniform near
f, Consequently

where ^z *s uniform near

87. Regular Integrals. If the highest negative powers of

(z ) in the Laurent Expansions for ifs-^z) and \^2(2) are finite,

the integrals Wx
and W

2 are called Regular Integrals. Now

the quantities r=
^

. Log /o
are not definite, but have values

differing by integers. Hence, if the integrals are regular, the

values of r
:
and r

2
can be chosen so that

where a and b are non-zero. If a is the nearest singularity to

these expansions are valid for |0 f |< |

a f |

. Thusw-'.
|

D'^i(^2^1og(2-D.J
where r

l
r
2
is an integer or zero.

For the first integral r
x ,
and for the second integral the greater

of the two quantities r
x
and r

2 ,
is called the Index at the point f

It is only possible to carry out the theory completely when
the integrals are regular ;

and we shall therefore, in what follows,

confine our attention to equations whqse integrals are regular.

Condition that the Integrals at a Singularity should be

Regular. If w is an integral of equation (A) of 83, a linearly

independent integral can be found as follows.
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Let w.2
=wAvdz be substituted in the equation; then

so that v=
-'~

The integrals wl
and w

2
are linearly independent. For, if not,

therefore

Hence, differentiating, we- have c.
2
v = 0. But v is not identically

zero
; therefore c

2
= 0, and consequently c

x
= 0.

Thus w^ w2 ,
form a fundamental system. Also

'
"

jV,

Since every other integral can be expressed linearly in terms

of w
l
and w

2 ,
it is only necessary to find the condition that wl

and We, should be regular.

Now we can always choose w
l
so that v is free from logarithms.

For, if w
l
is free from logarithms, while w2 contains them,

Thus

and therefore v =^= = ^r - = v.
dz\w

l

Hence v is uniform in the vicinity of Consequently

z) or w^v is also free from logarithms.

Again, if w
l
is replaced byW1?

where cw
l
=pWlt

thenW
:
= pWj ,

so that V is free from logarithms.O
Now write w

l
and v for W

l
and V

;
then

MJ.
=

/o^j ,
w

2
= p(^ 4-^2 )-

Thus i^j and w
z
can be chosen so as to have the forms of

formulae (A).
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In order to determine the index of A (2), three cases have to

be considered.

I. Let w
t
and w

2 be free from logarithms, and let r^rz
.

Then the index of A(z) or wfv is 2r
1+ (r2 r

1 l)= r
1+ ?% !,

since v = -r- (wzjw^.

II. Let 10! and w
2
be free from logarithms, and let r

1
= r

2
.

Then, by subtracting a multiple of w
1
from tu

2 ,
we can remove

the first term of w
z ,
and thus get Case I.

III. Let w
2
involve a logarithm. If r

z
= r

l}
then

where <f>(z) is holomorphic near f. Hence the index of A (z) is

2r
l

l=r
l+ r

z I. If r
2 -<r1 ,

the index of v is r
2

r
x 1, so

that the index of A (z) is r
1+ r

2 1. If r
2> r

x , then, adding w
to w

2 ,
we get the case r

1
= r

2
.

Hence in every case the index of A (z) is 7^+^ 1.

Now p(z) = \(z)/A(z), q(z)= - A2(z)/A(z) (Theorem IV. 85).

But a circuit about multiplies A(z), A^z), A
2(0), by the same

constant D (86); hence ^9(2;) and q(z) are uniform in the

neighbourhood of
f.

Again, since A(0) has the index r + r
z 1, A1 (0) or j- A(0) must

have an index =rl -}-rz 2
J
and A2 (is) or w1wfv %wl

/2vw
lWitf

an index > r
x+ T

2
3.

Accordingly, in order that the integrals should be regular in

the vicinity of the singular point it is necessary that the

equation should be of the form

* dw O

where P(z) and Q(z) are holomorphic for |z f|<|a |.
In

the following section we shall prove that these conditions are

sufficient.

COROLLARY. If the integrals at infinity are regular, p(z)

and q(z) must have zeros at infinity of the first and second

orders respectively. The proof is left as an exercise to the

reader.
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88. The Method of Frobenius. If P(z) and QO) are holo-

morphic for \z f [< a f|, a fundamental system of integrals

can be found for the equation

?(z)div QQ) (1)

such that both integrals are regular in the neighbourhood of

If the origin is transferred to
f, equation (1) becomes

Z2w'' =00(2X+ \/r(z)w, (2)

where 0(z) and ^(2) are holomorphic in the neighbourhood of

the origin.

Let w=z^cnz
n

; then, if $(z)=^faP and \^(z)

z$ (z) iv \fs(z)w

n =

where d =
and dn =

Hence, if all the quantities d
, d^ d

2 ,
d
B , ..., vanish, and

o>

if ^cnz
n is convergent, w is a solution of (2).

u

The Indicial Equation. The equation in p,

is called the Indicial Equation. From it can be obtained, in

general, two values of p. If one of these values is substituted

for p in the equations d
l
= 0, c

2
= 0, d

3
=

0, . . .
, values for

c
i>

C
2> cs> i

are found in the form

,v
V

where Hn (/o) is a polynomial in
/o.

If the roots of the indicial equation do not differ by an integer,
none of the coefficients c

lt
c
2 ,

c
3 ,

...
, is infinite. If the roots are

M.V.
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pl
and pl+ m, where m is a positive integer, then when p = pl ,

cm> cm+i> cm+2 are usually infinite. To avoid this we put
C
o
= c(p-Pi) which makes c

,
clt ..., cm _ 1 ,

all zero, and cm ,
cro+1 ,

cm+2 ,
... , finite, when p = pr

Now assume cZ
x
= d2

= c
3
= . . .

=
;
then

z2w"-
Z(f> (z)w' -\!,(z)w = zpc

Q{p(p -l)-a p- 6 } , (4)

Where Cn=

for 7i= l, 2,3,....

Let <p(z) and -fy(z) be holomorphic within and on the circle

|z|
= R. Then, if Mj and M2

are the maximum values of <j>(z)

and \/s(z) on this circle,

Thus

so that, if

yn=
+M

|
^ j R"

then

Now

Hence

Vn

_
\cn

+M
R

Accordingly, if p is finite, and has not any of the values p l
1

,

p1 -2, ..., p2 -l, p-2~ 2
> i

wnere PI, p2 >
are the roots of the

indicial equation,

-> y
CO CO

Thus y]ynz
n

,
and consequently 2V 1

, converges if

o o
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But if oc is the nearest singularity to the origin, R can always
be chosen so as to include any point 0, such that

|

z |<| oc
|,
within

the circle. Thus the series ^jcnz
n is convergent for

|

co

and ^v = z
p

l̂
CnZ

n satisfies equation (4), if c
lt

c
2 ,

c
3 , ... , are given

o

by equations (5).

Uniform Convergence of the Series with regard to p. Con-

sider a region K in the p-plane bounded by the large circle

\p\
= <r and small circles whose centres are those of the points

pl I, pl 2, . . .
, p.2 1, p.2 2, . . .

,
which are interior to this large

circle. Then, if n= v>cr, for*all points of K,

Now let v be taken so great that the last expression is always

positive. Also let M denote the maximum value of

M
for the region K. Then, if

-J R

we have yn = Cn , (n = v, j/+ l, + 2, ...).

As in the case of the y's, we can obtain

R'
CO

so that 2GHR'
U is convergent if R'<R. Thus the series

71 V

is uniformly convergent if
|

z
\

= R' and if p lies in K. It is

therefore holomorphic with regard to both z and p, provided
that |zj<|tt.|, and that p has any finite values except pl 1,

p1 2, ..., /o2 1, /o2 ~~2, If, however, pz
= p^-\-m and if

CQ
=
C(P Pi), the point p2

m is not excluded.

The Fundamental System associated with the Roots of the

Indicial Equation. There are three cases to consider.

I. Let pl
and

p.,
differ by a quantity which is not an integer.
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Then, if p is equated in turn to pl
and p2 , equation (4) becomes

equation (2), and we obtain two independent solutions,

II. Let the indicial equation have two equal roots p = pl ;
then

equation (4) becomes

If this equation is differentiated with regard to p, it becomes

-/>i) log s}.

If in these two equations pl
is substituted for p, it follows

that w and both satisfy equation (2). Thus a fundamental

system wl9
w

2 , is obtained for equation (2), where

III. Let
/o2
=

/i+m>
where ?n is a positive integer. Then, if c

is replaced by c(p pl), equation (4) becomes

Thus equation (2) is satisfied by the fundamental system

Solutions free from Logarithms. If Hm(/o)
contains

/Q ^ as

a factor, c can be left unaltered, and both solutions will be free

from logarithms. In that case w
l
will be of the form zpl

P(z),

where P(z) is a polynomial of degree =(m 1).

89. The Gaussian Differential Equation. The equation

is known as Gauss s Equation, or the Hypergeometric Equation :

it has singularities at 0, 1, oo .
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CO

In the vicinity of z = let w= ^cng
f+n

;
then

Thus the indicial equation is

Xp-l)+yp
Also, for 7i = 0, 1, 2, 3, ...,

so that

There are four cases to consider.

I. Let 1 y be not an integer. Then, assigning to p the

values and 1 y in turn, we obtain the fundamental system,

w
l
= F(oi> 0, y, z\ w.

2
= zl

-yF(oi- 7+l, /3-y+l, 2-y, z).

II. Let 1 y= 0. Then the indicial equation has two equal
roots p = 0. Hence one solution is w

l
= c

QF(oi, /3, y, z).

Again,

=

so that

'

-l 2 3
r p+r+l'

Thus the second solution is

2
=

where

*-'

III. Let 1 y = ?7i, where m is a positive integer. One
solution is ^

1
= c F(oc, /3, y, z). Again, putting c

i
n ~ l

X
1

r+-L.)-
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we have

= ...

"^

Hence the second solution is

(a m)(oc m+ 1) ... (a 1)

(a m)(ot ?7i-fl) ... (a m+ 9i 1)

{m+n-l/

i

S v^r~
1 1 \ i-l 1 1 1-- -

r r

If either oc or /3 is one of the numbers 1, 2, 3, ...
, m, the terms

involving log z disappear, and the second integral becomes

^-^(a-y+ l, y+ 1, 2-y, z),

in which the hypergeometric factor is a polynomial. Since p+m
is a factor of Km (p), this integral could also be obtained by

o>

putting p = 1 y in ^cnz
p+n

.

o

Let neither oc nor /3 have any of the values 1. 2, 3, ...
, in;

then, if w2
is divided by the coefficient of log z, and a multiple of

w
l
subtracted from it, the fundamental system can be taken to be

w
1
= F(a. ) /3, y, z), ^

2
= io

1 log^+F1(a, (3, y, z\

where

F/a, /3, y, z)
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IV. Let 1 y be a positive integer. This case can be reduced

to Case III.
;
for the substitution w= zl ~*W gives

where a' = oc y-fl,
' =

/# y+1, y'
= 2 y; so that 1 y'

= y 1

is a negative integer.

Thus, if either oc or ft has any of the values 0, 1, 2, ...
, y,

the two integrals are

F(oc, ft, y, z\ i-vF(oc-y+ l, /3-y+ l, 2-y, 2),

where vanishing factors in the numerators and denominators of

the coefficients of F(a, ft, y, z) are cancelled
;
while if neither

cc nor /3 has any of these values, the fundamental system can

be taken to be

, 2-y, z),

3-y+ l, 2-y, z).

Solutions Regular near z = l. The substitution z = 1 f gives

Hence solutions regular near = 1 are obtained by replacing

oc, /3, y, 2 by oc, $ oc+ /3+ l y, 12, respectively in the integrals

already obtained.

For example, when y oc ft is not an integer, the solutions are

F(oc, /3,oc+/3+l-y, 1-0),

(l_3)y *F(y-/3, y-GC, y-a-/3+l, 1-0).

