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COMPLEX CONICS AND THEIR REAL
REPRESENTATION.

INTRODUCTION.

1. Historical.—The introduction of the imaginary quantity,

or the complex quantity comprehending both the real and the

imaginary, into analysis had the effect not only of extension

and generalization but also in many cases of simplification.

Such results in the realm of geometry have not yet been fully

realized. In the preface to his "Einfiihrung in die analytische

Geometric," Kowalewski says: "Eine grosse Schwierigkeit in

der analytischen Geometric ist die exakte Behandlung des

Imaginaren."

But the incorporation of the imaginary in geometry does not

require any more of reconstruction and readjustment than it did

in the case of analysis.^ "A satisfactory theory of imaginary

quantities of the ordinary algebra . . . with difficulty obtained

recognition in the first third of this century . . . , it . . . was

not sought for or invented—it forced itself, unbidden, upon the

attention of mathematicians, and with its rules already formed."'"

No sooner had the imaginary won its rightful place in analysis

at the hand of Gauss and Cauchy than it began to knock at the

door of geometry. Indeed before its full recognition in analysis

there had appeared the geometric method of representing the

imaginary quantity due to Argand and Wessel. But the imag-

inary in geometry must play the role of element of structure

comparable to that of number in analysis.^ The history of its

development is of intense interest.

1 Convention. Toute expression ayant un sens geometrique quand les

elements dont elle depend sont reels conservera, par definition, le meme nom

quand quelques-uns de ces elements deviendront imaginaries. Niewenglowski

,

Cours de Geometric Analytique, p. 114, Old Edition.

2 Gibbs: "On Multiple Algebra," Proc. Am. Asso. Adv. of Sci., 1886.

3 Cf. C. A. Scott: "On Von Staudt's Geometric der Lage," Math. Gazette,

Vol. 1, p. 307.
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•.^.'.-" COMRLEX CGNICS AND THEIR REAL REPRESENTATION.

Out of the school of Monge came a class of mathematicians,

beginning with Poncelet and culminatmg in Von Staudt, who
were somewhat exclusive in their methods. On the principle,

geometry for geometers and geometry all-sufficient and self-

sufficient, they set about to build up a body of doctrine wholly

independent of analysis. The principals in this program were

Poncelet, Chasles, Steiner and Von Staudt. The imaginary

enters through the so-called Principle of Continuity and makes

its first appearance in Chasles' "Traite de Geometric Superieure"

(1852). Regarding the second of the three advantages which

he claims for his geometry he says: " Je veux parler de la gener-

alite dont sont empreints tons les resultats de la geometric

analytique, oii Ton ne fait acception ni des differences de positions

relatives des diverses parties d'une figure, ni des circonstances de

realite ou d'imaginarite des parties, qui, dans la construction

generale de la figure, peuvent etre indifferemment reelles ou

imaginaries. Ce caractere specifique de I'Analyse se trouve dans

notre Geometric."

But the investigations of Poncelet and Chasles had their

origins in analysis and in their completed forms were not free

from analytical considerations. To George Karl Christain Von

Staudt belongs the honor of constructing independently of

analysis a geometry involving imaginary elements. Thus ac-

cording to Von Staudt: Two conjugate imaginary points may
always be considered as the double points of an (elliptic) involu-

tion on a real line; and as (in analysis) we pass from an imaginary

number to its conjugate by changing i to — i, so (in geometry)

we may distinguish the two imaginary points by associating

them respectively with the two senses of the line.

Now the most essential or characteristic ideal of geometry

is to render all configurations visualizable, intuitive: the de-

sideratum is, to use the German, "Anschaulichkeit." Whilst

Von Staudt's purely projective methods were theoretically suf-

ficient, yet they were found to be in use cumbrous and compli-

cate; accordingly we find the diverging lines of analysis and

geometry beginning to change direction and to come together.

"From this moment a brilliant period opens for geometrical

research of every kind. Analysts interpret all their results and



INTRODUCTION. 3

set to work to translate them by constructions. Geometers

endeavor to discover in every question some general principle

—

in most cases impossible to prove without the aid of analysis."^

This was but reflecting the spirit of the great Monge who "has

shown from the outset . . . that the alliance between analysis

and geometry was useful and fruitful and that perhaps their

alliance was a condition of the success for both of these branches

of mathematics."^ For example, in the conclusion of his lecture

"On the Real Shape of Algebraic Curves and Surfaces/' as

interpreted by geometric models and Riemann surfaces, Klein

says: "These methods give us the actual mental image of the

configuration under consideration, and this I consider the most

essential in all true geometry."^

This ideal of geometry is entirely consistent with the ideal of

mathematics as presented by Von Staudt himself: "Indem die

Mathematik darnach strebt, Ausnahmen Von Regeln zu be-

seitigen und verschiedene Satze aus einem Gesichtspunkte auf-

zufassen, wird sie haufig genothigt, Begriffe zu erweitern oder

neue Begriffe aufzustellen, was beinahe immer einen Fortschritt

in der Wissenschaft bezeichnet."^

In these ideals we have the spirit and aim of the great program

proposed by Professor Study in his lectures and elsewhere,^ a

program in accordance with which on the one hand we are not

to be hampered by assumptions regarding reality or non-reality

and on the other hand all configurations whether real or imaginary

are to receive intuitive representation.

