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PREFACE

MY object in writing this Tract’ was to collect into a single

volume those propositions which are employed in the
course of a rigorous proof of Cauchy’s theorem, together with
a brief account of some of the applications of the theorem to
the evaluation of definite integrals.

My endeavour has been to place the whole theory on a
definitely arithmetical basis without appealing to geometrical
intuitions. With that end in view, it seemed necessary to
include an account of various propositions of Analysis Situs,
on which depends the proof of the theorem in its most general
form. 1In proving these propositions, I have followed the gereral
course of a memoir by Ames; my indebtedness to it and to the
textbooks on Analysis by Goursat and by de la Vallée Poussin
will be obvious to those who are acquainted with those works.

I must express my gratitude to Mr Hardy for his valuable
criticisms and advice ; my thanks are also due to Mr Littlewood
and to Mr H. Townshg_x}d, B.A., Scholar of Trinity College, for
their kindness in reading the proofs.

G. N. W.

TriNITY COLLEGE,
February 1914.
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INTRODUCTION

1. TuroucHOUT the tract, wherever it has seemed advisable, for
the sake of clearness and brevity, to use the language of geometry,
I have not hesitated to do so; but the reader should convince himself
that all the arguments employed in Chapters I—IV are really arith-
metical arguments, and are not based on geometrical intuitions. Thus,
no use is made of the geometrical conception of an angle; when it is
necessary to define an angle in Chapter I, a purely analytical definition
is given. The fundamental theorems of the arithmetical theory of
limits are assumed. ’

A number of obvious theorems are implicitly left to the reader;
e.g. that a circle is a ‘simple’ curve (the coordinates of any point on
2*+3y°=1 may be written x=cos?, y=sin¢, 0<¢<27); that two
‘simple’ curves with a common end-point, but with no other common
point, together form one ¢simple’ eurve ; and several others of a like
nature.

It is to be noted that almost all the difficulties, which arise in those
problems of .{nalysis Situs which are discussed in Chapter I, disappear if the
curves which are employed in the following chapters are restricted to be
straight lines or circles. This fact is of some practical importance, since, in

applications of Cauchy’s Theorem, it is usually possible to employ only straight
lines and circular arcs as contours of integration.

2. NorarioN. If 2 be a complex number, we shall invariably write
T=x+ 1y,
where # and y are real ; with this definition of 2 and y, we write?
s=R@), y=1().

If a complex number be denoted by z with some suffix, its real and
imaginary parts will be denoted by & and y, respectively, with the same
suffix ; e.g.

Zn = &n + iYn;
1 The symbols R and I are read ‘real part of’ and ‘imaginary part of’
respectively.

W. C. I 1



2 INTRODUCTION

further, if ¢ be a complex number, we write
BRO)=¢ I()=n.

DeriniTIONS. Point. A ‘point’ is a value of the complex variable,
z; it is therefore determined by a complex number, z or by two
real numbers (z, y). It is represented geometrically by means of the
Argand diagram,

Variation and Limited Variation®. If f(z) be a function of a
real variable z defined when ¢ <z <& and if numbers a,, 2, ... 2, be
chosen such that ¢ <2, <@, ... S@, <, then the sum

[f () =S (@) | +|f (@) =S (@) | + | f (@) =S (@) | + ... +| S (B) = f () |
is called the variation of f(x) for the set of values a, x,, s, ... Zn, b.
If for every choice of #, s, ... ,, the variation is always less than
some finite number A (independent of n), f(2) is said to have limited
variation in the interval ¢ to b; and the upper limit of the variation
is called the total variation in the interval.

[(The notion of the variation of f(r) in an interval @ to b is very much
more fundamental than that of the length of the curve y=f(x) ; and through-
out the tract propositions will be proved by making use of the notion of
variation and not of the notion of length.]

2 Jordan, Cours d’Analyse, §§ 105 et seq.



CHAPTER 1

ANALYSIS SITUS

§ 3. Problems of Analysis situs to be discussed.—§ 4. Definitions.—§ 5. Pro
perties of continua.—§ 6. Theorems concerning the order of a point.
—§ 7. Main theorem ; a regular closed curve has an interior and an

exterior.—§ 8. Miscellaneous theorems ; definitions of counterclockwise
and orientation.

3. The object of the present chapter is to give formal analytical
proofs of various theorems of which simple cases seem more or less
obvious from geometrical considerations. It is convenient to summarise,

for purposes of reference, the general course of the theorems which
will be proved:

A stmple curve is determined by the equations v=x(¢),y =y (¢) (where ¢ varies
from ¢ to 7'), the functions « (¢), ¥ (¢) being continuous ; and the curve has
no double points save (possibly) its end points ; if these coincide, the curve is
said to be closed. The order of a point @ with respect to a closed curve is
defined to be %, where 27n is the amount by which the angle between @P and
Oz increases as P describes the curve once. It is then shewn that points in
the plane, not on the curve, can be divided into two sets; points of the first
set have order +1 with respect to the curve, points of the second set have
order zero ; the first set is called the interior of the curve, and the second the
exterior. It is shewn that every simple curve joining an interior point to an
exterior point must meet the given curve, but that simple curves can be
drawn, joining any two interior points (or exterior points), which have no
puint in common with the given curve. It is, of course, not obvious that a
closed curve (defined as a curve with coincident end points) divides the plane
into two regions possessing these properties.

It is then possible to distinguish the direction in which P describes the
curve (viz. counterclockwise or clockwise); the criterion which determines
the direction is the sign of the order of an interior point.

The investigation just summarised is that due to Ames!; the analysis
which will be given follows his memoir closely. Other proofs that a closed curve

1 Ames, American Journal of Mathematics, Vol. xxvi1. (1905), pp. 343-380.
1—2



4 ANALYSIS SITUS [cH. 1

possesses an interior and an exterior have been given by Jordan?, Schoenflies3,
Bliss4, and de la Vallée Poussinb, It has been pointed out that Jordan’s
proof is incomplete, as it assumes that the theorem is true for closed
polygons ; the other proofs mentioned are of less fundamental character than

that of Ames.

4. DEerFINITIONS. A simple curve joining two points z, and Z is
defined as follows:

Let* z=z(t) y=y(t)
where z (¢), y(t) are continuous one-valued functions of a real para-
meter ¢ for all values of ¢ such that” ¢, < ¢ < T'; the functions « (¢), y (¢)
are such that they do not assume the same pair of values for any two
different values of ¢ in the range ¢, <¢ < 7'; and

Zo=x()+iy (), Z=x(T)+iy(T).

Then we say that the set of points (2, y), determined by the set of
values of ¢ for which ¢, <¢< T, is a simple curve joining the points z,
and Z. If z,=Z, the simple curve is said to be closed®.

To render the notation as simple as possible, if the parameter of
any particular point on the curve be called ¢ with some suffix, the
complex coordinate of that point will always be called z with the same
suffix; thus, if

thstM<T,

we write 2™ =z (&™) + iy (¢,) = 2, + 5,™,

Regular curves. A simple curve is said to be regular’, if it can be
divided into a finite number of parts, say at the points whose para-
meters are &, f,, ... %, where £ <, <t < ... <t, < T, such that when

2 Jordan, Cours d’Analyse (1893), Vol. 1. §§ 96-103.

3 Schoenflies, Gittingen Nachrichten, Math.-Phys. Kl. (1896), p. 79.

4 Bliss, American Bulletin, Vol. x. (1904), p. 398.

5 de la Vallée Poussin, Cours d’Analyse (1914), Vol. 1. §§ 342-344.

8 The use of z, y in two senses, as coordinates and as functional symbols,
simplifies the notation.

7 We can always choose such a parameter, ¢, that ¢, < T'; for if this inequality
were not satisfied, we should put t = - ¢’ and work with the parameter ¢'.

8 The word ¢ closed > except in the phrase ¢ closed curve’ is used in a different
sense ; & closed set of points is a set which contains all the limiting points of the
set; an open set is a set which is not a closed set.

9 We do not follow Ames in assuming that z(t), y (t) possess derivatives with

regard to t. .
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t,1 <t <t., the relation between x and y given by the equations
z=xz (), y=y(¢) is equivalent to an equation y=f(x) or else
= ¢ (), where f or ¢ denotes a continuous one-valued function of its
argument, and » takes in turn the values 1, 2, ... m+ 1, while £,,,=T.

It is easy to see that a chain of a finite number of curves, given by the

equations
y=H@@), a<r<a,

o=folyh  baSySbel @)
y=fz(r), az<r<ay

(where by=f)(as), az=f3(b3), ... and fj, fa, ... are continuous one-valued
functions of their arguments), forms a simple curve, if the chain has no
double points ; for we may choose a parameter ¢, such that
w=t, y=fH(), a<i<ay;
x=f(by —~ay+t), y=b,—a,+t, A, <tL<a—by+by;
z=a+t, y=fi(a+l), w—a<i<as—a, a=ag—ay+b,—bs;

If some of the inequalities in equations (A) be reversed, it is possible to shew
in the same manner that the chain forms a simple curve.

Elementary curves. Each of the two curves whose equations are
() y=sS (@), (o< <) and (i) 2= ¢ (¥), (% <y <), where f and ¢
denote one-valued continuous functions of their respective arguments,
is called an elementary curve.

Primitive period. In the case of a closed simple curve let
o= T~1,; we define the functions a (¢), y (¢) for all real values of ¢
by the relations

z(@+no)=x(t), y(+nw)=y(),
where #n 1s any integer; o is called the primitive period of the pair of
functions z (¢), y (¢).

Angles. 1If z,, z; be the complex coordinates of two distinct points
P,, P,, we say that ¢ £, P, makes an angle 0 with the axis of 2’ if 6
satisfies both the equations™

c0s 0 =« (z, — @), sinb=«(y,~-),

where « is the positive number {(#, — 20)*+ (3 — %)?} ~ 3. This pair of
equations has an infinite number of solutions such that if 6, 6’ be any

10 Tt is supposed that the sine and cosine are defined by the method indicated
by Bromwich, Theory of Infinite Series, § 60, (2); it is easy to deduce the statements
made concerning the solutions of the two equations in question.
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two different solutions, then (6'—6)/2r is an integer, positive or
negative.

Order of a point. Let a regular closed curve be defined by the
equations =4 (¢), y=y (£), (%<t <7T) and let v be the primitive
period of z(¢), y (¢). Let @ be a point not on the curve and let P
be the point on the curve whose parameter is ¢&. Let 6 (¢) be the
angle which QP makes with the axis of #; since every branch of
arc cos {k (&, — x,)} and of arcsin {x (%, —%,)} is a continuous function
of ¢, it is possible to choose 6 (¢) so that 6 (¢) is a continuous function
of ¢ reducing to a definite number 6 (4,) when ¢ equals 2. The
points represented by the parameters ¢ and ¢+ are the same, and
hence 6(¢), 6(¢+w) are two of the values of the angle which QP
makes with the axis of 2 ; therefore

8 (¢ + w)— 6 (£) = 2nm,

where # is an integer ; n is called the order of @ with respect to the
curve. 'To shew that » depends only on @ and not on the particular
point, P, taken on the curve, let ¢ vary continuously ; then 6(2), 6(¢ + )
vary continuously ; but since » is an integer n can only vary per saltus.
Hence = is constant™.

5. CoNTINUA. A two-dimensional continuum is a set of points
such that (i) if 2, be the complex coordinate of any point of the set,
a positive number & can be found such that all points whose complex
coordinates satisfy the condition |2 - z,| <8 belong to the set; & is a
number depending on z,, (ii) any two points of the set can be joined
by a simple curve such that all points of it belong to the set.

Ezample. The points such that |z| <1 form a continuum.

11 This argument really assumes what is known as Goursat’s lemma (see § 12)
for functions of a real variable. It is proved by Bromwich, Theory of Infinite
Series, p. 394, example 18, that if an interval has the property that round every
point P of the interval we can mark off a sub-interval such that a certain inequality
denoted by {Q, P} is satisfied for every point Q of the sub-interval, then we can
divide the whole interval into a finite number of closed parts such that each part
contains at least one point P; such that the inequality {Q, P,} is satisfied for all
points Q of the part in which P, lies.

In the case under consideration, we have a function, ¢ (t) =6 (t + w) - 6(¢),
of ¢, which is given continuous; the inequality is therefore | ¢ (¢) - ¢ (t') | <,
where e is an arbitrary positive number; by the lemma, taking ¢ < 27, we can
divide the range of values of ¢ into a finite number of parts in each of which
1#(t) - ¢ (t) | < 27 and is therefore zero; ¢ (t) is therefore constant throughout
each part and is therefore constant throughout the sub-interval.
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" Neighbourhood, Newr. If a point { be connected with a set of
points in such a way that a sequence (z,), consisting of points of the
set, can be chosen such that ¢ is a limiting point of the sequence, then
the point { is said to have points of the set in its neighbourhood.

The statement all points sufficiently near a point ¢ have a certain
property’ means that a positive number % exists such that all points z
satisfying the inequality | 2 —| <% have the property.

Boundaries, Interior and Exterior Points. Any point of a con-
tinuum is called an ¢nterior point. A point is said to be a boundary
point if it is not a point of the continuum, but has points of the
continuum in its neighbourhood.

A point zj, such that |z, |=1, is a hboundary point of the continuum de-
fined by |z| < 1.

4

A point which is not an interior point or a boundary point is called
an exterior point.

If (z,) be a sequence of points belonging to a continuum, then, if this
- sequence has a limiting point {, the point ¢ is either an interior point or a
boundary point ; for, even if ¢ is not an interior point, it has points of
the continuum in its neighbourhood, viz. points of the sequence, and is there-
fore a boundary point.

Al points sufficiently near an exterior point are exterior points; for let z,
be an exterior point; then, if a0 positive number £ exists such that all points
satisfying the inequality |z2—z,| </ are exterior points, it is possible to find a
sequence (¢,) such that ¢, is an interior point or a boundary point and
[¢n—2|<2~"; and, whether ¢, is an interior point or a boundary point, it is
possible to find an nterior point ¢, such that i/ — (¢ |<27"; so that
| ¢n — 20| <277, and z, is the limiting point of the sequence ¢, ; therefore z is
an interior point or a boundary point; this is contrary to hypothesis; there-
fore, corresponding to any particular point zy, a number % exists. The theorem
is therefore proved.

A continuum is called an™ open region, a continuum with its
boundary is a closed region.
Example. Let S be a sct of points z (=x+1iy) defined by the relations
Ly <8< &y Y=L @) 47 covviiriiiiniiiiiniiine (1),

where f is one-valued and continuous, r takes all values such that 0 <r <k, and
k is constant. Then the set of points S forms a continuum.

12 See note 8 on p. 4.
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Let 2’ be any point of §, so that
<& <z, y=f@@)+r, where 0<r <4#

y=Aflz)+k

Xo

. ry
Choose ¢ > 0, so that
e <1 < h~2€ vinniiiiiiiiiiineiiannnns creeeees (2).
Since f is continuous we may choose 8§ > 0, so that
[F@)=f ()] < €rvrenninianiniiinineinienannn, (2a),
when |z—#'| < 8. It is convenient to take § so small that
To+d <o <ay—98 ..., peeererneeriisareaens vou(3).
Then z, < & < 2y since |x—2"| < 8. ’
Also, when |z-2"| <39,
f@)—e< f(2) < f(@)+e...... et (3a),
so that*if ¥ be any number such that
. Y—e <Y<Y teiiniiiininniinnniina, 4),
then SE@)+7 —e <y <f@)+r+€ cuniiiiiiiinniniinnnn. (4a).

Adding (2), (3a) and (4a), we see that
F@) <y <f(@)+k

Therefore the point z=x+1y, chosen in this manner, is a point of the set S.
Hence, if § be the smaller of & and ¢, and if

lz—-2'| < ¥,
the conditions (2a) and (4) are both satisfied, and hence z is a member of the
set. The first condition for a continuum is, consequently, satisfied.
Further, the points 7, 2’ (for which #’ <#”), belonging to .S, can be joined
by the simple curve made up of the two curves defined by the relations
(i) =2, @<YSY+r'-r),
(ii) m=f(2)+7", (@ <r<a” or 2" Lx <)
Hence § is htinyym,
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6. LemMA. Any limiting point @ of a set of points on a simple curve
lies on the curve.

Take any sequence of the set which has @ as its unique limiting point;
let the parameters of the points of the sequence be ¢, ¢,,.... Then the
sequence (¢,) has at least'® one limit =, and ¢, <+ < 7. Since #(¢), y (¢) are
continuous functions, lim «x (2,)=2 (7), lim ¥ (¢,)=y (r); and (#(7), ¥ (r)) is on
the curve since ¢, <7 < 7'; i.e. @ is on the curve.

Corollary. If @, be a fixed point not on the curve, the distance of @, from
points on the curve has a positive lower limit 8. For if 8 did not exist we
could find a sequence (2,) of points on the curve such that @, P, , 1 < 3@ Py,
so that @, would be a limiting point of the sequence and would therefore lie
on the curve.

TuroreM 1. If a point is of order n with respect to a closed simple
curve, all points sufficiently near it are of order n.

Let @, be a point not on the curve and @, any other point.
'Then the distance of points on the curve from @, has a positive lower
limit, 8 ; so that, if @,Q, <38, the line @, @, cannot meet the curve.

