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Preface to the Second Edition

I was gratified by the very positive responses and reviews the first edition of this
text received. Nonetheless, I wished to modify the text or exercises at a number of
points; this second edition is the result. The fundamental purpose of the text has
not changed—it still provides a direct route, with a minimum of prerequisites, to
the most important topics in the basic theory and applications of complex variables.

The greatest changes from the first edition occur in Chapter 2, principally in
the presentation of the all-important Cauchy’s Theorem. In Section 3, I give only
the Green’s Theorem proof of Cauchy’s Theorem (which assumes the continuity of
the derivative); the Goursat version of Cauchy’s Theorem is now in the special
starred subsection 2.3.1. In the remainder of Section 3, I discuss simple connectivity
(but not star-shaped domains) and derive some of the consequences of Cauchy’s
Theorem. These parallel developments, one assuming continuity of the derivative
and the other not, are brought together in the first theorem of Section 4, where I
derive the power-series representation of an analytic function. In Sections 5 and 6
of Chapter 2, I have made other rearrangements and clarifications in the presenta-
tion of residues, Laurent series, and the use of the Residue Theorem to evaluate
definite integrals.

In Chapter 4,1 have made a number of alterations in the discussion of flows.

Moreover, I have modified the text and many of the exercises, through-
out—adding here and deleting or rearranging there—all for added clarity. Other-
wise, I have done my best to correct typographical errors that were brought to my
attention by readers and teachers of the first edition. I would like to thank several
people who heeded my invitation to send me suggestions for improved exposition
on one topic or another; their comments and discoveries were instrumental in the
development of this edition. My colleagues at Northwestern, John Franks and
Sandy Zabell, were especially generous with their time in this regard. Other impor-
tant comments came from Ireena Erteza, Albert G. Fadell, Thomas W. Gage, Jeffrey
Nunemacher, James Okon, and Richard Troxel. Additional comments from Martin
Billik, R. Carmichael, F. W. Carroll, Fred Goodman, Abel Klein, Steven Krantz,
Michel Lapidus, A. Matheson, Philip McCartney, Justin Peters, Walter Rudin,
J. C. Taylor, John Wermer, Alvin White, Robert Whitley, and Joan Wyzkoski
were also helpful. I would like to thank the manuscript reviewers: Frank Forelli,

vii
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University of Wisconsin; Tom Garrety, Williams College; B. Frank Jones, Jr., Rice
University; Yue-Kuen Kwok, Hong Kong University of Science and Technology;
David Minda, University of Cincinnati; Burt Rodin, University of California, San
Diego; and Mitchell Tableson, Washington University.

Once again it is a pleasure to thank my editor at Wadsworth & Brooks/Cole,
John Kimmel, for his sustained interest and thoroughly professional approach.

As before, I will appreciate it if readers call my attention to any typographical
and mathematical errors.

Stephen D. Fisher



Preface to the First Edition

This textbook is intended for undergraduate or graduate students in science, mathe-
matics, and engineering who are taking their first course in complex variables.
Its only prerequisite is a three-semester course in calculus; no prior knowledge of
Green’s Theorem or line integrals is needed. A previous course in differential
equations would be useful but is not necessary.

The presentation and level of rigor in this book fit this background in several
different ways. First, I have not given definitions and theorems in their greatest
possible generality, and I have presented only results that are of central importance
to elementary complex variables. (However, many important secondary topics are
to be found in the exercises that appear at the end of each section.)

Second, although virtually all of the theorems are proved in full there are a
few places where I refer the reader to other sources for a fact or a complete proof
(for instance, the theorem that a continuous real-valued function on a closed and
bounded set attains its maximum and minimum).

Third, the presentation in Chapters 1 and 2 emphasizes areas of complex
variables that have much in common with concepts that the student has studied
before; for instance, limits of sequences, continuity of functions, and convergence of
series. The exponential function is developed from its representation in terms of e*,
sin y, and cos y so that the known continuity and differentiability of these functions
can immediately be brought to bear. Furthermore, once analytic functions are
defined and their basic properties are developed, I devote a section to complex
power series; this includes a derivation of the fact that a convergent power series is
an analytic function within its disc of convergence, whose derivative is given by the
expected power series. This fact can be obtained later by a different and shorter
route, but I have found it more sound pedagogically to begin in areas in which the
student has had some previous experience and later move into newer areas.

Fourth, there is a plethora of solved examples (more than 220 altogether) in
the text, which illustrate exactly how each concept or theorem is to be applied. In
addition to the examples, there are numerous exercises at the end of each section,
a total of 730 throughout the book. The easiest reinforce basic concepts, while the
more challenging extend or expand upon themes in the section or relate ideas from
that section to earlier sections. Sections and topics within the exercises marked with
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Preface to the First Edition

a star can be omitted with no loss of generality; they are not needed for future
developments.

There is more material in this book than can be included in a course lasting
a single quarter or semester. In teaching this material at Northwestern University
I have found that in a ten-week quarter I can cover all of Chapters 1, 2, and 3, and
many topics from the final two chapters. The variety and extent of the applications
and techniques presented in Chapters 4 and 5 allow the instructor to pick his or
her favorites and permit ambitious students to read others on their own.

Complex variables is, simultaneously, a practical tool of great utility in the
hands of a skilled practitioner and a mathematical structure of enormous beauty
and elegance. I hope that readers of this book will retain a residue of each of these
facets of the subject.

This preface would not be complete without acknowledging those people who
assisted me during the writing of this book. Professor Robert B. Burckel, Kansas
State University, provided me with an infinitude of improvements in the grammar
and style of the first draft. Various other helpful stylistic and pedagogical sugges-
tions were made by Professors M. D. Arthur, Michael Beals, Steven Bell, Carlos
Berenstein, Bruce Berndt, James Brennan, David Colton, Michael Cullen, Abel
Klein, Steven Krantz, Michael O’Flynn, James Osborn, Kent Pearce, Thomas
Porsching, Glenn Schober, Daniel Shea, and Howard Swann. The computer gra-
phics were produced by Benjamin Slivka using the Control Data CYBER 170 model
730 at Northwestern University’s Vogelback Computing Center. Randall Kamien
provided detailed solutions to the exercises in Chapters 1, 2 and 3; his contribution
is very much appreciated. I also want to express my thanks to Professor Ezra Zeheb
of the Department of Electrical Engineering, Technion, Haifa, Israel, for two very
informative conversations on the Z-transform and related matters. I also had helpful
talks with Professor Danny Weiss of the Department of Aeronautical Engineer-
ing, Technion, and Professor Nadav Liron of the Department of Mathematics,
Technion. They all helped to increase my knowledge of the applications of complex
variables.

Special thanks go to my editor at Wadsworth & Brooks/Cole, John Kimmel,
who not only got me started on this book but stuck with me in what at times seemed
to be an endless task. Michael Michaud of Unicorn Productions saw the book
through its production; his technical expertise is in evidence throughout.

Typographical errors and mathematical slips are the bane of any author. I
would appreciate any such being called to my attention.

Stephen D. Fisher



A Note to the Student

This textbook presents an introduction to the theory and applications of complex
variables. The presentation has been molded by my belief that what you have
already studied in calculus can be successfully applied to learning complex variables,
which at its basic level is just the calculus of complex-valued functions. Where there
are strong, and even obvious, analogies between the new material and calculus, I
have pointed them out and arranged the presentation to emphasize these analogies.
However, there are critical points at which the study of complex variables differs
intrinsically from the calculus that you know, and at these points I have provided
more details to explain the new material. At all times, your comprehension of the
subject will be aided greatly by reading with a pencil and paper close at hand. Write
things down, fill in computations that may be omitted or only partially worked out,
and work through the examples by yourself. By all means, do as many exercises
(assigned or not) as you can. Mathematical knowledge is not gained passively—you
must be an active participant in the learning process.

Xi
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1

The Complex Plane

1.1 The Complex Numbers and the Complex Plane

The theory and utility of functions of a complex variable ultimately depend in large
measure on viewing the usual x- and y-coordinates in the plane as separate com-
ponents of a single new variable, the complex variable z. This new variable z can
then be manipulated in the same way as conventional numbers are.

The familiar numbers, such as —1, §, ﬁ, and =, which are represented by
points on a line, will be referred to as real numbers. A complex number is an
expression of the form

z=Xx+1y,
where x and y are real numbers and i satisfies the rule
() =@ = -1
The number x is called the real part of z and is written
x=Rez

The number y, despite the fact that it is also a real number, is called the imaginary
part of z and is written

y=Imz.

Thus, for instance, we have 1 = Re(l + 3i) and 3 = Im(1 + 3i). The modulus, or
absolute value, of z is defined by

lz| = /x*+y%, z=x+iy.

Each complex number z = x + iy corresponds to the point P(x, y) in the
xy-plane (Fig. 1.1). The modulus of z, then, is just the distance from the point P(x, y)

1
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Chapter 1 The Complex Plane

Figure 1.1

to the origin, which in complex-number notation is 0. In this way, we see that we
have three inequalities relating x, y, and |z|, namely

x| <lzl,  lyl<lzl, and  |z] <|x| + [yl
The first two of these are obvious; the third is obtained by noting that
|2I? = x? + y? < x? + 2Ix| |yl + y* = (x| + [y])*
The complex conjugate of z = x + iy is given by
zZ=x—1iy.
Occasionally in engineering books, one encounters the notation z* for z, as well as

the use of j instead of i; we shall not use either of these. For the specific complex
number z = 1 + 3i,

z=1-3i and |z = /10
(see Fig. 1.2).

—z2=-1-3ie ol —3i=z

Figure 1.2
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Addition, subtraction, multiplication, and division of complex numbers follow
the ordinary rules of arithmetic. (Keep in mind that i = — 1, and, as usual, division
by zero is not allowed.) Specifically, if

z=x+1y and w=s +it,
then
z+w=(x+53s)+i(y+1)

z—w=((x-—s)+i(y—1
zw = (x5 — yt) + i(xt + ys)

z _wz _ (xs+ yt) + i(ys — xt)

s w # 0.
W oww s2 + t?

Here, to obtain the formula for the quotient of z and w we used the device of
multiplying both numerator and denominator by w = s — it.

Example 1 To illustrate these rules in a particular case, let us take

z=1+3i and w=—2+5i.
Then
z+w=—1+8i

zw=[((=2 - O] +i[(HG) + BG)(-2)] = 17—

wz 13— 11i 13 11,
ww_ 29 29 29"

z
w
Two facts are of particular importance. The first, which is used repeatedly, is that
2Z = (x + iy)(x — iy) = x® + y* = |z|~
The second is that z and z have the same absolute value:
Iz] = /x* + y* =zZ].

Another useful relation is derived with the following computation.
|zw|? = (xs — yt)® + (xt + ys)?

= x2s? + y22 + x%? + yis?

=(x* +y")(s* +17)

= |z*|wl?,



4  Chapter 1 The Complex Plane
so after taking square roots, we obtain
lzw| = |z|w].
In a similar vein, we compute zw:
zw = (xs — yt) — i(xt + ys)
=(x—iys—it)

=ZWwW. m]

Polar Representation

The identification of z = x + iy with the point P(x, y) in the xy-plane has further
interest and significance if we make use of the usual polar coordinates in the
xy-plane. The polar coordinate system gives

x =rcosf and y=rsinb,

where r = . /x? + y? and 0 is the angle measured from the positive x-axis to the line
segment from the origin to P(x, y). We immediately see that r = |z|, so

z = |z|(cos 6 + i sin 6).
This is the polar representation of z (see Fig. 1.3a).

Example 2 Find the polar representation z = —1 + i.
Solution |z| = /2 and 6 = 3n/4. Thus,

-1 +i=\/§|icos%n+isin:¥],

which you can easily verify as correct, since cos 37 = —%\/5 and sin 37 = $./2 (see
Fig. 1.3b). O

By now you have probably noticed that 6 could equally well be replaced in
the formulas by 6 + 2z, by 8 — 4=, or, indeed, by 6 + 2nn, where n is any integer.
This ambiguity about the appropriate angle to use in the polar representation of a
complex number is not just a question of semantics. Later we shall see that this
causes some fundamental problems. Putting this aside for the moment, let’s proceed
with other properties of the polar representation. Suppose that

z =|z|(cos 6 + i sin 6) and w = |w|(cos ¥ + isin )
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?

z= |z] (cosB + isinf) D

\/e > \0 £

/A I~y

Figure 1.3

are two complex numbers. Then
zw = |z||w|{(cos 0 cos Y — sin 6 sin Y) + i(cos 0 sin Y + cos ¥ sin 6)}
= |zw|{cos(f + ¥) + i sin(0 + ¥)}.
Moreover,

z _ |z|(cos 8 + i sin 0)

w  |w|(cos Y + isin y)

= (%) {cos 0 cos Y + sin 6 sin Y + i(cos Y sin 6 — cos 0 sin Y)}

(2 — ) +isin(® —
_(lwl){cos(e ) + isin(0 — ¥)}.

5

Here we have made use of the trigonometric identities for the sine and cosine of the

sum and difference, respectively, of two angles. Hence, the polar representation of

the product (or quotient) of two complex numbers is found by multiplying (or
dividing) their respective moduli and adding (or subtracting) their respective polar
angles (Fig. 1.4). In other words, multiplying w by z = |z|(cos 6 + i sin ) produces
a rotation of w in the counterclockwise direction of # radians and stretches (or

shrinks) |w| by a factor of | z|.

Example 3 Find the polar representation of zw and z/wif z= —1+iand w=

J3+i

Solution From Example 2, the polar representation of z is

—\/f cos3—n+isin3—n
= 2 7 |
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/)

~
D
~
~
¢

Figure 1.4

The polar representation of w is
=/3+i= 2[cos%+ isin%],
since |w| = 2 and y = n/6. Therefore,
(- \/3— 1)+ t(\/g— 1)=2zw= 2f[cos—+1s'n lllzn]
3+1+i 3_1=£=\/§|:cosﬁt-+lsmy—] (m]

4 4 w2 12 12

The foregoing is now used to derive De Moivre’s Theorem*:
(cos 0 + i sin 8)" = cos nf + i sin no,
for any positive integer n and any angle 6. The formula is clearly true when n = 1,
we shall use mathematical induction to prove it true for all n. Suppose there is a
positive integer m for which
(cos @ + i sin )™ = cos mf + i sin m0.
Then
(cos 6 + isin 0)"*! = (cos 6 + i sin §)"(cos 0 + i sin 0)
= (cos m0 + i sin mf)(cos O + i sin )

= cos(m + 1)0 + i sin(m + 1)6,

* Abraham De Moivre, 1667-1754.
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by invoking the formula derived above for the polar representation of the product

of two complex numbers. Thus, if the equality holds for m, then it holds for m + 1.
Since we know it is true for n = 1, it is true for all positive integers n.

Example 4 Let 6 = /4; then cos 6 = sin 6 = ,/2/2. Thus,

2 2\* . 4 .
(%_+i%> =<cosE+ism£> =cosm+isint=—1. m}

4 4

Example 5 De Moivre’s Theorem can be used to derive trigonometric identities for
cos nf and sin nf. For instance, by cubing,

(cos 0 + i sin 0) = cos® 6 + 3i cos? 0 sin @ — 3 cos 0 sin? § — i sin® 6
= (cos® 8 — 3 cos 0 sin? 0) + i(3 cos? 0 sin 6 — sin3 ).

However, De Moivre’s Theorem gives (cos 6 + i sin 8)* = cos 36 + i sin 36. After
equating the real and imaginary parts of these expressions, we find that

cos 30 = cos® @ — 3 cos 0 sin®? @ =4 cos> 6 — 3 cos 0
sin 36 = 3 cos? 0 sin @ — sin® 6 = 3 sin § — 4 sin® 6.

Similar formulas can be derived for cos 46, sin 46, cos 50, and so on. (See Exercise
19.) o

We define an argument of the nonzero complex number z to be any angle 6
for which

z = |z|(cos 6 + isin 6),
whether or not it lies in the range [0, 27); we write § = arg z. To repeat,
argz=10 is equivalent to z = |z|(cos 6 + i sin 6).

A concrete choice of arg z is made by defining Arg z to be that number 6, in
the interval [ — =, n) such that

z = |z|(cos O, + i sin 6,).
We may then write
Arg(zw) = Argz + Arg w (mod 27),

where the expression (mod 2n) means that the two sides of this last formula dif-
fer by some integer multiple of 2x. For example, if z= —1 + i and w = i, then
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zw = —1 — i, so Arg(zw) = —3n/4. However, Arg z = 3n/4 and Arg w = 1/2, so
Arg z + Argw = (5/4)n = —3n/4 + 2n.

Complex Numbers as Vectors

Ifz=x + iy and w = 5 + it are two nonzero complex numbers, then
|z —wl =/(x — )2 + (y — 1)?

is nothing but the distance in the xy-plane from the point P(x, y) to the point Q(s, t).
Moreover, the sum z + w = (x + 5) + i(y + ¢) and the differencez — w = (x — 5) +
i(y — t) correspond exactly to the addition and subtraction of the vectors OP and
0Q (Fig. 1.5).

Figure 1.5

Note also that the angle « between the vector OP and the vector OQ is found
by using the usual dot product of two vectors:

cos a = (OP-0Q)/|OP||0Q|

_ Xs + yt
VX2 +y /st + 1

_ Re(zw)
lzllwl

In particular, OP and OQ are perpendicular if and only if Re(zw) = 0. The relations
among the lengths of the sides of the triangle formed by z, w, and z — w, which is
just the law of cosines, is formulated here as

lz—wi*=(x -9 +(y— 1)
=x2 + 52+ y2 + 12 — 2(xs + yt)

=|z|? + |w|®> — 2 Re(zw).
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In summary, the usual xy-plane has a natural interpretation as the location

of the complex variable z = x + iy, and all the rules for the geometry of the vectors
P(x, y) can be recast in terms of z. Henceforth, then, we refer to the xy-plane as the
complex plane, or simply, the plane. The x-axis will be called the real axis, and the
y-axis will be called the imaginary axis.

EXERCISES FOR SECTION 1.1
L.

2.

13.

14.

15.

Let z=1+2i,w=2—i,and { = 4 + 3i. Compute (a) z + 3w; (b) —2w + {;
(©) 2% (d) w* + w; () Re(C "), (F) w/z; (8) ¢ + 20 + 3.

Use the quadratic formula to solve these equations; express the answers as
complex numbers. (a) z2 + 36 = 0; (b) 2z + 2z + 5=0;(c) 5z + 4z + 1 = (;
dz2—z=1;()z? =2z

. Sketch the locus of those points w with (a) |[w| = 3;(b)[w — 2| = 1;(c)|w + 2|2 =

4 @ [w+2l=lw=2 () Iw—2w—1=0 () Re[(I-9z]=0
(®) Re[z/(1 + )] =0.

. Find Re(1/z) and Im(1/z) if z = x + iy, z # 0. Show that Re(iz) = —Im z and
Im(iz) = Rez.
. Give the polar representation for (a) —1 +i;(b) 1 + i\/§; © —i; (d) (2 —i)?%

(€) 14 + 3il; () /5 — i (8) —2 — 2i; (h) \/2/(1 + i) G) [(1 + i)/y/2]%

. Give the complex number whose polar coordinates (r, 6) are (a) (\/5, n/4);

(0) (1/3/2, m); (©) (4, —/2); (d) (2, —m/4); (€) (1, 4; () (/2, 9m/4).

. Let a, b, and c be real numbers with a # 0and b? < 4ac. Show that the two roots

of ax? + bx + ¢ = 0 are complex conjugates of each other.

. Suppose that A is a real number and B is a complex number. Show that

|z]*> + A2 = |z + A|*> — 2 Re(A2)
and
|z|? + 2 Re(Bz) = |z + B|®> — |B|>.

. Show that |z| = 1 ifand only if 1/z = Z.
10.
11.
12.

Let z and w be complex numbers with zw = 0. Show that either z or w is zero.
Show that |z + w|? — |z — w|? = 4 Re(zw) for any complex numbers z, w.

Let z,, z,, ..., z, be complex numbers. Establish the following formulas by
mathematical induction:

@) |z125...2,| = |24]]2,]... 12,

(b) Re(z; + z, + - + z,) = Re(z;) + Re(z,) + - + Re(z,)

(©) Im(zy + z, + - + z,) = Im(z,) + Im(z;) + --- + Im(z,)

d) 55, 2, =217, . 2

Determine which of the following sets of three points constitute the vertices of
aright triangle: (a) 3 + 5,2 + 2i,5 + i;(b)2 + i,3 + 5i,4 + i;(c) 6 + 4i,7 + 5i,
8 + 4i.

Show that cos 6 = cos Y and sin 6 = sin ¥ if and only if 6 — ¢ is an integer
multiple of 27.

Show that the triangle with vertices at 0, z, and w is equilateral if and only if
|z]? = |w|?* = 2 Re(zw).
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16. Let z, be a nonzero complex number. Show that the locus of points ¢z,
— 00 <t < o0, is the straight line through z, and 0.

17. Show that if w # 0, then |z/w| = |z|/|w|.

18. Prove the identity 1 + z + z2 + -+ + z" = (1 — z"*1)/(1 — z) valid for all z,
z#1.

19. Show that cos nf can be expressed as a combination of powers of cos § with
integer coefficients. (Hint: Use De Moivre’s Theorem and the fact that sin? 0 =
1 —cos? 6.

The Schwarz* Inequality

20. Let B and C be nonnegative real numbers and 4 a complex number. Suppose
that 0 < B — 2 Re(44) + |A|>C for all complex numbers A. Conclude that
|A|> < BC. (Hint: If C = 0, show that 4 = 0. If C # 0, then choose 1 = 4/C.)

21. Let a,, ..., a, and b,, ..., b, be complex numbers. Establish the Schwarz

inequality:
2 n n
<{Z1ar}{$ e}
=1 =1

(Hint: For all complex numbers 4, we have 0 < Z;L, |a; — Ab;|*. Expand this
and apply Exercise 20 with A =)}, a;b, B=)"_, |a;>,C =Y 1_, |b|~

22. Verify the Schwarz inequality directly for the case n = 2.

23. When does equality hold in the Schwarz inequality?

24. Use the Schwarz inequality to establish that

n 1/2 n 1/2 n 1/2
{2|aj+l»f|2} <{2|af|2} +{Z|I»f|2} .
= = A

(Hint: Expand ) }_, |a; + b;|* and apply the Schwarz inequality.)

n —
Z a;b;
Jj=1

A Formal View of the Complex Numbers*
The complex numbers can be developed in a formal way from the real numbers. A
complex number z is defined to be an ordered pair (x, y) of real numbers; we write
z = (x, y). Two complex numbers z, = (x,, y,) and z, = (x,, y,) are equal when
X; = x,and y; = y,. The basic arithmetic operations of addition and multiplication
are defined, respectively, by,

addition: z, + z, = (x; + X3, y; + V,) )

multiplication: z,z, = (X;X; — ¥ V2, X1 V2 + X2 V1) 2

* Hermann Amandus Schwarz, 1843-1921.
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The additive identity is 0 = (0, 0), since (0, 0) + (x, y) = (x, y) + (0, 0) = (x, y) for all
(x, v). The multiplicative identity is 1 = (1, 0), since (1, 0)(x, y) = (x, y)(1, 0) = (x, y)
for all (x, y). Further, it is elementary but somewhat tedious to show that the
arithmetic operations of addition and multiplication are commutative:

Zl +22=22 +Zl; 2122=2221
and associative:
(21 +2) + 23 =2z + (2, + z3); (2122)z3 = 2,(2,23).

Each z = (x, y) has a unique additive inverse —z = (—x, —y),sincez + (—z) = 0. A
nonzero z = (x, y) necessarily satisfies the condition x? 4+ y? > 0, and its unique

multiplicative inverse is
27l = X —Y
x2+y2’x2+y2 ’
since (2)(z"!) =(1,0) = 1.

The mathematical system of the complex numbers so constructed is one
example of a field. There are many other examples of fields besides the complex
numbers; for instance, the real numbers themselves form a field, as do the rational
numbers.

The complex number (0, 1) has the interesting property that its square is
—1:(0, 1)(0, 1) = (—1, 0). Further, (0, 1) and (0, —1) are the only two complex
numbers with this property (see the exercises that follow). We denote (0, 1) by the
symbol i. Each complex number then can be written

z=(x,y) =(x,0) + (0,-y)
=(x,0) + (»,0)0,1)
=(x, 0) + (y, 0)i.

Complex numbers of the form (g, 0) are just the real numbers with their usual rules
of arithmetic:

(a,0) + (b,0) = (a + b, 0)
(a, 0)(b, 0) = (ab, 0),
and it is entirely natural to identify (a, 0) with a. In this way we may write
z2=(x9)=(x0 + iy, 0) =x + iy.

This brings us back to the point where Section 1 began.
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EXERCISES FOR SECTION 1.1.1

Throughout, the usual rules of arithmetic are assumed for the real numbers; in
particular, a? > 0 for any nonzero real number a.

1. Show directly from rule (2) for multiplication that z? = (—z)%.
2. Suppose that z = (x, y) and z? = (—1, 0). Show that z =iorz= —i.
3. Solve the equation z2 = (0, 1).
4. Suppose that z? is real and negative; that is, z2 = (a, 0), a < 0. Show that
z = (0, b) and find b in terms of a.
5. Show by computation that addition of complex numbers is associative:
(zy + z3) + z3 = z; + (2, + z3); and commutative: z, + z, = z, + z,.
6. Show by computation that multiplication of complex number is associative:
(z12,)z3 = 2z,(2,25); and commutative: z,z, = z,z,.
7. Define the absolute value, |z|, of z = (x, y) by |z| = /x? + y*. Show directly
that z,z,| = |z,]|z,].
8. Define the complex conjugate, Z, of z = (x, y) by Z = (x, —y). Show that zz =
(1212, 0).
9. Show that z,z, = 0 implies that either z, or z, is zero.
10. Let z = (x, y). Show that (a) |x| < |z[; (b) |yl < |z[; () |z] < |x] + |yl-

1.2 Some Geometry
The Triangle Inequality

Let us begin with an important inequality that has a simple geometric interpreta-
tion. Suppose z = x + iy and w = s + it are two complex numbers. Then

lz+wP?=x+s)*+(y+1)7
=x2+52+y> + 12+ 2(xs + y1)
=|z|®> + |w|?> + 2 Re(zw)
< |z? + [w]? + 2|zw]
= |z]* + || + 2|z||w]|
= (lz| + Iwl)*

Taking the square root of both sides yields the inequality
|z + wl < lz| + |wl.

This is the triangle inequality, since it simply expresses the fact that any one side of
a triangle is not longer than the sum of the lengths of the other two sides (see Fig. 1.6).
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An illustration of

the triangle inequality:
Z+w lz+ w| = |z| + |w]
/
/7 2z
w
Figure 1.6

If { and € are two (other) complex numbers, then by putting z = { — ¢ and
w=_¢weget|{| <|{—¢|+[]or

1K= 1¢l <18 =€l
Likewise,
&l =1Ll < 18— €],

which together yield a variation of the triangle inequality,
Ner=1€1l <18 = ¢l

Straight Lines

The equation of a (nonvertical) straight line, y = mx + b, m and b real, can be
formulated as

0 = Re((m + i)z + b).

More generally, if a = A + iB is a nonzero complex number and b is any complex
number (not just a real number), then

0 = Re(az + b)

is exactly the straight line Ax — By + Re(b) = 0; this formulation also includes the
vertical lines, x = Re z = constant. (See Fig. 1.7.)

Roots of Complex Numbers

The computation of the fractional powers of a nonzero complex number is possible
with the techniques developed in Section 1 of this chapter. It was in an attempt to
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Re|(l + Dz + l[=0/
i

y Rej(1 +0zl=0
| 1 .

Re(iz) = 0
‘}Rez =0

-

-2i
Re (iz) = 2

Figure 1.7

find the roots of such equations as x> + 1 = 0 that the whole subject of complex
numbers first arose; here, a certain “completeness” will be evidenced by the complex
numbers but not by the real numbers. Suppose w is a nonzero complex number and
nis a positive integer. A complex number z satisfying the equation z" = w is called
an nth root of w. We shall determine all the distinct nth roots of w.

Letw = |w|(cos y + i sin ) be the polar representation of w, where we specify
that y lies in the range [ —x, n). Let z = |z|(cos 0 + i sin 0); the relation z” = w and
De Moivre’s Theorem from Section 1 then yield three equations:

|zI"=|w|, cos(nf)=cosy, and  sin(nf)=siny.

Thus, we must have |z| = |w|""; § is not so well determined. Of course, one possibil-
ity for 0 is @ = y/n; however, there are others. We define

0,‘—W+k(2—n>, k=0,1,...,n— 1.

n n

Then nf, = Y + 2nk and so cos nf, = cos ¥ and sin nf, = sin . Complex numbers
Zg, ..., Zo—q are defined by the rule

z,=|w|"(cos O, +isinf,), k=01,..,n—1
Then each of z, ..., z,_, is distinct (see Exercise 14, Section 1), and each satisfies
p=w, k=0,1,...,n—1.

Moreover, these complex numbers z,, ..., z,_, are the only possible roots of the
equation z" = w. For if

cos nf = cos Y, sin nf = sin y,
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then (again by Exercise 14, Section 1) we have nf = y + 2xj for some integer j. The
values j = 0,...,n — 1 yield distinct numbers cos 6; + i sin §;, whereas other values
of j just give a repetition of numbers already obtained. The geometric picture of the
nth roots of w is very simple: the n roots lie on the circle centered at the origin of
radius p = |w|'/"; the roots are equally spaced on this circle, with one of the roots
having polar angle 6, = Arg w/n; for instance, see Figure 1.8.

Example 1  Find the 12th roots of 1.

Solution Since w = 1 = cos 0 + i sin 0, the modulus of all the 12th roots is 1. The
roots are equally spaced on the circle of radius 1 centered at the origin. One root is
zo, = 1; the others have polar angles of 27/12, 4n/12, 67/12, ..., 227/12, respectively.

a

Example 2 Find the 5th roots of i + 1.

Solution  The polar representation of 1 + i is
1+i= ﬁ(cos% + isin%),

so the modulus of all the 5th roots of i 4+ 1 is 211 = 1.0717, the real, positive 10th
root of 2. One of the roots is located with polar angle n/20, and the others have
polar angles of 7/20 + 2=/5, n/20 + 4=n/S, =/20 + 6=/S, and /20 + 8=n/5, respec-
tively. (See Fig. 1.8.) o

20

The Sth roots
ofw=1+1

Figure 1.8
Example 3 Solve the equation

z*— 422 +4-2i=0.
Solution The equation may be rearranged as

2t — 4722 +4=2i
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or

(@2 —2)? = 2i = (1 + i)

This has solutions

Equivalently,
341
2
z L—L
These may be solved to give the four solutions of the original equation,
z; = $/10(cos O, + i sin 6;),

1 1
Zp = —\4/ 10 (cos 0, + i sin 6,), 0, = EarCtan_

3
and
23 =%/2 (cos 0, + isin 6;),
Z4 = —\‘/f(cos 0, + isin 6,), 0, = %arctan(— )= —78—t. o
Circles

A circle is the set of all points equidistant from a given point, the center. If z, is the
center and r the radius, then the circle of radius r and center z,, is described by the
equation |z — zy| = r. There are, however, other ways to use complex numbers to
describe circles.

If p and q are distinct complex numbers, then those complex numbers z with

|z—pl=1|z—q|

are equidistant from p and g. The locus of these points is precisely the straight line
that is the perpendicular bisector of the line segment joining p to q. However, if p is
a positive real number not equal to 1, those z with

|z — pl = plz —q|

form a circle. To see this, suppose that 0 < p < 1 (otherwise, divide both sides of
the equation by p). Let z = w + g and ¢ = p — g; then the equation becomes
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lw—c| = plwl|.
Upon squaring and transposing terms, this can be written as
Iw|?(1 — p?) — 2 Re we + |c|2 = 0.

We complete the square of the left side and find that

_ e e?p?
(1 — p?)|w|> — 2 Re we + s =1_
Equivalently,
¢ p
w_l—pz =|c|1_p2.

Thus, wlies on the circle of radius R = |c|p/(1 — p?) centered at the point ¢/(1 — p?),
and so z lies on the circle of the same radius R centered at the point

_p—r'q_ 1 b p’
1—pr 1-p?

Zo

Example 4 To confirm in one special case what was just done, let us look at the
locus of points z with

1
|z — i =§|z— 1].

After multiplying both sides by 2 and squaring,
4{|z|* — 2 Re(zi) + |i]*} = |z|> =2 Re z + |12,
or after simplifying,
3|z|2 — 8y +2x = —3.
More algebra yields

1 16 17 8
2 _ 2 _ = — e
3x +2x+3+3y 8y+3 3+3 3

Thus, the locus is

R
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This is a circle of radius 2(ﬁ/3) centered at —1/3 + 4i/3. Now, in the notation
that preceded the example, p = i, ¢ = 1, and p = 4. The radius should be

rolP—dle _20)_2/2
1—p? 3 3°

and the center at

which, of course, is just what was previously found. Note that the center of the circle
is on the line through 1 and i (Fig. 1.9). a

lz -1

Figure 1.9

We now apply the information just derived to produce a beautiful geometric
pattern: two families of mutually perpendicular circles.
Let C, be the family of circles of the form

lz—pl=plz—9ql, 0<p<o,

where we include the case p = 1 (which yields a straight line) for completeness. Let
L be the perpendicular bisector of the line segment from p to g. Take C, to be the
family of circles through p and q and centered on the line L. We shall show that
each circle in the family C, is perpendicular to each circle in the family C, at their
two points of intersection. The computation is considerably simplified by locating
the origin at the point of intersection of the line L and the line L', which passes
through p and g. L' can then be taken to be the real axis and L to be the imaginary
axis; in this way, we may assume that 0 < p = —q. A circle from the family C, is then
centered at a point on the real axis, and because there is no loss in assuming
0 < p < 1, the center of that circle is at the point s = p(1 + p?)/(1 — p?). The center
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of the circle from the family C, is at the point t = ia (« real), and this circle must
pass through p and —p. Let z = x + iy be on both circles (see Fig. 1.10).

iais center of C,
s is center of C,
(&

0<p<l
4

ALY
=(15)

&
——
-p 5

]

G
Figure 1.10
Since z is on the circle C,,
|z—pl=plz+pl,
and consequently,

becomes

x*(1 = p?) = 2px(1 + p?) + p*(1 — p*) + y*(1 — p?) = 0.
For notational convenience, set v = (1 + p?)/(1 — p?); the above equation then

x% —2pvx + p* + y* =0.

On the other hand, since z = x + iy is also on the circle C,,

and so

|z~ ial = |p — io] = |—p — iel| = \/p? + o2,

x? + y* — 2ay = p°.

In order to prove that the segment from i to z is perpendicular to the segment s to
z,it must be shown that the Re[(z — ia)(z — s)] = 0; this follows from the discussion
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of perpendicularity near the end of Section 1. However, using s = pv,
2 Re[(z — ia)(z — 5)] = 2x(x — ) + 2y(y — a)

=2(x? + y? — pvx — ay)
=x2 4y —2pvx 4+ x2 + y* — 2ay
=—p>+p?=0.

This is the desired conclusion.

Anillustration (with p = —q = 1) of several circles from each of these families

is shown in Figure 1.11. This pattern is often called the Circles of Appolonius. These
will come to your attention again later in the book.

Figure 1.11

EXERCISES FOR SECTION 1.2

In Exercises 1 to 10, describe the locus of points z satisfying the given equation.

L |lz+1|=]z-1] 2. |z — 4| =4|z|

3. Re[4+i)z+6]=0 4. ImQ2iz) =7
S.|z+2[+(|z—-2|=5 6. |z—i|=Rez

7. Re(z2) =4 8 |lz—12=z+1]>+6
9.1z22—-1|=0 10. |z 4+ 1> +2|z2=|z— 1|2
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In Exercises 11 to 17, write the equation of the given circle or straight line in complex
number notation. For example, the circle of radius 4 centered at the point 3 — 2i is
given by the equation |z — (3 — 2i)| = 4.

11
12.
13.
14.
15.
16.
17.
18.

19.

20.

21.

22.

The circle of radius 2 centered at 4 + i.

The straight line through 1 and —1 —i.

The vertical line containing —3 — i.

The circle through O, 2 + 2i, and 2 — 2i.

The circle through 1, i, and 0.

The perpendicular bisector of the line segment joining —1 + 2i and 1 — 2i.
The straight line of slope —2 through 1 —i.

Show that the two lines Re(az + b) = 0 and Re(cz + d) = 0 are perpendicular
if and only if Re(ac) = 0.

Let p be a positive real number and let I' be the locus of points z satisfying
|z — p| = ¢x,z = x + iy. Show that I' is (a) an ellipse if 0 < ¢ < 1;(b) a parabola
if ¢ = 1;(c) a hyperbola if 1 < ¢ < o0.

Let z, and z, be distinct complex numbers. Show that the locus of points
tz, + (1 — t)z,, — 0 <t < o0, describes the line through z, and z,. The values
0 <t < 1 give the line segment joining z, and z,.

Let o be a complex number with 0 < |a| < 1. Show that the set of all z with
(@) |z — a] < |1 — az| is the disc {z: |z| < 1}

(b) |z — a| = |1 — &z| is the circle {z: |z| = 1}

(©) |z —a| > |1 —az| is the set {z: |z| > 1}.

(Hint: Square both sides and simplify.)

Let z and w be nonzero complex numbers. Show that |z + w| = |z| + |w|if and
only if z = sw for some positive real number s.

In Exercises 23 to 26, follow the technique outlined in the text to find all solutions
of the given equation.

23.
27.

28.

29.

30.

31

=i 24 z+D*=1-—i 25. 28 = —1 26. 22 =8
Suppose that n is an odd integer and w is a negative real number. Show that
one solution of the equation z" = w is a negative real number. (For instance,
—2isarootof 23 = —8)

Let a, b, and ¢ be complex numbers with a # 0. Show that the solutions of
az? + bz + ¢ = 0arez,,z, = (£)(—b + \/b? — 4ac),just as they are in the case
when a, b, and ¢ are real numbers.

Let b and ¢ be complex numbers. Show that the roots of the quadratic equation
22 + bz + ¢ = 0 are complex conjugates of each other if and only if the quantity
b? — 4cis real and negative, b is real, and c is positive.

Let A be a complex number and B a real number. Show that the equation
|z2| + Re(Az) + B = 0 has a solution if and only if | 4|2 > 4B. If this is so, show
that the solution set is a circle or a single point.

Let C be a circle and let A and B be any two distinct points on C. Show that if
P is selected on the smaller arc of C joining 4 to B, then the angle from the
segment AP to the segment BP is independent of P. This angle is n/2 if 4 and B
are on opposite ends of a diameter. The result remains true if “smaller” is
replaced by “larger.”
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32. Let z,, ..., z, be complex numbers. Show by mathematical induction that
lzy + 4z, Szl + - + |z,).

Translation and Scaling*

33. Let C be a circle or a straight line. Show that the same is true of the locus of
points z + f, z € C, and § a fixed complex number.

34. Let C be a circle or a straight line. Show that the same is true of the locus of
points az, z € C, and « a fixed nonzero complex number.

Inversion*

35. Let L be the line y = a, a > 0. Show that the locus of points 1/z, z € L, is the
circle of radius 1/2a centered at —i/2a.

36. Let L be a line through the origin. Show that the locus of points 1/z,ze L,is a
line through the origin. What is the relationship of the slopes of the two lines?

37. Let Cbethecircle|z — ¢| = r,0 < r < ¢. Show that thelocus of points 1/z,z € C,
is the circle centered at c/(c? — r?), of radius r/(c? — r?).

38. Let C be the circle |z — r| = r, r > 0. Show that the locus of points 1/z, z € C, is
the vertical line through 1/2r.

1.3 Subsets of the Plane

To understand the fundamentals of complex variables, it is necessary to single out
several special types of subsets of the complex plane that will be used in our
discussion of analytic and harmonic functions in subsequent chapters. This section
gives the definitions and basic properties of these sets.

Open Sets

The set consisting of all points z satisfying |z — z4| < R is called the open disc of
radius R centered at z,. A point w, in a set D in the complex plane is called an
interior point of D if there is some open disc centered at w, that lies entirely within
D (see Fig. 1.12). A set D is called open if all of its points are interior points.

An open disc of A s.et D.and .
radius R centered an interior point 3,
of D

at z,

Figure 1.12
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Example1 Each open disc D = {z:|z — zo| < R} is an open set. For if r =
[wo — zo| < R, choose ¢ = (R — r)/3. Then, for any z with |z — wy| < &, we have

|z —zol |z —wo|l + IWo — zgl <e+r=(R—-r)3+r <R,

by the triangle inequality. Thus, the open disc of radius ¢ centered at w, lies within
the set D. Hence, each point of D is an interior point, so D is open. o

Example2 The set R = {z: Rez > 0} is an open set. To see this, let w, € R;
then o, = Rew, > 0. Let ¢ = 10, and suppose that |z —wy| <& Then —e <
Re(z — wp) < &, 50

1
Re z = Re(z — wy) + Re wy > —s+ao=§ao>0.

Consequently, z also lies in R. Hence, each point wy of R is an interior point, so R
is open. a

Example 3 The set {z: [Im z| > 1} is an open set. This can be shown in the manner
of Example 2. a

Example 4 The set of all points z = x + iy, with x> < y, is also an open set. Let
Zo = X, + iy, be in this set; then there is a positive § with x3 + § < y,. We may also
assume that § is so small that 2x,6 + 63 < 1 + 4. (The latter inequality will be
needed only at one rather technical point.) Suppose now that z = x + iy satisfies
|z — zo| < 62. Then 62 > |x — x4, and 62 > |y — y,|. Therefore,
x? < (xo + 62)% = x% + 2x6% + 6*
< yo— 06+ 2x,02 + 64
<y—06%—38+ 2x,0% + 64

However, the choice of & gives —32 — § + 2x,62 + 6* <0, so x? < y whenever

z = x + iy satisfies |z — z,| < 62. o
Example 5 The set of all z with Re z < 6 is not an open set. o
The Boundary of a Set

The set just described in Example 5 is not open because, for instance, the point
wo = 6 is in it, but every open disc centered at w,, no matter how small the radius,
must contain a point z with Re z > 6. The point w, = 6 is called a boundary point
because it is located on the edge of the set, at the place where the set “almost” meets
its complement. The precise definition follows.
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A point p is a boundary point of a set S if every open disc centered at p contains
both points of S and points not in S. The set of all boundary points of a set S is
called the boundary of S (Fig. 1.13).

Let us find the boundary of each of the sets in the preceding examples (see
Fig. 1.13).

boundary

lz - 2] =R ;‘e’“z"‘f"g //%

\\_ Rez >0

A

\\\\\\t\\\\ . boundary
2 =x+ iy x'< y Imz =1 \\\\\\\\\\
W boundary &%\\\ \[m S N

0

Imz< -1
\ :»oundafy e
mz=-1"
3
\X
Rez> 6
N\
6 s
boundary
Rez =6

Figure 1.13

Example 6 The boundary of the open disc of radius R centered at z,, is the circle
of radius R centered at z,. o

Example 7 The boundary of the set of those z with Re z > 0 is the imaginary axis.
o
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Example 8 The boundary of the set of those z with |Im z| > 1 is the set of those z
with |[Im z| = 1. a

Example 9 The boundary of the set of those z = x + iy with x? < y is the parabola
y = x2 o

Example 10 The boundary of the set of those z with Re z < 6 is the vertical line
Rez =6. o

Closed Sets

You have observed by now that the open sets just discussed contain none of their
boundary. Indeed, this is an elementary theorem, which is set out below. However,
what about exactly the reverse situation? A set C is called closed if it contains its
boundary. These definitions prepare us for the following result.

THEOREM A set D is open if and only if it contains no point of its boundary. A set C is
closed if and only if its complement D = {z: z ¢ C} is open.

Proof To establish the validity of this theorem, we start by supposing that D is an
open set. Let p be a boundary point of D. If it happens that p is in D, then (because
D is open) there is an open disc centered at p that lies within D. Thus, p is not in the
boundary of D. This contradiction shows that p is not in D. Conversely, suppose D
is a set that contains none of its boundary points; we must show that D is open. If
2y € D, then z, cannot be a boundary point of D, so there is some disc centered at
z, that is either a subset of D or a subset of the complement of D. The latter is
impossible, since z, itself is in D. Hence, the disc lies in D, and we have shown that
each point of D is an interior point; therefore, D is open.

The second assertion of the theorem follows immediately from the fact that
the boundary of a set coincides exactly with the boundary of the complement of that
set; this in turn is a direct consequence of the definition of boundary point. [ |

Be wary here—there are many sets that are neither open nor closed, since they
contain part, but not all, of their boundary. For example, the set D of those z with
Re z < 6 and Im z > 2is neither open nor closed, since its boundary consists of those
w with either Rew = 6 and Imw > 2 or Im w = 2 and Re w < 6 (Fig. 1.14).

There is also one technical point here: The complex plane itself has no
boundary and so by definition is both open and closed. It happens to be the only
nonempty subset of the plane that is both open and closed. (The truth of this
statement depends on a fundamental property of the real numbers.) Since what
follows makes no use of this fact about the plane, we will not prove it here.

Connected Sets

A polygonal curve is the union of a finite number of directed line segments P, P,,
P,P,, ..., P,_,P,, where the terminal point of one is the initial point of the next
{except for the last) (see Fig. 1.15). An open set D is connected if each pair p, q of
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\\\\\\\\\\\\\\ \ ™ A boundary point of D

D =iz:Rez < 6,lmz > 2 thatisin D
M____
/‘ 2/ 6

A boundary point of D |0
that is notin D

Figure 1.14

-2 - A polygonal curve
(with n = 5) joining
-2 -itol +1i

Figure 1.15

points in D may be joined by a polygonal curve lying entirely with D. That is, there
are points P,, ..., P,_, in D such that all the line segments pP,, P,P;, ..., P,_,q lie
in D.

Example 11 An open disc is connected. o
Example 12 The set of those z with Re z > 0 is connected. m]
Example 13 The set of those z = x + iy with x? < y is connected. =]
Example 14 The set of those z with |Im z| > 1 i5 not connected. (u]
Example 15 The set of those z with Re z < 6 is connected. (m]
Example 16 The set of those z with Re z # 0 is not connected. (=]

For instance, in Example 16 the points p = 1 and ¢ = —1 lie in the given set,

but any polygonal curve joining p to ¢ must necessarily cross the imaginary axis
(where Re z = 0), so this curve cannot lie entirely within the set Re z # 0.
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An open connected set is called a domain. Domains are the natural setting for
the study of analytic and harmonic functions.

A set S is convex if the line segment pq joining each pair of points p, g in S also
lies in S. In particular, it is immediately clear that any convex open set is connected
(Fig. 1.16).

A convex set A set S that
is not convex

Figure 1.16

Example 17  Each open disc is convex. u]
Example 18 The set of those z = x + iy with x? > y is not convex. o
Example 19 Both of the sets Re z > 0 and Re z < 6 are convex. o

An open half-plane is defined to be those points strictly to one side of a straight
line—that is, those points z for which Re(az + b) > 0, say. Each open half-plane is
a convex set and an open set as well. A closed half-plane is the open half-plane plus
the defining line—that is, those z with Re(az + b) = 0. Each closed half-plane is
convex as well as closed (Fig. 1.17).

he half-plane
N\ Re (1 + )2) > -1
N

A

Figure 1.17

It is instructive to see why each half-plane (open or close) is convex. If p and
q are two points, then
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tg+(1-tp, 0<t<1

describes the line segment from p to g; see Exercise 20, Section 2. If p and g are in
the open half-plane given by Re(az + b) > 0, then

Re(a(tqg + (1 — t)p) + b) =t Re(aq + b) + (1 — t) Re(ap + b) > 0,

so the line segment from p to g lies in the same open half-plane. The case of a closed
half-plane is almost identical.

The Point at Infinity

A helpful and frequently used convention is to add the point at infinity to the
complex plane. This is understood in the following way. A set D contains the point
at infinity in its interior if there is a large number M such that D contains all the
points z with |z| > M. For instance, the open half-plane Re z > 0 does not contain
the point at infinity, but the open set D = {z: |z + 1| + |z — 1| > 1} does. One
“reaches” the point at infinity by letting |z| increase without bound, with no restric-
tion at all on arg z. One way to visualize all this is to let w = 1/z and think about |w|
being very small; an open set containing the point at infinity will become an open
set containing w, = 0. Further, the statement “z approaches infinity” is identical to
the statement “w converges to zero.” The point at infinity is denoted by the usual
symbol for infinity: co.

EXERCISES FOR SECTION 1.3

For each of the sets in Exercises 1 to 8, (a) describe the interior and the boundary,
(b) state whether the set is open or closed or neither open nor closed, (c) state whether
the interior of the set is connected (if it has an interior).
A={z=x+iy:x>2and y <4}
.B={z:|z] <lor|z-3|< 1}
C={z=x+iy:x* <y}
. D= {z: Re(z?) = 4}
E={z2z-2>0}
F={z:2-2"+ 5z — 4 =0}
G={z=x+iy:|z+ 1] > 1and x < 0}
H={z=x+iy: —n<y<m)
. Let « and f be complex numbers with : # 0. Describe the set of points az + f
as z varies over (a) the first quadrani, {z = x + iy: x >0 and y > 0}; (b) the
upper half-plane, {z = x + iy: y > 0};{c) the disc {z: |z! < R}. Show that in each
case the resulting set is open and connected. (Hint: First investigate the sct az.)
10. Describe the set of points z* as z varies over the second guadrant: {z = x + iy:
x < 0and y > 0}. Show that this is an open, connected sct. (Hint: Use the polar
representation of z.)

11. A set Sin the plane is bounded if there is a positive number M such that |z] < M
for all z in S; otherwise, S is unbounded. In Exercises 1 to 8, six of the given sets
are unbounded. Find them.

N N N N
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Which, if any, of the sets given in Exercises 1 to 8 contains c0?

(a) Show that the union of two nonempty open sets is open. Do the same,
replacing “open” with “closed.” Do the same replacing “union” with
“intersection.”

(b) Repeat part (a) replacing “two” with “finitely many.”

Let D, and D, be domains with a nonempty intersection. Show that D, u D, is

a domain.

Let Q, ={z:1<|z|<2 and Rez> —3} and Q,={z:1<|z|] <2 and

Re z < 4}. Show that both Q, and Q, are domains but Q, N Q, is not.

Let D be a domain and let p and g be points of D. Show that there is a polygonal

curve joining p to ¢ whose line segments are either horizontal or vertical (both

types can be used). (Hint: Replace a “slanting” segment by (perhaps many)

horizontal and vertical segments; see Fig. 1.18.)

Solid lines are the original polygonal curve
joining p to g. The dotted lines are a
polygonal curve from p to g, which consists
entirely of vertical/horizontal segments.

Figure 1.18

17.

18.

19.

20.

Fix a nonzero complex number z,. Show that the set D obtained from the plane
by deleting the ray {tz,: 0 <t < oo} is a domain.

An open set D is star-shaped if there is some point p in D with the property
that the line segment from p to z lies in D for each z in D. (a) Show that
the disc {z: |z — zo| < r} is star-shaped. (b) Show that any convex set is star-
shaped.

Determine which of the following sets are star-shaped:

(@ D={z:|lz—1|<2o0r|z + 1| <2}

(b) D={z=x+iy:x>0and|z| > 1}

() D={z:]z| > 1}
dD={z=x+iy:x>0and[x>y+1lorx>1-y]}

Show that each star-shaped set is connected.
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Separation of a Point and Convex Set*

Let C be a closed convex set and z,, a point not in C. It is a fact that there is a point
pin C withr = |z, — p| < |z, — q| for all g in C. (This last statement requires a bit
of proof, but let us assume its validity.)

21. Show that the only point of C in the disc |z, — z| < r is the point p.

22. Let L be the perpendicular bisector of the line segment from z,, to p. Show that
no point of C lies on L or in the half-plane, determined by L, which contains z,,.

23. Conclude from Exercise 22 that L separates z, from C: z, and C lie in the two
open half-planes determined by L, but not in the same open half-plane.

24. Show that each closed convex set is the intersection of all the closed half-planes
that contain it.

Topological Properties*

25. Show that the boundary of any set D is itself a closed set.

26. Show that if p € D, then p is either an interior point of D or a boundary point
of D.

27. Show that a set D coincides with its boundary if and only if D is closed and D
has no interior points.

28. Show that if D is a set and E is a closed set containing D, then E must contain
the boundary of D.

29. Show that if D is a set and S is an open set that is a subset of D, then S must be
composed entirely of interior points of D.

30. Let C be a bounded closed convex set and let D be the complement of C. Show
that D is a domain.

1.4 Functions and Limits

A function of the complex variable z is a rule that assigns a complex number to each
z within some specified set D; D is called the domain of definition of the function. The
collection of all possible values of the function is called the range of the function.
Thus, a function f has as its domain of definition some subset of the complex plane
and as its range some other (usually entirely different) subset of the complex plane.
Wefrequently write w = f(2) to distinguish the independent complex variable z from
the dependent complex variable w.

Example 1  f(z) = 4z% + 2z + 1 has as its domain of definition the entire complex
plane. Its range is also the entire complex plane, for if w is any complex number,
then the equation f(z) = w is nothing but the quadratic equation

422 + 2z +1—w=0.

This equation is solved by use of the quadratic formula. Its solutions are

a="2X% =12
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where s,, s, are the two square roots of 4 — 16(1 — w) = — 12 + 16w. (It is possible
that s, = s,; this occurs only when w = 3.) o

Example 2 f(z) = 1/(z — 1) has as its domain of definition all complex numbers
except z = 1, where it is not defined. Its range consists of all complex numbers w
except w = 0,since f(z) = w = 1/(z — 1)is solved by z = 1 + (1/w); this is a complex
number as long as w # 0. o

Example 3 g(z) = |z|* has the complex plane as its domain of definition; its range
consists of all nonnegative real numbers. o

Example 4 h(z) = i(2 — (Im z)~!) is defined for all z except those on the real axis.
For a pure imaginary number w, a solution of w = h(z) = i(2 — (Im z)™!) is any
complex number z with Im z = (2 + iw)~*. This defines many complex numbers as
long as w # 2i. Hence, the range of h is all purely imaginary numbers except w = 2i.

[m]

Example 5 Show that the range of the function w = T(z) = (1 + z)/(1 — z) on the
disc |z| < 1 is the set of those w whose real part is positive.
Solution Compute the real part of w:

1+z 1+21-2) 1—|z)?
Rew=Re|— )= = :
ew 6(1—z) Re—T—2F 1=z

This last quantity is positive when |z| < 1. This shows that the range of T is a subset
of those w with Re w > 0. Now let w’ be any point with Re w’ > 0; we shall show
that z/ = (w' — 1)/{(w’ + 1) satisfies |z’| < 1. Indeed, 1 > |(w' — 1){(w’ + 1)| exactly
when |w’ + 1) > |w’ — 1|2. We expand both |w’ + 1| and |w’ — 1|2 and obtain

W2 +2Rew +1>|w|?—~2Rew’ + 1.

This is a correct inequality because Re w’ > 0. Thus, z’ = (w' — 1)/(w’ + 1) lies in
the disc |z| < 1, and

=1
, 1+Z w+1 2w ,
Tz = = =—=w' O
1-2 1 w — 2
w+1

(NOTE: T(z) = (1 + 2)/(1 — 2) is an example of a linear fractional transformation,
which will be studied in some detail in Section 3 of Chapter 3.)

As with functions of a real variable, the domain of definition of a function is
usually easier to determine than the range. In many cases, this text will provide only
a general description of certain properties of the range rather than an explicit rule
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for each point in it. For instance, we may be able to state that the range is open or
connected or convex.

Graphs

For real-valued functions of a real variable, like those studied extensively in calculus,
the device of displaying the graph of the function is an extremely useful tool in
visualizing the behavior of the function. Such a technique is not as readily available
for functions of a complex variable. If the function f has only real values, its graph
in 3-space (x, y, t), t = f(x + iy), can be sketched (see Fig. 1.19). However, if the
function has complex values, this type of picture is not possible (at least in our
world!). Moreover, almost all the functions dealt with here have complex values. One
way to proceed is to graph | f], but a more useful way is to use two complex planes:
one for the domain variable z and a second for the range variable w = f(z). For
instance, we saw in Example 5 that the function T(z) = (1 + z)/(1 — z) maps the disc
{z:|z| < 1} onto those w with Re w > 0; this can be “graphed” as shown in Figure
1.20. This type of picture is very helpful in understanding the behavior of the
complex-valued function of a complex variable and we will employ it frequently.

continues up T ?0(;] [if{m'eslup
ntinues 1 Indefinitely
indefinitely

The graph of

Sx +iy) =

1 1
\/xz + y? \/(x— 1)? + y?

Figure 1.19
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Figure 1.20

Limits

The concepts of the limit of a sequence of complex numbers, or the limit of a function
of a complex variable, or even of continuity of a function of a complex variable, are
almost identical to those for a real variable. Let us begin with the limit of a sequence.

Let {z,}7-; be a sequence of complex numbers. We say that {z,} has the
complex number A as a limit, or that {z,} converges to 4, and we write

lim z, = A or z,—> A

n—oo
if, given any positive number ¢, there is an integer N such that

|z, — Al < ¢ foralln > N.
A sequence that does not converge, for any reason whatever, is called divergent. If
Zy = X, + iy,and A = s + it, then z, » A ifand only if x, — s and y, — t. This is due
to three inequalities noted in Section 1, namely

|X"—S|<|Z"—A|, |yn_t|<|2n_A|’

and

|zn - Al < |xn - Sl + iyn - tl'
We can equivalently state that the sequence {z,} of complex numbers converges to
the complex number A if and only if, whenever D is any open disc centered at A, all
but a finite number of the points {z,} lie in D.

Example 6 The sequence z, = 1 + (i/n) converges to 1. o

Example 7 The sequence z, = (—3%)" + i(1 — (1/2n)) converges to i. m]
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Example 8 The sequence z, = (1/n)(cos(nn/4) + i sin (nn/4)) converges to zero. O
Example 9 The sequence z, = n — (1/n) diverges. o

Example 10 The sequence z, = i" diverges because its terms are i, — 1, —i, 1, in that
order, repeated infinitely often. o

One simple consequence of the definition of convergence is this:
Ifz,— A, then |z,| — | 4].
The converse of this assertion is generally false; for example, |(— 1)" + i/n| — 1, but
the sequence {(— 1) + i/n} itself has no limit.
You will no doubt recall from calculus results about the sum, product, and

quotient of convergent sequences of real numbers. Similar statements hold for
sequences of complex numbers; we collect these results in the next theorem.

THEOREM 1  Let {z,} and {w,} be convergent sequences of complex numbers with limits 4
and B, respectively. Let 4 be a complex number. The sequences {z, + Aw,} and

{z,w,} then also both converge with limits A + AB and AB, respectively. Further-
more, if B # 0, the sequence {z,/w, } converges to A/B. /

Proof The proof of each of these results is quite direct. For example, to show that
z,w, = AB, we write z,w, — AB = (z, — A)B + (w, — B)z,. Let N, be chosen so big
that |z, — A| < ¢ if n > N, and N, chosen so big that [w, — B| < ¢ if n > N,. Then
|z,) <€ +]A|l <1+ |A]if¢ < 1;and forn > N = N; + N,, we obtain
|znwn - ABl < |zn - A”Bl + |Wn - B”an

<é|Bl+¢€(1+]A4])

=¢(1 +|4| +|Bl)

<g,

if ¢ is chosen initially to satisfy ¢'(1 + |4| + |B|) <. [ ]

Example 11 The sequence z, = 1 + i[1 — (2/n)] converges to 1 + i as n— o0.

Hence, the sequence
4 4 4
PRI
n n n

converges to 2i = (1 + i)?> as n — oo. u]

Example 12 Suppose that ay, a,, a,, and a; are complex numbers and {z,} is a
sequence with z, — A. Then the sequence {a, + a,z, + 4,22 + a3z} }3>, converges
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to ap + a; A + a, A2 + a3 A® as n - oo, as can be seen by several applications of
results in Theorem 1. o

Suppose next that f is a function defined on a subset S of the plane. Let z, be
a point either in S or in the boundary of S. We say that f has limit L at the point
29, and we write

lim f(z)=L or f@-»L as z- 2z,

z—2g
if, given ¢ > 0, there is a 6 > 0 such that
|fz)— Ll <e whenever zeS and |z — zy| < 6.

It is worth stressing here that f has the limit L at the point z, exactly when the
numbers f(z) approach L as z approaches z, in any manner whatsoever from within
S. This is substantially different from the case of a function of a real variable, where
the real variable can approach only from the left or right. The complex variable z
may approach z, from infinitely many directions. Once again, it will be informative
to look at some examples.

Example 13  The function f(z) = |z|? has limit 4 at the point z, = 2i. o
Example 14  The function g(z) = 1/(1 — z) has limit (1/2)(1 + i) at z, = i. o
Example/ 15 The function h(z) = Re(z* + 4) haslimit O at zo = 1 + i. =]

Example 16 The function f(z) = (z* — 1)/(z — i) has limit —4i at z, = i, since
2t —1=(z—i)z+ i)z - )z + 1), so f(z) simplifies to (z + i)(z + 1)(z — 1) so
long as z # i. o
Example 17  The function f(z) = z/z, z # 0, has no limit at z, = 0. For if z is real,
then f(z) = 1, while if z is purely imaginary, z = iy, then f(iy) = — 1. Such a function
cannot have a limit at z, = 0. o

We say that the function f has a limit L at co, and we write

lim f(z) = L

z-00
if, given & > 0, there is a large number M such that

|f(z)— Ll<e¢ whenever |z] = M.
Note that we only require that |z| is large; there is no restriction at all on arg z.

Example 18 lim,, 1/z"=0ifm=1,2,.... o
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Example 19  lim,_, [(z* + 1)/(z* + 5z% + 3)] = 1, since the ratio can be written as

1
1+ —
+z4

1+2 42
22 4

all of whose terms except the 1’s go to zero as |z| — co. o

Example 20 lim,_, [(x + y*)/(x® + y*)] does not exist; for if we take z = x, then
the expression goes to zero, but if we take z = iy, then the expression is identically 1.
O

The following theorem on the sum, product, and quotient of functions that
have limits at z, is a counterpart to Theorem 1.

THEOREM 2  Suppose that f and g are functions with limits L and M, respectively, at z,.
Let 4 be a complex number. The the functions f + Ag and fg have the limits L + AM
and LM, respectively, at the point z,; and, if M # 0, the function f/g has the limit
L/M at the point z,. [ |

Continuity

Suppose again that f is a function defined on a subset S of the complex plane. If
2y € S, then f is continuous at z, if

lim f(z) = f(zo)-
z—-2zo
That is, f is continuous at z, if the values of f(z) get arbitrarily close to the value
f(z0), so long as z is in S and z is sufficiently close to z,. If it happens that f is
continuous at all points of S, we say f is continuous on S. The function f is continuous
at oo if f(o0) is defined and lim,_, , f(z) = f(o0).
Let us review Examples 13 to 17 in the context of “continuity.”

Example 21  f(z) = |z|? is continuous at every point of the complex plane. a

Example 22 g(z) = 1/(1 — z) is continuous at all points of the plane except z = 1.
O

Example 23  h(z) = Re(z* + 4) is continuous at all points of the plane. o

Example 24  f(z) = (z* — 1)/(z — i) is continuous on the whole plane if we define
f(i)y= —4i o

Example 25 h(z) = z/z is continuous everywhere except z = 0. Further, there is
no way to define h(0) to make h continuous at z, = 0, since h(z) = 1 for all z that
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are real and h(z) = —1 for z that are purely imaginary. Such a function cannot
be continuous at z, = 0, the point where the real axis meets the imaginary axis.
(m]

Example 26 The function g(z) = 1/(|z| + 1) is continuous at all points of the plane
and at oo as well, if we set g(o0) = 0.

You will no doubt recall that the sum and product of continuous functions is
continuous. This follows, in fact, directly from Theorem 2. We state this formally in
the next theorem.

THEOREM 3 Suppose that f and g are functions, both of which are continuous at the point
zo. Let A be a complex number. Then the functions f + Ag and fg are also continuous
at the point z,. Further, if g(z,) # 0, the function f/g is continuous at z,. Finally,
if h is a function continuous at each point of some disc centered at the point
wo = f(zo), then the composition h(f(2)) is continuous at z,. ]

The proofs are left to the exercises at the end of this section. These facts allow
us to conclude that each polynomial

p@)=ao+a;z+ - +a,z

is continuous on the complex plane; here a, ..., a, are complex numbers. Further,
if p and g are two polynomials, their quotient r = p/q is also continuous at all points
at which ¢q(z) # 0. The ratio of two polynomials is called a rational function.

Each complex-valued function f can be written as f = u + iv, where u and v
are real-valued functions: u(z) = Re f(z), v(z) = Im f(z). In this way, the statements
about limits, continuity, etc., of f can be recast as statements about u and v. For
example, f is continuous at a point z, if and only if both u and v are continuous at
2o. Some exercises on these topics are included at the end of this section.

Infinite Series

Just as the notion of the convergence of a sequence of complex numbers is almost
the same as the convergence of a sequence of real numbers, so the notion of the sum
of an infinite series of complex numbers is virtually the same as that of the sum of
an infinite series of real numbers. Specifically, if the numbers z,, z,, ..., are complex
numbers, we define their nth partial sum by

n
Sn=sz=ZI+-..+zn, n=1’2,'“.
j=1

We then examine the behavior of the sequence {s,}. If the sequence {s,} has a limit
s, then we say that the infinite series ) 2, z; converges and has sum s; this is written

e

Zj=S.

[
([
-
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If for any reason the sequence {s,} does not have a limit, we say that the series
Y %, z; diverges. The convergence (or divergence) of the infinite series Y 2, z; of
complex numbers can be formulated in terms of the convergence (or divergence) of
two infinite series of real numbers. This follows directly by writing z; = x; + iy;, so

n n n
=sz=zxj+izyj=a"+it"'
Jj=1 Jj=1 Jj=1

As noted earlier in this section, the sequence {s,} converges if and only if both of the
sequences {0,} and {t,} of real numbers converge, and, this being the case,

s=1lims, =1limo, + ilim t,.

However, the convergence of the two sequences {,} and {z,} is exactly the state-
ment that the two infinite series Z;” 1 X; and Z}';, y; both converge. We thus arrive
at this result: Let z; = x; + iy; j = 1, 2 3,.... The infinite series } 2, z; converges,
z; = x; + iy;, if and only if both

e

x; and Yy
=1

<
([
[y

converge. Furthermore, if Z z; converges, then

Ms

Zi=

Tl[\/]s

j=1

There is more that can be said here. Since
1% <lzil, |yl <lzl,

the convergence of the series Y %2, |z;| of nonnegative numbers implies, by the use
of the usual comparison test for infinite series of real numbers, the convergence of
both the series

0

Ylxl and Y |yl

j= =1
Hence, both the series
0 0
Y x and Y v
j=1 j=1

converge, so

Z (x; + iyy)

j=1

also converges. Furthermore,



1.4 Functions and Limits 39

Isal =

n
L%
j=1

n
< Z |zj|
j=1

for all n. We conclude that if ¥ %2, |z;| converges, then ) 2, z; converges, and

8

©
2%
j=1

< ), Izl
IS

This is a useful criterion for convergence, since there are several tests available from
calculus (comparison, ratio, root, integral; see the exercises) for the convergence of
an infinite series of nonnegative numbers. When Y’ |z;| converges, we say that the
series z; is absolutely convergent.

Example 27 If « is not equal to 1, the identity

+1
1+a+...+a"=i
l—a

is easily verified by multiplying both sides of the equation by 1 — a. If |a| < 1, then
o"*t! - 0 as n — oo, with the result that

© . 1
l+a+a?+ =Y af=——, Ja<l.
j=0 1 —oa
This is the geometric series, with ratio a. m]

Example 28 The series

converges, since

and the series
] ——
=1 3
converges, as can be seen by use of, say, the ratio test. O

Example 29 The series
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converges, even though the series

s
x~l—

diverges. Note that

i ifk=1,59,...
L | -1 ifk=2,6,10,...
—i ifk=3,711,...

1 ifk=4,812,....

Hence,
ii"_ 1+1 1+... +il1 1+1 1+...
Ek 24 6 3°5 7 ’
and each series in the parentheses converges by the alternating-series test. a

Example 30 The series

x 1
Y ?(1 + i)
k=1

diverges, since

N2)k
%(1+i)2"={(——1;l) } = i

so the terms of the series do not go to zero. Thus, the series must diverge (see Exercise
30). a

Some Sums*

The identity at the beginning of Example 27 has significance beyond the geometric
series. Let x be any real number not equal to 1. Then

1— xn+1

l+x+x2+ x>+ +x"=
1—x

This identity can be manipulated to obtain other useful identities. For instance,
differentiate both sides with respect to x, then multiply both sides by x, and add 1.
The result is the identity

1+x+2x2+3x3+4x4+...+nxn=1_(n+1) n+1 +x1—x"+1'
1 —x (1 — x)?
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Repeating this three-step process yields another identity, this time for 1 + x +
4x% + 9x> + -+ + n?x".

EXERCISES FOR SECTION 1.4

Limits
In Exercises 1 to 8, find the limit of each sequence that converges; if the sequence
diverges, explain why.

Lz, = (‘ \g) 2 z,- (‘ \2’)

i\ 1
3. Zu—"<§) 4 z,= Log(l +;>

i cos nf + i sin nf
5. z,,=n+;l 6. z,=————, 0 fixed
n

7.z, = Arg [ 1 +g> o fixed

8 z,= n{l - cos(g) —i sin(g)}, 0 fixed
n n

In Exercises 9 to 14, find the limit of each function at the given point, or explain
why it does not exist.
9. flz)=|1—z|*atzy =i 10. f(z) = Argzatzy= —1
1. fz)=(1 —Imz)'atz,=8and thenatz, =8 + i
12. fz)=(z—2)log|z —2|atzy =2

|z|?
13. f(z) =—, z#0, atzo =0
z
23 — 8i ) .
14. f(z2) = TS z# =2, atzo = —2i
Continuity
In Exercises 15 to 20, find all points of continuity of the given function.
3 4_
g +.l, z#1 £ 1 z#1
15 fzy =<4 271 16. fz) =< 2z~
-3, z=i 4i, z=i
17. fz=(Imz — Rez)! 18. gz)=(1 — |z/%)73
z if lz] <1 _
: = 20. h(z) =73
19. h(2) {|Z|2 if 2| > 1 0. h(z) =2

In Exercises 21 to 24, find the limit at co of the given function, or explain why it
does not exist.

1
21. f(z)=|z|—_1 22. h(Z)=|—z|,

z#0
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6 3

23. g(z) = 4(—;—1% 24. h(z) = Arg z, z#0

25. Let f and g be continuous at z,. Show that f + g and fg are also continuous at
2o. If g(z,) # 0, show that 1/g is continuous at z,,.

26. Establish the following result. A function f is continuous at a point z, of its
domain of definition S if and only if, given ¢ > 0, there is a § > 0 such that
| f(z) — f(zo)| < efor all z € S with [z — z4| < 6.

27. Let g be defined on a set containing the range of a function f. If f is continuous
at z, and g is continuous at f(z,), then g(f(z)) is continuous at z,.

28. Suppose that f = u + iv is continuous at z,. Show that each of the functions u,
v, u — iv, and (4 + v?)' are also continuous at z,. Conversely, show that if u
and v are continuous at z,, then so is f.

29. Let u be a continuous function on a domain D. Suppose that u has this property:
For each point p € D, there is a disc A centered at p on which u is constant.
Conclude that u is constant throughout D. You will have to use the fact that D
is a domain.

Infinite Series
30. Suppose that Y =, a, converges. Show that lim,_, , a, = 0.

In Exercises 31 to 39, determine whether the given infinite series converges or
diverges.

(ﬁ JoomEGS »ECE)

35. , = ng~z,  1Bl<1

M8 "M

34.

3
N
Ms 7'M8

& L1 +i\
36. 37. ¥ o[ —
; n=1 n< \/5)
d 2 k*+i
38. — " 39.
Z ) kzl (k +i)*
40. Show that each of the following series converges for all z.
© N 2n © 22n+1
(@) 2o (b) Z (—=1) @) © Zons 1l

41. Suppose that the series Y ;2 a, converges. Let |z| < 1. Show that the series
Y, a,z" is convergent—indeed, that ) &2, |a,z"| converges. (Hint: By Exercise
30, |a,| < M for some M and all n.)

The Root and Ratio Tests*

In Exercises 42 and 43, {c,} is a sequence of positive numbers.

42. (Root test) Suppose that lim,_, (c,)"’" = A4 exists. Show that the series ) c,
converges if 0 < 4 < 1 and diverges if A > 1. (Hint: If 4 < 1, there is a B with
A < B < 1.Hence,c, < B"ifn> N.(WhyN)If1 < A,thenc, > 1 foralln > N'.
(Why?)

43. (Ratio test) Suppose that



1.5 The Exponential, Logarithm, and Trigonometric Functions 43

. Cut
lim 2 =¢C
n-o Cp

exists. Show that the series ' c, converges if 0 < C < 1 and diverges if C > 1.
(Hint: If C < 1, thenfor D,C < D < 1,wehavec,,; < Dc,foralln > N.(Why?)

Therefore, c,,x < D*c,, k=0, 1, 2, ..., and ch converges. If C > 1, then
Cnt1 = ¢, for alln > N'. (Why?) So {c,} does not converge to zero.)

1.5 The Exponential, Logarithm, and Trigonometric Functions
The Exponential Function

The exponential function is one of the most important functions in complex analysis.
Its definition is simple:

e* = e*(cos y + i sin y), z=Xx+iy.
The form exp(z) is used sometimes, especially if z itself has some complicated form.

The definition of e” allows us immediately to derive one of its most significant
properties: For any two complex numbers z and w,

et = e%e”.

To see this, write (as usual) z = x + iyand w = s + it. Then, making use of two basic
trigonometric identities for the sine and cosine of the sum of two numbers,

et = e***[cos(y + t) + i sin(y + )]
= e*e*[(cos y cos t — sin y sin t) + i(sin y cos t + sin t cos y)]
= e*(cos y + i sin y)e®(cos t + i sin t)
= e’e"”.

The basic definition allows several more conclusions about the exponential
function. First, e is a continuous function of z. The functions e*, cos y, and sin y
are continuous functions of x and y. Consequently, Re(e*) = e* cos y and Im(e*) =
e* sin y are both continuous, so e” is continuous at all points of the plane. Second,

o] = e,
because
le?| = ((e* cos y)* + (e” sin y)*)'?

=e* = eRez.
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In particular,
le*| =1,  treal

Since e” = cos t + i sin t, t real, we see that as t increases, e* moves on the circle of
radius 1 centered at the origin in a counterclockwise direction, making one complete
circuit when ¢ increases by 2r (Fig. 1.21). In particular, of course,

e?mim — | for m=0, +1,...

and
e = —1
w = ell f
/‘_\
L 1
1 >
ty ty + 27 1
ei"" = ei(lo + 21) o 4
Figure 1.21

Second, the function f(z) = e® never has the value zero, since neither e* nor e? is
ever zero. On the other hand, if w is any nonzero complex number, the equation

=w

has infinitely many solutions. This can be seen, for example, by writing w in polar
form:

w =r(cos Y + isin y),
and then setting x =Inr and y =y + 2zm, where m is any integer (positive or

negative) and In r is the natural logarithm of r; In is log to the base e, studied in
calculus. Thus,

ex+iy — elnrei(¢+2nm)
= r[cos Y + i sin Y]
=Ww.

Furthermore, every solution z of the equation e* = w has the form given above. For
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if e? = w, then

r=lwl = lef| = &%

so x = In r. Consequently,
cos y + isiny=e” =cosy + isin y.

Thus, y = § + 27m for some integer m (see Exercise 14 in Section 1).

The mapping of f(z) = e? thus carries the complex z-plane onto the complex
w-plane with the origin deleted; each point w, has infinitely many pre-images z, each
of the form zy + 2nim,m =0, + 1, +2,..., where z, is any solution of e* = w,. In
particular, f(z) = e®carries each strip y, < Im z < y4 + 27, —o0 < Re z < o0, onto
the w-plane with the origin removed. The function f(z) = e” is one-to-one on that
strip—that is, distinct points have distinct images. For e*' = e* if and only if
e*1”%2 = 1; this occurs exactly when z, — z, = 2nik for some integer k (Fig. 1.22).

The function w = & maps
thestripy, < Imz <y, + 27
onto those w with w # 0

Figure 1.22

The function f(z) = e* maps each horizontal line y = ¢ onto a ray from
the origin to infinity—specifically, the ray {rcosc + irsinc:0 <r < o}, since
exp(x + ic) = e* cos ¢ + ie” sin ¢, and e* increases from 0 to oo as x increases from
— o0 to o0; of course, e* is always positive. Furthermore, e maps each vertical line
x = conto the circle centered at the origin of radius e‘. This is because exp(c + iy) =
e‘(cos y + i sin y),and cos y + i sin y travels along the circle of radius 1 centered at
the origin in a counterclockwise direction as y increases. Each point on this circle
is the image of infinitely many points on the vertical line, since both cos y and sin y
are periodic, with period 27.

The Logarithm Function

The inverse of the exponential function is the logarithm function. For a nonzero
complex number z, we define log z to be any complex number w with e" = z.



46

Chapter 1 The Complex Plane

The preceding discussion of the exponential function leads immediately to the
relationship

log z =In|z| + iarg z, z#0.

However, it is obvious that this is not a single complex number, but rather a set of
complex numbers, each two elements of which differ by an integer multiple of 2i.
One way to be definite is to use

Log z =In|z| + i Arg z.