Solutions Regular at Infinity. If we put 0=1
/f,

w = a
W,

then

Hence solutions regular at infinity are obtained from the

solutions regular near = by replacing oc, ft, y, 0, by oc, 1-f oc y,

1+oc ft, 1/z, and multiplying by 0~ a
. When a. ft is not an

integer, the two solutions are

iu
l
= z- a

F(oi ) 1+oc-y, 1+OC-/3, 1/0),

m2
= 0-0F(& 1 +^-y, l + /3-a, 1/0).

The Differential Equation of the Quarter Periods of the Jacobian

Elliptic Functions. If oc = ft
=

1/2, y = 1, Gauss's Equation becomes

iw = Q. (70, Cor.)
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It is left as an exercise to the reader to prove that solutions

regular near 0, 1, oo
, are :

, ,

i
,

I

o^/ter worked examples on differential equations, see

Chapter XIV. 90, 9L

EXAMPLES XIII.

Find regular integrals in the domain of 2=0 for equations 1-16 :

1. 2zV+2i0'~(l+ a
)w=0.

Ans. *i='+ +
*

+
*

+ -'

2. z(\-z)

oo
fjn

4. zw"+ w' w= Q. An s. u\ =2 /
,
\.> >

...

5. (l+2)?//-2w= 0. ^?2S. 7^=2+ 2
,
W2
=

?<-'! log

6. ^'+ 2-lw' + %'= 0.

7. 2^" - li'= 0. ^I?i5. Wj= f) ./ rr-: ,

o w!(^+l)l
22 /2 1\ z3 /2 2 1

8,
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9. 2V+ 0(1-0) w' - ( 1 + 20)w= 0.

10. ZW"+ W'+ mZW= 0. A ns. ll\
= 2 (

- 1 )" /
t \2o2n '

11. 0V+ 4?'+ 2zfr'=0. An*, i^ l/z, wz
= l

12. 2 l" '

13. 2(l-)?^+2(l-0X-w=0. Ana. ^
1

14, ^l -0

15. 922w"-152w'+ (3fo
4+ 7)w=0. ^7w. w

x
= 1/s cos 2

,
w2
= zlf* sin 2

1+<V3 l-<y.

17. Find regular integrals at infinity for 0W+(a

z

18. Find regular integrals at infinity for 0%'

^l?s. %-j
=

-jj
e1/z2

,
w

2
= 2?^



[CH. XIV

CHAPTER XIV.

LEGENDEE'S AND BESSEL'S EQUATIONS: EQUATIONS OF
FUCHSIAN TYPE.

90. Legendre Functions. If the substitution z = l/g is made
in Legendre s Equation ( 84), it becomes

Let w=^cv
?+v

;
then

The indicial equation has roots pl
= n, p2

= n+ l; and the

second equation gives c
l

0. Also

(,
= 0,1,2,...).

In the first place assume that p2 pl
or 2n+ 1 is not an integer ;

then, if p = n,

" ---
4 1"

while, if

!
HL2 n+ I 3

2
'

2
' ^2' 2
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Thus, if

2n+ 1HO+l/2)zn+ 1

Again, let 2n+ 1 be an integer ;
then n must either be an integer

or half an odd integer.

If n is an integer or zero, all the coefficients are finite. Hence

both integrals are free from logarithms. In particular, if n is

zero or a positive integer,
9/^!\2

w
'i
= c 7^' P"<2)' (54, Cor.)

V*Ji

If 71 is half an odd positive integer, w2
is the integral which does

not involve log z, so that Qn (z) is an integral. If TI is half an odd

negative integer, wl
is the integral not involving log 2. But, in

this case, since l/r(ii+ 3/2) is zero when n+ 3/2 is zero or a nega-
tive integer, the first n terms of Qn(0) vanish, and therefore

" _* 1_^
2'2

n
'

so that Qn(^) is again an integral.

Accordingly, Qn (z) is an integral for all values of n. It is

known asLeyendres Function of the Second Kind. Pn (z) is the

more important of the Legendre functions when |z|<l, and

Qn (3) when!z!>l.
Note. Thus far Pn(z) has only been defined for positive integral

or zero values of n, while QM (z) has been defined for all values of n.

Relation between Legendre 's Equation and Gauss's Equation.
If in Legendrc's Equation we put z= 1 2f,

we obtain

which is Gauss's Equation with oi= n+l, /3= n, y = 1. Hence,
in the vicinity of z = l, the two solutions are

+
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Definition of Pn(z) for all Values of n. When n is a positive

integer,

Now it has just been shewn that this function satisfies

Legendre's Equation for all values of n. Accordingly, for all

values of n we define Pn(z) by the equation

COROLLARY. Pn (z)
= P _ n _ l (z).

Example 1. If n is zero or a positive integer, shew that

where the path of integration is taken so as not to pass through the point z,

[Expand l/(z () in descending powers of z for \z\ > 1, and evaluate the

coefficients by partial integration. The theorem holds if \z < 1, since the

functions on both sides of the equation are holoniorphic.]

Example 2. Use the series for Qn (z) to prove, for all values of n, the

formulae :

(i) (n

Example 3. Use the expression Pn(s)=F( -n, n+l t 1, ~^a~)
to prove,

for all values of ?i, the formulae :

(i) (n+ l)Pn+l (z)
-

(2 + 1)P,,()+ PM_1()= 0,

(ii) n-pn (z)=zP'n(z)-?'n-i(z}.

Example 4. Shew that, for all values of
,

(i)

[Use Ex. 2, (i),
and Ex. 3, (i).]

91. Bessel Functions. The equation

z*w"+ zw'+ (z*
- n2

)w =

is known as BesseUs Equation, and its integrals are called

Cylindrical Harmonics or Bessel Functions.
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The only singularities of Bessel's Equation are z = and z = oo .

00

To solve in the vicinity of = 0, put w = z?^cvz
v

;
then

v=

Hence c
(yo

2
^i

2
)
=

; ^{(p+ 1)
2

?i
2
} =0 ;

cv {(p+ vf n2
}
= cv - z , (i/=2, 3, 4, ...).

The indicial equation is p
2 n2 =

: its roots are pl
= n, p2

= n.

If pi p2
is an integer, ??, must either be an integer or half

an odd integer. The second equation gives c^
=

;
so that

c
3
= c

5
= c

7
=

. . .
= 0. Also

r, f IV
C

<"2v \
L
) /

where v= 1, 2, 3, ....

There are four cases to consider.

I . Let n be neither an integer nor half an odd integer. Then
there are two independent solutions Jn (z) and J_ n (z), where

Zn / Z2 Z4 1

~2w
n(w)l 2(2ri+ 2)

+
2^27?H-2)(27H-lt)~ "J

Jn(z) is holomorphic for all finite values of 2;, except possibly
2 = 0: it is known as Bessel's Function of the First Kind of
order n.

If n is a positive integer, JM(z) is an integral. J. n(z),

however, is not a linearly independent integral. For, since

l/IL(-n+ v)
= 0, where i/

= 0, 1, 2, ...
, ^-1,

II. Let 7i be half an odd integer ; then, since the coefficients in

Jn(z) and J- H (z) are all finite, these two functions are linearly

independent integrals in this case also.

III. Let n = Q, so that the roots of the indicial equation are

equal ;
then

(-lys"



238 FUNCTIONS OF A COMPLEX VARIABLE [CH. xiv

Hence
co f i \ v 2v v

~['

Thus the two integrals are

JoOO = .

and v

Y (2) is called BesseUs Function of the Second Kind of order

zero.

IV. Let n be a positive non-zero integer; then, if c
Q
=

Hence

= i^

1v

to+ 2)...

x fVi 1
,

A 1
. y> .

1
:+v_ _i

\~lp~n+2r ~{p+n+ 'lr ^p+ n+ ~lr ^p+ Sn

Accordingly, if p = n,

zn

z-
1

zn

2 2. 4. ..'2n.'2A. ..(2^-2)
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If these two integrals are multiplied by 2n
~ l
(n l)!/c, they

become Jn(z), and

(-1)- /W+frf
* 1

Subtracting ;;( y+ ^+ H j) Jn(z) from the latter integral,

we obtain the integral,

YM(2)
= J(z) log z- ^V (ll

~~ v ~

where ^r)i|++...+ v (r-ll 2, 3, ...), and

Yn(z) is called Bessel's Function of the Second Kind of order n.

Recurrence Formulae. We leave as an exercise to the reader

the verification of the following formulae :

(i) 2Jn'(s)=jn . 1(2)-Jn+1 (2);

(ii) J '()=-J1();

Jw() as a Function of n. Let 2
1

= R,
|

w
|
=N ; then, if m is

an integer such that m N> 1, and if

T ,v

00

then
|

Tv(z) \

=Mp . But 2 ^ ^s convergent ; consequently, by
m+l
o

Weierstrass's M Test, 2 ^(2) is uniformly convergent if
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\

Now R and N can be chosen so large that these regions enclose

any assigned finite points z and n. Accordingly, for all finite

values of z, except possibly 2= 0, Jn (z) is a holomorphic function
of n.

The Bessel Function G.n (z).* It is sometimes found convenient,
instead of J_ w (z) or Yn (z), to take as the second solution of

Bessel's Equation the function

where the limiting value of the expression on the right-hand
side is taken for Gn (z) when n is an integer.
Now

Also PW+8l
TYn vs

, v_
v^4i/!r(-

so that

/
v
~~

-1 ; I o
7T . VI

-n+2v

^(-n+ v).

If 7i is a positive integer, let p = n; then

Accordingly, if n is a positive integer,

O f T / \ : -r ,

2 COS 717T

*Cf. J. Dougall, Proc. ^IM. Math. Soc., Vol. XVIII. p. 36.
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The verification of the following formulae is left as an exercise

to the reader :

(i) G_ tt() = e**GM (z);

(ii) 2Gn'() = Gn_ 1(*)-Gn+1();
27?

(iii) ^G.(z)=G,,. 1(*)+Gl,+1(X

THEOREM. If P(z) and Q(z) are any solutions of Bessel's Equation, they

satisfy a relation of the form

where C is a constant.

For, if the substitution iv=z~l '2W is made in Bessel's Equation, it becomes

Consequently

{x

Hence, integrating, we have

a * - F() Q(*)= j-
For example,

1 sin mr .

T(n)
= -

and therefore Jn (2) j'_n (z)
- J'n (z) J_(,-)= - 2

The reader can easily deduce that :

~J(*)J-ti-lW sillWTT..=2

(iii) Gn

The Zeros of Jn (s). If n is real and greater than -
1, all the zeros of Jn (z)

are real and distinct, except possibly z=0 ; this can be shewn as follows.

We have -

Thus, multiplying the first equation by Jn (fiz), and the second by J,,(ou),
and subtracting, we have
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Hence, if K(?0> -1,

(<X
2 -

Therefore, if O=OL and 6 ft are distinct zeros of JM (0c),

Again, let /3=cx+ ;
then

If this equation is divided by e, and is then made to tend to zero, the

equation becomes

Hence, if 0=oc is any zero of JM (#c), except ^=0,

THEOREM I. If n is real and greater than -1, Jn (z) cannot have any

purely imaginary zeros.

For

and the latter expression cannot vanish if y is real.

THEOREM II. If n is real and greater than -1, Jn (z) cannot have a

complex zero.

For if z=p + ig is a zero, where p and q are real, z=p iq must also

be a zero ;
hence

P-
I x Jn { (p+ iq)x } Jn { (p iq)x}dx=Q.
Jo

But if n and x are real, the integrand is positive ;
and therefore the

integral cannot be zero. Thus the theorem must hold.

Accordingly, if n is real and greater than 1, it follows that every

zero of Jn (z) must be real.

THEOREM III. If n is real and greater than -
1, 3n (z) has no repeated

zeros except possibly 2=0.

For if 2=0. is a zero,

so that J'(o-) + 0- Thus Jn() has no repeated zeros.
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THEOREM IV. If n is real and greater than 1, Jn () and Jn +i(z) have

no common zeros except possibly 2= 0.