In his work "Vorlesungen iiber ausgewahlte Gegenstiinde der

Geometric, erstes Heft : Ebene Analytische Kurven und zu ihnen

gehorige Abbildungen" Study has blazed a path through the

great domain contemplated by his program. My aim in this

iDarboux: "A Study of the Development of Geometric Methods," Con-

gress of Arts and Science, St. Louis, 1904.

2 Darboux, supra.

3 The Evanston Colloquium. Lectures on Mathematics, Lecture IV.

^ "Beitriige zur Geometrie der Lage," Vorwort.
6 " Vorlesungen liber ausgewahlte Gegenstande der Geometrie" (1911),

"Zur Differential-geometrie der analytischen Curven," and "Die naturlichen

Gleichungen der analytischen Curven im Euclidischen Raume," Trans. Am.

Math. Soc, vols. 10, 11.



4 COMPLEX CONICS AXD THEIR REAL REPRESENTATION.

paper, as indicated by its title, is to apply his general method

to an interesting and important detail.

2. The Laguerre-Study Representation of the Imaginary.—There

is a great variety of ways of representing the imaginary element

by a real figure.^ The most efficient for purposes of analysis is

that due to Laguerre- extended and developed by Study .^

The two families of minimal lines, right- and left-sided, to

use Study's term, have for equations

^ + ^77 = const, and ^ — i-q — const.

Where ^ and t) are the rectangular cartesian coordinates of the

00* finite complex points in a projective plane. These lines

through a point (^', -q') of the plane have for equations:

s + 'i'n = ^' + W and ^ — i-q = ^' — ir]'.

On each of these lines there is one and only one real point.

Taking {x'
,
y') for the coordinates of the real point on the second

and {u', v') those for the real point on the first, we have:

t' + irj' = m' + iv' and ^' - irj' = .r' - iy'.

Considering ?/ + iv' and x' + iy' as geometric pictures of two

gaussian numbers w' and z' we write

(I) ^' + iv' = «'' and ^' - iv' = z'

,

where z' = x' — iy' , the conjugate of %'
. It is agreed to take

the two real points s' and ?r' of the two gaussian planes as the

Real Representation of the complex point (^', 77') of the cartesian

plane. Study symbolizes this representation by z —> w, and

calls it the First Picture (das erste Bild) of the imaginary point.

Again we have for the conjugate point (|', rj') of (^', 77')

. _ ,-, =1'. i-^', I
consequently

| ,, _ ._, ^ _,_

Thus the picture of (4', 77') is w' r.'

1 Encyklopadie der Mathematischen Wissenschaften, III, AD, 4o, 13-16.
2 Oeuvrcs, Tome II, pp. 89-98.

' "Vorlesungen," p. 9.
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Hence by virtue of relation (I) a perfect correspondence is set

up between the totality of finite complex points of the plane and

the totality of finite real point-pairs: to any complex point

corresponds uniquely a real point-pair, and vice versa.^

The cartesian plane (^, rj) and the picture planes (s) and {w)

may be considered superposed or not; in either case they are to

be considered distinct. The oo^ real points of the plane have

IV = z; that is, if the planes are considered coincident, these

points are their own pictures.

1 "Vorlesungen," p. 10.



CHAPTER I.

REAL CONICS.

3. Some Simple Cases.—If we have given an equation,

<pa, V) = 0,

^, 7] being rectangular cartesian coordinates, there is simul-

taneously given, by virtue of the relations

^ + iv = w,
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one the reflection of the other) with respect to the real branch

of the line. (Study, p. 25.)

(B) The picture of the oo 2 points on a real circle is the ensemble

of point-pairs symmetric (geometrically inverse) with respect to

the circle. (Study, p. 36.)

Study gives the real ellipse as an example in his lectures on

this subject. I shall, however, consider this case along with the

real hyperbola and real parabola, the method used differing

from Study's in no essential respect.