Be wary here; it may happen that Log(z,z,) # Log z; + Log z, exactly because
Arg(z,z,) need not equal Arg z, + Arg z,. The function Log z is called the principal
branch of the logarithm of z. Other choices of arg z yield other values of log z (more
on this later). To investigate the continuity of log z, delete from the plane any ray
beginning at the origin (for example, delete all the nonpositive real numbers) and
let D be the domain remaining. Let z, be any point of D and choose and then
fix any value for arg z,, say arg z, = 6,. We then define in D a branch of log z
by the rule log z = In|z| + i arg z, with the additional specification that log z, =
In|z4| + i6y. Then within D the values of arg z lie in a uniquely determined open
interval of length 27, which contains 6,; furthermore, argz is continuous in
D with this specification. The function In|z| is a continuous function on D as well,
so the branch of log z determined by the specific choice arg z, = 6, is continuous
on D. For example, if we delete the nonpositive real axis (see Fig. 1.23) and pick
zo = 1 + i and 6, = 3, then the branch of log z that is determined has arg z in
the range (m, 3n). Clearly, there are infinitely many possible branches of log z in D,
each continuous.

deleted el +i

Figure 1.23

The definition of log z allows us to complete the discussion of roots begun in
Section 2. For a nonzero complex number a, we define a* by the rule

az = ez Ioga.
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This results in many values, but it does agree with the usual definition in the special
case when a and z are both positive and real.

Example 1 Find the values of (— 1),
Solution  Using the relation log(—1) = (2n + D)zi,n =0, +1, ..., we obtain

(—1) = e'l8) = o=@ty — (0, +1, +2,.... o

Example 2 Find the solutions of z!*i = 4.

Solution Write this equation as
eli+ilosz — 4
so(l +i)logz=In4+ 2z7ni,n=0, +1,.... Hence,
logz= (1 —i)[In 2 + =ni]
=(In 2 + 7n) + i(nn — In 2).
Thus,
z = 2e™(cos(nn — In 2) + i sin(nn — In 2))
= 2e™{(—1)" cos(ln 2) + i(—1)"*! sin(ln 2)}

=(—1)"2e™{cos(In2) —isin(ln2)}, n=0,+1,.... O

Example 3  Establish the formula
lim (1 + ,E,) = e’ z a complex number

n—o0

Solution Look at n Log(1l + z/n) for large n. Write

z
in Arg{ 1 + ).
+ in rg( +n)

nLog(1+£>=nln 1+E
n n

The real part satisfies

as n — oo by I’'Hopital’s Rule, for example. Next, if z = r(cos 6 + i sin 6) and y, =
Arg(1 + z/n), then from Figure 1.24,
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'S
1+ %
n
T /) sing
¥n nhor"
1 X
Figure 1.24
ro.
—sin 6
n
tan¢"=r—,
1+-coséf
n
and so
rsin 6
ntany, =
r
1+ -cosf
n

Because Y, —» 0asn — oo, we know that y, /(tan y,) — 1 (say, ’Hopital’s Rule again).
Hence,

ny, = (n tan n//,,)(ta;/:"w) —rsinf=y,  asn- oo
Consequently,
z
nLog<1+;l—)—>x+iy=z, asn— o,
s0 (1 + (z/n))" — €%, as intended. u]

Trigonometric Functions
The trigonometric functions of z are defined in terms of the exponential function.
We begin with the cosine and the sine of z:

1 iz —iz
cosz—i(e + e %)

1 . .
sin z = —(e*> — e™ ).
Z=5t )
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The other four trigonometric functions are now defined in terms of sin z and cos z:

sin z cos z
tan z = s cotz =——, sec z = , csCz=—.
cos z sin z cos z sin z

Of course, the definitions are only at those points at which the denominator is not
Zero.

If zis real, z = x, then cos z and sin z agree with the usual definitions of cosine
and sine. Note that

COS(Z + 271’) = %(el’(z+2n) + e—i(z+21r))

1 . .
= ..2.(e'z + e—w)

= COos z.

Likewise, sin(z + 2x) = sin z for all z. Thus,
cos(z + 2nk) = cos z
sin(z + 2nk) = sin z,

for all z and any integer k. Furthermore, 2nk is the only number o with cos(z + a) =
cos z for all z. For if

cos(z + a) = cos z, for all z,
then
efe® + e % i = ¢i7 4 g7,
)
e (e — 1) = e (1 — ™)
= eI (ei* _ 1),
If e — 1 is not zero, it can be canceled from both sides, leaving
e'? = e i%gTiz for all z,
but then setting z = 0 gives 1 = e, contradicting the fact that 1 # e™. Hence, it

must be the case that e®* = 1, s0 a = 2nk for some integer k. Consequently, 2 is the
basic period of cos z and, likewise, of sin z.
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In the exercises at the end of this section, you will be asked to establish the
formulas

cos(x + iy) = cos x cosh y — i sin x sinh y,
sin(x + iy) = sin x cosh y + i cos x sinh Vs

where

1
coshu = E(e" +e™), u real

1
sinhu = i(e" —e™"), u real.

Let us use the formula given above for sin(x + iy) to establish some basic properties
of the function f(z) = sin z.
Restrict z = x + iy such that 0 < x < 7/2 and y > 0. In this restricted region,
we shall show that the function sin z is one-to-one—that is, if
sin(x, + iy;) = sin(x, + iy,),

where x,; and x, lie in [0, 7/2) and y, and y, are nonnegative, then x; = x, and
¥y1 = y,. To see this, observe that

2i sin(x + iy) = e™e™? — e"%e’.
Hence, if sin(x; + iy,) = sin(x, + iy,), then
eF1e V1 — T iX1p¥1 — @iX2p7V2 __ piX20¥2
Thus,
eiX1e™V1 _ piX207YV2 — oTiX1p¥1 __ oTiX20¥2

= e—ixle‘l'xze.v:e.\'z[eixze—)'z — ei":e—.\'t]_
If e*1e™”1 — e*2¢722 # 0, we divide by it and obtain

1 = —e X1 ix20Y1p¥2,
The absolute value of the left side is 1, and that of the right side is exp(y, + y,); this
implies that y, + y, = 0. This in turn implies that — 1 = exp[ —ix; — ix,], which
can be true only when x; + x, = n(2m + 1) for some integer m. However, we have

restricted x,, x, to lie in [0, (7/2)) and y,, y, to lie in [0, o). The only conclusion,
then, is that x, = x, = 0 and y, = y, = 0. Otherwise,
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eFieV = eixze—.vz’
s0 y; = y, and x; — X, is an integer multiple of 27. This again implies that x, = x,.
Let us now find the range of f(z) =sinz on the strip 0 < x < n/2 and
0 <y < 0. First,
Re(sin z) = sin x cosh y > 0,
and

Im(sin z) = cos x sinh y > 0.

Hence, the values of sin z lie in the first quadrant (Fig. 1.25). Next, on the ray
0<y<o,x=0,

sin(iy) = i sinh y =%(e’ —e7).

w = sinz

(STE ]
< ¥

Figure 1.25

The function sinh(y) is zero when y = 0 and is increasing (its derivative is positive),
so sin(iy) assumes all the values i, 0 < f < o0, as y increases from 0 to co. Next,
sin x increases from 0 to 1 as x increases from 0 to 7/2. Finally,

. (T .
sin (5 +1i y) = cosh y,

and this increases from 1 to co as y increases from 0 to co. Thus, the boundary of
the strip 0 < x < /2,0 < y < o0 is carried by sin z onto the boundary of the first
quadrant (see Fig. 1.25). We now show that the interior is mapped onto the interior;
we already know it is mapped into. Let us write sin z = w = ¢ + it. The vertical
segment z = x4 + iy, y = 0, is mapped onto that portion of the hyperbola

a2 72

(sin xo)?  (cos xo)*

9
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which lies in the first quadrant. This shows us how to solve the equation
sin z = a + ib, a, b positive.

First choose x such that the point a + ib lies on the hyperbola consisting of those
w =g + it with

2 2

o
(sinx)?  (cos x)?

T

9

then choose y such that a = sin x cosh y and b = cos x sinh y.

Consequently, the function f(z) = sin z maps the semi-infinite strip 0 < x < 7/2
and 0 < y < oo in a one-to-one fashion onto the whole first quadrant, mapping the
boundary of the strip onto the boundary of the first quadrant. This type of informa-
tion, and this mapping in particular, will be very important in the solution of flow
and boundary-value problems. Finally, because sin(—z) = —sin z (see Exercise 15),
we may conclude that f(z) = sin z maps the semi-infinite strip { —n/2 < x < 7/2,
y > 0} both one-to-one and onto the upper half-plane, {w = s + it: —0 <s < o0,
t > 0}.

Inverse Trigonometric Functions

We have just seen that the function w = sin z maps the strip {x + iy: 0 < x < 7/2,
0 < y < o} onto the first quadrant {w = ¢ + it: 6, T > 0}, and distinct z, and z,
in the strip have distinct images w, and w, in the first quadrant. Thus, given a
w = ¢ + it with g, T > 0, there is one and only one z in the strip {x + iy: 0 < x <
7/2,0 < y < oo} with w = sin z. Consequently, the function sin z has an inverse
function, naturally called arcsin w, defined at least for w in the first quadrant. Let
us pursue this a little further. The formula for sin z is

. 1 . .
w=sinz = —(e”* — e ),
2i

s0
e* — 2iwe* — 1 =0,

which is a quadratic equation in the variable . Solving by the quadratic formula,
we obtain

e =iw+ /1 —w?,

SO

z = —ilog(iw + /1 — w?),
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provided an appropriate branch of the logarithm is chosen. A careful examination
of the mapping w = sin z (see the exercises) shows that sin z maps the strip

. n n
{x+zy: —5<x<5,—oo<y<oo}

both one-to-one and onto the region D obtained from the plane by deleting the two
intervals (— oo, —1] and [1, oo) (see Fig. 1.26). Thus, on D we can solve uniquely for
z in terms of w, and the formula is valid. Interchanging the roles of z and w, write

Arcsin z = —iLog(iz + /1 — z?), zeD.

Similarly,

Arccos z = —iLog(z + /22 — 1),

and

i 1 —iz
Arct =-L R +i,
rctan z 3 og(1 +iz> z# ti

with appropriate interpretations of the resulting logarithms and roots.

J

2

Figure 1.26

Find the values(s) of the given expression in Exercises 1 to 14.

1. eim 2. eSmile 3. log(l +iy/3)
4. log(—i) 5.1+ i) 6. 27171

7. " 7mB 8. exp(Log(3 + 2i)) 9. Log(4 — 4i)
10. Log(—1) 1. /3 12. log(\/3 — i)

: 4
13. log((1 — iy%) 14 exp[n(l\;;) ]
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15. Establish the following relations:
(a) exp(z) = exp(2)
(b) sin(Z) = sin(z)
(c) cos(z) = cos(z)

16. Establish the formulas

cos(x + iy) = cos x cosh y — i sin x sinh y,

sin(x + iy) = sin x cosh y + i cos x sinh y,

where

1
coshu = i(e" +e™), u real

1
sinh u = E(e" —e™), u real.

17. Show thatcos z=0ifand onlyif z = 7/2 + nm,n =0, +1, +2,...; show that
sinz=0ifandonlyifz=nn,n=0, +1, +2,.... That s, extending sin z and
cos z from the real axis to the whole plane does not introduce any new zeros.

18. Verify that

cos(z + w) = cos z cos w — sin z sin w

and
sin(z + w) = sin z cos w + cos z sin w,
for all complex numbers z and w.
19. Show that both cos z and sin z are unbounded if z = iy and y — co. Also show
that
|cos(x + iy)| < €” if y=>0,—00<Xx<ow;
and

Isin(x + iy)| <e* if y>0, —00 <x< o0

20. Prove that cos? z + sin? z = 1 for all z.
21. Define cosh z and sinh z by

~

1
cosh z = E(e‘ +e7%)

1
sinh z = E(e‘ —e7%).
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Show that the following identities hold:
(1) cosh? (z) — sinh? (z) = 1

(11) cosh z = cos(iz)

(iii) sinh z = —i sin(iz)

(iv) |cosh z|? = sinh? x + cos? y

(v) |sinh z|> = sinh? x + sin? y

22. Show that sin(—z) = —sin z and cos z = cos(—z) for all z.

Mappings with the Exponential, Logarithm, and Trigonometric Functions
23. Show that F(z) = e” maps the strip S = {x + iy: —0 < x < 0, —m/2<y <

n/2} onto the region Q = {w =s + it:s >0, w # 0} and that F is one-to-one
on S (see Fig. 1.27). Furthermore, show that F maps the boundary of S onto all
the boundary of Q except w = 0. Explain what happens to each of the horizontal
lines {Im z = n/2} and {Im z = —=/2}.

T

LN
AN

T,
MAMIN

—imr

2

Figure 1.27

24.

25.

26.

27.

Let D be the domain obtained by deleting the ray {x: x < 0} from the plane,
and let G(z) be a branch of log z on D. Show that G maps D onto a horizontal
strip of width of 2=,

{x +iy: —00 <X < 0, ¢o <y <o+ 27},

and that the mapping is one-to-one on D.

Show that w = sin z maps the strip — /2 < x < 7/2 both one-to-one and onto
the region obtained by deleting from the plane the two rays (— oo, —1] and
[1, oo) (see Fig. 1.26). (Hint: Use Exercise 22 and the fact that sin(z) = sin(z).)
Show that the function w = cos z maps the strip {0 < x < n} one-to-one and
onto the region D shown in Figure 1.26. Use this to define the inverse function
to cos z. Derive the formula for arccos z given in the text.

Let 0 <a < 2. Show that an appropriate choice of logz for f(z) =z =
exp[a log z] maps the domain {x + iy: y > 0} both one-to-one and onto the
domain {w:0 < arg w < an}. Show that f also carries the boundary to the
boundary (see Fig. 1.28).
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Figure 1.28
28. Show that the function w = g(z) = e*” maps the lines x = y and x = —y onto
the circle |[w| = 1. Show further that g maps each of the two pieces of the region

{x + iy: x> > y*} onto the set {w: |w| > 1} and each of the two pieces of the
region {x + iy: x? < y*} onto the set {w: |w| < 1}.

Inverse Trigonometric Functions
29. Show directly that if { is any value of

—ilog(iz + \/1— z?),

then sin { = z. Likewise, show that if & is any value of

ilo 1—iw
2%\ 1Tviw)
then tan & = w.

30. Use the result in Exercise 29 and your knowledge of the branches of the
logarithmic function to explain the branches of arcsin z.

1.6 Line Integrals and Green's Theorem

The fundamental theorems of complex variables depend on line integrals, so this
section is devoted to that topic and to formulating Green’s Theorem, the basic
theorem about line integrals. Several consequences of Green’s Theorem are also
covered.

Curves

A curve y is a continuous complex-valued function y(t) defined for ¢ in some interval
[a, b] in the real axis. The curve y is simple if y(¢,) # y(t,) whenevera < t, <t, <b,
and it is closed if y(a) = y(b). The famous Jordan* Curve Theorem asserts that the
complement of the range of a curve that is both simple and closed consists of two

* Camille Jordan, 1838-1922.
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disjoint open connected sets, one bounded and the other unbounded. The bounded
piece is the inside of the curve and the unbounded piece the outside. Despite the
almost painful obviousness of this statement, the theorem is hard to prove.* We
shall accept it as true.

Suppose y is a curve; separate the complex number y(t) into its real and
imaginary parts and write y(t) = x(t) + iy(t), a < t < b. The functions x(t) and y(t)
are real-valued functions of the real variable ¢, so they may (or may not) be
differentiable. If both x(t) and y(t) are differentiable at t,, then we say that y(t) is
differentiable at t, and we set y'(t,) = x'(ty) + iy’(to)- (This is consistent with the
usual rules in calculus for differentiating a vector-valued function of a real variable.)
A curve y is smooth if y(¢) has the added property that y’(¢) not only exists but is also
continuous on [a, b], the derivatives at a and b being taken from the right and left,
respectively. A curve is piecewise smooth if it is composed of a finite number of
smooth curves, the end of one coinciding with the beginning of the next. That is, the
curve y is piecewise smooth if in the interval [a, b] there are points ¢, t,, ..., t, with
a=ty,<t, < -<t,_; <t,=bsuch that y'(t) is continuous on each closed inter-
val[t,, t,41 1, k=0, 1,...,n — 1. Itis not required that y’(t) be continuous on all of

[a, b].

NOTE: It is very common and convenient to refer to the range of y(t) as the curve y
and to y(t) itself as the parametrization of the curve. With this use of the word curve,
a curve becomes a concrete geometric object such as a circle or a straight line
segment and hence is easily visualized. The difficulty with this view is that a
particular curve has many different parametrizations. The curves we will use are
generally composed of straight line segments and/or arcs of circles. These have
standard parametrizations, as illustrated in the examples that follow.

Example1 Fix z, and z, in the plane and let y(t) = tz; + (1 — £)z,,0 < t < 1. This
is a smooth simple curve whose range is the straight line segment joining z, to z,
(in that order). o

Example 2 Fix a point p in the plane and a positive number R; the curve y(t) =
p + Re", 0 <t < 2m, is a smooth simple closed curve. The range is precisely the
circle of radius R centered at p; the circle is traversed in the counterclockwise
direction. o

Example 3 The square with vertices at z,, iz, —z4, and —iz, is the range of the
piecewise smooth simple closed curve y(t) given by the rule

-~

tizg + (1 — t)z,,

(t — D(—2z0) + (2 = 1)(izo),

(t = 2)(—izo) + 3 — )(—2),
(t = 3)(z0) + (4 — )(—izo),

* For a proof, see Newman, M. H. A. Elements of the topology of plane sets of points. Cambridge:
Cambridge University Press, 1961.

() =

w N = o
N N INA
N ININN
A W N -

-~

m]
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In the process of computing certain definite integrals by means of the Residue
Theorem (Section 6 of Chapter 2), we shall make use of several contours. As a way
of gaining experience in the art of parametrization, we parametrize three of these
contours in Examples 4 and 5.

Example 4 Parametrize each of the curves in Figure 1.29.
Solution The curve in (a) is the semicircle of radius R followed by the real segment

from —R to R. A parametrization is

z = Re®, 0<0<n
R

0
zZ=X, <x <R

The curve in (b) is a variation on the curve of (a), with the segment from —¢ to ¢
replaced by the indicated semicircle. This curve is parametrized by

z = Re®, 0<0<n
zZ=X, —R<x<
v z = ¢ge'd, n>60>0
zZ=X, e<x<R

Note that the third portion of the curve is parametrized by requiring that 6 decrease
from 7 to O; this is because we travel on that portion of y in the clockwise direction.
(m]

N

(b)

(a)

Figure 1.29

Example 5 Find a parametrization of the “keyhole” contour shown in Figure 1.30.

Solution The outer portion is on the circle |z|] = R and so is parametrized by
z = Re®, where 6 increases from & to 2n — . This takes us from A to B. We go from
B to C on the ray with argument 2z — J, so that segment is parametrized by
z = te">*~9 where t decreases from R to &. The inner portion of the keyhole contour
is on the circle |z| = ¢ and so is parametrized by z = e, where 0 decreases from
27 — 6 to 4. This takes us from C to D. Finally, to complete the contour, we go from
D to A along the ray with argument §. This segment is parametrized by z = te”,
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Figure 1.30

where t increases from ¢ to R. In summary, then,

z = Re', 6<0<2n-96
z = tei?m=9, R>t>e¢
y: )
z = ge®, 2n—6=20=6
z = te*, e<t<R u]

Each curve y is oriented by increasing t. The curve y begins at y(a), is traversed
as t increases from a to b, and y ends at y(b). The reverse orientation is given to y by
beginning at y(b) and ending at y(a); this curve is denoted by —y and is given by
—y(t) =7(a + b —t),a < t < b. A simple closed curve y is positively oriented if, for
each point p on the inside of y, the argument of y(t) — p increases by 2x as t increases
from a to b. Equivalently, y is positively oriented if, as you walk along y in the
direction of the orientation of y, the inside of y is on your left. For example, a circle
is positively oriented when it is traversed counterclockwise; the same is true for a
triangle or a rectangle.

Suppose g(t) = a(t) + it(t) is a continuous complex-valued function on the
interval [a, b]. We define the integral of g over [a, b] by

r g dt = f ’ o(t)dt +i f ’ (t) dt.

This definition, like the definition of the derivative of a complex-valued function of
the real variable ¢, is consistent with the definition of the integral of a vector-valued
function of the real variable ¢ studied in calculus. Note, for instance, that

Re {r g(®) dt} = Jb {Re g(t)} dt,

since both these expressions equal (% o(t) dt.
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Suppose now that y is a smooth curve and u is a continuous function on the
range of y. We define the line integral of u along y by

b
J uz)dz = J u(y(®)y'(¢) dt,
Y a

where the right side is the integral of the complex-valued function u(y(t))y’(t) from
a to b and is computed as discussed above. For a piecewise smooth curve y, we define
the line integral of u along y by

n tj+1

-1
J u(z)dz = Zb u(y(s))y’(s) ds.

The points ty, t,, ..., t, come from the definition of “piecewise smooth”; by assump-
tion y’(s) is continuous on each segment [¢t;, t;;1,j=0,1,...,n — L.

Line integrals have the familiar properties of definite integrals studied in
calculus. For example,

J {Au(z) + Bv(z)} dz = A j u(z)dz + BI v(z) dz
Y Y Y

if A and B are complex numbers and u, v are continuous functions on the range of
y. For the curve —y,

J u(z)dz = Jb uy@+b—20){ya+b—1)} dt

a

b
=—J u(y@+b—1t)y'(a+b—1)dt puts=a+b—t

b
—J u(y(s))y'(s) ds = —J u(z) dz.

a b4

Suppose y; and y, are two curves with parameter intervals [a,, b;] and [a,, b, ],
respectively. If y, (b;) = y,(a,), then the sum of y, and y, is the curve

1 (2), a; <
<

(1 +72)@®) = {)’z(t +a, — b)), b,

Further, a simple computation shows that

J u(z)dz = f u(z)dz + f u(z) dz,
Y1+72 Y1 Y2

provided, of course, that u is continuous on the range of both y, and y,.
Let g be a complex-valued continuous function on [a, b]; we shall show the
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inequality

b
J g(e) dt

The inequality is obviously true if {5 g(t) dt = 0, so we may assume that (5 g(t) dt 5 0.

Let
b
0= Arg (I g() dt>

and define h(t) = e ®g(t), a <t < b. Then

b
J g(t) dt

= jb e g(r) dt = f b ht)dt,  h(t) = e *g(1).

b
< f lg(®)| dt.

0<

=e 0 Jh g(t) dt

a

Hence, {5 h(t) dt is positive, so

b
J g(t)dt

b
= Re J h(z) dt

a

= J ’ (Re h(t)) dt

b b
<J |h(2)] dt =J lg(®)] de.

f u(z) dz

Therefore,

b
J u(y(t))y’(¢) dt

a

< f )1y ) de. (1)

Recall now from calculus that if y(t) = x(t) + iy(¢), then the length of the curve that
is the range of y(t) is given by

b
length (y) = f VE®) + (y'(2)* dt

b
= J 1Y (@)] dt. @

This makes possible the very important estimate
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< (max |u(z)l) length (). 3)

zey

f u(z) dz

The inequality in (3) follows directly from that in (1) by replacing |u(y(¢))| by its
maximum value on the interval, a < t < b; this is the first factor on the right in (3).
The integral that remains is that in (2), and it yields the length of the curve.

Example 6 Compute [, (z* — 3|z| + Im z) dz, where y(t) = 2¢", 0 < t < /2. That
is, y is the quarter-circle centered at the origin and extending from 2 to 2i.

Solution  Since y(t) = 2e™, we have y'(t) = 2ie", so

n/2
f (z2 = 3|z + Im z) dz = f (4€™ — 6 + 2 sin t)2ie™ dt
v 0

n/2

o

= (§e3i' — 12" + l_ez" — Zt)
3 i

_ 28 38:’
R
The second integral used the formula
sint = L(e"‘ —e™) o
2i

Example 7 Compute |, cos z dz, where y is the line segment from —(n/2) + i to
T+
Solution The curve is given by

T 3n n
= 1 — _ | =—1t —— ] 0<t<1
y(t) =t(m + i) + (1 t)( 2 +z> > t 2 + i,

Furthermore,

cos(x + iy) = cos x cosh y — i sin x sinh y.

(See the formula in Exercise 16 of Section 5.) Hence,

! 3 . 3n
J; coszdz = L {cos (ézzt —g) cosh(1) — i sin (Tnt — g) smh(l)}7 dt

. (3= n . i w\|[|!
= {cosh(l) sin (7t — 5) + i sinh(1) cos (Tt 2)}

= cosh(1) — i sinh(1).

o



1.6 Line Integrals and Green's Theorem 63

Example 8 Estimate

’

1
—d
J; 22+ 4 z
where 7 is the semicircle Re®, —n < 0 <0, R > 2.

Solution On the semicircle,

|
22 +4

L1
SR2—4&

since |22 + 4| > |z|? — 4 by the triangle inequality (see Section 2). The length of the
semicircle is 7R, so the absolute value of the integral cannot exceed nR/(R* — 4).
O

Example 9 Estimate Ij'y e * dz|, where y is the vertical line segment from —i + 1 to
i+ L

Solution On?y,|e ?| = e = e~!. The length of y is 2, so the integral cannot exceed
2/e in absolute value. m]

Example 10 Let u be a continuous function in the disc |z — z,| < r, and let y, be the
circle |z — zy| = &. Show that

1
fim — | 4@
e»0 2T |, Zz — 2,

dz = u(zy).

Solution The circle is the range of y,(t) = z, + €e*, 0 < t < 2n. Therefore,

2ni J, z — 2, 2mi

1 u(z) Iy = 1 jz" u(zo + ee") . ., i

- ice
it
o e

1 (2 )
=5 J u(zo + ee) dt.

(4]
Thus,

1 2n 3
= l_Z; J; {u(zo + ee™) — u(zo)} dt

L J u(z) dz — u(z,)

2ni ), z — z,

< max {|u(zo + ge") — u(zo)l}
0<t<2n

This last quantity goes to zero as ¢ — 0 exactly because u is continuous at z, (see
Exercise 26 in Section 4). o

We digress briefly at this point to state a differentiation formula that will be
needed. Its verification is simple and is relegated to the exercises. If z(t) and w(t) are
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two complex-valued functions on an interval [q, b], both of which are differentiable,
then so is their product, and

@wy(@® = 2’ @Ow() + z(Ow'(®). @
Repeated applications of (4), or mathematical induction, yield
@™y =mEO)y"'z2’(e), m=12.... )

Example 11 Let y be a piecewise smooth closed curve. Show that

Jz"'dz=0, m=0,1,2,.... ©6)
Y

Solution  Let [t;, t;,,] be a segment in [a, b] on which y'(t) is continuous. From (5),

LO0r =+ ey

This gives

tis 1
J Y)Y () dt = m—H‘{7m+l(t;+x) — ™))
4

Hence,

n—=1 [+
J mdz=Y% ' ™)y (2) dt
Y Jj=0 Jt

J

n—1 1
= j;) mal {y™  (te) — v (@)}

1 m+ m+1 —
= m{)’ Y(b) —y™* (@)} =0,

because y(b) = y(a), since 7 is a closed curve. The result in (6) will be important in
Chapter 2, when we prove Cauchy’s Theorem. a

Let p and g be distinct points in the plane, and suppose that y, and y, are two

piecewise smooth curves from p to q. Then y =y, — 7, is a closed piecewise smooth
curve. Hence,form=0,1,2,...,

0=fz"'dz=f z'"dz—J z™.dz.
b Y1 Y2

That is, the value of the integral of z™ along a curve joining p to g does not depend
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on the curve but only on p, g, and m. Indeed, a glance at the computations in
Example 11 shows that

Jz"' dz
Y

b , 1 " t=b
f ™)y (1) dt=m7 ®

a t=a

_ 1 m+1 _ am+l

—m+1[v b —7y"" (@]

- 1 [qm+1 _ pm+1]
m+ 1

for any curve y joining p to q.

A comment on line integrals. Recall that a curve, say an arc of a circle or a straight
line segment, may have several different parametrizations. For instance, y,(s) =
s+is%,0< s < 1,and y,(t) = sin t + i(1 — cos? £),0 < t < /2, both have the same
range—namely, the graph of the parabola y = x2,0 < x < 1. Itis natural to wonder
whether the value of the line integral |, f depends on the parametrization (that is,
on the function y whose range is the given curve). Thankfully, under very general
conditions, the answer is “no.” To give a proof of this would stray too far from our
present purposes, but you can find one in many calculus texts, generally under the
heading of “Green’s Theorem” or “line integrals.”

Green's* Theorem

The most important result on line integrais is Green’s Theorem, which will be stated
after several more definitions. Green’s Theorem is formulated for a domain Q whose
boundary I consists of a finite number of disjoint, piecewise smooth simple closed
curves y;, ..., ¥, (see Fig. 1.31a). We orient the boundary I' of Q pesitively by
requiring that Q remain on the left as we walk along I'. Thus, the “outer” piece of
the boundary of Q is oriented counterclockwise, and each “inner” piece of I (if there
are any) is oriented clockwise (see Fig. 1.31b). For example, if Qis {z: 1 < |z| < 2},
the boundary of Q is positively oriented if the circle {z: |z| = 1} is traversed clock-
wise and the circle {z: |z| = 2} counterclockwise.

Henceforth in this section, Q is a domain whose boundary I' consists of a finite
number of disjoint, piecewise smooth simple closed curves y,, ..., 3, and T is
positively oriented. If f is a continuous complex-valued function on I', we define the
line integral of f over I' by

L () dz = z 1) dz,

where, of course, we already know how to compute each | 5, J(2) dz.

* George Green, 1793-1841.
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Figure 1.31

The domain
of Figure 1.31a
with its boundary
positively

oriented |

Green’s Theorem relates the line integral of a function f over I to the integral
of a certain related function over Q. In order to formulate it properly, we assume
that there is some open set D that contains both Q and I" and, on D, f has continuous
partial derivatives with respect to both x and y. That is, if f = p + ig, then

of adp .0q of op .0q
—=a—tiz, a=ati,
ox o0x  Ox dy 0dy 0Oy
where all of dp/dx, dq/0x, dp/dy, and dq/0y are continuous on D.
With all this background, then, we can state the theorem.

L fz)dz =i ,”; {g_{c + lg—f}} dx dy. 0]

If you have studied Green’s Theorem in calculus, you may not recognize this
formulation, although it is one of the easiest to work with. Let us recast Green’s
Theorem in what may be more familiar terms. If 4 and v are two real-valued
functions on an open set D containing Q and I', and if u and v both have continuous
partial derivatives with respect to x and y on D, and if on I we set dx = (Re y'(t)) dt
and dy = (Im y'(¢)) dt, then Green’s Theorem can also be stated in this way:

L {udx + vdy} = JL (;{— — Z—:) dx dy. (8)

The proof of equivalence of these two versions of Green’s Theorem is left to the
exercises. ™

THEOREM 1 Green's Theorem

The first example that follows is a verification of Green’s Theorem for a
triangle and some related figures. The three examples after that derive some con-
sequences of Green’s Theorem.
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P 0]
Figure 1.32

Example 12*  Verify Green’s Theorem for a triangle.
Solution  Suppose first that the triangle " has one horizontal side (see Fig. 1.32).

Let v be a function that has continuous partial derivatives on some open set
containing the triangle I and its inside Q. To compute |- v dy, parametrize the edges
of I' in the following way:

On PQ: x=t y=b; as<t<c

On QR: y=t,x=c+(d—c):_z; b<t<e
t—e
On RP: y=t,x=d+(a—d)b_e; e=t=h

(We have assumed that b < e; if e < b, just reverse the range of ¢t and the order of
the sides.) Hence,

0 on PQ
dy=<dt on QR
dt on RP.

Jvdy=J vdy+f vdy+J vdy
r PQ QR RP

e b
=0+J v(At+B,t)dt+J v(Ct + D, t) dt,

b

This gives

e

where for simplicity we have written

d—c d—c¢ a—d a—d
e—b’ e b CTpoeo Prdmey—,

On the other hand, the area integral of dv/dx over the inside Q of the triangle is
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R %

(a) 0 (b)

Figure 1.33
computed in this way. Q is described by

Q={(x,):b<y<eCy+D<x<Ay+ B}

v re {J~m+3 ov }
—dxd —dxpdt
J.J.n 0x Y Jb cep 0

e

= | {v(At + B,t) — v(Ct + D, t)} dt
b

Consequently,

m»

= | vdy.

JI

Next, any triangle I can be divided in two by a single horizontal line segment from
one of its vertices to the opposite side so that each of the resulting triangles has one
horizontal edge (Figs. 1.33a and 1.33b). Let I'; and I, be the two resulting triangles,
each positively oriented, and let Q, and Q, be their respective insides. Then

f vdy=JJ a—vdxdy, j=12,
¥ Qjax

from the computations above. The integral over the segment PS appears in both
[} r, vdy and [} r, v dy, but in both cases it is zero, since PS is horizontal. Hence,

Jvdy= vdy+J vdy
r JIy I

([ ov v
= ] J‘n1 &dxdy+ J‘J‘nzadxtiy
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J ——dxdy f dy
r

for any triangle I" and its inside Q. A similar argument, using triangles with a vertical
edge, establishes the formula

J —dxdy— —J u dx.
r

Thus, Green’s Theorem is verified for a triangle. o

This establishes the formula

Some further comments. Once Green’s Theorem is proved for all triangles, it also
follows for many other regions. For instance, let Q be a bounded convex domain
whose boundary consists of straight line segments (Fig. 1.34a). Select a point P in
Q and draw the line segments from P to each vertex of Q (Fig. 1.34b). This breaks
Q up into nonoverlapping solid triangles Q,, ..., Q, with boundaries I';, ..., [,
respectively. Then apply Green’s Theorem to each of these triangles, obtaining

” (a_”__y)dxdy J(vdy+udx) i=1,...,r

Each line segment joining P to a vertex of Q is integrated over twice, once from P
to the vertex and once from the vertex to P. These line integrals then cancel each
other, and

j(vdy+udx) Z (vdy+udx)
r

(- B)as
dy

Il
ll -
“—5

(a)

Figure 1.34



70  Chapter 1 The Complex Plane

Thus, Green’s Theorem holds for Q. A similar sort of “triangulation” argument can
be applied to show that Green’s Theorem is valid for a bounded domain Q whose
boundary I" is composed of straight line segments. (Figs. 1.35a and 1.35b show
representative types.)

Figure 1.35

Example 13  Suppose that y is a piecewise smooth positively oriented simple closed
curve. The value of the integral

1 dz
2mi J,z—p

, pnotiny,

is a crucial factor in many of the theorems of complex variables. We shall now use
Green’s Theorem to show that

1 dz {0 if pis outside y,
1 if pis inside y.

2 ),7=p

Let Q be the domain inside y. Suppose first that p is outside y. Let f(z) = (z — p)™;
then f has continuous partial derivatives everywhere except at p and, indeed, it is
elementary to compute that

o -1 o —i
x> w e

Hence, (9f/0x) + i(9f/dy) = 0in Q, so

Lf(z)dz= i”,, {g—i+ i%}dxdy=0.

Suppose now that p is inside y. Then, of course, the function f(z) = (z — p)™!
does not have continuous partials at p, so Green’s Theorem is not immediately
applicable. However, let y, be a circle centered at p of radius ¢, where ¢ is so small
that the disc of radius 2¢ centered at p lies within Q. Take Q, to be the region inside
y but outside y, and orient the boundary of Q, positively, so y is already correctly
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oriented and y, is oriented clockwise. Then, just as above,

so Green’s Theorem implies that

J dz +J dz _o.
yZ—P nZ =P

Reversing the orientation of y; so that it is now traversed counterclockwise, we

conclude that
J dz _ J dz
yZ—P a4 .

To evaluate the integral over —y,, set z = p + ge®, 0 < t < 2x; then dz = ige” dt,

and
dz dz 2" jeett dt .
= = P 2. a
,Z—DP -, Z—D o te

Example 14 This example will derive from Green’s Theorem an important for-
mula with numerous applications. The formula is called, not surprisingly, Green’s
Formula.

Begin by defining the normal derivative of a real-valued function h on the
boundary of Q. Recall from calculus that if 4 = cos 6 + i sin 6 is a complex number
of modulus one, then the directional derivative of a function h in the direction 4 at
a point z is

lim h(zg + tA) — h(zo).

t-0 t

This is, in fact (as you learned in calculus), equal to the dot product of the
gradient of h with the vector (cos 6, sin 0) and so has the value

oh oh .
a—;cos0+asm 0.

Let z, = z(t,) be a point of I, and let y(t) = x(t) + iy(t) parameterize a portion of
I' containing z,. A unit vector pointing out of Q and normal to I is

A=) - ix O[O + O™

(We shall always assume that [x'(t)]? + [y'(t)]* is strictly positive.) Thus, the
directional derivative of the function h in the direction normal to the boundary of
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I', with the normal vector pointing out of I, is

oh

= Qx(n ~«a0axmr+[ym]rm

Now take f and g to be two real-valued functions that have continuous partial
derivatives up to order two on some open set containing both Q and I'. In the second
formulation of Green’s Theorem, formula (8), define u and v by

_d 9 +
“ox? T ox 6yg dy”’

After a bit of rearranging, we obtain

J["(g{c %“) f(ggd —Z—i >]=fn[(Af)g—(Ag)f]dxdy,

where

*f
M=ot oy

is the Laplacian* of f and (likewise) Ag is the Laplacian of g. In the line integral,

multiply and divide by the expression [(x'(t))> + (y'(¢))*]1"* and then recall from
calculus that the element of arc-length ds along I is given by

ds = [(x'(t)* + (y'())*]"* dt.

We then obtain the desired formula:

f ( —f—fa") ds = f (9l — fha) dxdy. o o

Example 15 In a similar fashion, if we take

of
u=/[5- and v——fa}

in (8), we obtain the formula

R 0

The formulas (9) and (10) will be important in the discussion of harmonic functions.
One application will suffice for now.

* Named after Pierre-Simon Laplace, 1749-1827.
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DEFINITION A function u(z) = u(x, y) with continuous first and second partial derivatives
with respect to both x and y is harmenic on an open set D if

®u  *u _

A=t o=

0 on D.

THEOREM 2 Suppose that u is a real-valued harmonic function on an open set D and D
contains a domain Q and the boundary I of Q. Assume that I" consists of a finite
number of disjoint, piecewise smooth simple closed curves. Ifu = Oon I, thenu =0
in Q as well.

Proof The proof comes directly from (10) with, of course, u in place of f. The
integral [ u 0u/dn ds is zero, since u = 0 on I'. On Q, Au = 0; hence,

ou\? [ou\?
o= [LAG) + @) e
But then 0u/0x = du/0y = 0 on Q, so u(x, y) is constant on Q. Since u =0 on T, it
follows that u = 0 on Q. [ |

EXERCISES FOR SECTION 1.6

Compute the following line integrals.

. |,z dz, where y is the semicircle from i to —i, which passes through — 1.

. |,€? dz, where y is the line segment from 0 to z,.

{,1z|* dz, where y is the line segment from 2 to 3 + i.

. J,1/(z + 4) dz, where y is the circle of radius 1 centered at —4, oriented
counterclockwise.

. |, (Re z) dz, where y is the line segment from 1 to i.

. f,(z% + 3z + 4) dz, where y is the circle |z| = 2 oriented counterclockwise.

. Let y, be the semicircle from 1 to — 1 through i and y, the semicircle from 1 to

—1 through —i (Fig. 1.36).

VI NV N

~ N

"

Figure 1.36
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10.

11

12.

13.

14.

15.

2rn
. (a) Show that —l—j ™0 do = {
2 J,

Compute |, z>dz and |,, z* dz. Can you account for the fact that they are
equal?

Now compute |, Z dz and |, ,Z dz. Can you account for the fact that they are
not equal?

- Explicitly verify the conclusion of Example 11 by computing |, z dz and |, z* dz

when y is the square with vertices at +1 + i.

1, k=0

0, k+#0.

(b) Explicitly verify the conclusion of Example 13 for y, the circle of radius 1,
centered at 0. (Hint:

o0
=Y %1 if0<|pl<1 and |z/=1

iflzl=1 and 1 <|p| < co.

5=
- k+1
k=0 P

Interchange summation and integration; then use (a).)
Let f = u + iv be a continuous function and y(t) = x(t) + iy(t) be a piecewise
smooth curve. Show that

Re {J f(2) dz} = I (udx — v dy)
Im {I f2) dz} = J (vdx + udy).

Here, dx = x'(t) dt, dy = y'(t) dt.

Use Exercise 10 to show the equivalence of the two formulations of Green’s
Theorem: (7) and (8).

Use the result of (the extension of) Example 11 to compute the following
integrals: (a) [, (z® — 62> + 4) dz, where y is any curve joining —1 +ito 1.

(b) f,(z* + z*) dz, where y is any curve joining —i to 2 + i.

Use Green’s Theorem to derive Green’s Identity:

Ou dv Ouodv du
—ds — A .
JJ {6x6x a2y }d dy = Lvands JJ;:U udxdy

Use Exercise 13 to derive Green’s Formula (9):

6f dg
J(g o 6n>d —J (9Af — fAg) dx dy.

and

Let u be a continuous function on the complex plane, which is bounded:
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lu(z)| < C for all z. Let yg be the circle |z] = R. Show that

. u(z)
lim | ——
R-o0 Jyg (z— 20)2

dz =0,

for each z,. (Hint: Use (3).)
16. Let z, be outside a piecewise smooth simple closed curve y. Extend Example 13
by showing that

JLM=O, m=2,34,...
y(z_ZO)

Exact Differentials*

DEFINITION An expression P(x, y)dx + Q(x, y) dy is an exact differential if there is a
function g(x, y) with

dg

9% 9 _
ox

P =
and 3

0.

In Exercises 17 to 20, D is a disc and P and Q are functions on D with continuous
partial derivatives with respect to x and y.

17. If P dx + Q dy is an exact differential, show that

J {Pdx + Qdy} =0, (11)

for each closed curve y in D.
18. Use Green’s Theorem to show that

2 _op

=— 1
ox Oy (12)

throughout D if and only if (11) holds.
19. Suppose that (11) holds for each closed curve y in D. Show that P dx + Q dy is
an exact differential. (Hint: Let x, + iy, be any point in D and set

x ¥y
g(x, y) = J‘ P(t, yo) dt + f Q(x, s) ds.
Xo Yo

Use (12) to show that g is the desired function.)
20. Let f be a continuous complex-valued function on D. Show that there is a
complex-valued function F on D with

oF oF

a—f, 5=if (13)
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if and only if
f fz)dz=0 (14)
Y

for each closed curve y in D. You may need to use the results of Exercise 10.
21. Example 11 showed that [, z™ dz = 0 for each closed curve y, m =0, 1,2, ....
What is the function F in Exercise 20 that corresponds to f(z) = z™?

Further Reading

The paperback book by Konrad Knopp, Elements of the Theory of Functions (New
York: Dover, 1952)is an excellent source for virtually all the material in this chapter.
The sections there on linear fractional transformations can be skipped or read,
depending on your taste; these functions are covered in Chapter 3 of this book.



2

Basic Properties of
Analytic Functions

2.1 Analytic and Harmonic Functions; the Cauchy-Riemann Equations

Analytic functions and their close relatives, harmonic functions, are the stuff of
which the subject of complex variables is built. This section introduces both of these
types of functions; here and in subsequent sections, many of their significant prop-

erties are developed.
A function f defined for z in a domain D is differentiable at a point z, in D if

lim f(2) = f(zo) = lim f(zo + h) — f(z0) )

z—2zg zZ— ZO h—0 h

exists; the limit, if it exists, is denoted by f'(z,). If f is differentiable at each point of
the domain D, then f is called analytic in D. A function analytic on the whole
complex plane is called entire.

It is worth stressing here that the limit in (1) is required to exist no matter how
z approaches z,; equivalently, no matter how h approaches 0. That is, although |h|
must approach zero, the argument of h can change arbitrarily. This latitude is at
the root of the difference between differentiable functions of a real variable and
differentiable functions of a complex variable.

Example1 f(z)=z",n=1,2,...,isentire, and f'(z) = nz""*. For

n(

-1
(z+h'—z"=nz""'h + ——nz—)z""h2 4+ -+ h"

— h<nzn—1 + n(nz— 1) zn—2h 44 hn-1>’

SO

E+h -2 —nz"! as h-0. a]

n
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Example 2 The sum and product of functions analytic on a common domain are
again analytic, and their derivatives obey the rules already familiar from calculus:

(f+9=f+47, ()
and

(foy=f'g9g+fg. o 3

Example 3 The quotient of two analytic functions is differentiable at all points z,
at which the denominator does not vanish and

s g(z0) #0. o @

(f)’ (zo) = 9(20)f"(20) — f(20)g'(20)

g (9(20))?

Example 4 If f and g are differentiable and if the range of f lies within the domain
of g, then g(f(2)) is differentiable with

La(f@D] = ¢'(f@)S (). =)

(The proofs of formulas (2) through (5) are straightforward and are left to the
exercises at the end of this section.)

From Examples 1 to 4 we can immediately give two general types of analytic
functions.

Example 5 Any polynomial p(z) = a4 + a,z + -** + a,z" is an entire function. O

Example 6 A rational function r = p/q, where p and q are polynomials, is analytic
on any domain containing no zero of g. a
Example 7 Show that the exponential function f(z) = e is an entire function.
Solution We know that

ez+h —ef= ez(eh _ 1),
by the properties of the exponential function derived in Section 5 of Chapter 1.
Furthermore, with h = ¢ + i1,

e"—1—h={ecost—1—o0} +i{e’sint—1}

={e’(cost— 1)+ e’ — 1 — o} + i{e’(sint — 1) + (e’ — 1)}
Hence,

e —1

h

_1\=

e"—1—h
h

1 —cost e —1—o sint —1t

T

a a

e + le — 1]

+e

N

o
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To obtain this inequality, we used the triangle inequality, as well as the simple facts
that

However, each of the four quantities within absolute value signs approaches zero
as o and t independently approach zero (use 'Hopital’s Rule on each, if you like), so

e —1
lim =1
h—0 h
This finally gives
lim e e® lim o1 e?
h—0 h h—=0 h '
Consequently, e? is differentiable at all points z, and
(e7) = e°. a (6)

Example 8 It follows from (5) and (6) that if f(z) is analytic on a domain D, then
the function

G(z) = exp(f(2))
is also analytic on D, and
G'(@)=f"()exp(f(2)), zeD o

Example 9 Let f(z) be differentiable at a point z, in a domain D. Show that f is
continuous at z,.

Solution For z near z,,

1f@@) = f(zo)l = |z = zol = | f'(20)10 =0

z

f(@) — f(z0)
7

as z — zo. Hence, lim, ,,_ f(z) = f(z,). In particular, both the real and the imaginary
parts of f are continuous on any domain on which f is analytic. a

The Cauchy*-Riemann' Equations

The essential feature of an analytic function is the fact that the limit in (1) must exist
no matter how z approaches z,,. This leads to the pair of famous partial differential
equations, which connect the real and imaginary parts of an analytic function.

* Augustine Louis Cauchy, 1789-1857.
* Bernhard Riemann, 1826—-1866.
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THEOREM 1 Cauchy-Riemann Equations Suppose that f = u + ivis analytic on a domain D.
Then throughout D,

ou Ov du v
= =, 7
ox dy and dy O0x @

Proof Let us employ the definition of the derivative of f at z, in two different ways.
First take h to be real. Then

'(zo) = lim [u(xo +h, )’o;: — U(Xo, Yo) V%ot by yo;: — (%, yo)] .
h—0

ou .ov
= a(xo’ Yo) + 'a(xo, Yo)-

Next, take h = ik, where k is real. Then

f'(zo) = lim u(xo, yo + k) — u(Xo, Yo) + iv(xo, Yo + k) — v(Xg, Vo)
k=0 ik ik
Y s o) + 2 (x40 o)
- i ay(xO’ Yo ay Xos Vo)

All that remains is to equate real and imaginary parts of these two expressions for

f'(zo)- u

The Cauchy—-Riemann equations imply that an analytic function f = u + iv
is actually determined by its real part u (or, equivalently, by its imaginary part v),
apart from an additive constant. For if we know u, we can (presumably) find v with

6v__£?_t_¢ and @_6_u
ox  dy dy ox’

For example, if u(x, y) = x* — 3xy?, then v is to be found from

o o ., 2
&—6xy and 5—3x 3y2

Integrate 6xy with respect to x and find that v(x, y) = 3x%y + p(y), where p is
a function of y alone. Then differentiate this expression for v with respect to y
and compare the result with the known equality dv/dy = 3x2 — 3y This yields
3x% — 3y? = 3x2 + p’(y). Hence, p(y) = —y* + ¢, where ¢ is a constant. Con-
sequently, v(x, y) = 3x2y — y* + c. A word of warning is merited here: Not every
function u(x, y) is the real part of an analytic function. Indeed, if f = u + iv is
analytic on a domain D, and if we assume temporarily (and unnecessarily as it turns
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out) that both u and v have continuous partial derivatives of first and second order,
then

Pu 0*u 0 [ou 0 (0u

ox*  0y* 0Ox\0x dy\dy

_9(w\ o
T ox\dy)  oay\ ox

Hence, ifu = Re f, where f is analytic on D, then u must necessarily satisfy Laplace’s
equation:

Pu  0*u
Aa=2%1%"_o
u 6x2+6y2 0

Recall from Section 6 of Chapter 1 that a continuous function u with continuous
first and second partial derivatives on D is harmenic on D if it satisfies Laplace’s
equation on D. Thus, the real part u of an analytic function f is harmonic. Quite
similarly, the imaginary part v of f is also harmonic. Harmonic functions arise
with uncanny frequency in physical problems and provide one of the most impor-
tant applications of complex variables. Many such applications are discussed in
Chapter 4.

We note further that a real-valued harmonic function u determines many other
harmonic functions v by the Cauchy—Riemann equations:

v _ Ou and o Ou
dy ox ox  ay

Such a v is called a harmeonic conjugate of u; any two harmonic conjugates v and v,
of u differ by a constant, since

dy T Tox
and

0 ou Ou

7 —vx)——g)‘,+a—y—0

Moreover, if v is a harmonic conjugate of u in a disc , then f = u + iv is analytic
on Q. (The verification that f is indeed analytic depends on Theorem 3 of this
section.) We will study harmonic functions further in Chapter 4.
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There are other consequences of the Cauchy—Riemann equations. In each case
of the following theorem, we shall draw the conclusion that the function in question
is a constant.

THEOREM 2 Suppose that f = u + iv is analytic on a domain D. If either u is constant on
D or u? + v? is constant on D, then f is constant on D.

Proof Suppose that u is constant on D. Then du/dx = du/dy =0, so by the
Cauchy—Riemann equations, we also have dv/dx = dv/dy = 0 on D. Since dv/0x is
the rate of change of v on a horizontal line, it follows that v is constant on each
horizontal line segment in D. Likewise, v is constant on each vertical line segment
in D, since dv/dy = 0 in D. However, each pair of points in D can be joined by a
polygonal curve consisting entirely of such segments (see Exercise 16, Section 3, of
Chapter 1). Hence, v is constant in D.

Suppose that | f| = \/u® + v? is equal to some constant ¢ throughout D. If
¢ =0, then f is identically zero. Otherwise, we may divide f by ¢ and assume that
|f] = 1 throughout D. Hence, f(z) = 1/f(z) on D. However, 1/f(z) is analytic on D,
being the reciprocal of a nonvanishing analytic function. Consequently, the sum
f + f is analytic on D. This sum is then a real-valued analytic function; that is,
i(f .+ f)is analytic, and its real part is zero. The first part of the proof then implies
that this function must be constant. Therefore, u is constant, and another applica-
tion of the first part of the proof implies that f is constant. |

One interpretation of this theorem is that an analytic function f is constant if
its range lies in either a vertical line or a circle centered at the origin. We shall see
later that there are, in fact, even more severe restrictions than this on the range of
a nonconstant analytic function.

The Cauchy-Riemann equations, which are implied by analyticity, them-
selves imply analyticity with an extra hypothesis of continuity on the partial
derivatives.

THEOREM 3  Suppose that f = u + iv and that all of u, v, du/dx, dv/0x, du/dy, and dv/0y are
continuous in a disc centered at the point z,,. If u and v satisfy the Cauchy—Riemann
equations at z,, then f is differentiable at z,.

Proof The proof is based on the Taylor series expansion of u and v and the
Cauchy-Riemann equations. We let h = 4 + iv be a (small) complex number. The
Taylor series for u near (x,, y,) is

Ju ou
u(xg + 6, yo + v) = u(xo, yo) + 5( )(xo, Yo) + V( y)(xm Yo) + 6E; + VE,,

where E; and E, depend on é and v and approach zero as é and v approach zero.
Likewise,

v(xg + 6, yo + V) = v(Xq, Yo) + 5( )(xm Yo) + V< )(xm Yo) + 0E; + VE,,
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where E; and E, depend on 6 and v and approach zero as § and v approach
zero. Since the Cauchy-Riemann equations hold, replace dv/dy(xq, y,) Wwith

(Ou/0x)(xo, ¥o) and (Ou/0y)(xq, yo) With —(dv/0x)(x,, y¥o); then multiply the ex-
pression for v by i and add the result to that for u. This yields

ou ov
Sf(zo + h) = f(z0) + [( )(an Yo) + '( )(xo, .Vo)]

+ 0(E, + iE;3) + v(E, + iE,).

From this and the facts that |6/h| < 1, |v/h| < 1, we obtain

lmf(zo+h)_f(zo) (a )(xo,yo)+l(a )(xo,yo)

h—0 h

This is exactly the statement that f is differentiable at z,, with derivative
(Ou/0x)(xq, yo) + i(0v/0x)(xg, ¥o)- [

Example 10 Let D be a domain on which there is a single-valued branch of log z;
for example, take D to be the complex plane with any ray from the origin to oo
deleted. Show that f(z) = log z is differentiable on D, and find its derivative.

Solution

f2)=logz=In|z| +iargz

1
= iln(x2 +y?) + iarctan%,

where the values of arctan(y/x) are specified to lie in an interval of the form
(65, 0, + 27). Thus, the real and imaginary parts of log z may be expressed as

1
u(x, y) = 5111(362 +y?),  u(x,y) = arctan%.

It follows that

ou  x ou_y o -y o x
ox x*+y¥ Oy x2+y2 ox x2+y?7 0y x2+y¥

All the partial derivatives are continuous on D, and they clearly satisfy the Cauchy—
Riemann equations at all points of D:

w_wo w_
ox ay’ 9y  ox’
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Consequently, Theorem 3 implies that log z is differentiable with derivative

(o z)'—au+iav— x +i —J)
82 =% x  x*+y* xE4y?

z

21>

N |-

Thus,
1
(log zy = p o

Note that 1/z is analytic on the whole complex plane except at z = 0, but the
function log z, whose derivative is 1/z, is not analytic on the punctured plane; indeed,
itis not analytic on any domain D that contains a simple closed curve that surrounds
the origin (see Exercise 25).

Example 11  Let a be a real number. Show that the function
f@)=z*

can be defined to be analytic on any domain D in the plane that omits a ray from
the origin to infinity.

Solution The domain D omits a ray from 0 to infinity, so we may choose a branch
of log z that is well-defined and analytic in D. For instance, if D omits the negative
real axis and 0, then Log z is analytic on D. With this branch of log z fixed, we define

7% = ea Iogz‘
The result of Example 8 now shows that z* is analytic on D. m]

EXERCISES FOR SECTION 2.1

1. Establish the following differentiation formulas:

(a) (sinz) =cos z (b) (cosz) = —sinz
(c) (sinh z) = cosh z (d) (cosh z)’ = sinh z
(¢) (tan z) = sec? z (f) (arcsin z) = (1 — z2)712

(g) (arctan z) = (1 + z%)™!
Refer to Section 5 of Chapter 1 for the definitions of these trigonometric
functions.

Use the rules for differentiation, formulas (2) to (6), to find the derivative of each of
the functions in Exercises 2 to 7.

2. 22 + 10z 3. exp(z® — 2) 4. [cos(z¥)]? 5. (2% + 100)~*

6. (Log z)* on the plane minus the negative reals 7. sinh(e?)
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For each function f listed in Exercises 8 to 11, find an analytic function F with
F =

8 fa)=z-2 9. f2) =

11. f(z) = cosh (2z)

12. Let f and g be analytic on a domain. Show that (a) f + g is analytic on D and
(f+9) =f"+4g';(b) fyisanalyticon D and (fg) = f'g + fg';(c) f/g is analytic
at all points z,, where g(z,) # 0 and

([)’=f’g—fg'.

g 9’

2+ 1
=

10. f(z) =sinzcosz

13. Show that if f is analytic on a domain D and g is analytic on a domain Q
containing the range of f, then g(f(z)) is analytic on D, and the chain rule holds:
(9(/@)) =g (f)f ().

14. Let P(z) = A(z — z,)...(z — z,), where 4 and z,, ..., z, are complex numbers
and A # 0. Show that

Pz & 1
= s ZF Zyyeiiy Zy
P(2) jZiz—zj !

15. Let f be analytic on a domain D and suppose that f’'(z) = 0 for all z € D. Show
that f is constant on D.

16. Find the derivative of the linear fractional transformation T(z) =
(az + b)/(cz + d), ad # bc. In what way does the condition ad — bc # 0 enter?
Conclude that T(z) is never zero, z # —d/c.

17. Suppose that f is analytic on a domain D and f'(z) = af(z), z € D, where a is a
constant. Show that f(z) = C exp(az), C a constant. (Hint: Consider g(z) =
e~ *f(z) and use Exercise 15 for g.)

18. Show that h(z) = Z is not analytic on any domain. (Hint: Check the Cauchy—
Riemann equations.)

19. Fill in the details to make the following argument correct: Let w = g(z) = Log z
and w, = Log z,. Then

Log z — Log z, . W= W
g'(zo) = lim g 20 _ fim 9
z=Zo Z— 2o z-zo Z — Zg
. w — Wo 1
= lim =-— atw=w,

20. Let f = u + iv be analytic. In each of the following, find v given u.
x

— 2 _ 2 -
@ u=x—y O u=
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211

(€ u=2x*+2x+1—2)? (d) u = cosh ysin x
() u=cosh xcosy

21. Let y be a piecewise smooth simple closed curve, and suppose that F is analytic
on some domain containing y. Show that

J F'(z)dz = 0.
v

22. Use the conclusion of Exercise 21 and Example 13 of Section 6, Chapter 1, to
prove that f(z) = log z cannot be analytic on any domain D that contains a
piecewise smooth simple closed curve y that surrounds the origin. (Hint: What
is the value of {, f(z) dz?

23. Show that if f is analytic on a domain D and if the range of f lies in either
a straight line or a circle, then f is a constant.

24. If z(t) is a differentiable function of the real variable t, a < t < b, and if g is an
analytic function on a domain D that contains the range of z(t),a < t < b, show
that g(z(t)) = w(t) is a differentiable function of ¢ and

w'(t) = g'(z(£))z'(1).

Cauchy-Riemann Equations in Polar Coordinates*
25. Suppose f = u + ivis analytic in a domain D. Show that the Cauchy—Riemann
equations in polar coordinates are

ou_ov g o
or a0 M THT oo

r
26. Suppose that y is a piecewise smooth simple closed curve and u is a continuous
function on y. Let D be a domain disjoint from y, and define a function h on D

by the rule

u(f)

(-2

h(z) =

ac, zeD.

Show that h is analytic on D.

Flows, Fields, and Analytic Functions*

There are two physical phenomena, each of which provides a physical setting that
helps us to understand analytic functions. An analysis shows that these phenom-
ena are really the same and that they differ only in terminology. However, the
terminology is now fixed by tradition. Thus, it is worthwhile to begin by describ-
ing each of these situations separately; later we shall concentrate on just one of
them.
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Flows

Imagine a thin layer of incompressible liquid flowing smoothly across a domain D
in the complex plane (Fig. 2.1). At each point z € D, we can find the direction and
speed of the liquid, which we assume does not vary with time; equivalently, we watch
the path taken by a particle in the liquid and we find the tangent vector to this path.
This correspondence between points of D and the value of the velocity (speed +
direction) of the liquid is nothing more than a complex-valued function f(z) =
u(z) + iv(2), z € D. Conversely, each complex-valued function f gives a flow on D by
assigning to the point z € D the value f(2) as the velocity of the flow at that point z.
Hence, each complex-valued function on the domain D corresponds to a (time-
independent) flow on D, and vice versa.

\‘_/—

-—
\
—

— /
- AN —

-—

//\;/

Figure 2.1

Assume now that the function f is continuous on D. Let y be a smooth curve
in D; we examine a small segment of y. If the segment is sufficiently small, it can be
thought of as a straight line segment, and the flow is virtually constant near the
segment. The flow f has a component of magnitude /- n perpendicular (or normal)
to the segment, so the amount of the flow that crosses this small segment in a unit
time is just /- n ds, where ds is the length of the small segment. Hence, |, f-n ds is
the total amount of the flow that crosses y within a unit time. Likewise, the
magnitude of the component of the flow that is parallel to the small segment is f- 1,
where 7 is a unit vector tangent to (or parallel with) the small segment, so the term
St ds represents the amount of the flow that is tangential to the small segment.
Thus, |, /-t ds is the total amount of the flow that is tangential to y.

— (s —

>f |./'n
rr
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A flow f = u + iv is termed sourceless in D if
j (f'n)ds=0, ds=arclength,
Y

for all smooth simple closed curves y in D, where f- n is the component of f normal
to . Thus, for example, there is no net flow of the fluid in or out of any disc in D.
A flow f = u + iv is termed irrotational in D if

j (f-1)ds=0, ds=arclength,
Y

for all smooth simple closed curves y in D, where f - 7 is the component of f tangential
to y. Thus, if the flow is irrotational, there is no net rotation of the fluid about any
point of D.

Fields

In physics, a complex-valued function f on a domain D is thought of as representing
a field. The term vector-field is also frequently used because the value f(z) can be
viewed as a vector whose length | f(z)| gives the strength of the field at z and whose
direction arg f(z) gives the orientation of the field at z. For instance, f could be the
force field induced by the gravitational attraction of a collection of masses, or f
could be the electrostatic field induced by a collection of charges. We assume, as
with flows, that the field is in steady state.

Let y be a smooth curve in D. The work done by the field in moving a particle

along the curve y is
J [t ds,
Y

where f- 7 is the component of f tangent to the curve and ds is arc length along the
curve. The field is termed conservative if the net work done when moving a particle
around any closed curve is zero; that is, when

0=Jf-1:ds

for each smooth closed curve y in D.
Again let y be a smooth curve in D; the flux of f across 7 is defined to be

Jf-nds,

where f-n is the component of f normal to y and ds is arc length. The field f is
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termed fluxless if the net flux of f across any smooth closed curve y in D is zero; that
is, if {, - n ds = 0 for any smooth closed curve y in D.

The reader will have noticed by now that there is a difference only in
terminology between fields and flows: what is termed “irrotational” for
flows is called “conservative” for fields and what is termed “sourceless” for
flows is called “fluxless” for fields. For this reason, we will discuss only
flows in the remainder of this section.

We now explore the relation between a sourceless/irrotational flow f and the
analyticity of f. We shall assume that f = u + iv, where u and v have continuous
partial derivatives throughout D with respect to both x and y.

Let y(t) = x(t) + iy(t), a < t < b, be a smooth curve in D; then

ds = /(x'(®)* + (y'(1))* dt

and
fro= AW
VEP + )
x' + iy’

since a unit tangent vector is

JE + 0

Jf'tds=Judx+vdy=Re{Jsz)dz};

see Exercise 10, Section 6, Chapter 1. Consequently, the flow f is irrotational if and

only if
0 =Re {J 12 dz}

for all smooth closed curves y in D.
Just as above, we find that

Jf'nds=f udy—vdx=Im{fsz)dz}.

Hence, the flow f is sourceless exactly when

0=Im{f sz)dz}

for all smooth closed curves y in D.

Thus,
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Let y be a small circle in D whose inside € also lies in D. Green’s Theorem

then gives
v
JJ [a__y:ld dy = Ludx+vdy
JJ [6u ]dxdy fudy—vdx.
Y

Thus, for a flow f, which is either irrotational or sourceless, either the first or the
second of these area integrals must be zero. By letting y shrink down to a point, we
conclude that

and

if aflow f = u + iv is irrotational on D, then 0v/0x — du/0y = 0 on D,
and
if aflow f = u + iv is sourceless on D, then du/0x + dv/0y = 0 on D.

Consequently, if a flow f = u + ivis both sourceless and irrotational, it must satisfy

ou ov u Oov

= d ===

ax oy dy ox’
But these are precisely the Cauchy—Riemann equations for the function f = u — iv,
the complex conjugate of f = u + iv. In other words,

when a flow f is both sourceless and irrotational on D, f must be analytic on
D.

In fact, something else has actually been shown too:

A flow f on a domain D is both sourceless and irrotational on D if and only if

Jsz)dz=0

Jor all smooth closed curves y in D.

On the other hand, the use of Green’s Theorem as above shows that if f is analytic
on D, then the flow f is locally sourceless and locally irrotational. That is, each point
of D is the center of some disc Q in D, and in Q the flow is sourceless and irrotational.
Note, however, that a flow can be locally sourceless/irrotational in D but not
globally sourceless/irrotational in D; see Example 2.

Example 1  The function f(z) = Z = x — iy gives a sourceless and irrotational flow
on any domain. Let us find the path followed by a particle in this flow. If x(t) + iy(t)
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is a parametrization of the path, the tangent to the path is just dx/dt + i(dy/dt), so

dx dy _ .
—d—t+ ld—t—z = x(t) — iy(t).

Hence dx/dt = x, dy/dt = —y, and consequently x(t) = ¢, €', y(t) = c,e”* for con-
stants ¢, and c,. In particular, xy = ¢, ¢, = constant. The curves xy = constant are
thus the paths traced out by the flow. In general a streamline of the flow is the path
followed by a particle in the flow. Here, then, the streamlines are the curves
xy = constant. The direction of the flow is determined by the signs of ¢, and c,
(Fig. 2.2). The origin is a stagnation point of the flow—once there, it is impossible

to leave (of course, nothing actually gets there). o
<0 >0
>0 >0
0
c <0 >0
<0 <0
Figure 2.2

Example 2 The function f(z) = 1/Z gives a locally sourceless and irrotational flow
on any domain D that does not include the origin (where f is not defined). Note,
however, that on the circle |z| = 1, the normal component of f is

f-n=cosfBcosf +sinfsinf =1,
and so

f'nds=lj ds = 2m.

lzI=1 lzI=1

Thus, the flow f(z) = 1/z, although locally sourceless, is not globally sourceless
(Fig. 2.3). n]

Example 3 The function f(z) = z gives a flow on the plane. Since f(z) = Z is not
analytic on any domain (Exercise 18, Section 1), this flow cannot be both sourceless
and irrotational. Indeed, x + iy = z = f(z) = u + iv, so

ou Ov ou Ov
—_—— — = 1 d —_— = — = (),
ox dy an dy 0x 0
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‘\\ //' The flow fiz) = 1/2.

The streamlines are
arctan (y/x) = constant

and there is a source
‘// \\\ atz=0.

Figure 2.3

Therefore,

v Ou
udx+vd =£[ [———]dxd =0
L 4 aldx 0y y
Judy—vdx—ff [au o ]dxdy 2 area(Q).

That is, the flow is irrotational but definitely not sourceless. If you are interested,
it is challenging to discover the “sources” of this particular flow. o

and

The ideas of this section will prove useful later in this chapter, after some more
techniques have been developed, and again in Chapters 3 and 4, in the context of
conformal mapping.

EXERCISES FOR SECTION 2.1.1

In Exercises 1 to 8, decide whether or not the given function represents a locally
sourceless and/or irrotational flow. For those that do, decide whether the flow is
globally sourceless and/or irrotational. Sketch some of the streamlines.

x
1. x* — 3xy? +i(y® — 3yx?) 2. x2+y2+ix2-}|}-y2’ x2+y*>0
3. cos x cosh y + isin x sinh y 4. x* — y? + 2ixy

5. x2 — y? — 2ixy 6. e’ cos x + ie” sin x

7. e*cosy + ie*sin y 8. cosh x cos y + isinh x sin y

9. Suppose that G is analytic on a domain D and f(z) = G'(z). Show that f represents
a sourceless/irrotational flow on D.
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2.2 Power Series

This section is devoted to examining functions of a very special nature: power series.

These functions represent a fusion of the ideas on infinite series introduced in

Section 4 of Chapter 1 with the concept of an analytic function introduced and

studied in Section 1 of this chapter. In Section 4 of this chapter, we shall see that

there is a full and complete relationship between analytic functions and power series.
A power series in z is an infinite series of the special form

3 e =z, (1

where ay, a,, ... are complex numbers, called the coefficients of the series; z,, is fixed
and is called the center of the series. One example of such a series has already
appeared in Section 4 of Chapter 1, namely,

1

f@) = Zoz =T lz| < 1.

Of course, any polynomial,
N
p(2) = ZO baz",

is also an example of such a series. Other examples are the power series

© N © 2n © 22n+1
‘;n— ,go B ’(2 n)!’ Zo Vo

all three of which converge for all z by use of the ratio test (see Section 4 of Chapter 1).
The first major result on power series is as follows.

THEOREM 1 Suppose there is some z, # z, such that Y a,(z, — z,)" converges. Then for
each z with |z — z,| < |z; — z,, the series ) a,(z — z,)" is absolutely convergent.

Proof Suppose that |z — zo| <7 <|z; — z,|. Since Y § a,(z; — z,)" is convergent,
we know that

lim a,(z, — z4)" = 0.

n—+co
In particular, there is a constant M with
lanllzy — zoI" < M

for all n. Hence,
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Iz — zo| \"
lan| |z — zo|" = |ay||zy — Zo|"<————

|2y ~ zol
< Mp",

where p = r/|z, — z,| is less than 1. Hence, the series ), a,(z — z,)" is absolutely
convergent. ]

The Radius of Convergence

For any power series ) & a,(z — z,)", there are always three mutually exclusive
p 0 0

possibilities:
The series ) a,(z — z,)" converges only for z = z,. (¥)]
The series Y a,(z — z,)" converges for all z. 3)

The series Y a,(z — z,)" converges for some z 5 z,, but not for all z. )

Let us examine the third possibility (4) more thoroughly. Suppose z’ and z” are two
points with

00
a,(z' — z,)" convergent, Y a,(z” — z,)" divergent.
n=0

Ms

n=0

By Theorem 1,
0
|z —zol < |z’ —zo|  impliesthat Y a,(z — z,)" converges,
0
and
e o)
|z —zo| >|z" —z,|  impliesthat Y a,(z — z,)" diverges.
0

In particular, |z’ — z,| < |z” — z,|. That is, any point of convergence of the series
lies no farther from z, than any point of divergence of the series. Continuing in this
fashion to examine the convergence of 3 § a,(z — z,)", a number R can be defined
by this rule: R is the unique number such that

o0
|z— 2zl < R implies that Y a,(z — z,)" converges,
[0

and ®)
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|z—2zo| >R  impliesthat Y a,(z — z,)" diverges.
0

That is, R is the largest number with the property that whenever |z — z,| < R, the
series Y a,(z — z,)" converges. When |z — z,| = R, the series ) § a,(z — z,)" may
converge or may diverge. The number R is the radius of convergence of the power
series ) 3 a,(z — z,)". To make the picture complete, if the series satisfies (2), we
define R =0, and if (3) holds, we define R = co. To reiterate, a power series
Y& a,(z — z,)", which converges for some z # z,, always converges within a disc
{z:|z — zo| < R}, where R is positive or R is infinity.

The radius of convergence R of the power series Y § a,(z — z,)" depends in a
very explicit way on the coefficients {a,}. The general formula is a bit complicated
(see Exercises 28 and 29), but two simple and useful cases are as follows.

THEOREM 2  Suppose that Y § a,(z — z,)" is a power series with a positive or infinite radius
of convergence R.

(a) Iflim,_ |a,.,/a,| exists, then

1

R | ©
(b) Iflim,_,, /|a,| exists, then

L lim /| a,| U]

R V™

Proof The proofs of (a) and (b) are nothing but the ratio and root tests, respectively.
To see why (a) is true, let L be the limit of |a,,,/a,|. Then

ayiy

Apii(z2 — Zo)"+1
an(z - ZO)"

lim

n—ow

= |z — zo| lim = |z — zy|L.

n—w

n

When |z — zo|L is less than 1, the series ) § a,(z — z,)" is absolutely convergent;
when |z — z,|L is greater than 1, the series ) a,(z — z,)" diverges; see Exercise 43,
Section 4 of Chapter 1. By the definition of R, we must have R=1/Lor 1/R = L.

The proof of (b) is virtually the same, with the root test replacing the ratio test;
see Exercise 42 of Section 4 of Chapter 1. [ ]

Example 1 The power series Y & 5*(z — 1) has radius of convergence R = 4, since

1 : n/gn _

n—+co
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Hence, the series converges within the disc |z — 1| < { and diverges for all z with
lz—1| >4 o

Example 2 The power series ) & (— 1)" z"/n! converges for all z, since

Ol _ e D O L

lim =
n~o |Gl oo [(—1)/n!| P |
so 1/R = 0, which means that R = o0. o

Example 3 Find the radius of convergence of the power series

Solution  Use (7):

%= lim \/: = lim (/n)?(J/47")

n—w

1
-(3) =5

because lim,_,,, v/n = 1 (see Exercise 21(a) of this section). Hence, R = 4. o

Example 4 Find the radius of convergence of the power series Y >, 4"z*".

Solution Here

o= 43 ifk=0,36,...
70 otherwise,

so technically speaking, neither (6) nor (7) can be applied. However, when we write
w = z*, the power series becomes Y & 4"w". This power series has radius of conver-
gence 1; that is, the given series

convergesif > |w|=|z3
divergesif i <|w|=|z3
Hence, the first series Y 2, 4"z>" has radius of convergence R = 47173, o

Example 5 Here is another example that shows the limitations of formulas (6) and
(7). Let f be the power series
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Sl = ZM“”

That is,
4" ifn=0,2,4,...

ifn=135,....
The two power series

@)= 3, 4
and

2n+1

fi2) =

2n+1

u[\/jg

have radii of convergence R, = ; and R, = 4, respectively, and

fD=f@+flz) if Iﬂ<£

Hence, the radius of convergence of f is at least 1. But it cannot be bigger than %,
since the series for f; diverges whenever |z| > 1. Hence, R = 1. But note that neither
(6) nor (7) was available to reach this conclusion. The general formula for R, which
does cover this case, depends on some special knowledge from real analysis and is
presented in the exercises. o

The Derivative of a Power Series

We can now begin the chief task of this section: to show that a function f given by
a power series

ﬂﬂ=§%@—%¥ (8)

with a positive or infinite radius of convergence R is actually analytic within the disc
|z — zo| < R, and its derivative is given by

fm=§mﬂ—%r% ©)
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We begin by showing that the power series on the right side of (9) has radius of
convergence atleast R. Let|z — z,| = r < R, and let s be betweenr and R,r <s < R.
Then, for all integers n greater than some N,

nrtl s n= N, (10)
since lim,.,, n(r/s)" = 0; see Exercise 21(b) at the end of this section. Thus,

nlanllz_zoln—l < |an|s"9 n=N,

and since s < R, the series Y& |a,|s" converges. Hence, the series Y na,(z — z,)"™*

converges whenever |z — zo| =7 < R.
Let g be the series on the right side of (9):

00 = 3, nan(z — 20"

It simplifies the notation to assume z, = 0; this can be done with no loss of
generality. Suppose z is in the disc of radius R centered at 0; let & = (R — |z|), and
suppose that |h| < . Now compute

flz + k) — fz) = i a,[(z + hy' — 2"

=a,h + i a,[(z + h)" - z"].
2

This gives
h 2 h

Now the binomial theorem (Exercise 20, this section) gives

E+h—2" nz"t = i (") "R,
h =2 \J

!
where (n) = _n— Hence,
i/ jln—j)

(z+h)"—z"_
h

nzn—l

<3 ('T>|z|"'f|h|"‘*
XA

J

< |h] Zz (;‘) (R — 26)Isi-2

J
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J=2

—hs2 Y (?)(R _25yisi

Jj=0

<[h|52 S <’J’) (R — 25)95)
— [h|6-2[(R — 26) + 51" = [h|5~%(R — 8"

This leads to the estimate

fe+h—f@)

p g9(2)

<Ihis™? 3 JaJ(R - o.

This last quantity goes to zero as h — 0 (recall that ¢ is fixed), so we have established
that f is differentiable with derivative equal to g:

<§ a,.z")l = 2 na,z""*.

This is what we set out to accomplish. However, even more can now be said. The
series Y ¥ na,z""! is also a power series with radius of convergence R, so it, too, is
differentiable in the disc |z| < R with derivative

<i na,,z""), = i n(n — 1)a,z""2
1 2

This process can be continued indefinitely, of course, to obtain the following
theorem.

THEOREM 3 Iff(z) = Z‘(‘," a,(z — z,)" has a positive or infinite radius of convergence R, then

within the disc |z — zy| < R, fis infinitely differentiable, each derivative being again
given by a power series

@)=Y nn=1)...n—k+ Da,(z—z)* k=12,.... (1)
n=k
In particular, by setting z = z,, we have
£ "(zo) _
n

a, n=0,12,.... m (12

Example 6 The power series

N
=

M8
2|

3
[}

o
=



100  Chapter 2 Basic Properties of Analytic Functions

has radius of convergence infinity (by the ratio test) and hence is an entire function.
According to Theorem 3, its derivative is

© '’ uon"__ao z"‘l
(n;)a>=n;1n_!z 1—";01_1)!

That is, the function is its own derivative. Let us denote the sum of the series by F:

Fo= ¥
Then )
(e"?*F(z)) = —e™*F(z) + e *F'(2)
=0,

since F' = F. Thus, F(z)e * = A for some constant 4 (by Exercise 15 of Section 1).
But 1 = F(0) = 4, so F(z) = €% and thus,

z"

= o (13)

NN
]
3 M 8

Example 7 Show that sin z and cos z have power series expansions valid for all z;
find the series explicitly.

Solution From Example 6, we know that

_ v Z
€= nZO n!’
Hence,
e $ ) (i)
cosz—z(e +e ) = (Zi) Z:O . )
0 22"
2,V G
Likewise,
0 22n+1
sz_..;)( I o
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Multiplication and Division of Powers Series*

Suppose that the two power series f(z) = Y.& a,z" and g(z) = Y. b,z" both have
radius of convergence at least R for some positive number R; the product f(z)g(z)
is then defined and analytic in the disc {z: |z| < R}. Formally multiplying out the
series for f(z) and that for g(z) and collecting equal powers of z, we obtain

f(2)9(2) = (@o + a,z + ay2% + ") (by + bz + byz* +--+)

= agbo + (aghy + aybo)z + (aoh, + a;by + ayby)z* + -+

where

These manipulations are, in fact, correct, and the power series Z ¢,z" has radius of
convergence at least R. The formal statement of this result follows, and the proof is
presented at the end of Section 4.