This follows from the formula

92. Equations of Fuchsian Type. Equations whose coefficients

are meromorphic in the entire plane, and which have their

integrals regular in the vicinity of all their singularities, are

called Equations of Fuchsian Type.
If the singularities are a

lt
az , a3 , ..., an ,

and infinity, the

equation is of the form

dw P2n . 2 (z)=
dz* (z

-
Oj)(z

-
2)

... (z
-

c^) dz^(z- al)
2
(z
- a

2 )
2

. . . (z
- an

where Pn _
1() and P

2n-2( 2:) are polynomials of degrees n 1 and

Zn 2 respectively ( 87).

If infinity is not a singularity, the equation is of the form

dz* (z-al)(z-a2)...(z-an) dz(z-a1)\z-a2)\..(z-an)
z

where the coefficient of the highest term in Pn -i(z) is 2

(83, p. 212).

THEOREM. The sum of the indices associated with the

singularities a
lt
a

2 ,
...

, an ,
oo

,
of the equation of Fuchsian Type

is Ti- 1.

Let P_z
and let ^ (z) (z a

t) (z a
z)

. . . (z an ).

Then the indicial equation for the singularity ar is

p(p 1) = p
""^

^-\- terms independent of p.
\js \ar)

Accordingly, if the roots of the indicial equation are p l
and

Now, by the theory of partial fractions,
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Hence, integrating round a large circle which encloses a
lt

a
2 ,

...
,
an ,

we have

since Lim 2
s^so

Thus the sum of the indices at a
lt
a

z ,
...

, a,,,, is n+ A.

Again, put z=l/f ;
then the equation becomes

Thus the indicial equation is

so that pl+ /o2
= 1 A.

Hence the sum of the indices is n 1.

COROLLARY. If infinity is not a singularity, A=2, and

therefore the sum of the indices is n 2.

93. Riemann's P-function. We shall now investigate the

conditions that the equation

should be completely determined if the n+ 1 singularities

a
lt
a
2 ,

...
,
an ,

oo
,
and the corresponding indices, are assigned.

There are 3n l constants to be determined in the equation.

The assigning of the singularities a
l}
a

2 ,
... aw ,

oo
, simply deter-

mines \fr(z) and the degrees of Pw _!(2) and P2n _ 2 (z). The assign^

ing of the 2rz,+ 2 indices determines only 2n+I constants, since

the indices must satisfy the condition that their sum is nl.
Thus n 2 constants remain to be determined

;
so that, if

7i = 2, the equation is completely determined.

Similarly, when infinity is not a singularity of the equation,

there are n 3 constants to be determined
;
so that the equation

is completely determined if n = 3.

Consequently, in both cases, if there are three singularities, and

if the indices are given, the equation is completely determined.

By means of the transformation

zhcb a
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the equation with singularities h, k, oo
,
can be transformed into

an equation with singularities a, b, c. The equation can therefore

always be put in the form

d2w ( f g h }dw

where f+g+ h = 2.

Let the indices at a, b, c, be X and X', /UL
and //, v and j/,

respectively, where X+ X'+ yu+ yu' 4-^+ ^=1. Then, since the

indicial equation at a is

1 +/= x+ X', l=- \\'(a- b)(a
-

c) ;

so that /=X+ X'-1.

Similarly g = /m + // 1
,
m =

/*//(&
~ c)(^

~ a)

h = v+i> 1, w= i/i/(c a)(c 6).

Hence the equation can be written

/uL /u.'l vv'\ dw~~ ~

dz*^\ z- z-b z-c J dz

+ \~ z-a
~ +J z-b

~ + z^c~
w

(z-a)(z-b)(z-c)

Now for simplicity assume that X X', /U. JUL', v v, are not

integers ; then, if PA , Py, PM ,
PM', P,,, Pv>,

are integrals corresponding
to the indices X, X', /UL, /UL', v, v', any branch of any integral of the

equation can be expressed in any of the forms

Riemann denotes such a function by

{a,

b, c, \

X, yu, v, z V;

X', yu', I/', J

and it is called Riemann s P-function. If either X and X',

yu and //, or i/ and i/', are interchanged, the differential equation
remains unaltered. Likewise the three columns can be inter-

changed without altering the equation. Again, if the function

is multiplied by (z a)*(z c)*(z 6)-" p
,
the indices at a, b, and
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c, become X+ or and X'+ a; /JL <r p and // o-
/o,

v+ p and i/+ p,

while the branches of the function remain holomorphic at all

other points, including infinity. Also the sum of the indices is

still unity. Consequently

a, 6, c, }

I
a, b, c,

\ x, M , i/,
z
V=P^ x+cr, M-O p, j/+/o, z

y.
\ / / / i ^ / - / /

,X , p ,
v , J ^X+o-, /m <r p, v +p,

Again, the transformation

f_za c b
^~

z b c a

changes a, b, c, into 0, oc
,
1. When the latter three points are

the singularities of the equation, the function is denoted by

p/X, M, ,

z \

IX, JUL , V,

where K is a constant
;
thus

Z
'(i-*y?{

x ' *
": .j-pf^*' "C'l* "-?' 4tX, /x, i/, J LA+O-, /x o- p, ^+/>,

The differential equation determined by P( J
M

; ^ 2 1 is ob-
IX, M, j/, J

tained by putting a= 0, c = l, and making b tend to infinity;

it can, by means of the equation X-f-X'-f A*+/*'+"-fV^lj be

put in the form

XX'- (XV ^

In particular, the function P( 1

'

^' 3 2) satisfies

! .
\1 y, P, y . p, /

the hypergeometric equation

Note. Since

'

K-y, ft y a ft

where a= X+ /*+ ^ /3
= X+ /x

r+ 1/, y = l-X
x+ X, it follows that

the P-function can always be expressed in terms of the integrals

of the hypergeometric equation.
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The Twenty-four Integrals of the Hypergeometric Equation.

The solutions corresponding to the indices 0, 1 y, at z= are

(89),

F(OC, ft, y, 2), Zl
-y~F(oL y+ 1, /3-y+l, 2-y, 2):

we denote them by W1
(0) and W

2
(0)

respectively.

Alternative forms for W
1
(0) and W

2
(0) are obtained as follows.

We have
/ 0, oc, 0,

0, y 8, GC+ /3 y, \

_
y> y_ a> 0, '/

Thus

(l_z)Y--0F(y-a, y-/3, y, 2)
= C

tW^+ C2
W

2
(0)

.

But, since the function on the left-hand side is uniform at

2 = 0, C2
=

;
hence

In this equation let 2 =
;
then 1 =Cr Therefore

W^ = (l-z)y-*-PF(y-OL, y-/3, y, 2).

It follows that

In like manner alternative forms can be found for the regular

integrals at infinity and 2=1.

Again, the six transformations,

when applied any number of times in any order, change the

points 0, oo
,

1
,
into the same three points in different orders.

By means of these transformations new forms can therefore be

obtained for the integrals. For example,

jg

0, 0, oc,

0> a> 0>

v , y-ft/S-

=
C(l-z)-F(a, y-/3, y, ^J.
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In this equation let z =
;
then C = 1. Hence

These two expressions for W/ ) are valid if R(z)<l/2.
We have thus obtained four different forms for W/ ). Similarly

four different forms can be found for W
2<>, W^ 1

), W2
< ]

>, W^00

),W
2<*>. These twenty-four forms for the integrals of the' hyper-

geometric equation are :

III.

IV.

V.

VI.

VII.

VIII.

IX.

X.

XL

XII.

XIII.

XIV.

XV.

XVI.

XVII

2-y, z)

a-y+ 1,

z-l
z

z-l
z

a-y+ 1, a-
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xvm. =^-*(-

XIX. = z-l' 1-z

XX. = z
l ~

XXI. W
2
(>= 2-fl

XXII. =2a - Y
(z-l)

Y - a - p F( 1 -a, y-a, -

XXIII. =
( l)-*Fnft y-a, /3-a+l, y-^

YYT^r 1 ~ V / l\V~^~lTTI/3 _1_ 11 rv /Q rv _L 1

\ * 21

Relations of the form

where r=l, 2; s = 0, 1, oo; ^ = 0, 1, oo
;

hold between the six functions W/ ),
W

2
(

), W^), WgW W^"),
W

2
^\ One of these relations is given in Example 4 of 63, and

the others can be found by similar methods.

Example. Shew that, if y -.-/? is not an integer, the analytical con-

tinuation of F(OL, /?, y, z) in the vicinity of z= \ is

[Apply Ex. 4, 63, to form III. of W^.]

94. Spherical Harmonics. The equation

is called Legendre's Associated Equation. The integrals of this

equation are called Spherical Harmonics of degree n and rani- m.

The most important cases are when n and in are positive integers,
such that in =11.

If 771 = 0, the Harmonic is a Legendre Function or Zonal
Harmonic.

If ?7i= l, 2, 3, ...
,
7i 1, the Harmonic is a Tesseral Harmonic.

If ?7i = 7i, the Harmonic is a Sectorial Harmonic.
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Let the substitution w= (z
2

1)*
MIW be made in Legendre's

Associated Equation ;
then

Again, differentiating Legendre's Equation m times, where m
is a positive integer, we obtain

Accordingly, if m is a positive integer, two independent solu-

tions of Legendre's Associated Equation are

-r/mP (?\ m rlmC\ (y\
p m(~\ _ /22_ 1 \ 2

a rn\Z) r\ w/ \ _ / 2 i \2 a ^>n\Z)

dzm
' ^n ( ' dzm

'

These functions Pnm(z) and Qn
m
(2) are known as Legendre's

Associated Functions of the First and Second Kinds respectively.
To make them uniform a cross-cut is taken along the real axis

in

from oo to +1, and that branch of (z
2

1) is chosen which is

real and positive when z is real and greater than 1.

If m and n are positive integers, and m= n,

- 120>

( 93, Form II. of W
(7^+ m)! /2-i\i / 1_ 2\= ,/ \I'("TT) F Ti+1, w, ?n+ l, ^r

77i! 71 771! \2; 4-1 / \ 2 /

If m>7i, Pn
m
(z)
= 0.

Similarly, if in is a positive integer, then for all values of n,

_(-iy*(z
2

+"

M+m+2 ii+m+ l 31
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Again, let the equation

obtained from Legendre's Associated Equation by means of the

substitution w = (z* l)-
* W

be differentiated m times
;
then

Hence, if 971 and n are positive integers, and if m= ti, two

independent solutions of Legendre's Associated Equation are

and
771

f3 f2
fz=

(2;

2
-l)-2 ...

J OO J <X> J 00

Since the four functions Pn
m
(z), P~m (z\ Qn

M
(z), Q;

m
(2;), satisfy

the same equation, they cannot all be independent. The relations

connecting them are found as follows :

"1 m flnm
f=-W-sra('-) 'Sa^-l)-

" l ;*

3 1

(93, Form II. of W
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EXAMPLES XIV.

1. Shew that, for all values of n :

(i)

(ii)

(iii)

(iv)

2. Shew that

(i) Qo(*)

[Use Ex. 1, 90.]

3. If n is zero or a positive integer, shew that positive circuits about
z=l and z= -1 decrease and increase Q,(2) respectively by Tn'P^). [Use
Ex. 1, 90.]

4. Use the formula of Example 1, 90, to prove the formulae of Example 2,

90, for positive integral values of n.

5. For all values of n, shew that

(* ~ l){Qn(*) Pn(t)
~Pn (z) <&(*) }

= C,

where C is a constant. [Substitute Pn (z) and Q,,(z) for w in Legendre's
equation, multiply the two equations so obtained by Qn (z) and Pn (z) respec-

tively, subtract, and integrate.]

6. If n is a positive integer, shew that

7. If n is a positive integer, prove :

(i) n{Pn(z)Qn^(z)-Qn(z)?

(ii)

8. Shew that

(i) z3n

(ii) zGn

9. Prove that

(i)

(ii)

10. Shew that: (i) J^z)^ sinz
; (ii) J_^(z)

Deduce that, when n is half an odd integer, Jn (z) can be expressed in

terms of elementary functions.