4. The Real Ellipse.—We have two cases, (1) where the ellipse

has a real branch or arc, (2) where the ellipse has no real branch

or arc.^

The equations corresponding to these two cases are of course

£2 2

(1) §+^=±1, a>b.

If we write e = 1 or i then e^ = ± 1 and we have

fc2 „2

(2) h+l-^'-

Form the pencil of lines

(3) r;=-r(^ + ea), t = s -\- it.

This line has one fixed intersection with the ellipse, (— ea, 0),

and one free intersection. The range of r through the domain

of real numbers, s arbitrary, t = 0, gives the 00^ real points on

the ellipse e = 1. The same range of r gives 00^ complex points

of the ellipse e = i. The complete variation of r, s and t assum-

ing all possible real values, gives the <x>- points of the conic.

Expressing ^ and 77 in terms of the parameter r, using equa-

tions (2) and (3),

1 - T- 2ea 2ebT

(4) ^ = €a^-^py., ^ + ^a =
Y-^2-^ ^=r+72-

1 In investigations in this field, where a curve is considered as consisting of

00 2 points, a configuration consisting of 0=^ points is called by Segre filo, which

Study translates, Faden, that is thread. The difference, then, in these two

ellipses is that one has a real thread and the other has not.
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Then for 2c and z in terms of the parameter we have:

. . ^ o + ibr
IV = ^ + 17] = - ea + 2e -^r^—., ,

(4')
_^ .,_

To simplify the expressions on the right hand of these equations

and at the same time to bring them to well-known forms we

change our parameter bj' means of a linear transformation,

.t' - 1

Effecting this change in (4') we have

€
w =

2

(5)
if, ,,_, a — 61

The function |[f + (l/i")] is one of the most common in func-

tion theory. The Riemann surface belonging to it is two-

sheeted, the two sheets being connected along the branch-cut

running from — 1 to + 1. To concentric circles about the

origin in the ^-plane correspond confocal ellipses on the surface.

To the pencil of straight lines through the origin correspond

hyperbolas confocal with the above-mentioned ellipses. A single

ellipse lies entirely in one sheet, but the branches of a single

hyperbola lie half in one sheet and half in the other. The
Riemann surfaces of ?r and z defined by (5) differ from this

surface in no essential respect.^

However, for some further simplification, and for uniformity

with cases to be discussed later, we make a second change of

parameter. We may write

, , , ,
a + 6 , , ^ , or — IP' c^

(a - by + —r- = (a - by + , ^^ = Tx + -,

Ti = (a — b)T'.

I See Lewent, Konforme Abbildung, p. 63.
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Where ^ = c? — Ir, c being the focal distance. Thus we have

(0) ,„ = l[,, + f],

where

Ti = (a - h)T';

and

z =

where
5[^'+S]'

T2 = (a + 6)r'.

Certainly the simplest complex configuration is the real straight

line, and the simplest position of the real straight line is in

coincidence wdth the ^-axis, 77 = 0. The picture of the line in

this position is given by the ensemble of point-pairs connected

by the relation w = z by virtue of 77 = (w — z)/2i. It is

known in Conformal Geometry^ that any real analytic curve is

conformally transformable into a straight line, in particular,

into the ^-axis (small regions about a point of each curve being

taken). Conversely the ^-axis may be transformed conformally

to any analytic curve. The transformation effecting this,

operating on iv — z gives w = f(z) or more generally

F(z, iv) = 0.

For a small region about a point ^' on the ^-axis the points

symmetric (in the Schwartzian sense) to each other with respect

to the ^-axis go over into points symmetric with respect to the

arc of the analytic curve through the transform of ^'. We shall

give this principle prominent place in this paper. And, since our

transformations are of the simplest sort, consisting only of trans-

lations, rotations and inversions, the principle just stated holds

in the large, that is, throughout the finite portion of the plane.

The parameter r is complex and we ascertain first the corre-

spondence between the r-plane and the r'-plane, the two vari-

ables being connected by the relation:

.r'- 1

^Kasner, "Conformal Geometry," International Congress of Mathe-

maticians, Cambridge, 1912.
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Solving for t' and calling for the moment t = x -^ iy and

t' = re' + iy' we have, following the usual method of Holz-

miiller/

.
,

X -\-i(y -\- 1)
x' -h ly' = -

and

X — ly = —

+/ =

X + i{y - 1)

'

a- - i{y + 1)

X - i{y - 1)

'

x''+(y + ly

x' +{y- ly

Where jJ and q are radii vectores from the points — i and + i.