Let ¢ be the parameter of any point, P, on the given curve, and =
the parameter of a point, @, on Q,Q,, and 6 (¢, =) the angle QP makes
with the axis of  ; then 6 (¢, ) is a continuous function of =, when # is
fixed; therefore

0(t+ow,7)-6(¢, 1)
is a continuous function™ of =; but the order of a point (being an
integer) can only vary per saltus; therefore (¢ +w, 1) —0(f,7) is a
constant, so far as variations of = are concerned ; therefore the orders
of @,, §, are the same.

The above argument has obviously proved the following more
general theorem:

Tueorem [I.  LF two points Q,, Q, can be joined by a simple curve
having no point in common with a given closed simple curve, the orders
of Qo, Q, with regard to the closed curve are the same.

"The following theorem is now evident :

TueoreM III. If two points Q,, Q. have different orders with
regard to a given closed simple curve, every simple curve joining them
has at least one point in common with the given closed curve.

TraeoreM IV. Within an arbitrarily small distance of any point, P,,
of a reqular closed curve, there are two points whose orders differ by unity.

The curve consists of a finite number of parts, each of which can be

13 Young, Sets of Points, pp. 18, 19. 14 See note 11 on p. 6.
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represented either by an equation of the form y =/ (2) or else by one
of the form =/ (y), where f is single-valued and continuous. First,
let P, be not an end point of one of these parts.

Let the part on which P, lies be represented by an equation of the
form y = f(z); if the equation be 2=/ (), the proof is similar.

/‘ N

P(l

y=Alz)

/
7 /
Z/// |
B,

The lower limit of the distance of P, from any other part of the
curve® is, say, »,, where r;, > 0.

Hence if 0<7» <7, a circle of radius », centre P,, contains no
point of the complete curve except points on the curve y=/f(); and
the curve y =f (z) meets the ordinate of P, in no point except P,.

Let B be the point (@, ¥, + 7), B, the point (2, 3o — 7).

If P be any point of the curve whose parameter is ¢ and if 6 (¢), 6, (¢)
be the angles which BP, B, P make with the 2 axis, it is easily verified
that if BP =p, B\P =p, and ¢ =6 (t) —6,(?),

—_ —_ 2 — 2 a2
sin ¢p=— 2£(LZ‘—+‘@) , €OS ¢ = (i_. ""’_)igi/__’bzm 7 .
PPy PP
If o be the period of the pair of functions « (¢), y (¢) and if & be so
small that the distances from P, of the points whose parameters are

t,+ 8 are less than », then®, if x (¢, + 8) > 2 (¢,),
<I’(t(’)=(2nl'+ l)ﬂy ¢(t0+8)>(2n1 +1)”’
P(toto-8)<(2n+1)m, ¢ (ty+w)=(2ny+ 1)
3% If a positive number r; did not exist, by the corollary of the Lemma, P,
would coincide with a point on the remainder of the curve ; i.e. the complete curve

would have a double point, and would not be a simple curve.
18 It z(to = 8) < z(t), the inequalities involving ¢ have to be reversed.



6] ANALYSIS SITUS 11

But when 4, <t <¢,+ o, sin ¢ vanishes only when z-a2,=0, and
then cos ¢ is positive since (2 — 2o)? + (¥ — ¥,)* > 7

Hence ¢=(2n +1)m when £,<# <1, + »; therefore since ¢ (¢) is a
continuous function of ¢, n,—n, =0 or + 1. But n, % n,; for if n,=n,
then ¢ (4, +8) > (2n, + 1), ¢ (f,+ 0 —8) < (2n,+ 1) 7 and ¢(¢) would
equal (2n, + 1) = for some value of ¢ between ¢, + 8 and ¢, + w — 8.

Therefore #, — 7, =+ 1, and consequently

{0 (20 + w) =6 (2)} — 16, (£, + ©) — 6, ()} = D (f + ©) — ¢ (f,) = + 2,
that is to say the orders of B, B, differ by unity.

The theorem is therefore proved, except for end points of the curve.

If P, be an end point, a point P, of the curve (not an end point)
can be found such that P, P, is arbitrarily small; then P,B < P,P,
since PyB <r, < P,P,, and therefore P, B <2P,P,, so that P,B, and
similarly P, B,, are arbitrarily small; since the orders of B, B, differ
by unity the theorem is proved.

TreoreM V. (1) If two continua C,, C, have a point @ in common,
the set of points, S, formed by the two continua is one continuum ; and
(11) ¢f the two continua C., C, have no point in common, but if all points
sufficiently mear any point, the end points excepted, of the elementary
curve y=f(z), (2, Sz < zy), belong to C, or to Cs, or to the curve, the
points sufficiently near and above? the curve belonging to C, and those
sufficiently near and below it to C,, then the set of points S consisting
of C1, C; and the curve (the end points excepted) is one continuum.

(i) Let P be any point of 8; if P belong to, say, C, all points
sufficiently near P belong to C, and therefore to S. Hence S satisfies
the first condition for a continuum. Again if P, P’ be any two points
of 8, if P, P’ belong both to C; or both to C,, they can be joined by
a simple curve lying wholly in C, or C,, i.e. wholly in 8. If P belong
to C, and P’ to O, each can be joined to @ by a simple curve lying
wholly in 8. If the curves PQ, P’ have no point in common, save
Q, PQP’ is a simple curve lying in §. If PQ, P’'Q have a point in
common other than @, let P, be an arc of @ such that @, lies on
P’'@ but no other point of P@), lies on P'Q.

[The point @, exists; for a set of points common to both curves exists :
let = be the lower boundary® of the parameters of the set, regarded as points
on P@; by the lemma given above, the point @; with parameter r is on both
curves, and satisfies the necessary condition.]

17 The terms ‘above’ and ‘below’ are conventional : (z, y) is above (x, y’)
ify >y’

18 The lower boundary exists. Hobson, Functions of a Real Variable, p. 58.
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Then PQ,, @, P’ are simple curves with no point in common save @.
Hence P@, P’ is a simple curve lying wholly in 8. In either case, §
satisfies the second condition for a continuum. Hence §is a continuum.

(i) Let the curve be AR ; draw CED parallel to Oy through any
point £ of AB (the end points excepted). If C and D be sufficiently
near to AB, C belongs to C, and D to C..

Then all points sufficiently near any point of C; or of C, belong
to §'; and all points sufficiently near any point of 4B (the end points
excepted) belong to S. Hence 8§ satisfies the first condition for a con-
tinuum. '

Let P, P’ belong to S. Then either™ (a) £, £’ both belong to C,
or to C,; (b) P belongs to C,, P’ to C:; (¢) P belongs to C,, P’ to
AB ; (d) P, P’ both belong to AB.

In cases (a) and (d), PP’ can obviously be joined by a simple
curve lying wholly in S. In case (b), simple curves />C, CD, DP’ can
be drawn lying in S, and a simple curve can be drawn joining PP'.
In case (c), simple curves PC, CE, EP’' (the last being an arc of 4B)
can be drawn lying in S, and a simple curve can be drawn joining
PP’. Hence S always satisfies the second condition for a continuum.
Therefore S is a continuum.

THEOREM VI. Given a continuum R and an elementary curve AB,
then : (@) If R contain all points of the curve except possibly its end
points, which may lie on the boundary of R, the set, R~, of points of R
which do not lie on AB form, at most, two continua.

(b) If one or both end points lie in R, R~ s one continuum.

(a) Let the equation of AB be y=/(«). Through any point of
AB (not an end point) draw a line CD, parallel to Oy, bisected at the

1 There are several other cases which are obviously equivalent to one of these;
e.g. P belongs to Cs, P’ to AB.
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point on A B, and lying wholly in- B; choose C, D so that the ordinate
of Cis greater than the ordinate of ).

Then R~ satisfies the first condition for a continuum (for if z, be a
point of B~ we can choose 8 so that all points satisfying | 22z, | <8
belong to R, and since z, is not on 4 BB, we can choose & smaller still if
necessary, so that no point, z, of 4B satisfies | 5—2, | <8'). Also R-
satisfies the second condition unless a point P of R~ ewxists which
cannot be joined to 1) by a simple curve lying wholly in B-. For if there
is no such point, then if £, P’ be any two points of R-, they can each
be joined to D by a simple curve ; if these two curves do not intersect
except at D, PDP’ is a simple curve ; if the two curves do intersect,
let @ be the first point of intersection arrived at by a point which
describes the curve #0). 'Then PQ, QP’' are two simple curves with
no point in common except €, so that PQP’ is a simple curve lying
wholly in R~ ; hence R- satisfies the second condition for a con-
tinuum.

Otherwise, join £ to D by a simple curve lying wholly in £ ; then
this curve has at least one point not in R~ ; i.e. it has at least one
point in common with AB.

Let E be the first point on 48 which is reached by a point
describing the curve 1) ; so that PJ has no point on 4B except £.

Choose an are A'B' of AB, which contains £ but not 4 or B.
Construct two continua N+ and N~ above and below A'B’ respectively
as in the example of § 5, each continuum lying wholly in R. Then
N*, N- and the curve A'B’ with the end points omitted obviously
form one continuum, so that if a point F be taken on EP sufficiently
near £, it will lie on N+ or N~ ; for F cannot lie on A'B’. Suppose
that F lies in N-; choose a point G on CD lying in N~ ; then FG
can be joined by a simple curve lying in N~. Now PF, FG, GD are
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three simple curves lying in N* and V- ; and hence a simple curve
PFGD can be drawn lying in N* or N~ ; i.e. PD has been joined by
a simple curve lying in R~ ; but this is impossible. Hence # must lie
‘in N*: and then it can be shewn by similar reasoning that P can
be joined to C by a simple curve lying wholly in B-.

Hence the points of R~ can be divided into two sets :

(i) The points which cannot be joined to D by a simple curve
lying wholly in B~ ; these points can be joined to C by a simple curve
lying wholly in B~

(ii) The points of R~ which can be joined to D by a simple
curve lying wholly in £-.

Each of these sets is easily seen to satisfy both the conditions for a
continuum. Hence the points of R~ form at most two continua.

(b) If Bliesin R, aline BB, may be drawn parallel to Oz lying
wholly in B. Then by (@) the points of R not on 4 BB, form at most
two continus ; if they form only one continunm, the theorem is
granted ; for this continuum with the points on BB, (B excepted)
‘forms one continuum ; if they form two continua®, these two continua
with the boundary points BB, (B excepted) form one continuum by
Theorem V.

7. THE MAIN THEOREM. The points of the plane not on a given
regular closed curve form two continua of which the entire curve is the
complete boundary.

Within an arbitrarily small distance of any point of the curve
there are two points of different orders with regard to the curve, by
Theorem IV of § 6. Hence by Theorem III of § 6, the points of the
plane not on the curve form at least two continua. Divide the curve
into a finite number of elementary curves and take these in the order
in which they occur on the curve as ¢ increases from £, to 7'; then by
the second part of Theorem VI of § 6 each of these elementary curves,
except the last, does not divide the region consisting of the plane less
the points of the elementary curves already taken; the last divides
the plane into a¢ most two continua, by the first part of Theorem VI
of §6. Hence there are ezactly two continua ; and the points of these
two continua are of different orders with regard to the curve.

20 Tt is eagily seen that if there are two continua the points of one of them,

which are sufficiently near BB,, are above BB, while the points of the other, which
are sufficiently near BB, are below BB,.



6-8] ANALYSIS SITUS 15

Any point of the curve is a boundary point of either continuum,
by Theorems III and IV of §6 ; and any point not on the curve is a

point of one continuum by Theorem I of §6, and is therefore not
a boundary point.

8. THeoreM 1. Al sufficiently distant points are of order zero
with regard to a given regqular closed curve.

Let P (2, y) be any point on the curve, and P, (z,, ,) be any other
point ; the angle which 2P, makes with the axis of 2 is given by

cos O=«x(z—a), sinb=x(y-uy),
where k={(—a) + (y—p) L

If 2.2+ y,* be sufficiently large, either | 2,| or |y, | must be so large
that either cos 6 or sin 0 never vanishes; hence the change in A as P
goes round the curve cannot be numerically so great as = ; but this
change is 2nr where n is an integer and is the order of P;; hence n=0.

That continuum which contains these sufficiently distant points
is called the exterior of the curve ; the other continuum is called the
interior.

Since the order of any point of the interior of a regular closed
curve differs from the order of any point of the exterior by unity, the
order of any point of the interior is + 1. If the order of any point of
the interior is + 1, we say that the point (# (¢), v (¢)) ‘describes the
curve in the counterclockwise direction as ¢ increases from ¢, to 7'

If the order be — 1, we say that the point describes the curve in the
clockwise direction.

Let ¢'=—¢; and let 6'(¢') be the angle that AP makes with the
axis of z, 4 being a point of the interior and P being the point whose
parameter is ¢ or ¢.

Then 6’ (¢#') — 6 (¢) = 2m, and, if we take 6'(¢') to vary continuously
as ¢ varies continuously, m is constant, since m can only vary per
saltus. Consequently

9" (= T+w)=0" (= T)=—1{6(t + w)— O(t,)}.

Therefore the order of the interior point when ¢ is the parameter is
minus the order of the point when ¢ is the parameter.

DEFINITION. Oriented curves, Orientation. Let P, S be the end
points of a simple curve. Let one of them, say P, be called the first
point. If @, R be two other points on the curve @ is said to be
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before R if tp <tg<tgor if tp>ty>tg. The points of the curve have
thus been ordered™. Such an ordered set of points PS is called an
oriented curve ; it differs from the oriented curve SP in which 8§ is the
first point.

Two oriented curves C,, C, with a common arc o have the same
orientation if the points of o are in the same order whether o is
regarded as belonging to C, or to C,. If the points are not in the
same order, the curves have opposite orientations.

It is easy to see that if P, ¢, R be three points on a regular closed
curve, the curves PQRP, PRQP have opposite orientations.

We agree to choose the parameter of an oriented curve so that the
first point has the smallest parameter. This can be done by taking a
new parameter ¢ =— ¢, if necessary.

It is convenient always to choose that orientation of a elosed curve
which makes the order of interior points +1; that is to say that an
oriented closed curve is such that a point describes it counterclockwise
as ¢ increases from £, to £, + .

TrEOREM 112 Let two continua R,, R, be the interiors of two
regular closed curves Cy, C; respectively. Let a segment o, of C,
coincide with « segment o, of Cy; then (1) if Ry, R, have no point in
common the orientations of oy, o, are opposite ; and (ii) of R, be wholly
interior® to R,, the orientations of o, o, are the same.

(i) If the orientations of o, and o, are the same, by Theorem IV
of §6 it follows that arbitrarily near any point P, of oy and o, (not an
end point) there are two points B, B’ such that the order of B with
regard to either C, or C; exceeds that of B’ by unity ; so that B is an
interior point of both curves which is impossible. Hence the orienta-
tion of o, is opposite to that of o,.

(i1) If the orientations of o, o, are different, we can find
points B, B’ arbitrarily near any point P, of ¢; and o, such that
(a) the opder of B’ with regard to C, exceeds that of B by +1, (b) the
order of B with regard to C, exceeds that of B’ by + 1. Consequently
B is a point of R, but not of R,; this is impossible. Hence the
orientations of oy, o, are the same.

)

21 Hobson, Functions of a Real Variable, § 122.

Nmee points out that Goursat tacitly assumes this theorem.
3 I.e. if every point of R, is a point of Rj.



CHAPTER 1II

COMPLEX INTEGRATION

§ 9. The integral of a function of a real variable; extension to complex
variables ; restriction of the path of integration.—§ 10. Definition of a
complex integral.—§ 11. Existence theorems.—§ 12. Goursat’s lemma.
—§ 13.  Various simple theorems.

9. The integral’ of a continuous function, f(2), of a real
variable #, is defined by means of the limit of a sum in the following
manner :

Divide an interval ¢ to b (a <b) into 2* equal parts and let y, be the »th
part. Let H,, A, be the upper and lower limits of f(z) in y,; let

n b-a » b-a
S”=TE1H,. . _E_)‘—n_— 5 8n=r2=1}br. -én— .

Then (8,) is a non-increasing sequence and (8,) is a non-decreasing sequence,
and S, > s, ; consequently S, s, have finite limits as n - o0 ; and if f(z) is
continuous it can be proved that these two limits are the same ; the common
value of these two limits is called the integral of f(x) taken between the
end-values or limits ¢ and b, and is written

b
[ 1@ a.
a
Further, it can be shewn that if ¢ is arbitrary, a number & can be found such
that if the interval a to b be divided into anry sub-intervals n,, n,, ... 5, each
less than §, and if &, be any point in the rth interval, then

[} r@yde= 3 npien| <«

When we study the theory of functions of complex variables, we
naturally enquire whether it is not possible to generalise this definition ;
for the interval @ to b may be regarded as a segment of a particular
curve in the Argand diagram, namely the real axis.

! Bromwich’s Theory of Infinite Series (1908), §§ 157-163, should be consulted ;
the analysis given above is quoted from § 168.