11. Shew that :

(i) ~{z
n3n (z)}

= z
n
3n-i(z) ; (ii) {z^n(z)}^ -z~nJn+l(z)
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12. Shew that

,]m

(i) 2' ?L JH (Z)
= C J-(*) ~ C,J-m + 2 + -.+(- 1)

M
CWJ,l +m(4

(ii) 2-^ G ()= CoG^s) - cA^+oCO+ ...+(- l)"^G,i+m(4

where c
,
c 1} ...

,
cm ,

are the coefficients in the expansion o

13. Establish the expansions :

(i) ?Jn- 1 (z)
= n,Jn(z)-

14. Shew that Jn (z) is the coefficient of f" in the expansion of e ^ f*

in powers of
^.

15. Establish the expansions :

(i) co8(am^)=J
(ii) sm(2sin^)= 2

[In Ex. 14 put f=e
ifl

in turn.]

16. If n is a positive integer, prove

Jn (z)
= - rco$(

ITJO

[Multiply expansions (i) and (ii) of Ex. 15 by cosw^ and sinnO, and add.]

17. Shew that
'

- __
[Multiply together the expansions of e \ *' and e V f

/, and find the

term independent of .]

18. If R(w)> -
J, shew that

[Expand cos(2cos<^>) in powers of 0, and evaluate the coefficients.]

19. Solve 2?0"+w=0.

Ans.

20. Solve 2%"-2

21. Solve

22. If
i, w, A

%

,
are positive integers, and k<m, k<n, shew that

(i) wl
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23. If n is an integer, shew that

Equate the coefficients of f in

24. If n is an integer, shew that

25. Deduce Gauss's Theorem ( 61) from the Example of 93.

26. Shew that, if y
- a. - /?<0,

F(a, ft y, *)_r(.
Sf <i-,r-'~ r

while if y a. )8=0,

[For the second equation apply Ex. 4, 63, to Form III. of W/' ( 93).]

27. Shew that, in the domain of the origin, every solution of Legendre
:

s

Associated Equation can be put in the form



CH. xv. 95]

CHAPTER XV.

SOLUTION OF DIFFERENTIAL EQUATIONS BY DEFINITE
INTEGRALS.

95. First Method of Solution.* If Q(z) and L(z) are quadratic
and linear functions of z respectively, and K is a constant, the

equation Q
can be put in the form

w = 0, (A)

where R(z) is linear in z. We shall confine ourselves to the case

in which the factors of Q(z) are distinct.

If the function I 0(f)(f z)
A+1

fZf is substituted for w in
Jc

equation (A), then

f te=;

so that I #(^){X(f )
x" 1

Q(f)+(f 2^E(f)}df=sO, (B)
Jc

Accordingly, if 0(f) satisfies the equation

equation (B) becomes

Jordan, Cours d'Analyse, t. in, p. 240.
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Xow, equation (c) gives

where p and q are constants, and f a, f &, are factors of

Thus

so that

where D is a constant.

Accordingly,

is an integral, provided that either (f )*( &)
9
(f zY vanishes

at both extremities of C, or else C is a closed curve such that

this function (or the integrand) has equal values at the initial

and final points.

Let P be any point of the f-plane, and let A, B, and Z,

denote loops drawn positively from P about a, 6, and z. Also

let A, B, Z, denote the values of the integral

taken round these loops, with M as the initial value, in each

case, of the integrand at P. Any of the contours ABA" 1B~ 1
,

AZA- 1Z~ 1
, BZB~ 1Z~ 1

, where, for instance, the first denotes the

loops A, B, A" 1
,
B - 1

,
described in succession, can be taken as path

of integration C. For, if ABA~ 1B~ 1 be taken, the final value of

the integrand is equal to its initial value multiplied by
^irip glniq ^

- Snip g
- 2niq == J

.

and similarly with the others.

Let the values of the integral taken round these three contours

be denoted by [AB], [AZ], [BZ], respectively. The value of

[AB] can be found as follows.

The loop A gives the integral A, and brings the integrand

back to P with the value Me2>rip
. Thus the loop B gives the

integral e*wipB, and the final value of the integrand is e^^+^M..

After describing the loop A~ l
,
the final value of the integrand

is e
27"5M, so that the corresponding integral is e2niqA

; similarly

the integral due to the loop B' 1
is B. Thus

[AB] = (1
- e2^)A - (1

-
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Similarly [AZ] = (1
- e

2
-*)A- (1

-

and [BZ] = (1
- e2^)B- (1

-

Hence (1 -e2
^)[AB]+ (l -e2

^)[BZ]+ (l
- e2^)[ZA] = ;

so that a linear relation exists between the three integrals, as is

to be expected. Any two of these integrals, say [AZ] and [BZ],

can be taken as the fundamental system.

The Branch Points of the Integral. When z is fixed, the path
of integration can be deformed without altering the value of the

integral, provided that it is not made to pass over any of the

points a, 6, z. If z varies continuously, the integrals will also

vary continuously, provided that the path of integration is

Fio. 76.

deformed, when necessary, so as to avoid passing through the

points a, 6, z.

If z describes a contour about a, the loops A and Z (Fig. 76)

must be deformed into loops A' and Z'.*

Now Z' is equivalent to ZAZA^Z' 1 and A' to ZAZ" 1 or

ZAZ~ 1A~ 1A. Thus, if Z' and A' are the values of the integrals
taken along Z' and A',

A'=-[AZ]+ A.

* This can be effected as follows : (i) deform Z into Zlf so that z passes round a

to z
l ; (ii) deform A into A'

; (iii) deform Zj into Z', so that z moves from % into its

original position.

M . 1 '. R
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Accordingly, [AZ] is transformed into [AZ]', where

[AZ]'= (1
-

e***)A?
-

(1
-
e^p)Z'

(D)

Similarly [BZ] becomes [BZ]', where

[BZ]' = [BZ]+ (e
2^ -

l)e
2
*[AZ].

Thus a is a branch point of both integrals. Similarly it can

be shewn that b is a branch point. Infinity is also, in general, a

branch point ;
but a circuit about it can always be replaced by

circuits about a and b.

96. Gauss's Equation. If in equation (A), 95,

Q(z)=2-z2
, R(3) = (a-y+ l)-(oc.-0+ l)2, X=-a-l,

then a = 0, 6 = 1, > = . y+ 1, # = y /3;

thus the equation becomes Gauss's Equation,

and has the integral

where C is so chosen that the initial and final values of the

integrand are identical.

A second integral can be obtained by interchanging a and /3,

and a third by putting 1/f for The latter integral is

Employing the notation of 62, we can write one such integral,

f
where the initial point lies on the real axis between and 1, and

the initial values of ^~ 1 and (l-f)v-^-
1 are real and positive.

If z describes a closed contour enclosing z = but not z = 1
,
the

singular point 1/2 will describe a closed contour enclosing z =
and z= l; and therefore the contour of the integral need not

altered. Accordingly, for values of z which lie in a simply-

connected region enclosing 2 = 0, but not enclosing 2=1, the

integral is a uniform function of 2.
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Now let |z|< 1, and choose that value of (1 z )~* which has

the value + 1 when z =
; then

,0+, 1-,0-J

^

)}

-)2w
, (62)

, y-/3)F(oc, y, 2).

Note. The expression given by this equation for the function

F(oc, /3, y, 2) as a contour integral is valid for all values of z.

Example. Prove F(o., /?, y, 2)
=

(1
-

z)

~ aF
(OL, y

-
/?, y, "

[Put = l-C.]

Again, consider the integral

where the initial point is on the straight line joining f= to

f =z, and the amplitudes of f/2 and (l f/2) are taken to be zero

at this point; while that branch of (1 f)?"^
1

is taken which

has the value 1 when f =0. From formula (D) of 95 it

follows that when 2 describes a closed contour about 2= 0, the

integral is multiplied by e~ Zvi
y.

Now let =zZ; then the integral becomes

fO+,.1

+,0-,1-)
Za

~v(l Z)~
a
(l zZ)?-'

, a-y+ 1, 2-y, 2).

This equation gives an expression for the function

zi-yF(oc-y+l, /3-y+ l, 2~y, 2),

which is valid for all values of 2.

97. Legendre's Associated Equation.* If in equation (A), 95,

Q(z)=l-z
2

, R(z)=- 2(w+ 1)2, \=- w-m-2,
then a = 1, 6 = 1, p = ^ = w-+ 1

;

*Cf. Hobson, Phil. Trans., Vol. 187.
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thus the equation becomes

(l-z
2
)i</'-2(

and has the integral

f (f*-
JC

where C is a suitable contour of integration. Hence ( 94)

is an integral of Legendre's Associated Equation.
The Function Pnm (z). Consider the function

f(z+,

=(z2-i)H

where a cross-cut is taken along the real axis in the z-plaiie from

1 to x to make the function uniform in z, and the amplitudes
of zl and z+1 lie between TT and +TT. Let A (Fig. 77), a

point in the f-plane on the straight line joining f=1 to f=z, be

taken as initial point; and let the initial amplitudes of f 1 and

f+1 be and 0', where these are the angles (between TT)

which the lines joining f=l and f= 1 to A make with the

positive -axis. Also let the initial value of amp(f z) be

-.(TP ,^ so that amp(f z) is zero for points on the contour

at which f z is a positive real quantity. Thus if z lies on the

cc-axis to the right of +1, the initial values of amp(-l-l),

amp( 1), and amp (f z) are 0, 0, and TT, respectively.
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Now let f 1 =(z 1)Z ;
then the initial value of amp Z is zero.

Again f+1 = 2U +^-ZJ. But when f=l, amp(f+l) = 0;

hence amp (l -4-?-^ Zj
is zero when Z = 0. Also

where amp(l Z) is initially zero. Thus

('?-!_

1 \i-l
IJL

) 2
3 I/

fl+,

0+,1-,0-) / 'yl \w

Z(1-Z) ^l +^Zj

/^__1\T(1 +. o+, i-,o-)

\ y

In particular, if 771= 0,

rjH-,

!+,-,!-)
(f

2
l)(f 3)-*-

1

df=2w+27re'
wl

sin?i'7r

1-^N

so that ( 90)

Now, if ?7i is a positive integer, then ( 94)

2 __ iiH

r(Z+,i+,2-,i-)

J.
(f

2-
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But this function satisfies the differential equation for all

values of ra. Hence, for all values of n and m, Pn
m
(z) can be

defined by any one of the equations

i _
(93)

COROLLARY. P? n _ ,(z)
= P(z).

Example 1. Shew that

(Z+, 1+, Z-, 1-) f(Z+, 1+ )

/
f(z+, 1+)

deduce that

Function Q,n
m

(z)> Again, consider the function
~ l

where a cross-cut is taken along the real .axis in the z-plane

from 1 to oo to make the function uniform in z. Let the

origin in the f-plane be taken as initial point ;
and let +1 and

1 have initial amplitudes 2?r and TT respectively, so that

they will both have amplitude zero when f is real and greater

than 1. Also let the initial value of amp (f 2) be ampz TT.

Then, if
|

z

l Sin 717T

/ ,2r+3\
2 / (Exs. VIII. 7)

)

t, , ( 62,Ex. 2).



97] THE FUNCTION QH
W
(z) 263

Now, if m is a positive integer ( 94),

O ^-(-

But we have just shewn that this function satisfies the

equation for all values of n and in. Hence, for all values of

n and m,'Qw
m
(z) can be defined by either of the equations

_
<
-

vli,/w+m+2XN -I- 1 <

2n+]

f(-l+,X
)

COROLLARY. By applying the formula ( 93)

F(a, ft, y, )
= (!-)' F(y-a, y-ft y, f).

we obtain the relation

A Second Expansion JOT Qn
m

(2). Consider the function

There are two cases to consider, according as I (z) is positive

or negative.

Let A (Fig. 78), the initial point, be on the straight line

joining f=l to =z, and let this line make an angle
with the positive -axis. Also let the initial values of

amp(f+l) and amp(f z) be and (TT 0) respectively.

Then if f+l=(z+l)Z, the initial value of ampZ is zero. Also

f z = (z+l)(Z 1), so that the initial value of amp(Z l)is TT.