The variation of j) and 7 gives the pencil of circles with ± i as

limiting points. The real axis of r is given hy p = q and since

r = piq = ij we see that to the real axis of r corresponds the

unit circle of r'. Further, to circles of the pencil in the upper

half of the r-plane, p > q and hence r = p/q > 1 correspond

concentric circles about tlie origin of the r'-plane outside the

unit circle, that is, the upper half of the r-plane maps into the

outside of the imit circle, and consequently the lower half of the

r-plane maps into the region inside the unit circle of the r'-plane.

It is eas}^ also to show that the imaginary axis of the r-plane goes

over into the real axis of the r'-plane.

Returning now to equations (6) let us write

(7)
w = ecTi

and s = 6(72

where

1 / c" \
0-1 = - I ri + — j , Ti = (a - 6)r';

0-2 =
:^ I To + — 1 , r2 = (a + o)T .

Let (Tk = Sk' + isf:" and n- = tk + itk"; U>^ = 1, 2). Separating

the last equations of (7) into their real and pure imaginary parts

we have

(8) ..'
"' "'

''=l[r;5TI^^+i]
and

* "Theorie der Isogonalen Verwandschaften."
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Sk' =

To circles about the origin in tlie Xft-plane, tk'^ + th""^ = r*,

correspond ellipses whose equations are

(7-) (7-'J
To lines through the origin of the r^t-plane, tk" = mtk, correspond

hyperbolas whose equations are

(10) -4^ - -4^ = 1.

1 + m^ 1 + m2

These ellipses and hyperbolas are confocal for

K7-T-i(f-0^=
and

1 + m2 ^ 1 + w2

c being the focal distance.

If equations (9) and (10) be expressed in terms of a — 6 and

a + 6, that is, if cri and at be expressed as functions of r' the re-

sults are, writing a' for a + 6 and h' for a — b,

4*1'' 4si'

(90

(^+-) (^--y
=1,

(7 + »'rJ (7
-'*''•)'

/2 //2

1 + m^ I -{- VI-

These equations show that to any circle of radius r in the t'-

plane in general correspond different ellipses in the (Ty and
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(r2-surfaces. There is one exception, namely, r = 1. In this

case each of the equations (9') becomes

(11)
.V' s"

To any line in the r'-plane through the origin correspond the

same hyperbolas, but we arc not to understand that as r' de-

scribes any given line in its plane <ti and o-o describe the branches

of the corresponding hyperbola together. A little examination

shows that they never move in the same direction on the hyper-

bola but always in opposite directions, passing each other on

the common ellipse (11) of the two planes. We do not carry

this investigation beyond this point. Further details are

mentioned by Study, pp. 98-103.
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If our ellipse has a real branch, that is, if e = 1 the ic- and
2-surfaces are identical with the cti- and o'2-surfaces. If

€ = i, the iv- and s-surfaces are got by rotating the ai- and
or2-surfaces through 90° and — 90° respectively.

We have shown in this section that the real axis of the para-

meter plane (r) maps into the real branch of the ellipse € = 1,

while for the ellipse e = i the real axis of r maps into the real

branch of the ellipse e = 1 turned through 90°. The picture-

points z and w are united in position for the ellipse e = 1, and

are diametrically opposite for the ellipse e = i. The elliptic

pencil of circles with limiting points ± i have been shown to

map into confocal ellipses, circles symmetric with respect to

the real axis in the r-plane go into ellipses symmetric with

respect to the real branch of the ellipse e = 1, and for the case

€ = i symmetric with respect to the ellipse e = I turned through

90°. It may be shown that the hyperbolic pencil orthogonal to

the elliptic pencil maps into the confocal hyperbolas.^ Corre-

sponding curves and points are shown in the figures.

5. The Real Hyperbola.—

2 1.2
— ^> a > b.

Introducing the parameter in the same way as in the case of

the ellipse we have:

1 + T^
,

2«

26r
V =

Hence
1 - T^'

w = — a -\- 2
a -f- ibr

a + ibr
z = - a + 2- =;r.

1 — T

Changing the parameter by means of the linear transformation:

r' - 1

" ~
r' + 1

'

* Holzmiiller, p. 63.
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we have,

w

(1)

Or, as in the case of the ellipse, if we put

(2) T^ = {a + ih)T' and to = (a - ih)r', and ar-\-h'^ = &,

c being the focal distance, we have.

(3)

W^+t]'^t' = 2 I 'Ti + T

\b4^-
When the equations of (3) are resolved into their real and pure

imaginary parts we have, as in the preceding case:

(4)

Since ti = (a + ih)r' and r-i = (a — f6)r', the configuration of

the r'-plane consisting of concentric circles and radial lines, is

not altered, lines and circles merely going over into lines and

circles. In particular the real axis of r' goes into the line with

slope hja in the ri-plane, and the line with slope — {bja) in the

To-plane. Since the expansion
|
a + i6 1 is the same for both

Ti and T2, a circle of r' goes into equal circles in the ti- and T2-

planes. To concentric circles and radial lines of the ti- and

To-planes there correspond ellipses and hyperbolas in the W'
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and s-surfaces. Their equations are:

(7-) (7-0^
and

"" /^2 \2 ^» ^2 „2^ 2 ~ Aj

(7-) (7-^J

W2
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with the finite focus at the origin. Form the pencil,

77 = 2Ta + p).