W. C. L 2
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This suggests that we should define the integral of a continuous
function, f(2), of the complex variable 2, taken along a curvilinear
Ppath 4B in the Argand diagram by the natural extension of the above
-definition, namely that the integral of f(z), taken between the limits

% and Z, is the number § (if that number exist) such that it is possible
to make

S- rEO (zr+l - zr)f(zr/)

less than an arbitrary positive number € by taking v points 2, %, .- %
in order on the curve 4 B (z,4; being interpreted as meaning Z) in any
way such that

| Zpp1 -2 | <8 for r=0,1,2,...v,

8 being a number depending on € (so that v alsp depends on ¢), and
the point z,’ being any point on the curve between z, and z,.4,.

[Note that we do not say

S=lim 3 (2.,—2)/(),
v r=0

because the summation on the right is a function of 2v + 1 independent

variables 2, 2, ... 2,, 2, 27, .. ,, and 80 § is not an ordinary limit of

a function of one variable.]

It is, however, necessary to define exactly what is meant by the
phrase ¢points in order on the curve 4B’

To ensure that the limit, by which we shall define an integral, may
exist, we shall restrict the curve on which the points 2y, z,, ... lie, to
be an ‘ oriented simple curve.” And a further restriction is convenient,
namely that the curve should have limited variations®; that is to say
that thé functions 2 (¢), y (f) should have limited variations in the
interval ¢, to 7.

[It can be proved 3 that a necessary and sufficient condition that a simple
curve should have a finite length is that it should have limited variations, but
this proposition will not be required ; the lemma below will be sufficient for
the purposes of this work.]

A function f (2) of a complex variable z is said to be ‘continuous
on a simple curve’ if f(z) is a continuous function of #.

2 Young, Sets of Points, §§ 140-141. Jordan, Cours d’Analyse, t. 1. p. 90. It
will be obvious that the definition may be extended to cover the case when the path
of integration consists of a finite number of simple curves with limited variations.

3 Young, Sets of Points, § 167.
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We can now prove the following important lemma :

LemMA.  Let 2y, 2y, 2s, ... Zurr be any sequence of points in order

n
on a simple curve. Then 2 |(2,..— 2.)| is less than or equal to the sum
=0
of the total variations of z (t) and y () as t varies from t, to t,.,.

Since the modulus of a sum does not exceed the sum of the
moduli, it follows that

2 ()l = 3 @)+ @ =90l
S 3 [[(@ra=2) |+ 14 (G =0} ]
gr% Ha(tn) -2 ()} |+ E Hy (&) =y @ .

But ¢,.,,>1¢,, since the points 2y, 2;, 2, ... are in order; and
consequently the first of these summations is less than or equal to
the total variation of «(¢), and the second suinmation is less than or
equal to the total variation of y(2); that is to say, 3| (2,1 —2,)] I8
less than or equal to the sum of the total variations of @ (¢) and ¥ (¢).

10. We are now in a position to give a formal definition of a
complex integral and to discuss its properties. The notation which
has been introduced in §§ 2, 4 and 5 will be employed throughout.

DEeFINITION. Let AB be « simple curve with limited variations
drawn in the Argand diagram. Let f(z) be a function of the complex
variable z which is continuous on the curve AB. Let z, be the
complex coordinate of A, and Z the complex coordinate of B. Let a
sequence of points on AB be chosen, and when n of these points have
been taken, let the points taken in order be called =™, z,™, ... 2,™ (so
that if m > n, 2;™ s one of the points z,™, 2™, ... 2™, . ); the sequence
of points may be chosen according to any definite law whatever?, pro-
vided only that the points are all different and that, given any positive
number 8, we can find an integer n, such that when n = n,,

0 < tr+1(") - tr(") < 8:
where r=0,1,2,...n and t™=ty, ¢, ,"=T.
4 If ty=0, T=1, the simplest law is given by taking t,(*), £,™,...¢,(™ to be

the first » of the numbers 3; 3, 2; ¥, & §, §; ... when these n numbers are
rearranged in order of magnitude.

22
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Then the complex integral f:f (2)dz is defined as meaning the
Jollowing limit :
[7 ) da= lim [ =2 7 (289 + (289 = 5 f ()
+ (2" = 2) f(2) + ... +(Z - 2a) S (2a)]
= lim §o [(2r0s™ — 2,) £ ()]

n=x r=

[It is permissible to speak of the limit of
2 [(zra® = 2,) £ ()]
r=0

because these expressions form a sequence (depending on %), each member of
the sequence being determinate when the form of f and the law, by which
the points 2z are chosen, are given.] *

The integral is said to be taken along the path 4B, and the path
A B is usually called the contour of integration; and if the path AB

B
be called C, we sometimes write L S (2)dz in the form f( B S(2)dz or

faf(z)dz.

11. It is next necessary to prove (Theorem I) that the limit, by
which an integral is defined, exists.

When we have proved Theorem I we shall prove (Theorem II) that
if a positive number ¢ be taken arbitrarily, it is possible to find a
number 8, such that, when any v numbers ¢, 4, ... ¢, are taken so that
LSSt <t <ty =Tand ty,,— £, <8 (p=0, 1, ... v), and when
T, is such that ¢, < T, <¢,,,, then

] /”f(z)dz— 3 (pn—2) F(Z) | <.
A . p=0

TrporeM L Let Sy(2)= 3 [(3r0® — 2,%) £ (™)]; then lim S, (2)
r=0 il
exists.. "
To prove the existence of the limit, we shall prove that, given

an arbitrary positive number ¢, we can choose an integer n such that,
when m > n,

| 8n(2) = 8a(2)] < e
This establishes® the existence of lim &, (2).

5 Bromwich, Theory of Infinite Series, §§ 8, 75, 151.
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Let L be the sum of the total variations of  (¢) and y (¢) for the
interval ¢, to 7 of ¢.

In virtue of the continuity of f(z) gu« function of ¢, corresponding
to an arbitrary positive number ¢, we can find a positive number 8 such
that, if 2 be any particular point on 4B, and if 2 be on A B, then®

| (@)= F(2) | ST/l i (5)
whenever |#' —¢| <8 ; it is obvious that, in general, 8 is a function of ¢.

Let us assume for the present” that, when e is taken arbitrarily, a
number 8, (independent of ¢, but depending on ¢) exists, such that, for
all values of ¢ under consideration,

8§>68,>0;
that is to say, we assume that f(z) is a uniformly continuous® function
of ¢.

Now choose = so large that

. 0 <#..,M—1¢M<8,
for r=0, 1, 2, ... n; this is possible by reason of the hypothesis made
concerning the law by which the numbers ¢, were chosen.

Let m be any integer such that m > n ; and let those of the points
z,™ which lie between z,™ and z,™ be called z, o, 25,0, +++ Zm,+1,0, Where
2, 0=%", Zmyu, o =%™ ; and, generally, let those of the points z,™
which lie between 2™ and z,,," be called 2, ,, 25 », -+ 2 4+1,r, Where

2, = Z,-(”), L1, = zr“"".
n
Then S" =3 [(zrn(") - zr(n))- .f (zr("))]
r=0
n my.
= 3 { 3 (Zewr, » — %, r)} f(z'(")):l’
r=0
since the points 2, , are the same as the points 2.
‘”l
Also Su= z 2 M=) S ,)}]
n "lr

SO th&t i (S,, - ym) ‘ = 331 (z«+l, r = Zs, r) { .f(zr(n)) _.f (zs, r) }] I

n My

s 2 2 | (#enr, » = 25, ) S (@) = f (20, )} .

r=08
% The reason for choosing the multiplier } will be seen when we come to
Theorem II.
7 A formal proof is given in § 12.
¢ The continuity is said to be uniform because, as ¢’ = ¢, f(2’) tends to the limit
Jf () uniformly with respect to the variable ¢.
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But #..,">¢, ,.>¢™, so that 0 <#, ,—£™ <8, and consequently
n My m
If(z,.(")) "'f(zs, IR '}‘/Ly also 20 = llzu.l,r"'za.r l = 20’ Zp™ =2 |;
r=0 8= r=

and consequently
my.

|8u=8 | < 3 3 |~ 50 FeL7]
r=0 s=1

m

< ieL—l 20 i (zr+1(m) — :r(m)) l
r=

<le,

m
since 2 [ (rra™ =2 < L,
=0

by the Lemma of § 9. 'That is to say that, given an arbitrary positive

number ¢, we have found » such that when m>n, | S, -8, | <¢; and
consequently we have proved that lim S, exists; the value of this

n-—»wo

limit is written

L 7 F(2)ds.

We can now prove the following general theorem :

TaeoreM II. Given any positive number €, it is possible to find
a positive number 8, such that, when any v numbers t,, t,, ... t, are
taken so that 0 < ty,,—t, <8, (p=0,1,...v, and t,,,=T), while T, is
suck tmt tp < Tp < tp-H) then

| VA v
| [ 7@~ 3 o) /) | <o

2p, Zy being the points whose parameters arve t,, T, respectively.

Choose & and 7 to depend on e in the same way as in the proof of
Theorem I ; we shall prove that it is permissible to take 8 =3,.

For, assuming that 0<#,,,—~¢,<8&, we can find an integer r
corresponding to each of the numbers #,, (p+v + 1), such that
t,™M<t, <t,,,™; let the numbers ¢, which satisfy this inequality for
any particular value of » be called in order ¢, ,, £, ., ... t,, r.

Then we may write
péo [(zpn - zp)f(Zp)] = éo [(zl, »= zr(")) f(Zo, r) + (zz,r - zz.r)f(Z;,r)
+ (20— 20,0) [ (Zo, ) + oo + (Zrd™ = 2,0) S (Zy,, 0]
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The following conventions have to be adopted in interpreting the
summation on the right-hand side:

(i) to,»< Ton <t,-; where £,, means that number of the set
t, t, ... t, which immediately precedes ¢ ,.

(i) tx,»< Tw, r <ty r; where £, ., . means that number of the
set £, ¢, ... ¢,,1 Which immediately follows ¢y, ..

(iii) If, for any value of 7, there is no number #, such that
8™ < ¢, <t,,,", the term of the summation corresponding to that
value of 7 is (2,.,™ - 2,M) f(Z, ,), where ¢, . < Ty <%, ,and &, &, »
are respectively the largest and smallest numbers of the set ¢, &, ... tva
which satisfy the inequalities

t(}, r < tr("v)’ tl, r 2 t1'+1(n)'

With these conventions, if S, has the same meaning as in
Theorem I, we may write

(Zpsr =) S (Zp) — S,

- .%o [z, = 2" (Zo, o) = F (D) + (Ray v = 2, IS (2, ) = S (2 ")}
+ot (2 = 2y, NS (Zy,, ) = F ("5

if for any value of », there is no number £, such that ¢™ <3, <¢,.,",
the term of the summation corresponding to that value of r is

(e = 20| f (Z, ) = f (@)

Nowif s=0,1,... N,, we have

=N
I M=
)

T <ty ,+08 <t ,M+8 <™+ 28,
and Tor 2ty =8 2808
hence | T, — 2,0 | <28,.
Therefore, if ¢ =3(T, »+t™), we have
| T, . —t'| <8, [¢ =8| <8;

so that, since the modulus of a sum does not exceed the sum of the
modauli, .

l f(Zo. 1')" .f(:r(n,) l < I .f(Za, r) - f(z,) ' + l f(z')—-f(z,.("))
‘ S 3el7,
by equation (3) of Theorem I.
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It follows that
4 n
pzo(zm—zp)f (Zy) — 8u| s 20[ | (21, =2")|. §eL?
= . r=
+|(zr—21,,) ] - 3L + s + | (2r ™ =2y, ) |- del™]
n
< %‘L—l 20 [ I (zl, r _z’_(n)) ' + l (z'.‘, r %, 'r) [ Foeet I (zr-g-l(n) "‘ZN,., 7‘) { ]
r=
Now, by the Lemma. of §9, the general term of this last summation
is less than or equal to the sum of the variations of # (f) and y(f) in
the interval ¢,™ to £,.,,™, since the points
2", 21y Zory e AN, Ty Zp ™

are in order; and, hence, since the numbers 2™, £, ... ¢,,,™ are in
order, the whole summation is less than or equal to the sum of the
variations of « (¢) and y (¢) in the interval £™ fo #,+,®” ; that is to say

§0(z,,+1 ~2) f(Zy) — Su | <L x L
’ < e
But, by Theorem I, with the choice of # which has been made
| S =8, <16
when m>n. Hence, since ¢ is independent of m,
| ( lim 8,) -8, | < d¢

<ie

L Z @) dz-8,

Therefore
I / L@ e 3 (spam2) f (Zp)\
2 »=0

<

4 v
[ r@ds=s. 418 £ Gpa=2) £ (2]

< de

"That is to say that, corresponding to an arbitrary positive number
¢, we have been able to find a positive number &, (namely, the number
denoted by- 8, in Theorem I), such that if

0<tyy1—2,<8, (p=0,1,2,...7, and £,,,=T),

then [[r@ds= 3 a1 <e
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From this general theorem, we can deduce the following particular
theorem :

Taeoren 1L The value of fzf(z) dz does not depend on the

particular law by which the points 2™ are chosen, provided that the law
satisfies the conditions of § 10.

Let points chosen according to any other law than that already con-
sidered be called £,¥, (p=0, 1, ... v; &M = 2y, &1/ = Z) ; then if = be
the parameter of the point ¢, we can find a number v, such that when
v>vy, 0< 7, =70 <8 ; hence we may take the numbers ¢, of
Theorem II to be the numbers =,® respectively, and we will take
Z, =W ; therefore, by the result of Theorem II,

| 12z v
[ 7@ s 3 (@t - 40) f@0] | <

and, corresponding to any positive number e, we can always find the
number v, such that this inequality is satisfied when v > v,.

Therefore lim 2,,0 [(&p i = &) £ (&™)]
y-=o p=

z
exists® and is equal to / f () dz, which has been proved to be the
Zo
value of
n
m 3 (2,0, —2,") F (™) ;
0

N> P=

and this is the result which had to be proved, namely to shew that the

2

value of | f(2)dz does not depend on the particular law by which we

choose the points z,.

12. It was assumed in the course of proving Theorem I of §11
that if a function of a rcal variable was continuous at all points of a
finite closed interval, then the function was uniformly continuous in
the interval.

A formal proof of this assumption is now necessary ; but it is
expedient first to prove the following Lemma. The lemma is proved
for a two-dimensional region, as that form of it will be required later.

9 Bromwich, Theory of Infinite Series, § 1.

10 Tt was pointed out by Heine, Crelle’s Journal, vol. Lxxr (1870), p. 361 and
vol. Lxxiv (1872), p. 188, that it is not obvious that continuity implies uniform
continuity.
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GoURrsATs LEMMALL  Given (i) u function of position of two poiuts P', P,
which will be written {P', P}, and (ii) an arbitrary positive number €; let a finite
two-dimensional closed region'? R have the property that for each point P of R
we can choose a positive number 8 (depending on the position of P), such that
[{P’y P}|<e whenever the distance PP’ is less than or equal to 8, and the
potit P’ belongs to the region.

Then the region, R, can be divided into a finite number of closed sets of
points such that each set contains at least one point P, such that the condition
[{P', P}|<e is satisfied for all points P’ of the set under consideration.

If a set.of points is such that for any particular positive number ¢, a point

P, can be found such that

P, Pyl <e
for all points P’ of the set, we shall say that the sct satisfies condition (A).
A set of points which satisfies condition (A) will be called a switable set.

Let R~ be the continuum formed by the interior of B; take any point
of R~ and draw a square, with this point as centre, whose sides are parallel
to the axes, the lengths of the sides of the square being 2L, where L is so
large that no point of £ lies outside the square.

If every point of R satisfies condition (A), what is required is proved.
If not, divide the squarc into four equal squares by two lines through its
centre, one parallel to each axis. Let the sets of points of £ which lie either
inside these squares or on their boundaries be called a,, as, a;, a4 respectively
of which a;, a, are above a3, ay and a;, a3 are on the left of ay, ay.

If these sets, a;, ag, a;, a4, each satisfy condition (A), what is required is
proved. If any one of the sets, say a;, does not satisfy condition (A), divide
the square!3 of which q, forms part into four equal squares by lines parallel to
the axes ; let the sets of points of 2 which lie inside these squares or on their
boundaries be called B, 8,, 3; (in the figure one of the squares into which
a, is divided contains no point of R).

If condition (A) is satisfied by each of the sets, we have divided a, into
sets for which condition (A) is satisfied ; if the condition (A) is not satisfied
by any one of the sets, say B3, we draw lines dividing the square (of side 3L),
of which B; forms part, into four equal squares of side }Z.

This process of subdividing squares will either terminate or it will not ;
if it does terminate, R has been divided into a finite number of closed sets of
points each satisfying condition (A), and the lemma 18 proved.

Suppose that the process does not terminate.

A closed set of points R’ for which the process does terminate will be said
to satisfy condition (B).

Then the set R does not satisfy condition (B); therefore at least one of the

11 This form of the statement of Goursat’s Lemma is due to Dr Baker.

12. Consisting of a continuum and its boundary.

18 A square which does satisfy condition (A) is not to be divided ; for some of
the subdivisions might not satisty condition (A).
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sets ay, ag, a3, a; does not satisfy condition (B). Take the first!? of them which
does not.