THEOREM 4 Suppose that f(z) = ) 2. a,z" and g(z) = ) 2, b,z" are two power series,

each with radius of convergence R or more, R > 0. Then their product fg can also
be expressed as a power series in the disc |z] < R:

(f9)@) = Y c,z",  wherec,= Y a,b,,. [ ]
n=0 k=0

Example 8 Find the power series expansion of e?/(1 — z) about z, = 0 in |z| < 1.

Solution We know that

22 73
e =1+z+2—!+§+‘”, all z
and that
1 2, ,3
—=14+z+z+22 4+ |z] < L.
11—z
Hence,
z 5 8 65
G 1+ 2+ 4Pzt e, 2l <L o

1—:z 2 3 24
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Example 9 Find the power series for (1 — z2) sin z about z, = 0.

Solution  Again, just formally multiply out the two series

3 5
(1—2%)(sinz) =1 —zz)<z—f6_+%_...>

Example 10 Later in this chapter, we will show that z csc z has a power series
expansion near z = 0. Assuming this for the moment, find the first few terms of this
series.

Solution  Since z csc z = z/sin z, we are faced with a problem of division of series.
However, every division problem can be replaced by an equivalent multiplication
problem, and this is what we will do here. Write

zescz=by+ byz + bzt + -+,
Then

z=(zcscz)sinz

3 5
= (by + b,z + b, z? +“')<z—z—+——~~>

b b b b
= 2 _0},3 it ) P2 24 0 )5 ...
byz + b,z +<b2 6)2 +<b3 6)2 +<b4 3 +12 )z +

Equate coefficients of equal powers of z and obtain a series of equations for the

b;:
— — — bO — bl — bO b2
=by 0=b, 0=b-2 0=—tb, 0=r—+b,.
Hence, b, = 1, b, =0, b, = %, by = 0, b, = 5&;. Consequently,
2
zcscz=1+z—+—7—z4+~~~. o

6 360

Note that this technique of dividing series works all the time, provided that it is
known that the quotient does actually have a series representation. We shall look
further into this issue in Section 5 of this chapter.
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EXERCISES FOR SECTION 2.2

In Exercises 1 to 6, use Theorem 2 or Example 4 to find the radius of convergence
of the given power series.

LY k-1 §E oy
k=1 k=0 (2k)!
© z3f

352 4. 5 (=1
=02 k=0

©  (2k)Q2k —2)...4-2
6 ,;1 2k —1)2k—3)..3-1"

k

©wo
Mes i
©n
]
I\
3
N
E ]

3
]
[=]

In Exercises 7 to 13, find the power series about the origin for the given function.

7. e 8. z2 cos z
z? 1+z
9.1_23, |z] < 1 10.1_2, lz] <1
22 1 d
R 4 (Hint —— =2 [@a-2"].
1 a7 lz| < ( in TEErr [(a—2) ])
12. sinh(z?) 13. (sin z)2

In Exercises 14 to 18, find a “closed form” (that is, a simple expression) for each of
the given power series.

N
N
=

_
S
3
Jlask
|
—_
o
irs
N
w
S

16. Y n(z — 1y 17. ¥ (—pp =20
n=1 n=0 n!
18. Y n(n—1)z"  (Hint: Divide by z2.)
n=2
19. (a) Suppose that the radius of convergence of the power series f(z) =

Z;‘,‘;o a,(z — z5)" is R, R > 0. Show that the radius of convergence of

00

F@) = Y (e — 2™

is at least R.
(b) Show that F'(z) = f(z) for all z with |z — z4| < R.
(c) Use parts (a) and (b) to show that

2 3 4

V4 V4 V4 .
LOg(l—Z)——Z—?—?—Z—”’, lf|Z|<1.

20. Establish the binomial formula for any pair (a, b) of complex numbers
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n_ e (M amirg n\ _ n!
(a+b)_,;o<f>a & <1> =

(Hint: One technique is to prove the formula by induction on n.)

21. Show  that (a) lim,. ,%/n=1;, (b) lim,, np"=0 if |pl<1;
(©) lim,, /M=1 if M is positive.
(Hint: For (a), write

-1
\'/r;=1+s,,, g, > 0; thenn=(1+e,,)">1+n(L2——ze,f,
by Exercise 20.)
22. (a) If f(z) = Y 20 a,(z — z,)" has radius of convergence R > 0 and if f(z) =
forall z, |z — zy| <r < R, show that gy =a, =--- =0.

(b) If F(z) = Y% a,(z — z,)" and G(z) = }.§ b,(z — z,)" are equal on some disc
|z — zo| < r, show that a, = b, for all n.
23. Let ay, a4, a,, ... be complex numbers with either

=L.

. a
lim /]a,| =L or lmI ol

n—*o0 n—*co | anl
Show that the series

[ an

=0 (z — o)

converges absolutely for all z with |z — z,| > L and diverges for all z with
|z — zo| < L.

y .
=
o

24. Let the radius of convergence of f(z) = Y 2 a,(z — zo)" be R,0 < R < o0, and
let r < R. Set

ﬂ,(z)=;aj(z—20)j, n=12,....
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Given ¢ > 0, show that there is an N such that | f,(z) — f(2)| < ¢ for all z with
|z—zol <randn>= N.
(Hint: The series Zj‘;o |aj|rj converges, so there is an N such that

< .
Y lajlr! <e.
N

Hence, forn > N and |z — z,| <1,

a0

Y az — zo)

n+1

1/u2) — S =

Y
< z |a;|r!
n+1

<Y lalri <e)

=18

The Binomial Theorem for Real Exponents*
25. Suppose that a is a real number but not a nonnegative integer. Define (§) for
each nonnegative integer j by

G- (e

and in general,

()

26. Show that the radius of convergence of the series

F(z) = kz) (:) zk

Show that —1asj— o0.

is 1.
27. (a) Show that the function F defined in Exercise 26 satisfies the differential
equation

(1 + 2)F'(2) = aF(z).

(Hint: Compute F’; then multiply it by (1 + z) and add terms with equal
powers of z.)
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(b) Conclude from (a) that F(z) = (1 + z)°; that is,

l+2¢=3 (:>z", lz] < 1.

k=0

General Formula for the Radius of Convergence of a Power Series*
Let {x,} be a bounded sequence of nonnegative real numbers. Define

lim sup x, = p

n—ow

to be the largest number p such that each interval (p — ¢, p + €) contains x,, for
infinitely many indices n. (The fact that such a p exists is a fundamental property of
the real numbers.)

If {x,} is unbounded, define (lim sup),..,, x, to be infinity.
28. (a) Show that there are integers {n;}32, increasing to co such that

lim x, = p.

Jjow

(b) If {n,}i=, is a sequence of integers increasing to co and if lim,_, x,, =0,
show that o < p.
29. Let Y ¥ a,(z — z,)" be a power series with radius of convergence R. Show that

1
= lim sup J/|a,|.

n—oo

Outline: Let L = lim sup /|a,|. Given ¢ > 0, there is an N such that J/|a,| <
L +¢ for all n> N. (Why?) Suppose that |z — zy| < (1 — ¢)/(L + ¢); then
la,l|z — zo|" < (1 — )" for all n > N, so Z}‘f a,(z — z,)" is absolutely conver-
gent. Hence, R > (1 — ¢)/(L + ¢) for each ¢ > 0. (Why?) Therefore, R > 1/L.
Conversely, suppose that |z — z,| > 1/(L — ¢) for some ¢ > 0. There are infi-
nitely many indices n with Y|a,| > L — &. (Why?) Hence, |a,||z — zo|" > 1
for infinitely many indices n, so Y ¥ a,(z — z,)" diverges. (Why?) Hence,
R < 1/(L —¢)foreache > 0,s0 R < 1/L. Hence, R = 1/L.

2.3 Cauchy's Theorem and Cauchy’s Formula

Cauchy’s Theorem is the linchpin of complex variables. We shall first prove the
result with the added assumption that f’ is continuous. As it turns out, an analytic
function automatically has a continuous derivative. However, it is somewhat techni-
cal to prove this. For that reason, we isolate most of this work as a special starred
subsection 2.3.1; the final step is Theorem 1 of Section 4. Throughout this section,
we shall assume that f” is continuous.
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THEOREM 1 Cauchy’s Theorem Suppose that f is analytic on a domain D. Let y be a
piecewise smooth simple closed curve in D whose inside Q also lies in D. Then

J f(2)dz =0.

Proof Recall that we will assume initially that f’ is continuous. We know from
Green’s Theorem (Section 6 of Chapter 1) that

Lf(z) dz =i”{% + i%} dx dy.
Q

However, because f = u + iv is analytic, u and v satisfy the Cauchy—Riemann
equations. Hence,

F ig—gu—ﬁi'iw[@uav]

6_)€+ dy ox  ox dy ' dy
T ox 0y ' ox dy
=0+i0)=0. L

The incredible utility of Cauchy’s Theorem is due in part to its great generality
and in part to the fact that it can be conjoined with an assumption about the
geometry of the underlying domain to yield additional and somewhat unexpected
results. In what follows, we pursue the latter path.

DEFINITION A domain D is simply-connected if, whenever y is a simple closed curve in D,
the inside of y is also a subset of D.

A less formal way of saying that D is simply-connected is to say that “D has
no holes in it.” Several examples will help make the concept more concrete.

Example 1 Thedisc {z: |z — z,| < R} is simply-connected, as is the horizontal strip
{zza <Imz < b}. o

Example 2 Any convex domain Q is simply-connected. a

Example 3 Neither the annulus {z:0 <r, <|z —z,| <r,} nor the punctured
disc {z:0 < |z — z,| < r,} is simply-connected. This follows from the fact that for
eachr,r, <r <r,,thecircle |z — z,| = r lies in the annulus and the punctured disc,
but the inside of this circle, which is the disc {z: |z — z,| < r}, is not a subset of
either. a
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Example 4 The domain obtained by deleting the line segment 0 < x < 1 from the
open disc {z:|z| < 1} is simply-connected, while the domain obtained by deleting
the segment 0 < x < 4 is not simply-connected (see Fig. 2.4a and 2.4b). o

Example 5 The domain obtained from the annulus {z:r < |z| < R} by deleting
those x with r < x < R is simply-connected (Fig. 2.4c). o

)

(a) (b) ©

Figure 2.4

Our results connecting Cauchy’s Theorem and simple-connectivity follow
below. Recall that we assume f’ to be continuous; the results of Section 2.3.1 will
show this to be superfluous.

THEOREM 2 Let D be a simply-connected domain and I" a closed curve in D that is
composed of a finite number of horizontal and vertical line segments. If f is analytic
in D, then

Jf(C)dC=0. n
r

This is rather intricate to prove completely, but any picture (for instance,
Fig. 2.5) makes it reasonably clear. You can draw several more pictures of such

Figure 2.5
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closed curves to explore their other possible configurations. The crux of the matter
is that any closed loop in I surrounds only points of D, since D is simply-connected.
Given that this is the case, repeated applications of Theorem 1 then establish
Theorem 2.

We now show another connection between simple-connectivity and analyticity.

THEOREM 3 If f is analytic in a simply-connected domain D, then there is an analytic
function F on D with F’ = f throughout D.

Proof Fix some point z, in D and define F at a point z of D by the rule

F(Z)=J Q) dg,

where y is a polygonal curve in D joining z, to z, which is composed of a finite
number of horizontal/vertical line segments. If y, is another such curve, then
I' =y — y, is a closed curve in D made up of horizontal/vertical line segments and
consequently (by Theorem 2),

0=j f(w)dw:jf(w)dw—j f(w) dw.
r Y "1

Thus, the value of F(z) does not depend on the choice of curve y from z, to z; in
mathematical language, F is well-defined. We now need to show that F' = f. Let z,
be a point of D and let r be a number so small that the disc {z: |z — z,| < r} lies in
D. Now let |h| <r, and let L be the curve joining z, to z, + h which is composed
of one horizontal and one vertical segment (see Fig. 2.6). Note that the total length
of L is at most 2|h| and that
J dz =h.
L

Z)

z th

-

Figure 2.6
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Let y;, be a polygonal curve composed of horizontal and vertical segments joining
zo to z, + h; again refer to Figure 2.6. The curve I' = y; — L — y is then a closed

polygonal curve consisting of horizontal and vertical segments. Hence, the line
integral of f over I' is zero. Equivalently,

0=J fQdi - Lf(()d(— J fOd

=F(@z, +h —J f@)dl — F(zy).
L
This gives
F(zy + h) — F(z,) = j S dt.
L

Consequently,

Flevt W =Fe) g j L0~ Sl
L

Given ¢ > 0, choose § > 0 so small that | f({) — f(z,)| < ¢ whenever |{ — z,| < 4.
This is possible because f is continuous at z,. For |h| < J, inequality (3) in Section
6 of Chapter 1 and the above imply that

F(z, +h) —F(z 1
@D o) < o (maxi ) - fle)} 20 < 2
Consequently, the derivative of F at z, exists and equals f(z,). [ |

COROLLARY Let f be analytic on a simply-connected domain D, and let y be a piecewise
smooth closed curve in D. Then

‘[ f(z)dz =0.

Proof Let F be a function on D with F' = f. Then
j f(2)dz = f F'(z) dz = F(endpoint) — F(initial point)
Y Y

=0,

since the curve y is closed. [ |
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Cauchy’s Formula

THEOREM 4 Cauchy’'s Formula Suppose that f is analytic on a domain D and that y is a
piecewise smooth, positively oriented simple closed curve in D whose inside Q also
lies in D. Then

f@)= SO dC forallze Q.
2m C

Proof Since z is inside €, there is a positive number J, so small that the disc
{w:|w — z| < §,} lies within Q also. Let é be a positive number smaller than &,
and let Q, be the domain obtained by deleting the disc {w: |w — z| < 8} from Q.
The boundary of Q; consists of the two curves 7, oriented positively, and the
circle {w: |w — z| = 8}, oriented negatively. We may apply Green’s Theorem to the

function
_JQ
on the region Q;. Because g is analytic on €;, it follows (as in the proof of Theorem
1) that
dg .09
ox +i ay =0

throughout Q;. Hence, the double integral term is zero, so

_ dg .0g
o[ s [0

=f g(§) d¢ — g({) d.

[=zl=5

Replacing g with its equivalent expression involving f and then transposing, we
obtain

/) f(C)
C—z d = J;C -z|= aC &L

However, the right-hand side of this equation converges to 2ni f(z) as § — 0 (see
Example 10, Section 6, Chapter 1). This establishes the conclusion. [ |

Cauchy’s Formula has many applications, as we shall see. In the following
examples, we use it to evaluate definite integrals.
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Example 6 Find the value of (3" d6/(2 + sin 6).

Solution The idea in this example, and others like it, is to use the substitution
z = €' effectively. We begin with three identities:

1 1 .
cosO=§(z+—), z=¢"

z

: 1 1 i0
sm(J—E(z—;), z=e

_te:
TPz’

do
Thus, 2 + sin 0 = 2 + i)z — 1/2) = 3)@4 — iz + i/z), and
do 2dz 2dz

2+sin0=_< , i)=22+4iz—1'
iz 4—lz+;

Now,
22 +4diz—1=[z—i(\/3-21z+i(/3+2]

Set p = i(\/g —2)and g = —i(\/g + 2); p lies within the circle |z| = 1, while q lies
outside the circle |z| = 1, since |q] = /3 + 2. The function (z — ¢g)™! is analytic in
the disc |z| < \/3 + 2, so Cauchy’s Formula (Theorem 4) gives us

1 j iz 1 1
i e G —9)c—pP) P—q 2./3i
But the integral is just

1 J dz L (™ g 1 (> do
20 Jiye (2 — @)z —p) 2mi J, 2ie®Q2+sinf) 4mi ), 2+sin6
This yields

2z do —_21 o
o 2+sinf /3

Example 7 Evaluate the integral

1 (2% do 0 {
2n Jo 1—2acos@ + a*’ <a<’
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Solution Again we use the substitution z = e®. This yields

1
1—2acos0+a2=l+a2—a<z+-z->,

SO

do _ dz _ dz
— A 1 TR 1 2, _ "
1—2acosf+a iz<1+a2—a<z+ >) i(—az + (1 + a*)z — a)

z
Now
2 2 1 -
—az*+(1+a*)z—a= —a z—- (z— a).

The point 1/a is outside the circle |z| = 1, and the point a is inside the circle |z| = 1.
Hence,

1 dz 1 1 1
2 Jioy —az? + (1 +a¥)z—a  2mi Ji, _a< 1) z—a

zZ — —

But

1 dz Y ie® do
2 =y —az2 + (1 +a®)z—a 2mi J, €®(1 —2acosf + a?)

_L 2r do
“2n ), 1—2acosf +a*’

Thus, the integral has the value

L™ il - 0<a<l i
2n Jo 1—2acosf +a* 1—a*’ <a<?’ )

The function

l1—a

P(0) =
o) 1 —2acosf + a?
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is called the Poisson kernel and plays an important part in the subject of harmonic
functions; we will return to P,(6) in Chapter 4. o

Example 8 The following is a more difficult application, this time of Cauchy’s
Theorem. The function f(z) = exp(—z2) is entire. Let B be fixed, B > 0, and let R be

a large positive number; let y be the contour in Figure 2.7. Hence, |, f(z) dz = 0, by
Cauchy’s Theorem. Parametrize the contour y as indicated in Figure 2.7. Thus,

R B 0 1]
0= J e dx + f e~ R gy 4 J e B+ gy J e % dt
(4]

0o R B

R B R 8
= j e dx + ie ® j e 2iRtgt? gy _ of? J e e 1bx gx | f e’ dt.
0 0 0

o

As R — oo, the first integral approaches %ﬁ, since

jw e dx = /n.

(This should be familiar from calculus; also see Exercise 20 in this section.)

z=x, 0=x=R
y. z=R+it, 018
z=x+iB, R=x=0
z=it, B=1=0
iB
R
Figure 2.7
The second integral can be estimated by
g —2iRt 12 g 12 B2
e #Re dt| < | e dt < e’
(1] 1]
SO

B
e J e 2Rt dt 50
0
as R — oo. (Recall that g is fixed.) The third integral converges to

Jw e **[cos(2fx) — i sin(2Bx)] dx

o
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as R — 0. Setting the real and imaginary parts of the resulting expression separately
equal to zero, we find that

e?’ f e * cos(2fx) dx = ﬁ )
o 2
and
2 © 2 p 2
et j e sin(2Bx) dx=J e dt. o (3
0 (1]

The next example shows that for a polynomial, Cauchy’s Formula is actually
an easy consequence of Taylor’s Theorem and Cauchy’s Theorem.

Example 9 Directly verify Cauchy’s Formula for a polynomial.

Solution Let f({) = ao + a;{ + *** + a,{", a, # 0, be a polynomial. We expand f
in a Taylor series about the point z,:

S©) = by + b1 — 2o) + by ({ — 20)* + -+ + B({ — 20",

where

— f(j)(zo)

I j=0,1,...,n

&

Hence,

0 4 (=3 b LI(C Y i
072 {—zq

2m = zo

n ._,
- B | 6

Each of the integrals is zero except when j = 0 (see Exercise 16, Section 6, Chapter
1). When j = 0, the value of the integral is

1 -1
_Zni J; (€ — zo) at=1.
Hence,

fcf ©_ 4t = by = fizo)

— 2,

This establishes the result. ]
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Example 10 Evaluate the integral

zZ

where y is any curve in the domain {z: Im z > 0}, which joins —1 + 2ito 1 + 2i.
Solution The integrand

@)=

z
z+1 z+1

is the derivative of F(z) = z — Log(z + 1). Of course, this is valid only where the
function Log(z + 1) is analytic. This is the case, however, on the complex plane with
the ray (— oo, — 1] deleted; this domain includes the domain Im z > 0. Hence,

J;z j_ N dz = Jyf(z) dz = J; F(z)dz

= F(endpoint) — F(initial point)

= F(1 + 2i)— F(—1 + 2i)

=[1 + 2i — Log(2 + 2i)] — [~ 1 + 2i — Log(2i)]

=2—{log\/§+l—4§}+{log2+ﬂ}

2

1 in
510g2+z (m]

=2_

EXERCISES FOR SECTION 2.3

In Exercises 1 to 4, evaluate the given integral using Cauchy’s Formula or Theorem.

z i e?
1. ——dz 2. dz
,LI=1 (z— 22)2 JJz=2 Z.(Z -3)
3, A 4| iy
lz+1|=2 4—z

JIizi=t 2

In Exercises 5 to 8, evaluate the definite trigonometric integral making use of the
technique of Examples 6 and 7 in this section.

2n do (*2n do
5| s L 0
L 2 4+ cos @ 7 Jo a+bcosd’ a>b>
2n rr
6 . do 8. de
o 3+sinf + cosb

Jo 1 +sin?6
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In Exercises 9 to 12, evaluate the given integral using the technique of Example 10;

indicate which theorem or device you used to obtain your answer.

9. [ z—i, where 7 is any curve in Re z > 0 joining 1 —ito 1 + i.
Y

10. [ (z + -Zl-> dz, where y is any curve in Im z > 0 joining —4 + i to 6 + 2i.

JY

11. [ e® dz, where v is the semicircle from —1 to 1 passing through i.

Y

12. [ sin z dz, where 7 is any curve joining i to 7.

J7Y
13. Integrate e'* around the contour y shown in Figure 2.8 to obtain the Fresnel

integrals:
j cos(x?) dx = j sin(x?) dx = \/j_n )

0o 0

(You will also have need of the conclusion of Exercise 20.)

z=x, 0<x=<R
z=Re®, 0<60<m/4
z=1e", R=120

NS

Figure 2.8

(Hint: On the circular arc, z = Re®®, 0 < 0 < n/4, you will need to know that
siny > (2/n)y, 0 < Y < 7/2, and hence, e R**i"¥ < ¢ 2R*¥/% The inequality
sin Y > (2/=)y is proved by calculus.)

14. Specialize Theorem 4 to the case when z is the center of the circle and show that

1 [* )
flz) = . L f(z + re*)dt. 5

15. (a) Use the estimate (3), Section 6, Chapter 1, and (5) above to conclude that

/@) < max |f(z + re®)| (6)

o<t

for all sufficiently small r.
(b) Conclude from (a) that | /]| cannot have a strict local maximum within its
domain of analyticity. That is, the graph in three-dimensional space of
(x, ¥, | f(x + iy)|) has no “peaks.”
16. Use the conclusion of Exercise 15 to establish the following result. If f is analytic
and never zero on a domain D, then | f(z)| has no local minima in D. That is,
the graph (x, y, | f(x + iy)|) has no “pits.”
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17. Let f(z) = Y 20 a;(z — z,) have a radius of convergence of R > 0. Show that
for each r € (0, R),

f(j)(zo) — — 1 —j—1 .
T =a=5_ e f@)(z — z5) 77t dz, j=0,12,....
(Hint: Substitute the series into the integral and interchange summation and
integration.)
18. Use the result of Exercise 17 to establish these formulas:
0, n=0,2,4,...
v [ .. () do
(@ — e™ " sin(e" = < (=112
2 J, E0 L 3s
n!
1 f2r 0 oi 1
b) — Tinbge” 4 = — =
()27‘.10 e e do mE n=0,1,2,
v (= . ) 0 n<m
- im0 (9 ind __ ,i(n+1)6)—-1 — ’
() 27 ), e'™(2e e )1 do {2,”_"_1, n>m

19. Let 4 be the annulus, 4 = {z: 0 < r < |z| < R}. Suppose that g is an analytic
function on A (and that g’ is continuous) with the property that

J g(z2)dz=0
Y

where 7 is the positively oriented circle of radius s centered at the origin, and s
is some positive number in the open interval (r, R). Show that there is an analytic
function G on 4 with G’ = g throughout A. (Hint: Show that |, g(z) dz = 0 for
any piecewise smooth simple closed curve y in 4 and then modify the proof of
Theorem 3 to this context.)

The Integral |©,, e™" dx*
20. Let I = [*, e dx; then

I? = ® -x2 g ® -y? — ® ® —(x2+y?)
= e x e dy= e dx dy
- - — J =0

2n © <]
= J J e "rdrdd =2n J re" dr = 1.
0 (4] 0

Hence, I = \/E .

The Poisson Kernel*
21. Verify each of the statements (a) through (€) below for z = re® and r < 1.
R e’ +2z\ 1—r?
® e(e" - z> T 1—2rcos(f —t) + r?
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et ze" e +z
(b) P +1_ it—=Re( it >

z ez e’ —z
(> . €'z . . .
(©) EEJ; fle )1 —oh dt = 0, if f(w) is analytic for |w| < 1 + ¢
1 2z i eir p
@ EL fie)—dt = 1)

(€) Add (c) and (d); then use (a) and (b) to conclude that

)
l1—r i0

1 2n ” B
f(z)=§;Jo f(e)1—2rcos(0—t)+r2dt’ z=res

2.3.1 The Cauchy-Goursat Theorem

In 1900, E. Goursat* discovered that the hypothesis “f” is continuous” is superfluous
to the conclusion of Cauchy’s Theorem. However, as might be imagined, the proof
becomes more elaborate. Furthermore, the conclusion is initially established only
for triangles, so that a somewhat more indirect path is needed to recover the full set
of results of Section 2.3. These steps are set out here; if you do not feel the need for
the extra mathematical generality gained by dropping the hypothesis of continuity
on f’, you can move directly to Section 2.4.

THEOREM 1 Cauchy-Goursat Suppose f is analytic in a domain D. If T is a triangle in D
whose inside Q is also in D, then

J f(z)dz = 0.
r

Proof Without the hypothesis of continuity on f’, we cannot apply Green’s
Theorem, so we must use a more sophisticated technique. Let

J f(z)dz
r

so that I > 0. We wish, of course, to show that I = 0. Divide the (solid) triangle
I" U Q into four triangles by joining the midpoints of the three sides of I' (Fig. 2.9).
Orient the boundaries of all the triangles positively, call the four smaller solid
triangles A,,...,A,,and let Iy, ..., T, be the boundaries of A,, ..., A,, respectively.
Then

I=

4

Jf(Z)d2= Y | f@)dz
r 5

=1

* Edouard Goursat, 1858-1936.
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Figure 2.9

so that at least one of the small triangles A,, satisfies

J f(z) dz J fz)dz
r T

Rename this triangle A, . Note that the diameter of A, , the length of its longest side,
is one-half the diameter of A. Proceed as above to divide A; into four smaller
triangles by joining the midpoints of the three sides of A,. As before, we will obtain
a second triangle, named A,, with boundary I, such that

j f(z)dz J f(z)dz
r, I,

and diameter (A,) = { diameter (A,) = { diameter (A). Continuing in this manner,
we obtain a sequence of triangles, A, A,, A, ... with respective boundaries I, I,
I, ... such that

I= <4 =4l,.

Il= <4 =412

() Aj4; is a subset of A;
. 1
(i) length (I},,) = 3 length (T})
. 1 ..
(ii)) the diameter of A;,; = 3 {diameter of A;}

(v) ifL= ,  then |I] < 4|L,,l.

j f(z) dz
5

In particular, for j = 1,2, ...

. 1
(i) length (I}) = % length (I')
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ooy g 1 .
(iii) diameter (I[}) = 2 diameter (I

vy I<4I,
Since the diameters of the triangles {A;} decrease to zero and since (i) holds,

there is a unique point z, within all the A;, and z, lies in D. Thus, f is differentiable
at z, so, given ¢ > 0, there is a (small) d > 0 such that

M—f’(m) <e i Jz—2z <.
Z— 2y

Equivalently,
1f@) = [f(zo) + f'(z0)(z — 20)]| < &lz —zo| if |z—2zl<d. (1)

We know thatfor j > j,, the triangle A, lies within the disc {z: |z — z,| < J}, because
diameter (A;) - 0 as j — co. Further, we know that

jdz=f zdz=0, 2
T ]

by the version of Cauchy’s Theorem proved in Section 3. The inequality given in
(1), together with (2) and inequality (3) in Section 6 of Chapter 1, give

I = f f(z)dz
I

= Ur {f) = [f(z0) + ['(20)(z — 20)1} dz

< s(max |z — zol>(length ™))
zel;

< e diameter (A;) length (T})

L.
< ] diameter (A) length (T').

Finally, employing (iv)’ above, we find that

. 1
0<I<¥L<¥ {637 diameter (A) length (I’)} ,

SO
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0 < I < ¢ diameter (A) length (I').

Since ¢ is an arbitrary positive number, we see that the number I must be zero. =

Extensions of Theorem 1

Although Theorem 1 appears to be very special, it can be extended to reach
significantly higher levels of generality. Suppose, for instance, that y is a simple
closed curve composed of straight line segments (see Fig. 2.10a for a representative
picture). Let Q be the inside of y, and suppose that f is analytic on a domain D that
includes both y and Q. The region consisting of Q and y may be “triangulated”
(see Fig. 2.10b). The line integral of f about any of the little triangles is zero, by
Theorem 1. Since each edge of a triangle that is in Q is traversed twice, once in each
direction, it follows that the line integral of f over all of the edges of the triangles
that lie in Q add to zero. This leads to the conclusion that

f flz)dz = 0.

An argument of this same nature can be used to establish the validity of the
conclusion of Theorem 2 of Section 3—without, however, the hypothesis that f” is
continuous. You may “triangulate” the curve in Figure 2.5 to check this for this
particular example. Theorem 2 then directly implies Theorem 3 and its corollary;
the proof is unchanged. We state these formally.

A

A
<

A
A

A 4
/
/
[

(a) (b)
Figure 2.10

THEOREM 2 Let f be analytic on a simply-connected domain D.

(a) If y is a piecewise smooth closed curve in D, then
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jf(Z) dz =

(b) There is an analytic function F in D with F’ = f throughout D. [ |

2.4 Consequences of Cauchy's Formula

Cauchy’s Formula has far-reaching implications, allowing us to draw numerous
nonobvious conclusions about the properties of analytic functions. We begin with
one of the most important.

THEOREM 1  Suppose that f is analytic in a domain D and z, is a point of D. If the disc
{z:|z — zo| < R} lies in D, then f has a power series

1@ =¥ az -z

k=0

valid in this disc. Furthermore, the coefficients are given by

J O (C
U= o - "“

where y is the positively oriented circle {{: |{ — z,| = r} and ris any positive number
less than R.

Proof We restrict our attention to the disc A = {z: |z — z,| < R}, which by
assumption lies within D. Fix any r, 0 < r < R. We shall suppose first that f has a
continuous derivative on the disc A. Consequently, for each z with |z — z,| <7,
Cauchy’s Formula, Theorem 4 of Section 3 is valid:

_ 1 f(©)
f(Z)—% -z

di,

where 7 is the positively oriented circle {{: [ — zo| = r}. Let s = |z — z,|, so that
s <r. For thiszand any { in y,

1 1 1 1
c—z‘(c—zo>—(z—zo)‘c—zo1_<z—zo)'
C_zo
Now
Z—Zo| _S
=z, —r<1,
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SO we can represent

by the geometric series

(7= z2\\' _ z— 2z, z=2\ |,
(l (C—zo>> —1+(C—zo)+(C—z0> "

The series Y =, (s/r)* converges, since 0 < s < r. Consequently, given ¢ > 0, we can
choose N so big that ) & (s/r)* < e Hence, for all { with |{ — z,| = rand alln > N,

e Z—ZO k © s k © s k
én(c-z) ﬁ;@ ﬁ;v(;) @

Now, for any n, we can write
f(C) i — j cﬂo { 2 (z - zo)“} "
k=0 \& — 2o

" S S O [ (=%
=k;0(z_20){ (- )Hldc} J\C“Zo{g:(_%)}dc

When we employ (1) and inequality (3) from Section 6 in Chapter 1, we see that

L {{f_(clo} {k=§+1 (ﬁ) } dC\ —827tr = 2neM,

where M = max{|f({)|: |{ — z,| = r}. From Cauchy’s Formula and the previous
computations, we see that forn > N

LSO, e L .
f(z) - ﬂ , C - dC = k;o (Z {an J (( Z )k+1 } + E(Z, ZO)’

where |E(z; z,)| < eM. This implies that the infinite series

< 1 f©)
DI =

converges, and its sum is f(z).
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To complete the proof of the theorem, we must show that its conclusion is
valid when we omit the assumption that f has a continuous derivative. However,
Theorem 2b of Section 2.3.1 implies that there is an analytic function F on the disc
A with F(zy) = 0and F' = f on A. The function F does have a continuous derivative
on A, and consequently, by the preceding part of the proof, F has a power series
valid on A. Theorem 2 of Section 2.2 then shows that F' = f also has a power series
whose radius of convergence is the same as that of F (that is, at least R). Further-
more, f is also given by a power series and, in particular, is continuous. Hence, ipso
facto, the first portion of the proof applies to f; we are done. [ |

Theorem 1 has an immediate, and important, corollary.

If f is analytic on a domain D, then so is f'. Hence, f has derivatives
of all orders, and each derivative is analytic on D. (2)

This follows because in each disc in D, f is given by a power series, and (by Theorem
3 of Section 2 of this chapter) each power series is infinitely differentiable. Note that
(2) brings together the parallel threads of Section 2.3 and Section 2.3.1, in that
the results of 3.1 lead to Theorem 1 of this section and hence to (2). That is to say,
when we assume that f is merely once (complex) differentiable, it follows from the
Cauchy-Goursat Theorem and the rest of the development in Section 2.3.1 and
Theorem 1 of this section that f is infinitely (complex) differentiable. In other words,
from the existence of one derivative, we are able to infer the existence of all deriva-
tives. Contrast this with the case of real-valued functions of a real variable. For
instance, the function

2, t=0
“(t) = 2 ~
is differentiable at all points ¢, —00 < t < oo, with derivative

w-{2 >0
“W=1_2,  t<o,

and the derivative is even continuous. However, u’ is itself not differentiable at t = 0.
Let us find the power series for some of the elementary analytic functions

discussed in Section 1. This is accomplished by use of Theorem 1 and formula (12),
Section 2 of this chapter.

Example 1 The function e? is entire and is its own derivative. Hence, a, = 1/n! for
n=0,12,...,s0

© Zk
ef= ) —
,‘Zo k!’

as we saw already in formula (13), Section 2. n]
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Example 2 The functions cos z and sin z are entire and satisfy (sin z)' = cos z and

(cos z)’ = —sin z. Since sin(0) = 0 and cos(0) = 1, we obtain
. © . 22j+1
sinz = j;o (- 1ym,
z”
cos z = ,zb (- (2 TR o

Example 3 The function Log(l — z) is analytic in the disc |z| < 1 (see Example 10,
Section 1 of this chapter), and its derivatives are

ar _ (n—=1) B
a?(LOg(l—Z))——(l_z),,, n=12,....

Hence, for |z]| < 1,

Log(l —z)=—) z. o
n=1 N
Example 4 The functions sinh(z) and cosh(z) are defined by
sinh(z) = }(e* — e™%),  cosh(z) = {(e* + e7?).
From the expansion of e? above, we find that
© ZZk
cosh(z) = Z Rt
and
© 2k+1
silh(@) = ¥, Gk 11
Both series converge for all z, by an application of the ratio test. o

Example 5 The function f(z) = 1/z3 is analytic in the disc D = {z: |z — 1| < 1}; at
1, the value of the nth derivative of f is

in+ (=1, n=123..;

thus, in D,
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(n+2N(— 1)"%)-"

N —

1 3
Y
=1 +% z(—l)"(n+ 2)(n+ )@z — 1)

The series is valid for [z — 1| < 1. (m]

Theorem 1 has another significant implication.

Suppose that f is analytic on a domain D and, further, at some point
20€D, f®(zy) =0,k=0,1,2,.... Then f(z) = 0 for all z € D. 3)

The proof of (3) lies a little deeper than that of (2). To begin, let A be any disc
in D with center at z,; then by Theorem 1 and (2) of Section 2, f(z) is given by a
power series within A:

f@)= a(z — zo); a = , k=0,1,....
: k!

Thus the hypothesis that f®¥(z,) = 0for all k implies that f(z) = Oforall z € A.
Next, let L be a line segment in D from z, to another point z, in D. We shall show
that f and all the derivatives of f vanish at all points of L. We take note of the fact
that there is a positive number 6 such that each disc of radius J centered at a point
of L lies within D. (This is reasonably clear from a picture, such as Fig. 2.11, but a
careful proof depends on fundamental properties of real and complex numbers; we
shall not prove it.) Let Ay, A,, ..., Ay be a “chain” of discs of radius J centered at
points {, = 24, {;, ..., {yin L, and with the point {;in the disc A;_, for j = 1,2,...,
N, and z, € Ay (see Fig. 2.11).

Figure 2.11
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We know already that f = 0 at all points of the disc A,; hence, f®({,) = 0 for
k=0,1,...,since {, € A,. Thus, the power-series representation for f(z), which is
valid in A, shows that f = 0 at all points of the disc A,. Consequently, f®(¢,) =0
fork=0,1,...,since {, € A, and we learn that f = 0 in the disc A,. Continuing
in this way, after N steps we learn that f®(z,) = 0 for k =0, 1, ..., which is what
we wished to show. Hence, if f®(z,) =0for k=0, 1, 2,..., then f®(z,) =0 for
k=0, 1,... at any point z, that can be reached from z, by a straight line segment.
Since all points of D can be reached from z, by a polygonal curve consisting of a
finite number of straight line segments, we see that f(z) = O for all z € D.

The Order of a Zero

Suppose that f is analytic and not identically zero on a domain D, and f(z,) =0
for some z, € D. Thus, the power series for f centered at z,, is

f(Z) = al(Z —Zo) + az(z—zo)z 4o

We know from (3) that not all of the coefficients a, can vanish, so there is an integer
m > 1 such that

a,="=4a,,=0, but a,, # 0.
Therefore,
f@) = an(z — zo)" + Apir(z — 29" + -, @, #O0.
This means that
f®zy)=0 for k=0,....m—1, butf™(z,)#0.

In this case, we say that f has a zero of order m at z,. Furthermore, if we set

then g is actually analytic in D and g(z,) = a,, # 0. Clearly, g is analytic on D\{z,}.
To see that g is analytic near z,, note that the series

A + i1 (Z — Z0) + Qpea(z — Z0)* + -

converges in a disc about z, exactly because (z — z,)™ times this series converges to
f(2) in this disc. That is, if g(z) is the sum of this series, then (z — z,)"g(z) = f(z), and
we are done. We state this result formally, since it will be of considerable utility for
us.

If f has a zero of order m at z, then f(z) = (z — z,)"g(z), where g is
analytic in D and g(z,) # 0. 4
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Morera’s* Theorem

Cauchy’s Theorem, on which so much of the development of complex variables
depends, has a converse. This theorem, given precisely below, states that if the
integral of a continuous function f over every triangle in some domain is zero, then
Jf must be analytic in that domain.

THEOREM 2 Morera’s Theorem If f is a continuous function on a domain D and if

J flz)dz=0

for every triangle y that lies, together with its interior, in D, then f is analytic on D.

Proof The proof can be adapted almost word for word from parts of Section 3.
Let z, be a point of D and Q be the disc {z: |z — z,| < r}, where r > 0 is so small
that Q is in D. We shall show that f is analytic on the disc Q. Define

F(o) = I o,

where the integration is along the radius joining z, to z. We shall show that F is
analytic in Q and that F’ =f. It will then follow from (2) of this section that f is
analytic in Q, as well.

Let h be a small complex number; then

z+h
F(z+h) — F(2)=J Q) dg,

because the integral of f around the triangle with vertices {z,, z, z + h} is zero (Fig.
2.12). Hence,

_ z+h
FetD=FO) g J {f(() h f(Z)}

z

Suppose now that ¢ > 0 is given; choose § so small that

SO —f@) <e

if | — z| < §; this is possible by the continuity of /. Then for |h| < J, we have

jz {/O) — f@} dl| < elhl,

z

* Ciacinto Morera, 1856-1909.
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Z+ h
\
\
\

2

2

Figure 2.12

by the estimate (3) from Section 6 of Chapter 1. Putting all this together, we find

that
w_ﬂ” <¢ if |h| <6,
which implies that
lim w = f(2);
=0 h
that is, F is differentiable and F' = f. .

We now give four applications of the theorems of this section.
Application 1 Liouville’s Theorem
THEOREM 3 Liouville’s* Theorem If F is entire and if there is a constant M such that
|F(2)] < M for all z, then F is identically constant.
Proof Set g(z) = (F(z) — F(0))/z; g is then an entire function. For z, [z] = R >0,

we may make the simple estimate

|F(Re®)| + |[FO) _2M

R i0 < < .
lg(Re®)| < R R

Let { be a point of the plane, and assume R is so big that R > |{|. By Cauchy’s
Formula,

o) = — fl 9 4,

27i z|=Rz - C

SO

* Joseph Liouville, 1809-1882.
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1 2M 2znR

=M B L0 asR- oo
2t R R—[¢ asi=

19Dl <

Consequently, g = 0. Thus, F(z) = F(0) for all z. ]

Application 2  Analytic Logarithms
Suppose f is analytic and zero-free in a simply-connected domain D. Fix z, € D
and define

h(z) = %)—) dw,

where the integral is taken over any piecewise smooth curve in D from z, to z. Since
the integrand f’/f is analytic in D, the function h is analytic in D. As we have seen

in the proof of Theorem 2, the derivative of h is the integrand; in this case, h’ = f'/f.
Thus,

(€M @)Y = —h'(De ™™ (2) + e ()
=e"I[—f"(2) + f'(2)]
=0.

Consequently, e "?f(z) = ¢ for all z € D, where c is some nonzero constant. Setting
z = z, yields ¢ = f{(z,), since h(zy) = 0, so

f(@) = flzo)e"®.

That is to say, if f is zero-free and analytic on a simply-connected domain D, there
is an analytic function g with

e?? = f(z), zeD.
[Just set g = h — Log f(z,).]
Application 3 Flows (Continued)*
Suppose that f is a sourceless and irrotational flow in a domain D. We know from

the discussion in Section 2.1.1 that f is analytic on D. Even more, we learned there
that

jsz)dz=0 5

for all smooth closed curves y in D. It is simple to see from this that (5) also holds
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for all piecewise smooth closed curves y, as well. Equation (5) actually implies that
f is the derivative of some analytic function G on D. To see this, fix a point a in D
and define

6 = j 7o) dw,
r

where I' is any piecewise smooth curve from a to z. G(z) is independent of the choice
of T, since if I is another curve from a to z, then y = I' — I is a piecewise smooth
closed curve so

=jmedw=dew—J 70w dw.
y r r

Now an argument identical to the one employed in proving Theorem 2, Morera’s
Theorem, shows that G’ = f on D. Any function G with G’ = f is called a complex
potential of the flow f. We shall see in Section 4.1 of Chapter 3 that the complex
potential is intimately related to conformal mapping.

Application 4 Multiplication of Power Series
Theorem 4 of Section 2 asserts that the product of two convergent power series is
again a power series, and the coefficients of the product series may be obtained from
those of the original series by a rather simple rule. Theorem 1 of this section allows
us to give a simple proof of that result. Let

f(2)= Zo a,z" and g(z) = nﬁb b,z"

be the two series, each with radius of convergence at least R, R > 0. Then the
product h(z) = f(z) g(z) is analytlc in the disc {z: |z| < R}. Hence, by Theorem 1 of
this section, h has a power series expansion in this same disc

h(z)= 3, ¢,z lzl <R,
n=0

and the coefficients ¢, are given by (12) of Section 2.2:

H"(0)
n!

Cp=
However, the product rule for differentiation gives

HOQ) = 3 T SY0) 70

k)' k!



24 Consequences of Cauchy's Formula 133

Again using (12) of Section 2.2, we obtain f®(0)=(a,)k! and g""~®(0)= (b,_,) (n— k).
When we substitute these into the formula above for h™(0) and cancel the factorials,
we get

K0 =n! Y ab, -,
k=0

which is just what Theorem 4 of Section 2 asserted.

EXERCISES FOR SECTION 2.4

In Exercises 1 to 8, give the order of each of the zeros of the given function.

1. S—"z‘—f 2. (e — 1)? 3. (22 +z—2)>

4 (22 -4z + 43 5. z%(1 — cos 2) 6. Log(l—z), |z|]<1
. 2z __ z_ 4 . __z_.

1. e 3e 8 711

In Exercises 9 to 16, find the power-series expansion about the given point for each
of the functions; find the largest disc in which the series is valid.

9.
11

12.

14.
1.
16.
17.

18.

19.

20.

21.

z(e* — 1) about z, = 0 10. e about z, = 7i
23 + 622 — 4z — 3about z, = 1
2 z+2
T, 2bout zo 0 13 Z+3aboutzo 1

[Log(1 — z)]? about z, = O (first four terms)

sin nz about z, =

tan z about z, = 0 (first four terms)

Suppose that f is analytic on a domain D and has a zero of order m at z, in D.
Show that (a) f* has a zero of order m — 1 at z,; (b) f? has a zero of order 2m
at z,.

Use Theorem 1 to establish the Cauchy estimates:

!
If ™) < = max [f@), n=012,..,

T Jz=zo|=r

whenever f is analytic on a domain containing the set {z: |z — z,| < r}.

Use the Cauchy estimates (Exercise 18) for n =1 to give another proof of
Liouville’s Theorem by showing that the derivative of a bounded entire function
is identically zero.

Suppose that f is an entire function and Re f(z) < ¢ for all z. Show that f is
constant (Hint: Consider exp(f(2)).)

Suppose that f is an entire function and that there are positive constants A and
m with | f(z)| < A|z|™ if |z| > R,. Show that f is a polynomial of degree m or
less. (Hint: Use the Cauchy estimates (Exercise 18) for n > m and let r — 0.)
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22.

23.

24.

Let D be a simply-connected domain and f an analytic function on D that has
no zeros in D. Let y be a complex number, y # 0. Show that there is an analytic
function g on D with f = g”. (Hint: Use Application 2.)

Suppose that F is analytic in the region |z| > R, including at co (that is,
G(z) = F(1/z) is analytic for |z| < 1/R). Show that F can be expressed as a
“power series” in 1/z:

© 1
F@)= Y a2 lzZI>R,
k=0 2

and derive a formula for ¢, similar to that given in Theorem 1.
Use Morera’s Theorem and an interchange of the order of integration to show
that each of the following functions is analytic on the indicated domain; find a
power-series expansion for each function by using the known power series for
the integrand and interchanging the summation and integration.
1 dt 1/2
(a) on|z| <1 (b) Log(l — tz) dt on|z| <2
0 1 - tZ 0
n/2
(c) sin(z + t) dt, all z.
-n/2

Differential Equations in the Complex Plane*

25.

26.

27.

Find all solutions to the differential equation
f"(z2) + Bf(z)=0,  fis an entire function.

(Hint: Write f(z) = Y% a;z’ and solve for the coefficients a,, aj, ... in terms of
ap, a4y, and ﬂ)
Use the technique of Exercise 25 to give the solutions of these differential

equations:
@ f"@D-3f'@+2f(2)=0 a=1, a=2

2
®) Q- f@O+f@=0 z#0 fO=1 f(O)=0

© f"@+2f'AD)+ =0 a,=0, a =1
If f and A are analytic in a simply-connected domain D and

[@)=A4@)f@), zeD,

show that f(z) = C exp[Z, A(w) dw] for a constant C, where the integral is
taken over any piecewise smooth curve joining (a fixed point) z, to z. (Hint: Let

g(2) = epr:—J'z A(w) dw].

Show that (f(z)g(z)) = 0in D.)
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28. Use the result of Exercise 27 to give the solution to each of these differential
equations:
@ f'(z)—22f(z) =0
(b) f'(2) + €f(z) =0

1
© @)+ /@) =0

Bessel Functions*
29. Let v be an integer, v > 0. Show that one solution of the differential equation

2f"(2) + 2f'(2) + (22 = V*)f(2) = 0
is

22n+v

J(2) = ";) (- 1)"m‘

J, is the Bessel function of the first kind of order v.
30. Show that the Bessel functions satisfy the recurrence relation

Jv—l —Jys1 = 2J\:

2.5 Isolated Singularities

An analytic function f has an isolated singularity at a point z, if f is analytic in

the punctured disc 0 < |z — z,| < r, for some r > 0. The isolated singularities of an

analytic function play a large role in the applications of complex variables, including

analyzing flows and fields and computing definite integrals by means of the Residue

Theorem. We shall analyze isolated singularities in this section; the applications

will come in the next section, with the residue theorem, and in later chapters.
Three examples of isolated singularities are:

1. z, is an isolated singularity for f(z) = (z2 — z3)/(z — z,)
2. z, is an isolated singularity for g(z) = 7(z — zo)™*
3. z, is an isolated singularity for h(z) = exp(1/(z — z,)).

As these examples show, there are three possible modes of behavior for
|flwhen 0 < |z — z4| < 1:

| f(z)| remains bounded as z — z, (1)
lim | f(z)| = oo )

Neither (1) nor (2) holds. 3)
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We will explore the first two of these possibilities in this section; the third
we will not need. One characterization of such singularities is presented in Exercise
17.

Removable Singularities
Suppose first that (1) holds for f. Set
z2—2)0(2), O<|z—z4l<r
o) {( (@) |2 = 2l

0, z =2z,

The function g is most certainly analytic for 0 < |z — z,| < r, but it is also
differentiable at z, since

lim 9@ =9C0) _ iy o — 25)f(2) = 0.

z—zg Z— 2 z=zZ¢

(The last equality is because | f| remains bounded as z — z,.) Since g is analytic in
|z — z4| < r, we know that g has a power series valid for |z — zy| < r:

g(2) = by + by(z — z9) + by(z — zo)* + -
However, b, = ¢g(z,) = 0 and b, = g'(z¢) = 0, so
9(2) = by(z — 20)* + by(z — 20)* + -,
and hence,
f@) =b, + by(z—z5) + .

for 0 < |z — z,| < r. Set f(z,) = b,. Since the power series is valid for |z — zo| <,
we see that the hypothesis (1) actually implies that f'is analyticin |z — z,| < 7. When
(1) holds, we then learn that f can be extended to be analytic in the disc [z — zo| <.
In this case, z, is called a removable singularity for f.

Poles

Suppose next that (2) holds; there is no harm in assuming that r is so small that
| f(2)] > 1 for 0 < |z — z,| < r. Consequently, g(z) = 1/f(z) is analytic on the punc-
tured disc {z:0 < |z — z,| <r} and is bounded there: |g(z)| < 1. But then the
foregoing discussion shows that z is a removable singularity for g and g(z,) = 0,
because (2) holds. Let m > 1 be the order of the zero of g at z, and write

9(2) = (z — zo)"h(2),

where h is analytic on the disc {z: |z — z,| < r} and h(z,) # 0. Since g does not
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vanish in the punctured disc 0 < |z — z,| < r, neither does h. Consequently, the
function H(z) = 1/h(2) is analytic on the disc {z: |z — z,| < r}. This, then, leads to

1 1 HE)
= = 4
&= O = =z hD =z @

where H(z) is analytic on the disc {z: |z — z,| < r} and H(z,) # 0. Thus, if (2) holds,
f has predictable behavior near z,, and, in particular, | f(z)| grows to infinity as

z = z,, just like some power of 1/|z — z,|. In this case, we say that f has a pole at
z,. The order of the pole of f is the integer m that is the order of the zero of 1/f at z,,.

Essential Singularities

If (3) holds, then z, is termed an essential singularity of f. Information on the
behavior of f near an essential singularity is contained in the exercises at the end of
this section.

The Residue at z

We note here the simple but significant fact that if f is a function analytic in the
punctured disc 0 < |z — z,| < r, then the value of the integral

1
2ni

fQdl &)

[£=zol=s

is the same for all 5, 0 < s < r. The proof is easy; if 0 < s; < s, < r, then the region
0 < |z — z4| < r is divided into four sectors by the horizontal and vertical lines
through z, (Fig. 2.13).

Asindicated in Figure 2.13, the integral over | — z,| = s, (oriented clockwise)
plus the integral over |{ — z,4| = s, (oriented counterclockwise) can be broken up

U

AW

—_—
% 5 $

h

AW

Figure 213
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into the sum of four integrals (one in each sector); the line integrals over the interior
line segments cancel. The integral in each sector is zero, by Cauchy’s Theorem. Thus,
the value of the integral in (5) does not depend on s. The value of the integral in (5)
is called the residue of f at z,, and we denote it by Res(f’; z,). Thus,

1
Res(f; zo) = EI J@©de. &)

[§=zol=s

The residues of a function with only isolated singularities play an important role in
complex variables.

The Computation of Residues

Although (5') is the definition of the residue of f at z,, it generally does not provide
the most effective way to compute it. We set out here the most important case—
when f has a pole at z,. The computation is based on (4):

H(2)
(z - Zo)m.

f@@) =

Since H is analytic on the disc {z: |z — z,| < r}, it has a power series expansion valid
there:

H(z) = z alz = zo), |z —zo| <.
k=0

In (4), replace H with this series, and carry out the division for z # z,. This yields

—_C% ..., fm
fe)= (z —zo)" o (z — zo)

+Cpm + cm+1(z - ZO) + (6)

Next, replace f in (5) with this expression, and then interchange the summation and
integration. Finally, recall from Exercise 16, Section 6, Chapter 1, and from Cauchy’s
Theorem, that

1
2mi |lz—zo|=s

ifj=—1
if j is any other integer.

(z—zoYdz= {(1)

This then yields the conclusion

H™ D (z,)

(m—-1" @

Res(f; z0) = cp-1 =
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That is, to find the residue of a function f which has a pole at the point z,, write the
expansion of f in positive and negative powers of z — z, in the form (6). This may
always be done according to the presentation under the topic “Poles.”

The residue of f at z,, is the coefficient of (z — z,)™" in the
expansion (6). 8)

In the examples that follow, we show several instances of how this is accomplished.

Example 1  Find the residue of f(z) = (z* + 3z — 1)/(z + 2) at its pole.

Solution The pole of f is at z, = —2. Expand the numerator in powers of z + 2:
22+3z—-1=@2+2*-(z+2)-3.
Therefore, by (8), Res(f; —2) = —3. o

Example 2 Find the residue of g(z) = e*/(z — 1)* at z, = 1.

Solution Expand e” in powers of z — 1:

e’ =ee’ ! =e<1 +(z— 1)+(z— b’ +(Z_ b? +)

2 3
Thus,
e e e e e
90= et e Tt DT
SO

Res(g; 1) = -. o

N e

Example 3 The function Log z is analytic on the domain obtained by deleting the
ray (— oo, 0] from the plane. Find the residue of h(z) = (Log z)/(1 + z2)? at each of
its poles.

Solution  h has a pole of order 2 at i and at —i. We work first with z, = i. We may

write h as
_ 1 Log z
h(z) = {(z _ i)z}{(z n i)Z}'

The second factor is analytic near i. According to (7), the residue of h at i is the value
of the derivative of the second factor, (Log z)/(z + i)?, at z, = i. This is easily
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computed to be n/8 + i/4. Therefore,
i
Res(h; i) = -
es(h; i) = + 2
Similarly,

Res(h; —i) = o

oo| 3
A_l -

Example 4 Suppose that F and G are analytic functions on the disc {z: |z — z,| <
ro} with G(zo) = 0 but G'(z,) # 0. Show that

F F(zo)
Res(G, o) Glzo)

Solution Write H = F/G; now G(z) = (z — z,)P(z), where P is analytic on the disc
{z:]z — z¢| < 1o} and P(z,) # 0. Indeed,

P(zy) = lim P(z) = lim ZG(Z)
z—Zg z2zp 4 T 40
G(2) — G(zo)

= lim
z—zo (Z - zo)

= G'(z,).

We may write

F(z) 1 F(z)
He )—m_(z—z(,)m'

The function F/P is analytic on a disc centered at z,, and its value at z,, is the residue
of H at z,, by (7). Thus,

F\_Fo) Fizo)
R“(G’z") Pzo) ~ G(zo) .

Example 5 Find the residue of r(z) = (z + 1)/(z? + 4)(z — 1)* at each of its poles.

Solution r has poles of order 1 at —2i and 2i and a pole of order 3 at 1. By
Example 4, the residue of r at —2i is the quotient of the value of the numerator at
—2i with the derivative of the denominator at — 2i. This is easily computed to be

24 + 7
500 °

Res(r; — 2i) =

Likewise,
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24 -7i

Res(r; — 2i) = 500

The pole at 1 is of order 3, so by (7), the residue of r at 1 is the value at 1 of one-half
of the second derivative of (z + 1)/(z2 + 4). This works out to be

—-12
Res(r; 1) = —IE (m]
Example 6 Find the residue of cot az at z, = 0.
Solution We know that
cot(az) = c?s(az)
sin(az)
and
sin(az) = (sm(az)) z,
z
where lim, _,, (sin az)/z = a. Hence, the residue of cot(az) at z, = 0 is
cos(az)
Res(cot(az); 0) = value of smiaz) atz=0
1
=-., a
o

Laurent* Series

We know that a function that is analytic in the disc |z — z4| < R may be expanded
there in a power series and that, conversely, if a function has a power series valid in
the disc |z — z,| < R, it is analytic in this disc. But what about a function f that is
analytic only in the punctured disc 0 < |z — z| < R or, even worse, analytic only
in the annulus 0 < r < |z — zy| < R? We shall show here that something almost as
good as a power series can be given to represent f(z), r < |z — z5| < R. Namely, we
shall show that

f@ = fi(@ + f,(2), r<|z-—z <R,

* Pierre Alphonse Laurent, 1813-1854.
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where f; is analytic on the disc |z — z4| < R and f, is analytic on the region
r < |z — z,|, including at co. f; has a power series in the variable z — z, which is
valid for |z — z,| < R, while f, has a power series in the variable (z — z,)™! which
is valid for r < |z — z,| (see Exercise 23, Section 4). Consequently,

fe)= ki::o a(z — zo) 2 b(z — z,) k,

or

@)=Y alz -z, a,=hb, k=12,..., r<l|z—zy <R

k=—c0

This representation of f is its Laurent series. Our discussion will include formulas
for the coefficients a,. In one special case, we shall show that these coefficients are
given in terms of the residues of f.

Fix a point z in the annulus (even if r = 0, we use this terminology), and choose
r, and R, with

r<r,<|z—zol <Ry <R

Let I be the circle |w — z4| = R, (oriented counterclockwise), and let y be the circle
lw — zy| = r, (oriented clockwise). Now consult Figure 2.14. The closed curve
beginning at P and consisting of " followed by the horizontal segment PQ, followed
by 7, and ended by the segment QP surrounds z. We may apply Cauchy’s Formula,
therefore, and write

1
PR O J 0,

21[i rW_Z

(Note that the line integral over PQ is cancelled by that over QP.) For we I', we

Figure 2.14
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may write
1 1 1 1
w—z W—2z0)—(z2—2) W Zo|, _Z=2%
W_ZO

z—zo)

0
- § Lonn

The series is absolutely convergent, since

zZ — ZO < 1
W - Zo
In an entirely similar way, we obtain
1 — _ i (€ = zo¥
{2z  HG-z)"

Z_ZO

In the integral representation of f given before, replace 1/(w — z) and 1/({ — z) with
the series obtained above. After interchanging the summation and integration, we

find that
& 1 fw)
f@ = ,‘Z (z = z0)" {27:1 L (W — zo)F*! dw}

> (z = z) ™ {i_n_ij SO = zoY dC}

= f1(2) + f2(2)-

The integral ||,,—, s f(W)(W — zo)* dw, k =0, +1, £2, ... is independent of s for
r < s < R, since the integrand is analytic on the annulus r < |w — z,| < R. Let

1 S

i k+1
270 Jj—zg=s (W — 2)**

a, = k=0, +1,.... 9)
Then

-1

fie) = ki::o alz — zo)ka f(2) = . Z a(z — zo)k

=-0w
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are analytic on the sets {z: |z — z,| < R} and {z: |z — z,| > r}, respectively, and we
obtain the desired formula:

fO=f@+A@=Y a-z) r<lz—zl<R  (10)

The Laurent series can, of course, be computed using (9). But in at least one
important case, it may be found by an alternate, and usually easier, technique.
Specifically, if f is analytic in the punctured disc 0 < |z — z4| < R and has a pole of
order m at z,,, the Laurent series for f has already been found in (6), although with
different notation:

c Cpi
f@) ==+ + "t e+ Cpaa(Z — 2o) +
(z — zq) z—2z

0<|z—zy| <R,

where we have written H(z) in its power series, -

[

H(z) = z alz — zo)k,

k=0

which is valid on the disc |z — z4| < R and where ¢, # 0. All that remains to do is
to rewrite the coefficients in the manner a, = ¢;,,,, k= —m, —m + 1,.... When
a function f has a pole at z, the sum of the terms involving negative powers of z — z,
is called the principal part of f at z,. This is exactly P(1/(z — z,)), where P is a
polynomial of degree m with constant term equal to zero.

Example 7 Find the principal part and residue of f(z) = (z3 + z%)/(z — 1)* at
Zo = 1.

Solution We expand z3 + z2 in powers of z — 1:
234 22=245z-1)+4z—- 12 +(@z—-1)>

Division then yields the Laurent series for f:

2 5
f(Z)=(z_—1)2+z—_—1‘+4+(z—1).

The principal part is 2(z — 1)”2 4+ 5(z — 1)7!, and the residue at 1 is 5. o

Example 8 Compute the Laurent series at z, = 0 for f(z) = (sin z)/z>.

Solution We use the expansion of sin z about z, = 0 and then divide by z3.
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PAR
sin z Y + 51
f(Z) =53 = )
| S
=z—2—§+§—"', z#0.
The principal part is 1/z2, and the residue at zero is 0. o

Example 9 Find the first five terms of the Laurent series about z, = 0 for the
function g(z) = cot z.

Solution  The function cot z is a quotient:

COS z

g(z) =cotz =——.
sin z

sin z has a zero of order one at z, = 0, and cos 0 = 1. Hence, g has a pole of order
one at the origin. This means that the Laurent series for g has the form

a_
g(z)=71+a0 +a,z+a,z% + -

To find the coefficients a,, we write (sin z)g(z) = cos z, multiply out the resulting
series, collect equal powers of z, and equate coefficients. Thus,

3

5
{sin z} {g(2)} = {z—%+%—'“}{af+ao + alz+~~}

a_ a
a_, +ayz + (a1 - 3—|’>z2 + (az - 3—?)23

A %-1) e
+<a3—§+-§>2 +

z o
nta”

=cosz=1-—

After equating coefficients of equal powers of z, the resulting equations are

a_ 1 a
a_l = 1, ao = 0, (al - 3_'1> = _5, (a2 - _3%> = 0,
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which may be solved successively for a_,, a,, a,, a,, and aj, yielding

1 1
ay=1  a=0 a=-3 a=0 ad a=-77
Hence,
1 1 1Y ,
=— =1 - —_ — cen 0 .
cot z p (3>z (45)z+ , <l|z|<=m =]

Example 10  Find the Laurent series about z, = 0 of h(z) = z cos(1/z).

Solution 1In this case, the origin is not a pole but rather an essential singularity.
Nonetheless, the Laurent series is rather easy to find. We may, of course, use (9).
However, we also know an expansion for cos w valid for any complex number w
(see Example 7, Section 2). In this expansion, just replace w with 1/z. This will give

SEOOROORE
OGO

Example 11 Find the Laurent series on the annulus 1 < |z| < 4 for the function
R(z) = (z + 2)/(z% — 5z + 4).

Solution The rational function R has two poles each of order one, the firstatz, =1
and the second at z, = 4. The Laurent series of R may be found by writing

R(z) = Ry(2) + R;(2),

where R, is analytic for |z| < 4 and R, is analytic for 1 < |z|. In this case, this
amounts to a partial-fractions decomposition of R, a procedure familiar from
calculus:

_z+2_A+B
Tz-Diz—-4 z+4 z—-1°

R(z)

The unknowns A and B are found by clearing the denominators:
Az—1)+Biz—4)=z+2.

This yields A = 2, B= — 1. We now employ the geometric series and obtain
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z+2 2 4 -1
z-1z—-4 z—-4 z-1

= Zakzk’
with
1\
(——)4 K k=0,1,2,....
a, = 2 o
-1, k=-1,-2,-3,....

We return to our discussion of the principal part of a function with poles.
Suppose that f is analytic on some domain D except for a pole of order m at a point
zy of D. Then f may be written as

= () s

o

where P is a polynomial of degree m with zero constant term and g is analytic on D
and also at z,. P(1/(z — z,)) is the principal part of f at z, and is analytic on the
whole plane except at z,; it is also analytic at co. Repeated applications of this
procedure produce the following result.

If f is analytic on a domain D except for poles at the points z,, ..., z, of
orders my, ..., m,, respectively, then

1 1
f(z)=P,(z_21)+"'+P,,(z_z>+g(z), zeD, (11)

where g is analyticon D and Py, ..., P, are polynomials of degreem,, ...,
m,, respectively, each with constant term equal to zero.

The Laurent Series of a Rational Function in Powers of zand 1/z*

The Laurent series of a rational function is important in applications, for instance,
in connection with the Z-transform discussed in Section 5 of Chapter 5. Here we
discuss one particularly simple but useful case. Let R be a rational function all of
whose poles in the plane have order one and which has no pole at the origin. After
an initial long division, we can write

R(z) = S(z) + i)

0@’
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where S, P, and Q are polynomials and the degree of P is strictly less than the degree
of Q. Since S is already expressed as the sum of powers of z, we concentrate on
expanding f = P/Q. Here we shall show the following.

Let f be a rational function all of whose poles z,, ..., zy in the plane have
order one and which has no pole at the origin and which is zero at co.
Suppose that no pole of f lies in the annular regionr < |z| < R. Then

f(2) = -Z az* for r<|z|<R,

where
; zF! Res(/; z)), k< —1 (12)
ak = |zj <r
- ; z;* ' Res(f; z), k=0 (13)
|z;|>R

The chief tool to establish (12) and (13) is (11). In that formula, we see that
since f is rational, so must g be. However, g has no poles and has the value zero at
o0; hence, g is identically zero. Let z,, ..., z,, be the poles of f in the disc {z: |z| < r},
and let z,,,,, ..., zy be the remaining poles of f, which necessarily lie in the region
{z:|z] > R}. From (11), we see that f = F; + F,, where

> and Fz(z)=if}( L )

j=1

N

Z_Zj

Consequently, F, is analytic on the disc {z: |z] < R}, and F, is analytic on the region
{z:|z| > r}, including at co. Thus, f = F, + F, is the Laurent series of f in the
annulus {z: r < |z| < R}. What remains, then, is to find the explicit formula for the
coefficients g, in the Laurent series

fl@)= i a,z*.

This result may be obtained either by the use of the Residue Theorem or by a more
elementary technique. Here we shall follow the latter path; the former is left as an
exercise.

Since each of the poles of f has order one (by assumption), the polynomial P;
in (11) has degree one. Also, P; has no constant term, so

b
Py(z) = szZfa b; = Res(f; z;).
j

For j=1, ..., m, the point z; satisfies |z;| < r. Hence, using the geometric series
for
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1
b
_4
z
we obtain
1 1 1 °Z°: zf
z-z oz, g o zk
z
In an entirely similiar manner, for j =m + 1 N,
1 -1 1 © zk
=5 5z o zf
Zj

This gives (12) and (13) after summing on j.

Example 12 Find the expansion R(z) = (z* — 3z2 + 3)/(z — 1)(z — 3) in powers of
z and 1/z in the regions (a) |z] < 1;(b) 1 <|z| < 3;(c) |z| > 3.

Solution  The initial long division gives R(z) = (z + 1) + z/(z — 1)(z — 3). We con-
centrate on expanding f(z) = z/(z — 1)(z — 3).

(@) In this case, r = 0, R = 1, and there are no terms to use in (12), so only (13) is
used, and we obtain

[ ST

o 1 31
.z S k>0.
(z—1)(z—3) =L @ [ 2t 3"+1]’ 0

(b) Here,r =1 and R = 3; thus, directly from (12) and (13),

k>0.

1
]2

ey e 31
2

3k+l 4

(c) Here, r = 3, and R does not enter the picture (or, if you prefer, is ), so there
are no terms to use in (13). Thus,

= 1 3 k—1
Z——_M_—_ Za,‘z, a,‘——2 23 kS—l m]

You may recognize that this technique for finding the Laurent series is
really the partial-fractions technique, familiar from calculus.
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EXERCISES FOR SECTION 2.5

In Exercises 1 to 6, locate each of the isolated singularities of the given function and
tell whether it is a removable singularity, a pole, or an essential singularity (case (3)).
If the singularity is removable, give the value of the function at the point; if the
singularity is a pole, give the order of the pole.

L.

4.

e’ —1 z? 3z“—222+1
z " sin z oz —1)
2z + 1 e —1
T cot mz S 6.e—2;—_—1

In Exercises 7 to 13, find the Laurent series for the given function about the indicated
point. Also, give the residue of the function at the point.

7.

10.

11

12.

13.
14.

15.

16.

17.

e’ —1 z? sin z
—; zo=0 8. ; zo=1 . — Zg=T
z? 0 22 -1 ° (z —n)? 0
z S
—; 2o = 0 (four terms of the Laurent series)
(sin z)
az+b d
e Zo= ——, c#0
cz+d ° c
1 .
. ; 2o = 0 (four terms of the Laurent series)
e’ —1
1 .
—_ zo = 0 (four terms of the Laurent series)
1 —cosz
If f is analytic in |z — z,| < R and has a zero of order m at z,, show that

Res (?, zo> =m.

If f is analytic in 0 < |z — z,| < R and has a pole of order ! at z,, show that

Res (j%, zo> = -1

flo) = g(2)

(z— zo)l’

(Hint: Write

where g is analytic in |z — z4| < R and g(z,) # 0.)

Suppose f is analytic in |z — zy| < R and has a zero of order m > 1 at z,. If g
is analyticin 0 < |z — zy| < R and has a pole of order [, | < m, at z,, show that
fg has a removable singularity at z,.

Let f be analytic in 0 < |z — zy| <r and suppose that f has an essential
singularity at z,. Let w be any complex number. Show that



18.

19.

20.

21.
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g(z) = zeD,

1
f@)—w’

is not bounded in any punctured disc 0 < |z — z,| < &. (Hint: if g is bounded,
then show that f has a pole or a removable singularity at z,,.) Conclude that the
range of f gets arbitrarily close to all points in the complex plane. How does
this differ from the situation in (1) and (2)?

Here is an alternate proof that

1
2mi

f(z) dz = Res(f; zo)

|lz=zo|=s

is independent of s. Assume z, = 0 with no loss of generality.
(a) Show that

%{f (se™)e™} = ie"f(se™) + ise*f"(se").
(b) Show that

d 1 2 ity ,it 1 2 it ’ ity ity it
T sf(se*)e™ dt =3 . [f(se™) + sf”'(se™)e™]e" dt.

ds 21 J,

(c) Conclude from (a) and (b) that

d { 1 f@2) dz} = 517; fzn (% {e"f(se")} dt.

ds | 2mi |zl=s 0

Finally, calculate that the integral on the right has the value 0.
Suppose that the Laurent series Y 2, a,(z — z,)" converges for r < |z — zo| < R
and

Y az—2z)"=0, O0<|z—z5|<T.

hi*

Show thata, =0,n=0, +1, +2,.... (Hint: Multiply the series by (z — zo)™
and integrate around the circle |z — z,| =5, r < 5 < R with respect to z. The
result must be zero, but it is also a,,-,.)

If f is analyticin 0 < r < |z — z4| < R, show that its Laurent series is uniquely
determined.

If F is analytic on 0 < |z — zy| < R and if there is an analytic function G on
0 < |z — z5] < R with G’ = F, then

Res(F; zy) = 0.
(Hint: Use (5).)
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22. Find the Laurent series about z, = 0 for the following functions, valid in the
indicated regions.
(@) e#in0 < |z|] < ©

(b) z* sin(—1—> in0 <|z| <o

in2<|zl <o

© z—1 Tzt

(d) exp(z +§> in0<|z| <

1
(e) zcos(; in0<|z| <

23. Use equations (12) and (13) to find the Laurent expansions of the following
rational functions in powers of z and 1/z in the indicated region(s).

2
(@) f(z)=%§inl<|z|<2andthenin2<|z| <o

2
—4
(b) f(z)=%inlzl <1landthenin1 < |z| <3
©) fz)= 2+ 1 in2< |z <3andthenin$ <|z| < o

z—=2(z-3)(z-9)
24. Let f be analyticin 0 < |z — z,| < r, and let

D=3 afz—z)

be its Laurent series. Show that
(a) z,is a removable singularity for fif and only ifq, = Oforn = —1, —2,.
(b) z, is a pole of order m > 1 for f if and only if a_,, # 0 but a_, = 0 for all

n=zm+ 1.
(c) z,is an essential singularity for f if and only if there are infinitely many a_,,
n > 0, that are not zero.

Singularities at co*

Suppose that f is analytic for |z| > R; set g(z) = f(1/z) so that g is analytic for
0 < |z|] < 1/R. We classify the nature of the singularity of f at co by that of g at
z = 0; for instance, if g has a pole of order m at 0, we say f has a pole of order m at
oo. The Laurent series for f about o is just the Laurent series for g(z) = f(1/z) about
0, with z replaced by 1/z.

25. Show that f has a removable singularity at oo if and only if | f(z)| is bounded
for |z| > R,.
26. Show that f has a pole of order m at oo if and only if

h(z) = %

has a removable singularity at oo and h(c0) # 0.
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27. Classify the nature of the singularity at oo of each of the following functions. If
the singularity is removable, give the value at co. If the singularity is a pole, give

its order; in each case find the first few terms in the Laurent series about co.
2

2 1 z
(@ 32 +4 -~ (b (1 -2)(z—4) © —%
d) (=22 =2z+3)7" (¢) €7 (f) e

1 3 W si 1 R oy z=2n
(8 Stz (h) sin— @) "Zb(— ) @)1

Bessel Functions (Continued)*
28. Let u be a complex number and let

G(z; u) = exp [(g) (z — %)], z#0.

Show that G(z; u) is an analytic function of z for z # 0 and has an essential
singularity at z = O (unless u = 0).
29. Let

Gz u)= 3, Jyu)", (14)

be the Laurent series of G(z; u) about the origin, where the coefficients {J,(u)}
are given by (9). In (9), choose s = 1 and conclude that

2n
Ju(u) = % f cos(u sin 6 — n6) dé. (15)

o

(Hint: Prove (15) for u real by showing that J,(u) is real if u is real.)
30. Multiply out the series for exp(uz/2) and the series for exp(—u/2z) and then
collect equal powers of z. Conclude that

un 0 (_ 1)ku2k

B =% 2 i 1 1!

for n > 0. Compare this to the conclusion of Exercise 29, Section 4.
31. Show that J_,(u) = (— 1)"J,(u). (Hint: Replace z with — 1/z in the Laurent series;
then change the summation index n to —n and compare series.)

2.6 The Residue Theorem and Its

Application to the Evaluation of Definite Integrals

The Residue Theorem is of great theoretical and practical importance. It allows us
to compute with ease certain definite integrals, which at first glance seem to be very
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difficult and which are surely not solvable by the techniques of elementary calculus.
At the same time, it provides the key in unlocking the secret to counting the zeros
of an analytic function. In this section, we concentrate on its application to the
evaluation of definite integrals. Later sections will contain other applications.

THEOREM 1 The Residue Theorem Suppose that f is analytic on a simply-connected domain
D except for a finite number of isolated singularities at points z,, ..., zy of D. Let y
be a piecewise smooth positively oriented simple closed curve in D that does not
pass through any of the points z,, ..., zy. Then

j f@)dz=2mi Y Res(f;z),

zy inside y

where the sum is taken over all those singularities z, of f that lie inside y.

Proof Lety,, ..., yy be disjoint positively oriented circles centered at z,, ..., zy,
respectively, chosen to be so small that the discs they bound are disjoint. We can
apply Green’s Theorem to the function f on the domain Q whose boundary is y and
Y1, .., Yx- Since f is analytic on Q, the value of the line integral is zero. Therefore,

0=Jf(z)dz— i J fz) dz.
Y k=1 Jy.

However, j',k f(z) dz = 2mi Res(f; z,). This finishes the proof. ]

The remainder of this section is devoted to uses of the Residue Theorem in
the evaluation of definite integrals.

Integrals of Rational Functions
It is convenient to isolate here several simple facts about a polynomial
pE) =a,z"+a,,z2" '+ +a;z+a, a,#0.

If p(a) = 0, then p(z) = (z — a)q(z), where q is a polynomial of degree

n—1 (1)
There are at most n distinct points o, ..., d, in the plane at which
p(a) = 0. @

For |z| = R, R large, we have the estimate
1 n n
ila,.lR < |p(@)| < 2|a,|R™ 3)

The proofs of these three facts are all easy. For (1), expand p in powers of (z — a);
this yields
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n )
p(2) = g, cjz — ay, ¢ = P jga)

s j=0,...,n
However, ¢, = p(a) = 0, so
p@)=ciz—a)+ -+ c,(z — a)
=@z -a)fe; + - +eplz —af™']

= (z — @)q(2).

Next, (2) follows from (1), since each time a zero is divided out, the degree of the
quotient goes down by one. Finally,

lim ”(f) =la,| > 0.

oo | Z
Consequently, for |z| = R large enough,

1

Lia) <|P2| < 21a,)

2 z

which is exactly (3).
The following proposition shows how the Residue Theorem is applied to
evaluate controls of certain rational functions.

PROPOSITION Suppose P and Q are polynomials that are real-valued on the real axis and
for which the degree of Q exceeds the degree of P by 2 or more. If Q(x) # O for all
real x, then

© P(x) . (P >
——dx =2ni) Res|{—;z],
) N
where the sum is taken over all poles of P/Q that lie in the upper half-plane
U={z:Imz>0}.

Proof Let y; be the semicircular contour in Figure 2.15. There is no loss of
generality in assuming that Q(z) # O for z € yg. On y, when R is big, (3) gives

1

-R R
Figure 2.15
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P(2)

2]a,|R"
—I <
2(2)

= 41, |R™ =

an

b

-2

since m > n + 2. Hence,

P(z) ‘ 2R
—dz[ < C—--0 as R — oo.
LM 00) R? -

y>0

The result now follows from the Residue Theorem. [ |

Example1 Compute

0 x2
I_w 1+ x?)(4 + x?) dx.