Then,

and,

1 — T- p 2p

,
1 + 2ir

,
1 + 2ir

As in the previous cases we simplify these expressions by a linear

transformation of the parameter

(2) r =
. for w, and t =

,—; for s.
Ti — ^ T2 -{- I

Thus we get

(3) W = pTi^, S = 2^7^2".

The Riemann surface belonging to pr- consists of two sheets

joined along the positive real axis. To lines parallel to the axis

of reals h" = const, correspond confocal parabolas,

To lines parallel to the imaginary axis, ti = const., correspond

the orthogonal trajectories of the preceding set, namely,

1)2 = - 4pt,'^(u - ph'-).

These two families of parabolas are confocal, having the

origin for their finite focus.

We get similar equations for s,

if = ^ph"\x + ph"^),

if = - 4pt/\x - ptof).

Solving (2) for ti and t-z we may write:

n = ^-^, a- = 1,2)

the upper sign going with ri and the lower with T2. Separating
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this equation into its real and pure imaginary parts we have

To Hnes parallel to the real axis of Xk, U" = b, correspond a

parabolic pencil of circles through the origin with centers on the

imaginary axis, (6 T l){t'" + t"") ± t" = 0. In particular to

the lines 4" = ± 1 corresponds t" = 0, the real axis of r. Again,

to lines parallel to the imaginary axis, 4' = a, corresponds a

second parabolic pencil of circles through the origin with centers

on the real axis, the orthogonal trajectories of the preceding

pencil. The equation of this last pencil is a{t'^ + t"^) — i' = 0.

To the real axis of r then corresponds in the w- and s-surfaces

the curves t'^ = Ayi^u + p) and y- = ^y{x + p), that is, the real

branch of our parabola. As r describes a circle of radius r, in

its upper half-plane, say, r describes a congruent circle in the

lower half-plane. Correspondingly n describes a straight line

t\" = (l/2r) + 1 in its plane and r-i describes a straight line

h" = iXl^r) — 1, and in turn w and z describe the confocal

parabolas

:

»— 4p(i+iy[«+p(^-+iy],

As T describes a circle of radius r' of the orthogonal pencil, t

describes the same circle and w and 2; describe the same parabola

^2 ^ _ P

r''V 4r'V'

Both families of parabolas are double decked, that is, both

sheets of the Riemann surface are filled with parabolas. Those

extending infinitely to the right have both branches in the same

sheet. Those extending infinitely to the left change sheets over

the branch-cut running from the origin to infinity positively.



CHAPTER 11.

THE COMPLEX CONIC, PRELIMINARY CONSIDERATIONS.

While the purpose of this paper is the reduction of the equation

and the real representation of the imaginary conic, yet we shall

find it advantageous to spend some time with the more elementary

configurations. As a result should come a proper orientation

in the field of "geometry in the domain of the complex"; also

suggestions as to methods of procedure in the question proper.

Accordingly we give our attention first to

The Complex Line.

7. Relation of the Pictures of a Complex Line and Its Conjugate,

or the Group Property of the Transformations Belonging to the

Complex Line and Its Conjugate.—The general equation of the

complex line is

A : a^ + /377 + 7 = 0,

where ^, t], a, 13, y have the form wi + ino and the ratios a : fi : y
are not all real. This geometric configuration has oo- complex

points.^ There are no conjugate pairs of points on the line, with

one exception, namely, the real point of the line which is its own
conjugate.

This fact leads us to consider in connection with A its conju-

gate,

A : a^ + /377 + 7 = 0.

A is the "locus" of the conjugate of the points of A, and con-

versely. The two loci intersect in their common, self-conjugate

real point.

The corresponding reverse conformal transformations picturing

the imaginary points of A and A are, by virtue of the relations

§2,(1)

A : a^ + /3r; + 7 =
; T : niv -}- vz -\- 2y = 0,(!)-_-_ _ _ _

A : o;^ + iSt? + 7 = 0; T' : vw + fjiz + 2y = 0,

where jx = a — ijS and p = a -{- zjS.

' Hereafter the term point will mean complex point.

18
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Let us now for the moment regard the planes (w) and (z)

as coincident. Applying T to a point z' we have

(2) fjiiv' + vz' + 27 = 0,

then applying T' to to'

(3) vw" + '^iw' + 27 = 0.