The process of dividing the square, in which this set lies, into four equal
parts gives at most four sets of points, of which at least one set does not
satisfy condition (B). Take the first of them which does not, and continue
this process of division and selection. The result of the process is to give
an unending sequence of squares satisfying the following conditions :

If the sequence be called 3y, 3, 3,, ..., then!®

o PTTIN

ﬂC\N o (
/
|
{

\
-
A

< AN
>
< ~
>
0
A
—J 4/

(i) The side of s, is of length 2-*L.
(i) No point of s, ,, lies outside s,.
(ili) Two sides of s, . lie along two sides of s,,.
(iv) s, contains at least one point of R.
(v) The set of points of R which are inside or on s, do not satisfy
condition (A).
Let the coordinates of the corners of s, be called
@0 g, (2,0, y,@), (&n®, M), (@, yu®),
where 2V < 2,0 g, < gy, @

Then (x,) is a non-decreasing sequence and (2,®) is a non-increasing
sequence ; and 2, —,(0=2-"L; therefore the sequences (x,d), (#,@) have
a common limit ¢ such that 2,00 &<, ; similarly the sequences (y,(1),
(yn?) have a common limit 5 such that g, <n <y.®.

Consequently (£, n) lies inside or on the boundaries of all the squares of the
sequence (8,); further, (£, n) lies inside or on the boundary of the region R ;

14 We take the first possible square of each group of four so as to get a definite

sequence of squares.
15 Cp. Bromwich, Theory of Infinite Series, § 150.
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for since s, contains at least one point of R, the distance of (§, n) from at
least one point of R is less than or equal to the diagonal of g, i.e. 27 "L 2.
Hence, corresponding to each square, s, there is a point P, such that

P, <2-"L~2,

where IT is the point whose coordinates are (£, n); this sequence of points
(Py) obviously has II for its limiting point ; and since the region R is closed,
the limiting point of any sequence of points of £ is a point of £. Therefore
II is & point of R.

Then | {P’, I1} | < € when P’ is a point of R such that P'II < &, where 3
is a positive number depending on II.

Choose » 8o that 2-"L 2 & 8 ; then all points, P’, of s, are such that
P'II < 8r; and therefore s, satisfies condition (A); which is contrary. to
condition (v).

Consequently, by assuming that the process of dividing squares does not
terminate, we are led to a contradiction ; therefore all the scquences terminate;
and consequently the number of sets of points into which £ has to be divided
is finite ; that is to say, the lemma is proved.

[The reader can at once extend this lemma to space of #» dimensions.]

In the one-dimensional case, the lemma is that if, given an arbitrary
positive number ¢, for each point P of a closed interval we can choose 8
(depending on P) such that |{P’, P}| < e when PP < §, then the interval
can be divided into a firite number of sub-intervals such that a point P, of
any sub-interval can be found such that | {P, P;}| < e for all points P of that
sub-interval ; the proof is obtained in a slightly simpler manner than in the
two-dimensional case, by bisecting the interval and continually bisecting any
sub-interval for which the condition (A) is not satisfied.

The proof that a continuous function of a real variable is uniformly
continuous is immediate. Let /(z) be continuous when e <2 <b; we
shall prove that, given ¢, we can find 8, such that, if 2/, 2 be any two
points-of the interval satisfying | ' —2"| < &, then | f (') - f(2") | <e.

For, given an arbitrary positive number ¢, since /() is continuous,
corresponding to any # we can find & such that

| (&)~ f(z)]| <}e when |2’ —z|<é.

Then, by the lemma, we can divide the interval & to b into a finite
number of closed sub-intervals such that in each sub-interval there is
a point, #,, such that | /(2') ~ f(«,) | < ¢ when 2’ lies in the interval
in which 2, lies.

Let &, be the length of the smallest of these sub-intervals; and
let 2, 2" be any two points of the interval @ < # < b such that

|&—2"|<8;
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then &/, 2" lie in the same or in adjacent sub-intervals ; if &, 2" lie in
the same sub-interval, then we can find 2, so that

| /(@) =S(@) | <t |f@")—f(a)|<ie
Hence | f(&)—=f (@) | <3}e
If &, 2 lie in adjacent sub-intervals let ¢ be their common end-
point ; then we can find a point z; in the first sub-interval and a
point #, in the second such that
@)= f@) | <te |FE)-Sl@)|<ie
[ f(@) =S (@) | <de [S(E)—S (@) ] <l
so that

| (@)= f@") | ={F @)= f @) =1 /)~ f(a)}
=1 (@) =S (@)} +{ ()~ S (@)} |

< €.

In either case | f(') - f(2") | < ¢ whenever |« — 2" | <§,, where §,
is independent of ', & ; that is to say, /() is uniformly continuous.

18. Proofs of the following theorems may be left to the reader.
1. If AB be a simple curve with limited variations and if f(z) be con-
tinuous on the curve 4B, then

fjf(z)dz:—/:f(z)dz.

That is to say, changing the orientation of the path of integration changes
the sign of the integral of a given function.

II. If C be a point on the simple curve 4B, and if f(z) be continuous on
the curve, then

[rea=[raa+[ rea

T If 7 and Z be the complex coordinates of 4 and B respectively, and
if AB be a simple curve joining 4, B, then

B
f dz=2Z—2z,. -
4

IV. With the notation of Theorems I and II of § 11, by taking z,=2,0),
and Z, in turn equal to 2, and z,,,™), it follows that

B n
f zdz=% lim 3 [(z,4,M —2,0) 2,0)]
A n-=w r=0
n
+4 lim 2 [(z 1™ = 2M) 2,4, ]
n-» o r=0

n
=} lim 2[5, ) (502
n~ o r=0

=-§ (ZZ_, 202).



CHAPTER III

CAUCHY'S THEOREM

§ 14. The value of an integral may depend on the path of integration.
—§ 15. Analytic functions.—§ 16. Statement and proof of Cauchy’s
Theorem.—§ 17. Removal of a restriction introduced in § 14.

14. Let €, C; be two unclosed simple curves with the same end-
points, but no other common points, each curve having limited varia-
tions. If 2,, Z be the end-points and if /(2) be a function of z which
is continuous on each curve and is one-valued at z, and Z, then

oS @ds [ s

both exist.

If f(z)=2, it follows from Theorem IV of § 13 that these two
integrals have the same value. Further, if (), C, be oriented so that
2, is the first point of €, and Z the first point of C,, and if C,, C, have
no points in common save their end-points, €, and C, taken together
form a simple closed curve, C, with limited variations, and

f zdz=0.
C

This result suggests that the circumstances in which

[o 7@ dz=0,

(where C' denotes a simple closed curve with limited variations' and
JS(z) denotes a function of z which is continuous on C) should be
investigated.

1 A regular closed curve, satisfying this condition, regarded as a path of
integration, is usually described as a closed contour.
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The investigation appears all the more necessary from the fact®
that if C be the unit circle |z| =1, described counterclockwise, and
J(2)=2z"", (so that z =cos ¢ + i sin ¢, — 7 < ¢ < =), it can be shewn that

[C 27z = 2mi.

Conditions for the truth of the equation

Jpf @ ds=

were first investigated by Cauchy®.

It is mot sufficient that f(z) should be continuous and one-valued
on the regular closed curve C, as is obvious from the example cited, in
which f(2) =27'; and, further, it is not sufficient that f(z) should be
continuous at all points of €' and its interior.

A sufficient condition for the truth of the equation is that, given a
function f(2) which exists and is continuous and one-valued on the
curve C, it should be possible to define a function®, f(z), which exists
and is continuous and is one-valued at all points of the closed region
formed by C and its interior, and which possesses the further property
that the unique limit

S &)=/ (2)

lim —— =
Gz °7F
should exist at every point z of this closed region, it being supposed
that 2’ is a point of the closed region. 'The existence of this limit
implies the continuity of f(z) in the region.

It is, further, convenient, in setting out the proof, to lay a restriction
on the contour C, namely that if a line be drawn parallel to Oz or to
Oy, the portions of the line which are not points of C form a finite
number of segments. This restriction will be removed in § 17.

16. DErINITION. Analytic functions. The one-valued continuous
fuuction f(2) is said to be analytic at a point 2z of a continuum, if
a number, /, can be found satisfying the condition that, given an

2 Hardy, 4 Course of Pure Mathematics, § 204.

3 Mémoire sur les intégrales définies prises entre des limites imaginaires (1825);
this memoir is reprinted in t. vir. and t. virr. of the Bulletin des Sciences Mathé-
matiques.

4 Up to the present point a function, f(z), of the complex variable z, has meant
merely a function of the two real variables x and y.
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arbitrary positive number ¢, it is possible to find a positive number &
(depending on € and #z) such that
IS () -f (@) -1 —2)| <e|(Z -2)],
for all values of 2 such that |2 — 2| <8,
The number 7 is called the differential coefficient, or derivate, of
S(2); if we regard z as variable, / is obviously a function of z; we
denote the dependence of / upon z by writing 7= £’ (2).

So far as Canchy’s theorem, that fc J(2)dz =0, is concerned, it is

not necessary that f(z) should be analytic at points actually on C'; it
is sufficient that f(2) should be analytic at all points of the interior of
C and that for every point, z, of C,
If(&)-F () =S (2). (F —2) S elz ~ 2],

whenever |2’ — 2| < 8 (where & depends on € and z), provided that 2’ is a
point of the closed region formed by C and its interior.

In such circumstances, we shall say that f(z) is semi-analytic on C.

It is not difficult to see that analytic functions form a more re-
stricted class than continuous functions. The existence of a unique
differential coefficient implies the continuity of the function ; whereas
the converse is not true ; for e.g. | z| is continuous but not analytic.

16. It is now possible to prove CavcHY’s THEOREM, namely that :

If f(2) be analytic at all points in the interior of a regular closed
curve with limited variations, C, and if the function be continuous
throughout the closed region formed by C and its interior, then

fc F(2)dz=0.

The theorem will first be proved on the hypothesis that f(z) is
subject to the further restriction that it is to be semi-analytic on C.

In accordance with § 8, let the orientation of C be determined in
the conventional manner, so that if the (coincident) end-points of the
path of integration be called z, and Z, with parameters ¢, and 7', then,
as ¢ increases from %, to 7, z describes C in the counterclockwise
direction.

The continuum formed by the interior of C will be called 2~ ; and
the closed region formed by B~ and C will be called R.

Let L be the sum of the variations of # and y as z describes the
curve C; take any point of £~, and with it as centre describe a square
of side 2Z, the sides of the square being parallel to the axes; then no
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point of R lies outside this square; for if (2, ¥,) be the centre of the
square and z;, z, the extreme values of  on R, then
2SS, 0<a—a <L,

80 that #,+ L > 2, + L > a,; i.e. the right-hand side of the square is
on the right of R ; applying similar reasoning to the other three sides
of the square, it is apparent that no point of R is outside the square.

Let € be an arbitrary positive number ; then, since f(2) is analytic
inside C and semi-analytic on C, corresponding to any point, 2, of R
we can find a positive number 8 such that

|f(Z)=Sf(2) = (& =2) /" () < €|~ 2],
whenever |2’ —z| <8 and 2’ is a point of A.

Hence, by Goursat’s lemma (§ 12), we can divide R into a finite
number of sets of points such that a point, z;, of each set can be found

such that :
If (&)= f(2) = (& —2) S (@) Se|2' =z,
where 2’ is any member of the set to which 2, belongs.

Suppose that R is divided into such sets, as in the proof of Goursat’s
lemma, by the process of dividing up the square of side 2L into four
equal squares, and repeating the process of dividing up any of these
squares into four equal squares, if such a process is necessary.

The effect of bisecting the square of side 2L is to divide B~ into
a finite number of continua, by Theorem VI of § 6 combined with the
hypothesis at the end of § 14 ; the boundaries of these continua are C
and the straight line which bisects the square ; the process of dividing
up the square again is to divide these continua into other continua ;
and finally when R has been divided into suitable sets, £~ has been
divided into a finite number of continua whose boundaries are portions
of € and portions of the sides of the squares.

The squares into which the square of side 2L has been divided fall
into the following three classes :

(i)  Squares such that every point inside them is a point of R.

(ii) Squares such that some points inside them are points of R,
but other points inside them are not points of A.

(iii) Squares such that no point inside them is a point of R.

The points inside C which are inside any particular square of
class (i) form a continuum, namely the interior of the square; the

points inside €' which are inside any particular square of class (ii)
forin one or more continua.

W. C. L 3
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Let the squares of class (i) be numbered from 1 to NV and let the
oriented boundary of the Zth of these squares be called C;.

Let the squares of class (ii) be numbered from 1 to N'. Let the
set of oriented boundaries of the continua formed by points of R-
inside the Ath of these squares be called Cy'.

Consid 3 di+ 3 d
onsider R ,/;C,,)f(”) z+k§1 ﬁok’)f(z) 2z ;

we shall shew that this sum is equal to j; o S (2) d=.

The interiors of the squares of class (i), and the interiors of the
regions whose complete boundaries are Cy, are all mutually external.
The boundaries formed by all those parts of the sides of the squares
which belong to B~ occur twice in the paths of integration, and the
whole of the curve C occurs once in the path of integration. By
Theorem II of § 8, each path of integration which occurs twice in the
sum occurs with opposite orientations; so that the integrals along
these paths cancel, by Theorem I of § 13.

Again, the interiors of all the regions whose boundaries are C; and
C; are interior to C'; so that the orientation of each part of ¢ which
occurs in the paths of integration is the same as the orientation of C';
and therefore the paths of integration which occur once in the summation
add up to produce the path of integration C (taken counter-clockwise).

Consequently

N =
kfl -[(Ck) S(e) de +k§1 f(Ck') (@) dz = .I;C)f(z) de.

Now consider f( e J(2) dz ; the closed region formed by the square
k

C; and its interior has been chosen in such a way that a point z of the
region can be found such that

If(R)=F (@)= (z=2)/" (@) <e|(z-2)],
when z is any point of the region.

Let Sf(@)=f(2) - (z—2)f (z)=v(z~-2),

when Z2¥2.
When 2=z, let v=0; then vis a function of 2 and 2, such that |v|<e.
It follows that

Jiop? @ dz= [ ) 1 =2 ()} e
+ f(Ck)zf' (1) dz + j;ck) (z-2,) vdz.
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But by Theorem III of § 13, {dz=Z —2,, where z,, Z are the end-
points of the path of integration . since Cy is & closed curve, Z = z,, 80

that dz=0; so al 3 -0.
a /(Ck) dz=0; so also, by Theorem IV of § 13, /(Ck) 2dz=0

Therefore f( ¢ JS(z)dz= f( ¢ (z—2) vdz.
k. ki

Therefore®, since the modulus of a sum is less than or equal to the
sum of the moduli,
| Jiop @) 2| = ‘ i, =20 v
S/(c,,) (2~ 2) vz |

jck L2 €| dz|

< Zk € J2 . 4lk
< 4€Ak ;\/2,
where /; is the side® of C; and A4, is the area of C;, so that 4,=/42; it

A

is obvious by the lemma of § 9 that f( c )l dz| does not exceed the peri-
meter of C. :
We next consider /( e) J(z)dz; if the region of which €’ is the
k

total boundary consists of more than one continuum (i.e. if €}’ consists
of more than one regular closed curve), we regard C;’ as being made up
of a finite number of regular closed curves; and since the interior of each
of these lies wholly inside C, any portion of any of them which coincides
with a portion of C has the same orientation as C; and the value of

f dz, fzdz round each of the regular closed curves which make up C/

is zero.
Hence, as in the case of 0y, we get

U(C,;)f (#)dz | = | J;Ck,)"(z—z,)dz
< 4,'(01/) ' J2). €ldz],

n
2 | (2p01™ - 2,M) f (2,M) | , with the
r=0

notation of Chapter II; arguments similar to those of Chapter II shew that the
limit exists.
¢ The squares C} are not necessarily of the same size.

6 The expression f | f (2) dz| means lim
N~

3—2
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where J; is the length of the side of that square of class (ii) in which
Ck, lieB.

Let the sum of the variations of # and v, as z describes the portions
of C which lie on Cy, be L,'; so that

NI
3 Ly <L
- k=1
(kEI L,/ will be less than L if part of C coincides with a portion of a
side or sides of squares of class (i).)
Now /( o |21 < I+ 4l

for, by the lemma of § 9, /( ¢) | dz| is less than or equal to the sum of
k

the variations of 2 and y as z describes the various portions of Cy.

Therefore , f(c ) J2)dz | < (L + 4b)) el /2
k

Sdedy J2+2Le Ly 2,
since &’ < 2L; A, is the area of the square C}.
Combining the results obtained, it is evident that

for@a|=[{3,[oyr @+ 3, [ @2
Sél f(c,,)f @) dz'+:§1 /(ck')f @ dzl

N N’
$k2 4Ak€\/2+kE (4Ak’€J2+2L€Lk/J2).
=1 =1

N N
But it is evident that kE Ar+ 3 A} is not greater than the area
=1 k=1

of the square of side 2L which encloses C'; and since k2 L) < L, we
=1

see that

S4x(2L) x /2 + 2¢ L* /2

z)d

“(cr)f (6) da
<18 L* /2.

Since L is independent of ¢, the modulus of /( 0 S (2) dz is less than

a number which we can take to be arbitrarily small. Hence / 9 Sf(z)dz
is zero, if /(2) be analytic inside C and semi-analytic on C.
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17. Theresults of the following two theorems make it possible to remove
the restriction laid on € in § 14, namely that if a line be drawn parallel to
Oz or to Oy, those portions of the line which are not points of ' form
a finite number of segments; also it will follow that the assumption made
at the beginning of § 16, that f(2) is semi-analytic on C, is unnecessary.