Again, since f 1= 2(1 -- ~^\ and since, when f= 1,
\ 2t J

1) has the value TT in the first case, and the value TT
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in the second case, -1 has the value 2e iir l--- -Z) when I(z)
Lt

is positive, and the value 2e~ iir

(l
--

9^ z) when I(z) is negative.

-i

FIG.

Hence the given function has the value

e niri
~~ m

\z+l/

fi+,o+,l-,o-)
Zn(I-Z)- n -m - dZ

m)

x
F^-TI,

Ti+ 1, 1 -m, ^t
2

),
( 96),

according, as I(z) is positive or negative.

Now let L, M, N, be the values of f(f
2 -:

l)
n
(f-2)"

w "m
;
1

d^

taken round loops from f=0 about 1, 1, z, respectively; the

initial value of amp( 1) will be TT or TT according as I(z) is

positive or negative. Then ( 95) :

C(z+ , 1+,

p.,,

f(-l+,+
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'n
(z) 265

Denote the integral in the last equation by Wl ;
the initial

value of amp(f
2

1)" in this integral is mri, according as I (2)

is positive or negative. Again, let W
2
denote the integral

1 >

({
1-i)r

tf-*)**'
r*' l

4t in which the initial values of

fc.rnp(f+l) and amp(f 1) are 2?r and TT respectively; then

an:p (f
2

1
)
n

is mr initially. Hence

e llniW
2
= e^ niriW

l ;

so that W
2
= e-'l7r^ n7ri

(L-M),

according as I(z) is positive or negative.

But

Hence, since

1 ~

fz+,

2*+!

it follows that

O m/ 2\=_

x

e^m

according as 1(2.) is positive or negative.

COROLLARY. From the equation

it follows that

(c . p . 263)

-(J.tl)'-
F
(-,,.,,

+I , 1+,,!J-").

Example 2. Shew that
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98. Second Method of Solution. Differential equations of

the type
(az+a')w"+(bz+ b')w'+ (cz+ c')w= Q (A)

can be integrated as follows :

Substitute w= 0(0 6^f in equation (A) : then
Jci

( <l>(S)e*{(a^+b+c)z+(a'?+b'S+c')}dS=(). (B)
JC

Hence, if <p(g ) satisfies the equation

(a'?+ b'+c')<t,(f)
=
^{(a?+bS+c)<t,(t)},

(c)

/* .^7

equation (B) becomes jf.O()d=Q,
Jc <*

~

where 0(f)#(f)(a*+&+ e), Also equation (c) gives

Thus <J>()e^
z

dg is a solution of equation (A), provided C is so
Jc

chosen that 6(z) regains its initial value at the final point.

99. Bessel's Equation. In Bessel's Equation ( 91) put w = z
nW;

then

This is an equation of the type considered in the previous
section. Accordingly, since, in this case,

=f
J

W
c

is an integral, provided (9(z) or e*(f
2+ l)

w+*
regains its initial

value at the final point.

Hence, if f is replaced by ig, a solution of Bessel's Equation is

'c

where C is a suitable contour.
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Expression for Jn (z). Consider the integral

[-i+, +i-)

where the initial point lies on the -axis between 1 and +1.

Let the initial amplitudes of f+1 and f 1 be 2-Tr and TT

respectively, so that each of them has zero amplitude at the

point where f crosses the f-axis to the right of = 1. Then

f(-l+,+l-) /Az\v fl

*(?- !)"*#= V JJ v=0

= - g* cos ^r(^

(Exs. VIII. 7)

(62, Ex. 2)

Hence

COKOLLARY. If

Example. Prove

Expression for Gn(z). There are two cases to be considered.

CASE I. Let 7r/2 = = 7r/2 ,
where

<j>
= amp z.

Then consider the integral

taken along the contour C of Fig. 79 from infinity back to

infinity. Both extremities of C approach infinity in a direction

making an angle ?r/2 with the positive -axis
;
so that iz is

real and negative, and therefore 6(g) tends to zero at both
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extremities. The amplitudes of f+1 and f 1 are chosen so

that they vanish at the point L, where the curve crosses the

positive ^-axis.

If necessary, deform the path so that, at every point on it,

;
then

-1 O +1/L

FIG. 79.

Now put X = e^zg, so that the initial and final values of amp X

are and 2?r respectively ;
then if

W = :

where the integral is taken along the contour of Fig. 60 (61).

Hence

( 62, Ex. 2)

Thus J_.(,)-
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Next, let R(>+ i)>0, and - Tr/2 < ^ 7r/2 ; then/deforming
the path C into a contour (Fig. 80) consisting of a line through

FIG. 80.

f=l, which makes an angle ?r/2 with the positive -axis,

described from x to 1, the -axis from 1 to 1, and this path

reversed, we have

S^ !>-*"
where in the latter integral f 1 and f+1 have the amplitudes

corresponding to the first description of the line from oc to 1.

Hence

so that

GM (z)
= e8niri cos nTr

Now let f l = e ^ 27r4
'

X, so that X is real and positive; then

since, when f=l, amp(f+l)= 2?r,
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Thus

-

e-

CASE II. Let 7r/2 ^ ^ 37T/2.

Consider the integral

fJ

where C is the contour of Fig. 81, and the amplitudes of f

and f -|- 1 are chosen to be zero at L. If
| f | > 1,

yy iy
( }

FIG. 81.

so that, applying the transformation X =
we obtain in the same way as before,

to this integral,

Next, let RO+ J) > 0, and 7r/2^ < 3-7T/2 ; then, deforming C
into a contour (Fig. 82) consisting of a line through f=1, which

makes an angle Tr/2 (/>
with the positive -axis, described from

oo to 1, the -axis from 1 to 1, and this path reversed, we have

nfl
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"

where in the latter integral 1 and f-fl have the amplitudes

corresponding to the first description of the line. Hence

so that

Fio. 82.

Now let f l = e X, so that X is real and positive; then

Thus

Accordingly, if R(TI+ J)>0, this formula holds for all values

of z such that 7r/2<<< 37T/2.

100. Asymptotic Expansions of the Bessel Functions. In

the formula obtained at the end of the previous section, let

z\e~ i* =
g, so that ( is real and positive ;

then

V-l
niri .'{ 7T\ /

(^r^^'H^-'
provided K(7i+ |)>0, -

7r/2< < 37r/2. Hence
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where the integral is taken along a line making an angle y with

the positive real axis such that ?r/2< r\< ?r/2. Thus

Now let g=ueir>
,
so that u is real and positive; also let

u) = \fs(u)+ ix(u), where \Js(u) and \(u) are real functions and

Then

x()=

where 0<fl<l, 0<0'<1. Therefore

^

Hence

But
2 ,

where =

Now let amp ( 1 +
^ j

= r ;

then, if cos(>/ ^)=^0, as w increases from to oo, 7r<V<7r.

Hence, if n = OL+i/3, and if s>a J,

/ ie^t&V1 --'

\ 22 7 =
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Thus F^)!^,
where M= ^"" -'

Therefore

It follows that

1

1

22
;*

But
>;
can always be chosen so that M is finite

; therefore, by

sufficiently increasing \z\, | R, ]
can be made arbitrarily small.

Hence the series is asymptotic.
Note 1. The expansion can be written

(47i
2-l 2

)(47i
2-32

)(47i
2-52

)(47i
2-72

)f (W-l 2

)(4?

T" 2!(8^)

'* '"

2. Since G_ n(z)
= einnGn (z), the expansion also holds

whenR(n+J)>0.
Asymptotic expansion ofju(z). Again, since Jn(ze

iir

)
= ei?lirJ7l (z)>

we can write 7riJn(z)
= Gn(z)

- ei 'i'rGn(ze
i'r

).

Thus, if 7r/2<^0<C7r/2, the asymptotic expansion for Jn(z)
is given by

__"

2!(8z)
2

(4n-ls
)(4w

f-32
)(4n*-5

2
)(4n*-7

s
)

2 /(47i
2-! 2

) "
/ 2 /(47i

2

"V(7rz)l l! 8z 3!(8z)
3

M.F.
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Also, since 3n(z)= e
in"Jn(ze-

i7r

),
it follows that, when

the expansion is

" 12 (4tt
2
-l)(4n*-3)(4n-6)

82 3!(82js~

.

Xsm

COROLLARY. The difference between two consecutive zeros of

Jn(z) tends to the limit TT as z tends to infinity.

Example. Prove

where Jc is positive, and the quantities m g are the zeros of the function J (?w)
regarded as a function of in.

Since G (wa)J '(^)- J (na)G
/

(a)= , (cf. p. 241)

1 1

msaJ l (msa)'

Now f5$
Jc

FIG. 83.

where C (Fig. 83) denotes a closed curve which crosses the .r-axis at the

origin and at an infinitely distant point between two zeros of 3$(za\ and the

summation extends to all positive values of m,. Therefore, since J (za) is an

even function of 2,

t

Jc

But
-

Hence Lim

=7r lf

fJ (ar)a-^flte.
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EXAMPLES XV.

1. If K(/3)>0, R(y-j8)>0, shew that

II p-
l(l-W-*-

l
(l-ztr*dt-*(fr y-)F(a, ft y, 0).

Use this formula to prove Gauss's Theorem.

2. If m is a positive integer, shew that

deduce that

3. If wi is a positive integer, shew that

[Use Ex. 1, 97.]

4. Use Ex. 1, 97, to prove that, if m and n are integers such that

n^ 0, m^ -
7i,

where C is a closed curve enclosing

5. Establish the formulae :

(i) P^iW^^PT^+^

(iii) (7i-

[Apply the method of partial integration to the definite integral form
for P m

(4]

6. Shew that the formulae of the previous example also hold for Qn
w
(z).

7. If
|

z
|
< 1, shew that

i

+ 2\ r /l\

)
L
\S)

2

according as 1(2)^0.

[Use Exs. VIII. 20, and Ex. 2, 62.]

8. Prove that Pn (^)
= - tanmr{Qn(s)-Q_n_i(z)K
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9. Prove that

[Use the second expression given in 97 for

10. Prove that

[Use Exs. 9, 2, 97.]

11. Shew that

(i) PM-(
-

z)
=e^'^Pnm (z)

- - sin (n+m)7r- lQB
w

(*),
7T

according as

12. Shew that, if \z\>I,

2"+1 cosmr r

3 1\
'

2' ?/
.on

, ,

[Use Ex. 2, 97.]

13. Shew that, if |,|<1,

2

according as I (z}< 0.

14. Shew that

15. If R(w + *) > 0, shew that



MISCELLANEOUS EXAMPLES.

1. Shew that

^

and give a geometrical interpretation of this equation.

2. If n is a positive integer, prove that

(i) z
2n - a?n= (z

2 -
a*) (z*

- 2az cos - + a2
. . .

- 2az cos

(
z2 -

3. Prove that, if the points zlt z
2 ,

23 ,
are the vertices of an equilateral

triangle, *?+ Z* + Z3
2= Zfa+V3+ Zfr .

4. If 15 2 ,
z3 ,

are the vertices of an isosceles triangle, right-angled
at the vertex z

2 , prove that

5. If (!
- 32)(V - 2')

=
( 2

-
3)(V - 3')

=
(Z3

-ZjXV - /),

shew that the triangles whose vertices are 21} 2
2 >

zzt an(^ ^i'* V? ^3'? are

lateral.

6. Similar triangles QRL, EPM, PQN, are described on the sides of the

triangle PQR. Shew that the centroids of triangles PQR and LMN are

coincident.

7. If !, 2 , 3 ,
and bl9 62 ,

63 ,
are the vertices of two triangles which are

directly similar, shew that any three points which divide the line joining
the pairs of points alt b ; 2 ^2 '>

a^ ^3 5
in tne same ratio, form a third

similar triangle.

8. If the lines joining z
2 and z3 ,

z3 and 215 z
1
and 2 ,

are divided in the

same ratio r at z/, z
2',

z3', respectively, and if the triangles whose vertices are

zu Z2t zsi an(i zii zzi z
s'i

are similar, shew that either r= 1 or else both triangles
are equilateral.

9. Let ABCD be a parallelogram of which AC is a diagonal, and let

ABX, DCY, ACZ, be similar triangles. Prove that triangle XYZ is similar

to each of them.