On elimination of w' between (3) and the conjugate of (2),

'iiw' + vz' + 27 = 0,

there results

w" = z'.

The result is the same if we reverse the order of application.

Hence the theorem:

The reverse conformal transformations belonging to a line and

its conjugate applied consecutively leave the points of the plane in

place :

T' = 'r~^ TT' = T' T z= ^

In case the line is real a = a, j8 = 6, 7 = c, n = a — ih,

V = a + ib =]! then T = T' : fxiv -\- Jlz -^ 2c = 0, that is, the

real line is its own conjugate and further TT' = T^ = 1, the

transformation belonging to it is involutorial.

8. Reduction of the Equatioti of the Complex Line to Canonical

Form.—Putting A and A in the form R -\- iT, R, T being linear

functions in $. 77 with real coefficients, we have

A, A : ii ± iL2 : ai^ + birj + Ci ± i(a2^ + b-zv + C2) = 0.

Thus A and A are identified as members of a complex pencil

n : Zi + KL2 = 0,

where k = k' -\- ik" . Belonging to this pencil there is of

course a single infinity of real lines, k' arbitrary, k" zero. On

each value of k', k/ say, there is built up a single infinity of

imaginary lines, k/' arbitrary. We may thus distribute the

double infinity of complex lines into a single infinity of sub-

pencils each with real bases and each containing two real lines,

the bases, k' = k/, and 00, and a single infinity of imaginary

lines, k" arbitrary. According to this classification A and A

belong to the sub-pencil k' = with bases Li and L2.
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We proceed now to simplify the equations of A and A by

referring them to other bases, namely a certain rectangular

pair. Assuming ai&2 — azbi 4= and aia2 + &1&2 4= ^ A and A

have their common real point finitely located. We translate the

origin to this point and at the same time write A in the so-called

normal form of elementary geometry,

a B
^^ ^ +

, V =

or

^ cos d -\- 7} sin 6 =
where

cos 6 = cos (s + it) = cosh t cos s — i sinh t sin s,

and
sin 6 = sin (s + it) — cosh i sin s + i sinh t cos s.

Thus the normal forms of A and A are

(1) ^ cos 5 -}- 77 sin s ± i tanh t{^ sin s — rj cos s) = 0.

Functions of the angle 6, or of its component parts are furnished

by the relations

bi + 62 tan q Oi tan q — a^

a\ + 0,2 tan 9 61 tan q — h^.

and

«i — ^2 cot g' 61 + &2 cot q
tanh ^ =

61 — 62 tan g ai + 02 tan g'

'

where q = ^ arc (a^ + /3^). The sign of Va^ + |3- is that required

when a and /3 are real.

Equation (1) shows A and A referred to new bases, two per-

pendicular lines belonging to the pencil 11. These new bases

are connected by the relation:^

n : L' cosh t + XL" sinh i = (1 + \){Li + kU),

where
L' = ^ cos 5 + 77 sin s,

L" = ^ sin s — T] cos s.

Taking U and L" as coordinate axes our equation of the com-
1 If 0102 + ^162 = 0, Li and L^ are perpendicular to each other and the second

transformation worked out above is not necessary.

- Newenglowski, "Cours do Geometric Analytique," sec. 446, old ed.
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plex line reduces to the form •}

A, A : 77 = zhi tanh t ^.

9. Real Represcntatioji of the Complex Line.—We have thus

reduced the equation of the complex line containing two effective

complex coefficients to one in which there is but a single coef-

ficient and it is pure imaginary in form. Writing A and A
separately with their accompanying transformations we have

A : 7] = i tanh t^; T : iv = e~-'2,

A : 77 = - i tanht^; T' : lo = e^^z.

The limits of t and tanh ^are — co<^< + oo,— 1< tanh t

< + 1. If we allow t to become infinite and assume its upper

and lower bounds then we have the minimal pair of the pencil,

^ + iv = 0,

^ - *r7 = 0.

Since e-' and e~-' are real the picture-pairs z and w are observed

to lie on rays symmetric with respect to the first bisector of

A and A.

If we introduce with Study, page 52, a parameter p measuring

the distance from the vertex of the pencil to the points on A
we have

^ = p cos it = p cosh t, w = —, p,

(2)

H , ^ty>

77 = p sin it = ip sinh t, z = e'p-

Since wz =\p\^, for any p, to and z are seen to be inverse points

with respect to the circle of radius \p\, tv having the same

argument as p, and z its negative.

The Complex Circle.

In a manner similar to that used in the case of the line let us

take up the case of the circle.