THEOREM 1. Given? a reqular closed curve C and a positive number 8, a
closed polygon D can be drawn such that every point of D is inside C and such
that, given any point P on C, a point § on D can be found such that PQ < 8.

TrEOREM IL. If f(2) be continuous throughout C and its interior, then
f c f(2)dz— f b S (2)dz can be made arbitrarily small by taking & sufficiently

small.
It is obvious that the condition of § 14 is satisfied for polygons, so that if
f(2) be continuous throughout C and its interior and if it be analytic inside C,

j f(2) dz=0, and therefore f f(2) dz=0.

' TrporeM I Let the elementary curves which form C be, in order,

y=g(®), =k @) y=g2(x) 2=hy () ... y=9:(%)y 2=k, (),
and let the interior of C be called S—.

Let & < lim sup 4@,

where P, @ are any two points on C.

Each of the elementary curves which form C can be divided into a finite
number of segments such that the sum of the fluctuations of # and y on each
segment does not exceed }4, so that lim sup PQ < 38, where P, @ are any two
points on one segment. Let each elementary curve be divided into at least
three such segments and let the segments taken in order on C be called
a1, 09y ... On+1, their end-points being called Py, Py, ... Ppy1(=PFy).

Choose & <& so that lim inf PQ > &, where P, @ are any two points of
C which do not lie on the same or on adjoining segments®.

Cover the plane with a network of squares whose sides are parallel to the
axes and of length }&' ; if the end-point of any segment o, lies on the side of
a square, shift the squares until this is no longer the case,

Take all the squares which have any point of o, inside or on them ; these
squares form a single closed region 8, ; for if o, be on y=g (), the squares
forming S, can be grouped in columns, each column abutting on the column
on its left and also on the column on its right. Let the boundary and interior
of 8, be called C, and S,~ respectively.

Then S, possesses the following properties :

(i) S, contains points inside C and points outside C.
7 This result will be obtained by the methods of de la Vallée Poussin, Cours

@’ Analyse Infinitésimale (1914), §§ 343-844.
8 See note 15, p. 10.
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(ii) S, has at least one point P, (and therefore the interior of one
square) in common with S—,, ;.

(iii) 8, Sr+2 have no point in common; for if they had a common
point P, points @,, @,., could be found on o,, o, respectively, such that
PQ,. <30 W2, PQ,,2< 48 N2, and then Q,Q..,<3d4/2 < ¥, which is 1m-
possible.

(iv) Since S,-;, S,,1 have no common point, S, consists of at least
three squares.

(v) If y=g(x) has points on m squares which lie on a column, the sum
of the fluctuations of # and y as the curve completely crosses the column is at
least (m—1) &, (or & if m=1); in the case of a column which the curve does
not completely cross, the sum of the fluctuations is at least (m—2) &', (or 0 if
m=1). The reader will deduce without much difficulty that the ratio of the
perimeter of S, to the sum of the fluctuations of x and y on ¢, cannot exceed
12; in the figure, the ratio is just less than 12 for the segment o, , ;.

Cr+1

If @, 1, 0y, 034, be all on the same elementary curve, it is easy to see that
a point describing C, counter-clockwise (starting at a point inside C' and
outside C,_,, C,,,) will enter §~,._;, emerge from S~,_, outside C, enter
8~,,1 outside C and then emerge from S-,,;.

If, however, o,_;, o, be on adjacent elementary curves, a point describing
C, may enter and emerge from §~,_; more than once; but it is possible to
take a number of squares forming a closed region §,’, whose boundary is E,,
consisting of the squares of S, and S,_; together with the squares which lie
in the regions (if any) which are completely surrounded by the squares of
S, and S,_;. Then, as a point describes E, counter-clockwise, it enters and
emerges from 8-,_, and §—,,, only once. If we thus modify those regions
S, which correspond to end segments of the elementary curves, we get a set
of m+1 (< n) closed regions 7}, with boundaries D, and interiors 7',~, suc
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that D, meets D, ,, but non-consecutive regions are wholly external to one
another.

Now consider the arc of each polygon D, which lies outside 7-,_; and
T~ .1 but inside C; these overlapping arcs form a closed polygon D which is
wholly inside C, with arcs of D, D,, ..., occurring on it in order. Also, if P
be any point of o,, there is a point @ of o, or ¢,,; which is inside a square
which abuts on D, and therefore the distance of P from some point of D does
not exceed PQ+}d < 33+38 < 8.

Theorem I is therefore completely proved.

THEOREM II. Let € be an arbitrary positive number.

(i) Choose & so small that
lf(@)=f@ < dpeln™
whenever |2'—z| <38 and 2, 7 are any two points on or inside C, while
ZLy=12L, where L is the sum of the fluctuations of x and y on C.
(i1) Choose such a parameter ¢ for the curve C that
If(@)-f@) | <dze L,
whenever |# —¢|<98; this is obviously possible, for, if the inequality were
only true when | ¢ —¢| <8, where X is a positive number less than unity and
independent of ¢, we should take a new parameter r=\"1¢,

It is evident from (i) that

If(@)=f@)] <z e LY
whenever |2 —z| <8 and z, 2 are any two points on C.

Draw the polygon D for the value of 8 under consideration, as in Theorem I.
Take any one of the curves D, ; if it wholly contains more than one of the
regions S, let them be S,_,, S,. Then there is a point z, of ¢, or o, in one
of the squares of D, which abuts on D;let ¢, be a point on the side of this
square which is part of D.

Then 2, is on ¢, 1, and hence | 2,1 — 2z, | does not exceed the sum of the
fluctuations of 2 and y on op_1, 0y Opr1; i€ [2p41=2,| < $8 < 8.

Also the arc of D joining ¢, to {,.; does not exceed 12 times the sum of
the fluctuations of # and ¥ on the arcs o,._,, o, 0,1 and so does not exceed
38 ; and the sum of the fluctuations of £, 5 as ¢ describes D does not exceed the
sum of the perimeters of the curves C,, i.e. it does not exceed L;=12L.

Take as the parameter r, of a point ¢ on D, the arc of D measured from
a fixed point to (.

We can now consider the value of f c f(2)dz.

By conditions (i) and (ii) coupled with Theorem II of § 11, we see that,
since | (py1—Cp | S| Tpr1—7p | €38,

[, 70 3 Ga-617@)
and i {_/cf(z) dz-—p%o(zpu—z,,)f(zp)} \ 3

<ie
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Bus | [ 7= [ @]
{[ f0de= 3 ot 76}
H{E a0 f - 3 Gumtf )

<

<&e+|p§0 {orr=2)F (@) = (Gor1= &) FG)

Write f({p) =f(zn) +vpy =241y,
80 that fvpl < goe L™l [, <&
Then

-

lpgo (Zpe1—2p) [ (2p) = (Lo 41— E) S (&)
pgo[(ﬂp" M1 f (@) = (lps1= &) {F (&) = F (2)}]

= ]pgo (41 {f(2p+1) _f(zp)} =(pe1=G) vp)
<2 ot (o) F Gl 1+ 2 [(Grr= .

m
Now pfolﬂpﬂ{f(?nﬂ)“f(zn)}l<3]§<m+1)8"L_‘,
by condition (ii), while '
2 l((pﬂ - {zv) Up| < 31-2‘L1_1 2 { (p+1"§p|
=0 p=0

< Jse
Therefore, collecting the results and noticing that (m+1)8' < L, we

see that
[ serde- [ reras

If now, in addition to the hypothesis of the enunciation of Theorem II,
that f(z) is continuous throughout € and its interior, we assume that f(2) is
analytic in the interior of C, then f(z) is analytic throughout D and its

interior, and so f F(Z)dz=0, by §16; and then, by the result that
D

[ rod

ginning of § 16 has now been completely proved.

Shetfet e

€.

< ¢, we infer that / S (2) dz=0. The result stated at the be-
¢




CHAPTER IV

MISCELLANEOUS THEOREMS

§ 18. Change of variable in an integral.—§ 19. Differentiation of an
integral with regard to one of the limits.—§ 20. Uniform differentia-
bility implies a continuous differential coefficient, and the converse.

18. Change of wvariable in an integral. Let { be the complex
coordinate of any point on a simple curve 4 B, with limited variations.
Let z =g (¢) be a function of ¢ which has a continuous differential coeffi-
cient, g' ({), at all points of the curve, so that, if ¢ be any particular
point of the curve, given a positive ¢, we can find & such that

l9@) -9 Q- =0g OI<ell -
when | ¢’ —#|<3; it being supposed that ¢, ¢ are the parameters of ¢, {'.
If ¢,, 7 be the parameters of A, B, suppose that z describes a
simple curve CD as ¢ increases from ¢, to 7.
Then the equation

[ipF @@ @dt= |, f@d

18 true if f (%) be a continuous function on the curve CD.

By Theorem II of § 11, given any positive number ¢, it is possible
to find a positive number & such that if any v numbers 2, ¢, ... ¢,
are taken so that 0 <#,.,—1%, < &, and if 7}, be such that ¢, < 7}, <#,.,,
then

<€,

[ /CDf(z) dz -péo (Zps1— 2p) f(Zp)

Given the same number ¢, we can find 8" such that if any v numbers
t, by, ... ¢, are taken so that 0 <?¢,.,—¢,<8", and if 7, be such that
ty < Ty <tpe1, then

57 @@ g Q&= % Cru=8)FZ) g (W)

<,
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where W, Z, are corresponding points on AB, CD; we take § to be
the smaller of &, & and choose the same values for £, #, ... £, in both
summations, where 0 <?¢,,,—?, <8, and we take 7, the same in both
summations.

Now divide the range ¢, to 7 into any number of intervals each
interval being less than 8 ; and subdivide each of these into a number
of intervals which are ‘suitable’ for the inequality

l9(€)~9@O—-(-Dg D)<l =0).
Then taking the end-points of these intervals to be ¢, ¢, ... ¢,, T}
and, taking 7', to be the point of the pth interval such that

[9(0—g(Wy)=(=-Wy) g (W) [ Se|{-W,|
at all points ¢ of the arc {,{,,, of 4B, we have

|5 Gram )G 3 (= 8)7Z) g (W)
-| £ 7219 G- 9 @)~ Ga=2) g (W)
=| 2 /@) g o) =g (W)= = W) g (W)
g @) -9 (W) == Wy g (W]
< 3 1) lllpn= W+ W= 1.

Let L be the sum of the fluctuations of ¢ 5 on AB and let ML™
be the upper limit of | /()| on CD; M exists since f(2) is con-
tinuous.

Then, by the last inequality,

2 o= B~ 3 (G- b (Z) g (W) <ML

Therefore

[z @@y @@= [, reds)

=| [5G T Q&= & Gu=6)SZ) g (W)
=0

- [op @ e+ 3 (=2 S (Z)

+ 3 bon= ) (Z) g (W)~ 5 (eon=2)S (Z)
<(2+M)e;
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since M is fixed, e is arbitrarily small and the two integrals exist, we
infer that

s GO g Q= f(a)ds
Corollary. Taking f(2)=1, we see that

[ip9 @dt= [, de=zp-z=0(t) - 900

this is the formula for the integral of a continuous differential coeffi-
cient.

19.  Differentiation of an integral with regard to one of the limits.

Let A B be a regular unclosed curve such that if any point P on it
be taken, and if @ be any other point of it, the ratio of the sum of the
variations of the curve between P and @ to the length of the chord
P@ has a finite upper limit?, £.

Let f(2) be continuous on the curve and let =, Z, Z +h be any

three points on it ; then if z, be fized, f:f () dz is a function of Z
only, say ¢ (Z); and
tim $Z+R=)_
where t is the difference of the parameters of Z, Z + h.
We can find 8 so that | /(Z+4%)—f(Z)| < e when ¢ <38, where ¢ is

arbitrary.
Now

-Z+h
g (Zeh=e @) =i [ (e
' lim 3 S L+ B (i = b9,

n-=o0 r=1

where %™ =0, h,,,=*%; it being supposed that the points %" are
chosen in the same way as the points 2™ in § 10 of Chapter II.
Therefore

A (Z + k) - (2 -F(Z)]
=41 lim 3 S+ ). (b~ k)~ (Z) 2 (py i = b,

n-mo r=1

=[h m 3 S Z R =S (2D (e = B

n-wow r=1 .

1 This condition is satisfied by most curves which occur in practice.
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<A lim 3 (A4 B0) =F (2D} i = 1]
N0 7=

<|h € 3 | b= A,
r=1
But, by the lemma of § 9,
15 %1 s — B, | < ,

50 that (b (Z+h)—d(Z)}-f(Z)| <ke,
since e is arbitrary and # is fixed, it follows from the definition of a
limit that

i #2410 = $(2)

t-=0

=f(Z).

20. Uniform differentiability zmplzes a continuous differential
coefficient, and the converse.

Let f(2) be uniformly differentiable throughout a region ; so that
when ¢ is taken arbitrarily, a positive number 8, independent of z,
exists such that

If(2) =F(2) = (7 =2).f () | S d e| 2= 2],
whenever |2’ — z| < 8 and 2, 2’ are two points of the region.
Since |z —2'| <8, we have

|f(2) =S (@)= (z=2)f" ()| < e[ 2 =2,
Combining the two inequalities, it is obvious that
|@ =) {f" () =S ()} | S kel —z|+}e|2-2],
and therefore If(Z)=f (?)| <S¢
whenever |2’ —z| < 8 ; that is to say, /' (2) is continuous.

To prove the converse theorem, let ' (2) be continuous, and there-
fore uniformly continuous, in a region; so that, when e is taken
arbitrarily, & positive number 8, independent of z, exists such that

If" @) =S (2) | < e,
whenever |2’ — 2| <8.

Consider only those points z whose distance from the boundary of
the region exceeds 8 ; take |2 — Z| < 8.

Then since f(z) is differentiable, to each point { of the straight
line joining # to Z there corresponds a positive number &; such that

F@) -SO-C -0/ ©I<el& =Ll

whenever | {’ —{| < 8; and { is on the line 2Z.



19-20] MISCELLANEOUS THEOREMS 45

By Goursat’s lemma, we may divide the line 2Z into a finite
number of intervals, say at the points {,(=2), &, & ..o &uy lona (= 2),
such that there is a point 2, in the rth interval which is such that

Q=)= E= ) (=) | ShelL-2,
for all points ¢ of the interval.
Therefore f (L) —f (2) — (& = 2) " (2) = v, (L~ 22),
S &) =S () = (Gaa—2) S (2) = v (Lo — 20),

where |ve| S e, v/ | S de
Also, since |2, — 2] <8,
S (@) =S (2) + 0y,
where [n,] € e

Therefore f (&) ~f ({-1) — (& — &) S (1)
=" (lr - Cr—l) + v, (Cr - zr) —v, (Cr_l_ zr)-
Taking r=1, 2, ...n+ 1 in turn, and summing we get

f(Z)-F(z)- (Z;z)f "(2) "
= 31 N (Cr - Cr—l) + TE‘ {v, (Cr - ~r) -, ((r—l - z,.)}

But, since the points ¢, (=2), 21, &, 2 ... &u, 2uy Lo (=Z) are in
order on a straight line,

tg;“(lr—w)‘{ + |(€r_1— Z,)]} = | Z—z !,

andso  |f(Z)—Sf(2)~(Z-2))" ()| <}e|Z-2|+}e| Z-2],
whenever | Z - z| <8 and the distance of z from the boundary of the
region does not exceed 8. Therefore, if /' (2) is continuous throughout
a region, f(2) is uniformly differentiable throughout the interior of
the region.

The reader will find no difficulty in proving the corresponding
theorems when f(2) is uniformly differentiable or when s’ (z) is con-

tinuous, and # is, in each case, restricted to be a continuous function of
a real variable .



CHAPTER V

THE CALCULUS OF RESIDUES

§ 21. Extension of Cauchy’s Theorem.—§ 22. The differential coefficients
of an analytic function.—§ 23. Definitions of pole, residue.—§ 24. The
integral of a function round a closed contour expressed in terms of the
residues at its poles.—§ 25. The calculation of residues.—§ 26.
Liouville’s Theorem.

21. Let Cbe a closed contour and let f(z) be a function of 2
which is continuous throughout € and its interior, and analytic inside
O. Let a be the complex coordinate of any point P not on C. Then
the extension of Oaucby’s theorem is that

f(2) dz=0 if P be outside C 1
21rz cz-a .
= f(a) if P be inside C J

The first part is almost obvious ; for if P be outside C it is easily
proved that f(2)/(z — @) is analytic at points inside C' and continuous
on C. Therefore, by the result of Chapter III,

f ()
27rsz zd—O

Now let P be a point inside C.

Through P draw a line parallel to Oz; there will be two® points
€1, @, on this line, one on the right of P, the other on the left, such
that §,, @, are on C, but no point of @, @, except its end-points lies on
C. [The existence of the points @,, @, may be established by arguments
similar to those in small print at the foot of page 11.]

1 Points on the line which are sufficiently distant from P either to the right or
left are outside C. Since a straight line is a simple curve, the straight lines
joining P to these distant points meet C in one point at least,
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@, @, divide C into two parts o,, o, with the same orientations as
C; let oy, o, be chosen so that @, @, are the end-points of the oriented
curve oy, and @,, @, are the end-points of the oriented curve o.