Solution  The polynomials are F(z) = z and Q(z) = (1 + z?)(4 + z?), respectively,
and Q has zeros at z, = i and z, = 2i in U, the upper half-plane. Now

P(z) z2

0@ (—i)z+i)z—2i)z+2i)

Example 4 of Section 5 then gives

P\ -1 _:1
Res(@”)—m_ 6

and

Hence,

? u dx=2mi| Ly L[ o
—_— =2ni| — —_ = —.
e L+ )@ + X9 6 T3 |73

Example2 Compute

@ dx
co (T + X2

Solution Here P(z) = 1 for all z and Q(z) = (1 + z%)? = (z + i)*(z — i)>. Hence, Q
has just one zero in the upper half-plane U, at z, = i, but that zero has order two.
According to (7) of Section 5, the residue of 1/Q at z, =i is the value at i of the
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derivative of g(z) = (z + i)~ 2. This is easily computed to be 1/4i. Consequently,

© 1 (1 T
J'_w mdx = 27”(5) = 5 =}

Integrals over the Real Axis Involving Trigonometric Functions

For integrals of the form [, R(x)sin x dx or [, R(x) cos x dx, where R is a
rational function that is real-valued on the real axis, we apply the Residue Theorem
to the function f(z) = R(z)e* and, at the end of the computation, take the imaginary
or real part of the resulting complex number.

Example3 Compute
®  cosx
J 3 dx, oa>0.
o Xt 4
Solution  Set
eiz
22 +a?’

fe) =

S has a pole at io in U with residue

a

. e
Res(f; 1a)=m.

Let y, be the contour in Figure 2.15, so

ne: = 2mi (%) = j § f(2) dz

R eix n
- d . Re®)Re™® do.
j_kx2+a2 X+1jo f(Re*)Re"™ db

The integral over the semicircle can be estimated by

n e—R sin 6

Rz_az

do

J f(Re“’)Re“’d()‘sR f
0 °
nR

<R2 a2—>0 as R — oo.

Thus,

e * ®  cosx [® sinx
= > dx +i —— dx.
a —o X+ a X+ o

= a0

The integral with sin x is zero since the integrand is odd; hence,
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o0 —a

COS X e

——dx =n—, oa>0. u]
2 2

S a

Example 4 In the foregoing result, replace x with fx and set § = a/f. This results
in the formula

J e iﬂ;z dx = (%) e, B6>0. ()

Other integral formulas may be derived formally from (4). For instance, differentia-
tion of both sides of (4) with respect to B yields

j XS0X e, B6>0. )
(The formalities are justifiable but will not be shown here.) A further differentiation,
this time on 9, gives
®  Xxsin Bx A
J_w oy o = (25>e ‘

Another formula comes from (5) by taking f = 1 and letting 6 — 0:

o s
sin x
dx = m.
x

(Note: This last formula is only a formality at this point.) o

In these applications of the Residue Theorem, we often need to estimate the
magnitude of the line integral of e over the semicircle z = Re®®, 0< 0 < 7. To do
this, we note that

|eiz| = eke(iz) = e-RsinO

Further, elementary calculus shows that sin 6 > (2/n)6 for 0 < 6 < n/2. Hence, for
0<0<n/2,

|eiz| = e—RsinO S e—(2R/n)0.

Therefore,
. 4 ry i y T rl n/Z .
j e dz| = J e'R“{Re'® dﬂi <R J e Rsin® g9 — 2R J e Rsind 4g
K2 : : :

n/2
<2R J e CRMOdo = n(1 — e ®) < 7.
1]
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j e dz
lzI=R

Imz>0

The inequality

<mn

is often called Jordan’s Lemma.

Example 5 Compute the value of

J' ® x3sin x

—— > dx.
—o X*+ 16
Solution We set

23

z* + 16

f2) = €”

and integrate f over the contour in Figure 2.15. The function f has poles in U of
order one at \/i(l + i) and ﬁ( —1 + i). The residues are

Res(f; \/5(1 +i)) = %exp[ﬁ(—l +1i)]

and

Res(f; /2(—1 + i) = —;;exp[ﬁ(—l +1i)]

By Jordan’s Lemma (or, better, its proof), we can make the estimate

J f(z)dz
|lz|=R

Imz>

nR3
R*—16

R3

<
R*-16

-0

T

J' e-RsinoR do S
o

as R — o0. Thus,

® x3sin x . .
J_ T dx = Im{2ni[Res(f; \/2(1 + i)) + Res(f; \/2(—1 + i))]}

= e V? cos(\/f). o

Example 6 Find the value of

© sin? x
5— dx.
x

o

Solution We use the identity 2 sin? x = 1 — cos 2x = Re(l — €%*). Set
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1

Figure 2.16

1 — 2iz
f(Z) = 2e

z

and take y to be the contour in Figure 2.16.
The integral of f over y is zero, by Cauchy’s Theorem. On the semicircle
z = Re", 0 < t < 7, we may estimate f by

. 1 +e—2Rslnt 2
[f(Re™)| < — R < X

so that the integral over the large semicircle can be bounded by

2
S—R—ZZnR—>0 as R — oo.

f(z)dz

|z|=R
zey

Furthermore, near z = 0, f(z) has the expansion

Y
1 - [1 +2iz+(2'22,) +]

fe) = r
—2i 4
S . ?lz +
Hence,
0 . s
J f(ee*)ice™ dt = —2rm + (terms that go to zero as ¢ — 0).
Thus,

-R

Rl_eZix el — 2ix
0=f 5 dx+J f dx —2n + E,
e X X
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where E - 0 as R — o and ¢ — 0. Take the real part of the above expression:

R{ _ —e1 _
= J 1~ cos2x z‘z’s 2 et J 1= cos2x zfs 2X Ix + Re(E).

-R

Now let R = oo and ¢ — 0 and recall that 1 — cos 2x = 2 sin? x. The final result,

then, is that
T © ['sin? x
— = j [ 5 ] dx. (]
2 o x

Integrals of Trigonometric Functions over [0, 2x]

Integrals of this type were discussed once already, in Section 3 of this chapter, in
connection with Cauchy’s Theorem. Here we can approach them more generally by
allowing multiple poles or poles of order two or more.

Example 7 Compute the value of

= g
o 2+cos?f’

Solution With z = e, it follows that df = dz/iz and cos 6 = 4(z + (1/z)). This gives

dz

J*zn 4o 1J‘
P 29 5
o 2+cos’f i Iz|=12(2+%(22+2+zl2)>

1 4z
=l | 4l
7t{21ti lelﬂ z* +10z% + 1 dz}

The rational function

4z

R@)=——— 2
@)= T2+ 1

has two poles, each of order one, within the circle |z| = 1, at z; = i/ S — 2\/3 and
z, = —iv5— 2\/3. The residues are, respectively,

4z, 1
Res(R; z,) = -
SRz = 720, ~ 7+ 5

1
26
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and
4z, 1
R' = =
Res(R; z,) 4z3 +20z, z2+45
_ 1
2\/3 '
Hence,

JZ'L_% L+L}
o 2+cos?20 2\/6 2\/8

2n
=, o

NG

Integrals Involving log x or Fractional Powers of x
Example 8 Find the value of

® logx
L T+xp
Solution We take
log z
o=y

on the domain D obtained by deleting the negative imaginary axis; log z is de-
termined on D by requiring the imaginary part to have values in the interval
(—m/2, 3n/2). We integrate f around the contour in Figure 2.16, for R > 1 and
0 < ¢ < 1. f has a single pole at i, and it is of order two. Hence,

Res(f’; i) = value of (~10g—22) atz=i

(z+1)
_(n+2i)
==
Thus,
log 2 dz=_—n+ﬁ.

L@+ 1)? 2 4
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On that part of y that lies on the circle |z| = R, f can be estimated by

2logR

RS P’ = R
/(@) < ®R-1)7 |z
)
2log R
(z)dz| < nIR—5—"——5 -0 as R - .
|z|=Rf (R2 - 1)2
zey
Furthermore, on that part of y that lies on the circle |z| = ¢, we estimate f by
2 log ¢
/@)l < ok |z| =e.
Thus,
-21
f(z)dz sne(——#f)ao ase— 0.
lz|=¢ (1 — & )
zey

On the segment of y on the negative real axis,

log z log |x| +i
g g |x| + in = X, —R<x< —e¢

fO=G iy = ey

All this together yields

log x “¢log(—x) + in
e AT E,
J T+ J.R a7

where E goes to zero as ¢ | 0 and R 1 co. Taking the real part of both sides, we obtain

®  log x -7
J, st ©

The imaginary part yields the equality
® dx n
o (L+x3)2 &4

which we knew already from Example 2.

Example 9  Find the value of {§ x?/(1 + x?)dx, —1 <p < 1.
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Solution Let D be the domain obtained from the complex plane by deleting the
origin and the negative imaginary axis. On D we define z” to be exp(p log z), where
log z has imaginary part in the interval (— /2, 37/2). Then the contour in Figure
2.16 lies in D, and

zP

f@)=

1+ 22

is analytic on D except for a pole of order 1 at z, = i, with residue
P

Res(f; i)=;—i.

As we have seen before, the line integral of f over the semicircle |z| = R may be
bounded above by

7[Rp+1
R*—1’

a quantity that approaches zero as R — oo. Likewise, the line integral of f over the
semicircle |z] = ¢ may be bounded above by

n8p+l

1 —¢?’

which goes to zero as ¢ — 0. We apply the Residue Theorem and then let ¢ - 0 and
R — 0. The conclusion is that

[1+(—1”]J dx—ZmRes(f i) = mi®.
Simplifying and using the given formula for the pth root, we obtain

©  xP n np\ !
—— _dx=— -, -1<p<l. o
J:, g 2<°°Sz> P

REMARK Itis possible to manipulate the result of Example 9 to obtain an interesting
formula. Make the change of variables x? = t. Then the integral becomes

® ¢(p—1)/2
1 ! dt.

Set a = (p + 1)/2; with this change of parameter, we obtain the desired formula:
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e T O<a<l 7
o 14+t sin(na)’ ) (

A number of other formulas can be obtained from this last result. In the
integral in (7), replace ¢ with t#, 0 < B < co. This gives

© pap=1 1 =
L 1+t di = B sin(am)’ @®)

For instance, with § = 1/a,

® dt n
L [0 Bsnwp | P ©)

Example 10 Find the value of

© x1/3
j L
o X*+4x + 8
Solution Let D be the domain obtain from the complex plane by deleting the
nonnegative real numbers. As in Example 9, z!/3 is analytic on D if we choose log z
to have imaginary part in the interval (0, 27). We set

Z1/3

&=+

Let y be the “keyhole” contour pictured in Figure 2.17. In Example 5, Section 6,

A z= Re", S=SyYy=2m-6
Yy: z= e, R=1=¢

z = ge", 2m- 6=y =6

z = te’, E<t<R

o4

6. € small, R large

Figure 2.17
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Chapter 1, we gave a parametrization of y; this is repeated next to the figure. The
poles of f are at z; = —2 + 2i = 2./2e>* and z, = —2 — 2i = 2\/§e5”"‘. The
residues of f at the poles are

2eni/4
Res(fiz,) = Y2

and

Res(f;z,) = ‘/ET

eSmi2

Arguments that we have employed several times now show that the line
integral of f over that portion of y on the circle |z|] = R goes to zero as R — co.
Likewise, the line integral of f over that portion of y on the circle |z]| = ¢ also goes
to zero. Using the parametrization of y shown in Figure 2.17, we see that the line
integral over the segment from ee® to Re is

R {173 gi%3 .
2,218 i e’ dt.
. tPe* + 4te” + 8

As 6 — 0, this approaches

R (1B
-2__—'—dt.
. P+4t+38

Likewise, the integral over the segment from Re‘?"~9 to ee’>*~% converges to

ei2n/3 ¢ t1/3 dt
rRE2+4t+8

as 6 —» 0. Combining these integrals with the Residue Theorem and letting ¢ = 0 and
R - o0, we obtain

) © B3 \/in i )
1 _ e|21¢/3 dt = mi/d __ ,5mij12 X
( ) o P +4r+8 2 e e

Simplifying, we obtain

. T
r S S“’(E)

o P +4t+8 2 (n)
Slng
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Use the method of Examples 1 and 2 to compute these integrals.

1.

3.

(* 0 x4 © x2
—d 2. _
J-w 1+ x8 X J_wx“—4x2+5dx

(* o
dx a,b>0

o (X* + a?)(x? + b?)’

LY

Use the method of Examples 3 to 6 to compute the following integrals.

fo cos 0x i © xsin x i
Jow X2+ 1)(x% +4) —o Xt 41

[ sin x . © cos X .
J-w X+ 6x + 10 T )ow (x4 @)? + B2
[ cos yx

dx Answer:

T b _ —va
o (% +a?)(x* + B?) 2aP(a® — 52)[“ ?—pe]

(Y

Use the method of Example 7 to compute these integrals.

9.

10.

11

12.

f2n de
Jo (2—sin8)?
f2r do
—_— -1 1
Jo (1 + Bcos @) <h<
f2n
820 4 _1<a<i

Jo 1—2acos b + a*
2

a8 k)"
Jo smz" 6do Answer: ﬂ(k—!)z'ﬁ:i

Use the “keyhole” contour in Figure 2.17 in the manner of Examples 9 and 10 to
compute the following integrals.

13.

14.

1S.

f* o xa
— X, O<a<l1
Jo x2+j§+2 * *
fo X T
————dx Answer: v -1
Jo x*+2x+5 2ﬁ ‘/_
(* o A
5 X dx, —nT<w<m, 0<ix<l1
Jo x* +2xcosw + 1

Use the method of Example 8 in the following problems. (Note that the integrals
are improper, since log 0 is not defined.)

® log x ® log x
16. —_— 17. —
L 1+ x?)@4 + x?) dx L 1 + x? dx
© 2 3 © 4
18. [log x]z dx Answer: r 19. [log x]2 dx
0 1 + Xx 8 0 1 + X

20. (a) In the identity (7) differentiate both sides with respect to a to obtain the

formula
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© sa—1
J 17 logt dt = —n? cot(an) csc (an), O<a<l.
o 1+t

(b) Use the result of (a) to derive the formula

21.

22.

23.
24.

25.

26.

0 2
j log 5 ds = —(E) cot(£> csc(z), 1<y< oo.
o 1+ Y Y Y

(Hint: Let s = t*.)
Show that J

— 00
(Hint: Integrate f(z) = e'?/(e* + e~ %) over the rectangle with vertices at + R and
+R +in)

Use (8) or (9) to compute these integrals.

cos X T
e*+e* X = o + e ™2’

*© dx ® X
(@) L 8+ x° () L T
® 5y
© omdx, 0<y<p-—-1
© dx n ® x? n
Show that (a) J-wm _ﬁ (b) J-w mdx —@

Let p be a polynomial of degree n with distinct zeros at z,, ..., z,and let g be a
polynomial of degree n — 2 or less. Show that

Y Res (ﬂ; zk) =0.
k=1 p

(Hint: Integrate g/p over the circle |z] = R, and let R — 0.)
Give a proof of the Residue Theorem for functions with poles using (11) from
Section 5. (Hint: Show that the value of the integral

[ P

is 27 Res(f; z;) if z; is inside y and O otherwise.)
Use the Residue Theorem to calculate the following integrals.

1 f2n .
(a) e e do

2 ).
1 (f2n
(b) 7 o

1 f2r

e*’cosnfdf  (Hint: g(z) = 2" exp (é (z " §>>)

e*"% sin no do

(©

2n Jo

The Summation of Certain Series by Means of Residues*

27.

Show that the poles of C(z) = n cot nzare z, = k,k =0, +1, +2,..., thateach
pole has order one, and that the residue of C(z) at each pole is one.
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28. Show that C(z) = mcot nz is bounded on the square yy with vertices at
+(N + 1) £ i(N + 1), N a positive integer, by a bound that does not depend on

N.
29. Let f(z) = 1/z2; show that

f f(2)C(z)dz—0 as N - oo.
N

Use the Residue Theorem to prove that

© 1 x?
2w
30. Suppose that f is analytic on the plane except for poles at {,, ..., {y, none of

which are integers, and suppose that lim, ., |zf(z)| = 0. Show that
© N
Y fin)= =Y Res(fC;{;); C from Ex. 28 (10)
- Jj=1

31. Use (10) to find the sum of the following series. In every case, a is chosen such
that none of the denominators vanish.

& 1
b
= ®) -Zo:o (n + a)?
=] 00 1
Zl (2n —1)? @ 2
Further Use of the Residue Theorem on = cot z*
32. Let yy be the curve from Exercise 28. Show that
1 C(2) _ mcotnw N 1 1
2ni ), 2(z — w) T +k=z_nk(k—w) w2’
k#0

w#0,+1,+2,..., £N.
33. Let N — o0; show that

2w
kz

Cw)y=mncotnw=—+

’ﬁ[\/]s

|
w

34. Integrate n cot aw — (1/w), which is analytic at w = 0, from 0 to z to obtain

. © 5
Log (sm nz> =) Log<l - z—2> + log 7,
z k=1 k
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z not a real number. Conclude that
© ZZ
sinnz=nz [[ {1 -5 ). (11)
k=1 k

Further Reading

Each of the following books gives a more sophisticated and far-reaching develop-
ment of the theory of analytic functions than is presented here.

Ahlfors, L. V. Complex analysis. 3rd ed. New York: McGraw-Hill, 1979.

Burckel, R. B. An introduction to classical complex analysis. New York: Aca-
demic Press, 1979.

Caratheodory, C. Theory of functions. Vols. 1 and 2. New York: Chelsea, 1964.

Heins, M. Complex function theory. New York: Academic Press, 1968.

Hille, E. Analytic function theory. Vols. 1 and 2. New York: Blaisdell, 1959.

Knopp, K. Theory of functions, parts I and II; and Problem book in the theory
of functions, parts I and II. New York: Dover, 1945; 1952.

The books by Burckel and Hille contain extensive and informative historical and
biographical information on the theorems of complex analysis and their creators.
These notes are well worth reading.



3

Analytic Functions as Mappings

The theme of this chapter is the “geometry” of analytic functions, in particular the
nature of their range. This theme manifests itself first in several theorems in Section
1 that pinpoint the number of solutions to an equation of the form f(z) = w,.
The answer is formulated in several different ways, all connected closely with the
behavior of the function f on a closed curve. This ability to count the number of
solutions of f(z) = wy is exploited in Section 2 to prove that the range of a noncon-
stant analytic function is an open set. This is a profound and elegant property of
analytic functions that leads in a natural way to the maximum modulus principle.
Even more important, we are led directly to the study of conformal mapping, a tool
of enormous beauty and power both in applications and theory.

3.1 The Zeros of an Analytic Function

Suppose that f is analytic and not identically zero in a domain D. We saw in (3) and
(4) of Section 4, Chapter 2 that each zero of f has a certain order; that is, if f(z,) = 0,
there is an integer m, m > 1, such that

() =(z = 20)"9(2),

where g is analytic in D and g(z,) # 0. The integer m is frequently called the
multiplicity of the zero of f at z,. In this section, we shall collect several results about
the zeros of an analytic function. We begin with a fact closely related to (3) of Section
4, Chapter 2.

Suppose that f is analytic in a domain D. If there are distinct points
Zy,2,,... in D with f(z,) =0,n = 1,2, ... and if the sequence {z,}
converges to a point z, of D, then f(z) = 0 for all z € D. (1)

To show why (1) is true, we make use of (3) in Section 4, Chapter 2; we shall
show that the hypotheses in (1) imply that f®(z,) =0for k =0, 1, 2,.... We note
first that since z, — z, and since f is continuous, we must have f(z,) = 0. Now f(2)
has a power series valid for |z — z,y| < §:

m
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f@) = ay(z — z0) + ay(z — zo)* + -, |z — zo| < 6.

Suppose we know that a, = - - = ay_, = 0; we shall show that ay = 0, too. Define
a function g by
QL
g(z) = < (2 — 2o)
aN, zZ = ZO.

By (4) of Section 4, Chapter 2, g is analytic in D. However,

_ J@) _
9(z,) = oz 0, n=1,2,...and z, # z,,

$0 ay = g(zo) = lim,_, g(z,) = 0. Thus, all the coefficients g, of the power series for
f(z) about the point z, are zero, so f(z) =0 for all z in D by (3) in Section 4,
Chapter 2.

To reiterate,

if an analytic function f on a domain D vanishes on a sequence of distinct
points {z,} of D, which converges to a point z, of D, then f vanishes identically
in D.

Example1 The hypothesis that z, lies in D is not superfluous. For instance,
f(2) = sin(n/z) is analytic for all z # 0, and f(1/n) = sin(zn) = Oforn =1,2,...,and
z, = 1/n—>0asn— oo, yet f is not identically zero. (Obviously, f is not analytic on
any disc centered at the origin.) o

The mathematical way to phrase (1) is to say that the zeros of a nonconstant
analytic function are isolated (from each other). This allows us to count them, as
the next several theorems show.

Suppose that h is a function analytic on a domain D except for a finite number
of poles. Let y be a piecewise smooth simple closed curve in D whose inside lies in
D and which passes through no zero or pole of h. Let z,, .. ., zy, be the distinct zeros
of h inside y, and let wy, ..., wy, be the distinct poles of h inside y (Fig. 3.1).

U

Figure 3.1
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Let n; be the order (or multiplicity) of the zero of hat z;, j = 1,..., N. Then
hiz) = (z — 2)G(2)
where G; is analytic near z; and Gj(z;) # 0. Hence,

h’(z)= n; Gi(2)
hz) z—z Gy2)’

SO

hl
Res (7; zj) = n;. 2)

Likewise, if m, is the order of the pole of hat w,, k = 1, ..., M, then

where H, is analytic near w, and H,(w,) # 0. Thus,

WE) _ —my,  Hi(2)
h(z) z—w, H2)

for z near w, so

Res (%; Wk> = —m. (3)

We now apply the Residue Theorem (Theorem 1 from Section 6, Chapter 2) to the
function (h'/h). The result is

1 Wiz X M
Z—mJ; o PR T L “)
Here is the formal statement of (4).

THEOREM 1 Suppose that h is analytic in a domain D except for a finite number of poles.
Let y be a piecewise smooth positively oriented simple closed curve in D, which does
not pass through any pole or zero of h and whose inside lies in D. Then,

2mi ,W Z=

1 [ W(z) , _ [number of zeros|  [number of poles
of h inside y of h inside y '

All zeros and poles are counted with multiplicities. [ |
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If you have been observant, you will have noticed by now that h'/h is the
derivative of log h, and you may well have reasoned along the following lines:
(log h)Y = h'/h, so

W) ,
L ") dz = J; (log h(z)y dz

= log h(y(b)) — log h(y(a))
=0, since y(a) = y(b).

This surely runs completely contrary to the conclusion of Theorem 1. Consequently,
thereis a flaw in the reasoning above, and it is not overly difficult to pinpoint it—the
logarithm function is not continuous on any domain that surrounds the origin. The
point of Theorem 1 is, fundamentally, that the zeros and poles of h are counted by
counting the number of times that the closed curve I' = h o y winds around the
origin. However, a lot of things are right with this fallacious computation, and all
will be put right by the more careful use of the logarithm. Further, the logarithm
will show the connection between the integral in (4) 2nd the argument of h. For
reasons of exposition, we will give the proof in the case when y is a circle. More
complicated curves naturally require somewhat more complicated proofs.

Let y be the circle y(t) = z, + Re™, 0 < t < 2= Since h is not zero on y, there
is an annular region R — § < |z — zo| < R + J on which h is not zero. Let D be the
domainD = {z: R — d < |z — z5] < R + 6 and 0 < arg(z — z,) < 2} (see Fig. 3.2).

Figure 3.2

The domain D is simply-connected, so there is an analytic function f on D
with f = log h; see Application 2, Section 4, Chapter 2. Now let ¢ be a small but
positive real number. Since h'/h is continuous on the annulus R — 4 < |z — z,| <
R + 6, and after parametrizing the curve y, it follows that

h'(z) . [ °h'(zo + Re™) .
dz =1 1lzo + Re ) peit dr.
L ) L"JJ hzo + Re™) ¢
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However, the latter integral equals

2r—¢ 2n—¢

f'(zo + Re™)iRe" dt = j %[ f(zo + Re™)] dt

€ €

= f(zo + Re'®™™9) — f(z, + Re")
= log|h(z, + Re'?" 9)| — log|h(z, + Re®)|
+ i{arg h(zo + Re’**™?) — arg h(z, + Re™)}.

As ¢—0, an interesting thing occurs: The real part of this expression,
log|h(zo + Re™**™®)| — log|h(z, + Re®)|, goes to zero, but the imaginary part,
{arg h(zo + Re'®"™?) — arg h(z, + Re™)}, need not. In fact, the imaginary part
most clearly converges to the total change in arg h(z) as z traverses y once.
(Think of h(z) = z? on a circle centered at the origin.) This establishes, for a
circle, the connection between the integral in (4) and the change in the argument
of h(z) as z traverses the curve y. This relationship is called the argument principle.
We state it formally.

THEOREM 2 The Argument Principle ~ Suppose his analytic on a domain D except for isolated
poles. Let y be a piecewise smooth positively oriented simple closed curve in D whose
inside lies in D and which does not pass through any zeros or poles of h. Then,

1 {change in arg h(z)}

1 number of zeros number of poles
2n |as z traverses y '

of h inside y of h inside y

Example 2 Find the number of zeros of the function f(z) = z3 — 222 + 4 in the first
quadrant.

Solution 'We examine f(z) on the contour shown in Figure 3.3; R is very big. On the
segment 0 < x < R, f(x) = x> — 2x? + 4 is real and greater than 2. On the quarter-
circle z = Re*, 0 < t < m/2,

. . 2 4 ;
f(Re") = R3e3"<1 ~ze T R,—ezﬁ,> = R%*(1 + (),

Figure 3.3
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where |{| < 6/R < efor R large. Thus, arg f(Re")is approximately arg(e>*) = 3t for
large R, so arg f(Re") increases from 0 to about 37/2 as t increases from 0 to 7/2.
On the segment z =iy, R >y >0,

fliy)=—iy’ +2y* + 4.
For R = y > 0, this point lies in the fourth quadrant, since

Re(f(iy)) =4+ 2y2>0

Im(f(iy) = —y* <O.
Hence, as y decreases from R to 0, f(iy) lies in the fourth quadrant and moves toward
the point w = 4. Consequently, as z traverses the contour, arg f(z) increases by
exactly 2z, so f(z) = z* — 2z% + 4 has precisely one zero in the first quadrant. O
Example 3 Let 2 > 1. Use the argument principle to show that the equation

z+e =14

has exactly one solution in the right half-plane {z: Re z > 0}.

Solution We shall examine h(z) = z + e~* — 4 on the curve pictured in Figure 3.4.
We shall show that when R is very large, the net change in arg h over this curve is
2n. It will then follow from the argument principle that h has precisely one zero in
the right half-plane. We note first that on the imaginary axis,

hGy) =iy + e — 4

=(cosy — 4) + i(y — sin ).

iR

Figure 3.4
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Since 4 > 1, Re h(iy) is always negative. Further, Im h(iy) decreases from a positive
value at y = R to a negative value at y = — R. That is, h(iy) moves from the second
to the third quadrant as y decreases from R to —R. On the semicircle z = Re™,
-n2<0< 72,

|e—Re"| — e—Rcoso < 1’

so h(re’®) = Re®{1 + c}, where c is very small when R is very large. Consequently,
arg h(Re™) is approximately 6 and so increases from (about) —x/2 to (about)
7/2 as 6 increases from —n/2 to n/2. That is, the point h(Re*) moves from the
third quadrant (when § = —x/2 and z = —iR) through the fourth quadrant, then
through the first quadrant, and ends in the second quadrant (when 6 = /2 and
z = iR). In total, then, h(z) makes one full counterclockwise circuit about the origin
as z traverses y once in the positive sense, so arg h(z) increases by 2z. Hence, h has
one (and only one) zero inside y, by the argument principle. a

Here is another theorem, closely related to the argument principle.

THEOREM 3 Rouché’'s* Theorem Suppose f and g are analytic on an open set containing a
piecewise smooth simple closed curve y and its inside. If

If2)+ 9@ <|f(2))  forallzey, ©)

then f and g have an equal number of zeros inside y, counting multiplicities.

Proof Note that the hypothesis (5) ensures that neither f nor g is zero on y. We
may assume further that all the common zeros of f and g inside y have been canceled,
this affects neither the hypotheses nor the conclusion. Let h = g/f; then

lh(z) + 1| < 1 forallzey,

so the range of h on 7 lies in the disc of radius 1 centered at the point —1. In
particular, arg h(z) has no net change as z traverses y (Fig. 3.5).

By Theorem 2, the number of zeros of h inside y equals the number of poles
of h inside y. But the number of zeros of h is just the number of zeros of g, and the
number of poles of h just the number of zeros of f. [ ]

REMARK Suppose that f and g satisfy the hypotheses of Theorem 3 except that

/) — 9@ <1f@)l,  zey. ©)

It is then still true that f and g have equally many zeros inside y. The reasoning is
elementary: According to Theorem 3, the hypothesis (6) implies that f and —g have
equally many zeros inside y. However, a point is a zero of —g exactly when it is a
zero of g. We are done.

* Eugene Rouché, 1832-1910.
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I = h(y)
w = h(2)

> 0

Figure 3.5
Rouché’s Theorem has a number of useful applications, as the following
examples show.
Example 4 Show that all the zeros of
p(z) =323 —2z% + 2iz — 8
lie in the annulus 1 < |z] < 2.
Solution On the circle |z| = 1,
p(2) + 8| <3 +2+2=7<3§,

s0 p(z) and f(z) = 8 have the same number of zeros within |z| = 1, by Rouché’s
Theorem; thus, p(z) does not vanish in the disc |z| < 1. Furthermore, on |z| = 2,

Ip(z) — 323 < 2(4) + 2(2) + 8 = 20 < 24 = |323|,

s0 p(z) and f(z) = 3z> have an equal number of zeros within the circle |z| = 2; that
is, p(z) has three of its zeros within |z| = 2. Consequently, all the zeros of p lie in the
annulus 1 < |z| < 2. =]

Example 5 Find the number of roots of the equation

22 —4 222—1_

22+4+zz+6_0 @

that lie within the unit circle |z| = 1.

Solution When we clear the fractions, we see that we must determine the number
of roots within the circle |z| = 1 of the equation
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(22 — 4)(2* + 6) = (22 + 4)(1 — 22?).

Let p(z) = (z2 — 4)(z2 + 6) = z* + 22> — 24, and let q(z) = (22 + H)(1 — 2z%) =
—2z* — 722 + 4. Then,on |z| = 1,

p(z) =124 — 222 —z4|>24 -2 —-1=21
and

lg(2)| = |2z* + 7z — 4| <2+ T+ 4 =13.
Hence, |p(z)| > |q(2)| = |{p(z) — q(2)} — {p(2)}|, which implies that p and p — g
have an equal number of zeros within the circle |z| = 1. But clearly p has no zeros

within |z| < 1, so (7) has no roots within |z| < 1. o

Rouché’s Theorem also provides a direct and simple proof of the following
result.

THEOREM 4 The Fundamental Theorem of Algebra A polynomial of degree n has exactly n
zeros, counting multiplicities.
Proof We do not affect the solutions of p(z) = 0 by dividing p(z) by the coefficients
of z"; thus, we may suppose that
p@) =z"+a,.,z" '+ +a,z + aq.

For large values of |z| = R,

p(z) —z"

z" M

= a1z  + - + agz

cee _ 1
ol + R+|an 1!

N

Hence, |p(z) — z"| < 4|z|" < |z"| for |z| = R, so by Rouche’s Theorem (Theorem 3),
we learn that p(z) and z" have an equal number of zeros within the circle |z| = R.
But z" has exactly n zeros within |z| = R, so the same is true for p(z). [ ]

EXERCISES FOR SECTION 3.1

Use the technique of Example 2 to determine the number of zeros of f in the first

quadrant.
L. fe)=2>—z+1 2. f(e)=z*—322+3
3. fl))=2—-3z+6 4 f@)=z*+iz+2+1i

5 f)=2°+522+3 6. fe)=2z"+6z2>+7
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In Exercises 7 and 8, use the technique of Example 3 to determine the number of
zeros of the given function in the upper half-plane.

7.

9.

10.

11.

24+ 3i22+z-2+1i 8. 2z% —2iz3 + 22 + 2iz ~ 1

Show that the equation z* — 5z% + 3 = ¢~ has no solutions on the imaginary
axis and precisely two solutions in the half-plane Re z > 0.

Show that there is no entire function F with F(x) =1 — exp[2=i/x] for
I<x<2

Show that there is no entire function F that satisfies the equation F?(z) = sin z
for all z in the complex plane. Show that the same conclusion holds if “all z in
the complex plane” is replaced by “z in some open set,” or even by “for some
sequence of z that have a limit point in the plane.”

In Exercises 12 to 15, use the technique of Example 4 to determine how many zeros
of the given function lie in the given annulus.

12.
14.
15.
16.

17.

18.

19.

22—-3z+1inl<|z| <2 13. 2 ~2z-2ini<|z| <3

ze* —1in0<|z| <2

4z3 — 1222 + 22+ 10ind < |z - 1| <2

Let f and g be analytic on a domain containing a simple closed curve y and its

inside. Show that if | f(z)| > |g(z)| for all z € y, then the two equations f(z) = g(z)

and f(z) = 0 have an equal number of solutions inside 7.

Use the result of Exercise 16 to determine how many solutions each of the

following equations has in the given region.

(@ z22—10=z*+z+6in|z| < 1

b) 22=z2+z+6in|z| < 1

() z+a=e"fora>1,in Re z <0. (Hint: let y be the semicircle of radius R
from iR to —iR through —R plus the segment from —iR to iR on the
imaginary axis.)

Extend formula (4) to prove the following. Let g be analytic on a domain

containing y and its inside. Then

1 (Fe
27i |}, h(z)

N M
g(z) dz = Zl 9(z;) — Z‘i g(w;),
i= Jj=

where z,, ..., zy are the zeros of h and w,, ..., wy, are the poles of h inside 7,
each listed according to its multiplicity.

Suppose that f is analytic and one-to-one on a domain D. In this exercise, we
shall show that the inverse function of f is analytic on the domain Q = f(D).
Let y be a piecewise smooth simple closed curve in D whose inside lies in D, and
let w be a point of Q that lies inside the curve I' = f o y. In Exercise 18, take
g(z) = z and h(z) = f(z) — w. Conclude that f !, the inverse of f, is given by

. L[ @)
/ l(w)_Zm' J@)—w z

The integral expression on the right is an analytic function of w; see exercise 26
in Section 1 of Chapter 2.
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20. Suppose that f is analytic on a domain containing {z:|z| <1} and that
|fe®) <1, 0 < 0 < 2n. Show that f has exactly one fixed point in the disc
|z] < 1; that is, the equation f(z) = z has precisely one solution in the disc
|z] < 1.

21. Let p and q be polynomials of degree n. If p(z) = q(z) at n + 1 distinct points of
the plane, then p(z) = q(z) for all z.

22. Use Liouville’s Theorem to prove the Fundamental Theorem of Algebra. (Hint:
If p is a polynomial with no zero (and degree p is 1 or more), then 1/p is an entire
function. Use (3) of Section 6, Chapter 2, to show that 1/p is bounded.)

23. Let P be a polynomial with |P(e”)| = 1 for all t, 0 < t < 2n. Show that P(z) =
Az¥ |4] = 1. (Hint: Let N be the degree of P and set

1
Q(z) = zpP <§>

Show that Q is a polynomial and that P(e**)Q(e”) = '™, 0 < t < 2n. Conclude
that Q is constant.)

24. Let p be a polynomial of degree n all of whose zeros are real. Let x, <
x, <+ < X, be the distinct zeros of p with respective multiplicities m,, m,, ...,
m,.

(a) Show that p’ is not zero in (— 00, X,) or in (x,, o).

(b) Show that p’ has precisely one zero in (x;, Xj,4), j=1,...,r — L.

Rational Functions on the Extended Plane*
Suppose that f is analytic on a plane except for a finite number of poles; suppose,
in addition, that f either is analytic at co or has a pole at co. Complete the following
exercises to show that f is, in fact, a rational function.

Let m, be the order of the pole of f at oo with m, = 01if f is analytic at co. Let
wy, ..., w, be the distinct poles of f in the plane with respective orders m,, ..., m,. Set

9(2) = (z — w)™ -+ (z — w)™f(2).

25. Show that g is an entire function.
26. Show that

lg@) < Clz|",  |z| > R.

where Cisa constantandm =my + m; + -+ + m,.
27. Conclude that g is a polynomial of degree m or less, and thus f is a rational
function. (Hint: Use Exercise 21, Section 4, Chapter 2.)

Mapping Properties of Rational Functions*

Let P and Q be polynomials of respective degrees N and M and assume that P and

Q have no common zero. Let R = P/Q and define d = degree of R to be the

maximum of N and M.

28. Suppose that M > N. (a) Show that R has a removable singularity at co. (b) If
M > N, then R has a zero of order M — N at co. (c) If M = N, then R(o0) # 0.
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29.
30.

31.

32.

Suppose that M < N. Show that R has a pole at o of order N — M.
Counting multiplicities and counting the zeros or poles at co, if any, show that
R has d zeros and d poles.

Let o be a complex number. Show that R — a is a rational function with the
same degree as R.

Show that the equation R(z) = a has exactly d solutions, counting multiplicities,
for each complex number a. Conclude that R maps the complex plane plus o
onto itself and each point is “covered” exactly d times.

Legendre* Polynomials*
We define the nth Legendre polynomial P, by

33.

34.

35.

36.

37.

2n! dz”

P.(2) = (@~ 1" ®

Let y be a smooth simple closed curve around z. Show that

1 w? — 1y

= 2ni 2" W — 2 dw. ©)

In Exercise 33, take y to be the circle of radius . /|z2 — 1| centered at z; show that

P(z) = 51; LG (z + /2> — 1 cos )" d6. (10)

Prove the generating formula:

./1—2 t+t2 Z i

(Hint: In the series on the right, substitute for P, the formula (10). You will also
have need for Exercise 7, Section 3, Chapter 2.)

Let F(z, t) = (1 — 2zt + t2)712,

(a) Show that F satisfies the partial differential equation

F _ 0F &(tF)

0?
(1_2)62 _2254-?:0'

(b) Use (a) and the conclusion of Exercise 35 to show that P, satisfies Legendre’s
differential equation:

(1= z%)f"(2) = 27"(2) + n(n + Df(2) =

Let F(z, t) be the function in Exercise 36. (a) Show that F also satisfies the partial

* Adrien Marie Legendre, 1752—-1833.
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differential equation
F
(1 =2zt + t’)%t— —(z—tF=0.

(b) Use (a) and Exercise 35 to show that the Legendre polynomials satisfy
(n+ )P, ,(z2) — (2n + 1)zP,(2) + nP,_,(2) =0,
and, using (8),
2n + DP,(2) = Poys(2) — P (2).

These are called recursion relations.

The Stability of Solutions of a System of
Linear Differential Equations*

The operation of many physical processes is described by a system of ordinary
differential equations, together with a set of initial conditions. It is a matter of great
relevance whether small perturbations in the initial conditions will, over the long
run, produce substantial or even unbounded changes in the corresponding solution.
As an elementary example, imagine placing a ball on the curve y = x2. If placed at
the origin (x,, yo) = (0, 0), the ball remains stationary; if placed at some point
(X0 Yo)» Xo # 0, the ball rolls back and forth about (0, 0) indefinitely (or, if there is
friction, tends to (0, 0) as time goes to infinity). On the other hand, if the ball is placed
on the curve y = —x2, it moves farther and farther from (0, 0) as times goes to
infinity, unless it was placed (with a steady hand!) exactly at (0, 0) to begin with.
Obviously, the first situation is what we can call “stable,” while the second is
“unstable.” In this section, we shall show that if the zeros of a certain polynomial
associated with the system of differential equations all have negative real parts, then
the solutions of the differential equations are stable, in the sense that small pertur-
bations in the initial conditions produce only small perturbations in the solution.
A general knowledge of the solution of a linear first-order system of differential
equations would be helpful but is not strictly necessary in reading this section.
The system we shall investigate is

XxX=Ax + b, (1)

where A is an n x n matrix with constant entries, b is an n x 1 column vector with
constant entries, and

x4(2)
x=x(t) =

Xa(?)
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The solutions of this system involve the zeros of the polynomial p given by
p(z) = det(z] — A), 2
where I is the n x n identity matrix and “det” stands for determinant. The polyno-

mial p has degree n and so has n zeros in the plane, counting multiplicities. Let 4,,
..., A, be the distinct zeros and let m,, ..., m, be their respective multiplicities so that

pm=ﬁu—wv

The study of linear first-order systems of which (1) is representative tells us that each
solution of the homogeneous system Ax = % has the form

x0)= Y pye™,  I=1,...,n, 3
=

where each p;, is a polynomial of degree at most m; — 1. Furthermore, given a set
of initial conditions x(0) = x,, there is a unique solution x(t) of (1) with x(0) = x,,.
We shall now examine the difference between the solution x, (t) corresponding

to initial conditions x,(0) = x, and the solution x,(t) and watch how this difference
behaves as t — co. Note that the linearity of the system implies that

Alxo — x1) = (¥ — b) — (£, — b)) = %, — X,
and

%(0) — x,(0) = x, — x;,.

Hence, if we write w = x, — x,, then w solves the homogeneous equation

Aw=w and w(0) = wy = x5 — x;.
We shall now show that if all the zeros of the polynomial p in (2) lie in the left
half-plane, then any solution w(t) of the homogeneous linear system Aw = w tends

to zero as t — co. Indeed, the proof is elementary. Let w;(t) be the Ith component of
the solution. From (3) we have

r
Iw(®)| < kz,l |Pa()|e*Re 3,
Now p,(t) has degree at most m, — 1, so we know that
[Pa(t)] < Agt™, t>1,

where A, is a positive constant. Furthermore, our assumption about the zeros of p
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implies that there is a positive number ¢ with
Re ;< —o, j=1...,r
because Re 4; < Ofor j=1,...,r. Assuming ¢ > 1, as we can do, we find that
w() < Gt"te™™, t>=1,
where C, is some positive constant. However, it is elementary that

lim (¢"e~") = 0,

t—c0

s0 w(t) = 0 as t = o0, as we wished to show.

Since no eigenvalue of A is zero, we know that A is invertible, so there is a
(constant) vector v, with Av, = —b. Set x,(t) = v, for all t. Then x,(t) solves (1) and
so any other solution of (1) tends to v, as t — co. The precise nature of how x(t)
converges to v, depends, of course, on the properties of the matrix 4 and is an
interesting topic in its own right.

It is interesting to note that if the polynomial p given in (2) has all its zeros in
the half-plane Re z < 0, then any set of initial conditions produces a solution that,
over the long run, converges to the constant x(t) = v,. That is, if the operation of a
mechanical system is determined by (1) and if the associated polynomial in (2) has
all its roots in the half-plane Re z < 0, then no matter how the system starts, it will
(eventually) stabilize at the same “steady state.”

Stable Polynomials

A polynomial p whose zeros all lie in the half-plane Re z < 0 is called stable. The
choice of terminology and the importance of such polynomials have been made clear
above. Here we shall look for conditions that ensure that p is stable. We give a full
solution if the degree of p is two or three. We also give the result (but not the
justification) for general polynomials. These results go under the general heading of
the Routh—Hurwitz criteria.

PROPOSITION 1  Suppose that A and B are real numbers. The real parts of both the roots of
22+ Az+B=0

are negative if and only if both 4 and B are positive.

Proof The roots of the equation are

1
2 =5(~ 4+ /47 — 4B)

and
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z, =%(—A — JAZT —4B).

If Re z, and Re z, are negative, then
—~A=Re(z; +2,)<0.

Furthermore, if A2 — 4B < 0, then 4B > A% > 0, and therefore B > 0. Otherwise,
A? —4B >0, and

0>2Rez, = —A + ./AZ — 4B,

so A > ./ A? — 4B, which implies that B > 0.
Conversely, if both 4 and B are positive, then virtually the same arguments
show that Re z, and Re z, are both negative. ]

Example 1 The polynomial p(z) = z% + z + 6 is stable, but the polynomial
qz2)=z*+2z—¢

is not stable, no matter how small the positive number ¢ is made. (One of its zeros
liesat z = —1 + /1 + ¢, which is positive.) a

The situation for cubic polynomials is not quite as simple as it is for quadratic
polynomials, but it is not terribly difficult either.

PROPOSITION 2 Let A4, B, and C be real numbers. The real part of each of the roots of the
cubic polynomial

234+ A2+ Bz+C=0

is negative if and only if 4, B, and C are all positive and AB > C.
Proof Letp(z) =z3+ Az + Bz + C = (z — z,)(z — z,)(z — z3). Then

=TZ1— 23— 23
B=12z,2,+2z,23+ 2,2,
C= —2zy2,2;.

We first examine the case when the root z, is real and the other two roots z, and z,
are complex conjugates of each other. We write

z, = a, z,=b+ic, z3=b—1ic,

where a, b, and c are all real. Thus, we find that
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A= —a-2b, B=22ab+b*+c? C = —a(b? + ).

Suppose first that a and b are negative; it clearly follows from the formulas
above that 4, B, and C are all positive. Furthermore,

C — AB = 2b(a* + 2ab + b* + ¢*) < 0,

so AB > C. Conversely, suppose that all of 4, B, C, and AB — C are positive; we
must show that a and b are negative. Since

0 < C= —a(b? + c?),
clearly a < 0. Furthermore, from above
0 < AB — C = —2b(a® + 2ab + b? + ¢?),
so b must also be negative.

The other case to be examined is when all the roots z,, z,, z; are real; for

simplicity we denote them by a, b, and c, respectively. Clearly,
A= —a—-b-c
B =ab + bc + ac
C = —abc,
so if a, b, and c are all negative, then, 4, B, and C are all positive. Furthermore,
AB — C = —b(a? + c?) — c(a® + b?) — a(b? + c?) — 2abc > 0
if a, b, and c are all negative.

Conversely, suppose all four numbers A4, B, C, and AB — C are positive. First
of all, since 0 < C = —abc, either a, b, and c are all negative or one of these numbers
is negative and the other two are positive. Hence, in order to reach a contradiction,
let us assume that a < 0 and that b and ¢ are positive. But then

—a=A+b+g
)

O<B=a(b+c)+ bc

—~(A+b+ )b+ )+ be

=~Ab+c)—b*~c*~bc<0,

a contradiction. This completes the proof. [ |
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Example 2 The polynomial
p(z) =6 + 4z + 2z + 23
is stable, since A = 2, B =4, and C = 6 are all positiveand AB=8>6=C. 0O
Example 3 The polynomial
p(2) =12+ 5z +2z22 + 73
is not stable, since C = 12 > 10 = (5)(2) = 4B. o
The general case is set forth in the following theorem.
THEOREM 1 Routh*-Hurwitz" Condition ~Suppose that a,, a,, ..., a, are real numbers; set
a; = 01if j > n. All the roots of the polynomial p(z) = a, + a,_,z + a,_,2> + - +

a,z""' + z" have negative real part if and only if for each k=1, ..., n, the
determinant of the k x k matrix

al a3 as DY azk-l
1 a, a, Q-1
0 a, a, Q-3
M, =
0 | a,
0 0 0 a |
is positive. [ |

Example 4 Let the polynomial in question be

1
p(z)=z4+4z3+22+2z+z.

According to Theorem 1, p is stable if and only if the determinant of each of these
four matrices is positive:

H
[ 5]
o

4 2
M, = [4], M, = [1 1], M;=|1 1

(=]
~
N s

and

* Edward John Routh, 1831-1907.
* Adolf Hurwitz, 1859-1919.
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M4=

O O =
—_ s =N
—_ N b= O
O O O

A computation shows that the determinants of M, and M, are positive, but those
of M; and M, are zero. Hence, p is not stable. =]

EXERCISES FOR SECTION 3.1.1

1. Use the Routh—Hurwitz criteria to test the following polynomials for stability.

(@) 3 —4z+ 522 (b) 2 +z+ 422

() —3+2z-4%z22 d1+z-322+2

e 1+z+2° (f) 3+4z+2*+23

(8 3+2z+ 222+ 523 (h) 1 + 422 + 42

Q) z*+2+222+z+1% (G z*+222+322+3z2+4

k) 25+ 2* +523+ 722+ 42+ 8 M z*+4z2°+922+82+ 5

2. Let yg be the curve consisting of the semicircle Re”, —n/2 < t < n/2, followed by
the segment iy, R > y > — R. Show that a polynomial p, which does not vanish
on the imaginary axis, is stable if and only if

I mdz=0

. P2
for all large R.
3. Determine whether or not the systems determined by the following matrices are

stable.

[—-1 2 [0 -3
(a)A—_ { _3] (b)A—_1 _2]

1 2 [ 1 w
(c) A= P —6:| d A= | —w 1], w complex

[ 1 -1 1 1 3 1
() A= 1 -2 1 f) A=|1 2 3

-2 -4 0 2 0 -1

4. Suppose the polynomial p given in (2) has all its zeros in the closed half-plane
Re w < 0, and any zeros that lie on the imaginary axis are of order one. Show
that any solution of the system (1) remains bounded as t — co.

Work out in detail the solution of the system with

0 w
= 0
A [—w 0], w >0,

to verify what happens in one special case.
5. Show by means of an example that if p given in (2) has a zero in the half-plane
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Re z > 0, then the homogeneous system Ax = % has unbounded solutions, and
hence small perturbations in the initial conditions can result in unboundedly
large variations in the resulting solution.

6. Examine the behavior as t = oo of the solutions of the two equations

y'==y  y0)=x0,y(0)=0

and

y'=y;,  y0)=x4,y'0)=0.

The first corresponds to the system

and the second to the system

0 lx-x
t ol ™™

_(1) (1)] has eigenvalues of +i, while the matrix I:(l) (1)] has
eigenvalues of + 1.

7. In the theory of feedback-control systems, the question of the stability of the system
takes the form of determining whether a function of the form 1 + (1/¢c)F has any
zeros in the right half-plane; here F is a rational function and c is a nonzero
constant. One answer to this question is provided by the Routh—Hurwitz condi-
tion. Write F = P/Q, where P and Q are polynomials with no common zero. Then
1 + (1/c)F has no zeros in the right half-plane if and only if the polynomial
cQ + P is stable. Another answer is provided by the Nyquist stability criterion,
which is a variation on the argument principle. Let y; be the curve shown in
Figure 3.6a, and let I'y be its image under F, shown in Figure 3.6b.

The matrix [

r
YR R

—iR @) (b)

Figure 3.6
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(Note that yy is oriented negatively; this is done because it is traditional to
evaluate F(iy) as y increases.) Show that if I'; winds around —c a net positive
number of times in the clockwise direction, then 1 + (1/c)F has a zero in the right
half-plane (and so the system is unstable). In Figure 3.6b, those areas marked by
slashes are values of ¢ for which 1 + (1/c)F has a zero. More on the derivation
of the stability criterion for feedback-control systems can be found in the book
by A. Kyrala cited in the references at the end of Chapter 4.

3.2 Maximum Modulus and Mean Value

Suppose that f is an analytic function on a domain D. We saw in the beginning of
Chapter 2 that if the range of f liesin a circle or on a straight line, then f'is necessarily
constant. We shall see now that a great deal more is true; either f is constant on D
or the range of f is an open set.

Suppose that f is not identically constant, and let w, = f(z,) be an arbitrary
point in the range of f. The function f(z) — w, is not identically zero, since f is not
identically constant, and so f(z) — w, has a zero of order m > 1 at z,,. Choose r > 0
so small that f(z) — w, has no zero in the region 0 < |z — z,| < r; this is possible
because the zeros of a nonconstant analytic function are isolated (see Section 1). Let
6 be the minimum value of | f(z) — wy| for all z with |z — z,| = r, and let w be any
point with |[w — wy| < d. Then on the circle |z — z,| =7,

1(f(2) = w) = (f(2) = wo)l = [w — wo| <& <|f(2) — wl- (1

Therefore, Rouché’s Theorem (Theorem 3 of Section 1) implies that the two func-
tions f — wand f — w, have an equal number of zeros within the circle [z — z4| = 7.
However, f — w, has exactly m zeros, and hence so does f — w. This shows that
each point w, in the range of f lies at the center of a small disc, which is also within
the range of f. Thus, we have established this theorem.

THEOREM 1  Suppose that f is a nonconstant analytic function on a domain D. Then the
range of f(z), as z varies over D, is an open set. [ |

We can draw an immediate conclusion from the work that preceded the state-
ment of Theorem 1.

Suppose that f is a nonconstant analytic function on a domain D and

that f — f(z,) has a zero of order m at z,. Then f is m-to-1 near

zq; in particular, if f'(z,) = 0, then f is not one-to-one in any disc
containing z,,. )

Another very important consequence of Theorem 1 follows.

COROLLARY 1 The Maximum-Modulus Principle If f is a nonconstant analytic function on
a domain D, then | f| can have no local maximum on D.
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Proof 1f|f(zo)| = | f(2)| for all z with |z — z,| < r, then f(z,) lies on the boundary
of the open set W = { f(z): |z — z,| < r}. This is in contradiction to the fact that W
is an open set containing f(z,). [ |

The maximum-modulus principle expressed in Corollary 1 implies, for exam-
ple, that if we observe a nonconstant, sourceless, irrotational flow on a domain D,
then at no point of D is the speed of the flow largest, or even locally largest. No
matter where we look, the speed is always strictly greater at some nearby point.

The maximum-modulus principle (Corollary 1) has ramifications for the real
and imaginary parts of an analytic function. Suppose that f is a nonconstant
analytic function on a domain D; let u = Re(f) and g = e’. Then both g and 1/g
are analytic on D, so neither of the functions

1
lg| = e* and H =e
g

has a local maximum in D; consequently, u has no local maxima and no local
minima in D. This is stated formally in this way:

If f is analytic and nonconstant on a domain D, then Re f has no local
maxima and no local minima on D. 3)

Let us continue this line of thought a bit further. Let D be a bounded domain,
and let B be the boundary of D. The set D U B is both closed and bounded. There
is a result from real variables that asserts that a continuous real-valued function on
a closed and bounded set actually attains its maximum value.* Let us apply this to
each of the three functions | f|, Re f, and —Re f, where f itself is analytic on D and
continuous on D U B. We know that each of these three functions is continuous on
D U B and so must attain its maximum somewhere on D u B. If f is nonconstant,
then the maximum can not be attained on D itself. Hence, the maximum must be
attained on B, the boundary of D. Quite obviously, the same conclusion holds if, in
fact, fis constant on D. Thus, in all cases, | f|, Re f,and — Re f attain their maximum
values on B, the boundary of D.

If f is analytic on a bounded domain D and continuous on D U B,
where B is the boundary of D, then each of | f|, Re f, and —Re f
attains its maximum value on B. “4)

In particular, one consequence of (4) is that if Re f is zero everywhere on B,
then Re f'is zero throughout D, so f itself is constant on all of D. It should be stressed
that D’s being bounded is not a superfluous hypothesis here. For instance, f(z) = iz
is analytic and nonconstant on the whole plane, Re f = 0 on the real axis, and yet
f is not constant on the half-nlane {Im z > 0}, whose boundary is the real axis.

One of the best-known applications of the maximum-modulus principle is the
following result, known for historical reasons as Schwarz’s Lemma.

* See, for instance, W. Rudin. Principles of mathematical analysis. 3rd ed. New York: McGraw-Hill, 1976.
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THEOREM 2 Schwarz's Lemma Suppose that f is analytic in the disc |z| < 1, that f(0) =
and that | f(z)| < 1, for all z in the disc. Then

lf@l<lzl, |zl <1

Equality can hold for some z # 0 only if f(z) = 1z, where 1 is a constant of absolute
value 1.

Proof Since f(0) = 0, we know that g(z) = f(z)/z is also analytic on |z| < 1. For
lz| =r,

If(Z)I !

l9(2)| =

~

By the maximum-modulus principle, the inequality |g(z)| < 1/r is true for |z| < r as
well. Since r can be made as near 1 as we like, we must have |g(z)| < 1 if |z] < 1;
thus, | f(z)| < |z| for |z| < 1. Furthermore, if | f(z,)| = |zo| for some z, # 0, then
1 = |g(z,)|; consequently, |g(z)| has an interior maximum. This implies that g(z) is
a constant 4, |A| = 1, and gives the conclusion that f(z) = Az. ]

You may contrast the result in Theorem 2 to the case of real-valued functions
of a real variable. For instance, the function

ue) = x? +1

satisfies — 1 < u(x) < 1, u’(x) is continuous, u(0) = 0, yet |u(x)| > |x|if 1 > |x| > 0.

Mean Value

Theorem 4 of Section 3, Chapter 2 (Cauchy’s Formula) gives us

1@
flzo) =5~ j d,

{—2z

when y is a circle and z, is inside y. If we take z, to be the center of the circle, then
{=2zy+re",0<t<2ndl =ire" dt, and we obtain

1 (2 ]
flzo) = 5;[‘ Jl) flzo + re”)dt. (%)

The result expressed in (5) is the Mean-Value Theorem for analytic functions. This
result can also be obtained by replacing f(z, + re”) with the power-series expansion
for f about the point z, and integrating term by term.

In formula (5), take the real part of both sides and write u = Re f. We find that
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2n
u(zy) = 21_nf u(zo + re')dt. (6)

o

As we will see in Chapter 4, those functions u, which are the real parts of some
analytic function f, are of great importance in applications. Formula (6), which
shows us how to “recover” u(z,) from the values of u on the circle |z — zo| =1, is
but a special case of a more general formula that allows us to recover u({) for all {
inside |z — z,| = r from the values of u on the circle |z — zy| = .

EXERCISES FOR SECTION 3.2

1. Let f(z) = z*/(z + 2); find the maximum value of | f(z)| as z varies over the disc
lz] < 1.

2. Let f(z) = ze?; find the maximum value of |f(z)| as z varies over the region
D={x+iy:x* +y*<4,x>0,y>0}

3. Find the maximum value of |g(z)|,

z
9(2) = 21

as z varies over the region {z: |z| > 1}.
4. (a) If|z| =r < 1, show that

r
|e‘—1|>r—2_r.
(Hint:
,2 3
e’—1=z+:2—+—3—!+"‘,
sO
le* — 1] = |z] l+§+z3—:+--~ >r{l—k2;—:}~)

(b) Use (a) to show that the equation z(e* — 1) = w has exactly two solutions z
with |z| < 4 whenever |w| < L. (Hint: Look at the work around (1), preceding
the statement of Theorem 1.)

5. The function
1+z
S(z) = exp[1 — z:|
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is analytic on the disc {z:|z| < 1} and [S(z)| =1 if |z] = 1, z # 1. However,
$(0) = e > 1. Why does this not contradict the maximum-modulus principle?

6. Let D be a bounded domain with boundary B. Suppose that f and g are both
analytic on D and continuous on D U B, and suppose further that Re f(z) =
Re g(z) for all z € B. Show that f = g + iz in D, where a is a real constant.

7. Let F be analytic and nonconstant on the disc |z — z,4| < R, and suppose that
Re(F(z4)) = 0. Show that on every circle |z — z4| = 7,0 <r < R, Re F assumes
both positive and negative values.

8. Let f be analytic on a bounded domain D and continuous on D U B, where B
is the boundary of D. Show that if f is never zero on D, then the minimum of
| f| is assumed on B. You will need to use the fact that | f| does, indeed, assume
a minimum somewhere on D U B.

9. Suppose that f is analytic on a domain D, which contains a simple closed curve
y and the inside of y. If | f] is constant on 7, then either f is constant or f has a
zero inside .

10. Let f be a nonconstant entire function and U be an open set in the plane. Show
that there is a z, such that f(z,) e U.

11. Suppose that p is a polynomial of degree n and that |p(z)| < M if |z| = 1. Show
that |p(z)] < M|z|" if |z| = 1. (Hint: Apply the maximum-modulus principle to
f(z) = p(2)/z" on the domain |z| > 1, including the point “c0.”)

In Exercises 12 to 14, f is analytic on the disc |z|] < 1 and satisfies | f(z)] < M if
lz] < 1.
12. Suppose that f(a) = O for some o, |a| < 1. Show that

z—a
lfe)I <M 21’ Iz] < 1.
13. Show that
S(2) = f(zo) Z— 2 . .
M2 — TS @) ST =2z for all z, z; in {w:lw|<1}.

14. Suppose that f®(0) =0 for k =0, ..., N. Show that | f(z)| < M|z|¥*! for all z,
lz] < 1.

15. Let g be analytic and nonconstant on a simply-connected domain D; for
instance, D could be a disc. Show that the set {z: Re g(z) = ¢} contains no simple
closed curve. (Hint: Use Exercise 9 with f = exp(g).)

16. Use (6) to show that the real part of a nonconstant analytic function has no
strict local maxima or local minima.

17. Let f and g be analytic on a domain that contains a simple closed curve y
and the inside of y. Assume further that f is never zero inside y. Show that if
|f(z)| = |g(z)| for all z in y, then | f(z)| = |g(2)| for all z inside y as well. Give an
example to show that the hypothesis “f # 0 inside y” is essential for the validity
of the conclusion.
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18. Suppose that fis analyticin {z: 0 < |z — z,| < R} and that f has a pole of order
m, m > 1, at z,. Show that there is a large number M with this property: For
each w, with |w,| > M, the equation f(z) = w, has exactly m solutions z, z near
ZO.

Positive Rational Functions and Stable Polynomials*
If p is a polynomial, define j(z) = p(—2).

19. Show that § = p. For which polynomials Q is Q =Q?

20. Suppose that p is stable (see Section 3.1.1). Show that p and j have no common
Zero.

21. Suppose that p is stable. Show that the rational function r = j/p maps the right
half-plane, Re z > 0, into the disc {w: |w| < 1}. Conversely, show thatif r = j/p
maps Re z > Ointo |w| < 1 and if p and p have no common zero, then p is stable.

22. A rational function R is positive if Re{R(z)} > 0 whenever Re z > 0. Show that
(@) Ris positive if and only if 1/R is positive.

(b) If R is positive, then R has no zero or pole in the half-plane Re z > 0, and
any zero or pole on the imaginary axis has order one. (Hint: By (a), it suffices
to consider just zeros.)

23. Suppose that p is stable. Show that R = (p — p)/(p + p) is positive. Conversely,
show that if p and p have no common zero and if R = (p — p)/(p + P) is
positive, then p is stable.

3.3 Linear Fractional Transformations

A linear fractional transformation T is a rational function of the special form

where a, b, ¢, and d are complex numbers and ad — bc # 0. The restriction
ad — bc # 0 is essential, for otherwise

ad — be
4 [ JEE— |
T'(z) = ardr 0 forall z

so T is identically constant.
A linear fractional transformation is a one-to-one function. For suppose that

az, +b az, +b
= T =T = .
czy+d (21) (22) cz,+d

Then

(az, + b)(cz, + d) = (az, + b)(cz, + d),
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and, after some cancellation,

bcz, + adz, = adz, + bcz,,
or
(ad — bc)z, = (ad — bc)z,.
Consequently, z, = z,. Hence, the function T maps distinct points onto distinct
images. Note also that T has a pole of order one at —d/c and lim,,,, T(z) = a/c.
Since T is one-to-one, there is a function T™! that is the inverse of T in the
sense of the composition of functions:

T YT@) =z

for all z. T™! is also a linear fractional composition, as this computation shows.

az+b
T@)=w= cz+d
implies that czw — az = b — dw, and thus,
T_l(w) =z = —__d_”’—'i'_b
cw—a

Hence, a linear fractional transformation is a one-to-one mapping of the
complex plane plus the point at co onto itself. Conversely, a one-to-one (analytic)
mapping of the complex plane plus “c0” onto itself is a linear fractional transfor-
mation. (See Exercise 3, Section 4.)

Example 1 Show that a linear fractional transformation T of the form

a—z
T(z) = AI——LTZ’ Al =1,lal <1 0]

maps the disc A = {z: |z| < 1} onto itself.
Solution 'We begin by noting that

IT@? = la — z|? _ la|? — 2 Re(az) + |z|*
[1 —az|> 1—2Re(@z) + |al?|z]*’

so 1 > | T(z)|? exactly when

1 + |al?|z]|* > |a|* + |z|
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This last inequality is equivalent to
(1~ lal*)(1 —|zI*) >0,

which is true exactly when z € A. Hence, T does map A into itself. The inverse
function of T, in the sense of composition of functions, is

T-iw) =142
1 — aiw

(See above.) This transformation has the same general form as T, with a replaced
by al (a point which also lies in A) and 2 in place of 1. Hence, T~! also maps A into
itself. To see that T maps A onto itself, let w, be any point of A; then z, = T~ (w,)
lies in A by the comments above and so w, = T(T ~!(w,)) = T(z,), showing that the
range of T is all of A. o

Fixed Points and Triples to Triples

A linear fractional transformation that is not identically equal to z has at most two
distinct fixed points; that is, points z for which

T(z) = z

This is evident from the fact that z is a solution of the equation T(z) = z exactly
when z is a root of the quadratic equation

O=cz2+(d—a)z—b,

and, of course, a quadratic equation has at most two distinct roots. It is a con-
sequence of this that if T and S are two linear fractional transformations that are
equal at three distinct points, say T(z;) = S(z;) for j = 1, 2, 3, then T(z) = S(z) for
all z. This is because the linear fractional transformation S~ (T'(z)) has three distinct
fixed points:

S_I(T(ZJ)) = Zj’ j = 1, 2, 3.

Hence, S7!(T(z)) = z for all z, and thus, T(z) = S(z) for all z.

On the other hand, if three distinct complex numbers z,, z,, and z, are given
and if any other three distinct complex numbers w,, w,, and w, are chosen, there is
a necessarily unique linear fractional transformation L with L(z;) = w;,j = 1,2, 3.
We derive its form in this way. Set

(221 \[22— 2
T = (z - Za)(zz - 21).

Then T(z,) =0, T(z,) = 1,and T(z;) = 0. Let
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Sty = (W - Ws)(wz - WI)’

so that S(w;) = 0, S(w,) = 1, and S(w;) = 0. L is given by

L(2) = S7Y(T(2)).

We can carry out a similar sort of computation if one of z,, z,, and z; or w,;, w,,
and wj is oo; this is left for the exercises at the end of this section.

Example 2 Find the linear fractional transformation that sends 0, 1,2to —1, 0, 4,
respectively.

Solution We use the formulas to obtain

z—0\/1-2 z
T(Z)=(z—2)(l—0>=2—z

and
_(w—(=1) 0-4 1\ w+1
SM‘( w—4 )(0—(—1))— Ay
Hence,
g z—1
§ (z)—4z+4’
and so
8z —8
— ¢-1 = °
L(z) = S7(T(2)) 318 m]

Lines and Circles

It is an important property of a linear fractional transformation that it maps each
circle onto another circle or onto a straight line and each straight line onto another
straight line or a circle. We show this below.

First, if T(z) = az + b, a # 0, then the assertion that T maps circles and
straight lines to the same type of figure is quite clear. The circle

C:{z:|z — zo| =1}
is transformed to the circle

C':{w:|w — (azy + b)| = |a|r},
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and the straight line
L: {z: Re(4z + B) = 0}
is transformed to the straight line
L": {w:Re[(A/a)w + B — b(A/a)] = 0}.

Thus, we henceforth assume that

Now

az+b 1{bc—ad
T(z)_cz+d_;{cz+d +a}, c#0,

and we see from this that T is actually the composition of several simpler linear
fractional transformations. Precisely, set

U(z)=cz +d, V(w) = %, and W) = %[(bc —ad){ + al.

Then
T(z) = W(V(U(2))).
From the foregoing discussion, we know that both U and W send circles to
circles and lines to lines. Consequently, the desired conclusion will be reached if we
can show that ¥V maps circles and lines to circles and lines. The equation

a(x? + y?) + Bx + yy = 4,

where a, B, y, and ¢ are real and not all of a, B, y are zero, represents either a circle
(iff « # 0 and B2 + 72 + 4ad > 0) or a straight line (iff « = 0). Now

x -y

+i =u+iv,
x* + y? x2 +y?

L
z
so replacing z by 1/z yields the equation
S(u* 4+ v*)— Pu+ yv = a.
This is again the equation (in u, v coordinates) of either a line or a circle. You will

have no difficulty verifying that a circle or line through the origin is transformed by
inversion to a line, and that a circle or a line not through the origin is transformed
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e

Figure 3.7

by inversion to a circle (which goes through the origin when and only when a line
was inverted) (Fig. 3.7).

There is an interesting connection between certain linear fractional transfor-
mations and “rigid motions” of the extended plane with respect to the chordal
distance; see Exercises 24 to 27.

The Circulation Produced by a Linear Fractional Transformation*
Let

z+2
2z+1°

T(z) =

this linear fractional transformation fixes the two points 1 and — 1. We shall show
that if C is a circle centered on the imaginary axis that passes through both 1 and
—1, then T maps C onto itself. (Of course, 1 and — 1 are the only fixed points of T.)
Let ix be the center of C, « real. Then the radius of Cis r = \/a? + 1, so a point z
lies on C precisely when |z — ix|2 = 1 + a2. Hence, the equation of C is

X2+ (y—a)l=1+a?

or
x2+y?—2ay=1.
Now
+2 2
T(z) — ia|* = —
IT(z) — iadl ‘22+1

(x4 2+ 2ay)? + (y — a — 2ax)?
B 2x + 1)? + (2y)? ’
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and a modest amount of computation, using the fact that x2 + y* — 2ay = 1, shows
that

|T(z) — ix|?> = 1 + o2,

which, of course, is exactly the statement that T'(z) lies in the circle C if z is in C. Set

z+2
T&) =T =57
and then
Sz+4
T,(2) = Ti(Ty(2)) = m,

and, in general,
7:l+l(z) = T;l(’Tl(Z))’ n= 1’ 2’ 3’ LR
For instance,

13z + 14 41z + 40

LO=1m+10 LO=mra

In general, we see that T,(z) - 1 as n — o0 so long as z # — 1. Thus, T sets up a
circulation in the plane with a source at —1 and a sink at + 1: each point z in the
plane is on precisely one circle C through z, 1, and —1 (the real axis counts as a
circle for this purpose); T carries C onto itself and pushes z toward 1 along the circle.
Thus, the points in the plane move toward 1 and away from — 1 under the action
of T. We note that T'(1) = —1/3 and T'(— 1) = — 3. Thus, the sink is located at that
fixed point at which the modulus of the derivative is less than 1 (Fig 3.8).

You should convince yourself that the critical issue in the foregoing discussion
is that the linear fractional transformation fixes the two points 1 and — 1, and not
its special form. A similar phenomenon occurs for a linear fractional transformation
that fixes the two distinct points p and q (see Exercise 9 at the end of this section).
You should also look back at the Circles of Appolonius (Fig. 1.11), with the
foregoing in mind.

Example 3 This example continues the preceding discussion. We shall investigate
what happens when the two fixed points move toward each other. Set

z+ &2
z+1

s O0<e< 1.

T(2) =

T, fixes ¢ and —¢, so (exactly as above) T; sets up a circulation using the family of
circles centered on the imaginary axis and passing through ¢ and —¢ (see Fig. 3.9a).
As e -0, T,(z) - T,(z) = z/(z + 1) and we see that this T, sets up a circulation for
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1
Figure 3.8
A dipole located at the origin;

‘g2 the circulation is given by
Circulation of T¢(2) = 'ZZTI' () = - f I
with fixed points + €

—€ €
(a) (b)

Figure 3.9

the family of circles centered on the imaginary axis and passing through the origin.
This circulation is termed a dipole. Note that T;(z) = z/(z + 1) has only one fixed
point and that it is a double root of T;,(z) = z at z = 0. A similar dipole will appear
as the circulation of any linear fractional transformation with a single (distinct) fixed
point p, when p is a double root of T(z) = z (Fig. 3.9b).



204  Chapter 3 Analytic Functions as Mappings

EXERCISES FOR SECTION 3.3

1. Let z,, z,, z3 and w;, w,, w; be two triples of distinct complex numbers. Set

Z,—z
q=-2_=3 and B= .
ZZ—ZI W2—W1

W; — W3

Show that the linear fractional transformation that maps z; to w; for j = 1,2,3
is given explicitly by

z(awy — Bw;) + (Bw;z3 — az,w;)

Lia) = z(e — B) + (Bz3 — az,)

2. Verify that the linear fractional transformation

Z—ZI

S@) =

2 — 2,
maps z, to 0, z, to 1, and oo to 0.

3. Verify that the linear fractional transformation

maps z, to o, z, to 1, and oo to 0.
4. In each case, find the linear fractional transformation that maps the first triple
(21, 25, z3) onto the second triple (wy, w,, ws).
(@) (1,i, —1l)onto (—1,i,1)
(b) (1,4, 0)onto (0,1 —i, 1 + i)
(c) (1,0,i)onto(1,0,1 + i)
(d) (o0, —1,i)onto (1,0,1 — i)
(e) (i,2, —i)onto (—i, 3, i)
S. Find a linear fractional transformation that carries
(a) the circle |z] = 1 onto the line Re((1 + i)w) =0
(b) thecircle |z| = 1 onto thecircle |[w — 1| =1
(c) the real axis onto the line Rew = {
(d) the circle |z — z,| = r onto the circle [w| = 1
(¢) the line Re z = { onto the circle |w — 4i| = 4
6. Show that a linear fractional transformation T that maps the circle |z| = 1 onto
itself has the form

z—y

T(Z) = 1—_.,
1 -7z

A
|'1| = 1’ |')’| # 1’ or Tz = ;9 |A| =1

7. Ineach of the following, find a linear fractional transformation T with the given
property.
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(a) T fixes the points 0 and 1 and T'(i) = co.
(b) T maps the real axis onto itself and the imaginary axis onto the circle

lw—3l=%
(c) T maps the real axis onto itself and the imaginary axis onto the circle
w—il=1

(d) T maps the real axis onto itself and the line y = x onto the circle

lw+ i = /2.

. (a) In Exercise 7(c), determine what happens to the first quadrant under the

action of T.
(b) In Exercise 7(d), determine what happens to the sector {z: 0 < y < x} under
the action of T.

. Discuss the circulation set up by each of the following linear fractional transfor-

mations; find the fixed points (if any) and which way the circulation rotates.

@) T(@)=2z/(z+2)

b) T)=@E+4/z+1)

€) Tz)=3z—-2

@ T@2) = —3z

) Tz)=z+1 (no fixed points)

(@) If T is a linear fractional transformation that maps the circle C, onto the
circle C,, shows that T carries the inside of C, onto either the inside of C,
or onto the outside of C,. (Hint: Suppose a point z, inside C, goes to a point
w, inside C,. Let z, be any other point inside C; and L the line segment
joining z, and z,. T carries L to an arc of a circle (or a straight line seg-
ment) joining w, and w;, = T(z,) and this arc (or segment) does not meet C,.
[Why?])

(b) T maps the point z, = —d/c to oo; tell how this decides whether T maps
the inside of C, onto the inside of C, or onto the outside of C,.

Fixed Points

11

12.

13.

14.

15.

Show that a linear fractional transformation that fixes the two points 1 and — 1
has the form

z+¢

Te) = éz + 1

iféE=TO)# o0.(If Tz=1/z,then T(1) =1, T(— 1) = —1)

Suppose that T fixes the two points p and g, p # g. Let S be any linear fractional
transformation with S(1) = p, S(—1) = q,andlet U = S™! o To S. Show that U
fixes 1 and —1.

Suppose that U is a linear fractional transformation that fixes 1 and — 1. Show
that U'(1) = {U'(— 1)}~

Let T be a linear fractional transformation fixing p and g, p # q. Use Exercise 13
to show that T'(p) = {T"(g)} "

Show that the linear fractional transformation
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1—-z
14z

T(z) =

satisfies T(T'(z)) = z for all z. Find the general form of those linear fractional
transformations S with S(S(z)) = z. (Equivalently, S(z) = S7!(z).)

Cross-Ratio

The cross-ratio of four distinct complex numbers z,, z,, z,, and z; is defined to be
the complex number

29 — 212323

(20> 215 23, 23) = .
e 20— 222327

16. Show that if T is a linear fractional transformation with Tz; = w;for j = 1,2, 3,
then

(Z, 21523, 23) =(T(Z)’ Wi, Wy, W3) for all z.

17. Let z,, z,, z4 lie in a circle or on a straight linc C. Show the point z, is also
on C if and only if the cross-ratio (zy, z,, z,, z3) is real. (Hint: By Exercise 16,
it is enough to do this for C =real axis and z; =1, z, =0, z3 = —1. The
remainder is a computation: The cross-ratio of (z, 1, 0, — 1) is real if and only if
{ = (z — 1)/z is real. Show that ( is real if and only if z is real.)

18. Use Exercises 16 and 17 to give another demonstration of the fact that a linear
fractional transformation T carries circles and lines to circles and lines.

Reflection*

Let L be a straight line and z be a point in the complex plane. The reflection of z
over L is the unique point z* located on the line L’ through z and perpendicular to
L, lying on the other side of L from z, and at a distance from L equal to that of z
from L (Fig. 3.10a). Let C be the circle |{ — {,| = r and z a point of the complex
plane, z # {,. The reflection of z over C is the unique point z* located on the ray
from {, to oo, which passes through z, lying on the other side of C from z and
satisfying |z — {o| |2* — {o| = 12

(b)

Figure 3.10
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19. (a) Ifzis a point in L or C, show that z* = z.
(b) If L is the real axis, show that z* = Z, the complex conjugate of z.
(c) Show that (z*)* = zforany L, C, and z.

20. If C is the circle |{ — {,| = r, show that

2

r
Z*=_ "‘+CO'
z—{

21. Let z,, z,, and z, be points on the circle C of Exercise 20; fill in the reasons for
each of the following equalities (all but one use the invariance of the cross-ratio
under linear fractional transformations).

2

r
(Z*9zla22’23)=(_ Z +CO921922’Z3)

Z — 6o

r2
= (_Z, Zy — CO, Zy; — CO’ Z3 — c0>

zZ—2Co

(_ z r? r r? )
=z —{
21— 28 23— {

2

=z — {021 — Lo, 22 — {05 23 — (o)
=(Z, 21,22, 23)'

22. (a) Conclude from Exercise 21 that z* is the reflection of z over the circle C if
and only if

(2,215 22, 23) = (2%, 24, 25, 23) (2

for any triple z,, z,, z5 of distinct points in C.
(b) Let L be a straight line through z, and z,; choose z; to be c0 and modify
Exercises 20 and 21 to conclude that (2) also characterizes z* for reflection

over L.
23. Show that the net result of two successive reflections (over lines/circles) is a
linear fractional transformation.