10. Group Property of Inversion loith Respect to a Complex

Circle and its Conjugate.—The equation of a complex circle and

1 Cf. Study, pp. 29, 52.
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its conjugate with their accompanying transformations are

K:e + r + 2«^ + 2^77 + 7 = 0,

T : wz -\- fxw { vz + y = 0,

K : ^2 _^ 7j2 + 2a^ + 2^77 + 7 = 0,

T' : icz + ^zo + /xl + 7 = 0,

where ^, t], a, • • • are complex quantities and n = a — i^,

V = a -\- i0. Neither T nor T' is involutoric, but, as before,

applying T to a point z' of (z)

(1) w'z' + ixw' + ^r + 7 = 0;

and applying T' to iv' of (iv)

(2) iv"w' + pw" + Jiw' + 7 = 0,

then subtracting from (2) the conjugate of (1) we get

(f/ + v)iiv" - z') = 0.

Obviously iv' cannot equal — v for all values of z', hence w" = 2'

and r = T-\ TT' = 1.

In this case and in the preceding we might have expressed w
explicitly in terms of z and arrived at the same result by sub-

stitution. This relation is also evident by a mere examination

of the two expressions T and J", considering in the one z as the

independent variable and in the other iv as the independent

variable. When a = a, ^ = b and 7 = c that is, when the

circle is real (in the sense of Segre) we have n = a — ib and

V = a -\- ib = jjL, so T ^ T' : wz -{- fxw -\- fxz -\- c = 0.

11. Reduction of Equations of K and K to Canonical Form.—
Breaking up K and K into their real and pure imaginary parts

we have

K, K : ^2 + 77- + 2a,^ + 26177 + Ci ± i{2a2^ + 26077 + Co) = 0.

They are thus seen to be members of a complex pencil

n : Ci + kR = 0,

where Ci = ^^ + r?- + 2ai^ + 26177 + Ci = is a real circle of

the pencil, R = 2a2^ + 26377 + Co = is the radical axis of the

pencil (also real), and k = /c' + ik".
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Clearly we may simplify our configuration by a change of

axes. This we do making the axis of centers the ^-axis and the

radical axis the 77-axis. As a result we have

where

and

Il'.e + v'-h 2a'^ + c' + 2X^ = 0,

,
2(aia2 + 6162) - ea

, ^ ,^ "

X = Vas^ + h.^K; (to, 770),

coordinates of the new origin.

Among the real circles of 11 there is one with its center at the

(new) origin and is given by X = — 2a'. Taking this circle

with the radical axis as bases we have

n : ^2 _^ 772 + 2ix^ + c' = 0,

where ^t = X + 2a'. The character of the pencil—whether

hyperbolic, elliptic or parabolic—depends on whether c' is

greater than, less than, or equal zero.

Our original circles, K and K referred to the new bases are

seen to be given by the values ju = a' ± i Vao^ + h<f, that is^

/ ,
• // /

2(aia2 + &1&2) - g2 „ J ..JO
2Va22 + fe2'

We have thus succeeded in reducing the equation of the complex

circle

K:e-i-T-\-2a^ + 2^rj + y = 0,

containing three complex coefficients to a canonical form

K : ^^ + 7,2 + 2m^ + c = 0,

containing but a single complex coefficient.

12. The transformations belonging to K and K expressed in the

canonical form are

K = 0; T :wz + ix(iv + 2) + c = 0,

(3)
K = 0; r : icz + )u(w + 2) + c = 0.

These transformations of course are not involutoric any more
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than the original ones were. So we cannot consider (2) and

(u') coincident. To study the corresponding movements in

(z) and (w) we introduce a parameter plane defined in the

following manner: Setting

77 = 0, • •
v, w = z in (3),

then

and

r, r' = - M ± Vm- -c = w', ic" or z', z".

Form the pencil of lines 7? = t(^ — ^"), t = s -\- it. Hence

t t" 2p „ 2p

and

= ^^^ _ // _ ^P

where p = V/x- — c = ri + ii'2, the radius of the complex circle.

Setting w' = IV — iv", z' = z — z" and dropping the primes,

(A\ 2p 2p
(4) w = z r- and z = :, —

.

1 — IT 1 — IT

If r describe its axis of reals, t = 0, we have, on elimination of s,

(u — TiY -{- (v — r^y = r^

and
{x - rif + {y - TiY = ;•-,

where r- =\p\" = rr + r^^. w and z thus are seen to describe

congruent circles in their respective planes.

If T describe its axis of pure imaginaries, s = 0, there result

on the elimination of t

V = —II, and V = — —x.

Our picture planes are thus seen to be divided into four regions

corresponding to the four quadrants of the parameter plane.