10. OCAD, OEBF, are circles, where O, A, B, C, D, E, F, are the points

(0, 0), (2, 0), (6, 0), (1, 1), (1, -1), (3, 3), (3, -3), respectively. If

w= *J{(I -z)(4-z)}, and if w=2 when z=0, find the values of w at A when
z moves from O to A (i) along OCA, (ii) along ODA ;

find also the values of

w at B when z moves from O to B (i) along OEB, (ii) along OFB.
Ans. -2*2
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11. Shew that the equation w=\(z+^r^\ where z= re
ie,

determines a

transformation which carries over circles, r= constant, and straight lines,

0= constant, into confocal ellipses and hyperbolas respectively. Sketch the

system of confocals. If P is any point within the circle ||= 1, shew that

there is a point Q outside that circle which is carried over into the same

point of the w-plane as P is transformed into.

12. If w=a(z c)/(z+ c), where a and c are real and positive, shew that

the interior of the circle
|

z
\

= c in the z-plane corresponds to that half of the

w-plane which lies to the left of the imaginary axis.

13. If w=l/z, and if the point z describes that part of the line 4
ty
= 3(#- 2)

which lies in the first quadrant, find the path described by the point w.

Shew on the same diagram the path described by w when z describes that

part of the line 4y+ 3(.#-2)= which lies in the fourth quadrant. Indicate

in each case the direction of motion.

Ans. Those parts of the circles 6u2+ 6v2=3u4:V which lie in the fourth

and first quadrants respectively.

14. Shew that the transformation w=4/(z+ l)
2 transforms the circle

|^|
= 1 into the parabola #2

=4(1 u\ and that the interior of the circle

corresponds to the exterior of the parabola.

15. Shew that all the roots of 25 +2,s2+ 2+ 3= are in absolute value less

than 1-6.

[Cf. the proof of the Theorem of 10.]

16. If a and b are real and positive, shew that the equation z*p+ az+ b=Q
has 2p roots to the right, and 2p to the left, of the imaginary axis. If b is

negative, shew that 2p+l roots lie to the right, and 2p-l to the left, of

the imaginary axis.

17. If a and b are real, shew that the equation z*p
- l + az+ b=Q has 2jo or

2jp
- 1 roots to the right of the y-axis, according as b is positive or negative.

18. Prove that : (i) Lim (sec z - tan z)
=

;

cos

(ii) Lim -^. -= *; (iii) Lim ^ - -=f.'
z-^i sm-rrz z^i simrz

19. Shew that
sin 2# i si

20. If z tends to infinity along a straight line through the origin, shew

that Lim tan 2= i, according as the line lies above or below the real axis.
z >-oo

21. If w=coshzj shew that the whole w-plane corresponds to any strip of

the 2-plane of breadth TT bounded by lines parallel to the #-axis. Also shew

that, to the lines x= constant, y= constant, correspond the confocal ellipses

and hyperbolas, %2 ^ _ ^2^2^
- 2

~
' cos2 sin2

~"
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22. If w=\og{(z-a)/(z &)}, shew that the lines u= constant correspond
to a coaxal system of circles whose limiting points are a and 6, whil6 the

lines v= constant correspond to the orthogonal system.

23. If z=ctanh(7ri0), shew that the lines u=u correspond to the coaxal

and the lines v= vQ to the orthogonal system of coaxal circles.

24. If the sequence zl1 z^ z3 ,
...

,
is convergent, shew that the sequence

Zl+Z2 Z
1 + 2+ Z3

15 ~T~* ~~3
'-'

converges to the same limit.

25. If the sequences z
l ,

z2t z
3 ,

...
,
and z, z

2',
23', ...

, converge to the limits

z and / respectively, shew that the sequence i^, w8 ,
ws , ...

,
where

converges to the limit zz'.

26. Integrate e
a2
/(l+ e

2

),
where 0<a<l, round the rectangle whose sides

are x= E, y=0, y=2?r, and shew that

r e
axdx IT

27. Prove that

fe.

|loglr,H-l<r<l,

log
^

,
if / < 1 or r> 1.

Deduce that
[log(cos 0)dO=j^ log (sin (9)rf(9=|logi.

[Integrate -^A _|
\ Z_ M_\ __J round the contour of Fig. 33, and

put o?= tan #.]

28. If - 2 < a < 2, prove that

Deduce that, if - 2 < a< 2,

sin 20(tan ff^dB^j
sin

[Integrate a f 2
round the contour of Fig. 37.]
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29. By integrating
<>g and og *

where r ftnd g ftre real
r iz r+iz

and positive, prove that

30. By integrating logf1-ft*J ^
r

2
and

logfl+i'-j 2

g
.,,
where r and

are real and positive, prove that

31. If a, c, and m are real quantities such that mg 0, c> 0, shew that

sinm(x-a) dx v /,
-mc~

ii p
x-a

32. Shew that, if a and b are real, and m^tt^O,

/"
sinm(x a)siun(x b) j _ sinn(a b)--_- QjX- 7T-;-

-< x-a x b a-b

33. Prove that

34. If ^ r< 1, shew that

tf<9 27T

'o l-Srcos^ + r2 1-r2

/*2ir ,7/3

35. Shew that
Jo y ^= 2?r or 0, according as

|
a

\
< 1 or

|

a
\

> 1 .

36. Shew that, if
|

an
\
^ 1 for all values of n, the equation

cannot have a root whose modulus is less than ^. Also shew that the only
case in which it can have a root z=*eie

is when an= e~*
ne

, (w= l, 2, 3, ...).

37. Shew that, if

38. If
|

z
|
< 1, shew that

39. Shew that

,.. T . ,_ .
,,

> , x .. x T . 1 cos(l
(i) Lim (l+cos7r2)/tan

2
7T2}=J ; (n) Lim

2 >0
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40. Shew that, if
|

2
|
< 1 or

|

z
;
> 1, the series

_n ,. n 1

has the sum s/{(s- 1)(2
2

41. Prove that (i) |

cos 2
1^ cosh

1

2
1 , (ii) \sinz |^sinh \z\.

[Use the Taylor's Series for cos z and sin 2.]

42. If |s | >1, shew that

z+I 22+l

43. Shew that the series

- --
2! 3!

is convergent if E(s)>0, divergent if E(s)<0.

44. Shew that the series

is convergent for all values of z except 0, 1,
-

2,
-

3, ____

45. Shew that, for points interior to the circle 3.r2+ 3y
2+ 2.?; - 1 = 0,

1-*
'

(l-zf (l-z)
3 ' "1-32

46. Prove that, if
|

z
\

< 1, and the principal value of tan-^ is taken,

47. If \z\ <1, shew that

22 3*3

48. If . is neither zero nor a multiple of 2;r, shew that

cosh 2- cos a.
*

f_ 22 )
1 +:

49. Shew that

sin* / 4_._.W, 4 . 2 \ /, 4 .

50. Shew that

(i)

51. Shew that the series

1_J_ + 1 J , ~
1 +22 2 + 2 3~3+l

represents a meromorphic function with simple poles at the points 1, -2,
-3,....
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52. If a is positive, shew that

f coscu; , Tre~a f

I (H^^TTi*
53. Shew that

,, ,.v sin7r(2+ c) z+ c-^r, (, z \
-

54. Prove that (i)
-

.

v =-- II. I 1- -
}*iv ' SIRTTC c _ \ ?i-c/

,...
sin2 ?!-.?

"
/, ^2

(ll) 1 --r-s-= II 1 13 -

"
( . 4z*

~\
sin 3z

55. Shew that II i 1 -
7

-oo I (?nr + zy) smz

56. Shew that (

"

e-2cose
cos(^sin #)d<9

=|- f^0 2i J o x

W Shew that V X ^ sinh(77^2)+ sin (
' ~

co -r, ,, ,

"
1

58. Prove that 2
Si (?i+.r)

2
+3/

2
y c

59. Calculate the residues of the function (l+s
2
)-"-

1
,
and shew that

dx 1.3.5....(2ra-l)

60. Shew that
J

x L=
^'

61. Shew that, if m ^0, a > 0,
/oo ^ja / Q\
I ^ gciajasj ^-g-( m+'-}'

62. If - 1< E(0) < 3, shew that

/"Joo

63. If ft is a positive integer, shew that

ose cos (^(9
- sin

64. If r\<l, shew that

65. Shew that I 7
Jc (z

TTl

(

where C denotes the circumference of the circle ^2+y2 -2^-2y=0 described

positively.

66. If n is a positive integer, prove that

P(cos fl-pgj {cos
+j-^ .(- 2)9
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[Expand both sides of the equation

(i -sfcos tf+^-(i-f^a
in powers of

,
and equate the coefficients of M

.]

67. If n is zero or a positive integer, shew that

(i) P,n+1 (o)=o, (ii) P2^o)=(-ir
1

68. Shew that

[Expand both sides of the equation

and equate the coefficients of {
2n

.J

69. OB is one diagonal of a square OABC which has the side OA on the

.r-axis and the side OC on the y-axis ; through D(2a, 2a), the mid-point of

OB, lines are drawn parallel to OA and OC so as to divide OABC into four

equal squares with sides of length 2a. If w is given by the series

16 - 1 . 2m-lirx . 2n

pr,ove that

(i) w=0 along each side of the four squares ;

(ii) w\ within each of the two squares about the diagonal ODB ;

(iii) w= - 1 within each of the squares about the diagonal ADC.

70. Integrate (1
-

e~*)/z round the contour consisting of the positive x and

?/-axes and a quadrant of an infinite circle, and shew that

(i)

71. If b and r are positive, and a is real, prove that

(ii)

72. Shew that, if o.>0, m>0, -Kr<l,
x sin 2our TT

-dx= f:

sn GO?
(io f-^

Jo m2+x*l- 2r cos 2out'+ r2 2 ( 1 + r) (e*"
m - rV

\ * / \ /

flntegrate (i^
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73. Shew that the root of the equation z= +v:e
z which has the value

when 10 is given by n

provided \iv\<\e~^~
l

|.

74. If z=+esinz, shew that, for small values of e,

/\ / e ! & 3 2

W ^=C+rjSmf+2T

e
(ii) sin z= sin +

^

sisn cos + sn cos

75. If z= (+wzm+1 ,
where =0, and if that root of the equation is taken

which has the value f when w=0, shew that

provided |

w
|
<

|

mw(wi+ i)--if- |

.

76. If n is a positive integer, shew that

(i) Pn'(^)
= (2w

(ii) P/(^)= (2?i

77. If n is a positive integer, shew that the n zeros of ~Pn (z) are all real

and lie between 1.

[Apply Rolle's Theorem to (#
2 -

l)
n and its derivatives.]

78. Shew that, if n is zero or a positive integer, and if E(f)>0,

T (cosh 2t-zfk'Pn(z)dz

79. If
|

r
|
< 1, shew that

n 9 cos 20 ,
cos 3-^

(i) r cos 9 - r2 - + r3 ---
. . . = i log (1 + 2r cos + r2

),A O

r n _
...

where the principal value of the inverse tangent is taken.

80. Prove that, if < < TT,

81, Prove that

(i)

= -i
log{4(cos 0-cosa)

2
},

(ii) cos cos a - i cos 2^ cos 2a.+ J cos 3# cos 3a. - ...

= Jlog{4(cos + cosa.)
2
},

unless one of the quantities 6 -a. and 6+a, is an even multiple of TT in case

(i) or an odd multiple of TT in case (ii).
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82. Shew that, if ^ 6^ 2:r,

(i) cos
(9+^ cos2<9+^cos3(9+...= 1

3
2(3(9

2 -

(ii) sm<9+j3sin2^
+
^3s

83. If ^ ^ TT, shew that

-fsin2
6log(4sin

2
0),

, x sin 40 sin 66 sin 80 . n/1 , _m . 9/3

(n) Y^+-JT^+ ~3~T + ''' = *m ^~ ^

- sin cos 6 log (4 sin2 0).