Chordal Distance and Linear Fractional Transformations
The chordal distance between two points z and w is

(2, W) = |z — w|
oW = 0H 2221 + [wP)™

if neither of the points is “c0”; the chordal distance from z to oo is

2z, ) = (1 +|z|?)7~.
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(The chordal distance is another way of measuring how far it is from z to w; for z
and w close together, it is almost a multiple of the usual distance |z — w|. Hence,
any sequence that converges with respect to the usual distance also converges with
respect to the chordal distance. However, no points are further apart than 1 in
chordal distance. The name chordal comes from the fact that z and w can be viewed
as points on a sphere in three-dimensional space of radius 4 centered at (0, 0, 1); then
x(z, w) is the length of the chord joining z to w.)

The next several problems delineate an interesting connection between linear
fractional transformations and the chordal distance.

24. Let a and b be complex numbers with |a|?> + |b|?> = 1, and set

= 92Fb 3)
—bz +a

Show that T preserves chordal distance; that is, (Tz, Tw) = y(z, w), for all z, w.

25. If ais a given point in the extended plane, show that there is a linear fractional
transformation of the form (3) with Ta = 0.

26. Suppose that f and g are two functions mapping the extended plane into itself,
both of which preserve chordal distance. Show that their composition f o g also
preserves chordal distance.

27. Let f be a function that is analytic on the extended plane except possibly for
isolated poles, and suppose that f preserves chordal distance: x(f(z), f(w)) =
x(z, w). Show that f is a linear fractional transformation of the form (3). (Hint:
Compose f with a T of the form (3) chosen such that T(f(0)) = 0. Then
determine the form of T o f)

3.4 Conformal Mapping

Conformal maps are functions that preserve angles between curves in a sense that
we will make precise below. They are indispensable tools in studying flows and
fields and in solving boundary-value problems, as we shall see in Section 3.4.1 and
Chapter 4. In this section and the next, we shall study some of the basic facts about
conformal mapping.

Suppose that y is the range of a smooth curve z(t), a <t < b, and y passes
through the point z, = z(t,), a < t, < b. The curve y has a tangent vector z'(t,) at
z,, and we suppose that z'(¢,) is not zero. We now investigate what happens to the
curve y when we apply an analytic function f to it. The curve y is transformed into
a new curve I" in the w-plane; I is given by

T:w(t) = f(z(t)), a<t<b

Furthermore, by the familiar chain rule, we find that the tangent vector to I at
wo = f(2o) is

w(to) = f'(20)2'(to)-
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wo = flzg)
% v
w = f(2)

Figure 3.11

See Figure 3.11. In particular, we obtain the two relations

[W'(to)l = | (o)l 12 (o)l 1)
and

arg w'(to) = arg(f"(zo)) + arg(z’(to)). @

We make the natural assumption that f’(z,) # 0 and then note that the transfor-
mation of y into I by f has these two characteristics: The tangent vector is scaled in
length by a factor |f’(z,)l, and the tangent vector is rotated through an angle
Yo = arg(f'(zo))-

Suppose now that y; and y, are two smooth curves that intersect at the point
Zo = 24(tg) = 2,(5). We define the angle between y, and y, at z, to be the angle 6
measured counterclockwise from the tangent vector zi(t,) to the tangent vector
z5(so), if neither of these tangent vectors is zero. In this case,

0 = arg(z3(s0)) — arg(zi(to)),

for appropriate determinations of the argument of the tangent vectors z5(s,) and
z1(to)- See Figure 3.12. (This definition of the angle between two curves breaks down
if one of the vectors z(t,) or z5(so) is zero; this will not be a matter of great concern
to us.)

Suppose now that ¢ is a function, perhaps not analytic, defined in the disc
|z — zo| < r and satisfying ¢(z) # @(z,) if 0 < |z — zy| < r. We say that ¢ is con-
formal at z, if, whenever two curves y, and 7y, meet at z,, the angle from I'; to I,
(their images under @) is equal to the angle from y, to y,. That is, both the magnitude
and the sense of the angle is preserved by ¢. We shall now show that if f is analytic
in the disc |z — zy| < r and if f'(zy) # O, then f is conformal at z,.

Ify, and y, intersect at z,, then I'; and T, intersect at w, = f(z,), and equation
(2) shows that the angle from I'; to I', given by
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z{ (tp)
7
23 (So)

Figure 3.12

arg(w;(so)) — arg(w; (%)),
is equal to
arg(z;(so)) — arg(z;(t))-

But the latter is, of course, just the angle from y; to y,. Thus, we have established
the following result.

If f is analytic in the disc |z — zo| < rand if f'(z4) # O, then f is
conformal at z,. 3)

The conclusion expressed in (3) is false whenever f'(z¢) = 0, but all is not lost.
If f — f(z,) has a zero of order m > 2 at z,, it can be shown that f increases angles
between intersecting curves by a factor of m; the details are presented in the exercises
at the end of this section.
" In particular, since we have shown in (2) of Section 2 that the derivative of a
one-to-one analytic function is never zero, we obtain this result.

If f is both analytic and one-to-one on a domain D, then f is conformal
at all points of D. “4)

Many times the word conformal is used in complex variables to mean a
one-to-one analytic function, although technically speaking it should be used to
refer to an analytic function that is just locally one-to-one.

Example 1 The function f(z) = e* has a nonzero derivative at all points of the
plane, so it is a conformal mapping at all points. Note that e is one-to-one on any
strip of the form {x +iy:a <y <b}, 0 <b—a <2nx, but is not one-to-one if
b—az=2n o
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Example 2 The function h(z) = sin z is conformal at all points except z = /2 + nmx,
n=0, +1,..., which are the zeros of h’(z) = cos z. (]

Example 3 The function g(z) = 1/z is conformal at all points z except z = 0, where
it is not defined. In fact, a nonconstant linear fractional transformation T(z) =

(az + b)/(cz + d), ad # bc, is conformal at all points z except z = —d/c, where it is
not defined. This follows immediately from (4), since we showed in Section 3 that T
is one-to-one. o

Example 4 Show that each one-to-one analytic function f that maps the disc
A = {z:|z| < 1} onto itself is a linear fractional transformation of the form

a—z
1-az’

fe) =4 lAl=1, lal <L

Solution Example 1 of Section 3 shows that any function of the form of f is a
one-to-one mapping of A onto itself. Now let f be any one-to-one analytic function
mapping A onto A. Let f(0) = a and set

a—f)

2 = U

g(z) =

where ¢(z) = (a — z)/(1 — az). Then g is a one-to-one analytic function mapping A
onto A, and g(0) = ¢(f(0)) = @(a) = 0. Therefore, |g(z)| < |z|, by Schwarz’s Lemma
(Theorem 2 of Section 2). The inverse of g, g~*, is also a one-to-one analS'tic function
of A onto A, which sends 0 to 0; so, again by Schwarz’s Lemma, we find that
g7} (2)| < |z|. Equivalently, || < |g({)| for all { € A. Hence, |z| = |g(z)| for all z € A,
and this implies, again by Schwarz’s Lemma, that g(z) = Az, where 1 is a constant
of absolute value 1. Therefore,

“T—ww M=t
and hence
bz -7
f(z)—ll_gz, B=AaeA. o

Example 5 Show that the function ¢(z) = i(z + z7') is a one-to-one conformal
mapping of the region 1 < |z| < co onto the exterior of the closed interval [ —1, 1].

Solution ¢ is one-to-one, since the equality ¢(z,) = ¢(z,) implies that

.- + 2
z —=z —
! Zy 2 Z;
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or
1 1 z,—2z,
Z; I Zyz; '

If z, # z,, then the term z, — z, may be canceled from both sides of this last
equation, giving

1

212,

= 1 or 2122=1.

This is clearly impossible, since both z, and z, have modulus greater than 1.

¢ is conformal, because ¢’(z) = 4(1 — z72), which is never zero, since |z| > 1.
To determine the range of ¢, let w be any complex number that is not in the interval
[—1, 1]. The equation ¢(z) = w is equivalent to the quadratic equation

22— 2zw+ 1 =0.

Every quadratic has two roots (which may coincide). Note that if z, is one root, then
z, = 1/z, is the other. Hence, one of the roots will satisfy |z| > 1 unless both lic on
the circle |z| = 1. If that were the case, then a root would be z, = e for some real
0, and the above quadratic becomes

e —2we? +1=0.
After dividing by e, this yields
0=¢e“— 2w+ e =2(cos 0 — w).

Since wis not in the interval [ — 1, 1], this is obviously not possible. Hence, one (and
only one) of the roots of z2 — 2zw + 1 = 0 lies in the region |z| > 1; this z is the
solution we have been seeking. o

Level Curves

Let p be a real-valued function on a domain D. The set of z that are solutions of
the equation p(z) = ¢, where c is a constant, is called a level set or level curve of the
function p. Level curves are important in describing flows (and thus fields), because
the path followed by a particle in the flow is just a level curve of a certain analytic
function, as we shall see in Section 3.4.1. We shall now show that for an analytic
function f = u + iv, the level curves of u are “almost always” perpendicular to the
level curves of v.

Suppose that f = u + ivand f'(z,) # 0. We know that f is one-to-one in some
small disc D = {z: |z — zy| <r}; let g = o + it be the inverse function to f on
Q = f(D), so g(f(2)) = z if |z — z,| < r. We know from Exercise 19, Section 1, that
g is analytic. Let y, consist of those points z with |z — z,| < r and u(z) = u(z,). Then
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1 = {z: u(2) = u(zo)} = {z: Re f(2) = u(z,)}
= {g(w): Re w = u(z,), w e Q},

so 7, is precisely the range of the function g(w) on the set {w € Q: Re w = u(z,)} and
hence is a smooth arc. Likewise, the set y,, consisting of those points z with
|z — zo| < rand v(z) = v(z,), can be described by

Y, = {z:v(z) = v(20)} = {z: Im f(2) = v(z,)}
= {g(w): Im w = v(z,), w e Q}.

Hence, y, is precisely the range of g(w) on the set {w € Q: Im w = v(z,)}, and it, too,
is a smooth arc. We wish to show that y, and y, meet at a right angle at z,. But this
is now immediate, since the function g is conformal and the lines Re w = u(z,) and
Im w = v(z,) meet at a right angle at the point u(z,) + iv(zo) = f(z,) (Fig. 3.13).
Exercise 15 gives another proof of this fact.

72

"

Figure 3.13 The level curves 7y,, where u(x, y) is constant, and 7y,, where v(x, y) is constant,
meet at a right angle.

In this manner, we see that each analytic function f whose derivative does
not vanish gives an orthogonal “coordinate” system by means of the curves u(z) =
constant, v(z) = constant. The simple case f(z) =z gives the usual coordinate
system. A few others are given in the following examples. It is worth mentioning
again that not only do we obtain lovely pictures, but the curves Im f = constant
represent the paths followed by a particle in the flow given by f”, so these curves are
of great importance in applications. More on this is in Section 3.4.1 of this chapter
and in Chapter 4.

Example 6 f(z) = Log z on the plane minus the ray (— oo, 0]. Here the level curves
arelog |z| = constant and Arg z = constant, which are, respectively, circles centered
at the origin and rays emanating from the origin (Fig. 3.14). a

Example 7  f(z) = z2 = x? — y% + i2xy; the level curves sketched in Figure 3.15 are
two families of mutually perpendicular hyperbolas. o
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Argz = ¢,

Log |z]| = ¢

Figure 3.14 The curves Arg z = ¢, Log|z] = ¢;.

N\

Figure 3.15 The curves Im(2?) = ¢;, Re(2?) = ¢,.

Example 8 f(z) = log((z — 1)/(z + 1)); here the level curves of the real part of f
are exactly the circles |z — 1| = p|z + 1| discussed in Section 2, Chapter 1,
while the level curves of the imaginary part of f (see Figure 3.16) are the circles
Arg((z — 1)/(z + 1)) = constant. u]

Another way to find the level curves is as follows. The function w =
(z — 1)/(z + 1) maps circles through 1 and — 1 into straight lines through the origin
and maps the circles |(z — 1)/(z + 1)] = c to the circles |w| = ¢. The function{ = log w
maps the rays arg z = constant onto the straight lines Im { = constant and maps
the circles |w| = c onto the circles |{| = log c. Hence, { = log[(z — 1)/(z + 1)] = f(2)
has as its level curves Im f(z) = constant exactly the circles through 1 and —1.
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k, = 0.32
k, = 0.40
k, = 0.50 ky = 0.40
k, = 0.70 ky = 0.58
k, = 0.69
ky = 0.75
\ /

z—1
_’=k2.

. . z—1
Figure 3.16 The circles Arg (;—1) = k and o

Example 9  f(z) = log(z + /2> — R?), on the plane minus the segment [ — R, R].
The function g(z) = z + \/z2 — R? = w has as its inverse function

1 R?
z= E(W + 7) = G(w).

A simple computation shows that G(w) carries rays Arg w = ¢ onto the hyperbolas

2 2
ERNTS B
COoSs ¢ sin ¢

and the circles |w| = s, s > R, onto the ellipses

4x? 4y?

R22+ R22=1’ z=Xx+iy.
+ — —_—
(+5) (-5)

Hence, g(z) carries these hyperbolas and ellipses onto the rays Arg w = ¢ and the

circles |w| = s, respectively. Thus, f(z) = log g(z) has these ellipses and hyperbolas
as its level curves; see Figure 3.17 for the case R = 1, ¢’ = (2/n)c. o

Example 10  Fix a, |a| < 1, and consider

1@ =log(f_‘;z), 2l < 1.
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S
§<§ >
s =0.16 AN
< L v
< b@
s =0.20 A
<
A0
s =0.30 ¢z
s = 0.40 ¢ 20250
s = 0.55
s = 0.80
1 ]
R =10
2 2 4 2 2
Figure 3.17 The curves (—) - (L) =1, u Y
S C Sin ¢

The function g(z) = (z — a)/(1 — az) has constant modulus on the family of
circles determined by

zZ——i.

|z—al=p
a

The value p = |a| gives the circle |z| = 1; the argument of g(z) is constant on the
family of circles passing through a and 1/a. Thus, the level curves of f(z) are exactly
these two families of mutually perpendicular circles, one family lying entirely within
the disc |z| < 1'(Fig. 3.18).

Example 11 f(z) = \/Z on the plane minus the ray (— oo, 0]. Here

u(re’®) = Re f(re®) = \/r cos (g)

v(re®) = Im f(re®) = /r sin (g)

for 0 <r < o0 and — 7 < 0 < m. Using the half-angle formula from trigonometry,
we find that the level curves of u(re'®) and v(re'®) are given by the polar equations
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r(1 + cos 6) = constant
r(1 — cos 8) = constant,

respectively. A few of these curves are sketched in Figure 3.19. o

Figure 3.18 The curves |z— a| = p|1 — 22|, Aig((z— a)/(1 — @) =¢c —n<c<m.

Figure 3.19 The curves r(1 + cos 8) = ¢, and r(1 — cos ) = ¢,
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You might review the preceding six examples to note the following two

phenomena. (1) The level curves Re f(z) = ¢; never touch the boundary of D,
whereas (2) the level curves Im f(z) = ¢, always meet the boundary of D.

EXERCISES FOR SECTION 3.4
L.

2.

10.

11.

Show that g(z) = z? is one-to-one on the half-plane Re z > 0 but not on any
larger open set.

Find all one-to-one analytic functions that map the upper half-plane U onto
itself. (Hint: ¢(z) = i(1 + z)/(1 — z) maps the unit disc onto U and ¢ is one-to-
one.)

. (a) Show that each one-to-one entire function has the form 4z + B, A # 0.

(Hint: Check the behavior at “c0.”)
(b) Extend (a) to show that a one-to-one rational function on the plane plus
“00” must be a linear fractional transformation.

. Let f be a one-to-one analytic function on a domain D and suppose that there

is an analytic function h on D with h? = f. Show that h is also one-to-one.

. Suppose that w is not in the interval [ —R, R]. Show that the equation

z + R?/z = 2w has one solution z with |z| < R and one solution z with
|z] > R.

. Use the basic results on conformality to show that each of the circles |z — a| =

plz —bl, 0 < p < oo, is perpendicular to each of the circles arg((z — a)/
(z — b)) = ¢, 0 < ¢ < 2x. (Hint: Consider f(z) = log((z — a)/(z — b)).)

. Sketch some of the level curves of the real and imaginary parts of the follow-

ing functions. (a) f(z) = log((z — 2)/(1 — 2z)). (b) g(z) = /z — 1 on the plane
with the interval (— oo, 1] deleted. (Hint: Set z = 1 + w? with w = s + it. Then
solve for z when s = constant or ¢t = constant.) (c) h(z) = (1 + z)/(1 — 2). (d)
fz) = 2% — 2z

. Let f and g be conformal analytic functions with the range of f a subset of the

domain of g. Show that the composition g( f(z)) is also conformal.

. Let p be a polynomial of degree 1 or more with r distinct zeros. Let y, =

{z:|p(z)| = &}; show that y, consists of r disjoint closed curves if ¢ is small and

one closed curve if ¢ is very large. These curves are called lemniscates. For the

specific polynomial p(z) = z? — 1, show that the lemniscate is a pair of disjoint

simple closed curves if 0 < ¢ < 1, a single simple closed curve if ¢ > 1, and a

“figure eight” if ¢ = 1.

Let f be a one-to-one analytic mapping of the unit disc |z| < 1 onto itself with

two fixed points in |z| < 1. Show that f(z) = z.

Let f be analytic on a domain D, let z, be a point of D, and set wy, = f(z,).

Suppose that f(z) — w, has a zero of order m, m > 2, at z,. Follow the outlined

steps to show that f “multiplies angles by m” at z,.

(@) The angle from the ray y, = {z:arg(z —z,) =y} to the ray y,=
{z:arg(z —zo) =y + 0} is 6.

(b) In adisc|z — z,| < r, we have f(z) — w, = (z — z,)"g(z), where g(z,) # 0.

() If z,ey, and z,ey, then arg(f(z,)— wo)=my + argg(z,), and
arg(f(z2) — wo) = m(y + 0) + arg g(z,).
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(d) Let I, = f(y,) and I, = f(y,). The angle from I'; to I, is

ﬁ_‘}‘ [arg(f(z;) — wo) — arg(f(z;) — wo)] = mb.

12. Suppose that f is analytic on a convex domain D and that Re(f”(z)) > 0 for all
z € D. Show that f is one-to-one on D. (Hint: f(z,) — f(z,) = [, f'(w) dw, where
y is the line segment joining z, to z,.)

13. Use Exercise 12 to show that the function g(z) = z + e is one-to-one on the
strip {x + iy: —00 < x < 0, 0 < y < n}. (Hint: Show that the conclusion of
Exercise 12 remains valid if Im(f’) is positive on D.)

14. Let F be a one-to-one analytic function from a domain D, onto a domain D,.
Suppose that {z,} is a sequence of points in D; with z, — p, where p is in the
boundary of D;. Show that if {f(z;)} converges to a point g, then g must
necessarily lie in the boundary of D,. (Hint: If g € D,, then q = f(z,) for some
zo € D;. Show that f carries a small disc centered at z, into a small disc centered
at g and so derive a contradiction.)

15. Let f = u + iv be analytic, and suppose that f'(z,) # 0. Show that the level
curves u = u(z,) and v = v(z,,) are orthogonal at z, by showing that the dot
product of the gradient of u at z, with that of v at z, is zero. You will need to
use the Cauchy—Riemann equations.

Conformal Mapping and Flows*

One of the most significant applications of conformal mapping is to flows. This
section is devoted to the first steps in this application by making the connection
between level curves, conformal mapping, and flows. This will not only provide us
with an important application of complex variables but will also make it apparent
why we want to search for specific conformal mappings. Thus it leads into the
material of the next section.

We already noted in Section 2.1.1 and Section 2.4, Application 3, Chapter 2
that if f is a sourceless and irrotational flow on some domain D, there must be an
analytic function G defined on D, called the complex potential of the flow, with

G(z)=fk), zeD.

We shall now show that the level curves Im G = constant represent the paths
followed by particles in the flow; that is, these level curves are the streamlines for
the flow.

Let z,, be a point of D at which f(z,) # 0. Then G'(z,) = f(z,) # 0, so G(z) is
one-to-one in some small disc {z: |z — z,| < J}, centered at z,. This implies that
there is an analytic function H(w) defined at least for w e Q = {G(2): |z — z,| < 8}
with H(G(z)) = z if |z — z,| < 6. The level curve

Io = {z: Im G(z) = Im G(z,), |z — z,| < &}
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can also be described, therefore, as
Io = {Hw): Im w = Im G(z,), w € Q}
={H(t + ico): T + ico € Q, ¢y = Im G(z4)}.
The tangent vector to the curve I is just the derivative of H(t + ic,) with respect
to t and this in turn is equal to the derivative of H with respect to w, since H is
analytic. By the chain rule, then
1= H(G(2))G'(2) = HWf@2), w=G().

Consequently,

Hw _If@l _ fe@)
HWI~ @ @l

Thus, the unit tangent vector to I, is parallel to f(z) at each point z of T,. This
implies that the level curve I, is the path followed by a particle in a flow (see also
Exercise 11 at the end of this section).

Streamlining

Flow problems are typically of two types. The first, illustrated in Figures 3.20a and
3.20b, is when an impermeable object is placed in a flow of uniform velocity across
the plane. The resulting flow around the object is to be found, assuming a (virtually)
uniform velocity far from the object.

The second type of flow, illustrated in Figures 3.21a and 3.21b is, for instance,
the flow through a channel or around a corner, or generally in a simply-connected
region whose boundary consists of straight lines except for a few irregularities or
corners. The boundary is impermeable, and the flow is assumed to be (virtually)
uniform “at co”—that is, far from the irregular part of the boundary. Both types of

Figure 3.20
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(@) Y
(b)

Figure 3.21

flow problem can be handled by consideration of appropriate conformal mappings,
as we shall now show.

Our objective is to find the path described by a particle as it moves through
the domain D when the motion is governed by a sourceless, irrotational flow f that
remains in D; that is, the particle does not cross the boundary of D. We let G be an
analytic function on D with G'(z) = f(z), z € D; we then know from the foregoing
discussion that the path followed by a particle in the flow is just one of the level
curves, Im G = constant. The particles never cross the boundary of D, so the
boundary of D is one of the streamlines of the flow; that is, Im G is constant on the
boundary D. Consequently, to find the path taken by a particle in the flow, we need
to find an analytic function G on D whose imaginary part is constant on the
boundary of D and which has the correct behavior at “c0.” This is where conformal
mapping enters the picture.

Suppose that G is a one-to-one analytic mapping of the simply-connected
domain D onto the upper half-plane U = {x + iy: y > 0} and G maps the boundary
of D onto the real axis. Then Im G(z) is zero if z is in the boundary of D. If G™! has
the correct behavior at co, then G is the complex potential that we want. That is, the
level curves Im G = constant are the paths followed by the particles in the flow, and
the function f(z) = G'(z) is the velocity of the flow. We write w = G(z) and H(w) = z;
that is, H(w) is the inverse function to G(z); H(w) maps the upper half-plane U onto
D. The paths followed by particles in the flow are given by

Lt)={H({t+ic)k —o <t<ow}, 0<c<oo.

For example, the domain D pictured in Figure 3.21b is mapped onto U by the
function w = G(z), where

z=(w? - 1)17?
as we shall see in Example 10 of Section 5. Hence, the curves I, given by
L(t) = [(t + ic)®> — 1]'72, —o<t<ow, ¢>0

are exactly the paths followed by the particles in this flow. For ¢ very large, these
are virtually the same as the horizontal lines Im z = ¢. For ¢ = 0, the curve is just
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the boundary of the domain D. (The square root must be correctly interpreted,
however.)

The search for the function G is called “streamlining” the domain D, and the
function V(x, y) = Im G(x + iy) is called the stream function of D.

Example 1 The function G(z) = z? maps the first quadrant conformally onto the
upper half-plane U. Its inverse is the function H(w) = \/; The stream function is
Im(z2) = 2xy. n]

Example 2 The function G(z) = sin z maps the strip {x + iy: |x| < 7/2,0 <y <o}
conformally onto U. Its inverse is H(w) = arcsin w (see Section 5, Chapter 1). The
stream function is cos x cosh y, = Im(sin z). o

Example 3 Fix a point a, 0 < a < 1. The function

_(I=a(l +2)
= )i+ a

maps the disc {|z| < 1} conformally onto U, sending a to i. Its inverse is

_w(l+a)—i(l—a
T w(l+a)+il—a)’

H(w)

The stream function is

(1—a( -z
1+a |1 -z

1. Show that the function G(z) = 4(z? + 1/z%) maps the region D, which is in the
first quadrant and also exterior to the circle |z| = 1 conformally onto the upper
half-plane (Fig. 3.22). Use the function H = G™! to streamline D.

///// 6@ =2+

D 2 z

| m

-

Figure 3.22
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2. Show that the function H(z) = z% 0 < a < 2, maps the upper half-plane U onto

the plane minus a “wedge” of angle 7(2 — o) (Fig. 3.23). Use H to streamline this
region.

Figure 3.23

3. Show that the function K(z) = z/(1 — z)? is a conformal mapping of the disc
{z:|z] < 1} onto the domain D obtained by deleting from the plane the interval
(— o0, —4] (Fig. 3.24). Show that z = ({ — i)/ + i) is a conformal mapping of
U onto the disc {z: |z| < 1}. Use these two functions to streamline D.

Figure 3.24

4. Use the function H from Example 3 to streamline the disc {z: |z| < 1}.
5. Show that the function G(z) = —(1 — z?)% maps the region D shown in Figure
3.25 conformally onto U. Use this to streamline D.

D

0 1
Figure 3.25
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6.

7.

8.

9.

10.

11

Show that the function Log(z — a) represents the complex potential of a flow
in the plane with a single source at the point a. What are the streamlines for this
flow?

Show that the function Log((z — 1)/(z + 1)) represents the complex potential of
a flow in the plane with a source at — 1 and a sink (=negative source) at + 1.
Find the streamlines for this flow.

Show that the function
z—a
Log(1 — Ez)’ lal <1,

represents a complex potential of a flow within the disc |z| < 1, which has a sink
at z = a (see Example 10, Section 3.4).
Sketch some of the streamlines for the flow

__¢-9
o=z pne-o

(Hint: An indefinite integral of f is G(z) = Log((z — p)/(z — q)).)
The function G(z) = e* is a conformal mapping of the strip S = {x + iy:
0<y<m —w <x < o} onto U with Im G = 0 on the edges of S. However,
the curves Im G = constant are not the horizontal lines y = ¢, which are the
lines of a uniform flow in S. Explain this apparent discrepancy.
Let f be a sourceless, irrotational flow in a domain D, and let G be an analytic
function on D with G’ = f. Let z, be a point of D at which f(z,) # 0,
and let § be a small positive number for which G'(z) # 0 if |z — zy| < J. Let
Q= {G(2): |z — zo] < 6} and let H(w) be the analytic function on Q with
H(G(2)) = z,|z — zo] <.

Let u(t),a <t < b, be a continuously differentiable function with values in
the line L: {t + icy: T + icy € Q, ¢, = Im G(z,)}, which satisfies the differential
equation

u'(t)=H'®ue)™?, a<t<b,

and set y(t) = H(u(t)), a < t < b. (That such a function exists is a result from the
theory of ordinary differential equations.) Show that the range of the curve y(t)
is the level curve

Io = {z:Im G(2) = ¢,}

and that y'(t) = f(y(¢)) for a < t < b. (Hint: Look back to the discussion at the
beginning of this section.)

3.5 The Riemann Mapping Theorem and
Schwarz-Christoffel Transformations

The theorem of greatest theoretical importance in the subject of conformal mapping
is the famous theorem of Bernhard Riemann.
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THEOREM 1 Riemann Mapping Theorem Suppose D is a simply-connected domain with at
least two points in its boundary; let p be a point of D. Then there is a one-to-
one analytic function ¢ that maps D onto the open unit disc A = {w: |w| < 1} and
#(p) = 0. Furthermore, ¢ is uniquely determined by the requirement that ¢'(p) be
positive. [ ]

It is a consequence of Theorem 1 that any two simply-connected domains
(each with two or more boundary points) can be linked by a one-to-one analytic
function. For if D, and D, are two such domains and if ¢, maps D, onto A with
#,(p,) = 0, then the analytic function ¥ = ¢;! o ¢, maps D, onto D,, Y(p,) = p,,
and ¥ is one-to-one. In the language of complex variables, D, and D, are conformally
equivalent; the mapping is uniquely determined by the requirements that Y (p,) = p,
and ¥'(p,) be positive. See Figure 3.26.

£7

Figure 3.26 Two simply-connected domains that are necessarily conformally equivalent.

The proof of Theorem 1 requires concepts not covered in this book; in any
event, the usual proof provides no clue to how you actually write down the
conformal mapping; it is an “existence” proof only (see the notes at the end of the
chapter). Theorem 1 is of great utility nonetheless, since it provides us with the
knowledge that a conformal map actually exists and hence might be found explicitly
(there is, obviously, little point in searching for an object that does not exist). We
begin our search for useful conformal mappings by reviewing some of the conformal
maps that we have already run across. Then we show that a more-or-less explicit
rule can be given for constructing conformal maps of the upper half-plane U =
{w:Im w > 0} onto a polygon. The latter construction produces the Schwarz—
Christoffel transformations, which are useful tools in analyzing flows and other
physical phenomena, as we saw in Section 3.4.1.

Examples of Conformal Mappings
Example 1  f(z) = i(1 + z)/(1 — z) maps the disc A = {z:|z|] < 1} onto the half-
plane U = {w: Im w > 0} (Fig. 3.27). m}

Example 2  g(z) = e” maps the strip { —n < y < n} onto the punctured plane, those
w with w # 0 (Fig. 3.28). (See Section 5, Chapter 1.) o
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Figure 3.27

€
\ 4

.

Figure 3.28

gl

Figure 3.29

v

.1+ 2

the origin is /7/
not covered//
_
0 %//
h(z) = Logz

L

Example 3 h(z) = Log z maps the region Q obtained by deleting the ray (— oo, 0]
from the plane onto the strip {w: |Im w| < =} (Fig. 3.29). (See Section 5, Chapter 1.)

a

Example 4 F(z) = sin z maps the strip {z = x + iy: 0 < x < /2 and y > 0} onto
the first quadrant, {w: Re w > 0 and Im w > 0} (Fig. 3.30). (See Section 5, Chapter 1.)

m]
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F W

Example 5 f(z) = z?, 0 < p < 2, maps the upper half-plane U onto the region
described by {w = re"’: 0 < y < np; 0 < r < oo} (Fig. 3.31). m]

Schwarz*-Christoffel” Transformations

A Schwarz-Christoffel transformation is an analytic conformal mapping of the
upper half-plane onto a polygon. The key to understanding it is the examination of
the behavior at the point x, of the function f given by

f2) = Az — x0)’ + B,

where x, and § are real numbers, 0 < § < 2, and A4 and B are complex numbers.
The root is determined by choosing arg(z — x,) to lie in the interval (— /2, 37/2);
that is, we delete from the plane the vertical ray from x, down.

To begin, suppose z = x is real and x > x,. Then arg f'(x) = (f — 1)(0) +
arg A, so the curve parametrized by f has a tangent vector of constant slope, arg 4;
that is, it is a straight line segment. On the other hand, if x < x,, then arg f'(x) =

* Hermann Amandus Schwarz, 1843-1921.
' Elwin Bruno Christoffel, 1829-1900.
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/
/

) =Az-x\+B [ g~

’_\ /

Xo / Arg A

4 T t B

)

I\ deleted

Figure 3.32

n(f — 1) + arg A, so f(x) lies on a straight line making an angle n(f — 1) + arg 4
with the positive real axis (Fig. 3.32).

Let us set o = f — 1, so that —1 < a < 1; we see that the mapping f carries
the real axis into a polygonal curve of only two pieces, and the pieces meet at B with
angle of ma = 7(f — 1). Let us continue this idea, concentrating on f” instead of f,
since it is the value of arg(f’) that determines the slope of the various pieces of the
image curve. Let x; < - < x, be points on the real axis, and let «, ..., ay be real
numbers, all in the interval (— 1, 1). We shall examine the behavior of the function
f, whose derivative is given by

f'@) =A@z — x)"...(z — xy)™

Once again, the roots are determined by the requirement that arg(z — x;) lie in the
range (—n/2, 3n/2). If x is real and near x;, but is slightly more than x;, then

al'gf'(x) = al'gA + T4 q + o + Tay.
However, if x is again real and near x; but is slightly less than x;, then
arg f'(x) = arg A + nay; + moy,, + - + may.

If we add to this the facts that arg f'(x) = arg A whenever x > x, and that
arg f'(x) = arg A + na; + -+ + noy whenever x < x,, we see that f maps the real
axis onto a polygonal curve with N + 1 pieces (one or two of which may be infinite
in length). See Figure 3.33.

Now we shall apply this knowledge to the mapping of the upper half-plane
onto a given polygon. Let us suppose the polygon has N + 1 sides with vertices
at points w,, ..., wy, arranged in the usual counterclockwise order around the
polygon.

Let 6y, 0,, ..., Oy be the exterior angles at w,, ..., wy, respectively (Fig. 3.34).
The angles 6, ..., Oy lie in the range (— =, 7), and since the polygonal curve wow;,
WWy, ..., WyWs is a simple closed positively oriented curve, we see that
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w = f2) /

X Xy X3 Xy

an illustration of the case where N = 4

Figure 3.33 An illustration of the case where N = 4.

polygon with
ides (N = 5)

Figure 3.34 A polygon with 6 sides (N = 5).

00+01+"'+0N=27T.

Set a; = —6;/n so that
N
~l<o<1 and Y o= -2

These preliminary comments then prepare the way for the next theorem.

THEOREM 2 Schwarz-Christoffel Let P be a polygon in the plane with vertices w, ..., wy
and corresponding exterior angles 6, ..., Oy; set a; = —6;/n. Then there are real
numbers x,, ..., xy with x; < --- < xy and a constant A such that the function f(z)
whose derivative is

@) =A@z —x )" ...z — xp)™ (1)

gives a one-to-one analytic mapping of the upper half-plane Im z > 0 onto the
polygon P; f maps z; to w;for j = 1,..., N and f(c0) = lim,_, ;. ,, f(X) = w,. [ |
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A full proof of Theorem 2 rests on Theorem 1 and on the reflection principle,
which will be covered in Section 3 of Chapter 4. Here we shall content ourselves
with several comments and a number of examples. First, we have arranged the
mapping f so that f(c0) = w,, but this is not necessary; there will be times that
we will want to exploit some obvious symmetries in the polygon and not require
that f(co) = w,. In general, we can select any three of the vertices w; and any three
points x; on the real line or at co and require that f(x;) = w; for these three values
of j. For example, if we demand that f(—1) = w,, f(0) = ws, and f(2) = w, then
we have x, = —1, x5 =0, and x¢ = 2, so that x,, X3, X4, X7, ..., necessarily satisfy

X< —1<x3<x,<0<2<x;<""".

Second, Theorem 2 is stated for bounded polygons, but it holds as well for
unbounded polygons—which will be the most useful cases. This can be seen most
easily by looking again at the behavior of the function whose derivative is given in
(1). Another technique is to obtain the unbounded polygon as a limit of bounded
ones. This is sometimes useful to determine the angles a,, ..., ay and will be
illustrated in several of the examples.

Example 6 Find the Schwarz-Christoffel transformation of the upper half-plane
U onto the equilateral triangle shown in Figure 3.35.

ia\/—3—

Figure 3.35

Solution The exterior angles of an equilateral triangle are all equal to %=, so that

0
j=——=—c j=0,1,2
a] T 3’ ] ’
We select x; = —1 and x, = 1. Then,

@) =A@+ 1)y Pez-1)"%

= A(z* — 1)7%3,

Hence,
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z d

where we have selected 1 as the initial point for the integration. (Another choice
would produce another B.) To find 4 and B, we note that

a=f(1)=

and

. ® dt
l\/gtl—Aj1 m"‘B.

If we denote by f the value of the integral

@ dt
(=17

B =

then we find that

B=a. m]

Example 7 Find the Schwarz—Christoffel transformation of the upper half-plane
U onto the region shown in Figure 3.36.

/
Wo = 0g + itg, 7> 0
w =0

Figure 3.36

Solution The exterior angle at w, is 6 where

0= arctan( )e( m, 0),
0o
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and the exterior angle at w, is just — 0. If we select x, = —1 and x,; = 1, then the

derivative of the mapping function is

0
fl@) =A@ + 1)*(z - 1)"% =--€ (o, 1).
The function f(z) cannot usually be given explicitly. However, in the special case
when 6, = 0, we have § = — /2,50 a = 4 and
, z + 1 12
f'(2) = A< ) .
z—1

Thus,

f@) = A{(z* — ) + Log(z + (2> — 1)"*)} + B.
The constants A and B are found from
itg=f(—1)= A{in} + B
0=f(1) =A{0}+B.

Hence, B = 0 and A = 1,/n. The mapping is thus
f(Z) = EQ{(ZZ — 1)1/2 + Log(z + (zz _ 1)1/2)}‘
T

Some of the streamlines for the flow through the region (when 6, = 0 and 7, = 1)
are shown in Figure 3.37 below. (m]

o‘\
I
—
[=)
e A A A A
I
N
8

0.30

Figure 3.37 The flow over a vertical step. The streamlines are

I.(t) = %{[(l +ic)> — 112 + Log(t + ic + [(t + ic)* — 11*?)}, —00 <t<o;c>0.



3.5 The Riemann Mapping Theorem and Schwarz-Christoffel Transformations 233

wz . —_—
W, w,=ia=W, a>0
w, = —b, b=0

7

Figure 3.38

Example 8 Find the Schwarz-Christoffel transformation that maps the upper
half-plane onto the region in Figure 3.38.

Solution The exterior angles at w,, w,, and w, are, respectively,
a n
6, =0, = —arctan{-)e| —=,0
b =0, arctan <b> [ 3 )

01 = _200 — T E(—Tt, 0).

and

Hence, ag = a, = —0,/n € (0,4] and a; = (20,/n) + 1 € (0, 1). Set ag = &, = a, 50O
that o, = —2a + 1. With the choices x, = —1, x, = 0, and x, = 1, the derivative
of the mapping function is

f'(2)= A(z + 1)’z7 2%z — 1)®

- A(22 _ 1)“2—2“'1.

Once again, we cannot find f(z) explicitly, in general. The special case when b = 0
gives o = 1 and

['@) =A@ — )2,
SO

fz)=A{z /1 — z* + arcsinz} + B.
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A and B are found by the requirements that

—ia=f(—1)= A{—g} +B

0=f0) =B
Thus, the mapping is
2
flz) = i;a {z/1 — z* + arcsin z}. n]

Example 9  Find the Schwarz—Christoffel mapping of the upper half-plane U onto
the region in Figure 3.39.

Solution We find this mapping as the limit of mappings onto the region shown in
Figure 3.40. We select x, = —1, x; =0, and x, = 1 and think of b as being very
large. Thus, the exterior angles at w, and w, are almost — /2, and the exterior angle
at w, is almost n. Hence, the derivative of the mapping function onto the desired
region will be

a a
a>0
Figure 3.39
_ / _
Wo w2
Wo=a= —-w
w = —ib, b>0
Wi

Figure 3.40
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f'@) =A@+ )Pz — )72
22 — 1\12
)

fz)=A4 {Q/z2 -1+ arcsin(—i—)} + B.

We find the constants 4 and B from the conditions

Thus,

—a=f(—1)=A{—;}+B

a=f(l) =A{§} +B.

Consequently,

f(z) = 27‘1{./22 -1+ arcsin(—i—)}.

Figure 3.41 shows some of the streamlines and some of the equipotentials for the

curves of
uipotential > i
equipotenti streamlines
p— ————

Figure 3.41 The flow over a deep hole in a streambed. The streamlines are

23 - 1
Fc(!)=~[ (t+ ic)? —1 +arcsm< )] -0 <t< o, c>0.
n t+1c
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flow through this region. This models the flow over a deep hole in a streambed.
(m]

Example 10 Find the mapping of the upper half-plane U onto the region R
obtained by deleting from U the segment {it: 0 < t < a} (Fig. 3.42).

Solution 'We obtain the given region as a limit of the regions shown in Figure 3.43
as ¢ — 0. The exterior angle at w, is almost n/2, as is the exterior angle at w,; the
exterior angle at w, is almost — 7. Hence, as ¢ — 0, we find that the derivative of the
desired mapping is

f'(2)=A(z + 1) V2z(z — 1)1

z

where, as before, we have selected x, = ~ 1, x; = 0, and x, = 1. Hence,
f(2) = A(z* — 1) + B.
A and B are found by the conditions
0=f(—1)=B, ia = f(0) = Ai.

Consequently, the mapping is

 _

Figure 3.42

f(z) = a(z* — DN~

Figure 3.43
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_____—v——'//\
_»-———"/\’\
A

Figure 3.44

Some of the streamlines for the flow through this region are shown in Figure
3.44. The streamlines are given by z(t) = /(t + ic)> — 1, —c0 < t < oo. This models
the flow over an obstacle in a streambed. o

Example 11 Show that the function ¢(z) = z + e maps the strip {—n <y < =}
one-to-one and onto the entire complex plane minus the two rays

={o+imo< —1}
={o—inio < —1}.

Show further that ¢ maps the two lines y = = and y = —x onto the two rays R,
and R,, respectively, covering each point twice (except the points — 1 + iz, which
are covered once) (Fig. 3.45).

Solution  Since (Z) = ¢(z), we will consider only the region where 0 < y < . The
function g(z) = e* maps the strip {x + iy: 0 < y < n} onto the upper half-plane U,
so we shall now show by use of the Schwarz-Christoffel transformations that the
function f(z) = z + Log z maps U onto the region Q obtained by removing from U

ir

-
. .

—ix

o) = 2 + & /-]+u’

——t

.

Figure 3.45
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|

Figure 3.47

the ray R, (Fig. 3.46). The composition ¢(z) = f(g(z)) = z + €* will then map the
strip {x + iy: 0 < y < 7} onto Q, as desired.

Consider the region shown in Figure 3.47. As R — oo, the region shown
approaches the region Q. We select x, = — 1 and x; = 0 and note that the exterior
angle at w, is almost —x and the exterior angle at w, is almost =, if R is very big.
Hence, as R — oo, we find that the derivative of the mapping function is

f'(2) = A(z + 1)1z7!

4 (1 " 1).
Z
Thus, f(z) = A(z + Log z) + B. To determine A and B, we note that

n = Im f(x) = Im(Ax + log|x| + in + B)
for any x < — 1. Thus,

0=xIm A + Im B, x< —1,
which implies that A and B are real. Furthermore,
—l+in=f(-1)=A(—1 +in) + B,

which then gives 4 = 1 and B =0. o
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. g >0
/ o 0
g-o 7 TO>O

0
Figure 3.48

Figure 3.49

Example 12 Find the Schwarz—Christoffel transformation of the upper half-plane
U onto the region pictured in Figure 3.48.

Solution Once again, we find the desired mapping as a limit of mappings onto
regions that “grow” to the desired region. We start by considering the region
pictured in Figure 3.49. The exterior angle at w, is 7/2; the exterior angles at w,, w,,
and w, are nearly n, —n/2, and =, respectively. We let w, correspond to — 1, w, to
0, w, to some point a®, a > 0, and w, to co. The derivative of the desired mapping
is then

f2)=A¢ + 1)—1/22'1(2 _ a2)1/2,

where A is a constant. Our first task is to find a? in terms of 6, and 1, the coordinates
of the corner at w,. Consider Figure 3.50.

Let z lie on the semicircle {¢e”®: 0 < 6 < =}, & small; as z traverses this semi-
circle clockwise, the imaginary part of f(z) goes from 0 to t,. Hence,

, 0 [gei® _ g2\12
To = Im Jf (Z) dz = Im{J; A(W) lde}

Letting ¢ — 0, we find that
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w = F(2) AT)

gy + ity

s 7o

Figure 3.50

1o = Im{Ai(ia)(— )} = na Im A.

Likewise, if z traverses the semicircle {Re: 0 < t < 7} counterclockwise, the
real part of f(Re") decreases from ¢, to 0. Hence,

, *  (Reit — g?\2_
—0g = Re jf (Z) dz = Re {J‘O A(—Re—“‘+—1) ldt}.

Letting R — oo, we find that
—06o = Re{iAdn} = —nIm A.
Combining these two equations yields

T 1] io,
a=2 ma=2  4='%
g, b4 T

and so

_a\12
f'(z)=i"—°1<z “), Y

nmz\z+1 0,

Thus, the derivative of the Schwarz-Christoffel transformation is completely known,
and all that remains is to integrate.
To find f, we may either consult integral tables or proceed in this way. Let

z 4+ 1\¥?
z—a

and define g by the relation g(w) = f(z). The chain rule then gives

_di_df_di=,4_l_ 1-a I/Z_di, A_i_a‘l_
z+1 dw

dw  dz dw z

However,
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_1+ad’w?
Ewr e
$0
dg wr—1 12w(l +a*)(-1)
dw 14 a*wiw  (w?—1)?
2 1
=2A4(1 + a*)

(1 —whH( + a?w?)’

This last expression yields immediately to the partial-fraction technique of ele-
mentary calculus:

2(1 + a?) 1 1 a? a?

(l—wz)(1+a2w2)_1—w+1+w+1—iaw+1+iaw'

Integration then gives

fz) =gw) = [Log (it—:) —ia Log(i t Z:)] + B,

where

B is zero, since g(0) = f(1) = 0. o

EXERCISES FOR SECTION 3.5

In Exercises 1 to 6, use conformal maps or combinations of conformal maps that
you already know such as linear fractional transformations, powers, roots, sin z,
log z, etc., to find a one-to-one analytic function mapping the given region D onto
the upper half-plane U. In each case, tell as much as possible about the image of the
boundary of D under the mapping.

1. D ={z=x + iy: x and y are positive}

. D={z:|Argz| <a},a<m

D={z=x+iy:|ly— 1| <2}
={z:|z — zo| < 1o}

D={z:|z| > Rand Im z > 0}
={z:z¢(—00, —1]JU[1, )}

. Find a conformal map of the infinite strip 0 < y < = onto the semi-infinite strip
{o+itt0<o<1,7t>0}

8. Find a conformal map of the region between the two circles |z| = 1 and
|z — 4| = { onto the disc |w| < 1. (Hint: First apply z - 1/(z — 1).)

9. Find a conformal map of the first quadrant onto the strip |[Im w| < 1.

NovA W
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In Exercises 10 to 14, find a Schwarz-Christoffel transformation of the upper
half-plane onto the given domain D.

10. D = {z: 0 < Arg z < 4n/3}

1. D={z=x+iy: —n/2 <x <m/2and y > 0}

12. D is pictured in Figure 3.51a. (Hint: Map onto the region in Figure 3.51b and

then let b — 0.)
§&\\\\Vm \ j ia
8 b
(a) (b)
Figure 3.51

13. D is pictured in Figure 3.52.

Figure 3.52

14. D is pictured in Figure 3.53. (Hint: Obtain this region as the limit of the regions
in Figure 3.54.) Evaluate the constants as in Example 12.

Figure 3.53
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+ ix/2

+
5

PO

30w
[=9

R o

Figure 3.54

15. Dis pictured in Figure 3.55. (Hint: Obtain this region as the limit of the regions
shown in Figure 3.56.) Let —1 correspond to ia, 0 to — R; then let R — o to
find f'(z). f may be obtained as in Example 12.

Figure 3.56

16. Let C, and C, be two circles, with C, inside C,. Show that there is a linear
fractional transformation ¢ such that ¢(C,) and ¢(C,) are concentric circles.
(Hint: An initial translation, dilation, and rotation reduce the result to the case
when C, is the circle |z| = 1 and C, is centered on the positive real axis. Show
that there is an a € (0, 1) such that

zZ—

TERE

az

carries C, to a circle centered at the origin. The key is that y will carry a diameter
of C, to a diameter of Y (C,).)
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17. Suppose that f is a one-to-one analytic function mapping the disc |z| < 1 onto
a bounded domain D. Show that the area of D is given by

AD) = JJ |f'(z)|? dx dy, z=Xx+iy.
|z|<1

You will need to know the “change-of-variables” formula for double integrals.
18. Using the formula in Exercise 17, show that the area of D is given by

A(D)=r Y, nla,|?,
n=1

where Y =2, a,z" is the power series for f in |z| < 1.

19. Let D be a simply-connected domain and ¢ the Riemann mapping of D onto
the disc {w: |w| < 1}. Let {z,} be a sequence of points in D with z, — p, p in the
boundary of D. Show that the sequence {|#(z,)|} converges to 1. (See Exercise
14 in Section 3.4.

Further Reading

A lovely treatment of the geometry of complex numbers, including an extensive
coverage of linear fractional transformations, can be found in Schwerdtfeger, H.
Geometry of complex numbers. New York: Dover, 1979. Linear fractional transfor-
mations are frequently called Mobius transformations, after August Ferdinand
Mobius, 1790-1868.

More on conformal mapping, especially of multiply connected domains, and
a development of the theory of analytic functions on such domains, is in Nehari, Z.
Conformal mapping. New York: Dover, 1975. Another possible source is Bieber-
bach, L. Conformal mapping. New York: Chelsea, 1953. The references listed at the
end of Chapter 2 also all have more to say on the topics of this chapter and are good
places to seek further information. The books by Ahlfors, Burckel, Hille, and Nehari
all contain a proof of the Riemann Mapping Theorem. That in Burckel is the some-
what “constructive” proof of the theorem developed by P. Koebe. To understand
it, or any of the proofs of this theorem, you must go into certain aspects of function
theory not touched on here.

Further information on the stability of solutions to a linear system of ordinary
differential equations can be found in Sanchez, D. Ordinary differential equations.
San Francisco: W.H. Freeman, 1968, or in Lefschetz, S. Differential equations:
geometric theory. New York: Dover, 1977.
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Analytic and Harmonic Functions
in Applications

41 Harmonic Functions

A continuous complex-valued function u with continuous first and second partial
derivatives on an open set D in the plane is harmonic on D if it satisfies Laplace’s
equation:

u  %u B

Au=w+ay2—0 on D.

Harmonic functions are critical components in the solution of numerous physical
problems, such as the flow of water through an underground aquifer, steady-state
temperature distribution, electrostatic field intensity, elasticity, and diffusion. Many
of these physical problems are discussed in Section 2 of this chapter, and techniques
for their solution are derived in Sections 3 and 4. In this section, we review the
intimate connection between harmonic and analytic functions and use this connec-
tion to establish a number of fundamental properties of harmonic functions.

Supposefirst that f is an analytic function on a domain D; we write f = u + iv.
Recall that u and v satisfy the Cauchy—Riemann equations:

ou ov ou ov

a_x_a*y’ a}__é;.

Both u and v are harmonic, since

Auz 0 (0u), O (ou
"=ax\ox) T ay\ay
_ 9w\ o(-dw
~ox\dy) " ay\ ox

k) i)

“oxdy dyox
245
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and likewise, Av = 0. Thus, the real and imaginary parts of an analytic function are
harmonic. Moreover, the converse is true, at least locally. If u(z) is a real-valued
harmonic function on a disc, {z: |z — z,| < r}, then define f(z) by

y
Qg(t, y)dt + i,[
dy

Yo

al(xo, s) ds. 1)

f(x+iy)=u(x,y)—if Ew

From the Fundamental Theorem of Calculus,

g
ox ox oy

Furthermore,

of ou _[*d%u
a_y_a_y_lj;ow—(t,ydt"‘l (xo,Y)

ou * 0%u Ju
=5+ J o 2(t y)dt+1 (xo, ¥)
Ju ou ou Ou
_6y+ {x(x, y)—g(xo, Y)}""a(xod’)
ou . Ou _ of
—a_y"'la—la

Hence, if we write f = u + iv (that is, v(x, y) is the two terms in (1) involving the
integrals), then

~6_v__f3£ and @—a_u
ox  dy dy ox’

These are the Cauchy—Riemann equations, so fis analytic on this discand u = Re f
there. We summarize this information here.

A real-valued function u on a domain D is harmonic on D if and only
if on every disc in D, u is the real part of some analytic function. 2)

Note that a harmonic function is locally the real part of some analytic function, but
it need not be the real part of an analytic function on all of D. An example of such
a function is

u(x, y) = log(x + y?).

u is harmonic on the annulus, 0 < r < x2 + y? < R, but, because locally u(x, y) is
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the real part of log z, there is no analytic function on all of the annulus whose real
part equals u.

The function v that is the imaginary part of f (that is, u + iv is analytic) is
determined completely by u except for adding a purely real constant. For if u + iv,
is also analytic, then (u + iv) — (u + iv,) is again analytic. But this difference is just
i(v — v,), so i(v — v,) must be constant, since an analytic function with purely
imaginary values is constant. Such a function v is called a harmonic conjugate of u.

Example 1 Find a harmonic conjugate of (a) 2xy; (b) e cos y; (c) (¢* + e *) cos y.
Solution One way to proceed is to use the rule for v given in (1), but it is just as
easy to use the Cauchy—Riemann equations:
v  Ou v Ou
ox dy dy ox
For (a):
o ou

thus, v(x, y) = —x? + p(y). However,

so p'(y) = 2y. Hence, v(x, y) = —x2 + y* + ¢, where c is a constant.
For (b):

a_v _Ou
ox Oy

thus, v(x, y) = e* sin y + p(y). Since

e*cosy + p'( )—@—al—e"cos
y p y - ay - ax - y’
we find that p’(y) = 0. Hence, v(x, y) = e* sin y + ¢.
For (c):

6_0 = —% = (e* + e *)sin

ax  ady y
and

@_6_14_( * —e"¥) cos

oy ox ¢ Y

Thus, v(x, y) = (e* — e *)sin y + c. u]
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Maximum Modulus
With (2) in mind, we can look back at (4) of Section 2, Chapter 3 and conclude that

If u is a real-valued nonconstant harmonic function on a domain D,
then u has no local maximum and no local minimum in D. 3)

This is the maximum principle for harmonic functions. In fact, a variation of (3) holds
for any harmonic function u whether real- or complex-valued.

If u(x, y) is harmonic and nonconstant on a domain D, then |u(x, y)|
has no local maximum in D. @

The proof of (4) is left as an exercise.

A theorem from real variables asserts that a real-valued continuous function
on a closed and bounded set attains both its maximum and minimum. This, and (3),
give the next result.

Suppose that u is a real-valued harmonic function on a bounded

domain D and that u is also continuous on the union of D and the
boundary, B, of D. Then u attains both its maximum value and its

minimum value over D U B on B. In particular, if u = 0 on B, then
u=0onD,as well. (5)

Mean Value

Suppose that u is a complex-valued harmonic function on a domain D. Then we can
write u = u, + iu,, where both u, and u, are real-valued and harmonic* on D.
Hence, in a disc {z: |z — z,| < R}, which lies in D, we know that u, and u, are each
the real part of some analytic functions, say f; and f,. Thus, from (5) of Section 2,
Chapter 3, we find that for any 7,0 < r < R,

u(zo) = uy(z) + iuz(zo) = Re fi(zo) + i Re f5(z0)

2n 2=
=Re {-I—J fizo + re) dt} +iRe {L J fa(2o + re®) dt}
2n |, 2 Jo

1 [ . .
= Z_nj {Re fi(zo + re") + i Re fy(zo + re)} dt
(1]

1 (2= i
=5 L u(zy + re®) dt.
This is the mean-value property of harmonic functions:

2n
u(zo) = —2—17? L u(zo + re') de. (6)

* The fact that the real part of a harmonic function is again harmonic, but the real part of an analytic
function is not analytic, points to a significant property of the Laplacian operator A.
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In the exercises, you are asked to show how (6) can be used to derive (4). Property
(6) actually characterizes harmonic functions in the sense that any continuous
function that satisfies (6) must be harmonic; we shall not prove this.

Composition

Suppose that u is a harmonic function for z in some domain D. If ¢({) = z is an
analytic function of {, which maps a domain Q into D, then

w({) = u(@(0))

is a harmonic function of {, as { varies over Q (Fig. 4.1). One way to show this is the
following. Let {, be a point of Q and z, = ¢({,). Let W be a small disc centered at
zoin D, and let V be a small disc centered at {, with the property that ¢({) € W for
all { e V; this is possible because ¢ is continuous at {,. We assume that u is real-
valued; thus, there is an analytic function f in the disc W with u = Re f; the function
9(8) = f(#(0)) is then analytic in the disc V, and Re g = Re(fod) =uo ¢ =w, so
w({) is harmonic on V, being the real part of the analytic function g({).

) “a)

Figure 4.1

The Graph of a Harmonic Function and Strain Energy

Suppose that D is a bounded domain and u(x, y) is a real-valued continuously
differentiable function on D whose values on B, the boundary of D, are those of some
fixed real-valued function f: u(x, y) = f(x, y) if (x, y) € B. The energy integral of u is

ou\? [ou\?
E(u) = — — | pdxdy.
(u) an {(ax> " (5)’) } i
This integral has the physical interpretation as the total strain energy of a thin

membrane stretched in’the shape S of the surface in three-dimensional space, which
is the graph of the function u:

S = {(x, y, u(x, y)): x + iy e D}.

The derivation of this formula goes as follows. The strain energy in a small piece of
surface is proportional to the change in the surface area from the undeformed to
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the deformed state. That is,

dE = new surface area — old surface area
= \/1 + (2—2)2 + (Z—;)z dA —dA
[ e
~GHE) -Gt

When we “sum” all the strain energy, we obtain the energy integral given above, up
to a constant that multiplies the integral. (In passing from the second line to the

Figure 4.2 The graph of x°* — 3xy%
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third, we made use of the simple approximation /1 + s ~ 1 + s. The accuracy of
this approximation increases as s decreases, so the formula is “better” if the defor-
mations are small.)

We now pose the problem of minimizing E(u) over all functions u(x, y) with
u = f on B; that is, we wish to find that surface with a prescribed edge whose strain
energy is minimal. Suppose that u, produces this minimum:

E(uy) < E(u), for all u with u = f on B.

Let v be any continuously differentiable function on D that is zero on B. Then u, + &v
equals f on B for any number ¢, and because u, has the minimum energy integral,
E(u,) < E(uq + €v). Hence,

E(uy) < E(ug + ev)

Oug Ov auo ov )
= E(u,) +26JJ {ax 6x }d dy + ?E(v).

Cancel the E(u,) term from both sides, divide by ¢, and then let ¢ - 0. If ¢ is always
positive, we conclude that

Oug Ov 6u0 v
dxdy >0,
JJ {6}«: 6x 6y 6y}
and just the reverse inequality if ¢ is always negative. Thus, we must have
Oug Ov 6u0 v
dx dy =
Jf {(?x ax T K } =0

We now suppose that D, B, v, and u, satisfy the hypotheses of Green’s Theorem,
and we apply Green’s Identity, from Exercise 13, Section 6, Chapter 1. Thus,

Oug Ov 6u0 ov
JJ {6x ax dy 0 }d dy
5 duy
= ds — (v)(Auo) dx dy.
B
However, v(x, y) = 0if x + iy is in B, so we finally have

= j (v)(Au,) dx dy
D

for any (smooth) function v(x, y) that is zero on B. This, of course, implies that

Auy = 0 on D (see Exercise 17). That is, the energy integral is minimized exactly by

the function u,, which is the unique harmonic function on D with values f on B.
Figure 4.2 shows the surface S = {(x, y, x* — 3x)?), —1 < x, y < 1}. This



252  Chapter 4 Analytic and Harmonic Functions in Applications

then depicts a thin membrane having minimum strain energy stretched across the
frame whose equation is the edge of this surface.

EXERCISES FOR SECTION 4.1

1. Decide whether each of the following functions u is harmonic; if so, find a
harmonic conjugate.

@) u(x, y) = x* — 6x%y* + y*; (b) u(x, y) = [cos(2xy)] exp(x* — y*);
2
© WD) = (@ u(x, ) = sin(x? — y?) cosh(2xy);

(e) u(x, y) = arctan x.

2. Let f be analytic and never zero in a domain D; show that In |f| is harmonic
in D.

3. Use Exercise 2 to show that log r is harmonicif 0 < r < R.

4. Use the chain rule to derive this expression for the Laplace operator in polar
coordinates:

A o'u u 10u *u 1 0%u
CaE Ty Tra e TR
5. Use the result in Exercise 4 to answer these two questions.
(a) When is a function of 6 alone harmonic?
(b) When is a function of r alone harmonic?
. Suppose that u is harmonic on a domain D and u(x, y) = 0 for all points x + iy
in some open set V in D. Show that u = 0 on all of D.
7. Let ® = u + iv be a nonconstant analytic function on the domain D with range
in the domain Q. Suppose that f is a smooth function on Q and g is defined on
D by g(z) = f(®(z)). Show by direct (and tedious) use of the chain rule that

d?g 0% ., . L0 &S
5;+5)7—Id>(x+ty)l 514_2+W

[=))

Use this to conclude that if f is harmonic in Q, then g is harmonic in D.

. Use formula (6) to establish (4). (Hint: If |u(z,)| is greater than |u(z)| for
|z — z| < 8, then

oo

s O<r<é

2n
lu(zo)| = ‘LJ u(zo + re") dt
2n Jo

< [T o + remyde < [ uczo de
\27[ 0 uzo € \27'5 0 “ 0

= |u(zo)l-

What is wrong with this?)
9. Show that the function



10.

11.

12.

13.

14.

15.

16.
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1—r?

1—-2rcos +r?

is harmonicfor0 <r < 1,0 <0 < 2x.
Show that the second-degree polynomial in x and y

p(x,y)=ax* + bxy +cy> +dx +ey + f

(a, b, ..., f are constants) is harmonic if and only if a + ¢ = 0.
Show that the cubic polynomial in x and y

q(x, y) = Ax® + Bx?y + Cxy*> + Dy® + Ex* + Fxy + Gy* + Hx + Iy + J

is harmonic if and only if

34+ C=0,
3D+ B =0,
E+G=0.

Suppose that u is a real-valued harmonic function on a domain D and that u?
is also harmonic on D. Conclude that u is constant. Show that the same
conclusion holds if u” is harmonic for some integer n,n > 2. Note how this differs
from the situation for analytic functions.

Let u(x, y) be harmonic and bounded for all x + iy with y > 0. Suppose further
that u(x, y) is continuous for all x + iy with y > 0 and that u(x, 0) = 0 for all x.
Show that u(x, y) = 0 for all x + iy. By means of an example, show that the
hypothesis that u(x, y) is bounded cannot be omitted.

Find the harmonic conjugate v on the disc {z: |z| < 1} of

u(z) = Arg(i t ;)

Conclude that u is bounded but v is unbounded.

Let u(x, y) be harmonic and real-valued in the disc |z — x| < §, x, real, and
suppose that u(x,0) = 0, x, — 6 < x < x, + 6. Show that u(x, y) satisfies the
relation u(x, y) = —u(x, —y),z = x + iyand |z — x4| < . (Hint: Let f(z) be the
analytic function on the disc |z — x| < § with f(x,) = 0 and u = Re f. Show
that f(z) satisfies the relation f(z) = — f(2).)

Let u be a real-valued harmonic function that is bounded above on the whole
plane; that is, u(z) < M for all z. Show that u is constant.

Vanishing Integrals

17.

Suppose that H is a continuous bounded real-valued function on a domain D
such that || Hv dx dy = 0 for every smooth real-valued function v on D, which
is zero on B, the boundary of D. Conclude that H = 0 on D. (Hint: Suppose that
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H(z,) > 0 at some point z, € D. Then there are (small) positive numbers ¢ and
d such that H(z) > 6 if |z — z4| < & (Why?) Define

@ € —lz—2z0l??,  iflz—zol<e
v(z) = .
0, if |z — 24| > ¢ 2z€D.

Show that for this choice of v, we have ([ vH dx dy > 0.)

4.2 Harmonic Functions as Solutions to Physical Problems

It is a matter of considerable significance that the theory of functions of a complex
variable can be applied to a great number of “real-world” problems. That is, the
solution to the physical problem can be formulated as a function that, by means of
the physical laws operating within the given context, can be shown to be harmonic
or analytic. We have already seen that this is the case in the investigation of an
irrotational, sourceless flow of an ideal fluid, where we learned that the complex
conjugate of the flow must be an analytic function; indeed, it must be the derivative
of an analytic function. Once the solution of the given problem is known to be
analytic or harmonic, then the arsenal of results we have collected to this point (or
that we will develop later) can be applied and the solution can be analyzed or given
explicitly.

This section contains an analysis of three types of physical problems: steady-
state heat flow; electrostatic fields; and the flow of an ideal fluid, including Ber-
noulli’s Law and a derivation of the lift generated by a flow. There is also a short
discussion of diffusion and elasticity.

Steady-State Temperature Distribution

We imagine a thin plate across which there is a flow of heat; we assume that the
temperature at a point z = x + iy in the plate depends on the location but not on
time—that is, the temperature is in steady state. Let T(x, y) denote the temperature
at a point z = x + iy in the plate; we shall show that T is a harmonic function of x
and y.

We envision a (very) small rectangle in the plate with sides of length h and
k and lower left corner at z = x + iy (Fig. 4.3). In a unit time period, there is
a flux or flow of heat in the amount of —ck(0T/dx)(x, y) across the left-hand

—

— R ——

x + iy

Figure 4.3
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vertical side of the rectangle. Here c is a constant that incorporates the thermal
conductivity of the material. Likewise, the flux across the right-hand vertical side is
—ck(0T/ox)(x + h, y). The difference

oT oT
—ck| = = ,
c [ax (x,y) = x+h y)]
represents the net flux of heat out of the rectangle in the x-direction. Similarly,
oT oT
—Ch[gy‘(", - gy‘(x, y+ k)]

represents the net flux of heat out of the rectangle in the y-direction. Of course, both
these expressions are only approximately correct, but the accuracy of the approxi-
mation increases as h and k approach zero. Since there is no net flux of heat out of
the rectangle (because there are no heat sources and no heat sinks within the region),
we find that

0 = ckh a(x+h,y)—a(x, y) 6_y’(x’y+k)_$(x"")
h + k

and after dividing by ckh, and letting h and k both approach zero, we obtain

0_‘?2_T+.‘?iz
T ax? oy’

which tells us that T(x, y) is a harmonic function of x and y.

Electrostatics

Most electrostatic phenomena involve three independent space variables, but cer-
tain important situations are basically just two-dimensional. For instance, a very
long charged wire, a group of parallel charged wires, and a very long charged cylinder
each produces an electric field in the surrounding space. This electric field, it turns
out, is the same in each plane that is perpendicular to the wires or cylinder (we shall
derive this fact). By considering such a cross-sectional plane, we can use complex
variables to understand the electric field in this plane and hence in all space.

The basic tool is Coulomb’s Law, which asserts that two charged particles of
charges g and Q, respectively, exert a force on one another whose magnitude is

CqQ

r2

where r is the distance between the particles; the force is directed along the line
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through the two points and is attractive if g and Q have opposite signs and repulsive
if g and Q have the same sign. C is a constant depending on the choice of units; we
shall take C = 1.

Imagine now a very long, straight wire carrying a uniform charge of 4 cou-
lombs per unit length. We may suppose that the wire is perpendicular to the usual
xy-plane (the complex plane) and cuts through the plane at the point z,. Let r be
the distance from z to z,: r = |z — z,|, and let h be the coordinate along the wire
(Fig. 4.4).

st=rt + A?
A cos © = r/s
% tan©® = h/r

Figure 4.4

The electrostatic force at z, due to the wire, has two components—one is in
the xy-plane and is directed toward the wire and the other is perpendicular to this
plane. The first we shall temporarily term the planar force and the second the vertical
force. We envision the wire as being made up of many small pieces of equal length
dh, each therefore carrying a total charge of A dh. The magnitude of the planar and
vertical forces at z due to this short segment are, respectively,

A
dm, = q cos 0~s—2h—
and
A
dm, = g sin 0~s—2h—,

by Coulomb’s Law, where q is the charge at z and s is the distance from z to the
small segment on the wire. Simple trigonometry produces the relations
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h=rtané
s =rsech.
Hence, dh = r sec? 0 d6, so
Ar sec? 0 dO de
dmp = q Ccos em = qi Cos 07

and
d
dm, = g4 sin 070.

If the wire is very long, then 0 varies from —n/2 to n/2, so the total magnitude of
the planar force at the point z is

n/2 n/2 2 ,1
m,,=j dm,,=ql%J cosOd0=%.

-n/2 -n/2

The vertical force is

n/2 n/2
mv=J dmv=ﬁj sin6df = 0.
r )2

-n/2

That is, the charged wire produces an electric field that is directed perpendicular to
the axis of the wire and whose strength is directly proportional to the product of
the charge at z and the charge per unit length on the wire and inversely proportional
to the distance between the point and the wire. Note how this differs from the
situation when just point charges are involved—there, the force depends (inversely)
on the square of the distance between the charges.

The electric force thus has magnitude

2iq

|z — 24|

and is directed along the line joining z to z,. The force is repulsive if ¢ and A have
the same sign and attractive if ¢ and A have opposite signs. Hence, the force is

zy—z _ 2Mq
|21—Z|2_— zZ

F(z) =2q

The real-valued function

$(x, y) = —gilog[(x — x,)* + (y — y;)*]
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has the property that its gradient is F; that is,

op .04
0x i dy =F
Furthermore, a simple computation shows that ¢(x, y) is a harmonic function of x
and y, for
_62_¢= gi (x=x)* = (y =)
0x? [oc = x1)* + (v — y1)*)?
and
P4 0=yl =)
oy>  TLx = x.? +(y —y)]
Adding, we find that
2 2
6 ¢ ¢ _o
a.v

The harmonic function ¢, which carries all the information about the electric field,
is called the electrostatic potential of the field F.

After understanding the situation of one wire, we can easily pass on to other,
more complicated, configurations. First, suppose there are many long wires, all
perpendicular to the xy-plane. Let z,, ..., z, be the points at which the wires meet
the xy-plane, and let 4, ..., 4, be their charge densities, which we assume to be
uniform all along the length of each. By superposition of forces, we find the force at
z to be

n z;—z oA
F@)=29 ) h—~—5=29) ——.
&7z — 2| 12—

1Zj

N

Note that

F(z) = i

is a rational function of z of degree n and has therefore exactly n zeros. Since one
zero is at infinity, F(z) has at most n — 1 zeros in the plane. Each of these zeros
is an equilibrium point of the field, since there the force vanishes. In the case that
A1, ..., 4y are all positive integers, we also have

29P'(2)

F&) = —=pg
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where P(z) is the polynomial
P(@)=(z —z;)" ... (z — z,)™

Thus, here we can apply the information studied in Section 1 of Chapter 3 about
the location of the zeros of an analytic function. Also, there is considerable infor-
mation on the zeros of a polynomial; see Appendix 1.

The potential function for this field is

40 y) = —q z 3 10gL(x — x;2 + (v — y)°T;

#(x, y) is the sum of harmonic functions and so is harmonic. Furthermore, as before,
the gradient of ¢ is F.

Next, imagine a very long charged cylinder with its axis parallel to the vertical
axis (see Fig. 4.5). We assume the charge is uniform along any line in the cylinder
parallel to the axis of the cylinder but not necessarily uniformly distributed in the
cross-sectional cuts. Each cross section is identical and is nothing but a curve y;
y is not necessarily a closed curve. Suppose that z(t) is a parametrization of 7,
a <t < b. Let u(z) be the strength of the charge at the point z on 7y; that is, the line
through z and parallel to the axis of the cylinder carries a uniform charge of u(z)
coulombs per unit length. To find the electric field produced by the charged curve
y (or rather by the cylinder), we imagine y broken up into many small segments (see
Fig. 4.6). Let ds be the arc length along y:

ds = /x'(t)* + y'(t)* dt
= |z'(t)| dt.

The total charge due to the segment of length ds is (about) d4 = u(z) ds, so the
field it produces is

A section of a “closed” cylinder An “open” cylinder

Figure 4.5
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.
ds
(D)
z
Figure 4.6
F=—YM_ 4
zZ(t) —z
2q
=i0- u(Z(t))IZ (®)] dt.

Thus, the electric field is just

B ® u(z(z))
F(z) = —2¢ J - AOILE

The electrostatic potential of this field is
b
$(x,y)=—2q J log{lz — z(8) }u(z(t))|z'(1)] dt.

Equivalently,

#(z)= —2q J {log |z — w|}u(w) d|wl,

where d|w| is short for |z'(t)| dt; u(w)d|w| is the charge density along the curve y. If
we write dp(w) for the charge density, then (except for the factor of 2g).

#(z) = J logl Id;f)(W)

This is an example of a potential function; the study of such functions and the
potentials they produce is called potential theory.
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Flow of an ldeal Fluid

The analysis of the flow of an ideal fluid provides a setting in which we can apply
many of the theorems and formulas derived earlier, especially results from conformal
mapping.

We begin by envisioning an incompressible, frictionless fluid flowing through
a region in space. If all cross sections perpendicular to some axis are the same, the
flow can be described by just two space variables, which, as usual, we take to be the
regular xy-coordinates. Situations such as this arise, for example, in the flow of a
fluid through a wide channel with identical cross sections (Fig. 4.7a) or the flow of
a fluid past a long object, each cross section of which is the same (Fig. 4.7b). The
latter model is applicable, for instance, in analyzing the flow past the wing of an
aircraft in order to determine the lift (though air is compressible, the model is valid
at relatively low speeds).

Figure 4.7

In Sections 1.1 and 4 of Chapter 2 and 4.1 of Chapter 3, we have already
discussed some aspects of the flow of an ideal fluid. To summarize, we saw that if
the velocity of the flow was given by f = u + iv, the twin assumptions that the flow
is irrotational and sourceless—sinkless imply that f = u — iv is analytic on the
domain and, even more, f is the derivative of another analytic function G on the
domain. We write G = ¢ + ii); ¢ is called the potential function of the flow, and
is the stream function of the flow. The terminology results from the fact that the path
followed by a particle within the flow is just y(x, y) = constant. Furthermore, ¢ is
the potential of the flow in just the same sense that this word was used earlier when
describing the electrostatic potential: the gradient of ¢ is just (u, —v). Hence, the
level lines ¢(x, y) = constant are the curves where the flow has the same potential.
Furthermore, since G’ = u — iv, we see that whenever f # 0, it follows that the level
curves of ¢ and  are perpendicular. Finally, both ¢ and { are harmonic functions,
so we can apply to them any results that we know for harmonic functions in general.

We begin our discussion of flows by examining flows in several regions,
making use of conformal mapping as needed. We then elaborate on sources and
sinks for flows and illustrate how the ideas are applied. Next, we derive Bernoulli’s
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Law, which relates the pressure and the speed of a flow. Finally, we examine the
circulation of a flow and show how a circulation around an object can produce a
force on it.

The simplest flow is the uniform flow f(z) = A4, A real and not equal to zero,
in the upper half-plane U = {z: Im z > 0}. This flow is sourceless and irrotational
in U; a complex potential is G(z) = Az. The streamlines are the curves Im G = ¢. In
this case, these are the horizontal lines Ay = c or y = ¢/A4. If A > 0, the flow is from
left to right; the reverse holds if A < 0. The function f(z) = A4 also gives a flow in
any horizontal strip S = {x + iy :a < y < b}. The flux of this flow in S is A(b — a);
this is the total quantity crossing any arc connecting the line y = ato theliney =5
in unit time. We show here how this simple flow can be combined with conformal
mapping to find flows in other regions that are more complicated in shape.

ir -1+ ix

-

" O _

v

N

Figure 4.8

Example 1  Find the flow out of the end of a very long channel.

Solution We take the channel to have sides {z = x + iy: y= +mand —0 <x <
—1}. We know from Example 11, Section 5, Chapter 3 that the function ¢(w) =
w + e is a conformal mapping of the strip {w =6 +it: — <1 <7, —00 <0 <
oo} onto the complex plane with the two rays {x + in: —o0 < x < —1} deleted.
(See Fig. 4.8.) The uniform flow (Q/2n)w of strength Q in the strip {n > ||} is carried
by ¢7'(z) = w to the desired flow out of the channel. Thus, the curves Im w =
constant, which are the streamlines in the strip, are carried to the streamlines of the
flow out of the channel; the latter, then, are

IL={0c+ic+e%": —w<o<ow}, c=constant, —n<c<m O
Some of these are sketched in Figure 4.9.

Example 2 Find the flow through a horizontal aperture of width L.

Solution The aperture may be taken to be the segment (—o, 0), 26 = L, on the
real axis, and the domain D to be the complex plane with the two rays (— 0, —a]
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) ()
\ <
b v &
(S ¢ Q-
280 % ¢ z
¢ = 0.00
°s
n\\ 06‘0
\
7z
2
gz) =z + e
Figure 4.9 The flow out the end of a long channel. The streamlines are
T,(x) = x+ ic + e*e”, —00 < X< o, Ce(—m, n).
A ‘r
\ \ %
D
arcsin (%)
7 >
-0 o 1 mw
\ \\ 2 2

(a) (b)
Figure 4.10

and [a, o) deleted (see Fig. 4.10a). The function z = ®({) = ¢ sin { maps the vertical
strip —n/2 < Re { < /2 onto D. The uniform flow g({) = iQ{/x in the strip has
total flux Q across any arc joining the right-hand side to the left-hand side of the
strip. Hence,

1(2) = 9@ () = Larcsin>
T 2
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gives the desired flow in the domain D. The streamlines of g are the vertical lines
Re { = ¢, — /2 < ¢ < n/2. Hence, their images under ® are the streamlines of f.

These are the hyperbolas
x2 y2 .
(sin¢)> (cosc)?
see Section 5, Chapter 1. Some of these curves are shown in Figure 4.11. a

streamline

Figure 4.11 The flow from the lower half-plane to the upper half-plane through a horizontal aperture.

Point Sources and Sinks for Flows

Suppose that z, is a point in a domain D. A flow fin D\ {z,} has a source of strength

Q at z, if
Im {J Fz)dz} =0,

for every piecewise smooth, positively oriented simple closed curve y in D that
contains z, in its interior. If Q <0, it is conventional to refer to z, as a sink of
strength — Q.