Let the shortest distance of points on C from P be 8,; choose 8 so
that 8<8;, 8<1 and

|f(2) =S (@)= (z—a)f (a)| S €|z~ a]
when |z~ a| < 8, where ¢ is an arbitrary positive number ; draw a circle
with centre P and radius 7 (< $86).

Let @, Q. meet this circle in Py, P, ; let the upper half of the circle,
with the orientation (@ —7, «+7) of its end-points, be called B,, and
let the lower half of the circle, with the orientation (a +7, @ —r) of its
end-points, be called B,.

Let the circle, properly oriented, be called Cj, so that the orienta-
tions of B, and B, are opposite to that of C;. .

Proofs of the following theorems are left to the reader:

(i) o1, QP B, P form a closed contour, C;, properly
oriented.

(i) oy, P, B,, P,Q. form a closed contour, C,, properly
oriented.

(ili) P is outside C, and C,.

(iv) Jf(2)/(z—a) is analytic inside C, and C,; and it is continuous
throughout the regions formed by C,, C, and their interiors.

Ty

ff(z)d f f(z)d.
o Cy 2

Now consider
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The path of integration consists of the oriented curves oy, o,
PlQl! QIPI’ PBQZ’ Q2P2: Bh B?- .

The integrals along the oriented curves o, o, make up the integral
along C. The integrals along the oriented curves P,Q,, @ P, cancel,
and so do the integrals along the oriented curves P, @, @, P, ; while the
integrals along the oriented curves B,, B, make up minus the integral
along the oriented curve C;, since the orientations of B,, B, are
opposite to the orientation of C;.

Hence
A LZ—a Cyz—
Now f (z)/(z—a) is analytic mmda C; and C, and is continuous
throughout the regions formed by C,, C, and their interiors. Hence, by
§ 17, the integrals along C; and C, vanish.

Hence? sz _(—z; /C /) d~
Let f(@)=Sfla)-(z—a)f (a)=v(z—a),
o that, when zis on O, |v| < ¢
'I‘hen
]C f(zc)tdz =/ @ |, ;——a+f (a)/ dz+/ vdz.

But, since C; is a closed curve, fc dz =0, by Theorem III of § 13.
3

To evaluate /C ;El_—z;l , put z=a+7r(cosf+ésinf); 6 is a real
3

number and is the angle which the line joining z to @ makes with
Oz. Consequently, since @ is inside Cs, 6 increases by 2w as 2z de-
scribes C;.
Hence, by the result of § 18,
dz et+2r . gin 6 + ¢ cos 0
f Coz—a fa cosf+isin b
= 2mi,

Therefore _[c % dz—2ni f(a) = /C vdz,
3 8

? This result may be stated ¢‘ The path of integration may be deformed from
C into C3 without affecting the value of the integral.”
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Sfozlvdzi
\efc:)]dzt.

Putting z2=a + 7 (cos ¢ + ¢sin ), we get?

0 that [ L) g arif(a)

f |dz|= lim s - [{cos £, + 14 sin £,4,® - cos ¢, — { sin ¢,M} |,

n-»ow r=0
where LM <t ™) M =ty t™=¢, + 2m,

50 that [ |dz|= lim 2 2r | sin § (¢4, = £,0) |

P
< nl—i:nw EO 2r. 3 (64" —8,™)
< 2mr,
Hence P {‘Sz) dz - 2 f (@)
is less than 2wre, where ~ <1 and e is arbitrarily small. Consequently
it must be zero ; that is to say

[, TG - ami fla.

22. Let C be a closed contour, and let f(z) be a function of =
which is analytic at all points inside ¢ and continuous throughout ¢
and its interior ; let ¢ be the complex coordinate of any point inside C,

Then f(2) possesses unique differential coefficients of all orders at a ;

and
@ (SO g,
da* ~ 2mi Jo (z—ay "

All points sufficiently near @ are inside C; let 8 be a positive
number such that all points satisfying the inequality {2 —a|< 28 are
inside C'; and let & be any complex number such that | 4| < 8.

Then, by § 21,

Sa )_21rzfoj(Z) a,

Z—-a

_S(2)
21rz Cz—u—rh

f(a +h)= da

3 The notation of Chapter II is being employed.
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Therefore
Sfla+h)—f(a) _ 1 f_(:Ld JS@ dz
N 2mi Jo (z—a)* P ,’C (z—a)f(z—a—h) #

Now when z is on c, X
|z—a|>28, |z—a—Fk|2>8, and! | f(2)| < K,
where K is a constant (independent of 4 and $§).

Hence, if L be the sum of the variations of 2 and y on C

/ f(z)dz |
(z—a)}(z—-a-h) ‘

I fc (z—a) ((:) a- b)

KL
~ 483 .
Therefore
Sarh=f@ L[ SO g
k 2w Jo (2 - a)‘ v
where |v|<|k| KL/(878).

Hence, as & -0, v tends to the limit zero.

f(a+/t) —f(a)

Therefore
h ->0
1 z .
has the value 3w lo (zf( ) ay’ dz; that is to say,
L2 I B ()
aa f(a) ami Jo (v o dz.

The higher differential coefficients may be evaluated in the same
manner ; the process which has just been carried out is the justification
of ¢ differentiating with regard to @ under the sign of integration’ the
equation

L [ f(2)
S (@)= omi Joz— ad‘
"f()

exists and

d"f(a) f(2)
7% 2m ¢ (z—a)y"t! d

If we assume that

¢ On C, the real and imaginary parts of f(2) are continuous functions of a real
variable, ¢; and a continuous function is bounded. See Hardy, 4 Course of Pure
Mathematics, § 89, Theorem 1.
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a similar process will justify differentiating this equation with regard

to @ under the sign of integration, so that

d™ f(a) _(n+1)! } _S@

- da'l+1 = 21.1_ c (z ~ E)”ﬁ - (6 a).

But (6) is true when 2 = 1 ; hence by (6 a), (6) is true when n=2;
and hence, by induction, (6) is true for all positive integral values of n.

23. DeriNiTiONs.  Pole.  Residue. Let f(z) be continuous
throughout a closed contour C and its interior, except at certain points

1y by ... @m, tnside C, and analytic at all points inside C' except at
Ay Aoy .. Ay, )

Let a function y (2) exist which satisfies the following conditions :

(i) ¢ (2) is continuous throughout C and its interior, analytic at -
all points inside C.

(i1) At points on and inside C, with the exception of a,, a,, ... &,

F@)=v )+ gl R YT ),
2, 7 bn,,r
where ¢ (2) = 5‘_1*;: + (;l;)fd;)z et ey

Then f'(z) is said to have a pole of order n, at the point e, ; the
coefficient of (z—a,)7?, viz. b, ,, is called the residue of f(z) at «,.

It is evident by the result of Chapter III that
Jv@ds=o;
so that, by (7), S D= X ]0 &, (2) d=.

24. This last equation enables us to evaluate fo Sf(z)dz; for

consider f() ¢.(2)dz. The only point inside C at which ¢,(z) is not

analytic is the point z=a,. With centre @, draw a circle C’ of positive
radius p, lying wholly inside C'; then by reasoning precisely similar to
that of § 21, we can deform the path of integration C into C' without
affecting the value of the integral, so that

fo b (2) do = fc, . (2) dz.
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To evaluate this new integral, write
z=a,+p(cos 0 +¢sinb),

go that 6 increases by 2w as z describes C'; as in § 21, if a be the
initial value of 6,

a+2m
C,¢,(z)dz=f ¢, (2) p (—sin 0 +7 cos 6) df
at

Ny 2 .
= 3 b,,‘,.p""'if feos (n—1) 6~ i sin (n— 1) 6} d6.
n=1
Now it is easily proved that

a+2nm
f ©OS 948 = 0,
.  sin
if m is an integer not zero. '

a-42m
Therefore fC, o, (2)dz = f by ,idf =2mnib,,.
Therefore finally,

[r@d=X [ s.@)a
~2mi 3 b,
r=1

This result may be formally stated as follows :

If f(2) be a function of z analytic at all points inside a closed
contour C with the exception of a number of poles, and continuous

throughout C and its interior (except at the poles), then fc S(z)dz s

equal to 2mi multiplied by the sum of the residues of f(z) at its poles
inside C.

This theorem renders it possible to evaluate a large number of
definite integrals; examples of such integrals are given in the next
Chapter.

25. In the case of a function given by a simple formula, it is
usually possible to determine by inspection the poles of the function.

To calculate the residue of f(2) at a pole z=a, the method
generally employed is to expand f(a+¢) in a series of ascending
powers of ¢ (a process which is justifiable® for sufficiently small
values of |#|), and the coefficient of ¢ in the expansion is the
required residue. In the case of a pole of the first order, usually

6 By applying Taylor’s Theorem (see § 34) to (2 - a)*f (2).
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called a simple pole, it is generally shorter, in practice, to evaluate
lim (2 - @) f(2) by the rules for determining limits ; a consideration of

T->a
the expression for f(2) in the neighbourhood of a pole shews that the
residue is this limit, provided that the limit exists.

26. LiouviLLE’'s THEOREM. Let f(2) be analytic for all values of
z and let | f(z)|< K where K is a constant. Then f (z) is a constant.

Let 2, 2 be any two points and let € be a contour such that z, 2/
are inside 1t then by § 22

F& 1@ =5m o lemm~ 22} r O &

take C to be a circle whose centre is ~ and whose radiusis p> 2|2 —5|.
On C write { =2 + pe'® ; since | {—2"| > 4p when { is on C, it follows that

=7 =] [, S0 ]

(£-=)(¢-»
1 |~*”} K
2m ip %

< 2|z’-~ | Kp~'.
This is true for all values of p> 2|2’ —z|.

Make p—>«, keeping z and 2’ fixed; then it is obvious that
S(&)Y=S(2)=0; that is to say, f(2) is constant.



CHAPTER VI

THE EVALUATION OF DEFINITE INTEGRALS

§ 27. A circular contour.—§ 28, Integrals of rational functions.—§ 29. In-
tegrals of rational functions, continued.—§ 30. Jordan’s lemma.—
§ 31. Applications of Jordan’s lemma.—§ 32. Other definite integrals.—
§ 33. Examples of contour integrals.

27. If f(x, ) be a rational function of # and y, the integral
f ™ #(cos 6, sin 6) df
0

can be evaluated in the following manner :
Let 2 =cos 0 + ¢sin 6, so that 2~*=cos 6§ — i sin 6 ; then we have

[C f{% (a2, (am =} if-zf - L *" £(co0s 6, sin 6) db,

wherein the contour of integration, C, is a unit circle with centre at
z=0. Iff(cos, sin6) is finite when 0 <60 < 2, the integrand on the
left-hand side is a function of z which is analytic on C; and also
analytic inside C except at a finite number of poles. Consequently

2m
] #(cos 6, sin 8) d6
0
is equal to 2¢ times the sum of the residues of
i1 Ly L }
rerfbere, s
at those of its poles which are inside the circle |z| = 1.

o do 2w
Beample. [,y o= Ja =)’
radical which makes |a — \J(a? — b?)| <|b|, it being supposed that a/b is
not a real number such that' -1 <a/b< 1.

that sign being given to the

1 Apart from this restriction a, b may be any numbers real or complex.
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Making the above substitution,

f% df ‘Zf
o a+bcosl ¢ bz2+2az+b

7 ] (z— a) (z B)’
where a, 8 are the roots of 2>+ 2az + b=0. The poles of the integrand
are the points 2=a, 2= 8.

Since |aB|=1, of the two numbers |a|, |8| one is greater than 1
and one less than 1, unless both are equal to 1. If both are equal to 1,
put a=cos y + ¢sin y, where y is real; then B=a"'=cosy—¢siny, so
that 2¢/b=—-a—B=~2cosy, i.e. —1 <a/b g1, which is contrary to
hypothesis.

2 2

Let a= " —t“c)(“;é ), B="2" /,(a ) , that sign being given
to the radical which makes |a — ./(a*—6?)| <|b|; so that |a|<1, |8]>1;
then z=ais the only pole of the integrand inside C, and the residue of
{(z—a)(z=B)}* at z=ais (a - B)1,

> df 21
Therefore /: Catboos 6 Qi x 3 py
_ 2r
T J@ ="

28. If P(x), Q (x) be polynomials in x such that Q (x) has no real
linear factors and tke degrw of P (x) is less than the degree of Q (z) by

at least 2, then® f Q dzr s equal to 2mi times the sum of the residues

of P(2)/Q(2) at those Q/' its poles which lie in the half plane above the
real axis.

Let P ()= ay2" + ;" + ... +ay,
Q (@) = byx™ + byx™ " + ... + by,
where m—n>2, a,+0, b,+0; choose » so large that
lay| | [ ||
— 4+ == +..+—<
te

P ~ !—0‘5

w S 31

o
|
and 16| + %-’4, e b"‘l

T
2 The reader will remember that an infinite integral is defined in the following

manner : if [R 7(2) dz=g (R), then f 7 ) d means Jim g (R).
a a wa L %
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then lflzl;r, lz-”P(z)lz (lo+(13+“_+g.::
<|(l|+|-‘m+ |t
0 r o ”
2|a,),
wnd QI >l |2 Gkl
>|1,0[_l_’>_r!_|i'_\_ Bl
7 - ?
2“}!['0!’

so that, if |5| > 7, then |2™" P (2)/Q€2)| < 4]asby7Y|.

Let C be a contour consisting of that portion of the real axis which
joins the points —p, +p and of a semicircle, T, above the real axis,
whose centre is the origin and whose radius is p; where p is any number
greater than 7.

Consider cQ (( )) dz; this integral is equal to

b P(2) P ()
~=ds+ | dz.
f Q) r Q@)
Now £ (2)/Q (¢) has no poles‘outside the circle |z|=7; for outside
this circle | 2 (2)/Q (z)] < 4 @by~ | #"~™,
P P(2) P(2)
Therefi ds + dz
e L0 h e
is equal to 2= times the sum of the residues of £ (z)/Q () at its poles
inside C; i.e. at its poles in the half plane above the real axis.
Further, putting z=p (cos 6+isinf) on T,

L men s
P(z
<{ ngg pdb

< A 4|aoby=1 5" pdb
<4= lao -1[ pn-m+1

Since n—m+1<—-1, lim P(z)d =0.

o= Jr @ (2)
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\ PGE), * P(2)
But me(,)d Jm ) L e ®
- lim g 8(1
- Jin [ g i

where 37, means the sum of the residues of P (2)/Q(2) at its poles
in the half plane above the real axis.

Since it has been shewn that lim g%’) dz = 0, thisis the theorem
stated. f
™
anmple Ifa>0, ] (x‘ . a“)2 o

The value of the integral is 27 times the residue of (:2+a?) "% at ai;
putting z=ai4¢,

L 1 1 i . .
ey I e B e S t hel 5—0.
(a2 (2ait o) dae~ dmt terms which are finite when ¢=

The residue is therefore —i/(4a%); and hence the integral is equal to
7 [(243).

If @ (2) has non-repeated real linear factors, the principal value'

of the integral, which is written P / g (( )) dz, exists. Its value is

2wl times the sum of the residues of P(2)/Q(2) at those of its poles
which lie in the half plane above the real axis plus wi times the sum of
the residues at those of the poles which lie on the real axis.

To prove this theorem, let @,’ be a real root of @ (). Modify the
contour by omitting the parts of the real axis between @, -8, and
a,’ + 8, and inserting a semicircle 7, of radius 8, and centre a,, above
the real axis; carry out this process for each real root. When a
contour is modified in this way, so that its interior is diminished, the
contour is said to be indented.

The limit of the integral along the surviving parts of the real axis

P(x
when the numbers 3, tend to zero is P f G ((a)) dx.
‘o
4 Since lim ’ exists, it is equal to lim
po0 J—p p>nJ)—p
4 Bromwich, Theery of Infinite Series, p. 415. The use of the letter P in two
senses will not cause confusion.
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If r,/ be the residue of P (2)/Q(2) at a,, the integral along the
semicircle y, is - / 6] P(2) (z a,) idf, where 2 =a, +8,¢*, and this

tends to —wir, as §, = 0; hence
P/ P(’?)dx w3, = 2w 2y,

29. A more mterestmg mtegra.l than the last is A ‘—g—gg dz,
where P (2), () are polynomials in 2 such that @ (+) does not vanish
for positive (or zero) values of #, and the degree of P (z) is lower than
that of @ () by at least 2.

The value of this integral is the sum of the residues of
log (—2) P()/Q(2)
at the zeros of Q(2); where the imaginary part of log (—z) lies
between + i,

tThe reader may obtain the formula for the principal value of the integral
when @ (x)=0 has non-repeated positive roots.]

Consider f log (- 2) Qg ;

the arcs of circles of radii® &, 8, and the straight lines joining their
end-points. On the first circle —z = Re® (-7 <0 <) ; on the second
circle —2=28"*(—7<6<7). And log(—2) is to be interpreted as
log 2| +Zarg (—2), where —7w<arg(—%)<w; on one of the straight
lines joining & to £, arg(—2z)=m, on the other arg(—2)=-=

dz, taken round a contour consisting of

(The path of integration is not, strictly speaking, what has been
previously defined as a contour, but the region bounded by the two arcs
5 In future, the letter R will not be used to denote ¢ the real part of.’
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and the straight lines-is obviously one to which Goursat’s lemma
and the analysis of Chapter III can be applied.)