84. If n is a positive integer, and if
1

2
1
< 1, shew that

Deduce that

_

85. If ^ 6>^ TT, shew that

TT ,. x sin 6 sin 3^ sin

86. If -
7T/2^ ^^ 7T/2, shew that

(9
2 \ . sin ZQ sin 5(9

87. If -
7T/2^ ^^ 7T/2, shew that

cos 30 cos 50 cos 76 TT

oo a 'I2

88. Shew that the series
=i

J

represents a continuous function in the part of the 2>plane for which

100= 0, and that the function is holomorphic at all points below the real

axis.

Ort -r, 1 2 / COS27T^ COS37TJI' \
89. Prove that ;y

= -+ -^( COSTTJ;--
,^5 + ^-- ...

o 7T \ A" v J

represents a series of equal and similar parabolic arcs standing in contact

along the a'-axis.

90. Prove that J\ --.* 70X= 21 coth ira coth 7r6.

m^-oo ,,= C/
2

91. If -KR(a)<l, shew that

rsinh
ajc dx--

cosh.r a?
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Deduce that, if A. is real,

rsin
Xx dx . / , vrA\
r-- = 2 tan- 1

1 tanh I

cosh# x \ 4 /

92. Prove that Lim (1 + \+ \ + . . .+^-T - \ log M)= log|2 + |y.
,t_> C)o \ o o zn \.& /

93. Shew that

94. Shew that

[Use the identity ( -!)-- 2(0"*
- 1 )-'

=
(

2+ 1)-
1

.]

[Shew that e-a - ;e-
2a +... + (- 1 )

n~16-na=^. f ^ ẑ
e
~
azdz

>
where C is tlie

contour of Fig. 58, and use Ex. 94]

96. Shewthat (i) cot=l-B
1

-B
2 -B3 -...

,

2!4 4!6 6!

97. Prove that (i) l-^^-i, (ii)
w=2 l\ */ J H^Afr+l/ 3

98. If U(n)> 0, shew that

(cos ^)
n~1 cos (a tan ^) cos (w+ 1) dO

= P(cos
1

^)
n-1 sin (a tan <9)si

^o

[Use Exs. VIII. 6.]

99. Shewthat *()

100. Shew that, if m is a positive integer,

101. Shew that

(i) V^)= 2 , (ii) ^(0)=
2

, (iii) V^(-i)= -

102. Prove, by using the equation
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that, if R(c)> -
1,

103. Shew that, if B(0)> - 1 and R(fc)>l,

e
-tz

t
n~\

)

H
(0+ 2)" (0+ 3)

n
r(w)Jo e'-

104. If E(a)>0, shew that

105. Shew that, if R(0)> -
1,

106. Shew that, if R (71)> 1
,

cos <
n =

~
cos ;<) cos

If 7i is zero or a positive integer, prove, by considering the cases n even

and n odd separately, that

Jo
c -~v-T-/x"~-r/ -r

..(n+ k\(n + k
n \ (n+k^M(-i- l)~\-^- n

Deduce that, if n is zero or a positive integer,

^ l"^^./7f\/ / \* 71 W I

7T Jo

rTTi ^57Ti

V^cfo, where zQ
= ae 4

,
=ae 4

,
and the path of integra-

tion is a semi-circle of centre the origin and radius a described positively.
Also find the values of the integrals which have ZQ as initial point, and

whose paths are : (i) a complete circumference of the circle
; (ii) two cir-

cumferences
; (iii) three circumferences. What is the shortest non-zero

path from ZQ along the circumference which makes the integral zero ?

4 / ^''X A / ? -'\
Ans. -fV&a*; (i) -|a*(l+?J, (ii) -fHe 3 +e 3

), (iii) 0; three-

fourths of a circumference.

108. Prove that f ;/RT_|L___=F (,, |).

109. Shew that all elliptic integrals /E(^, JX.)dx, where R(A', y) is

rational in x and ?/, and X is a cubic in x with no repeated factors, can be

expressed in terms of integrals of the three types

f dy f ydy f dy
JVC--)' J^--- J -'
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110. Establish the identity

where the product is taken for all integral values of A and /x from to n
t

with the restriction

111. Shew that

W
(n+l)*

112. Shew that

113. Shew that

where pM
114. Prove that

du

115. The function <(p(u} has a real period 2^ and an imaginary period 2o>2 ,

where w2
--=^log (

-
),
a and 6 being real and positive, and such that a<b.

TT \aj

Shew that, if 0=fj(f^llogi ), the annulus in the ^-plane bounded by the
\ 7T Oil

circles |f|
= a and |f|

= 6 and a barrier along the positive real axis, corre-

sponds to the entire 2-plane. Shew also that only one point of the annulus

corresponds to each point of the 2-plane.

116. Prove that

sn

117. Shew that

/ \- sn(- ,)
=

Lim
-*o M* 8

118. If six of the nine points in which the cubic y
2= 4x3 -g2x-g3

is cut

by a second cubic lie on a conic, shew that the other three points lie on a

straight line.

119. If a conic passes through four fixed points on the cubic

y*=^-g&-gv
shew that the straight line joining the two variable points of intersection

passes through a fixed point on the cubic.
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120. Solve the equation w"+ az2iv= Q.

121. Solve the equation vf" + -Izw' + w= 0.

Ans. w
i
= l-^ +

-^T
zQ -

'

9';

1 3 , 3.9 3.9.15
210 +...,

1 2_A*5 5.11
8

5.11.17 nW
*~2\

Z
~5~! 8!

Z
11!

122. If n is a positive integer, shew that all the zeros of Pn(z) are

simple zeros.

[By differentiating Legendre's Equation it can be shewn that if P(.z) has

a zero of the second order, ~ Pn (z)
= for all positive integral values of .]

123. Find ttiat integral of the equation

which has the value unity when z= 0. Ans.

Find regular integrals in the neighbourhood of 2= for the equations of

Examples 124-128.

124. 42%"+ 4zw'-

Ans.

2 1\ 23 /2 2 1^=wz+z 'l-^r

125.

oo -n+4
Ans. wz^e* w

126. z*(z + l)w"-z*w' + %(Zz+l)w= 0. Ans. w^z, w2

127. 222
(2-2)w

//

-2(4-2)w' + (3-0)w= 0. Ans. w1= z^ w2 =(z-

128. 22 (l-2)^y" + 2(5^-4)w' + (6-92)^<;=0. J?i5. w^^3
,

w>2
=^ log + z2 .

129. If n is zero or a positive integer, shew that

dzn+

130. Shew that, for all values of

M.F.
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131. Shew that, for all values of n,

(i) (1 -z^rn(z}=nPn^(z)-nzPn (z),

(ii) (l-^)PLl

(iii) (1 -z*)Qn (z

(iv) (1 -^QL.M+nQnW -nzqn

132. If n is zero or a positive integer, shew that

where Wn-i(z) is a polynomial of degree n l.

[in
Ex. 1, 90, write <*,=! ^ df-|^ ?

133. With the notation of Example 132, shew that

[Substitute the expression obtained for Qn() in Ex. 132 in Legendre's

Equation, put Ww_1 (2)
= a

1
Pn_1 (^)-f-a3Pn_3 (^)+... ,

and use Example 76.]

134. Shew that

deduce that, if m and ^ are positive integers, both odd or both even,

while if m is an even and n an odd integer,

r pm(z)pw(s)^=(-i)
j -1

,\
2

27V 2~\
[Cf. proof of Exs. XIV. 5, and use Ex. 131.]

135. If m and n are integers such that w^O, m^w, shew that

Pn~
m
O?)= ^gn^;

136. Prove that, if E(n) > R(m) > -
1,

and deduce the results :

9 ^n
(i) Jn(z) = ^ ~ M2)

M^ COSigMrfM
>
where

(ii)
_ = J (^sin 6)sin

2 JO

[Expand JTO (2w) in powers of w, and integrate.]
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137. Solve the equation zi&"+ (n + l)u/-w= 0.

An*. w^s-Sj^V:),

138. Shew that, if n is an odd positive integer,

[Use the formula 2.Jn (z)= Jn_i(.r) + Jn+i(4]

139. Tf is an integer, shew that

[In EXS. XIV., 14, put f=e
ifl

,and =
<j>-irl2.]

140. Prove that ,?
2= 2 (2rc)

2J2 (4
n=l

[Differentiate the equation e^
:^- 1/0= 2Jt*){" w^h regard to

^, multiply

by ,
differentiate again, and put = 1

.]

141 . Prove that (i) cos x=J (x)
- 2J2 (a?)+ 2J4 (.r)

-
. . .

;

(ii) sin x = 2.1, (.?;)
- 2J3 (.r) + 2J, (.r)

[In Exs. XIV., 14, put =i.]

142. Shew that (!) J)

143. Shew that

144. Shew that, if p is a positive integer,

[Use Exs. XIV., 11.]

M.F. T2
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145. If n is a positive integer, shew that
'

(iii) r

146. Prove that

T MJ M=

[Shew that the coefficient of f -
j

in the product i

and apply Gauss's Theorem.]

J47 Shew that, if n is zero or a positive integer,

2 r*
-

/
Jn (2z cos 0) cos (M) o?</)

= J ll+tMJ )( _ A
.

(:).
7T JO Y~ ~2~

[Expand J n (2iCos<^) in powers of cos<, and use Examples 106 and 146.]

148. If x and u are real, prove that

[Use the relation -
"!''

'-= uS

i prove that149. If .r is real, and

[Use Exs. XIV., II.]

150. If and 6 are positive constants, prove that

.r cos

/*30

/

[Put JO(&F)= ~
|

cos (6.

of integration.]

151. If Ii(b ?)>0, shew that

Jo
^

[Put J (a.r)
= -

I cos (a.r cos

(Exs. XIV., 18), and change the order

and change the order of integration;

or, expand JQ (CLT) in powers of .T, and integrate term by term (cf. Bromwich,

Infinite Serfex, 176, B).]
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152. Shew that, if R(2?i + 1)>0, and E(6 ia)>0,

[For (i) use the substitution given in Exs. XIV., 18, for Jn (#.r), and change
the order of integration ;

after the first integration expand (6+ ia cos c^)-
2"-1

in powers of cos <, and integrate again ; or, expand J(o#) in powers of #,

and integrate term by term. For (ii), differentiate (i) with regard to b.]

153. Prove that -
/

*

e** cos * cos (y sin <) d<j>
=J

7TJO

[Expand cos (y sin
(/>)

in powers of sin 0, and apply 99, Cor., Example
145, (iii), and Taylor's Theorem.]
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Abel's test for convergence of series, 80.

theorem on continuity of series, 125.

Addition of complex numbers, 1, 3.

Amplitude, 2, 4.

of a function, variation of, 11-17.

principal value of, 2, 4.

Argand diagram, 2.

Argument, 2.

Asymptotic expansions, 136.

(See under Bessel, Euler, Gamma
function.)

Bernoulli numbers, 132.

Bessel function, 236.

Bessel function Gn (z), 240.

addition theorem for, 254.

as a contour integral, 267.

asymptotic expansion of, 271.

in terms of Bessel functions of first

and second kinds, 240.

recurrence formulae for, 241.

Bessel function of first kind, 237.

addition theorem for, 254.

as a contour integral, 267, 268, 270.

as a function of its order, 239.

asymptotic expansions of, 273, 274.

recurrence formulae for, 239.

zeros of, 241, 274.

Bessel function of second kind, 238, 239.

Bessel functions, relations between, 241.

Bessel's equation, 236, 266.

Beta function, 144, 145.

Binomial theorem, 90.

Branch of function, 13.

Branch point, 14, 39.

of an integral, 257.

Cauchy's integral theorem, 51, 54.

residue theorem, 57.

Circular functions, 33, 83, 90.

Coefficients, undetermined, 9G.

Collinearity of points on cubic, 197.

Complex numbers, 1.

geometrical representation of, 1 .

operations with, 1-5.

Complex variable, 7.

function of a, 7.

path of variation of a, 7.

Conformal representation, 37.

Congruent points, 179, 180.

Conjugate numbers, 1, 2.

Connected region, 30.