The function f(z) = q/Z, g > 0, produces a flow with a source of strength 2nq

at the origin, since
Im{f 1@ dz} = Im{J gdz}
v vZ

= Im{2riq}

= 2ngq,
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for any piecewise smooth positively oriented simple closed curve y that contains the
origin in its interior; see Example 13, Section 6, Chapter 1. Similarly, the function
q/(Z — Z,) produces a flow with a source of strength 2nq at the point z,,.

A flow in the upper half-plane U has a source of strength Q at a point x, in

the real axis if
m{[ 7@} -0,
r

for every simple piecewise smooth arc I' in the closed upper half-plane {x + iy:
y = 0} that connects a point on the real axis to the right of x, to a point on the real
axis to the left of x, (see Fig. 4.12a). As above, if Q < 0, then x, is called a sink of
strength — Q.

I~y
~Y

Xy

Xy

(a) (b)

Figure 4.12

Example 3 Show that f(z) = q/Z, q > 0, gives a flow in the upper half-plane U with
a source at the origin of strength nq.

Solution A complex potential for f is G(z) = q Log z. The imaginary part of G is
q Arg z; the curves q Arg z = c are the rays emanating from the origin, making an
angle c¢/q with the positive real axis. These all lie in U provided 0 < ¢/q < n. The
cases ¢ = 0 and ¢ = = give the positive and negative half-lines, respectively. Thus, f
is indeed a (sourceless, irrotational) flow in U.

To see that f has a source at z, = 0, let I" be any arc as in Figure 4.12a. Let y
be the piecewise smooth simple closed curve shown in Figure 4.12b, where ¢ is so
small that I" does not meet the circle |z| = ¢. Since f is analytic on and inside y, the
integral of f over y is zero, by Cauchy’s Theorem. It follows that

0=Im{fsz)dz}
=Im{J sz)dz+qu—z+qf fii},
r s Z L

where § is the semicircle {ee”’: = > 6 > 0} and L stands for the two line segments in
the real axis that form a part of y. On these line segments, z = x, so the integrals are
real-valued. Consequently, their imaginary parts are zero, and we find that
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_ 0 /ippif
Im {J f@) dz} —Im {q J (%) dﬂ}
r - \ée

= qm. (m]
Example 4 It is evident from the results of Example 3 that

_ 4 q
f(Z)_E—xl +E_x2

gives a flow in the upper half-plane with sources at x, and x, of strengths g, and
q,, respectively. (If either or both of q,, g, are negative, then of course the corres-
ponding point x,, x, is a sink.) This idea extends to any number of sources on the
real axis:

N
fe) =3 =

lf_xk

gives a flow in the upper half-plane with sources at x,, ..., xy of respective strengths
ql 9 ey ch D

Example 5 A source of strength Q is located on one of the long sides of a semi-
infinite strip. Find the resulting flow.

Solution We take the strip to be the domain D = {x + iy: —6 < x <0,y > 0}
and locate the source at the point ¢ + it, T > O (Fig. 4.13a). The function Y (z) =
sin(nz/2¢) maps the strip D onto the upper half-plane, Im w > 0, with y(6) = 1 and
¥ (—0) = —1(see Section 5, Chapter 1). The point ¢ + it is carried by ¥ to the point

1 n n nT
== —— %) =cosh{ —].
A 2(exp {20} + exp{ 20}) cos (20)
Z = = sin (2
% w = Y(z) = sin <20>

%//—a:zlg \ \\\ \\\
D Z Imw>0

Z \ \ \
-0 o -1 0 +1 A
(a) (b)

.

Figure 413



4.2 Harmonic Functions as Solutions to Physical Problems 267

The function
glw) = (%) Log(w — 4)

is the complex potential of a flow in the upper half-plane U with a source at 4 of
strength Q; (see Example 3). Hence,

co-(en{o(z) -

is the complex potential for the desired flow in the semi-infinite strip. The velocity
of this flow is

Write z = x + iy, with — /2 < x < /2 and y > 0; this leads to

G’ % _ _Q_l eix+e-ixe—2y
)] \20/)e* —e ™2 —2ide™”’

This quantity approaches

_e

Yo =55

as y approaches co. Hence, the velocity of this flow is virtually uniform far from the
source. Furthermore, since the width of the strip is 2g, the total flux out of the “end”
of the strip (that is, at co0) is exactly Q, the amount entering at o + it. Thus, the
amount flowing into the strip per unit time equals the amount flowing out, as it
must. Some streamlines of this flow are shown in Figure 4.14. a

Example 6 Find the flow in a long narrow channel if there is a source of strength
Q at a point on one side.

Solution This problem is actually a special case of Example 5, despite the different
geometric configuration. We take the channel to be the strip {x + iy: —6 < x < g,
— o < y < oo} and locate the source at the point x, = o, y, = 0 (see Fig. 4.15). The
flow has obvious up—down symmetry about the x-axis and hence may be considered
as a flow in the semi-infinite strip {x + iy: —¢ < x < 6,0 < y < 00} resulting from
a source at x, = g, yo = 0 of strength Q/2. However, this is a special case of
Example 5. The complex potential of this flow is
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@'+T

Figure 4.14 The flow in a semi-infinite channel resulting from a source on one of the long sides.

f

Figure 415 The flow in a long channel resulting from a source on one side.

Q . [mz
== =)-1).
G(2) (Zn Log| sin P
(The constant A from Example 5 equals 1, since 7 = 0.) Our problem is therefore

solved. The stagnation points of this flow occur where its velocity is zero. These are
found from
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cos (m >
2
o-ct-(2) ).
4o sin[ 22} -1
20
Such points occur, then, only when cos(nz/206) = 0 and sin(nz/20) # 1. Thus,

2 ( _E) + (any multiple of 27).

20 2
The only such point in the channel is nz/20 = —n/2.0r z = —o0. Several of the
streamlines of this flow are sketched in Figure 4.15. a

Digression At this point, it is worth spending a minute to elaborate on the use of
the words source and sink in connection with the circulation produced by a lin-
ear fractional transformation (see Section 3.3). Specifically, the linear fractional
transformation

z+2
1+2z

T(z) =

sets up a circulation from —1 to 1 with a point z moving progressively closer to 1
along the circle centered on the imaginary axis and passing through —1, 1, and z
as T is iterated. That is, the streamlines are the circles centered on the imaginary
axis and passing through both —1 and 1. Recall now from Section 2 of Chapter 1
that the family of curves |z — 1| = p|z + 1], 0 < p < o0, are all circles centered on
the real axis. In the notation of that section, this is the family C,. The orthogonal
family C, is the collection of circles we are interested in. However, C, is just the
family of circles given by

z+1 + 1
Re {Log (:)} = lOg Z

Z
1 ’= —log p = constant.

Consequently, by Example 7 of Section 3.4, the orthogonal family C, is just the
family of curves described by

z+1 z+1
c= Im{Log(z——_ 1)} = Arg(z — 1).

The complex potential for the flow is, therefore,

G(z) = Log C—i—i) = Log(z + 1) — Log(z — 1).

This flow has a source at — 1 and a sink at + 1, just as we already knew.
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p(x,y) = pressure
—h—
hand k are
small and positive

—_—
—_—
—_
—_

-— X —

X+ iy

Figure 4.16

Bernoulli‘'s* Law

Suppose that f = u + iv represents the velocity of a locally sourceless and locally
irrotational flow in a domain D; we shall use the knowledge that f = u —iv is
analytic on D to derive a fundamental relation between the pressure and the speed
of the flow. We begin by imagining a small rectangle in D, as in Figure 4.16. Let
p(x, y) be the pressure at the point (x, y). The net force acting on this rectangle in
the x-direction is (almost)

{p(x, ) = p(x + h, }k.

However, by Newton’s Law, force is mass times acceleration. The mass of the little
rectangle is its (constant) density p, multiplied by its area hk. Furthermore, the
acceleration in the x-direction is the time derivative of u, since u is the x-component
of the velocity. This yields

(mass)(acceleration) = phk‘;—t
Oudx Oudy
= phk{aa + a—ya}

However, dx/dt = u and dy/dt = v, which then gives

du Ju
{p(x,y) — p(x + h, y)}k = phk {au + b}”}'

Divide both sides by hk, then let h and k tend to 0. We obtain

op _ (ou "t 6uv
oax  Plax" T
In an entirely similar manner, working with the y-component of the forces acting
on the rectangle, we obtain
op _ fov "t ov
oy Pl T e[

* Daniel Bernoulli, 1700-1782.
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However, du/0x = — dv/dy and du/dy = 0v/ox, by the Cauchy—Riemann equations,
since u — iv is analytic. This gives us two equations:

ou NP
p@xu 6xv ox

and

Integration of the first with respect to x and the second with respect to y yields

1

i,o{u2 + 02} + p = A())
and

L, 2

Ep{u + v?} + p = B(x),

where A(y) and B(x) are functions of y alone and of x alone, respectively. Since the
left-hand sides are identical, it is clear that A(y) must also equal B(x), so both are
(the same) constant. Thus, the equations are

1 1
~(u? + v?) + —p = constant.
2 p

This says that for an ideal fluid, half the square of the speed plus the pressure divided
by the (constant) density adds up to a constant; this is Bernoulli’s Law.

Circulation and Lift
We now investigate the flow around an object—for instance, the situation pictured
in Figure 4.17. Let I" be the boundary of the object, which we take to be a simple

Figure 417 The flow around a solid object with boundary T".
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closed piecewise smooth curve. We assume that the flow f'is both locally irrotational
and locally sourceless in the domain exterior to I'; that is, we assume that f = u — iv
is analytic in the domain exterior to I'. Let y be any smooth simple closed positively
oriented curve that contains I in its inside. The value of the integral

c=ff'tds

is called the circulation of the flow around T'; here f'- 7 is the component of f tangent
to the curve y, and ds is arc length. As we showed in Section 1.1, Chapter 2,

c= RC{J sz)dz},

so it follows from the fact that f is analytic that the integral itself is not dependent
on the choice of curve y. Hence, the value of the circulation depends on the flow f
only. Furthermore, because the flow is around I' (that is, I is a streamline), we know
that the component of f that is normal to I' must be zero. (For if f-n is, say,
positive at a point p of I, then there is a net flow over I in a small segment of I'
near p, contradicting the fact that I is a streamline of the flow.) Hence,

O=J f~nds=Im{J sz)dz}.
r r

Once again, the analyticity of f implies that

0=Im{f sz)dz}

for any piecewise smooth closed curve y surrounding I'.
We now calculate the force exerted on I" by the flow f. For this purpose, we
make the reasonable assumption that the flow is “uniform at 0o”; that is, the limit

lim f(z)=a

|z| =0

exists. Since f is analytic in the region exterior to I' and bounded at oo, c© is a
removable singularity for f. Hence, for |z| large, f has the expansion

— cl &2 b
ﬂz)"“ﬁfr,‘;?’ (1)

where ¢ is the circulation and b,, b, ... are constants.

To begin the analysis of the force exerted on I' by the flow, we let p(x, y) be
the pressure at the point (x, y) in " (Fig. 4.18). By a simple resolution of forces
argument, we find that the horizontal component of the force on a little segment in
I" is — p dy, so the total horizontal component of the force is
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p(x,y)

e

dy small segment
inT
dx

2(t) = x(#) + iy(f) parametrizes T
ds = element of arc length along T'; (ds)? = (dx)* + (dy)’

Figure 4.18

H= —J pdy.
r

Likewise, the total vertical component of the force on I is
V= j pdx.
r
From Bernoulli’s Law, derived earlier,
1 2 2
p= —-Ep(u + v*) + constant,
where p is the (constant) density. Hence,

V+iH=j pdx —idy)
r

= _1PJ‘ (u2 + vz)(dx - id.V),
2" Jr

since the integral of the constant term is zero. A bit of manipulation produces the
relation

u? + v?*)(dx —idy) — (u — iv)*(dx + i dy) = —2i(u — iv)(—v dx + udy).

However, —v dx + u dy is exactly the component of the flow f that is normal to I
Since I' is a streamline of the flow, this quantity is zero. This results in

V +iH = —%p'[ (u — iv)*(dx + i dy)
r

=20 j @1 dz.
r
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The function f? is analytic, so the integral above is identical with the integral of
f? over the circle |z|] = R, where R is so large that (1) is valid. Therefore, after
squaring the expression for f in (1) and replacing f 2 with the resulting series, we
obtain

V+iH = —%pf [f(z)]? dz

lzI=R

1 ca 1 d;
- —-2-p _];,|=R< i z k; _")

= —pca,

where a = lim,_, , f(z) is the complex conjugate of the velocity of the flow at 0.

This result, called the Kutta—Joukowski Theorem, is what we have been aiming
for. It says that the flow f produces a force on I' that is directed perpendicular to a,
the velocity at oo, and of magnitude p|c||al. In particular, if a is real, the force is
vertical and thus is a lifting force.

Example 7 We begin our analysis of the lift generated by a flow with the flow
around a circle. We make use of the observation in Section 4.1, Chapter 3 that it is
enough to find an appropriate function that has the circle as one of the level curves
of its imaginary part and the correct behavior at co. Specifically, let the circle be
centered at the origin and of radius R and let

2

Gl(z)=s(}.z+'1%>, s>0, Al =1
and
G,(2) = ——l-c—log z, c real.
2n

G, is just a scaling of the mapping discussed in Example 5, Section 4, Chapter 3.
Here s, 4, and c are all constants. On the circle |z| = R

Im G,(Re") =0

and
) c
Im G,(Re") = ——Ilog R.
2n

Consequently, the circle |z| = R is a streamline for G, + G,. Although G,(z) is not
well-defined (because log z has multiple values), its derivative is. Set
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f@) = Gi2) + Gy(2)

Then f is analytic on the plane minus the origin and f is also analytic at co, where

lim f(z) = s.

2|~

Furthermore, the circulation of the flow f is

Re{ sz)dz}=c, r=R
|z|=r

Hence, f is exactly the flow with circulation ¢ and velocity s at co; see Exercise 3.
The points z at which f(z) = 0 are called stagnation points of the flow. For this
flow, there are stagnation points when

sl 4 AR? _ e
22 ) 2nz
Multiplying through by z2, we obtain a quadratic equation in z, which has roots

ic + /16n%s2R? — ¢?

4nsi

Zy,2; =

If 0 < ¢ < 4nsR, then both roots lie on the circle | z| = R; they coincide if ¢ = 4nsR.
Several streamlines of this flow are sketched in Figure 4.19. o

Example 8 The Joukowski Airfoil Let C be a circle with center z, which passes
through the point — R and contains the point R in its inside, R > 0. The function

RZ
o(z)=z+ 7

maps C onto a simple closed curve I" (Fig. 4.20). The image curve I', which resembles
the cross section of a wing, is called a Joukowski* airfoil.

Our goalis to find the flow f with I as a streamline and with uniform velocity
As at 00, s > 0 and |A]| = 1; for this we make use of conformal mapping and the
results of Example 7.

Our first task is to prove that the mapping ¢ given above is a one-to-one
mapping of the exterior of the circle C onto the exterior of the curve I'. To this end,
let I, be the (unique) circle through both the points R and — R, which is tangent to

* N. J. Joukowski, 1842-1921.
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sin® (r — 1/r) — aln(R) = ¢

~R
4|
/_—
-
) ) ()
Two stagnation points One stagnation
on the circle point on the circle
Figure 4.19
2
b o) =z+ &
z
/-\
B
°2
é C 2R
1
) R\J ’ o ’
C

Figure 4.20
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N~

Figure 4.21

C at — R (Fig. 4.21). The center of I, lies at the point ix,, a, real. It is easy to prove
(see Exercise 1 at the end of this section) that a point z = x + iy lies inside, on, or
outside Iy if and only if the quantity

|z — 225y — R?

is negative, zero, or positive, respectively. Thus, z is outside Iy if and only if w = R?/z
is inside I, (also, see Exercise 2). From this it follows easily that ¢(z) = z + R?/z is
one-to-one on the outside of I',. For if ¢(z,) = ¢(z,), then

Zy — 2y
21—22=R2 —).
Z12,

If z, # z,, then z, = R?/z,, so z, and z, lie on opposite sides of I, a contradiction.
Since the outside of C is within the outside of I, ¢ is one-to-one outside C.

Now we are ready to analyze the flow around the Joukowski airfoil. Let G({)
be the complex potential of this flow, and let H be the complex potential of the
flow around the circle C; we know H from Example 7. After taking into account the
change of origin and scale, we find that

2 .
_|20+—R|] — ilog(z —_ ZO)‘

H(z)=s[1(z—zo)+l p—— ”

However, the function { = ¢(z) carries the exterior of C onto the exterior of T,
as we have just shown, so H(z) and G({) must be related by H(z) = G(¢(2)).
Consequently,

2
Ho) = G 6E) e = G (1- 57
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Thus, the flow H’(z) has a stagnation point at z = — R. Some simple arithmetic then
yields

¢ = —4ns Im(A(R + z,)),

so the circulation is determined by three factors: (1) the point R; (2) the center, z,,
of the circle C; and (3) 4s, the velocity of the flow at co. Thus, in turn, the circulation
of the flow determines the lift in accordance with the Kutta—Joukowski formula
derived earlier. If A = 1 (that is, the flow is horizontal at o0), then the lift is

Lift = 4ns® Im z,, = speed of flow at co. o

Other Physical Phenomena in Which Harmonic Functions Arise

Diffusion

Imagine a level channel connecting a very large body of fresh water to a very large
body of salt water, say the ocean (Fig. 4.22). The water in the channel will have
various degrees of salinity, depending on location; that is, the salt from the ocean
will diffuse through the channel to the fresh water, which being large, will absorb it.
If we let c(x, y) be the concentration of salt at the point x + iy in the channel, then
an analysis exactly like that for temperature distribution shows that c(x, y) is a
harmonic function of x and y. More generally, if a substance diffuses from a region
of high concentration to one of low or zero concentration, then the concentration
function c(x, y) is a harmonic function in any domain in which there are no sources
or sinks.

Figure 4.22 The diffusion of salt through a channel joining the ocean with a lake.
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Planar Stress

In an isotropic, homogeneous body, there are nine stress components: the normal
stress component and two shear stress components in each of the x, y, and z
directions. There are compatibility relations among these stress components, which,
in the case of plane strain with no body forces acting, reduce to

0X, | X, _

x Yoy 0 @
ox, oY, _
—a;— + dy =0 3)
0? 0*
(567 + a—y?)(Xx + Y,)= 0. 4)

Here X,, X,, and Y, are the normal and shear stress components in the x-direction
and the normal stress component in the y-direction, respectively. We now assume
that the cross-section of the body is a simple closed curve together with the domain
D inside it. From equation (2), we deduce that there is a function F with

oF OF
—=—X, and 3 =

o X,.

From equation (3), it follows that there is a function G with

0G 0G
x L dy g

From the relations among the partial derivatives of F and G, we further conclude
that there is a function U with

ou ou
E =G and '67 =

Thus,

o*U o*U o*U
:?x—z = 1I,, W = an and

—=—-X,.
0x dy ’

U is called the stress function or the Airy function, after G. B. Airy (1801-1892), who
worked with it (circa 1860). Thus, from equation (4),

0= A(X, + Y,) = A(AU) = A%U.
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The stress function U is therefore biharmonic—that is, it satisfies the equation

o*U ‘U o*U

2 =0.
o T oy? + oy*

The famous nineteenth-century physicist J. C. Maxwell (1831-1879) was the first to
note that U must be biharmonic.

The Representation of Biharmonic Functions
If U is biharmonic, then P = AU is harmonic. Let ¢ be an analytic function on D
with

4¢' =P +iQ,

where Q is a harmonic conjugate of P on D; such a ¢ exists because D is simply
connected. We write ¢ = p + iq. A simple computation shows that

U—-xp—yq

is harmonic on D. Hence, this is the real part of some analytic function f on D, again
because D is simply-connected. Consequently,

U(z) = Re{Z4(2) + f(2)}, )
where ¢ and f are analytic and
4Re ¢' = AU.
(5) is the most general representation of a biharmonic function U.

EXERCISES FOR SECTION 4.2

1. Let T, be the circle of radius \/R? + af centered at the point ixy, ag > 0.
Show that a point z is outside, on, or inside I, exactly when the quantity
|z)? — 204y — R? is positive, zero, or negative.

2. Let I, be the circle from Exercise 1. Show that z is inside I, if and only if R?/z
is outside I,.

3. Let I be a simple closed curve. Show that a flow outside I (including at co) with
I as a streamline is completely determined by specifying the velocity at co and
the circulation. That is, show that there is at most one analytic function g outside
I" with

1
@@ g@z)=a+ £ 24 g cfied, || large,
2ni z

) InG=0onT, where G’ = g.
4. Find the stagnation points of the flow in Example 5.
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. Discuss the flow within a disc caused by placing a source and a sink of equal

strengths at distinct points on the edge of the disc. Find the streamlines for the
flow and sketch a few.

. Extend Example 4 by finding the potential of the flow in the upper half-plane

U resulting from a source uniformly distributed on the interval [ —1, 1].

. Find the flow in the semi-infinite strip {x + iy: y > 0 and —n < x < =} estab-

lished by placing two sources across from each other (on the long sides).

. Redo Exercise 7 with one of the sources changed to a sink.
. Find the flow in the strip of Exercise 7 if there is a source on the short edge

(where y = 0).

Let D be a region bounded by a smooth simple closed curve I and let f be a
sourceless flow in D; f is not assumed to be irrotational. The kinetic energy of
the flow is

1
=3F JJ |f(2)|* dx dy,
D

where p is the density (which we assume to be constant). Show that among all

sourceless flows in D with given normal velocity at the boundary of D (that is,

the normal derivative df/on is specified at I'), the flow of smallest kinetic energy
isirrotational. This result is known as Kelvin’s* Minimum-Energy Theorem; you

will need to use Green’s Identity (Exercise 13, Section 6, Chapter 1).

(a) Show that the function G(z) = Log(z2 + 1) is a conformal mapping of
the first quadrant onto the horizontal strip S = {s + it: —00 <s < 00,
0<t<m}.

(b) Show that the flow f in the first quadrant whose potential function is G(z) =
Log(z? + 1)is the sourceless, irrotational flow resulting from a source z, = i
on the boundary of the first quadrant. What is the strength of the source?

(c) Extend the result in (b) to the case when the source is located at some other
point in the boundary of the first quadrant. See Figure 4.23.

Find the sourceless, irrotational flow in the upper half-plane that results from

a source at the point i. (Hint: The flow will be symmetric about the imaginary

axis; you may now use the result of Exercise 11b.)

Find the electrostatic potential due to a uniformly distributed charge on a

straight wire. (Hint: Take the wire to be the interval [—1, 1] and the charge

density to be dp = ¢, dx.)

Show that the electrostatic potential inside a long hollow uniformly charged

tube is constant and that outside the tube the potential is zero.

Find the flow past a long cylinder with an elliptical cross section (Fig. 4.24).

* Sir William Thompson, Baron Kelvin of Largs, 1824-1907.
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Figure 4.23 The flow in the first quadrant from a source on the imaginary axis.

2 2

Figure 4.24 The flow around the cylinder with elliptical cross section X—z + = 1.
a
16. Show that the function
K |
f(Z) == — K > O,
2ni z — Z,

is the velocity of a flow that rotates clockwise about the point z,. This flow has
avortex at z, of strength K. Show that the streamlines are circles centered at z,.
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17. Show that the function

oK 1K 1
I =iz —z, 2niz—z,

K, and K, both positive, is the velocity of a flow with two vortices, one at z,
of strength K, with clockwise rotation, the other at z, of strength K, with
counterclockwise rotation. What is the circulation of this flow on a curve 7y,
which is very far from both z, and z,? (Some streamlines of this flow are shown
in Fig. 4.25.)

/'

~_

Figure 4.25

18. The flow

_Q+iK 1
T 2n z-—73,

h(z)

produces a spiral vortex at z, (Fig. 4.26). Sketch some of the str~ami.nes and
decide how the signs of Q and K affect the streamlines; that is, when will the
streamlines spiral into z, clockwise and when will they spiral in counterclock-
wise? See Figure 4.26.
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~
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Figure 4.26 A spiral vortex produced by the flow @ 2+ !

1
——, 0K#0.
v /4

19. Use Example 2 to find the electrostatic potential produced by two parallel,
horizontal charged plates whose edges are separated by a distance 20 (see the
diagram below). Sketch some of curves of flux of the field.

potential V,, potential V,
—_ —_—

-—20 —

4.3 Integral Representations of Harmonic Functions

A function f has an integral representation formula if f(z) is equal to an integral of
an expression containing z as a parameter. A perfect example is the Cauchy Integral
Formula:

LA
o ) i

)=

Integral representation formulas are important tools in solving boundary-value
problems. In this section, we explore such formulas in two special but importasnt
cases: the disc {z: |z| < 1} and the upper half-plane {z: Im z > 0}.

Suppose first that u is a real-valued function that is harmonic on some open
set that includes the closed disc {z: |z| < 1}. We shall derive a formula for the values
of u(x, y) when x? + y? < 1, which makes use only of the values of u(x, y) when
x? + y% = 1. Since u is harmonic on some disc centered at the origin and of radius
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larger than 1, there is an analytic function f on this same disc with Re f = u. Thus,
for a particular z with |z| < 1, we have two formulas:

f(C)
f@ )—% s

1)

and

_ 1 [ SOz
27ti r 1 - ?C

dc. )]

The first, (1), is the Cauchy Integral Formula with T the circle |{| = 1 oriented
positively. The second, (2), is just Cauchy’s Theorem applied to the function

f €)z

G(t) =
¢ = —

which is analytic on an open set containing || < 1. We set { = e®, 0 < t < 27, as
usual, and find that

it
@) =5 j L) i ()
and
2r ity it
=), 1o @
However,

1 + Ze" 1—|z)?
1—ze ™ 1—ze* |1 —ze")?’

When we add (3) and (4), we therefore obtain
w L=zl
f (z) f ( ) —7 ulz
The function appearing after f(e”) under the integral sign has a special notation. Set

1—1r2
1—2rcost+r?

=R{1+z} if z = re®.

1—-2z

P(t) = ©)
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P.(t) is called the Poisson* kernel for r and t. Thus, we have shown that

2n
flre®) = = f f(e")P0 —t)dt. (6

2r Jo

Since P.(6 — t)is real-valued, we may take the real part of both sides in this formula
and conclude that

2n
u(re®®) = 21_n J u(e)P.(0 — 1) dt. )

0

This is the Poisson Integral Formula; it gives the value of the function u in the disc
|z] < 1in terms of the values of u(e®),0 <t < 2.

Several extensions of this formula are immediate. First, if the discisnot |z| < 1
but rather |w — wy| < R, then the change of variables

W_Wo
zZ =
R

produces the formula

—|w— Wolz

i d. ®)

1 2n R2
=g J, o+ R
0

The formula is valid for |w — wy| < R.

Substantially more important, we need not assume that u is harmonic on an
open set containing the disc |z| < 1. Suppose, in fact, only that u is a continuous
function on the circle |z| = 1. Set

2n

U(re') = 51; f u(e™)P.(6 — t) dt. )

o

It is then true that U(z), z = re®, is a harmonic function on the disc |z| < 1 and at
all points A on the circle |A| = 1,

lim U(z) = u(A). (10)

z—4

That is, the function defined by

U(2) if|z] < 1
u(z) if|z] =1

is continuous on the closed set {z: |z| < 1} and harinonic on the openset {z: |z| < 1}.
Part of this assertion is easy: If u has only real values, then

* Siméon Denis Poisson, 1781-1840.
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1 2rn . it
U(z) = EJ u(e”)Re (:“ t i) dt
0

1 (> L et+z
_Re{2—nfo u(e )e"—zdt}'

The expression within the braces is an analytic function of z, so U is harmonic, being
the real part of an analytic function. In general, u = u, + iu,, where u, and u, are
real-valued. Hence, U = U, + iU,, where both U, and U, are harmonic; thus, U is
also harmonic. The proof that (10) holds is more difficult; it is outlined in the
exercises at the end of this section.

There is even a further extension of (7). A function u(e®) is piecewise con-
tinuous if the circle {z: |z| = 1} can be broken up into closed arcs I, ..., Iy that are
disjoint except for their endpoints (Fig. 4.27) and, furthermore, on each of the arcs
I;, u(e") is continuous. (This gives two values to u at each of the N endpoints of the
arcs; this situation will not bother us, because such a set “does not count” in
integration.) If u(e”) is piecewise continuous and U is defined by (9), then U is
harmonic in the disc |z| < 1, and, except for the N points that are the endpoints of
the arcs I, ..., Iy,

lim U(z) = u(4), Ais not an endpoint of I, ..., Iy.

z—A

Figure 4.27

Example 1 A long cylinder with circular cross section is split lengthwise down the
middle, and the two halves are insulated from one another. One halfis given a charge
of +1 and the other half is given the charge of — 1. Find the resulting electrostatic
potential inside the cylinder.

Solution We may assume that a cross section of the cylinder is the circle
x2 + y? = 1. Hence, we must find a function u(x, y) that is harmonic for x2 + y? < 1
and that has the value + 1 on the semicircle x2 + y> = 1, y > 0, and the value —1
on the semicircle x2 + y? = 1, y < 0. The answer is given to us immediately by the
Poisson Integral Formula:
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- ) 0 2
u(re®) = 1—r IJ 1—r

T2 ), 1—2rcos(0—t)+r2dt_57; _,,1—2rcos(0—t)+r2dt'

We evaluate the integrals in the following way. Since

1+z 1—r?
R = = re?
e(l—z) 1—2rcosf+r2 -7

and since
14z 14 2z
1—z 1-2°
we have
14 ze® B 2ze™*
1—ze® 1—ze ™
Thus,

"1 4 e &
——dt = 2 —dt
L l—ze_"dt T+ z(L 1 —ze" )
=7t+22(1,J. d‘v_ >’

i),1—zw

where 7 is the semicircle {e": 0 < t < n}. The antiderivative of Z(1 — Zw)™ with
respect to w is log(1 — Zw), so

" 1—r? 1+2z
= 2A .
L 1—2rcos(@ —1t) +r? di=m+ rg(l —z>

Likewise,

0 1—r? 14z
dt =n—2A .
L 1—2rcos@—t+r2 " rg(l — z>

Putting these two together yields

2 1+:z
u(z) =;Arg(1 — z>' o

The Poisson Integral Formula in the Upper Half-Plane

Suppose that w(t) is a bounded, piecewise continuous function on the real axis,
— o0 <t < oo. There is an integral formula, much like the Poisson Integral For-
mula, that yields a function W({) that is bounded and harmonic in the upper
half-plane {{ = ¢ + it: T > 0} and satisfies
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lim W({) = w(s)

s

for all points s on the real axis at which w(t) is continuous (that is, at all but a finite
number of points). The formula is this:

e o]

W(o + it) = % f w(t)

. mdt, t>0. (11)

Its derivation is simple. Let

14z
1-z°

{=y@)=i

Then ¥ is a linear fractional transformation that maps the disc {z: |z| < 1} onto the
upper half-plane, and y maps the circle |z| = 1 onto the real axis. Hence,

. 1+e"
u(e) = w<i1—_gw)

is bounded and piecewise continuous on the circle {e”: 0 < § < 2n}. Consequently,
the function

Uiz) = L u(e) 1-r do z=re"
2n |, 1—2rcos(s—6)+r® "

is bounded and harmonic in the disc |z] < 1, and U(z) - u(e'®) as z — e*. Suppose
that w(t) is real-valued; then u is real-valued and

| A
U(z)—Re{ﬂjO u(e )e“’—zde}'

Now z = ({ — )/ + i), so

(=l
W@—UQ+J

is harmonic on the upper half-plane. But e? = (t — i)/(t + i)and e df = 2(t + i)~ 2 dt.
With these changes of variables,

2n i0
W() = Re [l f ue) et zdo]

2z J, e — 2z

o+l 2
=Re [21: J_m wit) it—0 1412 dt]

1 [* T
== le w(t)———(t ot o dt.
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This is the desired formula; it is called the Poisson Integral Formula for the upper
half-plane.

Example 2 Find the electrostatic potential in the region y > 0 if the segment
(— o, o) of the real axis is kept at potential ¥, > 0 and the remainder of the real axis
is kept at potential 0.

Solution  The electrostatic potential V(x, y) is a harmonic function for y > 0 and
must satisfy

To find such a harmonic function, we use the Poisson Integral Formula for the

upper half-plane.
ve =~ | vieo)—2—ar
’ T J-w ’ (x - t)z + y2
= 5 ° ——y—-—dt

T —a(t—x)z"'yz

() - amton(=75)}
= —dJarctan — arctan
n y y

A function U(x, y) that is a harmonic conjugate of V(x, y) in the upper half-plane is

given by
equipotential
curve of constant flux
a
otential 0 / . otential 0
pofentt potential V, P

Figure 4.28
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zZ—0

%
Ux, ) = > log|—

The level curves of U represent the curves of flux of the electric field; these curves
are just the Circles of Apollonius,

|z — 0| = plz + o], 0<p<oo,

which are centered at the real axis, either in the interval (— oo, — o) or in the interval
(o, ) (Fig. 4.28); see Section 2, Chapter 1. u]

The Reflection Principle

The Poisson integral formula in a disc can be used to give a proof of the following
theorem, which is called, for reasons that will be clear from its statement, the
reflection principle.

THEOREM 1 The Reflection Principle ~ Suppose D is a domain in the upper half-plane {x + iy:
y > 0}, which includes in its boundary a segment (a, b) of the real axis. Suppose that
f = u + iv is analytic in D and, moreover, is continuous at each point of (a, b). If
v(x) = O for all x in the interval (g, b), then f extends to be analytic in the domain
Q = Dy (a, b) U D*, where D* is the reflection of D over the real axis:

D* = {z:Z e D}.

Furthermore, f satisfies the relation

@) = f@), ze Q.

Proof  The sets D, D*, and Q are illustrated in Figure 4.29. We begin the proof by
defining a function f* in D* by

Q=DU (b U D*
D* D* = (27 e D}

Figure 4.29
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f*2)=f@, zeD*

We shall show that f* is analytic in D* by this simple argument. If z, € D*, then
Z, € D. Now f'is analyticin some disc |z — Z,| < J centered at Z,; thus, f has a power
series valid in this disc:

fle)= kzo Az — Zo), |z —Z,| < 6.
Hence, in the disc |z — zy| < 6,
f*@)=1@) = }, A - 2o)

"i-k(z — zo)".

M8

k=0

Consequently, f* is analytic for |z — z,| < J, since it has a representation there as
the sum of a convergent power series.
Next, we define a function F on Q by

_[f.  zeDu@b)
Fa) = {f*(z), ze D%,

The assumption that v(x) = 0 for a < x < b implies that F is continuous on Q. The
functions u and v are extended by D* by the rules u(z) = u(Z), v(z) = —v(z), z € D*.
The tricky part of the proof is to show that F = u + ivis analytic across the segment
(a, b). To see this, let x,, € (a, b), and let r be a positive number so small that the disc
|z — xo] < 2r lies in Q. Let y be the positively oriented circle |z — x,| = r. On this
circle, the function

i0 : <
() = {v(xo + re'?), ffO <

0<
—v(xo+re’®), if-n<6

ANE

0

is continuous and odd: w(f) = —w(—80). Let v, be the harmonic function on the
disc |z — xo| < r, whose values on y are w; v, is found by using the Poisson inte-
gral, appropriately scaled. Then v, satisfies v,(z) = —v,(Z) if |z — x,| < r (also, see
Exercise 8). Thus, v, vanishes on the real segment x, — r < x < x, + r. The function
v — v, is then harmonic on the half-disc # = {z: |z — x,| < r and Im z > 0} and
vanishes on the boundary of %, since v = v; = w on the semicircle z = x, + re®,
0 <0 <= and v = v, = 0 on the segment x, — r < x < x, + r. Hence, the maxi-
mum principle for harmonic functions [(5) in Section 1] implies that v = v, on
all of #. Likewise, v =v, on all of #* = {z:Z e %}. Thus, v =v, on the disc
|z — x| < r. But v, is harmonic on all this disc; hence, so must be v. The function
u is a harmonic conjugate of v on both % and %*. Since v is harmonic on all the disc
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|z — xo| < r, it has a harmonic conjugate on all this disc that must differ from u by
a constant on % U %*. Hence, u is also harmonic on the disc |z — x,| <7, so F is
actually analytic on this disc. [ |

REMARK: The reflection principle is frequently proved by use of Morera’s Theorem.

Example 3 Show that an entire function that is real-valued on some interval (a, b)
in the real axis is real-valued on all the real axis.

Solution Let f be an entire function that is real-valued on the interval (g, b). Set

_Jf@), iflmz>0
Fe) = {f_('z'), ifImz < 0.

The reflection principle implies immediately that F is analytic on the domain Q,
which consists of the union of the upper and lower half-planes and the interval (a, b).
Furthermore, f itselfis of course analytic on Q and equals F ifIm z > 0. Thus, f = F
throughout Q; in particular,

f2) = f@), Imz #0.

Since f is actually continuous on the whole plane, it follows that for any real number
X,

S0 = lim fx + iy) = lim 7 =) = &),

which says exactly that f is real on the real axis. a

EXERCISES FOR SECTION 4.3

1. An arc of 6, radians in a circle is kept at temperature T}, while the remainder
of the circle is kept at temperature T,. Find the temperature distribution inside
the circle. Sketch some of the equitherms.

2. The segment [ —a, o] is kept at temperature T;, while the remainder of the real
axis is kept at temperature T,. Find the temperature distribution in the upper
half-plane; sketch some of the equitherms.

3. Let w(t) be a bounded piecewise continuous function on the real axis with
[Zw IW(t)| dt < 00 and w(t) - 0 as |t| > co0. Let W({) be the harmonic function
on the upper half-plane Im { > 0, with W(q, 0) = w(c), given by formula (11).
(a) Show that limy., W({) = 0.

(b) Show that if W;({) is (another) harmonic function on Im { >0 with
W, (0, 0) = w(0), and that if W, also satisfies (a), then W, = W.
(c) Show that [ |W(x + iy)| dx < [%, |w(t)| dt for each y > 0.
4. Let P,(t) be the Poisson kernel, defined in formula (5). Show that
(i) Pit)>0for0<r<1, —n<t<m7,
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(i1) 1 P(t)dt =1, 0<r<l1i,
2n ) _,
(iti) if & > 0, then lim,_; {max, > 55 P.(t)} = 0.
5. We show here that (10) holds. Fix a point 4 with || = 1 and write A = e*. Fill
in the reasons for each of the following steps:
(i) Given ¢ > 0, there is a 6 > 0 such that

lu(e™) — u(e’®)| < g if | — 6] < 6.

(i) U(re®) — u(e®) = 2% Jn {u(e™) — u(e'®)} P,(6 — t) dt.

Now consider 6 with |6 — 0,| < §/4. Write the integral as the sum of two
integrals: The first, I,, is over those t with |t — 6,| < J; the second, I,, is over all
the remaining ¢.

i) [1,] < % -21; e PO —1)dt < %

(iv) [I,| < 2M<max {P,(O —1):10 — ¢ 2—1—? >,
where M is an upper bound on |u(e”)|, —n <t < =
w) |L,] < % if r is close enough to 1.

(vi) |U(re®) — u(e®)| < eif |§ — 6,| < g and r is close enough to 1.

6. Show that the function

_Lf= y _ y
u(x’y)_nfo {(x—t)2+y2 (x+t)2+y2}f(t)dt

is harmonic in the upper half-plane and satisfies

u(0, y) =0, O0<y<w
u(x, 0) = f(x), 0<x< o0

7. Use Exercise 6 to find an integral representation for a harmonic function u(x, y)
in the first quadrant {x + iy: x > 0, y > 0} with

u(x, 0) = f(x), 0<x< o0
u(oa .V)=f2(.V), 0<y < o0.

8. Show that the function

u(re®®) = % f: {P(t — 0) — Pt + 0)} f(e") dt
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is harmonic in the half-disc {re®: 0 < r < 1,0 < 6 < =} and satisfies the boun-
dary conditions

u(e) = f(e), O<f<mn

u(x) =0, —l<x<1.

. Solve the Dirichlet problem for the exterior of the disc of radius 1 centered at

the origin. That is, give an integral formula for a harmonic function v(z) on the
region 1 < |z| < oo (including o0) that satisfies

lim v(z) = f(4), [A] = 1.

z—A
Use the result of Example 2 to find the electrostatic potential in the region
D={x+iy:x>+y*>o*and y > 0}

when the potential is 0 on both the segments (— co, —¢) and (g, o) and 1 on
the semicircle x? + y*> = a2,y > 0.
The function

1—r2

1 —2rcos@ +r?

u(re') =

is harmonic on the disc {z: |z| < 1. Show that

limu(re®)=0 if =n>|0 >0.

r—1

Show, moreover, that u(re'?) represents the temperature distribution in the disc
0 <r < 1 due to a “hot spot” at the point r = 1, § = 0 (that is, the temperature
there is “00”). (Hint: Find the temperature distribution u, in the disc due to the
boundary temperature

/4
' n, |0| < i;
u,(e) =
0, Z<l|o<n
2n

Then let n — o0.)

Extend the result in Exercise 11 to the case when there are N “hot spots” at
points e, ..., " of the circle of radius 1 centered at the origin. Discuss what
happens if some of the “hot spots” are instead “cold spots” (that is, the tempera-
ture there is — o0).

Give the temperature distribution in the upper half-plane y > 0 that is produced
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14.

1S.

by a single “hot spot” at the point x,, on the real axis. Do the same for several
“hot/cold spots™ at the points x,, ..., Xy on the real axis.

Argue on physical grounds that if v(re®) is a nonnegative harmonic function on
the disc {z: |z| < 1 with

1—r?

1 2rcoso+r2=P'(0)’ 0<r<li, 0<0<2n

v(re) <

then v(re®®) = AP,() for some 4, 0 < A < 1. (Hint: What temperature distribu-
tion on |z| = 1 does v represent?)

Suppose u(z) is a real-valued harmonic function on the disc {z: |z| < 1 + 8} for
some J > 0; let v be the harmonic conjugate of u on this disc, which is zero at
the origin. Show that

) | I 2r sin(@ — t)
0y _ it
vire”™) = 3 L Y cos@ =g 177 -

(Hint: The function

1 2n u e“+z
flz)= f u(e )e"—zdt

_.z_n.o

is analytic on the disc {z: |z| < 1}, and its real part is u(z), by (7).)

Fourier Series and Harmonic Functions*

16.

17.

18.
19.

Let u(e') be a piecewise continuous function on the circle {€?: 0 < 0 < 2x}. Set

1 (%= . .
i(n) = I u(e®)e™™° do, n=0,+1, +2,...;
0

ti(n) is the nth Fourier coefficient of u. Show that

ld(n)] < max |u(e®)|.

0<0<2n
Let k be an integer. Show that
L2 1 k=0
— ke dg =< °
), ¢ {0, k #0.

Ifu(e’) =Y >, a,e™™, where Y %, |a,| < oo, then a, = d(n).
Let P,(0) be the Poisson kernel:

_ 2 1 i0
P@O)=— 1T Re( +’e.>.

1—2rcos+r% 1 —re®
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Show that

P,(B) Z Inlemo

-0

Hint: 1/1 —2)=14z+4 22+, if0<|z|<1)
20. Let U(re) be the harmonic function on the disc {z: |z| < 1} with lim,_, U(re®®) =
u(e®), except at the finitely many points of discontinuity of u(e*). Show that

Ure®) = Y amrle™, 0<r<l1, 0<0<2m

21. Suppose v(e) is another piecewise continuous function on the circle {€?: 0 <
6 < 2n} and V(re*) is its harmonic extension to the disc {z: |z| < 1}. Show that
foreachr,0 <r<1,

2n ]
1 j U(re®)V(re®)do = Y. r*i(n)d(n). (12)
2n J, =

(Hint: By Exercise 18, with U(re®) in place of u(e’®), we know that the nth
Fourier coefficient of U(re®) is r"fi(n).)
22. Let r increase to 1 in (12); conclude that

——J u(e®)v(e®) do = Z i(n)o(n). (13)

(This is a correct formula, but this passage from (12) to (13) needs more
mathematical justification than just letting r — 1.)
23. In Exercise 22, take v = u and conclude that

——J |u(e®®)|? df = Z |f(n)|? (14)

This equation is known as Parseval’s equality.

The Reflection Principle

24. Suppose that g is analytic in a domain D in the right half-plane, Re z > 0,
which includes a segment (ia, if) of the imaginary axis in its boundary. Show
that if g is real-valued on this segment, then g extends to be analytic in the
domain formed by the union of D, the reflection of D over the imaginary axis
(={—72: z € D}), and the interval (ia, iB).

25. Suppose that f is an entire function that is real-valued on some segment of the
real axis and also real-valued on some segment of the imaginary axis. Show that
f(—1z2) = f(2) for all z. (Hint: Reflect f over the imaginary axis.)

26. Use the reflection principle to prove this result. Let D be a domain in the upper
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half-plane with the segment (a, b) of the real axis in its boundary. Suppose that
f is analytic on D, continuous on D U (a, b), and f(z) = 0 if z is in (a, b). Then
f(z)=0for all ze D.

27. Find the form of a rational function M that is real on the circle {z: |z| = 1};
assume that M has no poles on this circle.

28. Show that an entire function has only real coefficients in its power series
expansion about the origin if and only if it is real-valued on the real axis.

29. Suppose that f is analytic on the open disc {z: |z| < 1} and continuous on
the closed disc {z: |z| < 1}. Show that if | f(z)| = 1 whenever |z| = 1, then f can
be extended by reflection to be analytic, except for finitely many poles, in the
whole complex plane by the rule

1
f*(2)==-=1=, |z| > 1.
1)
4
Show further that f is a rational function and, in particular, has the form

z—a, zZ—ay

f@) =14

. <1 =1.
1—a;z 1—ayz lajl <1, 141

30. Suppose f is analytic on the disc {z: |z| < 1}, continuous on the set {z: |z| < 1},
and real-valued on the circle {z: |z| = 1}. Use the reflection principle to show
that f is constant. (Hint: Extend f to the set {z: |z| > 1} by f*(2) = f(1/2))

4.4 Boundary-Value Problems

In a boundary-value problem, we are given information about an unknown function
on the boundary of a domain and an equation (usually a differential equation) that
the function satisfies on the domain; we are challenged to find the function itself on
the domain. In complex variables, the boundary-value problems typically have one
of two different forms. In the first, we are to find a harmonic function u on the
domain D from the knowledge of the function itself on the boundary of the domain;
this is the Dirichlet* problem for D. In the second, we are again to find a harmonic
function on D, but this time we know only the normal derivative of the function on
the boundary of D; this is the Neumann' problem for D. Of course, there is also a
mixture of these two cases, where we know the function on part of the boundary
and its normal derivative elsewhere on the boundary.

There are two basic techniques in solving boundary-value problems. The first
is to use an explicit integral representation formula such as the Poisson Integral
Formula. This technique was illustrated in Section 3, where we examined the
Poisson Integral Formula both on the disc and on the upper half-plane. The second

* Peter Gustav Lejeune Dirichlet, 1805-1859.
* Carl Neumann, 1832-1925.



44 Boundary-Value Problems 299

basic technique is to transform the given region by a conformal mapping to a new
region on which the boundary-value problem is easily solved. This solution can then
be carried back to the original region by means of the conformal mapping, thus
yielding an explicit solution to the problem. Care must be taken to be sure that the
boundaries of the two regions correspond to each other in the correct way, but this
happens automatically in most cases.

We illustrate this second technique of conformal mapping by several examples.

r

\
an

(a) (b)

Figure 4.30

Example 1 Find the electrostatic potential between two long, parallel, charged,
hollow, circular cylinders if one is inside the other.

Solution A cross section of the cylinders perpendicular to their axes gives two
circles, one inside the other. By a simple translation, rotation, and change of scale
we may assume that the outer circle is the circle Iy = {z: |z| = 1} and the inner circle
is the circle I, = {z: |z — xo| = 7o}, where 0 < x, < 1 and x, + ry < 1 (Fig. 4.30a).
Let the charge on the inner and outer cylinders be C, and C,, respectively. Thus,
we are searching for a harmonic function on the region between the two circles I,
and I';, which has the value C, on the outer circle I'; and the value C, on the inner
circle I;. If the smaller circle is centered at the origin (that is, if the two cylinders
are coaxial), then the solution is immediate*; namely,

logr, —logr log r
log r, 'logr,’

U(reio) = CO

ro<r<l,

because we know that w(re®®) = log r is a harmonic function (see Exercise 3 of

* The domain and the boundary data are circularly symmetric, so the solution U(re*) should be as well.
However, the only harmonic function that is independent of 6 is A + B log r (see Exercise 5(b) in
Section 1).
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Section 4.1). However, it may not be the case that the circles are concentric, so we
must first transform the region between I'y and I'; into the region between concentric
circles. This can be accomplished by use of an appropriate linear fractional trans-
formation. A computation (or see Exercise 16, Section 5, Chapter 3) shows that there
is a real number b such that the function

z—b
1—bz

$(2) =

maps the inner circle I'; onto a circle of radius r, centered at the origin; of course,
¢ also maps the outer circle I, onto itself. Consequently, from the solution to the
problem in the coaxial case, we obtain the desired solution in this case:

u(z) = C log r; — log|¢(2)| +C log|¢(2)|
0 log r, " logr,

Example 2 A magnetic field is established by a north and south pole, each of large
rectangular cross section (Fig. 4.31a). Find the magnetic field in the surrounding

space.
w = ¢(2)
/7// 7 \\\\\&
\North pole Soihpole -1 6 +i
\ \ )
Figure 4.31

Solution We arbitrarily assign the value —1 to the field on the boundary of the
north pole and + 1 to the field on the boundary of the south pole. Our task is then
to find a harmonic function in the region D outside the poles with these boundary
values. (In practice, of course, the poles do not have infinite extent; this model
assumes that the gap between the poles is small in comparison to the width of the
poles. The model is accurate for the magnetic field in the region and close to the
gap, where it is of the most interest in any event.)

In Section 5, Chapter 3 we found the Schwarz—Christoffel transformation that
maps the upper half-plane U onto the domain D:

#(z) = 2;‘1{. /z% — 1 + arcsin <§>},
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¢ carries the ray (— oo, 0) onto the edge of the north pole and the ray (0, o) to the
edge of the south pole (Fig. 4.31b). The function 1 — (2/%) Arg z = U(z) is harmonic
on the upper half-plane, and its boundary values are 1 on (0, co)and — 1 on (— o, 0).
Therefore, the function

2
u(w) = 1 — = Arg($™ (w)

is the desired function on D. The curves of magnetic flux are the images under ¢ of
the level lines of ¥V, a harmonic conjugate of U: V(z) = (2/n) log|z|. These level lines
are circles centered at the origin, so the curves of magnetic flux of the field are the

curves

2 . . =it
1“'=—a{,/r2e2"— 1 +arcsm<er >:OSt<n}

T
for 0 < r < c0. Some of these curves are shown in Figure 4.32. o
<
N\ ‘:J% Vi QC'P
- <, r=2.00 A D
> 7 N Q-
‘ng r = 1.66 v
s r=1.33 N
3'6‘9 e ‘4
= = 25
2.89 r=1.00 = 0.
! = 3'04 r=0.80 (= 0"0
r = 0.60
r = 0.40
r=0.30
r=0.20
r=0.15

Figure 4.32 The curves of magnetic flux and equipotentials.

The Neumann Problem

In this boundary-value problem, we are given a function g on the boundary of a
domain D, and we are to find a harmonic function u on D with normal derivative
equal to g on the boundary of D: du/on = g on 0D. This is physically realizable as
specifying the flux over the boundary of the region of a field or the permeability of
the boundary for diffusion. This problem, like the Dirichlet problem, can be explicitly
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solved in the case of a disc or a half-plane. We work out the case for the disc |z| < 1
here and leave the other setting (which is handled similarly) for the exercises.

Let g be the value of the normal derivative at the unit circle |z| = 1. We seek
a function v(re) that is harmonic on the disc {re®: 0 < r < 1} and satisfies

g—:(e") =g, 0<t<2n
Consider the function
. —1 2"
v(re®) = o J g(t) Log(l — 2r cos(d — t) + r?) dt.

o

This function is harmonic, since it is the real part of the analytic function
O . .
— j g(t) Log(l — ze ™) dt, z=re",
T Jo

assuming g(t) is real. Furthermore,

o . 1 (2= 0 ,
a—r(se )= o L g(t)a Log(1 — 2r cos(6 — t) + r*)

dt

r=s

_ 1 2 © 2cos(d —t) — 2s
")y YT " 2scos0-n+ 5

_ (" ®) L—s 1|de
T 27s o 9 1 —2scos(@ —t) + 52

1 2% 1 2n
=5 J gt)P(0 —t)dt — Ims I g(t) dt,
0 0

where P,(0 — t) is the Poisson kernel. However, we know from Section 3 and the
properties of the Poisson kernel that

2n
lim L g(t)P,(0 — t) dt = g(0).
s—1 27‘C 0
Hence,
. 0 1 [
11_{111 5(“’ )=49(0) — 7 J;) g() dt.

However, the integral of g must vanish, since there are no sources or sinks within
the disc {z: |z| < 1}. Therefore, v is the desired solution. (Another way to see that
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{3 g(2) dt = 0 is to use Green’s Theorem:

2n
j g(t) dt = j ?—2 ds = Jf Avdx dy =0, since Av = 0.)
ron Q

0

Example 3  Alongcylinder with a circular cross section (for example, a blood vessel)
contains a fluid with a certain chemical 4 dissolved within it. The walls of the
cylinder allow the chemical 4 to permeate through with a permeability that depends
only on the angular location; moreover, there is a “line” source of the chemical 4
within the cylinder of strength exactly sufficient to keep the whole system in steady
state. If the permeability function is given, find the strength of the source and the
lines of flow of the chemical within a cross section of the cylinder (Fig. 4.33).

diffusion
through the
_~ boundary

Figure 4.33

Solution By taking a cross section, we work within a circle, which we can take to
be the circle x2 + y? = 1. The total flux of the chemical A through the circle is

2n
Q= J g(t) dt,
0

where g(t) is the coefficient of permeability at the point e”, 0 < t < 2x. Since the
system is in steady state, Q is also the strength of the source. If the source is located
at the point z,, it is given by

I—Eoz
z— 2z,

. lzl <l

u(z) = % log

We wish, then, to find a function u(z) that is harmonic on the disc |z| < 1 except at
the point z, and that satisfies
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ou_ .,

—(e") = g().
5, € =9
The function u, (z) satisfies

Ouy i _ 9 1-r — o Lifp
r €)= 2\ T 2rcos@ = 7 72)7 0T

(See Exercise 13 at the end of this section.) Furthermore, the function defined by
u,(re’®) = L ) - aﬂ(e"') Log(l — 2r cos(§ — t) + r?) dt
2 T 2n ), g or g
is harmonic on the disc |z| < 1 and satisfies
Uy o ouy . 4
?(3 )=g(t) - E_(e ).

Consequently, u(z) = u,(z) + u,(z) is the desired solution to the problem. In par-
ticular, in the very special case when the permeability is constant and the source is
at the origin, the solution is

u(z) = —% log|z|. (u]

Example 4 A thin layer of a chemical solution occupies the lower half-plane
{x + iy: y < 0}. The segments (— oo, — 1] and [1, o) are insulated so that there is
no diffusion across these portions of the boundary, but across the segment (— 1, 1)
there is a semiporous membrane that allows diffusion at a constant rate into the
upper half-plane. Find the steady-state concentration of the substance in the upper
half-plane, and the lines of flow of the chemical.

Solution The concentration function c(x, y) for which we are searching must
satisfy lim{c(z): z —> o0, y > 0} = 0, and

dc 0, iflx]>1
@“m‘im if x] < 1. )

As a first guess, we try

b(x,y>=§—;’rj

1

log[(x — t)> + y*] dt.
1

The function b has the correct normal derivative on the real axis, since

% _c (! y
dy m)ax—tP+)y?

L,
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and by the Poisson Integral Formula for the upper-half-plane, we know that

. <1
l (o]
,'Iﬂ dy ") = {0, x| > 1

(also see Exercise 1 in this section). However, this function is not the solution we
wish, because it is clearly unbounded for large values of x% + y2. Instead, we
consider

. 1
c(x, y) = %[J log[(x — t)* + y*] dt — 2 log(x* + yz)].

This function is still harmonic for y > 0 and certainly satisfies (1). Furthermore, if
x% + y? is large, c(x, y) is virtually zero. Thus, c(x, y) given above is the desired
solution. =]

Example 5 Groundwater flows out of an underground aquifer bounded on the
bottom by a layer of impervious rock and on the top by a semi-infinite layer of
impervious rock; the remainder of the top is fully permeable (Fig. 4.34). Find the
flow and its streamlines if the discharge per unit width of the aquifer is g.

2
/////
impervious layer //// /
extending far to the nght

lmpervnous layer extendmg far to the left and right 7 /

Y

Figure 4.34

Solution By the introduction of a coordinate system with the x-axis along the
bottom face of the aquifer and the y-axis passing through the left end of the top face,
we have the situation shown in Figure 4.35a. The flow has a source “at c0” (that is,
far to the right) of total strength Q = gh. We now consider the domain D, which is
the horizontal strip {x + iy: —00 < x < 0,0 < y < h}. See Figure 4.35b. On D we
seek a harmonic function v(x, y) (the potential) with these boundary conditions:

ov . y=0and —o0 < x < @
—(x =0 f
6n(xy) l {y=hand 0<x<o

v(x,y)=0 if y=hand —o0 < x <0.

The first of these conditions says that the boundary is impermeable, and the second
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1

ih

ih

(a) (b)

Figure 4.35

says that the groundwater is free to go out of the aquifer from that portion of the
top that is not blocked by the impervious rock. The flow must, of course, have a
source of strength Q far to the right. Therefore, we are faced with a mixed Dirichlet—
Neumann problem; we solve it by finding a conformal mapping of the strip D onto
a domain in which the corresponding problem is solved by inspection.

The function

—1+cosw
‘= 2
maps the vertical half-strip § = {w: Im w > 0 and —n < Re w < 0} onto the upper
half-plane, Im { > 0. In turn, the function z = (h/n) Log { maps the upper half-plane

onto D. Thus,
h —1
T 2

is a one-to-one analytic mapping of the strip S onto D. Furthermore, the mapping
has been carefully arranged so that the left vertical edge of the strip S is mapped to
the segment {x + ih: 0 < x < o0}, the right vertical edge of S is sent to the real axis,
and the horizontal bottom edge of S is sent to the segment {x + ih: —c0 < x < 0}

On S, the function (Q/x) Im w has all the required properties: it is zero on the
bottom edge; its normal derivative (that is, its partial derivative with respect to Re w)
is zero on both the vertical edges; and the flow given by the gradient of (Q/n) Im w
has a source at oo at strength Q. Since

w= arccos[l +2 exp(‘%)],
v(x, y) = % Im {arccos [1 + 2 exp (%):'}

we see that
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is the required potential. The complex potential is, then,

G(2) = —i% arccos[l + 2 exp (%t)] u|

EXERCISES FOR SECTION 4.4

1. Derive this formula for a solution to the Neumann problem in the upper
half-plane y > 0:

u(x, y) = -21; J ) g(t) log[(x — 1)* + y*]dt + ¢,

=

where we assume that |g(t)| < Ct™" for all large t and for some v > 1, to make
the integral converge.
2. Suppose that g(—t) = —g(t) for all ¢t; show that

R (t — x)? + y?
u(x, y) = > L g(t) log(t P dt + ¢

is a harmonic function in the upper half-plane y > 0 with u(0, y) =0 and

(0u/dy) = g on the real line.
3. Suppose that g(t) = 0 if [t| > M; let

M

u(x, y) = ZLn J_M g(®) log[(x — t)* + y*] dt — Alog(x* + y?),

where 4 = (1/2n) [, g(t) dt. Show that u(x, y) is harmonic in the upper half-
plane, u(x, y) - 0 as x2 + y*> - o0 and

lim QE(X’ é) = g(x), —00 < X < 00.
3400y
4. Show that the function

_ e y y
“(X,,V)—;J; g(t){x—t)z-f-yz+(t+X)2+y2}dt

is harmonic in the first quadrant and satisfies

u(x, 0) = g(x), O<x<ow

ou
=0, =0.
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5. Modify the integral formula in Exercise 4 to find an integral formula for a
function u(x, y) harmonic in the first quadrant x > 0, y > 0, which satisfies

u(0,y) = f(»)
ou
a—y(x, 0) =0.

6. Find the temperature distribution T(x, y) in the upper half-plane if T(x, 0) = T,
for x < —a, T(x,0) = T, for x > o, and the segment —¢ < x < o is insulated
(that is, (0T/dy)(x, 0) = 0 for —g < x < 0).

7. Find the temperature distribution in the first quadrant if T(0, y) = T;,0 < y < o0,
T(x,0) = T, for ¢ < x < o0, and the segment (0, o) on the real axis is insulated.

8. Find the temperature distribution in an infinite straight rod if the boundary
temperatures are as shown in Figure 4.36. (Hint: Assume that the width is = and
use w = e” to map the strip onto the upper half-plane.)

=T, .\ \: \
Figure 4.36

9. Find the electrostatic potential between two long parallel cylinders of circular
cross section if one is inside the other and they touch along one line. (The line
of contact is assumed to be insulated.)

10. Find the electrostatic potential in the region exterior to two cylinders (neither
inside the other). (See Fig. 4.37 for a cross section.) (Hint: Invert over a point
inside one of the cylinders; you may also need to use Exercise 16, Section 5,
Chapter 3.)

Figure 4.37
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11. Find the temperature distribution inside the half-disc {x* + y*> <1,y > 0}, if
the temperature is T, along the bottom and T, along the semicircle. (Hint: Use
a conformal mapping onto the first quadrant.)

12. Find the temperature distribution in the lens-shaped region within both the
circles (x — 1) + y? = 1 and x2 + (y + 1)*> = 1 if one edge of the lens is held at
temperature T, and the other at temperature T,.

13. Let |a| < 1; show that the function

1—az
g(z) = log
z —
satisfies
dg  ; 1 —|al?
——=(") = 5.
or 1 — 2|a| cost + |a|

14. Justify the use of conformal mapping to solve the Neumann problem by showing
that a Neumann condition on a segment of the boundary of one domain is
transformed to a Neumann condition on the corresponding segment in the
boundary of the second domain—provided that the mapping is actually con-
formal, not only inside the domain, but on these segments in the boundaries as
well.

15. Let D be the region obtained from the strip {x + iy: 0 < y < =} by deleting the
half-line {x + (in/2): 0 < x < oo} (Fig. 4.38). Exercise 14 in Section 5, Chapter
3 gives the Schwarz—Christoffel transformation of the upper half-plane U onto
D. Use this to determine the potential in D if the top and bottom surfaces are
held at potential zero and the middie (semi-infinite) surface is held at potential
Vo #0.

Figure 4.38

4.5 Impulse Functions and the Green’s Function of a Domain

It is often very useful in the analysis of physical systems to imagine an “impulse
function” with these two properties: (1) The impulse function is zero everywhere
except at one point, where it has the value co, and (2) the total area (or volume)
under the graph of the function is 1. Such “functions” represent an idealization of
an impact of short duration or a short, strong, driving pulse, for instance.* We can

* In mechanics, this type of function is also referred to as a “concentrated force.” In electrostatics, a unit
point charge is like an impulse function.
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understand an impulse function (say, on a domain D in the plane) by the following
limit argument. Fix a point p in D, the point where the impulse will be felt, and let
r be a small positive number. Set

h(z) = 0, iflz—p|>r,zeD
T l@r)Y, if|lz—pl <
Then the total volume under the graph of h, is 1, and for each continuous function
fonD,
litg ” f(@)h,(2) dx dy = f(p). 1)
r- D

Equation (1) is valid by the following argument. Since the volume under the graph
of his 1,

1
”D f@h,(z) dx dy — f(p) = p—3 ”I e {f(2) — f(p)} dx dy.

The function f is continuous at p, so if ¢ > 0 is given, then r can be chosen with
lfiz)— f(pl <e¢ whenever |z — p| <.

Hence,

UJ f@)h(z)dx dy — f(p)| < ¢ if r is small,
D

which is what we wished to show. Thus, in some sense, the impulse function J, equals
lim,_q h,.

In complex variables (particularly in the applications of complex variables),
we are interested in harmonic functions u—that is, in solutions of the equation
Au = 0. Often, as well, the values of u are prescribed on the boundary of the
domain D. Let us consider here the function G, which is the solution of the
boundary-value problem

AG=6, onD
G=0 on the boundary of D,
where 6, is the impulse function for p € D. Thus, G is harmonic on the open set D\ { p}

and vanishes on the boundary of D.* Green’s Formula (formula (9) of Section 6,
Chapter 1) gives us the relation

* That s, G is the response to the impulse at p for a system governed by the Laplacian, with zero boundary
data.
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J( f=G >d —J {(AG)f — G(4f)} dx dy,

where I' is the boundary of D. If we assume that f is continuous on DU T and
harmonic on D, we find that

J f— ds = ” (AG)f dx dy = ” 0,f dx dy = f(p).

Consequently, the normal derivative of G is precisely the function that takes the
boundary values f and produces the value at p of the harmonic function with these
boundary values; that is, G/dn solves the Dirichlet problem for the domain D. Of
course, the derivation carried out above is only heuristic, but it can be made
mathematically sound (see the exercises).

We now give the “official” definition of the Green’s function and then some
examples that illustrate the Green’s function and its use.

The Definition of the Green's Function of a Domain

Suppose that D is a bounded domain whose boundary is a finite number of disjoint
smooth simple closed curves (Fig. 4.39). Let p be a point in D. The Green’s function
for D with singularity at p is the function G(z; p) with these three properties:

Figure 4.39 A domain bounded by three disjoint, piecewise smooth simple closed curves.

(a) G(z; p) is harmonic for z in D, z # p,
(b) G(z; p) + log|z — p| is harmonic near p, 2)
(c) G(z;p)=0 if z is in the boundary of D.

Such a function G(z; p) can be found in the following way. Let v be the har-
monic function on D with v(z) = log|z — p| if z is in the boundary of D; then set
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G(z; p) = v(z) — log|z — p|.

Exercise 1 at the end of this section shows that G(z; p) is unique.

The Green’s function for an unbounded domain is defined exactly as in (a),
(b), and (c) above if p is not the point at oo. If oo is a point in the domain D, then
the Green’s function for D with singularity at oo is the function G(z; o) satisfying

@) G(z; ©)  is harmonic on D\ {0},
by G(z; o) — log|z| is harmonic for |z| large, 3)
(cy G(z; 0)=0 if z is in the boundary of D.

Domains that include the point at co, and their Green’s functions, are impor-
tant in the subject of potential theory.

Example 1  Let D be the disc {z: |z| < 1} and fix p € D. Set

1 —pz
z—-p

G(z; p) = log

l, 2| < 1.

Then G is harmonic except at p, G = 0 on the boundary of D, since if |z| = 1, then

1 —pz
z—p

=1.

On the disc D,
G(z; p) + log|z — p| = log|1 — pz|.
Note that log|1 — pz| is harmonic on D. Furthermore, the (inward) normal deriva-

tive of G at the boundary is just minus the partial derivative of G with respect to r,
which is

0 1 — pre® 1—|p)?
—Z log| P2 - %.
or re® —p (=1 e —pl
You should recognize this function immediately as the Poisson kernel for the point
plpl <1 =

Example 2 Let D be a simply-connected domain, bounded or unbounded, with at
least two points in its boundary, and fix a point p € D. Let ¢ be the Riemann
mapping of D onto the disc A = {w:|w| < 1} with ¢(p) =0, ¢'(p) > 0; such a
mapping exists and is unique, by Theorem 1, Section 5, Chapter 3. Show that
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G(z; p) = —loglg(z), zeD

is the Green’s function for D with singularity at p.

Solution Let us suppose first that p is not the point at oo (if this point is even in
D). On D\{p}, the function ¢ is analytic and nonzero, so log|#| is harmonic, by
Exercise 2 of Section 4.1. Furthermore, ¢ has a zero of order one at p, so

#(z) = (z — p)g(2),
where g(z) is never zero on D. Thus,

log|¢(z)| = log|z — p| + log|g(z), zeD,

and log|g| is harmonic on all of D. This shows that log|¢| satisfies (a) and (b) of (2);
to see that log|@| satisfies (c), we need to use this fact:

if {z,} is a sequence of points in D with lim z, = 4

n—wo

for some A in the boundary of D, then lim |¢(z,)| = 1.

n—wo

(See Exercise 19, Section S5, Chapter 3.) From this, it is evident that (c) holds, so
—log|é(z)| is, in fact, the Green’s function for D with singularity at p.

The case when p is the point at oo is left for the exercises, but it is done in much
the same way. o

Example 3 Let D be the complement of the segment [a, b], including the point at
0. Find the Green’s function for D with singularity at co and evaluate

k = lim {G(z; o) — log|z|}.

|z|=e0

Solution Let

2z +a+b
b—a a-b»b

$1(2) =

#,(2) is a one-to-one analytic function that maps the segment [a, b] onto [ —1, 1] and
D onto the domain D, that is the complement of [ — 1, 1]. Let g,(w) = w — /w? — 1;
#,(w) is an analytic function that maps the domain D, one-to-one onto the disc
A = {{:|{| < 1}; 4, is the inverse of the function Y({) = 4({ + ('), which maps the
unit disc A onto D, (see Example S, Section 4, Chapter 3). The composition
#(2) = ¢,(#,(2)) is the Riemann mapping of D onto A with ¢(c0) = 0. According to
Example 2, the Green’s function for D with singularity at oo is
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G(z; 0) = —log|4(2)|

= —logl(4z + B) — \/(Az + B)? — 1|,

where A = 2/(b — a) and B = (a + b)/(a — b). Next, for |w| large,

/ — 1
wi—1l=w l—w_2=w{l_m_;cv%_c_36...}’

where c,, c3, ... are constants (see Exercises 25 to 27 of Section 2, Chapter 2). Hence,
1 c c
w— W —l=—t+-3+3+,
2w w3 W
and consequently,

1 c
Laae]
w

~loglg,(w)| = —log|-—-

= log|2w| — log

2c
1+ + ‘
w
Replacing w with Az + B gives

G(z; o) — log|z| = log 1+

B

k = lim {G(z; o) — log|z|} = log(2A4)

2|0

=1 4 m]
=708 b—a)
EXERCISES FOR SECTION 4.5

1. Let p e D. Show that the Green’s function of the domain D with singularity at
pis unique. (Hint: If both G(z; p) and G, (z; p) satisfy the definition of the Green’s
function, show that the difference, G — G,, is harmonic and bounded in D and
vanishes on the boundary of D.)

2. Let D, and D, be two domains with Green’s functions G, and G,, respectively.
Suppose that ¢ is a one-to-one analytic function mapping D, onto D,. Show

that G,(z; p) = G,(¢(2); ¢(p)).

2c2 + e
(Az + By ’

so finally,
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In Exercises 3 to 6, use Exercise 2 or the definition of the Green’s function to
explicitly find the Green’s function for the domain D with singularity at p € D.

3 D={z=x+iy:y>0}

4. D={z:|z~zo| <R},  zo, Rfixed, R >0
5.D={z=x+iy:x>0and y >0}

6. D={z=x+iy:y>0and|z| <1}

In Exercises 7 to 9, use Example 2 to find the Green’s function for the domains
indicated.
1. D={z=x+iy:0<y<m}
8 D={z=x+iy: —n/2 <x <m/2and y > 0}
9. D={z=x+iy:x¢(—0,0]}
10. Show that the Green’s function for a domain D with singularity at p is always
positive on D\{p}. (Hint: Show that G(z; p) is positive on the circle |z — p| = ¢
for all small ¢; then use the maximum/minimum principle on the domain

D\{z:|z ~ p| < &}

11. Argue on physical grounds that the Green’s function is symmetric: G(q; p) =
G(p; q)forallp # q in D.

12. Let D be a bounded domain whose boundary, I', consists of a finite number of
disjoint piecewise smooth simple closed curves. It is a fact that the normal
derivative of the Green’s function exists and is continuous on I'. Use this to
show that

1 0
L L u@)5- (G p)} ds = u(p)

for any function u that is continuous on D U I" and harmonic on D. (Hint: Apply
Green’s Formula on the domain D, = {z € D: |z — p| > &}; you'll have to show

that the term
1 G ou
— —u——0G
27 Jio-pl=e {6n T on } ds

approaches u(p) as ¢ decreases to 0. This is accomplished by noting that

G

—= + bounded term
on |z-—p|

on this circle. Next, estimate |G(z; p)| by log(1/|z — p|) and recall that ¢ log ¢
goes to zero as € —» 0.)

13. Let D be an unbounded domain including the point at oo, and let E be the
complement of D; let G(z; «0) be the Green’s function for D with singularity at
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o0. The number ¢(E) defined by

—log ¢(E) = lim {G(z; o) — log|z|}

|z|—o0

is called the logarithmic capacity of E. Find the logarithmic capacity of E if (a)
E={z:]z] < 1} (b) E = {z: |z — zo| <7o};(c) E = [a, b],a < b(see Example 3);
(d) E = {x + iy: (x*/a?) + (y*/b?) < 1}.

14. Complete Example 2 by showing that if D is a simply-connected domain con-
taining the point at co, then

G(z; 0) = —log|¢(z)l,

where ¢(z) is the Riemann mapping of D onto the disc {w:|w| < 1} with
#(0) =0.

Impulse Functions
15. Show that the Poisson kernel

1-1r?

F6) = 1 —2rcos@ +r?

converges to the impulse function at 6 =0 as r— 1 in the sense that
lim,_, (1/27) {* . h(e**)P,(e*®) d6 = h(1) for each function that is continuous on
the circle {e": ~n < 0 < n}.

16. Let [a, b] be an interval in the line, and let a < p < b. Show that the “impulse
function” 6, for [a, b] has the property that

b
I J(x)8,(x) dx = f(p)

for every continuous function f(x) on [a, b]. (Hint: Let u,(x) be zero for
|x — p| > 1/(2n) and u,(x) be n for |x — p| < 1/(2n). Show that

b
lim | f(x)u,(x) dx = f(p).)

n—w Jg

0, asx<
17. Let Hx) = { p<x<Z

H' = §,. (Hint: If f(b) = 0, then

Use integration by parts to “show” that

Jb ['(xX)H(x)dx = —jb S(x)H'(x) dx.

But [; f'(x)H(x) dx = [} f'(x) dx = f(b) ~ f(p) = ~ f(P).)
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Further Reading

The following two books present a substantial number of applications of complex
variables to engineering and science problems.

Henrici, P. Applied and computational analysis. Vol. 1. New York: Wiley, 1974.
Kyrala, A. Applied functions of a complex variable. New York: Wiley, 1972.

More specialized books that I have found useful in dealing with the topics in this
chapter include the following:

Chorin, L., and Marsden, J. A mathematical introduction to fluid mechanics.
New York: Springer-Verlag, 1979.

Crank, J. The mathematics of diffusion. New York: Oxford University Press,
1956.

Kellogg, O. D. Foundations of potential theory. New York: Dover, 1953.

Milne-Thompson, L. M. Theoretical aerodynamics. 4th ed. New York: Mac-
millan, 1966.

Milne-Thompson, L. M. Theoretical hydrodynamics. 5th ed. New York: Mac-
millan, 1968.

Muskhelishvili, N. 1. Some basic problems of the mathematical theory of
elasticity. Groningen, Netherlands: P. Noordhoff, 1963.

Verruijt, A. Theory of groundwater flow. New York: Macmillan, 1970.
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The Fourier transform is a powerful tool in both applied and theoretical mathematics.
Its utility is due in no small part to the simple relationships between a function
and its Fourier transform. However, a careful mathematical justification of these
relationshipsis not elementary. For that reason, we postpone our discussion of these
relationships until Section 2. In this section, we define the Fourier transform,
demonstrate some of its basic properties, and show some of its applications. The
relationships between the function and its transform are stated in Section 2, and
several examples illustrate their uses. At the end of Section 2, we sketch a portion
of the mathematics establishing these relationships.

We begin with the notion of a piecewise smooth function on the real line.
Suppose t, is a real number and u is a function defined for ¢ near t,; then we say
that u has a limit at ¢, from the right if

lim u(ty, + h) = u*(t,), h>0
hio

exists; we say that u has a limit at ¢, from the left if

limu(ty—h)y=u(t,), h>0
o

exists. We do not make any requirement about the possible equality of u*(t,) and
u(to). If it happens that these two limits exist and are both equal to u(t,), then
(and only then) u is continuous at t,,.

Example 1 The function

,  |t|>a

u(t) = {(1), [t| < e

* Jean Baptiste Joseph Fourier, 1768-1830.
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has both left and right limits at all points t,. The left and right limits coincide except
att, = *0;atty, = —o, the limit from the left is zero and the limit from the right
is 1; at t, = g, exactly the reverse situation occurs. o

A function u is piecewise smooth if the following conditions are met: there are
a finite number of points t; <t, < --+ <ty in the real line such that

a. both u and u’ are continuous on all the intervals (—oo, t,), (¢4, t;), - .-, (ty, ).
b. both u and u’ have limits from the right and left at each of the points ¢, ..., ty.

We do not require that the right and left limits of either u or ¥’ coincide at any
of the points ¢, ..., ty, although this may happen.

Example 2 The function

u(t) = {1, |t| < o

0, [t]| > o
from Example 1 is piecewise smooth. The graph of u is shown in Figure 5.3a. O

Example 3 The function

0, —0<t< —0
Ut)y=<t+a, —0<t<a
20, c<t<®

is piecewise smooth. U is continuous and differentiable (except at +¢). However,
U’ = u, the function from Example 2, so U’ is discontinuous at +o. o

Example 4 If u is piecewise smooth and U is any function with U’(t) = u(t) for all
t#t,j=1,..., N, then U is piecewise smooth. The elementary demonstration of
this is left to the exercises. n]

Example 5 The functions

1, t>0
u )=+t
0, t<0

and

tlogt, t>0
u,(t) = {0, £ <0

are not piecewise smooth. u, does not have a (finite) limit from the right at t = 0. u,
is continuous on the real line; however, u; fails to have a (finite) limit from the right
att=0. o
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The Fourier Transform

Let u be a piecewise smooth function on the real line, and assume that

Jw |u(t)| dt < oo. 1)

Condition (1) will certainly hold if u(t) = O for |t| > M or if |u(t)| < C/t?for all large
t. We define the Fourier transform of u by the rule

i(x) = Jm u(t)e " dt, —00 < X < 0. )

—oo

The condition (1), together with the fact that |[e™**| = 1 if both ¢ and x are real,
assures us that the integral defining #(x) makes good sense (see Exercises 16 to 19
in Section 2). As we shall see, the Residue Theorem will be an indispensable tool in
the computation of Fourier transforms.