With the conventions as to log (- 2), log (- 2) P (2)/Q (2) is analytic
inside the contour except at the zeros of Q (2).

As in § 28 we can choose R, and &, so that |2* P (2)/Q(z)| does
not exceed a fixed number, K, when |2|=R> R, and so that
[P (2)/Q(2)| < K when |z| = 8<8,; where K is independent of 8 and R.

Let the circle of radius R be called T, and the circle of radius & be
called y; let ¢;, ¢, be the lines arg (— 2) =—m, arg(—2)==.

Then the integral round the contour is 277 times the sum of the
residues of log (—=2) P (2)/Q(z) at the zeros of @ (z) (these are the
only poles of the integrand within the contour).

But the integral round the contour= f + f + f + f .
Y

P(2)ds

" s 5|

Now l []<]

< f I(log R +i8)| K R- 6,
which -0 as £2—=, since 2-'log R-0 as B—=x.

e (7 |y PR
/y lg.f_, log (=2) ) 6|
<[ log 8+ i6] K348,

5 = det?

So also

which tends to 0 as 80, since 8log 8—0 as §—0.
Put —z=we~ " on ¢;, — 2 = xet* on ¢;. 'Then

[ [(log.r /w)QE gd
] (ur—-logx)QE gdz',

and f (w+10gx)QE ga’r
Hence 27¢ times the sum of the residues of log (- 2) P (2)/Q (2) at
the zeros of @ (2)

= lim {j; (ur—log.z)gg'r%dx+/ﬂ(ur+logx)Q(;dw}

§-»0, R-»x

. P(2)
=, 2rig (s

which proves the proposition.
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The interest of this integral lies in the fact that we apply Cauchy’s
theorem to a particular value (or branch®) of & many valued function.

If P (z), @ («) be polynomials in & such that @ () has no repeated
positive roots and @ (0)+0, and the degree of P (2) is less than that
of @ (¢) by at least 1, the reader may prove, by integrating the branch
of (-2)*' P (2)/Q () for which |arg (—2z)| <= round the contour of
the preceding example and proceeding to the limit when 8 =0, R —oc,
that, if 0 <@ <1 and 2*~! means the positive value of 2#-}, then
P (2)
Q(a)
where =7 means the sum of the residues of (— 2)*~! P (2)/Q (=) at those
zeros of @ (=) at which =z is not positive, and 27 means the sum of the
residues of 2°' P (2)/Q(«) at those zeros of Q(z) at which 2 is
positive. When @ (¢) has zeros at which # is positive, the lines ¢,, ¢,
have to be indented as in the last example of § 28.

P / a*! dx == cosec (am) 2 — m cot (aw) 2,
0

Examples. If 0<a<],

0 a—1 00 -1
K T z*
Codr=—=--—, Pf ——dx =mcotar.
Jo 1+ sin e 0 1—-a

30. In connection with examples of the type which will next be
considered, the following lemma is frequently useful.

JORDAN’S LEMMA™. Let f(2) be a function of = which satisfies the
Jollowing conditions when |z|>c and the imaginary part of = is not
negative (¢ being a positive constant) :

(i) Sf(#) is analytic,
- (1) £ ()] =0 uniformly as |z | > «.

Let m be a positive constant, and let T be « semicivcle of radius
R (> ¢), above the real axis, and having its centre at the origin.

Then Jim ([r " f(2) dz) =0.

If we put 2= R (cos 6 +isin6), 6 increases from 0 to = as 2 de-
scribes T

Therefore j; ™ f(2)dz = f " ze™* f () idb,
5 Jo

8 Forsyth, Theory of Functions, Chapter vir.
7 Jordan, Cours d’Analyse, t. 11, § 270.
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so that

i f (2) dz
r

_ l / " o £ (2) id6
0
< fo " lize™= £(2)| d6
< f " pRe-mEsing 36,
0

where 7 is the greatest value of | /(z)| when |z |= R

In the last integral, divide the range of integration into two parts,
viz. from 0 to 4= and from 3= to =; write #—6 for 6 in the second
part; then, noting that, when® 0<6< 1w sin6>260/m, so that
¢ mRsin < g-2mBo, we gee that

L
I fr emizj'(z) 2z ldz| < 21’R/ g—mRsiné Jg
0

in
< 2,715 [ ¢~ 2mRé/x JpO
0

2
<27 (1 gn) < e,
But >0 as B o ; and therefore

lim l [ dz| = 0.

31. The following theorem may be proved, by the use of Jordan’s
lemma :

Let P (), Q(x) be polynomials in x suck that Q(x) has no real
linear factors, and the degree of P (x) does not exceed the degree of Q () ;
and let m > 0. P Ples) J

z emic _ -z o mw &

Then [ feB-enets

i equal to wiP (0)/Q (0) plus 2mwi times the sum of the residues of

g Ezg - at the zeros of Q (=) in the half plane above the real axis.

[The reader may obtain the formula for the principal value of the integral
when @ (2)=0 has non-repeated real roots.]

L(2) iz

Consider c TG ) taken along a contour C consisting of the
straight line joining — R to -8, a semicircle, v, of radius 8, above the
real axis, and with its centre at the origin, the straight line joining & to

8 If we draw the graphs y=sinz, y=2z/, this inequality appears obvious; it

may be proved by shewing that %_0 decreases as 6 increases from 0 to 4.
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R, and the semicircle T, where 8§ <3,, B> R,, and 8 and R are to be so
chosen that all the poles of P (2)/Q (2) lie outside the circle |2| = §, and
inside the circle |z| =

Then ggzg miz z~ is equal to 2 times the sum of the residues
P(z)em™

of = 9@ = at the zeros of @ () which lie in the upper half plane, as

may be shewn by analysm similar to that of § 28.

me g S (G -1 Degt

Put z=- 2 in the first integrand and z =z in the third ; then
J’—S / ) P (~ miz = [ {P (-T) emiz _ 11(_—-__;1‘) i } (lﬂ‘
Q (2) 2 Js Q (;,1;) (_ I) P

" . . . P(2)
S lim P(z finit ”"z -0 as R—>x, b
ince |¢}Em (2)/Q (2) is finite, [ 76 ) p as w, by

Jordan’s lemma.
Also, putting z = 8¢ on v,

P(~) mizd“ — fo" {1_)(0) + S(’“’f( )} miz ;

NIOMF Q (0)
where |/ (z)[ does not exceed a number independent of = when 8 < 3,.
Hence lim £ @) P dz_ _ Ii(_()_)

50 Jy @ (~) z Q 0)°
Making B>, 8—0 in the above formula for , QE g miz =" the

result stated follows at once.

Corollary. Put P(z)=Q(z)=1; then, if m >0,
fm sinmz 5 ir.
0 z

By arguments similar to those used in proving Jordan’s lemma, we
may shew that

fo ¢*°** gin (a sin ba) e d.rr 3w (eae™ ~1),
if a>0,b>0,r>().
7,2 ’
line joining the points — R, R and of the semicircle T', where £ > 2.

The only pole of the integrand inside the contour is at z2=1%;
and the residue of the integrand is easily found to be }eze™.

Consider fo eue™ —ziif where the contour C consists of the straight



31] THE EVALUATION OF DEFINITE INTEGRALS 63

Therefore jo / / ) eae™ ~dz S = wiere

In the first integral put z=—z, in the second put z =2.
Then

. (R . . xdz . 2dz
y @ cos bx Badetadi, ~br __ &l _
2 /; ¢ sin (o sin bz) -5 = e /r e

2+
.1 .
Now M“=l+ae"”‘+§3uﬁe"”’+...
=1+aew,
‘ ebzz a‘_’exb:-.i
where lwj=1+——+ ST 3T +'
aebzi 2l)zil
S1+ 57 37 i+

and on T, |¢"| =¢-bRsiné < 1 where z = R (cos 6 +¢sin 6) ; so that

|w|<1+a+2x
=¢%

Consequently, putting 2= R (cos 0 + i sin6) on T,

fp"““Jf;é / (“ae"“w)(l—~ r,)de

L' .
— ) o 02 . bzi
=mi=ri | e fo e ww2 .,zd0
But |27 +9% 2 |2t = |2 > § R,
T db 4n
and therefore M SRy 8
~2 i
while [ (wb"'w } ae®*w %—EidO‘
Jo 0 S+
<f" %M—bRsinoeado
0 .
4raed® . ,
< g 2 in Jordan’s lemma.
Consequently f one = 2z _ T+ e
T 2+ B
where lim e¢;=0; and therefore, by the definition of an infinite
R»x»
integral,

20 f 6208tz gin (@ sin bz) dxp = mwiene™ —
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32. Infinite integrals involving hyperbolic functions can fre-
quently be evaluated by means of a contour in the shape of a rectangle ;
an example of such an integral is the following :

® cosh ax
0 COBh k74

dz=%secda, when -7 <a <.

Consider / coshm — dz taken along the contour I' formed by the

rectangle whose corners have complex coordinates — R, R, R+1,
— R + ¢, where R>0; let these corners be 4, B, C, D. The zeros of

—“R=+i i R+1

D N [¢]
-4

A 8

-R o R

cosh 7z are at the points == (n+ %) ¢, where # is any integer; so that
the only pole of the integrand inside the contour is at the point z= 1.
If z=1¢ +¢, then

e ’3’"(1+at+ L@+ ..)

cosh w2 4 sinh 7¢

A (L +at+ lat+...)

= wit (1+1ﬂ- R

80 that the residue of ¢** sech 7z at 17 is o / (wd).

ﬁaz %ai
Therefore - —dz = 2e*",
r cosh 7z

o o
Now f — - dz = <f +/ + [ +[ ) -y d::;
I (}OSll T AB B¢ JcD DA cOSh 17

on AB we may put 2= where « is real; on CD we may put z=¢+2
where 2 is real ; on BC we may put z= R + iy where y is real ; and on
DA we may put z= — R + ¢y where y is real. 'Therefore

P R P -R oo i+ 2)
[ s s cosh 7 (i 7 2) @
‘ 1 g2 (R+1y) -a(R - iy) .
* f cosh (R +1 J) '/ / cosh = (B —iy) idy

=(1 +e‘")/

dz + ¢
RGOSh k174 R
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. 1 ¢ (B+iy) g-a(R-iy i d
where = f coshw (B + 39) zy) idy— _/ coshw(R—ig)" %3

R P R P 0 P
also / ——dr = f — - dz +/ ————dz
_rcosh rz o cosh =z -rcosh =z

R Pt R P
R e [
o coshmz o cosh mz
on writing — # for # in the second integral.

Therefore  262% =2 (1 +e%) / cosh az dz + €.
cosh =z

1 (R+iy) 1 p-a(R-i
Now (:ﬂs/ < i
0

cosh o (B +39) 'Y ’* s coshw(B-iy) ¥
1 |ea(R+i)| dy 1 [e—a(R—iu)|dy

o [k (s ]y ooshn R~ i)

Also |2 cosh 7 (B +dy)| = |em R+ o= (Rxin) |
|em(R=iy) | - |g=7 (R2iy) |

1 aR 1 -aR
. e e
Therefore  |eg| < L smhaB ™ /0 snh=B %

o 08 cosh (aR)
sinh (= R)"
But, if —wr <@ <=, lim 2- cosh (a ) _ =0; therefore, if —r<a<m
Rowo _ sinh (wR) ?
lim ex=0.
R->»w

dai_
But f cosh az de is equal to - 2e m); and therefore

cosh =z 5+
cosh az
./0 (Ehjr.zd =4secia, (-m<a<m).

33. Solutions of the following examples, of which the earlier ones
are taken from recent College and University Examination Papers, can
be obtained by the methods developed in this chapter.

roosin?d L 2. AR
1. Shew that fo-a_'_—bcosode—b,(a‘ Vo' = 6P,

when @ >b>0. Give reasons why this equation should still be true
when @ = b. (Math. Trip. 1904.)

W.C L 5
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. ® dx
2. Evaluate ,/o CETDICET D when /> 0, g> 0.

(Trinity, 1905.)

dx 2a+b
j( ‘l.ij_'&a)z 21;3(b (a n b)) when a>0, b>0.
(Whittaker, Modern Analysis.)

4. Prove that, if >0, 6> 0, ¢>0, b* - ac> 0, then

3. Shew that / I

© dx . .
ﬁ ey I e e 2%a J(b” +‘.c;ci)' (Trinity, 1908.)

dx
5. Evaluate /o @+ @) (@ Y (@ 7 & when @, b, ¢ are real.

(St John’s, 1907.)

6. Shew that, if a> 0,

* 2Pda T_51fJ2
o (@+a2P " 128a°°

(Trinity, 1902.)

7. Shew that [ §l‘lﬂﬂ da =L tan {a when -7 <a <.
Jo sinhwa

© ) 2
4. Shew that f L de=T. (Clare, 1903.)
0

sinh? 6

Y. By integrating f ¢-%* dz round a rectangle, shew that

©

0
f e~Ycos 2at . dt =e~*T'(3}), f e~ sin 2at . dt = 0.

40. Shew that /o é%%% dz =}=tanh 1. (Clare, 1905.)
«11. Shew that / xsfr?ﬁ;w dr= (lie;_a;)z, when « is real.

" (Math. Trip. 1906.)

12. Evaluate f l-i—zz] taken round the ellipse whose equation is

P-ay+y+a+y=0. (Clare, 1903.)
18. Shew that,if m>0, >0,
ma
fo ‘”;“l’:f da=56 " sin ’:’}g . (Trinity, 1908.)
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® I .
14. Shew that fo LR dw =} (Peterhouse, 1905.)

15.- -Shew that, if m >0, a > 0,

f"fcosmx.dx*_1‘r_6_,,mb f“cp_smw.dx_z
0o @+ 2a O )y (L+2°) 4
(Peterhouse, 1907.)

e™ (1 +m).

© 2
16. Shew that \ (f—?:;%, da = FB— (1 + 8e7?),
(Peterhouse, 1907.)
17. Shew that, if @ > 0,

TEosnE g gl — e
/;) z3(a2+w2)dx rmat(lat—a+1—e?).
(Math. Trip. 1902.)
18. Shew that, if m > 0, a > 0,

-
c0S ma T . (ma | w
—— dx = -— e~™malN2 gin (— + —) .
fo at + ot 2a° J2 4

(Trinity, 1907.)
19. Shew that, if m > 0, a > 0, '
* sin*maz T oma X
[0 2 (a* +2) @= s (e 1 + 2ma).
(Trinity, 1912.)
20. Shew that, if a > 0,

o08 9% dx——’r—sin(QJr I)JT
0o 1+2°+2a* 3 26 '

(Clare, 1902.)

21. Shew that L c"izl—:f;}“’—‘” da=0. (Trinity, 1903.)
22. Shew that, when « is an even positive integer,
® 1 sinaw e —1
j; 731 snz de=m TS (Jesus, 1903.)

23. By taking a quadrant of a circle indented at ai as contour,
shew that, if m > 0, a > 0, then

TXCOSMTEASINMT 5 ymare ema .
/; BArat dz 2 li(e ). (Schlomllch.)

[% (e*®) is defined by Bromwich, Infinite Series, p. 325.]
5—2
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24, Shew that, if 7 >0, ¢> 0 and a is real,
f"‘ sinm(z—a) dz ™ {l_e""°

e z—a 2+ aP+ct c

(c cos ma — @ sin ma)} .

(Trinity, 1911.)
25. Shew that, if m >72>0 and a, b are real, then
j‘“’ sinm ( - a) sin n(z —b) dor = ﬂ_sin n(a—0b)
o r—a xr—-b a-b
(Math. Trip. 1909.)
26. Shew that, if 0<a <2, then

w g s
fo S—lg—fﬁw dz=}ma - trd® (Legendre.)
27. Shew that P fo ;1.2: de=1m (Legendre.)

28. By using the contour of § 29, shew that, if —1<p<1 and
—am <X <m, then

0

2-?dx x  sinpA

v T7 20005 A+ sinpr sinA (Buler.)

29. Draw the straight line joining the points + 4, and the semi-
circle of |2|=1 which lies on the right of this line. Let C be the
contour formed by indenting this figure at —4, 0, . By considering

f 2% (z+ 27")" dz, shew that, if #>m >— 1, then
C
i !
[ 9 cos™ 640 = 21" gin L (n — m) ™ f £h-m=1 (1 — g g,
i 0
Deduce that?

i waon xT (m+1) ‘
fo cosnb cos™ 6 df = i (s St DT Gm— I 1)’
and from the formula cos (n+ 1) 8 + cos (n — 1) 6 = 2 cos 8 cos nd, estab-

lish this result for all real values of » if m > —1.