Continuation, analytical, 122, 208.

of hypergeometric function, 153, 156,

249.

of integral of diif. equation, 213.

theorems on, 123, 124.

Continuity, 23, 24.

Abel's theorem on, 125.

of series, 92.

uniform, 24-26.

Convergence of infinite product, 107, 108.

unconditional, 107.

Convergence of sequence, 42.

uniform, 42.

Convergence of series, 76.

absolute, 76, 78.

circle of, 80.

of a double series, 78.

of power series. 80, 82, 95.

radius of, 80.

ratio tests for, 77.

uniform, 92.

Coordinates, polar, 2, 29.

rectangular, 2.

Cross-cut, 30.

Derivative, 26, 28.

of function of a function, 30.

of holomorphic function, 28, 70.

of inverse function, 30.

partial, 31, 70.
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Determinant of fundamental system,
216, 223.

index of, 224.

Differential equation, homogeneous
linear, 209.

coefficients of, 210.

construction of, 216.

domain of ordinary point of, 210.

dominant equation, 210.

Frobenius' method of solution, 225.

fundamental equation, 220.

fundamental system, 215, 257.

indicial equation, 225.

integrals of, 210.

of the first order, 210.

of the second order, 210.

ordinary point of, 210.

singularity of, 210.

solutions of, 210.

Differentiation, 26, 28, 29.

of series, 93.

under integral sign, 44, 69, 138.

Discontinuity, removable, 23.

Division of complex numbers, 1, 4.

Domain of a point, 38, 210.

Elements of a function, 208.

Elliptic function, 180.

order of, 181, 182.

poles of, 180 to 183.

zeros of, 182.

(See under Jacobian and Weier-

strassian functions.)

Elliptic integrals, 169.

reduction of, 170-173.

transformation of, 170-174.

(See also Legendre's and Weier-
strass's elliptic integrals.)

Equations, roots of, 16, 69.

Euler's constant, 135.

asymptotic expansion of, 134.

Euler's definition of gamma function,
141.

Expansion, Lagrange's, 119.

Expansion of functions in scries of

fractions, 103, 105.

Exponential function, 32, 90.

Fourier series, 86.

Frobenius' method of solving linear

diff. equations, 225.

indicial equation, 225.

solutions free from logarithms, 228.

uniform convergence of series with

regard to index, 227.

Fuchsian type, equations of, 243.

sum of indices a constant, 243, 244.

Function, analytic, 29, 208.

conjugate, 31.

continuous, 23.

dominant, 210.

doubly-periodic, 179.

elements of a, 208.

even, 33, 97.

geometrical representation of a, 7, 10.

holomorphic, 29, 52, 93.

initial value of, 10.

integral, 88.

integrals of, 48.

inverse, 30.

limit of, 22.

meromorphic, 39, 40, 89, 160.

multiform or multiple-valued, 7, 161,

209.

odd, 33, 97.

of a complex variable, 7.

of a function, 24, 30, 49.

of two complex variables, 69, 137.

of two real variables, 26.

periodic, 32, 86.

periodic, of the second kind, 187.

periodic, of the third kind, 189.

rational, 89.

rational integral, 88.

region of existence of, 7.

regular, 29.

simply-periodic, 86.

single-valued, 7, 209.

transcendental integral, 88.

uniform, 7, 209.

uniform, classification of, 88.

Fundamental equation, 220.

Fundamental system of integrals, 215,

257.

associated with fundamental equa-
tion, 220.

in neighbourhood of singularity, 219.

Fundamental theorem of algebra, 68, 69.

Gamma function, 109, 139, 141.

asymptotic expansion of, 146.

duplication formula for, 145.

Euler's definition of, 141.

expression as a contour integral, 143.

Gauss's definition of, 141.

the derived function \f(2), 141.

Gauss's differential equation, 228, 258.

function 11(2), 141.

sum, 117.

theorem, 144.
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Geometrical representation. (See under

Complex numbers, Functions and
Transformations. )

Green's theorem, 45.

Gregory's series, 84.

Harmonic functions, 31.

Harmonics, cylindrical, 236.

spherical, etc., 249.

Hyperbolic functions, 33, 90.

Hypergeometric equation, 228, 258.

relations between integrals of, 249.

the twenty-four integrals of, 247.

Hypergeometric function, 77, 151, 229,

246, 247.

analytical continuation of, 153, 156,

249.

as a contour integral, 259.

Hypergeometric series, 77, 78, 144.

convergence of, 77.

Identities, 83.

Image of point, 9.

Indented contour, 65.

Indicial equation, 225.

fundamental system, 227.

Infinity, point at, 9.

continuity at, 23.

integral at, 51, 137, 139.

integrals of diff. equ. at, 212, 213, 224.

loop about, 162, 168.

residue at, 58, 96.

singularity at, 38, 39.

Integrals, contour, 59, 97, 113.

convergent, 136.

curvilinear, 42.

definite, 48.

double, 69, 138.

elliptic, 169.

evaluation of definite, 59, 97, 113.

finite moduli of definite, 50.

Fresnel, 62.

indefinite, 53.

independent of paths, 52.

limiting values of definite, 60, 63,

113, 115.

of holomorphic functions, 50-52.

of meromorphic functions, 160.

of multiform functions, 161.

piincipal values of, 65.

uniformly convergent, 137.

with infinite paths, 51, 137, 139.

Integrals of differential equation, 210.

analytical continuation of, 213.

at infinity, 212, 213.

Integrals of differential equation,
existence of, 210.

fundamental system of, 215.

in form of infinite series, 213.

initial values of, 210.

linearly independent, 215.

Integrals of diff. equ. in form of definite

integrals, 255, 266.

branch points of, 257.

fundamental system of, 257.

Integrals of diff. equ. near a singularit}
7
,

219.

at infinity, 224.

fundamental system of, 219.

index of, 222.

regular, 222.

Integrand, infinite, 136, 139.

Integration, change of order of, 69, 138.

of series, 93.

partial, 53.

under integral sign, 69, 138.

Invariants (see under Weierstrass).
Inverse points, 9.

Inverse sine function, 163.

Inverse tangent function, 34, 84, 86.

I(p) notation, 1.

Jacobian elliptic functions, 167,182, 198.

addition theorems for, 202.

complementary modulus of, 166, 167,

200.

derivatives of, 200.

diff. equ. of quarter periods of, 176,

231.

duplication formulae for, 204.

Legendre's relation for, 175.

moduli of, 167, 200.

orders of, 182, 202.

periods of, 167, 201, 202.

poles of, 200, 202.

relations between, 200.

relations between periods of, 202.

relation to Weierstrassian functions,

201.

residues at poles of, 202, 205.

transition from Weierstrassian func-

tion to, 198.

zeros of, 200.

Jacobi's imaginary transformation, 205.

Lagrange's expansion, 119, 125.
.

Landen's transformation, 174.

Laplace's equation, 31.

Laurent's series, 84, 95.

absolute convergence of, 85.
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Legendre functions, 249.

of the first kind, 214, 235, 236.

of the second kind, 235, 236.

recurrence formulae for, 236, 252,

289, 290.

Legendre polynomials, 99, 214, 235.

expression in series, 102, 103, 121.

in definite integral forms, 100-102.

integrals involving, 122.

recurrence formulae for, 102, 124,

129.

Rodrigues' formula for, 120.

Legendre's associated equation, 249,

259.

Legendre's associated functions, 250.

as definite integrals, 260-263.

relations between, 251, 262-265, 275,

276.

Legendre's complete elliptic integrals of

the first and second kinds, 174.

Legendre's equation, 213, 234.

relation to Gauss's equation, 235.

Legendre's first normal elliptic integral,

163, 173.

inversion of, 166, 201.

Legendre's normal integrals, 173.

Legendre's relation, 175, 188.

Limit, 22.

at infinity, 22.

infinite, 23.

of a sequence, 42.

of function, geometrical illustration,

22.

of ratio of two functions, 30, 83.

uniform convergency to a, 23.

Liouville's theorem, 68.

Logarithmic function, 34-36, 83, 161.

Logarithmic transformation, 35.

Loops, 145, 162, 164, 168.

about point at infinity, 162, 168.

notation for negative, 162.

Mittag-Leffler's theorem, 105.

Modulus, of complex number, 2, 3, 4.

(See under Jacobian elliptic func-

tions.)

Multiplication of complex numbers, 1,

4.

Naperian logarithms, 34.

Numbers, complex, imaginary, real,

1,2.

geometrical representation of, 1-6.

Orthogonal systems, 32.

Path of variation, 7, 10, 22.

Period, of a function, 80, 179.

parallelogram, 179.

primitive, 86, 179.

P-function, Biemann's, 244.

Point at infinity, 9, 38, 39.

Points, congruent, 179, 180.

Points, critical, 38.

Points of inflection on cubic, 197.

Points, ordinary, 38, 210.

Points, singular, 38.

Pole, 38, 39, 67, 118.

an isolated singularity, 39.

at infinity, 38, 88.

of order n, 38, 86.

principal part at a, 86.

simple, 38.

Polynomials, 88.

Power, the generalised, 36.

Product, infinite, 107, 108.

expression of function as, 108, 109.

Quantities e, rj, positive, 23.

Region, closed, 92.

connected, 30.

function holomorphic in, 53.

multiply-connected, 30, 47, 58.

of existence of function, 7.

of uniform convergence, 92, 96.

simply-connected, 30.

Residue at a pole, 57, 58, 67, 96.

at infinity, 58, 96.

Riemann's P-function, 244.

indices of, 245.

in terms of hypergeometric functions,

246.

Rodrigues formula, 120.

Root extraction, 1, 5, 36.

Roots of equations, 4, 5, 10, 69.

theorems on, 118, 119.

R(p) notation, 1.

Sequence, 42.

Series, convergent, 76.

multiplication of, 77, 82.

power, 80, 82, 95, 125.

uniformly convergent, 92.

Sigma functions, 109.

duplication formula for, 190.

elliptic functions in terms of, 190.

properties of, 189.

Similar figures, 8, 37.

Singularities, 38.

at infinity, 38, 39, 88, 89, 106, 181.
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The numbers

Singularities,

essential, 39, 86, 89, 90, 106, 181.

isolated, 38, 39.

line of, 101.

non-essential, 39.

of a diff. equ., 210.

Stirling's formula, 150.

Sturm's theorem, 16.

Subtraction of complex numbers, 1, 3.

Summation of series by residues

116.

Summation of trigonometrical series

126, 127.

Tangent to a cubic, 197.

Taylor's series, 82. 95.

absolute convergence of, 83.

Transformations, 7.

bilinear, 8, 9.

geometrical representation of, 8.

linear, 7, 8.

rational, 8.

(See under Landen, Logarithmic.)

Trigonometrical series, summation of,

126.

Uniformly convergent series, 92, 127.

continuity of, 92.

differentiation of, 93.

integration of, 93.

power series, 95.

Weierstrass's M test for, 94. ,

Variable, complex, 7.

independent, 7.

Vectors, 2.

refer to the pages.

Weierstrassian elliptic function, 106,
169, 180.

addition of semi-period to argument,
187.

addition theorem, 185.

diff. equation satisfied by, 183.

duplication formula for, 186.

elliptic functions in terms of, 191.

geometric application of, 196.

in terms of sigma functions, 190.

invariants of, 184, 194.

Legendre's relation for, 188.

order of, 182.

periods of, 169, 180, 195, 196.

poles of, 181, 182.

relation to Jacobian functions, 201.

residue at pole of, 181.

transition to Jacobian functions, 198.

values when one period real and one

purely imaginary, 194.

zeros of first derivative of, 182, 184.

Weierstrassian elliptic integral, 167,

185, 195, 196.

inversion of, 169, 185.

Weierstrass's theorem, 108.

Weierstrass. (See under Sigma and
Zeta functions and Uniformly con-

vergent series.)

w-plane, 10.

Zeros, 1,39,67, 118, 119.

of order n, 39, 83.

simple, 39.

Zeta functions, Weierstrass's, 106.

elliptic functions in terms of, 188.

properties of, 187.

z-plane, 2, 10.
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