Example 6 Find the Fourier transform of the function

u(t)={1, It <@

0, [t| > o.

Solution By the definition of the Fourier transform,
a(x) = ’ e dt = -1 e >
e ix

_ 2 eiax _ e—iox
T x 2i

sin 6x
=2 . o
x

Example 7 Find the Fourier transform of u(t) = e™*.

Solution The Fourier transform of u is given by

o0 o]
i(x) = J e e dt = J e~ tHix =X gy

—oo —a0

= {exp(—x?/4)} Jw exp[—(t + %)2] dt.

To evaluate this last integral, we make use of some complex analysis. Let R be a
large positive number; the integral
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(R ix)?
exp{—(t + —> } dt
J-R 2
* oo ix 2
exp{—(t + —> } dt
J —00 2

as R — o. However, the integral from — R to R is nothing but the integral

converges to

—R <t<R,

j exp(—z2) dz, z=t+£,
YR 2

where 7y is the line segment joining — R + (ix/2) to R + (ix/2). Consider now the
rectangle I'; with vertices at —R, R, R + (ix/2), and —R + (ix/2) (Fig. 5.1). By
Cauchy’s Theorem, the line integral of f(z) = exp(—z?2) about I is zero. Further-
more, on the vertical edges of I'y, we may make the estimate

| f(2)] = lexp(—2z)|
X
=exp|:_ R2+S2], OSSSE,

so the integral of f over the two vertical edges of I'; is very small if R is very large.
The integral of f(z) as z runs from —R to R cannot be computed exactly, but as
R — oo it converges to

Jw e dt = ﬁ

(The value of this integral should be familiar from calculus; also see Exercise 20,
Section 3, Chapter 2.) Hence, we have shown that

® 2
J exp(—t? — ixt) dt = \/;cxpli—xz-],

—o0

SO

—R+i—x R+iﬁ'
2

Figure 5.1
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x2
t(x) = \/-1; epr:—T].
That is, the Fourier transform of e™* is \/;e"‘z/“. a

Example 8 Find the Fourier transform of

u(t) =

Solution The Fourier transform of u is

© e—ixt
(x) = J T dr.

To evaluate this integral, we use the Residue Theorem. Let

—ixz

f@) =1

1+ 2%
and set z = ¢ + it. Thus,
ext
/@) < -1 |z] large
1 .
< I—Z|2——T if xt < 0.

The necessity that xt be less than or equal to zero requires us to consider two cases.
If x is negative, we integrate f over the contour shown in Figure 5.2a; if x is positive,
we integrate f over the contour in Figure 5.2b. We can apply the Residue Theorem

Tr

(a)
(b)

Figure 5.2
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(or just use Cauchy’s Formula). For the case where x < 0, the pole is at i, and we
find that

—ix(i)

J f(2) dz—2me2 = ze”, x<0.

For the case where x > 0, the pole is at —i. As before,

—ix(—
J f(z)dz = 2mi = —me™ ¥, x =0.
Since the integral of f over the semicircular part of I'y goes to zero as R — oo, we
find that
© et ne*, x<0
a(x) = ——dt=

(x) ‘[_m 1412 {ne"‘, x=0.

Consequently,

f(x) = me~ ™, x real. a]

Basic Properties of the Fourier Transform
The operation of taking the Fourier transform of a function has certain convenient
and useful properties, which we list here. (In all cases, we assume that (1) holds.)

Property 1: Linearity
If u, and u, are functions and A, and 4, are complex numbers, then

(Aruy + Axu,)"(x) = A4, (x) + A,1,(x). (3)

Property 2: Translation
If a is a real number and v is the function defined by v(f) = u(a + t), — 0 <t < o0,
then

B(x) = e'"*i(x), —00 < X < 0. @)

Property 3: Scaling
If b is a real number, b #0, and w is the function defined by w(t) = u(bt),

—o0 < t < 00, then
R 1 . [x
W(x) = m“(z). (5)

Property 4: Transform of the Derivative
If u is differentiable everywhere on the real axis, and if ¥ and u’ both satisfy (1), then

L/c’\(x) = ixi(x), —0 < X < . 6)
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Property 5: Derivative of the Transform

d
£ 800 = (V)" (), g

assuming that

Jw [tu(t)| dt < oo.

The demonstrations of (3) through (7) are simple and left for the exercises; (4) and
(5) are done by a change of variables and (6) by an integration by parts. (See
Exercise 20, Section 2 of this chapter, to conclude that lim, ., u(t) = 0.)

Example 9 Find the Fourier transform of

Q) w@®=@*+4+5"L

t2
(i) u,(t) = exp[——2—].

(iii) us(t)=<1-—t, 0<t<l1
0, [t| > 1.
Solution (i) wu, is given by
y)=—>—= 2),
(1) t+2?%+1 ult +2)

where u is the function in Example 8. Hence, by Property 2,
0,(x) = e*™a(x)
=ne? e ™ —o0 < x < 0.

(i) Next, u,(t) is exactly u(t/ﬁ), where u is the function from Example 7.
Consequently, with b = 1 /ﬁ, Property 3 gives

i1, (x) = /2i(\/2%)

2 2
=./2n expl:—-:—]

= \/—Z_Euz(x).

Thus, u, is a constant multiple of its Fourier transform.
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(ili) Finally, the function u(t) has a very simple derivative:

1, —1<t<0
us(t) = < —1, O<t<1
0, |t] > 1.

The Fourier transform of u} is easily computed to be

N 2(cos x — 1)
wE =T
Thus
1~ 1 —cosx
i = —u- =2 [m]
S(x) ix u3(x) xz

There is one more very important property of the Fourier transform, but we
need a definition in order to introduce it. Suppose u and v are two functions
satisfying (1); the convolution of u and v is the function u * v defined by

(u=*v)(t) = Jw u(s)v(t — s) ds, —0 <t < 0. (8)
Example 10 Let
_ L [t| <o
u(t) = vlt) = {0, lt] > o.

Find u*v.

Solution The convolution of u and v at t is given by

(u*v)(t) = J u(s)v(t — s) ds.
Now v(t — s) = 0 unless |t — s| < o; since u(s) = 1 only when |s| < 6, we know
that

1, if[t—s|<oand|s| <o
0, otherwise.

u(s)v(t — s) = {

Thus, u(s)v(t — s) = 0 for all s if |t] > 20, so (u*v)(t) = 0 if || > 20. Moreover, if
0 <t < 20, then

1, ift—o<s<o
0, otherwise,

u(s)v(t — s) = {
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and, for —20 <t <0,

$)olt — 5) = 1, if —c<s<t+o
usiv 0, otherwise.

Thus,
0, t< —20
(wxv)(t) = t + 20, —20<t<0
T ) 20—, 0<t<20
0, t=>20
A sketch of the graphs of u, v, and u * v is shown in Figure 5.3a and 5.3b. a
0, |t| >20
W*v)() =)t + 20, -20<t=<0
20 -1,0=<t<20
20
u(t):v(t)={"|’|<0 u*v
0, |t] >0
1
I 9 -20 20
(a) (b)
Figure 5.3

Example 11 Let u be a bounded continuous function on (—oo, c0), satisfying (1),
and, for y > 0, let
1y
K()=—-—2 .
(0 n t2 + y?

Then the function
[}

1
Ux, ) = xK,)(x) =~ J_ u(t)(—x—_-t)""z—+7 dt

is exactly the bounded harmonic function of x + iy defined in the upper half-plane
{x + iy: y > 0}, which satisfies

lim U(x, y) = u(s), -0 < § < 00;

x+iy—s

see Section 3, Chapter 4. o
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In the exercises, the reader is asked to show that u x v is the same as v * u; that
is, the order of the convolution is not important. It is also true that convolution
“distributes” across addition just as multiplication does:

ux(V+w)=uxv+uxw.
The critical connection between the Fourier transform and convolution is that
the Fourier transform of the convolution of u and v is just the product of the Fourier
transforms of u and v, respectively. In symbols,

(u*v)" (x) = d(x)d(x), —00 < X < 0. )

This is not too hard to show (if one takes on faith the reversibility of the order of
integration in an iterated integral):

(*

(u*v)*(x) (u*v)(t)e "> dt

o —00

- {Jw u(s)v(t — s) ds} e i dt

= u(s) {f v(t — s)e ix dt} e isx ds

J —o -

(Jw u(s)e™"s ds> (x)

f(x)B(X).

The Fourier transform has powerful applications in the area of differential
equations; we illustrate with two examples. Both examples make use of the fact that
if u, and u, are two functions with 4, = 4,, then u, = u,; see Exercise 12, Section 2.

Example 12 At a particular time, a very long thin rod has a given temperature
distribution f(s), —o0 < s < oo. Find the temperature at all future times.

Solution The rod is one-dimensional (it just has length), so the temperature is
a function of the position s on the rod at the time ¢; we let u(t, s) be the temperature
at time ¢ and position s. The function u(t, s) satisfies the heat equation

ou 0%*u

o 052

with initial condition

u(0, s) = f{(s), —00 <§ < 0.
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We now use the Fourier transform (on the s variable) to solve this equation. We
begin by setting

é(t, x) = J u(t, s)e”** ds, -0 < X < .

Then

a¢ ® au —isx
a E(t’ s)e "* ds

© 62 .
= j 6_;;(t’ s)e " ds.

In this second integral, we use (6) (or integrate twice by parts); we also make the
natural assumption that u(t, s) and (0u/ds)(t, s) both tend to zero as s - oo for
each t. The net result, then, is that

a¢ — 2 ® —isx
a0 t,x)= —x j_m u(t, s)e "> ds
= —x2¢(t, x).
Furthermore,

<)

#(0, x) = J u(0, s)e™** ds

—oo

= Jw f(s)e™** ds

= fx).
Consequently, for each fixed x, @(x, t) satisfies the ordinary differential equation

d

Do 40m=fo

Hence, we must have
#(t, x) = f(x) exp[—tx?].

However, we recognize (and this is critical!) that exp[ — x?t] is the Fourier transform
of



5.1 The Fourier Transform: Basic Properties 329

1
K(s) = —=—=eM  >0.
2 /nt

Since ¢(t, x) is the Fourier transform of u(t, s), we use the convolution theorem to
discover that u(t, s) must be the convolution of f and K:

1
2/nt

e_(s_y)z/4' dy

u(t, ) = j f)

1 e o)
e~ g,
T Lo 1) y

This explicitly displays the dependence of the solution u(t, s) on the initial tempera-
ture distribution f. The function K given above is the heat kernel. o

Example 13 (Biharmonic Functions in the Upper Half-Plane) In this example, we show
how the Fourier transform can be used to give an integral representation formula for
a function u(x, y) that is biharmonic on the upper half-plane, U = {x + iy: y > 0},
and that has given values on the real axis. The formula will be in many ways
analogous to the Poisson Integral Formula for the upper half-plane. Refer to
Section 2, Chapter 4, for a physical problem whose solution is biharmonic.

We wish to find a function u(x, y) satisfying

. 0*u o*u 0*u
(1) A(Au)—W+2W+b,\7_‘—

0 on U
(i) u(x, 0) = f(x), —0 < X < 0.
Let U(s, y) be the Fourier transform of u(x, y) on the x-variable:

UGs, y) = J u(x, y)e = dx.
We hold s fixed and treat U as a function of y. Differentiation yields

4 © 4
ke J g Y emisr dx

"~ | .0

®© 20%u o*ul _i.
- —o | 0y%0x*  ox* e dx.

Using (6), or integrating by parts, we find that
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4 © 2 ©
‘fiya] =252 J -Zy—ge_"”‘ dx — s* J u(x, y)e "> dx

-0

2
= 232‘2712] —s*U.

Hence, U satisfies the fourth-order linear ordinary differential equation

U _ LU,
dy 2w+SU 0

with

UGs, 0) = Jw u(x, 0)e™* dx

-0

= J ) f(x)e™= dx

= f(s).
2,7

The linearly independent solutions of v — 2s2v” + s*v = 0 are e®, ye®, e”, and
ye™*.In our problem, y is positive, and the solution U must be a Fourier transform.
This leads to the conclusion that

Us, y) = A(s)e™ + B(s)ye™", -0 <5 < 0,

where A(s) and B(s) are functions of s (see Exercise 21 at the end of this section).
The condition U(s, 0) = f(s) yields A(s) = f(s). Furthermore, e~ is the Fourier
transform of

1
() = ; iy
(See Example 8 and formula (5).) Likewise, ye " is the Fourier transform of
2
y
f)=——"—
uy(t) = nt? + y
The convolution result, equation (9), then gives

1 © yZ
= [0 [ o
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The Poisson Integral Formula shows that the first term on the right is a harmonic
function on the upper half-plane U whose boundary values on the real axis are f.
The second term is just yG(x, y), where G is a harmonic function on U whose
boundary values on the real axis are g. Thus, as y decreases to zero, yG(x, y)
converges to 0- g(x) = 0. Since G is harmonic, yG(x, y) is biharmonic. The function
g is arbitrary, within the limitations that the integral defining G(x, y) makes sense;
for instance, g could be any piecewise continuous, bounded function. ]

EXERCISES FOR SECTION 5.1

In Exercises 1 to 12, find 4 from the given u.

L. u(t) = {:)’, :i: i I;; b a positive constant
-1, —o<t<0
2. u(t)= 1, O<t<oy o a positive constant
0, |t] >0
1 +0? —-1<t<0
ou(t)=< (1 —1? 0<t<gl1
0, lt] =1
4. u(t) = 16e~%"
5. u(t) = (20 + 8t + t?)!
6. u(t) = (a®> + b*t*)™';  aand b positive constants
7. ut) = J_a ﬁ—_‘s_)i ds; ¢ a positive constant
© 1 1
8. “(t)"Lo ek parl
9. u(t)= { —':’ 2 ltl>0. ¢ a positive constant
e —e It <6’

(Hint: Let u,(t) = e™* and u, = u — u,. Find 4, and 4,.)
10. u has the graph shown in Figure 5.4.

v v+ o0 v + 20

Figure 5.4
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11. u has the graph shown in Figure 5.5.

\
- v
Figure 5.5
A, |t] < a
12. u(t)= < B, a<|t| <b; a, b, A, and B constants,and 0 <a < b
0, [t] > b

(Hint: Write u = u; + u,, where each of u; and u, has just one step.)

13. Give the details to show that (i) (3) is valid; (ii) (4) is valid; (iii) (5) is valid; and
(iv) (6) is valid.

14, Let u be piecewise smooth and U’(t) = u(t). Show that U is also piecewise
smooth.

15. Use the Residue Theorem in the manner of Example 8 to find d(x) if
u(t) = (1 + %)L

16. Letu(t)=2""ifn<|t|]<n+1,n=0,1,2,.... Find d(x).

17. Let = be the operation of convolution defined in (8). Show that uxv =v*u
and that ux(v; + v,) =u*v, + u*v,.

18. Let 6(t) be the “impulse function” at 0 discussed in Section 5, Chapter 4,
Exercise 16. Show that d * & = & and that §(x) = 1 for all x.

19. Suppose that f is piecewise continuous on (—oo, c0) and satisfies

Jw | ()] dt = M.

Let

L ey
u(x, y) = - J_w f(t)(x Y a, y>0.

Show that

J lu(x, y)| dx < M, for each y > 0.

—oo

20. Suppose that u(x, y) satisfies



21.

22.
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a0
J |lu(x, y)| dx < M,
=00
for each y, y > 0. Let

UGs, y) = r u(x, y)e " dx.

—oo

Show that |U(s, y)l < M forall y > 0and all s, —00 < s < o0.
Let U(s, y) be a bounded function on the region —c0 < s < 00, y > 0. Suppose
that U can be written as

U(s, y) = [A(s) + yB(s)]e” + [C(s) + yD(s)]e™™.
Show that
A(s)=B(s)=0 ifs>0
and
C(s)=D(s)=0 ifs <O.
(Hint: e” is unboundedly large as y T o0 if s > 0, and e and ye™ both go to

zeroas y T oo if s > 0.)
Let u and v satisfy (1), and let w be their convolution:

(* ©

w(x) = u(x — t)o(t) dt.

J-o

on |w(x)|dx<( ? |u(t)|dt><J‘Do |v(e)] dt>.

Show that

In Exercises 23 to 26, use the Fourier transform in the manner of Examples 12 and
13 to solve the given partial differential equations.

23. Solve the wave equation

Uy = Uy, t=0, —0 < X < 00,

subject to
u(x,0)=0

0
a—l:(x, 0) = g(x), —00 < X < 00.
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24. Solve the Dirichlet problem in the upper half-plane:
Uy + Uy, =0, u(x, 0) = f(x), —00 < X < .
(At one point, you will need to make use of the conclusion of Exercise 21.)

Compare your answer to the solution given in Section 3, Chapter 4.
25. Solve the Neumann problem in the upper half-plane:

0
Ug +u,, =0, Elfl(‘)l %(x, t) = g(x), —00 < X < 0.

Compare your answer to the solution given in Section 4, Chapter 4. (As in
Exercise 24, at one point you will need to use the conclusion of Exercise 21.)
26. Solve the modified heat equation,

6_u__(?2_u+ "(x) —0 <X < © t>0
ot ox2 9 ’ -
with
u(0; x) = f(x), —00 < X < 0.

Here ¢ is a function of x alone; we assume that both g and g’ satisfy (1).
27. (The telegraph equation*) Current flows along a long cable according to the
equation

0%u 0%u
—5=CL%; +(RC+SL)~—+RSu

where u(x; t) is the current at point x, —o0 < x < o0, and time ¢, t > 0. The
constants C, L, R, and S are, respectively, the capacitance, inductance, resis-
tance, and leakage, all per unit length. Suppose that the initial conditions are
u(x; 0) = f(x) and (du/ot)(x;0) = g(x), —o0 < x < 0. We shall take steps
toward solving this equation. Set a = RS/CL, b =i[(R/L) + (S/C)], and
¢ = (CL)™"2. The equation becomes

Pu  0*u u
Fp 6t2+2b6 + au.

2

Define

U@ = J u(x; tye ™ dx, s fixed.

—o0

* The telegraph equation was discovered by Oliver Heaviside; see Section 3.
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(i) Show that U satisfies the ordinary differential equation
U” + 2bU’ + (a + s*c*)U =0,

and solve for U.
(ii) In the special case where RC = SL, complete the work by solving for
u(x; t).

5.2 Formulas Relating v and &

The relationships between a function u and its Fourier transform # are set forth in
the following two formulas. The first, the Fourier Inversion Formula, is

u(t) = % J‘jo a(x)e™ dx, )

if the function u is continuous at t. Since u could possibly be discontinuous at a finite
number of points, a more general version of (1) is

9

1 + - __1_ s ixt 4
E(u ) +u ()= ™ j d(x)e™ dx. 1)

—o0

Either of these formulas shows that the function u can be recovered from its Fourier
transform # by means of a formula almost identical to the formula that defines # in
terms of u.

The second formula states that 2z times the integral over the real axis of |u|?
is exactly the same as the integral of ||?:

2n JW lu(t))? dt = jw |4(x)|? dx. ?)

These two formulas are at the heart of the theory of the Fourier transform. As
mentioned in the opening paragraph of Section 1, a thorough mathematical justifi-
cation of formulas (1) and (2) is not elementary.

The equality in (2) is called Parseval’s equality. In physical terms, it states
that the total energy of a system is preserved by the Fourier transform—the
transformed system has exactly as much energy as the original system. Furthermore,
equation (2) is equivalent to the seemingly more general equality

2n r u(t)o(t) dt = f ? f(x)6(x) dx. 3)

Indeed, (3) follows from (2) by replacing u with u + v and using the known equality
(2) for both |u|? and |v|>. (See the exercises at the end of this section.)
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Example 1  Find the Fourier transform of f(t) = (sin ¢)/t.

Solution From Example 6, Section 1, we know that 2(sin x)/x is the Fourier
transform of the function
1, tl<1
u(t) = { |l

0, |t] > 1.

Thus, by the Fourier Inversion Formula,

I, x| <1
= ]
fe {o, x| > 1.

You might try to compute f(x) directly, to appreciate better the strength of the
Fourier Inversion Formula we are using here.

Example 2 Compute

© _ 2
J' (1 — cos x) i

4
0 X

Solution The function

cos x
flx)=
is the Fourier transform of the function
1+t 1<t<0
ut)=<1—1t, 0<tgl1
0, |t] > 1.

(See the function u; in Example 9, Section 1.) The integral we want is one-quarter
the integral of the square of f = 1; by (2), this is equal to

G-) 2 f :0 @(t)? dt = g

© _ 2
J' (1 igsx) dx =

Hence,
T
3

The Complex Fourier Transform

Let us look back at formula (2) in Section 1, which defines the Fourier transform
of a function u, but now replace the real variable x with the complex variable
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z=Xx+iy:
a(z) = Jw u(t)e ™= dt. )

We need to concern ourselves first with the question of whether the integral makes
sense and, if so, for which z. We note that

lu(t)e™| = |u(t)|e”.

First take —oo < t < 0;in order that the integral on (—oo, 0) converges, we assume
that

lu@) < Mye™', <0 )
for some constant M, and some number 1,. It follows from this that
1
lu(t)e™ | < M,e'®™™), <0,

SO
0 :
J u(t)e " dt

converges for all z with y = Im z > 7, (see Exercises 16 to 19 at the end of this
section). Likewise, if u satisfies the growth condition

lu(t)] < Mye ™ fort >0 (6)
for some number 7,, then the integral
f u(t)e = dt
1]

is absolutely convergent for all z with —t, + y < 0. Thus, if both (5) and (6) hold
and if 1, < 7,, then the integral defining ii(z) is convergent for all z with

7, <Imz<1,. 7

In this way, we see that the complex Fourier transform 4(z) is defined for all z in
the horizontal strip defined by (7). Moreover, in this strip, #(z) is an analytic function
of z with derivative

o]

[4)'(z) = —i I u(t)te "= dt. (8)

—a0
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The analyticity of 4(z) can be validated more fully by use of Morera’s Theorem
(see the exercises at the end of this section). Thus, for example, if u(t) = 0 for all ¢
with [t| > A > 0, then surely both (5) and (6) hold for every z, and t,, so 4(z) is
analytic for all z; that is, 4 is an entire function.

Example 3 Let u(t) = e". Then 1, = —1 and 1, = 1, so #(z) is analytic within
the strip |Im z| < 1. In fact,
a(z) = 2(—
ST\ +22)

as Example 8, Section 1, and the Fourier Inversion Formula show. Thus, the strip
of analyticity of @ is as wide as possible: 4 is not analytic in any wider (open)
strip. o

Example4 Let uslook at Example 3 the other way around. Take u(t) = 2(1 + t2)7%;
then #(x) = 2me~, and this function has no analytic extension to a strip of the form
7, < Im z < t,, no matter how 7, and 7, are chosen, 7, < 0 < 7,. Thus the bounds
on the growth of |u(t)| given by (5) and (6) are not at all superfluous. o

To invert the complex Fourier transform, we use the usual formula, but in
a new location. Let y, be any number with 7, < y, < 7,; then

lu(t)e™ "0 = |u(r)| e

Mt it 0
SIMyet ift <0

where M;, M,, ¢,, and ¢, are positive constants. (See (5) and (6).) Let

u,(t) = u(t)e?e.
Then for —o0 < x < 00,
i (x) = d(x + iy,).

Consequently, by the Fourier Inversion Formula,

u(t) = e ou,(t)

1 (® .
= e""°ﬂj. 4, (x)e'* dx

1 [® .
= EZJ. i(x + iyg)elt+o dx

1 o+iyg
=— i(z)e" dz.
2n —o+iyo
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The lower and upper limits on this last integral mean that z traverses the entire
horizontal line y = y, from left to right. Since y, is any number in the interval
(T4, T2), We can write

o+iy .
u(t) =— i(z)e'™ dz, T, <y<T,.
275 —oo+iy

ii(z) is analytic; obviously so is e'". Thus, it is frequently possible to use the Residue
Theorem, or some other similar device, to evaluate this integral.

Example 5 Find u if d(z) = 1/z%

Solution  1i(z) is analytic except at the origin, so we may use the Residue Theorem
to evaluate the integral
w+iyg eizt
J 5 dz.
—oo+iyg z

We choose y, to be a positive number. If ¢ is positive, we integrate over the semicircle
shown in Figure 5.6a; if t is negative, we integrate over the semicircle in Figure 5.6b.
In both cases, the integral over the curved portion goes to zero as R — o0. Cauchy’s
Theorem and the Residue Theorem then give, respectively,

® 0, t>0 .
u =
t, t <O0.
-R + iy, R + iy
-R + iy, ivo R + iy, \ i¥e /

(a) (b)

Figure 5.6

A Mathematical Justification of Formulas (1) and (2)

The correctness of what is done as follows depends on the validity of two steps
that, although clearly believable, are themselves in need of further mathematical
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justification. We will point these out and comment further on them after the
derivation of the formulas.
Let u and v be two piecewise smooth functions that satisfy the conditions

f lu(t)| dt < co; J lu(t)|? dt < oo; lim u(t) = lim w'(f) =0,

- -0 || 0 lt| =+

and the same with v in place of u. Then

fm d(x)v(x)e™* dx = ? v(x) {JQ u(t)e ™ dt} e dx

= u(t) { J v(x)e "9 dx} dt
(* 0 ©

= u(t)b(t — sy dt = f

J —® -

u(t + s)b(t) dt.
Now take v(x) = e™***, where ¢ is a small positive number. We know, from Example
7 in Section 1 and (5) in Section 1, that

—12/4¢2
et/4e

b)) = /7

Hence,

-2 /4,2

dt

jw e i(x)e dx = \/n Jw u(t + s)e

—o0

€
= \/;J uey + s)e™ " dy.

Now let ¢ decrease to zero; the left-hand side converges to

J 2(x)e™* dx.

-0

The right-hand side converges to
Jr J u(s)e " dy = u(s)2n

if u is continuous at s or to (2n)3(u*(s) + u~(s)) if s happens to be one of the finite
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number of points of discontinuity of u. This gives (1) if 4 is continuous at s or (1') if
u is discontinuous at s.*

To prove (2), let ¢ > 0 and set
0,(t) = a_(tje—azﬂ,

1
2. /ne

W,(t) = e—12/4al’

and
p() = u(—1).

A simple computation gives 12_(6 = p(t), so

v(t) = PO)W(t) = (P = wW,)"(¢).
Using (1), we find that

2009 = (P2 w)(—)
v/

- J " p(=x — wi(s) ds

= L p(—x — 2et)e™ dt
T J-©
1 (® — _,
=— u(x + 2gt)e™" dt.
T J-—oo

In the formula

jw Ax)v(x)e™™ dx = J ) u(x + s)b(x) dx,

—o0 —o0

derived above, we take s = 0 and v = v,. This produces the relation

Iw |a(x)|2e~**" dx = Jw u(x){J‘00 (2\/;)u(x + 2et)e™™ dt} dx

-0 -0 -

=2/n Jw e” {Jm u(x)u(x + 2et) dx} dt.

Upon letting ¢ decrease to zero, we obtain (2).

* An alternative justification of (1) is given in Exercises 22 to 25.
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A few comments now on the preceding mathematics. To prove (1), we wrote
down the integral of d(x)v(x), then replaced i(x) with its integral formulation, and
then interchanged the order of integration in the resulting iterated integral. This is
mathematically justifiable here, but only with some effort. We then made the choice
v(x) = exp(—ex?); after a change of variables, we then asserted that

1imr°( )=r lim ( ),
=0 J—-0 -0 €0

where the expression ( ) depends on ¢ as well as the variable of integration.
Again, this is reasonable but needs mathematical justification.

EXERCISES FOR SECTION 5.2
1. Use (3) to show that

2 dx = nmin{a, f},  aand f positive.

J' ® sin ax sin fx

—a0

2. Show that

*© _ sinat .
e ; dt = arctan a, « positive.
0

(Hint: Rewrite the integral as

1J°° ol sin at i
2] t

and use (3).)
3. Compute the value of

J‘” (1 — cos ax)z dx
. X

using (2) and Exercise 2, Section 1.
4. Compute the value of

X

© _a 2
j (x s:nx) ix

—o0

using (2) and Exercise 3, Section 1.
5. Using (2), compute the value of

b dx
o (1 +x2)*



10.

11.

12.

13.
14.

1S.
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. Find 4 if

®  _._gSinos
u(t) =J el —— gs.
o s

. Find u if

0(x) = e ¥ <M)

X

. Suppose that u(t) = 0 if |[t| > A. Use Morera’s Theorem to show that i(z)

is an entire function of the complex variable z; moreover, # is bounded on
the real axis and, in general, satisfies |4(z)] < 24AMe" if z = x + iy,
M = maximum {|u(?)|: |t| < A}.

. Use (3) to find the value of

J' ® (x — sin x)(sin gx) i

4
o x

Use (3) to show that

J © (sin? ax)(sin? Bx)

2 dx =;min{a,ﬂ}.

=00

(Hint:Use 2 sin? @ = 1 — cos 20 and Exercise 2, Section 5.1.)

Suppose that u(t) = O for |t| > A and that #(x) = O for |[x| > B, A and B > 0.
Show that u is identically zero. (Hint: Refer to Exercise 8.)

Suppose that u, and u, are two functions satisfying (1) of Section 5.1 and u,
and u, have the same Fourier transform. Show that u;, = u, at all points of
continuity of u, and u,.

Give the details of how (2) implies (3).

Suppose that |2, |u(t)| dt < co; show that i(x) is a continuous function of x.
(Hint: We can write

© M © -M

The second and third integrals are small for all x, and x, if only M is big, while
for M fixed the first integral is small if x, is near x,.)

Suppose (1) of Section 1 holds. Fill in the details of the following steps to show
that the Riemann-Lebesgue Lemma holds:

lim 4(x) = 0.

X — 0

(@) d(x) = —[*, e ™u(t + (n/x)) dt



344  Chapter 5 Transform Methods

(b) (x) = [, e ™L{u(t) — u(t + n/x)} dt

© 180 < {[My + [ + [Z¥}w(o) dt,
where w(t) = |u(t) — u(t + n/x)|. Show that the second and third integrals
are small for any x if M is big; show that the first integral is small for M
fixed if x is big and u is continuous.

(d) Modify step (c) above to include the case when u is merely piecewise
continuous.

Improper Integrals on (—0, o)
A piecewise continuous function u on the real axis has an improper integral on
(—o0, o0) if

M,
lim J u(t) dt

Ml-'w —Mz
M;y;—©

exists, no matter how M, and M, go to co. u(t) is absolutely integrable if |u(t)|
has an improper integral. We denote the improper integral of u on (—o0, ) by
Do u(t) dt.

16. Show that u is absolutely integrable if and only if there is a constant C such
that

M
J |lu@)| dt < C
M

for all choices of M. Show that the numbers [, |u(z)| dt increase to |2, |u(t)| dt
as M 1 0.
17. Let u be absolutely integrable. Show that

-B ©
limf |u(t)| dt = limJ~ |u(t)| dt = 0.

B-o J-wn A—o© JA4

18. Let u be absolutely integrable. Show that u has an improper integral on

(—o0, o) and that
J u(t) dt

B
I u(t) dt
A

Next show that for M, and M, sufficiently large and M} > M,, M, > M,,
we have

< Jw |u(t)| dt.

(Hint: For any 4 < B,

B
< j @) de.
A
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M
J u(t) dt

M

-M,
U u(t) dt

19. Let |u(t)] < |v(t)| for —c0 <t < o0, and suppose that v is absolutely integrable
on (—oo, c0). Show that u is also absolutely integrable on (—o0, ).

20. Suppose that j'°.°w |u'(#)| dt < oo and |2, |u(t)| dt < co.Show thatlim,_,, u(x) =
0. (Hint: Given a small ¢ > 0, choose M so large that [ |u'(t)| dt < & (see
Exercise 17). For any s > 0,

M+s
J u'(t) dt

M

M
< f lu(t) dt < ¢

M,

.
< J lu(®)| dt < &)

-M3

lu(s + M) — u(M)| =

M+s
< J |u'(t) dt < e.

M

Now let s — co. This shows that lim, _,, u(x) exists. Now show that this limit
must be zero.)

21. Use Morera’s Theorem to prove that i(z) is analytic for 1, <Imz < 1, if u
satisfies (5) and (6).

An Alternate Proof of the Fourier Inversion Formula (1)*
We shall show that, for x fixed,

M

1 .
lim — d(s)e™ ds = —1—(u+(x) + u”(x)).
M-w &1 J_pm 2

22. Show that

M
J d(s)e™ ds = 2 dt

-M

J'°° u(t)Sin M(x —t)

o x—t

=2 I uix + t)stht dt.

—a0

23. Use Exercise 15 to show that for each x and each § > 0,

@  lim J u(x+t)stht dt=0

M-© J§

and

_6 .
@  lim J i+ My o

M- J-o t

24. Choose 6 so small that u(x + t) — u™(x) is continuous on [0, 6] and u(x + ) —
u~ (x) is continuous on [ — 9, 0]. Show that
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(iii) lim f (u(x +t) — u*(x)) sin Mt =0,
M-©

(iv) lim J ux+t)—u(x )) th dt=0.
M-x .

25. Conclude from Exercises 23 and 24 that

lim Jw u(x+t)sth dt = (x)+u” (x))f sin x dx

M-w© J-xo

n +
= 20 () + um (),

and hence that
. 1 (M . 1 _
lim 7 d(s)e** ds = E(u“(x) + u”(x)).

M- T -M

5.3 The Laplace Transform
Roughly speaking, the Laplace transform is just the Fourier transform rotated by
90° and applied to a function that vanishes on the ray (—oo, 0). Specifically, suppose

that u is a piecewise continuous function on [0, c0) such that both u and u’ have
limits from the right at ¢ = 0. The Laplace transform of u is

(Lu)(s) = Jw u(t)e ™ dt. )
1]

Initially, we can think of s as a real variable, but with the knowledge we already
have about the complex Fourier transform, it is natural to investigate immediately
for which complex numbers s the integral in (1) makes sense. We shall henceforth
suppose that the function u has exponential growth q; that is, there is a constant M
such that

|u(t)] < Me*, t>0. )
Let the complex number s be s = ¢ + it; then

|u(t)e—st| < Me®e "

= Me"™ .

Hence, if a — ¢ < 0, then the integral in (1) is absolutely convergent. We see,
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therefore, that the Laplace transform of u is defined at least for all s with Re s > a,
where a is the exponential order of growth of u from (2). Furthermore, within the
half-plane Re s > a, the Laplace transform of u is an analytic function of the complex
variable s. One way to see that Zu(s) is analytic is to write down the elementary
relationship between the Laplace and Fourier transforms of the function u:

(Lu)(s) = d(—is), Res>a. 3)

Since #(z) is analytic in the half-plane Im z < —a, it follows that Zu(s) is analytic
forRes > a*

Why should we bother with the Laplace transform when it is so much like the
Fourier transform? There are several reasons. One is that in a physical system,
there is typically no output until there is input. That is, the function that represents
the output must vanish on the ray (—oo, 0) (assuming that the input begins at
t = 0); such functions are termed causal. Another reason is that by beginning the
integration at t = 0, when we integrate by parts the boundary terms will incorporate
the numbers u(0), u’(0), etc., so the Laplace transform is an effective tool for handling
differential equations on the ray (0, co) that include initial conditions.

Finally, the Laplace transform is a better tool than the Fourier transform for
dealing with the impulse function 5(t) and the Heaviside' function H, defined by

0, t<0
1, t>0.

Ho - |

As was pointed out in Exercise 17, Section 5, Chapter 4, H is in some sense an
indefinite integral of (¢). Furthermore, the Fourier transform of H(t, — t) makes
no sense for any t,, whereas the Laplace transform is defined for all ¢,:

© to
J H(to — t)e ™ dt = J e dt

0 (4]
1 _ .
=E[1—e"°] ifty >0,
and

j H(ty — t)e ™ dt =0, ifty <O.

o

Example 1  Find the Laplace transform of each of the following functions (all the
functions vanish for t < 0):

* It is possible to prove that there is a number s, such that the Laplace transform of u converges if
Re z > 5, and diverges if Re z < s4; s, is much like the radius of convergence of a power series.
t Oliver Heaviside, 1850-1925.
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a u,(t)=1,

b. u,(t) = t*, k a positive integer;

C. u,(t) = exp(at), a a complex number;

d. u4(t) is the impulse function at the point ¢y, t, > 0.

Solution

a. Zu(s)=[ge™dt=1/s.

b. Lu,(s) = |5 t'e™ dt = k!/s**!; integrate by parts k times.

C. Luy(s)=[ye" e dt=1/(s—a)forRes>Rea.

d. Luy(s) = [50(t — to)e™™ dt = e~ o

Example 2 Find the Laplace transform of u’, u”, ..., in terms of the Laplace
transform of u and the initial data u(0), u’(0), ... .

Solution We assume that u and all its derivatives have exponential growth a. For
Re s > a,

(Lu’)(s) = jw u'(t)e ™ dt = u(t)e™™

o

+s J u(t)e ™ dt

0 0
= —u(0) + sZu(s).
Likewise,

(Lu")(s) = J u'(t)e” dt = u'(t)e™™

o

+s J u'(t)e™ dt

0 0
= —u'(0) + s(Lu')(s) = —u'(0) — su(0) + s2Lufs).
Continuing in this way, we obtain the formula
(Lu™)(s) = s"Lu(s) — s"'u(0) — s"2u’'(0) — -~ — u""1(0), 4

which is valid for all complex numbers s with Re s > a. o

Further Properties of the Laplace Transform

It is clear that the Laplace transform is linear:
LA uy + Au,)(s) = A, Lu,(s) + A, Lu,(s), Res > aq,

for any two functions u,, u,, both of exponential growth a, and complex numbers
A1, A,. In addition, like the Fourier transform, the Laplace transform of the con-
volution of two functions is just the product of their Laplace transforms. Since the
functions vanish on (—o0, 0), the convolution takes the form

t

(uxv)(t) = J u(x)v(t — x) dx, t>0,

0o
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and the transform formula is
[L(u*v)](s) = (Lu(s))(Lv(s)). 4
Another useful formula relates the derivative of the Laplace transform of u to
the transform of tu(t). The formula is

%(Qu)(s) = — PL(tu(t))(s). (6)

The derivation of (6) is immediate (see Exercise 18).

Next, if the Laplace transform of u is identically zero, then u is also identically
zero. Consequently, if u, and u, are two functions with the same Laplace transform,
then u, and u, are the same function.

Furthermore, because of the close connection between the Fourier and Laplace
transforms, we can quickly and easily obtain the inversion formula for the Laplace
transform. Suppose that u(t) vanishes for ¢ < 0 and is of exponential growth a; let
¢ be any number larger than a. The Laplace and Fourier transforms are related by

u(—is) = (Lu)(s), Res>a

By the Fourier Inversion Formula, we know that

u(t) = L J.wﬁd i(z)e™ dz
2” —oo+io ’

In this integral, set z = —is; this produces the formula
1 a+io
u(t) = — J (ZLu)(s)e™ ds, W)
2mi a—iw

where ¢ is any number larger than a, and the integration is over the entire vertical
line x = ¢. Formula (7) is the inversion formula for the Laplace transform. Typically,
the integral is evaluated by means of the Residue Theorem, as the following
examples show.

Example 3 Find u if

Zuls) = s2—2s+ 3

Solution  The function u is found from the Laplace inversion formula (7). With Zu
as given, we obtain

o+ico st

1 e
t)=-— - ds.
u0=2g) . Fomi3®
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g + iR

R large,
a>1

o — IR

Figure 5.7

The function (s2 — 2s + 3)7! has poles at 1 + iﬁ and so is analytic for Re s > 1;
hence, we choose g > 1 for the vertical line of integration. We distinguish two cases:
t>0andt < 0. Fort > 0, we integrate

ezt
f(2)=22_2z+3
over the curve I" shown in Figure 5.7. On the semicircular part of T, z = ¢ + Re',
n/2 < 0 < 3n/2; this gives the estimate (for ¢t > 0)

etR cos @

R? ’
—~ _92R-—
2 3

/@) < e if R is large,

4e
LS—F.
R?—8R—12

Thus, the integral of f over the semicircular part of I is no larger than

4e”

mﬂR—’O asR— ©

(see formula (3), Section 6, Chapter 1). The function f has simple poles at 1 + i\/f
with residues

eteitﬁ
Res(f;1+i/2)=
(f;1+i/2) 23
and
e'e

Res(f; 1 —i/2) =

t,—it /2

2i/2
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—

o — iR

Figure 5.8

An application of the Residue Theorem and passage to the limit as R — oo then
yields

u(t) = Res(f; 1 + iy /2) + Res(f; 1 —i\/2)

t
=2 _sin(/2t), t>0.

/2

On the other hand, if ¢t < 0, the integration is taken over the curve I' shown
in Figure 5.8.

Estimates such as those just completed show that the integral of f over the
semicircular part of I' goes to zero as R — co. However, because f is analytic on
and within I', Cauchy’s Theorem (and passage to the limit as R — o) yields u(t) = 0
for t < 0. Hence,

t o1 >
u(t) = e sm(ﬁt), t=>0 -
0, t<O.
Example 4 Find u if
Luls) = ——
T (T + AP

Solution We recall that

. A
P(sin At)(s) = Tr A

Hence,

—2s4

d_ . _
'd—s.g(sln At)(s) = m.
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However, by formula (6), we also have

—2s5A4

) d .
—Z(t sin At) = g.f(sm At)(s) = m

Consequently,

|
u(t) = ﬂt sin At.

Another technique to find u is to use the Residue Theorem (see the exercises). 0O
Example 5 Let u be a piecewise smooth function that satisfies the equation
u@t) =u(t+ T), t=0

for some fixed positive number T. Find the Laplace transform of u.

Solution ForRes >0,

(* o
(Lu(s)=| u@)e™dt
JO
T 2T 3T
= + J. + I + -
JO T 2T
rT T T
= | u()e™dt+ J u(t)e™*D dr + f u@)e D dt + -
JO (1] 1]
rT
=| u@®e ™ {1+eT +e T +---}dt
JO

[Tu(t)e™ dt
.——-—31‘_‘

1—e

The number T is called a period of u, and the smallest such T is called the
period of u. o

EXERCISES FOR SECTION 5.3

In Exercises 1 to 10, find the Laplace transform of the given function u. In all cases,
u(t)=0ift <O.

1. u(t) = cos At

2. u(t) = sinh At

3. u(t) = e B sin At




5.3 The Laplace Transform 353

4. u(t) = e B cos At
5. u(t) = 1, a<t<ba>0
’ B 0, otherwise
O<t<o
6. u(t) = g<t<o
t>20
t 0<t<a
T u(t)=<_.
u() {0, t>o
1 O<t<o
. =< d u(t) = u(t + 20), 0
8. u(t) 0, s<t<2o and u(t) = u(t + 20) t>
9. ut) = J H(s)H(t — s) ds, H = Heaviside function

10. u(t) = f cos(t — u) sin u du
(1]

11. Use term-by-term integration to show that the Laplace transform of

0, t<O0

u(t) = < sin ¢

is arctan(1/s), s > 1. This can also be done by using formula (6).
12. Use term-by-term integration to show that the Laplace transform of the Oth
Bessel function J, is 1/./s* + 1,s > 1. (Hint: Compute #J, and then square it.)

In Exercises 13 to 17, find u from #u by means of the Residue Theorem or another
technique.

N
13. .S?u(s) = m
1
14. .Z’u(s) = (s-?-l')—z'
1
15. Sf’u(s) = (s—?-l')—i )
16. Lu(s) = ((L4s)e_+3)
1
17. Pu(s) = =5

18. Establish the formula (6):
s )(s) = — L(tu(t))(s)
s(.?u (s ZL(tu(t))(s).

(Hint: The differentiation on the s variable can be brought inside the integral;
this can be proved by techniques from real analysis.)
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19. Show that if u(t) = O for t > 4, A > 0, then Lu(s) is an entire function of the
complex variable s, and

(Lu)(s) = f; {( I)I (t)t"dt}

is its power series expansion about s = 0.
20. Find the Laplace transform of the function

0, t<0

u(t) =
® ie“/', t>0,

NG

where c is a positive constant.

(Answer: Lu(s) = \/ge‘z\/‘;, s> 0.)

Further Integral Transforms*: The Gamma and Beta Functions
The Gamma function is defined by

I'(z) = J e't>"'dt, Rez>0. @®)

1]
ForRez=x >0,

|e—ttz—1| — e—!tx—l,

so the integral is absolutely convergent.

21. Show that t*7! = ¢*~ V18! j5 analytic on the half-plane {z: Re z > 0}.

22. Use Morera’s Theorem and an interchange of the order of integration to show
that I'(z) is analytic on the half-plane {z: Re z > 0}.

23. Let z = x be real and bigger than 1; use integration by parts to show that

x)=x-nHrx-1).
24. Conclude from Exercise 23 that I'(z) = (z — 1)I'(z — 1)if Re z > 1.

25. Show that I'(n) = (n — 1)! if n is a positive integer.
26. Derive the formula

Tx)'(y) _Iw 7! dt
Tx+y) Jo A+

(Hint: Write

rx)r(y) = J‘ t* e dt f wle™ du.

0o 0
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Now let u = tv in the second integral; we obtain

rx)r'iy) = J gt J e~y dy dt.

0o 0

Then set s = (1 + v)t to obtain
r Ty
rrey)=rx+y L T+ v.)

The Beta function is defined by

_Tx¥IrQy)
ﬁ(x9 Y) - r(x + y)a

for x and y positive.
27. In the integral in (9), substitute u = 1/(1 + t) and conclude that

w1 —uP du

Bx,y)==—"=

rx)I'(y) I !
I'x+y)

0

n/2
= ZJ (sin 8)>*!(cos 0)>! d6.

o

28. Setx =y=1Landuse I'(1) = 1 to get ['(3) = \/;
29. Puty =1 — x,0 < x < 1; this yields

© x—1

du.

Irx)Ir'(l —x)= L T+ u

Now employ formula (8), Section 6, Chapter 2, to obtain

rerid —x)= O0<x<l.

sin(nx)’

30. Use the conclusion of Exercise 29 to deduce that

Fard -z = sin7(t7tz)

forO<Rez< 1.

355

Now use the fact that I'(z) is analytic for Re z > 0 to define I'(w) for those w

with Re w < 0:

— Tc 0 1
“sin(n(l —w)) T(1 —w)’

Rew < 0.

I'(w)
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More on Bessel Functions*
31. Letvbeareal number, v > 0; show that one solution of the differential equation

2f"(2) + 2zf'(2) + (22 = v})f(2) = 0
is

22n+v

22T+ n+ 1)’

L@ =3 (=1 Rez>0,
n=1

where T is the Gamma function. Note how this extends the results of Exercise
29, Section 4, Chapter 2.

5.4 Applications of the Laplace Transform to Differential Equations
The Laplace transform finds a major application in the solution of linear ordinary
differential equations; it is frequently used to solve certain partial differential equa-
tions as well. Its advantages as a tool for solving such equations are twofold. First,
the initial conditions and the nonhomogeneous term are incorporated from the
start, so the solution is generated without any “constants of integration” that need

further evaluation. Second, an ordinary differential equation is converted into an
algebraic equation. The technique is illustrated by means of several examples.

Example 1  Solve the equation

, 1, if0<t<1
WOHBO=  f1<r<w

with initial condition u(0) = 1.

Solution We take the Laplace transform of both sides of the equation,; this yields
1 _
Lu'(s) + Lu(s) = ;(1 —e™®).

However, Zu’(s) = —u(0) + sZu(s), by Example 2, Section 3, so we obtain the
equation

—1 + s&u(s) + Lu(s) = -i-(l —e’),

and hence

1—-¢e°

-1+ (s+ 1)(Lu)s) =



5.4 Applications of the Laplace Transform to Differential Equations 357

or

1t 1
duls)=5~e {; s+1}-

The function e™* is the Laplace transform of the impulse function at ¢, = 1; the
functions 1/s and 1/(s + 1) are the Laplace transforms of 1 and e”*, respectively.
Hence, by the convolution result,

1 1
~e”* and e
s s+ 1

-s

are the Laplace transforms of the convolution of the impulse function at ¢, = 1 with
1 and 7%, respectively. These are, respectively,

J' 16(1 — x)dx =

0

0, fo<t<l1
1, fl<t<ow

and

' 0 if0<t<1
-(‘_x)é 1 — - )
L ¢ (I =x)dx {e“"”, if1 <t<oo.

Consequently,

) = 1, if0<t<1 .
"=leen, 1<t <.

Note that the solution u(t), although continuous on [0, c0), fails to be dif-
ferentiable at ¢, = 1, exactly because the function on the right-hand side of the
original equation is not continuous at t, = 1.

Example 2 Solve each of the following differential equations by means of the
Laplace transform
@u +u=f; u(0)=1,4'(0) = 0, and

1, O<t<n
0= {0, oo JO= S+ 2m)

(b) u” +2u’ + 5u=04(t — =), u(0) =u'(0)=0.
Solutions

(a) The Laplace transform of the 2z-periodic function f{(¢) is

_FEfwedr _11-e |
1—e 2™ “sl—e s(l+e™)

Zf6s)
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Hence, the Laplace transform of the equation gives us

s Lu(s) — s + Lu(s) = A re™

or

s 1 1
£ = : .
u(s) 1+ s? 1 + 5% s(1 +e™)

The function s/(1 + s?) is the Laplace transform of cos t, and 1/(1 + s?) is the
transform of sin t. The Convolution Theorem, (8) of Section 1, then gives

u(t) = cost + (f *sin)(t)

| t
=cost + f f(x) sin(t — x) dx
0

1, O0<t<n
—cos t, n<t<2n

=<1—-2cost, 2n<t< 3n
~3cost, In<t<4n
etc.

(b) Here, after taking Laplace transforms, we obtain
s2Lu(s) + 2s.Lu(s) + 5Lu(s) = e ™.

Thus,

-mns

e
=G

The function 1/(s*> + 2s + 5) is the Laplace transform of ie™*sin 2z, so the
Convolution Theorem gives us

u(t) = J S(x — n)%e"""’ sin 2(t — x) dx

o

09 0<t<1t

1 .
Ee""”’ sin 2t, n<t < oo
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Example3 Use the Laplace transform to solve the wave equation u,, = u,,, subject
to

u(0,t) = u(n,t) =0, t>0
u(x, 0) = sin x, O<x<m
u,(x,0)=0.

Solution Let U(x, s) be the Laplace transform of u(x, t) on the ¢ variable:
U(x, s) = f u(x, t)e > dt.
0

Then U(0, 5) = U(r, s) = [5 0-e™* dt = 0 for each s. Treating U as a function of x
alone (holding s fixed), we find that

2 U ©
‘27 = J U (x, t)e = dt

o

o

= J Uy (x, t)e ™ dt.

We now integrate twice by parts and use the conditions u,(x, 0) = 0, u(x, 0) = sin x.
The end result is the equation

sy

dx2=szU—ssinx, O<x<m,

with
U@)=U(r)=0.

This is an elementary linear second-order equation whose solution is easily found
to be

Ux,s) = sz—:-l_ sin x.

The term sin x is constant with respect to s, and s/(s? + 1) is the Laplace transform
of cos t. Hence, the solution is

u(x, t) = cos t sin x. o

You may be aware that in the previous example, the original equation is easily
solved by separation of variables. However, the example is designed to illustrate,
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with a minimum of extraneous details, the use of the Laplace transform in solving
partial differential equations. The following two examples are further illustrations
of this technique—this time, of a more complicated nature.

Example4 A string of length 1 is clamped at its left end and initially is straight and
at rest. At time ¢ = 0, the right end begins to move up and down, with height sin ¢
at time t. Find the resulting displacement at position x,0 < x < 1, and time¢,t > 0.

Solution  Let u(x, t) be the displacement at position x and time t,0 < x < 1,¢t > 0.
The equation that determines u is the wave equation u,, = u,,, subject to

u(x,0) = u,(x,0)=0 O0<x<l1
u(0,t) = 0, t>0
u(l,t)=sint, t>0.

Let U(x, s) be the Laplace transform of u(x, t) on the t variable:

U(x,s) = jm u(x, t)e * dt.

o

We treat U as a function of x alone and differentiate twice. This gives

2 ©
U f U (x, t)e  dt

daxr |,
= J Up(x, t)e™ dt
(1]

=s? J u(x, t)e™ dt,

o

after two integrations by parts (or the use of the formula in Example 2, Section 3)
and the use of the initial conditions u(x, 0) = u,(x, 0) = 0. The boundary conditions
on u yield

U = J u(0, r)e* dt = J 0-e*dt=0

0 (4]
and

1

- —st - : —st =
U(l)—f u(l, e ™ dt L (sin t)e™* dt T3

o

Hence, U satisfies the elementary second-order equation
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d*U . 1
Ex—z' = 52U with U(O) = 0, U(l) = ﬁ?

This equation has solution

1 sinh xs
Ux,s)=—5——.
*, ) 1 + s? sinhs

Our final task, then, is to invert U and recover u:

st ds.

u(x, 1) = 1 foor® 1 sinhxs
T 2mi so-iw 1 + 5% sinhs ¢

The function U has simple poles at +i and +inz,n=1,2,.... The residues of the
integrand U(s, x)e™ are

1 sin x
R U st’ +i) = _ in
es(Ue™; £1) = —2i sml

and

i sin(nnx) .
tmnt =41, +2,....
= (=1 ¢ n=4

Res(Ue*; inn) =
Hence, the solution is
(_ )n+1
u(x, t) = nt+ Z {sm(nnx)} {sin(nnt)}. o

Example5 A steel wire of length 1 is clamped at both ends. The wire is straight and
at rest when a sinusoidal magnetic field is activated. Find the resulting displacement
of the wire at each future time.

Solution Let u(x,t),0 < x < 1, 0 <t, be the displacement at the position x and
the time ¢ from the rest position. The partial differential equation that determines
the function u(x, t) is
u,, = u, — sin wt, O<x<l1, t>0,
with boundary and initial conditions
u©,t)=u(l,t) =0, t>0 (the ends are clamped)

u(x, 0) = u,(x, 0) = 0, O<x<l1 (the wire is initially straight and at rest).

Let U(x, s) be the Laplace transform of u(x, t) on the time variable ¢:
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U(x, s) = Jw u(x, tye ™ dt.

0o

We hold s fixed and treat U as a function of x. Then

2 ©
du J U (x, tye ™ dt

—— =
dx o

= J Uy (x, t)e™ ™ dt — f (sin wt)e™ dt
0

o

w

2
=s‘U — .
s? + w?

Furthermore, we have the boundary conditions U(0) = U(1) = 0. This is an ordinary
differential equation for U whose solution is

(0 (es _ esx)(l _ e-sx)
s2(s? + w?) 1+e

U(x, s) =

_ 2w sinh(sx/2) sinh((s/2)(1 — x))
T SA(s? + w?) cosh(s/2) ’

The frequency w of the magnetic field plays a critical role in the nature of the
solution u. We shall first analyze the case when w is not an odd integer multiple of
7. We must find u(x, t) from U(x, s); that is, we must invert the Laplace transform.
The Inversion Formula, (7) of Section 3, gives

a+ico S __ ,5x — pTSX
IJ ) (e —e™)(1—e )e"ds.

u(x,t) =—
(.0 27 )i S2(s% + @?) 1+e°

The integrand has simple poles at s = tiw and at s = +in, + 3ix, ...; there is no
pole at s = 0, since (¢* — e**)(1 — e™**) has a double zero at s = 0. The residue at
s=ikm k= +1,+3,...,is

_ 2io  sin knx piknt
Cont KR — (o)

SO

4w sin knx sin knt

_Fk_z—(k—z—_(—a%)T), k=1,3,5,....

Ak + A—k=

The residues at s = iw and s = —iw sum to
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sin wt (€™ — e"*)(1 — e™'*%)
Blx. 0 = w? { 1+ e '

This gives the solution

u(x, t) = B(x, t) — 4—? ¥ (sin knx)(sin knt)

" i <k2_<g)2>'
4

When w is an odd integer multiple of 7, there is a new difficulty; we shall
examine the case when w = n. We are still faced with the job of inverting U:

1 a—io T (es - esx)(l - e—sx) .
) = * ds.
U, 1) 270 Jyie S2(s? + 7?) 1+e ¢

The integrand again has simple poles at s = + 3in, + 5Six, ..., and again there is no
pole at s = 0. However, there are poles of order two at s = +in. The residue at
s=ikm k= +3, +5,...,1s

2i sin knx piknt k= +3, 45,...,

A=

and, as before,

4 sin knx sin knt
Ak+A_k=——381n 7X sin kn

T m, k=3,5,

The residue at both ir and —in is more complicated, because these points are poles
of order two. Diligent computation shows these residues to be

Al = tei’"

sin 7x N i|:27t + (cos nx)(4nx — 2n) — 10 sin nx]

n? 4t

and

_imSinTx [ 27+ (cos nx)(4nx — 27) — 10 sin 7x
A =te e i o .

Their sum is
2t cos nt sin X

Al + A‘l ='——_ni__’

so the solution is given by

(sin(2n + 1)zwx)(sin(2n + 1)xt)
T (2n+ D[(2n + 1?2 - 1]

2tcosmtsintx 4

M8

= n
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Note that the second term of the solution remains bounded for all ¢, but the
first term can become unboundedly large for large ¢. This is the phenomenon of
resonance. a]

EXERCISES FOR SECTION 5.4

In Exercises 1 to 5, use the Laplace transform to solve the given differential
equation.

L. u" —2u' + 2u=6e"", u(0) =0, w0 =1
" L, O0<t<m _ o
u +9u—{0’ r<t<ow u@=1, w0 =0
u”(t) + tu'(t) + u(t) = 0; u0) =1, u@0)=0
u" +2u' + 2u = 4(t — 2n); u(0) =1, w(0)=0
0, <t<
u"+u={ 0<t n; u(0) =0, w0 =1
cos t, T<t<©
Solve the Volterra* integral equation

IS U

o) + L k(t — 5)p(s) ds = f(t)

for the unknown function ¢ by taking Laplace transforms. Express the answer
in terms of the Laplace transform of ¢; f and k are assumed known.

In Exercises 7 to 11, use the Laplace transform to solve the given partial differential
equation.

7. (The traveling wave) Solve the wave equation
Uy = Uy, x>0,t>0,
subject to
u(x, 0) = u,(x,0) =0, x>0
u(0, 1) = (o), t>0,f(0) =0

lim u(x, t) =0, t=>0.

8. (The falling string) Solve the modified wave equation
Uy = Uy, — 0, x>0,t>0,
(g is a positive constant) subject to
u(x, 0) = u,(x,0) =0, x>0
u(0,t) =0, t=0

lim u,(x,t) =0, t=0.

X~

* Vito Volterra, 1860-1940.
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9. Solve the wave equation u,, = u,, subject to

u(x, 0) = u,(x, 0) = 0, O0<x<l1
u(0,t) =0, t=0
u(1, t) = sin wt, t=0.

The value of w will affect the nature of the solution.
10. Solve the wave equation u,, = u,,, subject to

u(x, 0) = u,(x, 0) = 0, O<x<l1
u(0,t) =0, t=0
“x(la t) = Co, t ? 0

Here ¢, is a constant.
11. Solve the heat equation

du _ kazu

E W’ x>0,t>0,

subject to the conditions
u(x,0) =0, x>0
du
—ka(o, t) = ¢y, #, = constant, t>0
lim u(x, t) =0, t>0.

To invert U(x, s), you will need to use the conclusion of Exercise 20, Section 5.3.
k is a constant.

5.5 The Z-Transform

The Z-transform provides a technique to deal with sequences (and solve difference
equations involving sequences) in much the same way that the Laplace transform
provides a technique to solve differential equations involving functions. The Z-
transform is a valuable tool in areas such as numerical analysis, where a problem
may involve solving a difference equation of discrete data.

Let {a;} be a sequence of complex numbers satisfying the growth condition

gl < Mr,  j=0,1,2,... (M)

for some positive numbers M and r,. The Z-transform of {q;} is the function
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® a
z =Y 2
({aj } ) jZO 74
The series converges absolutely for all z with |z| = r > r,, because

|a| oY
I <M r)’
and the series Y’ (ro/ry converges, since the ratio ro/r is less than 1. Consequently,

the Z-transform of {g;} is an analytic function on the exterior of the circle |z| = r,,
including at co.

4l

zJ

Example 1 Find the Z-transform of the sequence {g;} if a; = 3 for all j.

Solution 1f a; = 3 for all j, then, directly from the definition,

® 3 3 3z
Z{3) =) = =——= .
({3}) ,;oz’ iTEod
z
This function is analytic outside the circle |z| = 1. o

Example 2 Find the Z-transform of the sequence a; = 1/j!.

Solution Using the definition

(]S

this function is analytic for all z with |z| > 0. o

Basic Properties of the Z-Transform

The Z-transform is a discrete version of the Laplace transform. To see this, let § be
a positive number and set x, =nd, n=1, 2, 3, .... The Laplace transform of a
function u is given by the integral |3 u(t)e™ dt. This integral is approximated
by the sum Y 2, u(x,)e *"Ax, = 8 ) =, u(nd)e *>". The function z= F(s) = e*
maps the half-plane Re(s) > a onto the exterior of the circle |z| = e®® = 1/r,. Set
a, = éu(nd); the Laplace transform of u,

(Lu)(s) = f u(t)e™™ dt,
0
is then approximated by

ia—:=2({an}), z=e%.
0 2

Note that the condition |u(t)] < Me™* is translated into the condition |a,| < M7},
0
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n=0,1,2,....Thisis a reason for saying that the Z-transform is a “discrete Laplace
transform.”

The Z-transform shares many of the general properties of the Laplace trans-
form. First, it is linear:

If {a;} and {b;} are two sequences both satisfying (1) and if A and p 2
are two complex numbers, then Z({Aa; + pb;}) = AZ({a;}) + pZ({b;}).

Second, like the Laplace transform, the Z-transform turns a convolution into
a product. Convolution is defined in this way. If {q;} and {b;} are two sequences of
complex numbers, then the convolution of {g;} and {b;} is the sequence {c,} given by

M=

= acb,_, n=0,1,2,.... 3)

k=0

We make note of the fact that if {a,} and {b} both satisfy (1), then |c,| <
MM’'(n + 1)rd < M"r" for each r > r,. Hence, the Z-transform of {c,} is well-
defined on the domain |z| > r,.
The Z-transform of {c,} is given in the following:
If {c,} is the convolution of {a;} and {b;}, then
Z({ca}) = Z{ @} Z({b;})-

The demonstration of (4) is easy:

zianzoh - (5 5)(5 %)

@

The passage from the first line to the second occurs simply by multiplying out the
two series and collecting equal powers of z (see Section 2, Chapter 2).

The convolution result in (4) is enormously useful; we give one elementary
example here to illustrate this fact.

Example 3 Consider the (infinite) system of linear equations
by = a,
by = a, — 2a,
b, =a, —2a, + a,

b3=a3—2a2+a1
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In general, b, = a, — 2a,_, + a,_,,n > 2. Solve this system for the sequence {a;} in
terms of the sequence {b;}.

Solution The system may be concisely expressed as
{b} = {a;} = {fi},
where
f0=la f1=_2, f2=1, andf,=0 fOI']>3

Note that {b,} satisfies (1) with constant (1 + (1/r,))> M. After taking Z-transforms,

(b)) = Z(a)Z({f)) = z<{a,})(1 22y i)

- (z - 1)22({a,-}>.

z

Division then yields this equation for the Z-transform of {a;}:

z 2
zda) - (1) 2o
The convolution result implies that

{a;} = {g;} * {b;},

where {g;} is the sequence whose Z-transform is (z/(z — 1))*. To find {g;}, we must
expand (z/(z — 1)) in powers of 1/z:

SR PR U R
(z—1?2 z—1) z—1 (z-1)7?

4
=l+-+5+5+5+.
z 2 22zt
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Hence,g;=j+1,j=0,1,2,...,50

aj=

M-

m+ b, j=012,....

n=0

In particular, ap = bo, a, = bl + 2b0, a, = b2 + 2b1 + 3b0, etc. O

Shifting
If the sequence {a;} is shifted by one unit to form the new sequence {b;}, b; = a;,,,
j=0,1,2,...,then

Z({b}) = z[Z({a;}) — a,]- )
This follows because
b, b a a
Z{b) =bo+— + S+ =a+ S+
a a
=z[ao+7l+z—§+"'—ao:|

=z[Z({a;}) — ao]-
More generally, if N is a fixed positive integer and
bj=ajy, j=0,12,...,

then

2= [ 2tah - % %] ©

i=o0 z*

The result in (5) or (6) is referred to as the Theorem on Shifting.
The Z-transform is a particularly effective tool for studying the solution of a
linear difference equation with constant coefficients. Such an equation has the form

P Q
Z Ajyj+n = Z Bjxj+", n= 0, 1, 2, oo (7)
j=0 Jj=0

Here P and Q are fixed nonnegative integers; A, ..., Ap and B, ..., B, are known
real or complex numbers, the coefficients of the system. The numbers {x;} (which
satisfy (1) for some r,), called the forcing function or the input, are known. We wish
to solve for the numbers {y;}, the response or the output of the system to the forcing
function. The numbers y,, ..., yp_, are initial conditions and are assumed to be
known as well. (If P = 0, then there are no initial conditions.)
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We begin by taking the Z-transform of both sides of this equation. This yields
P ) Jj-1 Q ) j-1
Y Az [Y(z) -y ykz"‘] =Y Bz [X(z) -y x,‘z"‘],
j=0 k=0 j=0 k=0

where

8

%

M8

y.
Y(z) = oz—j, X(2) =,

0 2’

J

are the Z-transforms of {y;} and {x;}, respectively. We now solve for Y (z):

Q . izl P it
Y BIX@) - Y, xz 1+ Y A2 Yyt
Y(z) =22 =0 == ®)
Y, Az
j=o

The solution is completed by applying the inverse Z-transform or by expanding the
right-hand side in powers of 1/z (which is the same thing).* One of the advantages
of this form of the answer is that it prominently displays the denominator, which is
critical in the determination of the stability of the system. This is discussed in detail
in Section 5.5.1.

Example 4 Solve the linear difference equation
2V, + Yntt = Xp — Xps2s n=0,1,..., Yo=1.

Solution Here P =1 with A, =2, and A, = 1; Q =2 with B, =1, B, =0, and
B, = — 1. The formula for Y (z) yields

X(z)—zz[X(z)—<x0 +-xz—l)] +2+z
2+z '

X X X X
<x0+—1+—§+“'>—<x2+—3+—;+"')+2+z
z z z z

24z

Y(2) =

* Here the material at the end of Section 5, Chapter 2, can be useful.
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The expansion 1/(2 + z) in powers of 1/z, valid for |z| > 2, is

1 (1 1
2+z \z 2
1+-
z

1 2+4 8+
Tz 223
This yields
_ 1 Xy — X3 Xy —Xq |
Y(z)—1+<2+z)<x0 X, + ; + 72 + )
_ 1 2 4 8 Xy — X3 X3 —Xg4
—1+<;—z—2+;—?+ )(xo—x2+ 2 + ) +
Xog — X —2(Xo — X))+ X; — X
=1+ OZ 2+ (0 222) 1 3

Xy — Xq — 2(X; — X3) + 4(xo — X3) 4o
. .

z

Hence, y, = xq — X5, ¥, = —2Xo + X; + 2X, — X3, and in general,

Yn = jZI (_z)j_l(xn—j - xn+2-j)a h= 1a 2, 39 ceee m]

Example 5 Find the current i, in each step of the ladder network shown in
Figure 5.9.

R R
VYV
R ) RD R
in-l in
—M-
R R

Figure 5.9
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Solution 1In the first loop
3Ri, —Ri;, =V
and in the other loops
—Ri, + 4Riy,, — Ri,,, = 0.

Let I(z) = Y 20 ii/z* be the Z-transform of {i,}. Using the difference equations
previously given and (6), we obtain

i, =3i,— V/R
and
I(z) — 4z(I(2) — iy) + 22(I(2) — iy — iy/z) = 0.
Upon substituting for i, and solving, we find that

| 4

zz—z<1+——, >

. ioR
IO=h— g1

The numbers i, i,, ... are then obtained by expanding this rational function in
powers of 1/z. One way to accomplish this is by using equations (12) and (13) of
Section 5, Chapter 2. We first write
vV
-1 3
(%)

z2—4z+ 1

@) =i, | 1 +

The rational function

| 4
-1 3
+z( ioR)

22 -4z +1

fl@)=
has poles of order one atz, = 2 — /3 and z, = 2 + /3 with residues

_1”2_‘/5)(3_;'0%)
_2\/‘3

r, =Res(f;z;) =

and
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~1 +(2+ﬁ)(3-£)
0
2./3 '

iy
e
1 Zg

lk—rlzl 1+rzzk 1, k=1,2,3,.... O

r, = Res(f;2;) =

Hence, for |z| > z,, we obtain the expansion

u[\/]s

I(z) = io[l +

where

EXERCISES FOR SECTION 5.5

In Exercises 1 to 7, find the Z-transform of the given sequence {g;} and the region
in which Z({a;}) is analytic.

{1, jeven
1. aj =

0, jodd
0, jeven
2. 4= (—1)"—1- j=2k+1,k=0,1,2
2k + 1Y’ ’ T
24
3 aj='j—!
0, jodd
4, a;= 1 .
7 jeven
1
aj—m
6. {a }—{b} {b;},  where b; = 1for all j
7 4= g, jeven

d 3", jodd

In Exercises 8 to 14, find the sequence {a;} given its Z-transform Z({a;}).
8. Z({a;}) = cos—l—
9. Z({a;}) = sinh S
1
10. Z({a;}) = Log (1 + —z—>, |z] > 1
11. Z({a;}) = z(e'* — 1)
12 Z{a}) = +z + 1)(005(—2—) - 1>
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5.5.1

13. Z({a}) = (—1—>2

z—1
14. Z L
’ ({aj})_zz+z—2
15. Show that if {a;} * {b;} = {0}, then either a; = 0 for all j or b;= 0 for all j.
(Hint: The hypothesis gives

(i %) (i ﬁ) =0 forall z with |z| > .

0 oz’

Hence, one or the other of the Z-transforms must be identically zero.)
16. Let P(z) = Ay + A,z + - + Ayz" be a polynomial of degree one or more, all
of whose zeros lie within the disc |z| < 1. Let {y;} be any solution of the system.

N
ZAij+n=xm n=0,12....
=0

Show that if the forcing term {x,} is bounded (that is, |x,| < M for all n), then
Y (z), the Z-transform of {y;}, is analytic in the region {z: |z| > 1}.

Solve the following linear systems.

17, Yo = Ynss = Xp + Xpey + Xpi2; Yo =1

18 yn+2yn+1 +yn+2=xn_xn+l; Yo = l’y1=0

19. Yo+ Yns2 =% yo=0,y; =1

20. Yo = Yu+1 — Wnsz + Vni3 = Xp + Xpits Yo=V1=)2=
21. Yn — 2y'|+1 =Xy — 2xn+1 + Xn+25 Yo = 1

The Stability of a Discrete Linear System*

Let us look back at the linear difference equation in (7) and make three simplifying
assumptions: first, that the initial conditions are all zero, yo == yp_; =0;
second, that in the forcing term (or input), we have x, = - = xo_; = 0; and third,
that P > Q. Then we obtain a simple explicit representation for the Z-transform,
Y (2), of the solution given by (8):

Y(2) = F(2)X(2),

where
2Bz = f
F(z) = 3= -y A
@ oAz j;) z ©)

Equivalently,
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y"=kZoﬁ"‘"-*’ n=0,12,.... (10)

That is, the output {y,} of the system is given in terms of the input {x;} by the
convolution equation (10). The rational function F given in (9) is called the system
transfer function. The linear system is stable if bounded input always produces
bounded output. The stability of the system obviously depends on the system
transfer function F, and we shall discover a bit later in this section exactly what
properties of F correspond to stability. But first we shall work out a few examples
to get an understanding of some of the mechanics of stability.

Example 1 xo = yo, X; — X = y1, X — X; = 3, ..., and, in general,
Xn+1 = Xn = Yn+1s n=0’1,2"”'

This is the system (7) with B, = — 1, B, = 1,and 4, = 0, A; = 1. Hence, the system
transfer function is

- -1 1
F(z) = lz+z=z 1L

The system is clearly stable, since |x,| < M for all n gives |y,| <2M foralln. O
Example 2 x, = yo, y; — yo = X1, y2 — ¥1 = X3, and, in general,
Vut1 — Vn = Xns1» n=0,1,2,....

This is the system (7) with B, = 0,B, = 1,and A, = — 1, A, = 1. The system transfer
function is

z 1 1
F(z) = =1 e
@ —1+4z +z+zz+ ’

and the solution is
Ya=Xo+ Xy + -+ X, n=0,1,2,....

This system is clearly not stable, since the bounded input x, = 1 for all n produce
the unbounded output y, = n + 1 for all n. n|

Example 3 X, = yo, 1 — $¥o = X1, ¥2 — 3¥1 = x,, and in general
yn+l_%yn=xn+1a n=0, 1,2,....

Once again comparing with (7), we find that 4, = 1,4, = —4,and B, =0, B, = 1.
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The system transfer function here is

Fo=—f =2 gty Ly
T itz 22-1 T2z 422 ‘
The solution is y, = x, and
1 1 1
y,,=x,,+§x,,_1+Zx,,_2+~~+§x0, n=0,1,2,....

The system is stable, since |x,| < M for all n yields

1 1 1
|yn|<M+5M+ZM+-~+?M<2M for all n. u]

Example 4 x, = yo, y1 + Yo = X1, ¥z + ¥1 = X,; generally,
Yo+t + Yo = Xns1s n=0,1,2,....

The system corresponds to (7) with A, = A; =1 and B, = 0, B, = 1. The system
transfer function is

z 1 1 1
F = =1—_ —_— cee
@) 14z z+z2 z3+ ’
and the solution is
Vn=Xp— Xp—q + Xp—q — - * + (—1)"xq, n=0,1,2,....

This particular system is not stable, since the bounded input x; = (—1)/*!,j =0, 1,
2, ... produces the unbounded output y, = (—1)"*1(n + 1). o

Conditions for Stability

The fundamental question on stability is completely answered in the following
theorem.

THEOREM 1 The linear difference equation (10) with system transfer function F given in (9)
is stable if and only if all the poles of the rational function F lie in the open disc
{z:]z] < 1}.

Proof Suppose first that all the poles of F lie in the open disc {z: |z| < 1}. Then
there is a number ry < 1 such that all the poles of F lie in the disc {z: |z]| <r,};
this is because F has only a finite number of poles. Hence, F is analytic on the
set {z:|z| > 1o}, including at oo, and so has a power series valid there, centered
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A, A
F(z)=Ao+71+z—22+"-, |z| > 5.

However, F has the power series (in 1/z) representation (9), so 4; = f; for j =0, 1,
2, .... Thus, the series Y. f;/z/ converges exterior to the circle |z| = r, and, by the
basic properties of power series, is absolutely convergent on any circle of radius
larger than r,. In particular, this holds on the circle |z| = 1. Consequently,

s= 3 14l

is finite. Suppose now that |x,| < M for all k. Then

13, =ii efook| < 3 1%l fymil
k=0 k=0

< M Z |.f;l—k| S MS’
k=0

foreachn =0, 1, 2, .... Therefore, the linear system is stable.

Conversely, suppose that the linear system (10) is stable. We note first that if
{y.} is a bounded sequence (say, |y,| < M for all n), then the Z-transform Y(z) of
{yn} satisfies

In particular, the function Y(z) is analytic on the region {z:|z| > 1} because its
power series in 1/z is absolutely convergent there. Since

Y(z) = F(2)X(2),

we see immediately that F has no poles in the region {z: |z| > 1}: just choose x, = 1
and x; =0, j = 1,2,.... Moreover, if F had a pole at a point 4, |A| = 1, then

G(2)

F@ = e

where G is analytic near 4, G(A) # 0, and m > 1 (see Section 5, Chapter 2). Let
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x, =A% k=0,1,2,...; then

AR
X@O=1+Z+5+-
z z

oz
Tz—A
The rule for the Z-transform of the output { y, } corresponding to this bounded input
yields
Y(z) = F(2) X (2), lz] > 1
1
= G(Z)Zm, |Z| > 1,2 near A.
Hence,
1
| Y(z)| 2%, znear 4, |z| > 1.
By setting z = At, t > 1, we get
3G
Y(t) >
Y60l > 2

This contradicts the estimate

Mt
s—,
Y <

obtained above, if ¢ is near 1. We conclude that F has no poles on |z| = 1, so all the
poles of F lie within the disc {z: |z| < 1}. m

Examine Examples 1 to 4 again in light of Theorem 1 and note the role that the
location of the pole played.

EXERCISES FOR SECTION 5.5.1

1. Let p be a polynomial of degree N. Show that all the zeros of p lie within the disc
|z] < 1if and only if all the zeros of rational function

1
Rw)=p (:—J_r—l>

lie in the left half-plane; that is, satisfy Re w < 0.
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2. Let p be a polynomial of degree N; show that

1
qw) = (w — 1)NP(W ha >

w—1

is a polynomial of degree N or less in w.

3. Let p and g be related as in Exercise 2. Find g(w) if p(z) is
(@) p(z) = Az + B, (b) p(z) = 27z* — 2423 + 1822 — 8z + 3;
() plz2)=z%—1z; d) pz)=2>—3z2+3z -2

4. Let g be given as in Exercise 2, and suppose that p and q have the same degree.
Show that all the zeros of g lie in the left half-plane if and only if all the zeros of
pliein the disc {z: |z| < 1}. (Hint: Combine Exercises 1 and 2.) What can happen
to the degree of g? Show that degree g is less than degree p if and only if p has a
zeroatz = 1.

S. Use Exercise 4 and, if necessary, the Routh—Hurwitz criterion (Theorem 1,
Section 1.1, Chapter 3) to determine whether all the zeros of the following
polynomials lie within the disc {z: |z| < 1}.