30. By integrating j ¢~? dz round a rectangle whose corners are

0, R, R +ai, ai, shew that
/ ¢ %sin 2at. dt = e“”fae‘”d_’l/.
0 0

9 The result I' (2) I' (1 - ¢) = cosec am, which is required in this example, may
be established by writing x=¢/(1 - ¢t) in the first example at the end of § 29, when
0<a<1, and making use of the value of the first Eulerian integral ; it may be
proved for all values of a by a use of the recurrence formula I' (a +1) =a I'(a).
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31. Let @(z) be a polynomial and let the real part of a be

numerically less than =. By integrating f mg}:-———;—%)—a dz round a

rectangle, shew that

f Qa+m)-Q@=m) , o {Q(ad) - Q (— as)).

coshz + cosa

Deduce that

w 4
f _dde 5 o (7* = o®) (77 — 3a) cosec a.
0

32. Let I, be a contour consisting of the part of the real axis
joining the points + R, and of a semicircle of radius R above the real
axis, the contour being indented at the points nw/b where n takes all
integral values and 4> 0 ; also let b&/= be half an odd integer. Let
T, be the reflexion of T, in the real axis, properly oriented.

Shew that, if —b<a <b and if P (z), Q(») are polynomials such
that @ (2) has no real factors and the degree of @ (z) exceeds that of
P (z), then

= e Py R d0)
P/_mmmdw—?llm{_/l!lglhbzQ(Zjdz

e P2) ;).
~Josinez 0o %
where the limit is taken by making R - and the radii of the
indentations tend to zero.

®© aix
Deduce that P / ;iiivbaj g.((:))

where 37 means the sum of the residues of the integrand at its poles
in the upper half-plane and 37’ the sum of the residues at the poles in
the lower half-plane.

di = wi (30 - 30"),

33. Shew that, if - b <a <, then

/”sinaw dr__, sinha [”cosaw zdr _, cosha
o sinbz 1+2° * sinhd’ o sinbz 1+2* % ginhb’
f“sinax dz _lﬂ_sinha /”cosax dz _lﬂ_cosha
o cosbz (1 +2%) % coshd’ o cosbr1+2® % coshb’

(Legendre, Cauchy.)
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34. If @m-1)b<a<(2m+1)b and m is a positive integer,
deduce from Example 83 that

P/“’ sinar do . cosh (@ —2mb)—e¢®

o sinbz 1+a2* 7 sinh b ’
and three similar results,

(Legendre.)
85. Shew that g

cosh (3ma) = 108 2

fom (1+4%)

(Math. Trip. 1906.)
[Take the contour of integration to be the square whose corners

are + N, + N + 2Ni, where N is an integer ; and make N—.]

The results of Examples 36—389, which are due to Hardy, may be
obtained by integrating expressions of the type

[
J1+2pef+ € z+1ia
round a contour similar to that of Example 35. In all the examples
@ and & are real ; and, in Examples 86 and 88, — 7 <8 <.

36 /w l L. dx —_ ._.2_83r_ S . M-.\,.‘_l_._.__._._,..
* Jo cosha+cosdat+a? asindn=of{(2n+1)7+a}’-8*
Deduce that
f“’,,,, 1 de 1 1
o cosha+cos8n*+2* §sind 4sin*ls’
37. j; 1 dx 28w

1
coshz + cosh8 a®+ 2~ sinh 8 ,—o{(2n + 1) 7 + a}® + 8%’

f““ coshiaz  de ™ 3 (-r{@n+1)7m+a}
o cosha+coshda?+a® acoshld,—o{(2n+1)7+al®+&
38 /“ cosh la dx
e

- (=y{@r+1)w +a}
coshz +cosda*+a* acos

Suzo{@n+D)w+al*—8°
Deduce that
fw______@__________ _ g fl ta/vr dt
o cosh(Fa).(@®+a%) alo 1+
“ 1 dx 1 b 1 1
89. Pf.,, sinhz—sinh d #* + 22 cosh & {32+1r" * 5} “ sinh$’
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40. Shew that, if a>0, m >0, —1<r<1, then

® zwdw gin 2ax i
0 M+ 1 —2rcos 20+ 12 8™ —p?
© wdz sin az Rt

o m*+a* 1 ~2rcos 2az + 17 (L+7) (@ — )’

Shew that, if the principal values of the integrals are taken, the

results are true when r=1. (Legendre.)
. . etaiz
41. By integrating f a1 dz round the rectangle whose corners

are 0, R, R+, ¢, (the rectangle being indented at 0 and ¢) shew that,
if a be real, then

[0 sin qﬁ'l dz = } coth (3 @) - L a1, (Legendre.)

P
42. By employing a rectangle indented at 1/, shew that, if a be
real, then

f :z%%zi dx=}a™* — } cosech ( ). (Legendre.)
0

43. By integrating /e-)\z 2"»=1 dz round the sector of radius B

bounded by the lines arg z=0, arg =z = a <}, (the sector being in-
dented at 0), shew that, if A>0, n> 0, then

]
{ =1 e=A%c08'a oog (Ax sin a) dz = A" T (n) cos na,
Jo

-]
[ =1 g=Azcosa gin (A sin @) do = A= T (n) sin na.
Jo '

These results are true when a=17 if n <1,
Deduce that

[w cos () dy = fw sin () dy = (3 -n'))" . (Euler.)
Jo 0

44. 'The contour C starts from a point R on the real axis,
encircles the origin once counterclockwise and returns to B. By
deforming the contour into two straight lines and a circle of radius &
(like the figure of §29 with the large circle omitted), and making
8 — 0, shew that, if £>0, (where { = ¢ + i9), and =7 < arg (—2) < won C,
then

lim f (=£)6-1 o2 dz = — 2isin (x0).. T (2).
= JC
(Hankel, Math. Ann. Bd. 1.)
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45. If T'({) be defined when ¢<0 by means of the relation
T ({+1)={T ({), prove by integrating by parts that the equation of
Example 44 is true for all values of ¢

46. By taking a parabola, whose focus is at 0, as contour, shew
that, if @ > 0, then

2 e [®
rQ)= sinat e~ (1 +*)$- ¥ cos {2a¢ + (2 —1) arc tan ¢} dt.

(Bourguet.)

47. Assuming Stirling’s formula®, namely that
{logT(z+ 1) — (s +2)log s + z— L log 27} — 0O
uniformly as |z|— o, when ~ + 8 <arg s <7 —3§, and 8 is any positive
constant, shew that, if — 1 = <arg (- é) <}, then

1 —a+ooi f—a+wz ( C)z wds

T (=2 (={rde=~ 4 w-wi T(z+1)sinme

270 ) —a— i 2w o

where @ >0, and the path of integration is a straight line. (The

expressions may be shewn to be the sum of the residues of the second

integrand at its poles on the right of the path of integration.)
(Mellin, Acta Soc. Fennicae, vol. xX.)

48. Let C be a closed contour, and let
7@ =1 -a)"$ )

where the points a, are inside C, the numbers 7, are integers (positive
or negative), while ¢ (2) is analytic on and inside C and has no zeros on
or inside C. Shew that, if /' () be the derivate of f (2), then

S (2) ¥ o
I f 7@ dz = r=1nr' (Cauchy.)

49. By taking the contour € of Example 48 to be a circle of
radius R, and making R — «, shew that a polynomial of degree » has
7 roots. (Cauchy.)

50. With the notation of Example 4S, shew that, if ¢ (2) be
analytic on and inside C, then

S / v (z )’ff‘ ((z)) dz= 21 ne (ay.). (Cauchy.)

10 Stieltjes, Liouville’s Journal, t. 1v.



CHAPTER VII

EXPANSIONS IN SERIES

§ 34. Taylor’s Theorem.—§ 35. Laurent’s Theorem.

34. TavLor's THEOREM. Let f (%) be a function of z which is
analytic at all points inside a circle of radius r whose centre is the
point whose complex coordinate is «. Let { be any point inside this
circle.

Then f(L) can be expanded into the convergent series :

FO=F@+ G- f @)+ 55 (=l f @)+ oot i (E=a)" () ..,
where ™ (a) denotes d";zj; (a).

Let |{—a|=6r, so that 0 <6< 1.
Let C be the contour formed by the circle |z —a|=60r, where
0 <6 <1; let 6/6' =6,, so that |{—a|+|z—a|=06,<1; then by § 21,
L ([,
SO =5 |52
_ 1 f(z)( 4—,_@)" dz

2me Z—a z—a

1 [ fG,, tma, @may,  (—af, (=t N,
T om cz—a<1 z—a (”—00)2 TGay (”—a)"(”—f)>d'
1 F@d v L[ FEE-ay
“ g, [, (a )"'H(Z R R A T
Um - S@) L —a)y*
= 3 e g | SRyt
m! S(x)dz

where Am = 21” C‘__‘E)‘ﬁ“

=/ (a), by § 2
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On C, |f(#)] does not exceed some fixed® number K, since f(2) is
analytic and, @ fortiori, continuous on C.
Therefore

1 [ f@E-ar+
55 |, G-ar e-0% Sé;

SE =y
G=ar =5 ®

Kg n+1
21r c(1—6)r |dz|
<K0,"+’/(1~— 1),
since z=l=l(z-a)-(l-a)| =2 |z—a|-|l~al.

Now lim K6,"*'/(1—6,)=0, since 0 <6, <1 ; and therefore
n->=wo ~

1 [ f@&E=ay ,
N-=a0 27” [ i (= B =0 ’

(z—a)y+ (2= Q)
consequently /() = llm E a’“ ({ @)™ ; since this limit exists it

follows that the series 3 M’(Z —a)* is convergent; and it has
m=0 .

therefore been shewn that f ({) can be expanded into the convergent
geries :

f(= “0+ (C a) + "’!(<Z~a)2 +~--(g ay+
where =S (i )_ﬁ_/ S(®)dz

Z‘ITZ (z a)1n+1

36. Laurents Tueorem. Let f(2) be a function of z which s
analytic and one-valued at all points inside the region bounded by two
oriented concentric circles (U, IV), centre a, radii r,, v where ry' <7,.

Let ¢ be any point inside T and outside T’ ; then f (L) can be expressed
as the sum of two convergent series :

f(:)=ao+al(€—a)+a2(l—a)2+ +am({—a)7"+
40, (=) +b,(L=a) T+ o A b (L) ™+ .,

L[ f&)ds m=1
) Near SR MCDORNOLE

the circles C, ¢" are concentric with the circles I', I' and are of radii
r, ' such that »/ <#' <|{—a|<r<n.

where Q=

1 See note 4 on p. 50.
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Draw a diameter A BCD of the circles C, €', not passing through ¢.
Let C,, O/ be the semicircles on one side of this diameter, while C,, C;
are the semicircles on the other side.

Then C,, AB, C/, CD can be oriented to form a contour I';; and
C., DC, G/, BA can be oriented to form a contour T,; it is easily seen
that A B, BA have opposite orientations in the two contours, as do
CD, DC; C,, C, have the same orientation as C'; C), C; have
opposite orientations to C’; and f(z) is analytic in the closed regions
formed by T, T, and their interiors.

’I‘herefore/ VG )d~ f (z) d~ fci( z,d ju f(_%d

the integrals along BA, Ab’ cancel, and so do those along CD, DC.
- SO ge v [ LD gocomirio:
But, by § 21, fn H8a +L L) ds=2mir )

for ¢ is inside one of the contours I'y, T, and outside the other.

Therefore /()= It , ‘{E’g 2z — 271” C,{ Esz

Bt o [T8a=L s 3 S e

271'@ ¢ a—c m=0 (z
(c a)n+
211-2/ f( )(.,_a)n+1 ("—C)

— S — n — f(‘) (Z a)n+1
_mEO O (§~a)" + 2,,@ ("—a)"“(~—C)d
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. By the arguments of § 34, it may be shewn that the last integral
tends to zero as »—>; so that i. f /(@) dz can be expanded into
2mt Joz —¢

the convergent series 3 a, ({-a)™
m=0

In like manner

IO g L[ LO (1220,

2m T { = omi Jol-a {—a
@)1

(= - a)
o [ s® % Ty
1 / j(z)(d—a)” da

2mi Jo (L - a)* (T-72)
- S(@)(z- a)"
= 3 b, (s—a)™ SNEIEZ) g,
m=1 b ( a) +27I”L ({ a)" (C d
Sinece, on €', ';—:—?I' <1, the arguments of § 34 can be applied to
shew that the last integral tends to zero as n - ; so that

1 /()
*Zr_ijc'z €d~

can be expanded into the convergent series 3 bw (2 - @)™™; that is
m=1
to say
f(c) = mEO (L2 (g_ a)m + mz—l bm (Z - a)—m,

each of the series being convergent.



CHAPTER VIII

HISTORICAL SUMMARY

§ 36. Definitions of analytic functions.—§ 37. Proofy of Cauchy’s theorem.

36. The earliest suggestion of the theorem to which Cauchy’s
name has been given is contained in a letter! from Gauss to Bessel
dated Dec. 18, 1811 ; in this letter Gauss points out that the value of

f 2~! do taken along a complex path depends on the path of integration.

The earliest investigation of Cauchy on the subject is contained in a
memoir? dated 1814, and a formal proof of the complete theorem is
given in a memoir® published in 1825.

The proof contained in this memoir consists in proving that the

variation of / S () dz, when the path of integration undergoes a
(4B)

small variation (the end-points remaining fixed), is zero, provided that
J(2) has a unique continuous differential coefficient at all points on
the path AB. .

The following is a summary of the various assumptions on which
proofs of Cauchy’s theorem have been based :

(i) The hypothesis of Goursat*: f’(z) exists at all points within
and on C.

(i1) 'The hypothesis of Cauchy®: f'(z) exists and is continuous.

1 Briefwechsel zwischen Gauss und Bessel (1880), pp. 156-157.

2 QOeuvres completes, sér. 1, t. 1, p. 402 et seq.

3 Mémoire sur les intégrales définies prises entre des limites imaginaires.
References to Cauchy’s subsequent researches are given by Lindeldf, Calcul de
Résidus.

4 Transactions of the American Mathematical Society, vol. 1 (1900), pp. 14-16.

5 Bee the memoir cited above.
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(iii) An hypothesis equivalent to the last is: f(2) is uniformly
differentiable ; i.e., when ¢ is taken arbitrarily, then a positive 8, inde-
pendent of z can be found such that whenever z and 2’ are on or inside
C and |2’ —z| <3, then

f(2) =S (=)= (&' =2)f (2)| S e]2' ~2].

In the language of Chapter II, this inequality enables us to take
squares whose sides are not greater than 8/,/2 as ‘suitable regions.’

+ (iv) 'The hypothesis of Riemann®: f(z) =P + i@ where P, Q are
real and have continuous derivates with respect to « and y such that
P 3Q QP

ar oy’ ox oy’

These hypotheses are effectively equivalent, but, of course, (i) is
the most natural starting-point of a development of the theory of
functions on the lines laid down by Cauchy. It is easy to prove the
equivalence’ of (ii), (iii) and (iv), but attempts at deducing any one
of these three from (i), except by means of Cauchy’s theorem and the
results of §§ 21-22, have not been successful; however, it is easy
to deduce from § 22, by using the expression for /' (z) as a contour
integral, that, if (i) is assumed, then (ii) is true in the interior of C.

The definition of Weierstrass is that an analytic function f(z)
is such that it can be expanded into a Taylor’s series in powers of z —«
where @ is a point inside €. This hypothesis is simple and funda-
mental in the Weierstrassian theory of functions, in which Cauchy’s
theorem appears merely incidentally.

37. A proof of Cauchy’s theorem, based on hypothesis (i), requires
Goursat’s lemma (which is a special case of the Heine-Borel theorem)
or its equivalent; the apparent exception, a proof due to Moore?®,
employs, in the course of the proof, arguments similar to those by which
Goursat’s lemma is proved.

The hypotheses (ii) and (iii) are such as to make it easy to divide
C and its interior into suitable regions.

The various methods of proof of the theorem are the following :

-(i) Goursat’s proof, first published in 1884 [this, in its earliest
form®, employs hypothesis (iii)], is essentially that given in this work.

8 Oeuvres mathématiques (1898), Dissertation inaugurale (1851).

7 The equivalence of (ii) and (iii) has been proved in § 20.

8 Transactions of the American Mathematical Society, vol. 1 (1900), pp. 499-508.
9 Acta Mathematica, vol. 1v, pp. 197-200 ; see also his Cours d’dnalyse, t. 11,
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(ii) Cauchy’s proof has already been described.
(iii) Riemann’s proof™ consists in transforming

f (Pdz - Qdy) +i / (Qda + Pdy)
into a double integral, by using Stokes’ theorem.

(iv) Moore’s proof consists in assuming that the integral taken
round the sides of a square is not zero, but has modulus 7, ; the square
is divided into four equal squares, and the modulus of the integral
along at least one of these must be >1%,; the process of subdividing
squares is continued, giving rise to at least one limiting point £ inside
every square S, of a sequence such that the modulus of the integral
along 8§, is not less than »,/4*. Assuming that f(2) has a derivate at
{ it is proved that it is possible to find v, such that, when v>,, the
modulus of the integral along S, is less than x/4*. 'This is the contra-
diction needed to complete the proof of the theorem. The deduction
of the theorem for a closed contour, not a square, may then be
obtained by the methods given above in § 17.

Finally, it should be mentioned that, although the use of Cauchy’s
theorem may afford the simplest method of evaluating a definite
integral, the result can always be obtained by other methods; thus
a direct use of Cauchy’s theorem can always be avoided, if desired,
by transforming the contour integral into a double integral as in
Riemann’s proof. Further, Cauchy’s theorem cannot be employed to

evaluate all definite integrals; thus { e~*" dr has not been evaluated
JO

except by other methods.

10 See the dissertation cited above.
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