@) pz) =52 +322 —z + 1 (b) p(z) = 1023 — 4z% + 2z;
(©) p(z) =27z* — 2423 + 182 — 8z + 3;
(d) p(z) = 59z3 — 8922 + 37z — 7,
(e) p(z) = 10z3 + 622 — 20z + 6.
6. Test the following linear systems for stability:
@) Yn— Yn+1 — 4.Vn+2 + 4yn+3 = Xp — Xp41
(b) Yn = Vnt1 t+ 3.Vn+2 + 5yn+3 =X, + 2xn+l — Xn+3
©) Yn— Vnt1 — BVns2 — Yne3 =X,
(d) 3yn — 8Yns1 + 18ynsz — 24yni3 + 2Typyg = X, + Xp+1 F Xpya
(€) Yn— 2Vn+1 = Xn + Xppg — Xpiz
(€) 25 + Yne1 = xn + 2Xp 4y
(8) Yn— 4Yns2 = 3x, + 2%,44
(h) 6y, — 20y,41 + 6Yns2 + 10Y543 = X, + X4y

Further Reading

More on the Fourier transform can be found in Titchmarsh, E. C. The Fourier
transform. New York: Oxford University Press, 1937, and Carslaw, H. S. Theory of
Fourier series and integrals. New York: Dover, 1950.

The Laplace (and Fourier) transform is covered in Sneddon, I. N. Fourier
transforms. New York: McGraw-Hill, 1951; and LePage, W. R. Complex variables
and the Laplace transform for engineers. New York: Dover, 1980.

Several of the applications in the text come from Churchill, R. V. Operational
mathematics. New York: McGraw-Hill, 1958; and Powers, D. L. Boundary-value
problems. New York: Academic Press, 1972.

A good reference for the Z-transform, including many applications, is Jury,
E. J. Theory and applications of the Z-transform. New York: John Wiley, 1964.
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APPENDIX 1

Locating the Zeros of
a Polynomial

A polynomial of degree d has precisely d zeros, counting multiplicities, in the
complex plane. This appendix contains several theorems that help to locate these
zeros. The first result is the “grandfather” of the others.

THEOREM 1 If every zero of the polynomial p lies in the half-plane Re(4z + B) > 0, then
so does every zero of its derivative p’.

Proof This result is called the Gauss*—Lucas' Theorem; the proof is not at all
difficult. Write
N
p@)=a[l@z—-z)™, a#0,
1

where z,, ..., zy are distinct points and m,, ..., my are positive integers. A simple
computation yields

Clearly, we need only look at those points b that are zeros of p’ but not zeros of p.
If b is such a point, then

0=Y - _B—z)=beo +c
TEpogEl W Tt

where ¢, = Y ¥ mj|b — z;| 72 is positive and ¢, = —Y Y m;z;|b — z;| "% Hence,

* Karl Friec!rich Gauss, 1777-1855.
t Francois Edouard Anatole Lucas, 1842-1891.
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Re(Ab + B) = Re(—Aﬁ + B) — L Re(— 4z, + Bey)
Co Co

1. X (Az+B
(il

CO 1

L ™ _ Re(az, + B)>0 =
= — Z: .
Co 1 |b_2j|2 ’

There is another classical result on the location of the zeros of a polynomial,
this time ensuring that they lie in a disc. This theorem is known as the Enestrom—
Kakeya Theorem.

THEOREM 2 Suppose that 0 < gy < a; < ‘** < a,. Then all the zeros of the polynomial

p(z) =ag + a,z + ** + a,z" lie in the disc {z: |z| < 1}.

Proof Set q(z) = z"p(1/z) = a, + a,_;z + *** + ayz"; we shall show that all the
zeros of g lie in the set |z| > 1. We begin by noting that

(1 — 2)q(2) = a, + 2(ay—y — a,) + 2*(@y-2 — Ay—y)
+ o 4 z2"ag — a;) — agz™t.
Thus, for z] € 1,
11— z|1q()| > a, — (@, — @y-1)z + = + (@ — ao)z" + aoz"*"|
>a,—(a,—a,-y)— " —(a; —ag) —ay=0.
Furthermore, equality holds in the second inequality only if |z| = 1 and all of the

terms (a; — a;_,)z" "/ have the same argument, j = 0, 1, ..., n; this can only happen
whenz =1.Butatz=1,p(l)=ay, +a, + - +a, >0. ]

The Zeros of Cubic and Quartic Polynomials

The familiar quadratic formula for finding the zeros of a second-degree polynomial
has an extension (albeit not so simple), which yields the zeros of a third- or
fourth-degree polynomial. These formulas (or better, techniques) date back to the
sixteenth century.

Cubic Polynomials
We wish to find the roots of the equation

2+ Az + Bz + C=0. 1)

We begin by making the substitution z = w + d and then choosing d such that the
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resulting quadratic term vanishes. Specifically, if z = w + d, we obtain
w? + (4 + 3d)w® + (3d*> + 2Ad + Byjw + (d* + Ad*> + Bd + C) = 0.

The choice d = — A/3 yields

wi+aw+b=0 ()
with
o, 2 .1

If it happens that a = 0, then the equation becomes
wi4+b=0,

and the roots are obtained easily. If a # 0, then let A be a square root of —a/3, and
set w = Ag. This substitution changes (2) to the equation

¢ —-3¢+p=0, A3)

where f = bA™3. Long ago, someone noticed that the substitution g =p + 1/p
changes (3) into the very simple equation

P+ Bp*+1=0. @
Indeed, this was the whole point of putting (2) into the form of (3). Equation (4) is
nothing but a quadratic in the variable p3. Its zeros produce the g¢’s that solve (3)

and so in turn produce the zeros of (2) and finally the zeros of (1). This three-step
process yields the zeros of the general cubic polynomial (1).

Example 1 The cubic z3 + 622 + 12z + 35 = 0 becomes
w3 427=0 )

after the substitution z = w — 2. The roots of (5) are

1
w= -3 and 5(3 + i, /27),

z= -5 and %(—lii~/27). n]
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Example 2 The cubic z® + 6z2 + 4 = 0 is changed to the cubic
w3 —12w+20=0

by the substitution z = w — 2. With a = — 12 and b = 20, we find that 4 = 2 and

B = 5/2, so we must solve
5
S—(z)pP+1=0.
- (3)+

This gives p3 = 2 or p3 = 1/2; we work with the cube roots of 2, which are

n=Q%W, =@ P(=1+i/3), 3= P(-1-1i/3)

Hence, the roots of w3 — 12w + 20 = 0 are

1 1
Wi=nht— W=yt Wy=i3+—,
"1 Y2 3
so the roots of the original equation are z; = w; — 2, j = 1,2, 3. o

Quartic Polynomials
We wish to find the roots of z* + Az3 + Bz? + Cz + D = 0. We rewrite this as

2 AN (2 B
(z +2z>— 4 Bz Cz —D. (6)

If the right-hand side of (6) is a perfect square (say, (Ez + F)?), then we obtain two
quadratic equations:

A
22+ -z=Ez+F
2
and

A
22 + 5%= —(Ez + F).

Each of these equations has two roots, and these four numbers are the roots we
seek. If the right-hand side of (6) is not a perfect square, we add w? + 2(z? + (4/2)z)w
to both sides of (6). This yields

A 2 A?
22+52+W = —4——B+2w 22 + (Aw — C)z + (w? — D). W)

We now choose w such that the right-hand side of (7) is a perfect square. This will
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be so if the discriminant of the right-hand side vanishes—that is, if

2

(AW—C)Z—4(AT—B+2W>(W2—D)=O. @®)

This is a cubic in w and can be solved as outlined above. We can then take any
root w* of this cubic, substitute it into (7), and then solve the resulting equation:

A 2 A2 Aw* — 2
(Zz + EZ + W*> = (T — B+ 2W*> z+ A2 id ¢ . )
2(——) — B + 2w*

4
This will yield the four zeros of z* + Az® + Bz? + Cz + D.

Example 3 Find the zeros of z* + 2% — 4iz — 4.
Solution Here A = 0, so we obtain
)i =zt=—-22+4iz+4
= (iz + 2)~
Hence, we must solve the two quadratic equations
2

22=iz+2 and 22 = —iz — 2.

The solutions of these are

respectively. Hence,

i,
are the four zeros of z* + z2 — 4iz — 4. 0

Example 4 Find the zeros of z* + 2z3 + 422 4+ 22 + 3.

Solution Here ((A%/4) — B)z? — Cz — D = —3z? — 2z — 3is not a perfect square,
so we must find a zero of the cubic 2w — 2)? — 4(—3 + 2w)(w? — 3). One root of
this is w* = 2. Putting this into (9), we obtain

2
(2 +2z+2)7? =(1)(z +—§—) .
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This yields the two equations
24+z42=z+1 and zZ+z4+2=-z-1

The first equation has roots +i and the second has roots —1 + i\/i. These four
numbers are the zeros of the original polynomial. o

A final remark The reader may well draw the conclusion that the zeros of any
polynomial may eventually be found by a succession of the steps that work for the
quadratic, cubic, and quartic cases—that is, by a sequence of substitutions and
extractions of roots. Quite surprisingly this is not the case if the degree is five or
more. In fact, one of the more profound mathematical results of the early nineteenth
century was that there is no formula of this type that will solve every fifth- (or higher)
degree polynomial.

Sturm Sequences

Let p be a polynomial with real coefficients, and let a < b be two points on the real
line with p(a) # 0 and p(b) # 0. We shall describe a simple technique that counts
the number of distinct zeros of p in the interval (g, b); the zeros are counted without
multiplicity.

We begin in a somewhat more general context. Let p,, p,, ..., P, b€ poly-
nomials with real coefficients satisfying these three conditions:

(1) if py(xo)=0 for some x,e(a,b) and some k, 2<k<m-—1, then
Pi-1(X0)Pi+1(Xo) < 0.

2) pn(x)#0fora<x<b.

(3) pi(a) #0,p,(b) # 0;if p, (xo,) = Oforsome x,, € (a, b), then the sign of p, (x)p,(x)
changes from minus to plus as x passes through x, from left to right.

Let S(x) be the number of changes of sign in the sequence {p,(x), p,(x), ...,
Pm(x)} for a < x < b. A zero of some p,(x), | <k < m — 1, can be counted either as
a plus or a minus without affecting S(x), because of conditions (1) and (3).

THEOREM 3  S(a) — S(b) is the number of zeros of p, on the interval (a, b). The zeros are
counted without multiplicitly.

Proof Suppose that x is a point at which no p, is zero. Then by the continuity of
p;, there is an interval (x — J, x + &) in which no p; is zero, so S(x) does not change
in (x — 4, x + 6). Hence, any change in S(x) must occur at a zero of some p,.

If pu(xo) =0 for k =2,..., m — 1, then condition (1) shows that the number
of sign changes in the triple p,_, (X), pi(X), Px+1(x) remains exactly one for all x in
some small interval about x,. Consequently, the only changes in S(x) can occur, if
at all, at points x,, where p,(x,) = 0. By condition (3), however, we see that S(x)
decreases by exactly 1 as x passes through a zero of p, from left to right. Thus, the
theorem is proved. u
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To fit the theorem to our context, we take p, = p and p, = p’, the derivative
of p. Simple calculus shows that condition (3) holds; that is, that the sign of pp’
changes from minus to plus as x passes through a zero of p from left to right.
The remainder of the sequence p;, ..., p, are found by long division. Write
P1 = q,P, — D3, Where g, is a polynomial and degree (p;) < degree (p,). Continuing
P2 = q,DP3 — D4, Where degree (p,) < degree (p;), and so on until the remainder
is a polynomial of degree zero—that is, a constant. If the remainder is nonzero, then
D, is this remainder, and (2) holds. If the remainder is zero, then p,, is the previous
remainder, which, therefore, divides p,_, exactly. There is just one point that
deserves mention: It may happen that p,, does not have degree zero; indeed, p,, may
have zeros in [a, b]. If this is the case, it is relatively easy to check that p,, actually
divides all the preceding polynomials p,,_;, Pm-2, ---, P2, P1- Thus, p,, appears as a
factor in all the terms of the sequence {p,, p,, ..., P, }; then the value of S(a) — S(b)
is just the same as it is for the sequence

{& P2 Pm 1}
Pm' Pm Pm

Further Reading

An enormous amount of material on the location of zeros of polynomials is in
Marden, M. The geometry of zeros of polynomials. Providence, R.I.: American
Mathematical Society, 1966.






APPENDIX 2

A Table of Conformal Mappings

z = x + iy, w = u + iv. Lowercase letters are mapped to uppercase letters, cross-hatched regions onto
shaded regions.

z-plane Mapping w-plane
y w=e* v
d elir f
N ‘-\&*t\\
RE \\\\
a 0=> c x

The vertical segment x = x,, 0 < y < = is mapped to the semicircle u? + v? = e?*, p > 0.

w=z%
O0<a

y . (mz
/ w=sin| >

389
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z-plane Mapping w-plane
y w=sinz
S e d
\‘\\ \i\
N NN
a \\\ \\ c
% b x
2 2

2 2

v

i u
The horizontal line y = y, goes to the ellipse 7— +t—5—=1
cosh? y,  sinh? y,
w=logz
Ly w=2z2
a
d
—_ T
blo c x A u

2
v
The vertical line x = x, is mapped to the parabola u = x2 — e xo # 0.
Xo

u w=z2 1%

7 E

o
The hyperbola xy = « is mapped to the horizontal line v = 5 The hyperbola x> — y> = 8, B> 0, is

mapped to the vertical line u = g.
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z-plane Mapping w-plane
y 1 y
w=— .
d z
a c X
b
y 1
w=—
z
[4
NN
NN

NN b x
N

N
a
y .(l +z
i w=i
el ] — 2
—_—
z=- is the
i+w
X inverse mapping.

w 1
14z

2242z + 1

W= —j——————
22 =2iz 41
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z-plane Mapping w-plane
y a—z v
w =
i 1-az
\ a—w .
a z= — is the
\ 1 —aw
X inverse mapping.
! 0\ rx 0 and a are u
\ \ interchanged.
—i
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z-plane

— 1)"2)]

— 1) + Log(z + (2?

“1e?

w =

7.

Y

%
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z-plane ] Mapping ] w-plane
2 +1+Log<\/z+1~1> i
/7 /7, . w= z ——— 4
% / //// Jz+1+1 4
B} .
% p ix
A 77, .
4 £ ¥ ;_¢ b. ....... +
y z—2 v
; w= s where .
1 -1z
A_1+ab— (1 —a*)(1 - b? :
B a+b :
—1 \
x and D\ \4 Bl Jc
R=1——ab—-‘/(1——a2)(1—-b2). \
b—a

—l<a<b<l, a+b#0 ]
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A Table of Laplace Transforms

u(x); u(x) =0if x <0 (Lu)(s)
1
1. e*
s—a
!
2. xm s:,”—ﬂ m=0,1,2,...
b
3. sinb —_—
sin bx 152
s
4. b —
cos bx R
b
S. sinh bx m
6. cosh bx sz——iﬁ
b
7. e™sin b —_—
e sin bx Caf i s
s—a
8. e*™ cos bx m
. 2sb
9. x sin bx (s—z—m)—z
s2 —b?
10. x cos bx m
1 I, 0<x<go 1—e*
10, o<x )
12. Impulse function for o e
I'p+1)
13. x? s p>—1
1, 0<x<o
4 1 — e~%9)2
14 { -1, o<x<26 (=e™y
0, 20 <x S
5 cos(b\/;) T o b?
' Jx s P\ 7%
e b n
16. v ;e‘z"ﬁ, b>0
x
17. sin(b./x) b, /ns™32ebis

395



This page is intentionally left blank



Solutions to Odd-Numbered Exercises

Chapter 1

Section 1.1

1. @ 7-i ® -i € -3+4i d 4-12i (e) 4/25
) -i (®) 18+ 18i
3. (a) circle of radius 3 centered at 0 (b) circle of radius 1 centered at 2
(¢) circle of radius 2 centered at —2
(d) perpendicular bisector of the line segment joining 2 to —2
(e) thetwo points 1 + ﬁ (f) theliney=x (g) theliney= —x

3 .. 3=m n . .m
5. (a) ﬁ (cos vy + isin -4—> ®d 2 (cos 3 + isin 3->
(c) 1<cos<—-12[-) +i sin(—g)) (d) S(cos 0 + isin 6) where tan 6 = —4/3

e 5 (f) /6(cos 8, + i sin 6,), where 6, = arctan(—1/,/5)

(® 2\/-2-<cos 54—7: + isin 54—7:) (h) 1<cos( ) ) + isin (—41:))

(i) 1(cosn +isinm)
7. The roots are z; = (—b + /b* — 4ac)/2a and z, = (—b — ./b? — 4ac)/2a. These are
complex conjugates because b? < 4ac.
9. |z]=1iff|z>=1iffzz = 1iffz = 1/z
1. |z 4+ w? — |z — w]?> =|z|* + 2 Re(zw) + |w|* — (|z|*> — 2 Re(zw) + |w|?)
= 4 Re(zw)
13. (a) Yes (b) No (©) Yes
15. The lengths squared of the legs are |z|2, |w|? |z — w|?. These are equal iff
{I2]? = |w]? = |z — w]?} iff {|z]2 = |w]? = |zI? — 2 Re(z@) + |w|?} iff
{1z* = |w|* = 2 Re(zw)}.

397
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z|> |(xs + yt) + i(ys — xt)

s2+ 2

2 (xs+ y)? + (ys — xt)?

17.
(s? + 12)?

w

_ xzsz + y2t2 + y2s2 + x2t2 _ (xz + yz)(sz + t2) B xZ + yZ
B (s2 + 2)? GRSk 5% + 12

|z?
wl

19. cosnf +isinnd =(cos 0 +isin )" = Y (:) (cos 0)* (i sin O)

For k even, there is no factor of i; for k odd, there is a factor of i.
21. For all complex 4,

0< Y la;— 46> =Y |a)l> —2Re 2 Y ab; + A2 Y 1B
1 1 1 1

Ji

=B —2Re 14 + |1]2C.

Apply the results of Exercise 20.
23. Equality iff |a; — Ab;|* = O for some 2 and for all jiffa;= b, j=1,...,n.

Section 1.1.1
L (=22 =((=x)? = (=% 2(=x)(—y) = (x* — y?, 2xy) = 2%
3. (0,1)=2%=(x? — 3% 2xy),50 x> = y? and 2xy = 1. If x = —y, then —2x? = 1, which is
impossible. If x = y, then 2x? = 1. Hence, x = y = + l/ﬁ.
7. 212, =(X1X; — y1Y2, X1, + X,¥,)- Hence, |2122|2 =(x; X, ~ Y1YZ)2 +(x,y, + xz)’l)z =
xix3 + yivi + xiy; + x3yi = O + ¥ + y3) = 12,172,
9. Ifz,z, =0,then0 =|z,z,| = |z,||z,|. Hence, |z,| = 0 or |z,| = 0.

Section 1.2

1. The y-axis 3. Theliney=4x+6

. 4 2 4 2

5. Theellipse 1 = % + % 7. The hyperbola 4 = x2 — y?

9. The pointsz = +1 1. [z—-@4+i0)|=2
1+ 1
13. Re(z+3)=0 15. z—< +'>‘=——
2 ﬁ

17. Re(2—i)z—1)=0
19. |z —p| =cxiff x2 + y* — 2px + p? = ¢2x?

2 2.2

A i
1—c2 (1-c%)?

2
(@) 0<c<1gives <x -1 p c2) + , an ellipse.

(b) ¢ =1gives 2px = y* + p?, a parabola.

. P ¥V 1 1
() 1<c< oogives (x + . 1) = pz[l +(c2 — 1)2] + o 1yz,ahyperbola.
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21. (@) |z—a]<|l —az]iff|z — a* < |1 —@z)?iff |z)* + |a|> < 1 + |a|?|2z)? iff
[xl?(1 = |z|?) < 1 — |z)?iff 1 — |z|> > O, since O < |a| < 1. The others are similar.

n 2 L. fr 2
23. z=cos(16+§nk>+1sm<16+§7tk>, k=0,1,2,34

T n . f(n =n B
25. z=cos<§+zk)+tsm<§+4—k>, k=01...,7

27. Letn=2m + 1 and let r, be the positive number with r2™*! = |w|. The roots of z" = w are

T4 COS r + 2k + isin r + 2nk k=01 2
z= e =01,...,2m.
N\ m+1 T am+ 1 m+ 1 2m+ 1) "

The choice k = m gives a negative real root.
29. The roots of z2 + bz + ¢ = O are

-b+/b* - 4c —b— . /b? —4c
= and z,= —
z, and z, are complex conjugates iff 0 = Im(z, + z,) = —Im b and 0 = Re(z, — z,) =

Re(/b? — 4c). These give the conclusions.
31.

x=n-20+n—2y =2n— 20 + ¢).
Hence, 6 + Y = n — /2, a quantity
independent of P.

33. The translation by B of C is the circle centered at z, + f with the same radius. If the line 2 is
{z: Re(Az + B) = 0}, then the translation of & by B is the line {w: Re(4w + B — AB) = 0}.
1 i 1

x+ia 2a " 2a

2a+ix—a

“|@a)(x + ia)

35. L={x+ia —0 <x< o}

2a
37. C={z:lz—c|l=r} ={c+re®:0<6 < 2n}.

2 —r2 —c(c+re®
(c? = r?)(c + re)

1 c
2

r

2 c+re? c2—r? ct—r?

Section 1.3

1. (a) interior ={x>2andy <4};
boundary = {x + 4i:2 < x < 0} U {2 +iy: —0 <y <4}
(®) closed (c¢) interior is connected
3. (a) interior = {x? < y}; boundary = {x? = y}
(b) open (c) interior is connected
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11.

13.

17.
19.
21.
25.

27.
29.
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(a) interior = {x? + y > 2}; boundary = {x? + y* = 2}
() closed (c) interior is connected
(a) interior = {x <Oand |z + 1| > 1};

boundary = {iy: —0 <y <o}u{lz+ 1| =1}
(b) neither open nor closed (c) interior is connected
Let a = |a|e®

(@) {az + B:zin Ist quadrant} = {ﬁ +s5e™:0<s<o00,0, <y <Bp+ ;}
b)) {B+se”:0<s<00,0,<y<b,+n}

(©) {B+se”:0<s<R|a;0<y <2n}

A, C, D, E, G, and H are unbounded.

Suppose that D,, D, are open. Let pe D, N D,. Thereisanr, > Osuch that {|z — p| <r,} =
Dy; likewise, there is an r, > 0 such that {|z — p| < r,} = D,. Let r = minimum of ry, r,. Then
{|z — p| < r} lies inside both D, and D,. Hence, D, N D, is open. Next, let C,, C, be closed.
Then ¢\(C, u C,) = (T\C,;) n(€\C,) and this is open, being the intersection of two open sets.
Hence, C, U G, is closed. Likewise, €\(C; n C,) = (F\C,) U (F\C,), and this is open, being
the union of two open sets. Hence, C; n C, is closed.

The ray {tzo: 0 < t > oo} is closed, so D is open. Any two points p and g in D can be joined by
the union of one, two, or three line segments, in turn parallel or perpendicular to the ray.

(a) Star-shaped with respect to 0 (b) not star-shaped (c) not star-shaped

(d) star-shaped with respect to any x in (1, o)

If p’ € C and |z, — p’| < r, then the segment pp’ lies in C and also in the set {|z, — z| <r}.
Thus, there is a point of C closer to z, than p, a contradiction.

Use the definition of the boundary B of D to show that the complement of B is open.

Use 25 and the definition of the boundary.

Use the definition of “interior point” of a set.

Section 1.4

1.

7.
11.
13.
17.
19.
21.
25.

27.

29,

0 3. 0 5. No limit exists.

0 9. 2

1 at z, = 8; no limit exists at 8 + i.

0 15. Continuous everywhere
Discontinuous only at all points of the line y = x

Discontinuous only at all points of the circle |z| = 1, except z = 1

0 23, 4

/. g continuous at z, means lim, .., f(2) = f(z,), lim,..,, g(z) = g(z,). Hence,

lim, ... (f(2) + 9(2)) = f(zo) + 9(2), since the limit of the sum is the sum of the limits.
Likewise, fg and 1/g are continuous at z,,.

Let w = f(z); then lim,_.., f(2) = f(zo) = wo, so lim,...,g(f(z)) = lim,,.,,, g(W) = g(wo) =
9(f(zo))-

Outline. Fix any point z, of D and let ¢ = u(z,). Let z, be any point of D that may be joined to
z, by a line segment

L={z()=(1—t)zg+tz;, O0<t<l1}

see Exercise 20, Section 2. Let
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A={te[0,1), u(z(t) =c}

Since u is equal to ¢ on some disc centered at z,, the interval [0, é) lies in A for some é > 0;

¢ is the radius of the disc. Since u is continuous at the point z(5), we also have é € A. However,
u is constant on some disc centered at z(d), so u is equal to ¢ on this (second) disc. Hence, there
isa d, > 4, so [0, ,) lies in A. Continuing in this fashion, it becomes clear that 4 contains all
points of [0, 1], and so u(z,) = ¢, also. If z, may be reached from z, by a single line segment,
the same argument shows that u(z,) = c. Since a finite number of line segments may be used
to join z, to any point of D, it follows that u(z) = ¢ for all z in D.

31. Converges, since L-E—z—" = -{é 1

33. Diverges, since = 1, so terms do not go to 0.

ﬂi
NG
35. Converges (ratio test).

37. Converges; use the technique of Example 29.
39. Converges (ratio test).

41. Use the hint and the fact that |z| < 1.

Section 1.5
1+

NG

5. exp(—— 2kn> [cos(log ﬁ) + i sin(log ﬁ)], k=0, x1, £2,...
9. log 4\/— - %t—

1
11. cos<1t\/§[§+2k])+isin<n\/§|:%+2k]), k=0, +1,...
13. 4{logﬁ+i<—§+2kn>}, k=0, +1,...

15. log(e*) = w or e* = e". So all solutions are z = w + 2mik, k=0,+1,....

17. 0 =cos z = cos x cosh y — i sin x sinh y iff [0 = cos x cosh y and 0 = sin x sinh y]
iff [0 = cos x and 0 = sin x sinh y] iff [x =n/2 + =n,n =0, +1,..., and sinh y = 0]
ff[x=n/2+nn,n=0, £1,...,and y = 0]. Likewise,sinz=0onlyifz=nn,n=0, +1,....

19. cos(iy) = 4(e"™ + e7"™) = 4(e™? + ¢”) > o0 as y - 0. Furthermore, |cos(x + iy)| =
[ 4 i) < (e + e”) < e’ if y > 0. Likewise, |sin(x + iy)| < e”if y = 0.

23. On the line Im z = =/2, the function e” has the values e**™*2 = ¢*¢'™? = je* and e* assumes
all values in (0, o). Likewise, e* maps to line Im z = —n/2 onto the negative imaginary
axis.

25. Follow the hint.

27. Use the principal branch of log z.

29. Let{= —ilog(iz + /1 — z%); then

1.

3. 1og2+i(’3i+zkn>, k=0, +1,...

k]

=1

NN
Wil

N -
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sin{ = %(e“ —e %)= %(exp(log[iz + /1 —2z2]) — exp(—log[iz + /1 — z2]))

1 iz+\/1_—3 1 _1 —22 42z /1 —z22+1 =22 -1
2 C iz : 2

iz+. /1 -z

1[212 1-2z? —22]_z(‘/1—22+iz)_
iz + /1 —2? iz + /1 =22

Section 1.6

1.

11.

13.

15.

17.

21.

20 1
0 . —(1+1i . (-1
3 3( +1i) 5. 2(1 )

{,, 22 dz = =% |, 2% dz = —3%. They are equal because y = y, — 7, is a closed curve and
|, 2% dz = 0, by Example 10. However, |, Z dz = i, while [, 7 dz = —in
2n 1

(a) Fork #0, ‘[ e do = Ee"‘"

o

0=2n 1

0=0 ik

[1-1]=0.

f(x)dz—f(u+w)(dx+1dy) Judx—vdy+tfvdx+udy Also,
Y

Y

(R I (R O
LS Do

0 0
In (8), replace u with —v—u and replace v with v—u.
dy 0x

u(z) C

dz| < 2nR, by using (3).
(2= 20) l (R = |zo))? Y using ()

Establish the estimate:

0 0 *d
ﬁ Pdx+Qdy= f S dxt gy = f S La0@)] dt = g((b) - gty(@) = 0.

1
m+ 1

F(z) = Zzmt m=0,1,2,....

Chapter 2

Section 2.1

1.

3

(a)—(d) follow from (6) and the definition of these functions; (e) follows from (a), (b), and (4); (f)
and (g) follow from the chain rule, (5).
(322 = ) exp(z® — 2) 5 —12z%(z3 + 100)~5

1

e” cosh(e?) 9. 1 + 523
z
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13.

15.

17.

21.
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1
7 sinh(2z)

Sfzo + h) = f(zo) + hf'(zo) + hE,,E, »0as |h| >0
g(wo + p) = g(wo) + pg’'(Wo) + PE,, E, — 0 as |p| = 0; wy = f(2,).
Hence,

9(f(zo + h) = 9(f(20) + h(f'(20) + E,)) = g(f(20)) + h(f"(25) + E;)[9'(wo) + E,]
= g(f(z0)) + hf"(20)9'(wo) + hE,g’'(w,) + hf'(20)E, + hE, E,

= g(f(2o)) + hf'(z0)g'(Wo) + hE;,  E;—>0ash—0.

ou
O0=f'onDso —=—=—=— at all points in D.
s ox 6y 0x 6y P
As in Theorem 2, f is constant on D.
Follow the hint.

b b d

f F())dz = J F©)y'® de = j 2 FO@) dt = Fo®) - Fi@) = 0.
Y a a

Suppose the range of f lies in the straight line Re(4w + B) = 0. Then g(z) = Af(z) + Bis

analytic, and Re g = 0. Hence, g is constant, and therefore so is f. A similar argument may be

applied if the range of f lies in a circle.

Section 2.1.1
1. Globally sourceless and irrotational; G(z) = 1z*
3. Globally sourceless and irrotational; G(z) = sin z
5. Globally sourceless and irrotational; G(z) = 423
7. Neither sourceless nor irrotational
9. Use Exercise 21 in Section 1.
Section 2.2
1. R=1 3. R=21" 5. R=1
o _1 n © ©
7. Z(——)—z" 9. Yy 1n. Yy 'i "t
[) n! n=1 n=1 4" !
13. 72 i —1)"z*" Z .
: n=0 S0 (2 + 1) (2n+ 1 = 2))
3
z
15. 17. ¢*
s 7. e

19.

21.

x| 4 d C . . .
Let|z — zo| = s < R; then Y, i" _: 1 |z — zo|"*! < s Y la,|s", which is finite by hypothesis.
0 0

(a) Follow the hint.
(b) (n+ 1)p™/np = ((n + 1)/n)p < (1 + p) when n > 2p/(1 — p). Hence, {np"} decreases
geometrically fast once n > 2p/(1 — p).
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(¢) If1 < M,thenl < MY < n'oncen> M. Butn'” - 1by(a). If0 < M < 1, then
1 < (1/M)V" < n'/" nlarge.
23. Use the ratio or root test on the given series.

Section 2.3
2
1. 0 3. 2nmi 5, ~
N
7. % 9 i 1 e—1

Ja* —b? e

13. By Cauchy’s Theorem,

o o R

R w4 0 .
0= f e dz = J e dx + J ! eiRe™? Rei® 40 + I Pl +i[ /22 1+ dr.
Y \/5
The middle integral is

z/4
f exp[iR?(cos 20 + i sin 26)]ie*R dé.

o

This is estimated above by
n/4 x/4 b4
R f exp[—R?sin 20]d6 < R f exp[ —2R%0/n] dO < R

o o

Let R — oo; we obtain

@ 1 3 @ N
0= J [cos(x?) + i sin(x?)] dx — it J e dt.
V]

/2 do

Use Exercise 20 and separate real and imaginary parts.
19. Follow the hint.
21. (c), (d) Cauchy’s Theorem and Formula

Section 2.4

1. Zerosof orderoneatnn,n= +1, +2,...

3. Zeros of order three at —2 and 1

5. A zero of order four at 0; zeros of order two at 2nn,n = +1, +2,...

7. Zeros of order one at wi(1 + 2n),n =0, £1,...,and atlog 4 + 2rim,m =0, t1,...

@ zk+l
9. ¥ TR valid everywhere.
1 .
1. 1HE-1)+9z—1P2+(@E—1)>

® z + 1)
13. %+;(—1Y‘“( 2“1)




15.
17.

19.

21.

23.

29.
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Y (= r¥) Nz - HH
f(2) = (z = 20)"g(2); g(zo) # 0. Thus, f'(z) = (z — zo)" "' [mg(2) + (z — 20)g'(2)] =
(z = 2o)"*h(z); h(z,) = mg(z,) # 0. Likewise, f2(z) = (z — 2,)*"g*(2); g*(2o) # 0.

| f'(zo)l < I!I—W-iflf(z)l < M for all z; let s — 0.
s
1
Forn > m,|f™(z,)| < %As"’ if|z| = s > Ry; let s > 0.

Write G(z) = Y ¢,z* for |z| < 1/R. Set w = 1/z; then
(1]

© © 1
FwW=G6@=Ycaz*=Ya—, Iw>R
0 0 w
Furthermore, if 0 < r < 1/R, then

1 G() 1
2m J]q_’ & dl. Let{ = E’ €l =s= - > R; therefore,

=J—j F)¢&1ds, k=0,1,2,....
=3

2ni )=

Write f(z) = } & a,z*; substitute into the differential equation and collect equal powers of z.
This gives equations for a,, a5, ..., in terms of a, and a,:

)k 2k _l)k
ax = (2k)' aoB and Ak = (2k+1)' a

ﬁn

Set g(z) = exp[ — %, A(w) dw]. Then
(f9)(2) = f(2)9(2) + f(2)g'(2) = A(2)f(2)9(2) — A(2)9(2)f(2) =

Hence, f = C/g = C exp[[Z, A(w) dw].
Compute J;, J;, substitute into the given equation, and compute.

Section 25

1.
3.
5.

11.

A removable singularity at 0; the value at O is 1.
A removable singularity at 1; the value at 1 is 4.
A pole of order one at —2

1 1 1
;+—+—z+2——z"; Res(f;0) =1

7':)ZIH-I

(2k T

bc—ad 1 a d bc — ad
- — R e | = i .
c? z+d/c+c’ es( ’ c) c? (altif c # 0)

Res(f;n) = —1
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13.

15.

17.

19.

21.

23.

2—22+ % + T%ézz +-5; Res(f;0)=0.
f@) = (z = 2)'g(2), 1 > 1. Thus, £'(2) = (z ~ 20)[¢'(2) = Iz = 20)"g(2)], and

f@ g z-z’

f@ _g@ -l

Follow the hint: If g is bounded near z,, then z, is a removable singularity for g; let A = g(z,).
Next, f(z) = w + 1/g(2). If g has a zero at z, (4 = 0), then f has a pole at z,. If A # 0, then fis
bounded near z,.

Let y be the circle |z — z4| = 5,0 < s < r. Then for any integer m,

1 ©
0= 3 J; (z—- zo)""(z a,(z — zo)") dz

—

| I . & . .
- s—me—una ( Z ansnema) se.o do

2n 0 —a

) 1 2z
= Z ans—msn+l__ el(n+l—m)0 do = Gy

By (5),

1
Res(F; z) = E:t_l F(z)dz = 3mi G'(z)dz

|z—zo|=s T lz=zol=s

1 = ’ i0) 0,10
_Z_n_[o G'(zo + se®)se” df

1 .
= 2_1t[G(z° + se?™) — G(z, + se’®)] = 0.

Inl<|z] <2

-1
£3_)’la n=—1’ _29
(a) Zanznr a, = 4
b s n=012,
® q —1)* 4
In2 < |z| < o0, Zl:;'f, a,=(3)+3,‘+2, k=12,

@ 1
®) Wmo<lz<i,  Yaz  a=g [I5(=1) -3
(1}

(g)(—l)"“, k=—1,-2,...

Inl<|z| <3, Y az, a=

(%)(3‘*“)((—1)‘ -1, k=012,....
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27k k=-1,-2,...

© In2<|z|<3, Yazt, a=< 4 1
= T

k=0,1,2,....

e g = _a@pt 4 =123,

In5 <|z| < o0,
¥4

~Ms8

25. oo is removable for f iff 0 is removable for g(z) = f(1/2) iff g is bounded near 0 iff f is bounded
near oo.
27. (a) pole of order two at ©; 3z2 + 4 — 1/z
(b) pole of order two at c0; —z% + 5z — 4
42 43
(¢) pole of order one at «0; z + 4 +—z— +?+

1 2 7
(d) zero of order two at oo; —;5+;5—27+"'

z—3

(¢e) removable singularity at oo; valueis 1;1 + z7! + ? +— 3 +
PARPA

(f) essential singularity at co; 1 — 2% + CTREET] + -

3 3 1
(g) pole of order three at c; z°> + 3z + p + 3

3 -5
(h) removable singularity at co; value is 0; z™! — 3 + zs_' -
-2 -4 1

(i removable singularity at oo; valueis 1; 1 — zz_' - 24—' — -+ =Ccos (;)

29. First, G(z; u) = exp[(u/2)(z — 1/2)] = exp[(u/2)(z — 1/2)] = G(z; u) if u is real. Hence, J,(u) is
real if u is real. Apply (19) with s = 1. This yields

2=

J,(u) = Re(J,(w) = Re <—1— I oilusin 0-n6) d())
2n

o

1 2n
=— J cos(u sin 6 — nf) d6.
2r ),

31. i J(wz"=G(z;u) = exp[;(z - %):I = G<—-, u) Z Jalu )( v

= 3 L @(=1r2" SoJ_u)=(~ 1y

Section 2.6

n 3n n
1. , —
4 [sm( 8 )] 3 ab(a + b)
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2 2
5. mexp ( —‘/T_> sin (%) 7. %e" cos a
4n 2na
9. 11.
3\/5 1 - az
13. n[2* — ] 15 n s1‘n WA
sin o sin w sin 7l
5
17. 19, (==
7. 0 ( 3 2) n
21. Follow the hint.
23. Use the technique of Examples 1 and 2; the poles in U have order two (for (a)) or three (for (b)).
25. Use (11)to write g = h + Y ) P,, where P, is a polynomial and h is analytic in D.
cos nz )
27. C(zy=ncotnz=nm “n has a pole of order one at each integer. Furthermore,
1n nz
cos mz n cos nk
Res(C; k) =i - =1li = =
es(C; k) = :E: (z k)n — :Il: (cos nz) prms n(sin T
z—k
B .
29. f C(@2)f(2)dz| < (——2> length (yy) < — N~ 0 as N — oo. Now apply the Residue Theorem.
N
1/ncoshma 1 2 n? n*
31 |- — d —
@ 2 (a sinh na az) ®) (sin na) © 8 @ 90
33. In 32, the left-hand side goes to zero as N — co; write the sum over k = 1, ..., N.
Chapter 3
Section 3.1
1. One zero in first quadrant
3. One zero in first quadrant
5. Two zeros in first quadrant
7. Two zeros in the upper half-plane
9. On the imaginary axis, f(z) = z* — 5z2 + 3 — e has no solution, since |e"”| = 1 while
y* + 592 + 3 > 3. Let g(2) = z* — 5z2 + 3. Then | f — g| < |g| on the contour in Figure 3.4.
g has two zeros in the right half-plane.
11. sin z has zeros of order one at z = kn, k = 0, + 1, ... . The square of an analytic function can
only have zeros of even order.
13. z* — 2z — 2 has four zeros in { < |z| < 3.
15. 4z3 — 1222 + 2z + 10 hastwo zeros in < |z — 1| < 2.
17. (a) No solutions “(b) No solutions (c¢) One solution
19. Follow the hints.
21. p — qis a polynomial of degree n with n + 1 zeros.
23. The hint shows how.
25. g has no poles, so it is entire.
27. The hint has it.
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P(z) v n_ ap/z¥ + - + ay Lo

0(2) bo/zM + -+ by by #0 as |z| - 0.
_ P(@) —aQ(2)
R(z) — a ~—Y%w

Now deg(P — aQ) = max(N, M) except if M = N and aby = ay. In this case,
deg(P — aQ) < N = deg Q = max(N, N).

33. Use Cauchy’s Formula: Let y be a contour surrounding ¢. Then
11 w?> =1 11 4"
- | ————dw=—— 21y = P,(2).
7 i L = M g™ TV =R
1 2n
35. YPR@t"=Y t"%,[ (z+ /22 — 1 cos )" d
(1]
1 (*2n
=3 Y t"(z + /2% — 1 cos 0) df
JO
1 [ 1
=— de
2n Jo 1—t(z+ /22— 1cosB)
1 [ 1
=ﬂ.o a—bcosf
witha =1 —tz, b =t./z> — 1. Now use Exercise 7, Section 2.3, to evaluate the integral.
Section 3.1.1
1. (a) Not stable (b) Stable () Not stable
(d) Not stable (e) Not stable (f) Stable
(g) Not stable (h) Not stable (i) Stable
(j) Not stable (k) Not stable (I) Stable
3. (a) Stable (b) Stable () Not stable
(d) Not stable (e) Stable (f) Not stable
7. Check Theorem 2, Section 3.1, the argument principle.
Section 3.2
1. 1 3 3
5. Sisnot continuous at z = 1.
1 (* .
7. 0=ReF(z,) = —J Re F(zq + re®) dt.
2n Jo
Hence, Re F must be both positive and negative somewhere on the circle |z — zo| = r.
9. Use minimum modulus.
11. Follow the hint.
13. The function g(z) = f(z)/M is bounded by 1in |z| < 1. Let ay = g(z,) and Y(z) =

(z — ap)(1 — &pz)~'. Then h = y o g is also bounded by 1 and is zero at z,. Use Exercise 12

with z, in place of a.

409
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15. Follow the hint.

17. Let h = g/f and use the maximum-modulus principle for h on y. An example of failure:
f@=1z9(z) =1,andy = {w: |w| = 1}. -

19. 5(2) =(p(—2)) = p(2). Let Q(z) = Y} 5@, z*; then Q = Q if and only if g, is real for k even and
pure imaginary if k is odd.

21. p stable implies that p(z)/p(z) is analytic on Re z > 0 and continuous on Re z > 0. Apply
maximum modulus to j/p on the contour {Re": —n/2 <t < n/2}u{iy: R =y 2= —R};let
R — oo. Conversely, if | p(z)| < |p(2)| for Re z > 0, and p and p have no common zero, then p
has no zero in {Re z > 0}.

23. pstable implies r = p/p maps {Re z > 0} into {w: |[w| < 1}. This implies that
R =(1 —r)/(1 + r) maps {Re z > 0} into {Re { > 0}, so R is positive. The converse is similar;
use the results of Exercise 21.

Section 3.3
1. Compute 3. Compute
z+1 .
5 @ i1 - z)z T A any real number (b)) z+1 () iz+4
@ =% @ si—a+l
r 4
(1-1i):z 1 z+4 z—1
7@ z—1 ®) z+1 © 2242 @ z+1

9. (a) Fixed points at 0, — 1; sink at 0; source at —1
(b) Fixed points at +2; sink at 2; source at —2
(c) Fixed points at 1, co; source at 1; sink at oo; straight-line motion outward from z = 1
(d) Fixed points at 0, co; source at co; sink at 0; inward clockwise spiral to origin
(e) Translation to the right; dipole at oo

a+b —a+b
11. lve T(1)=——=1 d -1 = = -1
Solve T(1) = —— an T(=1)=— =1
13. Use the results of Exercise 11.
15. Write S(z) = az +b and solve z = §(S(z)) for a, b, ¢, and d:
cz+d
b
S(z) = 4zt ,  wherea? + bc #0.
cz—a

17. Follow the extensive hints.

19. (a) and (c) are clear from the definition. (b) If L is the real axis, then d = |[Im z|.

23. A reflection over a line: z* = A7 + b, |A| = 1; a reflection over a circle: w* = a + R?*/(w — a).
Putting two such transforms together produces Az + B or (4z + B)/(Cz + D).

25. Given o, find a, b with (ax + b)(—ba + @) = 0 and |a|? + |b|? = 1. Takea = (1 + |«|>)"? and
b= —ao.

27. 1If S is analytic and preserves chordal distance and S(0) = 0, then

x(z, 0) = x(5(2), $(0)) = x(S(2), 0),

so
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|z|? _ IS(z)I?
1+]z2 1+4]|S@1P

This gives |z|? = |S(z)|%. Schwarz’s Lemma (Theorem 2, Section 3.2) implies that S(z) = Az,
12 =1L

Section 34

1.

11.
13.

15.

22 =w?iff 0 = 22 — w? = (z + w)(z — w). If z + w = 0, then Re z = — Re w, which cannot

happen. If U is open and strictly bigger than {Re z > 0}, there is a z, € U with Re zy < 0.

Hence, —z, € {Re z > 0}, and (—z,)* = z2.

(a) Leta, = f(0); by Theorem 1, Section 3.2, there is a § > 0 such that the disc
{w:|w — ao| < 8} is a subset of { f(z): |z| < 1}. Hence, | f(z) — ao| = d if |z| = 1. (Why?)
Show that (f — a,)~" has a removable singularity at co. Conclude that f has a pole at c©
of order m, m > 1, and so is a polynomial of degree m. Then deduce that m = 1.

(b) Compose with a linear fractional transformation so the pole is at co. Then apply the
result of 3(a).

The quadratic z2 — 2wz + R? = 0 is left unchanged by the substitution of R?/z for z. Hence, its

two roots z,, z, are related by z,z, = R2. Therefore, these roots lie on opposite sides of the

circle |z| = R, or both lie on the circle |z] = R and are complex conjugates of each other. The

latter holds if and only if w e [ — R, R].

(a) See Figure 3.16 with 4, 2 in place of — 1, 1, respectively.

(b) See Figure 3.19 translated over one unit.

(c) Thisis a dipole at 1 with circles centered on the real axis and on the line Re z = 1.

(d) See Figure 3.15 moved over and up one unit: 22 — 2z = (z — 1)2 — 1.

Write p(z) = I} (z — z,)™; y, = {z: II{|z — z,|™ = ¢}. For the product to be small, one factor

must be small, so z is near some z; (and so the other factors are bounded). For the product to

be large, one factor is large (and so all the factors are large). Let n = degree p. Then

|p(2)|

|z]”

-1 as R = |z| - o0,

so0 7, is “almost” the circle |z| = R if R is big.

Follow the suggested route.

g2)=z+e*sog'(z) =1+ e*and Im[g'(z)] = e*sin y > 0if 0 < y < n. Now apply the
results of Exercise 12 with f = —igtoseethatgis1 — 1.

Follow the suggestions.

Section 3.4.1

1.

G(iy) = —30* +(1/y*)) e(— o0, —1]if 1 < y < 00; G(e®) =cos 20 e [—1,1]ifn/2 > 0 = (;
G(x) =3(x* + (1/x?)) e [1, 0) if 1 < x < c0. Hence, G maps the boundary of D onto the real
axis. G is also 1 — 1, since G(z) = G(w) iff 22 — w? = z72w™2(z2 — w?)iff 22 = w2 (since |z| > 1,
|[w| > 1) iff z = w (since Re z > 0, Re w > 0). The streamlines are I, = {z: 22 =t + ic +

i/1=(t+ic)}, —0 <t< o}, c>0.

3. Refer to Exercise 5, Section 3.4, for the properties of K. The streamlines are

2 te\ c2-—-1
IL=<z:z= —?—z— + R —0<t<op, c>0.

5. G(z)=Gw)iff (1 — z2)2 = (1 — w2)? iff (z2 — w?)(2* + w?) = 2(z% — w?) iff either z? = w? or
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z2 + w? = 2. But z and w are in the first quadrant, so 0 < Im(z2 + w?). Hence, z2 = w2, so

z = w, since Re z > 0, Re w > 0. Next, G(iy) = —(1 + y*)* € (—o0, —1]if0 < y < o0; G(x) =
—(1=x?)?e[-1,0]if0<x<1;G(x + iy/x?> — 1) =4x /x> — 1€ [0, 0)if 1 < x < 0.
Hence, G maps the boundary of D onto the real axis.

21 1

7. G(2)= = - .
= 1= o1 o1
(See Fig. 3.16.) The streamlines are the circles arg[(z — 1)/(z + 1)] =c.
9. See Figure 3.16 with p, q in place of — 1, 1, respectively.
11. Set y(t) = H(u(t)); then G(y(t)) = u(t) € L, so Im G(y(t)) = co. Moreover, y'(t) = H'(u(t))u'(t) =
f'((t)), so y parametrizes the curve.
Section 3.5
—i+z
1. = 72 =
#o) = z 3 g0 =it
1 R? n o
5 ¢(z)= ﬁ<z + 7) 1. 4(2)= D) + arcsin(e®)
4 .
9. ¢(2)= ;(Log z)—1 11. f(z) = arcsin z
13. f(z) = —iS(z%2 — 1)
Jz -1
15. f(2)= —[2./2 +1+ Log(\/_ 1)]
+
17. Write f = u + iv; the change-of-variables formula gives
area (D) = J:r ldudy = J:[ det (u,, " ) dxdy  (apply Cauchy-Riemann)
D jzl<1 Uy Uy
= ” ( +uj)dx dy = H |f'(2)|* dx dy.
lzl<1 |z|<1
19. If {|#(z,)|} does not converge to 1, then there is a subsequence {z,,} with ¢(z,,) — ¢, 19| < 1.
This contradicts Exercise 14, Section 4.
Chapter 4
Section 4.1
1. (a) uis harmonic; v = 4x3y — 4xy>.
(b) u is harmonic; v = [sin(2xy)][e** ™).
(¢) wuisnot harmonic.
(d) uis harmonic; v = [cos(x? — y?)][sinh(2xy)].
(e) wuis not harmonic.
3. Take f(z) = zon 0 < |z|] < R and apply the conclusion of Exercise 2.
5. (a) A function u of 8 alone is harmonic iffu = 4 + B6.

(b) A function u of r alone is harmonic iffu = C + Dlogr,0 <r < o0.
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7. This is a computation.
1-—r? 1+z
9, =re", =R .
Ifz=re thenl —2rcos 6 +r? e(l —z)
11. Compute Au and set it equal to 0.
13. Given é > 0, choose r > 0 such that |u(z)| < é if |z| < r and Im z > 0; this is possible by
continuity. Let
x2 +y?
V‘(X, y) = u(xa y) —¢& lOg rz 3
consider ¥, on the contour shown. For large R, V, is negative on the large semicircle; V, is also
negative on the segments (— R, —r) and (r, R). On the small semicircle, V, equals u and so is
less than 6. Hence, V, <  on D by the maximum principle. Let R — oo; then ¢ | 0. This gives
u<don{z:Imz>0,|z| >r}. Letr | 0and 5 | 0. Then repeat the argument with —u in place
of u.
iR
N
-R -r r R
15. Let f be analytic on |z — z,| < 8 with u = Re f. Then g(z) = f(Z) is also analytic on
|z — zo| < & (why?), and f(x) = g(x), xo — 0 < x < xo + 6. Hence, g = f,soReg=Re f = u.
17. Follow the numerous hints.
Section 4.2

1. T = {z:|z —iag| = \/R* + a}}. Thus, if ~ is one of <, =, >, then |z — iag|? ~ R? + a2 iff
|z|* — 2 Re(igz) + a3 ~ R? + aZ iff |z|> — 2yay — R2 ~ 0.

3. Let h be another analytic function outside I with h(z) = a + (¢/2niz) + -, Im H =0 on T, and
H’ = h. Then g — h is analytic outside I'; near 00, g(z) — h(z) = a,/z> + ---,and g — h has a
single-valued indefinite integral J. Therefore, Im J = 0 on I, so J is a real constant. This gives
0=J =g—h

5. The flow has a source at —1 and asink at 4, |A| =1, 4 # —1. Thus,

(0] 142
F(z) ==log| ——= ).
() =Zloe\T—%;
: . _Q ., (2 . P
7. Let the sources be at +7 + ip; then F(z) = =| Log{sin 7]~ sin 2|
n
9. Let the source be at x,, x, € (—n, 7); then
Q . [2 . [*o
F(z== == — 7.
(2) - Log<sin 2 sin 2
11. (1) z?+ 1isa conformal mapping of the first quadrant onto the upper half-plane U. Log w is

a conformal mapping of U onto the strip S.
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(b) There is a source of strength = at z, = i.
(c) If pisa point in the boundary of the first quadrant, then Log(z? — p?) gives the potential
of a flow with a source at p.
1
zZ—t

1

potential = ¢(z) = ¢, .[ (dt

log
1

1
= (2 + y)co — o log|1 — z%| — ¢, Re[z Log(1 b z)]

-2z

#(2) = (a® — b*)'[az — b./z* — (a* — b*)] maps the region in the upper half-plane and
outside the ellipse onto the upper half-plane.
Use the conclusion of Exercise 16 for each term. Write

K, z,-7, K,-K, 1
9@) =~ —————— — .
2ni(Z —Z,)(Z — Z,) 2ni -2,

For |z| large, the first term is very small in comparison to the second, so the direction of the
flow given by g is determined by the sign of K; — K,: clockwise if K, > K, counterclockwise
ifK, <K,.

Assuming that the origin is midway between the edges of the plates, the potential is

Vi+V, V-V
G(z) = 1: °+ ln °Re<arcsin§>.

Section 4.3

1.

Let the arc for temperature T, be {¢?: 0 < 6 < 6,}. Then

T,—T, 1 1+ el
T@) =T, + - 2Arg{' tz_ite }
4

i —i _
1—z 1—¢'%

3. (a) Choose M so that |w(t)| < ¢/4if |t| > M. Then

L™ vl L= tw)l sl (e 1 \
I e = BT e

Moreover,

1 (M T|w(t)| 1M T
;J'_M (6 -1+ dt < (E J'_M Iwie) dt)(ﬂl:; (c—1*+ ‘Cz)

1 (e I
< ( L, Iwial d‘)(m myv

< if || is very large.

]
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45

(b) The difference, h = W — W,, is harmonic on {x + iy: y > 0}, is 0 on {y = 0}, and is
bounded, since both W and W, go to 0 at co; now apply Exercise 13, Section 4.1.

(© 'rm |W(o + it)| do < ) (%Jm

(* o 1 (=
= IW(t)|<;J_ ©

= |w(t)| dt.

o T

() uis continuous at e,

(ii) Apply (ii) from Exercise 4.
(i)
@iv)

the interval.

(v) Apply (iii) of Exercise 4 and (iv).
(vi) Combine the two estimates on I, and I,.
Let u = u;, + u,, where

T
TH?d")d‘

|u(e™) — u(e™®)| < &/2, since |t — 6, < 8/4, and (ii) from Exercise 4 holds.
The integral of a function is less than the maximum of the function times the length of

w(x, y)=L f.(t){x Ty

and

y
d
(x +t)? +y2} !

up(x, y) = f: £ {(y >

) + x?

V(z)_—J fle -'0) lz' 1|2d0 2] > 1.

- x dt
(y+t)? + x?

u(re”®) = Re((1 + 2)/(1 — 2)), z = re’; if 8 # 0, then cos 0 # 1, so lim,4, u(re®®) = 0. Follow the

hint for the “hot spot.”
N 1
T(x +iy) = j;l ,W, where 4; = {_1
Follow the hint.
2n . 1 . 2n 1
L e df = Ee"“’ . E[e"‘z" —-e°1=0 ifk#0.

1 i0 . .
P0) = RCI:TL:EE] = Re[(1 + re®)(1 + re® + r2e?® + -

= Re(l + 2re® + 2r2e*® + --+)
= 1 + r(eiﬂ + e—id) + rZ(eZEO + e—2i0) + .-

= i rlnlelna

if x; is “hot”
if x; is “cold”.

)]
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2. r" Ure®)V(re®) df = r" (i ;J"'a(n)e‘“)(f r'”'Me"”’) )

o o —o

= i i r""r"'"a(n)m J'h eitn—me g
ey .

=2n Y r"a(n)6(n), by Exercise 17.

23. Do what is suggested.

25. Use the reflection principle to show that f(z) = f(z) and then that f(—z) = f(z). Hence,
S(—w) =f(w), as well.

27. Let

2= gw=2t1L

iw—1"

¢ maps the upper half-plane onto the disc {|z| < 1}. Set R = ¢ o M; then R is rational, and
|R(e®)| = 1 for all 6. Let a,, ..., a, be the zeros of R in {|z| < 1} and by, ..., b, be the poles of
Rin {|z| < 1}. Show that

R(z)=}.l£[ z—a; 3 1—bz

v l—azy z—b’

14 = 1.

Then recover M: M = ¢ ' o R,
29. One method is outlined; here is another. Let

¢(W)=iw+1.

iw—1

Then g(w) = ¢! (f(4(w))) is analytic on the upper half-plane, real on the real axis (except for
those points x where f(¢(x)) = 1). By the reflection principle, g extends to the lower half-plane.
Hence, f extends analytically across the unit circle, except possibly at a finite number of points
where f might have a pole. But f is continuous at all points of the unit circle. Hence, f extends
analytically over the unit circle. Now apply the argument used in the solution to Exercise 27.

Section 4.4

1. Note that log[(x — t)*> + y*] is a harmonic function of (x, y) for each t, so

Bu= o r 9 A(log[(x — 1 + y?1) dt = 0.

Furthermore,

ou 1 [® y
e 7 4
dy = ,[ o g(t)(x “r

the Poisson integral of g, so
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. Ou
lim —(x, y) = g(x).
ybo Oy

24y
x2 + y?

0
3. Asin Exercise 1; Au = 0, and a_u = Poisson integral of g —
y

Finally,

1 M
s = 5 [ a0 =0+ 7} ~ g +
-M
< [i JM lg()] dt] max (_"i”ﬁ
2n J-um <M

1
og X2 + 2

2xt — t?
< Cmax Iog(l _X):Tyz> ; but |log(1 — 6)| < 26 for small 6
<M
2|z|M + M?
—T—-»O as |z| - oo.

1 [ x x
> “(x’y)_Efo f(t)[(y—t)z+x2 +(,v+t)2+x2:|dt

LL+T, T,-T, 2 - 142
7. T(x, y) == 242 - *Re [arcsin <z—§fi>:|
2

2

9. Let the circles be centered on the real axis and internally tangent at z, = 1 (see diagram).

potential
Vl

a b 1

potential ¥,

Then the potential is

¢(z)=(1_a)‘;°’—(l_b)vl+(l-a)(l—b)(Vo—V,)Re( 1 )

—a b—a z—1

2 1+
1L7w=n+4n-nM@< ﬂ

n 1-z
13. Write z = re' and a = |ale’; then

2g(re™) = log(1 — 2r|a| cos(6 — t) + |a|*r?) — log(r* — 2|a|r cos(0 — t) + |a|?).

Now compute.

a7
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15. v(z) = %[Arg(ﬁ /1+e 2 —1)— Arg(\/1 + e % + 1)]

Section 4.5
1. G — G, has no singularity, is harmonic and bounded on D, and vanishes on the boundary of D.

3. Gz p) =log|>—F
z—p
zZ_I—’Z

5. G(z;p)=log|5——
zZ=p
zZ _ pbP

7. G(z;p)=log ez_e_p
e’ —e

z+ P

9, G(z;p)=log§—§

VP

11. The response at g to an impulse at p equals the response at p to an impulse at q.

—a a+b
@ =

15. Let h be continuous on the unit circle; then H(re®) = (1/2x) {3* h(e") P(0 — 1) dt is harmonic in
|z| < 1, and by (10) of Section 3, lim,4, H(re'®) = h(e®®), all 6. Take 6 = 0.
17. Follow the hint.

13. (@) 1 () ro ©

Chapter 5

Section 5.1

; .
1. Note #(0)=0;, d(x)= ;'[b cos bx — S’“x"b], x#0

3 4(x)= %[1 _sin "]

X

5 d(x)= gexp[z(zix —xD]

7. 4()=2n (ﬂ"—”’f) e
X

sin ox

9. d(x)=/ne M —2—— "¢
X

1. 809 = %[~__2 Si“‘”"/z)]z

X

13. (ii) Make the change of variablesa + ¢ =s.
(iii) Make the change of variables s = tb.
(iv) Use the conclusion of Exercise 16, Section 5.2, that u(x) — 0 as | x| — co.
Then integrate by parts.
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Set f(z) = e”**/(1 + z*) and integrate f over the contour in Figure 5.2a if x < 0 and the

1+i
contour in Figure 5.2b if x > 0. When x < 0, f has poles of order one at y = "and iy and
the Residue Theorem gives \/5

i(x) = 2ni(Res(f; y) + Res(f iy))

= :\/%te"/\/; {cos(x/ﬁ) + sin(x/\/i)}, x<0
Likewise, if x > 0

a(x) = \/_ LN {cos(x/f )—sm(x/\/— )}

Just compute.

J._w [u(x, y)| dx < z Jlm J_m |f(t)|mdt dx

a0 1 a0
= 'r_m |f(t)| {; J'_w mdx}dt

- [" ona

Follow the hints.

1 1
u(x, t) = 5.[— g(x = d¢

1 a0
u(x, y) = ﬂf g() log((x — 1)* + y*) dt

Following the hints, the equation simplifies to

P?u  0%u ou
208 _T¥ %t au
o Tyt

Let U(t) = [, u(x, t)e™™ dx, s fixed. Then u” + 2bu’ + (a + ¢*s*)u = 0,s0 U(1) =
Aexp(y,t) + Bexp(y,t), wherey, = —b + /b* —a — c*s%,y, = —b — /b* —a — c*s? are

the two roots of r> + 2rb + (a + c2s?) = 0, and A and B are found from initial conditions to be

P2 (O (O R O et 17 (O]
Y2=h Y2=h

(ii) In the case that RC = SL, we find that b> = a; then U = 4 simplifies to
() = (1, — 1) e [021() — 9s))e™ + (9() — 11 f($))e™™]
=0, — 1) e {[0:f — 9)*6..1 ) + [(g — 1 /)*.1 )},

and consequently,
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—bt
u(x; t) = — [v2/(x + t€) — 9, f(x — t) + g(x — te) — g(x + t)].
2 1
Section 5.2
_ [t| <o _ |t] < B
1. Letu(t)= {0, > o v(t) = {0, It > B.
Then by (3),

4nmin(a,ﬁ)=2nf uE='[ a3=4'[ s_“‘_E"_:L@idx,

—w x
© 1 - 2
3. J [—CM:I dx = no
. x

5. Takeu(t) = T%;; A(x) = me™ M.

—a0 —

Hence, 2n J'-m (1—4‘——‘7)7 = J_m nle—zlxl dx = n?.
The value of the desired integral is n/2.

1
7. u() = Z[arctan(4 + t) + arctan(4 — 1)]

9. %(30’ — 30?2+ 0%)
11. By Exercise 8, 1(z) is entire. Hence, 2 = 0, so u = 0, by the Inversion Formula.
13. In (2), replace u with u + v; expand and use the known equality for u and v.

15. Follow the given steps.

M
17. LetJ = lim j lu()| dt.
M-

-M
Mo -B ©

Then for A, B > M,, e>J—J' lu(t)ldtz'[ +'[ .
~Mgo — A

19. Since |u(?)| < |v(t)] for —o0 <t < o0,
M M
J |u(t)| dt < J |v(t)| dt < C for all M.
-M -M

21. Let y be a triangle in the strip 7, < Im z < 7,. Then

'r A(z)dz = J I:J'm u(t)e ™ dt] dz
= 'rm u(t) I:J' e it dz]dt = Jm u(t)-0dt =0.
—© 3 )
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23. Use the Riemann-Lebesgue Lemma (Exercise 15) with

0, —0<t<d
v = u_(xt_-i-_tl, o<t <oo.
This gives
0 = lim Re (M) = lim J M9 o My dr.
M- M- Js t
Similarly,

lim J u(xt+ D sin Mt dt =

M~

25. Combine 23 and 24:

© Mt -4 t t
J u(x +t) sin dt =j u(xt+ )sithdt+'r ulx t+ )sthdt
— 3

—ao

—qut
+.[ u(_x-f-_t)_t_u__(x_)sm Mt dt
(1]

[
-8

sin Mt

+ [ () +u(x )]J

The first four terms are small if J is small and M is large. The fifth integral converges to

J' smxd -2

as M — oo, d fixed. (Make the change of variables s = Mt.)

Section 5.3
N
1. (.g u)(s) = m
A
3. (g u)(s) = m

5. (Lu)(s) = ;[e“’s —e™]

7. (Lu)(s) = [l —s0e™% — e™%]

a



422  Solutions to Odd-Numbered Exercises

1
9. (Lu)(s)= z
sint & t2 ® ks (2k)!
. —= —1— A=
11 . ';o( l)“(zk o next, L t2ke™% dt e
Hence,
sin t (s) = z (—1f tlk st 4 i (=1 §—(2kHD),
(2k + 1) T2k +1
Furthermore
d sin ¢ & t1o-2k-2 _ —1
d—s[.?(—t—)(s)]—zo:( 1+ =aT7 l<s<oo
d 1
aarctan— 1<s<oo.
in A
3. ulp)= t(sin At)

24
1
15, ut) = o

17. u(t) =ie™™®
19. Zuis entire by Morera’s Theorem. Furthermore,

A

(Lu)(s) = J u(te ™ dt = J u(t) Z (- l)"—dt
o

(]
= i (- 1)"i r u(t)e* dr.
5 k!,

21. #1o8! is an entire function of z; I'(2) is defined for Re z > 0 and analytic there, by Morera’s
Theorem.
23. Integrate by parts.

@

25, Forn=1,T(Q1)= J e ' dt = 1. Use induction and Exercise 23 for n > 2.
o

27. Follow tke suggestion.
29. Again, follow the suggestions.

Section 5.4
6 _, 03 17
1. u(t)—ge + 2¢ {—gcost+f6smt}

3 ult)=e""?



11.

Solutions to Odd-Numbered Exercises

sin t, 0<t<m

u(t) = ( t—n),
1+ 3 sin t, n<t< o

(i 0) = 0, ifx>t
U t—x, ifx<t

Case 1: o is not an integer multiple of n. Then

sin wx sin wt & )"+l
ux, t) =————+ Z ———5— Sin nnx sin nnt.
sin © S w?

Case 2: @ = = (representative of @ = mn).

. . 1
u(x, t) = —2t sin nx cos nt — x cos nx sin nt — i—sm nx sin nt
n

— 1)" sin nnx sin nnt
n?—1

t ,—x2/4ks
u(x, t) = il je ds
0

Section 5.5

1.

3

11.

13.
15.

17.

2 =5—  ld>1

Z{ah=e, 240

Z({a;}) =z Log(l - ;), |z| > 1

z? 3z

Z({a})_—1—6 92 1’

|z| > 4

0, jeven

2 .
j—!, J odd

1
GEGF

a,=a, =0 ag=j—1, j=273,4,...

{a;} » {b} = {0}, 500 = Z({0}) = Z({a;} * {b;}) = Z({a;})Z({b;}). Since Z({a;}) and Z({b;})

are both analytic, one or the other must vanish identically; for that one, all its coefficients
must be zero.

r
Yo=1; Yrt1 = _kzo (o + Xp41 + Xe42), r=0,12,...

423



424  Solutions to Odd-Numbered Exercises

19. yo=0, y, =1, y,=x0+1 ys=-—1+4x;  generally,

m—2
()" o+ D+ Y (=%-pp2y  T=2mm=23,..
k=0
Ve = n
1+ Y (= rxe-2s r=2m+1
k=0

roX, — 2Xp4y + X
2l. yo=1, y""‘:_kzok_zrk—‘:{:-l—&j—z’ r=0,1,2,...

Section  5.5.1

i
1. 0=R(w)=p<w+ wH

1 < lifand onlyif Rew <0

w -

1
l) if and only if

3. (@) qw=(4+Bw+(4-B)
(b) g(w) = 16[w* + 4w> + 9w? + 8w + 5]
© gw)=2w+2
d gw=-w>+3w?2-3w+9
5. (a) phasarootat —1.
(b) All roots within {z:|z| < 1}
(c) All roots within {z: |z| < 1}
(d) One root outside {z: |z| < 1}
(e) Some root outside {z: |z| < 1}



Index

absolutely corvergent series, 38
absolutely integrable, 344
absolute value, 1, 3

additive identity, 11

additive inverse, 11

analytic function, definition of, 77
angle between curves, 209
aquifer, 305

arc-length, 72, 259

area formula, 244

argument, 7

argument principle, 175
associative, 11

Bernoulli’s law, 270-271

Bessel functions, 135, 153, 353, 356
beta function, 355

biharmonic function, 280, 329-330
binomial formula, 98, 103, 105
boundary, 24

boundary point, 24
boundary-value problem, 298-307
bounded set, 28, 192

branch of log z, 46

Cauchy estimates, 133

Cauchy-Goursat Theorem, 119

Cauchy-Riemann equations, 80,
82

Cauchy-Riemann equations in
polar coordinates, 86

Cauchy’s Formula, 111, 123

Cauchy’s Theorem, 107

causal functions, 347

center of a power series, 93

chain rule, 78

charge density, 260

chordal distance, 207

circle, 16-20, 21, 199, 243

Circles of Appolonius, 20

circulation, 271-274

circulation of a linear fractional
transformation, 201

closed curve, 56
closed half-plane, 27
closed set, 25, 191
coaxial, 299
commutative, 11
complex conjugate, 2
complex Fourier transform,
336-339
complex number, 1
complex plane, 9
complex potential, 132, 219
concentrated force, 309
concentration function, 278, 304
conformally equivalent domains,
225
conformal mapping, 209, 210-211,
221, 224-241
table of, 389-394
connected set, 25-26
conservative field, 88
continuous at a point, 36, 42, 79
continuous function, 36-37
continuous on a set, 36
convergent sequence, 33
convergent series, 37-38
convex set, 27
convolution, 325, 367
cos z, 48, 100
cosh z, 54, 126
Coulomb’s Law, 255
cross-ratio, 206
cubic polynomial, 253, 382-383
curve, 56-59
closed, 56
orientation of, 59
piecewise smooth, 57
simple, 56
smooth, 57

definite integrals evaluated by the

Residue Theorem, 155-156
degree of a rational function, 181
de Moivre’s Theorem, 6, 10

derivative of a power series, 97

differentiable at a point, 77

differential equation in the
complex plane, 134

differential equations solved by the
Laplace transform, 356-364

diffusion, 278, 303-305

dipole, 203

directional derivative, 71

Dirichlet problem, 298-301, 334

discrete Laplace transform, 366

divergent sequence, 33

divergent series, 38

domain, 27

domain of definition, 30

electrostatic field, 255-260
electrostatic potential, 258, 260,
308
energy integral, 249
Enestrom-Kakaya Theorem, 382
entire function, 77, 130
equation
Cauchy-Riemann, 80, 82
heat, 327, 334, 365
Laplace, 81, 245
linear difference, 369, 376
telegraph, 334
Volterra integral, 364
equilibrium point, 258
essential singularity, 137, 150, 152
exact differential, 75
exponential function, 43-45, 78,
100
exponential growth, 346

falling string, 364

feedback control system, 190
field, 11

fixed point, 181, 198, 205
flow, 87, 131, 261-278

flux, 88

fluxless field, 88

425



426  Index

forcing function, 369
formula
area, 244
binomial, 98, 103, 105
Cauchy, 111, 123
Fourier inversion, 335, 345-346
Laplace inversion, 349
Poisson integral, 286-291
Routh-Hurwitz condition, 188
Fourier coefficient, 296
Fourier inversion formula, 335,
345-346
Fourier series, 296
Fourier transform, 320-342
Fresnel integrals, 117
function
analytic, 77
Bessel, 135, 153, 353, 356
beta, 355
biharmonic, 280, 329-330
causal, 347
concentration, 278, 304
continuous, 36
definition of, 30
entire, 77
exponential, 43
forcing, 369
gamma, 354
Green’s, 311-314
harmonic, 73, 81, 245-252,
284-293, 296-297
Heaviside, 347
impulse, 309, 316
inverse trigonometric, 52-53, 56
logarithm, 45
periodic, 49, 352
piecewise continuous, 287
positive rational, 196
potential, 260-261
rational, 37
response, 369
stream, 222, 261
stress, 279
trigonometric, 48
Fundamental Theorem of Algebra,
179

Gamma function, 354

Gauss—Lucas Theorem, 381

generating formula for Legendre
polynomials, 182

geometric series, 39

gradient, 219, 258

graph, 32, 249-252

Green’s Formula, 71-72, 310

Green’s function, 311-314

Green’s Identity, 74, 281

Green'’s Theorem, 65-70, 90

groundwater flow, 305

half-plane, 27

harmonic conjugate, 81, 247, 296

harmonic function, 73, 81, 245-252,
284-293, 296-297

heat equation, 327, 334, 365

heat kernel, 329

Heaviside function, 347

ideal fluid, 261

imaginary axis, 9

imaginary part, 1,9

improper integral, 344-345

impulse function, 309, 316

infinite series, 37-40

initial conditions, 184, 347, 356,
369

input, 369, 374

inside of a curve, 57

integral representation of
harmonic functions, 284-291

interior point, 22

inverse trigonometric function,
52-53, 56

inversion, 22, 200

irrotational flow, 88, 90

isolated singularity, 135

isolated zero, 172

Jordan Curve Theorem, 56
Jordan’s Lemma, 159
Joukowski airfoil, 275-278

Kelvin’s Minimum-Energy
Theorem, 281

kernel

heat, 329

Poisson, 114, 118, 286
keyhole contour, 58, 165
kinetic energy, 281
Kutta-Joukowski Theorem, 274

ladder network, 371

Laplace inversion formula, 349

Laplace’s equation, 81, 245

Laplace transform, 346-352
table of, 395

Laplacian, 72, 310

Laplacian in polar coordinates, 252

Laurent series, 141-149

law
Bernoulli’s, 270-271
Coulomb’s, 255

Legendre polynomial, 182

Legendre’s differential equation,

182

leminscate, 218

level curve, 212

lifting force, 274

limit, 33-36, 318

linear difference equation, 369, 376

linear fractional transformation,

31, 85, 196-204, 211, 246

line integral, 60-65

Liouville’s Theorem, 130, 133

locally irrotational, 90

locally sourceless, 90

local maximum, 191-192

logarithmic capacity, 316

logarithm of an analytic function,
131

logarithm of z, 45-48, 83

maximum modulus principle, 191,
192, 193, 248

Mean-Value Theorem, 193, 248

modulus, 1

Morera’s Theorem, 129

multiplicative identity, 11

multiplicative inverse, 11

multiplicity of a zero, 171

Neumann problem, 301-307, 309
normal derivative, 71-72, 301
nth root, 14

nth partial sum, 37

Nyquist stability criterion, 190

one-to-one, 45, 191, 196, 210,
225

open disc, 22

open half-plane, 27

open mapping, 191

open set, 22, 30

order of a pole, 137

order of a zero, 128, 171

orientation of a curve, 59

output, 369, 374

outside of a curve, 57

parametrization of a curve, 57
Parseval’s equality, 297, 335
period, 352
periodic function, 49, 352
permeability, 301-304, 305
piecewise continuous, 287
piecewise smooth curve, 57
piecewise smooth function, 319
point at infinity, 28
Poisson integral formula, 286-291
Poisson kernel, 114, 118, 286
polar representation, 4-5
pole, 137
polygon, 225, 227-230
polygonal curve, 25, 29
polynomial, 37, 78, 155, 179, 253,
381-387
positively oriented, 59, 65
positive rational function, 196
potential function, 260, 261
potential theory, 260
power of a complex number, 46
power series, 93-102, 123, 132
principal part, 144



principle
branch of log z, 46
maximum-modulus, 191-193,
248
reflection, 291-293, 297-298
product rule, 78

quadratic formula, 9, 21
quartic polynomial, 384-385
quotient rule, 78

radius of convergence, 95, 106

range, 30

rational function, 37, 78, 147, 181,
196, 376

ratio test, 42

real axis, 9

real number, 1

real part, 1,9

reflection, 206

reflection principle, 291-293,
297-298

removable singularity, 136, 272

residue, 138, 139

Residue Theorem, 154, 169

resonance, 364

response function, 369

reverse orientation, 59

Riemann Mapping Theorem, 225,
312

Riemann-Lebesgue Lemma, 343

root, 13-14, 178

root test, 42

Rouche’s Theorem, 177

Routh-Hurwitz conditions, 188

scaling, 22

Schwarz—Christoffel
transformation, 225, 227-241

Schwarz inequality, 10

Schwarz Lemma, 193

separation of a point and a convex
set, 30
shifting theorem for the
Z-transform, 369
simple curve, 56
simply-connected domain, 107,
225, 312
singularity
at infinity, 152
essential, 137, 150, 152
isolated, 135
removable, 136
sinh z, 54, 126
sink, 202, 265, 269
sin z, 48, 100
smooth curve, 57
source, 202, 264, 269
sourceless flow, 88, 90
spiral vortex, 283
stability, 183-185, 375-378
stable polynomial, 185-188
stagnation point, 91, 275
star-shaped set, 29
straight line, 13, 21, 199
strain energy, 249
stream function, 222, 261
streamlining, 220
stress function, 279
Strum sequence, 386—387
summation of series by residues,
168
system transfer function, 375

telegraph equation, 334
temperature distribution, 254-255
theorem
Cauchy, 107
Enestrom-Kakaya, 382
Gauss-Lucas, 381
Green’s, 65-70
Jordan Curve, 56

Index 427

theorem (continued)
Kelvin’s Minimum-Energy, 281
Kutta-Joukowski, 274
Liouville’s, 130
Mean-Value, 193, 248
Morera’s, 129
Residue, 154
Riemann mapping, 225
Riemann-Lebesgue, 343
Rouche’s, 177
Schwarz Lemma, 193
shifting for Z-transform, 369
thermal conductivity, 255
transform
complex Fourier, 336-339
Fourier, 320-342
Laplace, 346-352
Schwarz—-Christoffel, 227-241
Z-,365-373
translation, 22
traveling wave, 364
triangle inequality, 12
trigonometric functions, 48-52,
157, 161

unbounded set, 28
upper half-plane, 221, 288

vector field, 88
Volterra integral equation, 364
vortex, 282, 283

wave equation, 333, 365
work, 88

zeros of an analytic function, 128,
171-179

zeros of a polynomial, 154, 179,
185-188, 381-387

Z-transform, 365-373
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