The paired points of the two congruent circles in (s) and {w)

are the points which in the real case are united in position pictur-

ing the 00 1 real points of the circle. We superpose the planes
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now and notice a sort of unfolding process of the picture planes
due to the entrance of the complex quantity. Let us examine
the parabolic case. Here we have:

^' =0, t" = _ 9

e-\-T + 2m? = 0,

Zfj., p = n = n -{- ir2.

Considering the planes superposed, the origins coincident and
the axes of reals of (to) and (z) coinciding with the ?-axis of the

cartesian plane we have:

2ju 2ifXT
IV = — 2^ +

1 — IT I — ir'

z = - 2fx-\-
2tx

If

If

2^/^r

ir I — vr'

T = - 00, - 1, 0, +1, + <x>,

W = 10^, W-i, 0, w+i, w«,

3 = Soo, Z—i, 0, Z-^-i, Zof.

T = - CO, - ^, - i^,
0, + ^i, +i, + co,

00

,

Wi, 0, - f/z, - n, w^,w = w^,

Z = Zgoy 21 on.

Thus having in mind that t -> w is a direct transformation and

T —> 2 is a reverse transformation, the angles being preserved

in sense in the one and reversed in the other, we shall see just

what regions of (z) and (w) correspond. They are so indi-

cated in the figure. The situation is apparent if we consider

// as a sort of parameter varying in its pure imaginary part
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only. Let /x = Wi + ^^2. ??Z2 = gives a real circle of the

pencil with its center (— mi, 0). The variation of irii from is

seen to cause an iinfolding of the pseudo-real pair from the real

circle, the centers of these circles being {—mi, ± W2). For m^

negative merely interchanges the figures z and w. For mi

negative, the figures are reflected over the 77-axis. It is inter-

esting to trace the path-curves of z and w due to the variation of

W2, holding T fixed. They are straight lines as is evident when

we write

2ir 2iT
10 = r-(??2i + ^2) and z = , ^(mi — imo).

I — IT 1 — IT

In particular the points z, w, whose united positions represent

the 00 1 real points in the real case trace the lines

y = s{x + 2wi) and v = s{u — 2mi).

The hyperbolic and elliptic cases do not introduce any essential

differences.

Study has given the elementary transformations making up

reflection with respect to the complex circle.^ In the light of

the foregoing considerations we may state the following set,

which is equivalent to that given by Study. Calling the con-

gruent circles in (2) and (w) picturing the real axis of the para-

meter, the Congruent-Pair, and the lines picturing the axis of

pure imaginaries, the Basic-Lines, the transformations in question

are as follows:

The transformation picturing the complex points on an imaginary

circle consists of three elementary reflections, namely, a reflection

over the center axis determined by the circle and its conjugate, a

reflection over one of the Basic-Lines, and a reflection over one of

circles of the Congruent-Pair . These may he taken in any order

hut the Basic-Line and the circle of the Congruent-Pair must not

helo7ig to the same planes.

1 Page 32.



CHAPTER III.

THE COMPLEX CONIC, REDUCTION OF EQUATION.

With the processes and results of the preliminary considerations

in mind we give our attention now to the subject proper.

13. The General Equation and Its Corresponding Transforma-

tion.—The general equation of a complex conic and its conjugate

are,

T :ae + 2I3^V + 7v' + 25^ + 2er7 + r = 0,

(I) - _ - _ -

T :ae + 2l3^ri + yr + 25$ + 2ir; + f = 0,

where all the quantities entering are complex and the equations

are irreducible.

Each configuration contains a double infinity of points and

the conjugates of the points of the one lie on the other. They

have four points in common. These may all be real or all

imaginary, or any of the intermediate cases. It is not necessary

to make a separate discussion for any particular case.

The transformations picturing the complex points on these

"curves" are given through the relation § 2, (1).

Thus we have

r = 0;

T : axw" + 2/3iZf2 + 712= + 25iz^ + 2€i2 + 4^ = 0,

(II)

r = 0;

T' : yiw"" + 2^iivz + ai2- + 2iiw + 25i2 + 4^ = 0,

where

ai = a - 7 - 2il3, 5i = 2(5 - it),

y^ = a-y + 2i^,
^^ " " + ^'

ei = 2(5 + ie).

Each transformation is (2, 2)-determined and hence requires

a two-sheeted Riemann surface for unique determination.

We note that when /3i
= the variables are rationally separable,

(III) aiio" + 2hw = - (712' + 2eiz + 4^).

27
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This requires that a -\- y = which corresponds to the real

case for an equilateral hyperbola. We give this case special

consideration, § 18.

If we take the conjugate of T and consider z the dependent

variable we observe that it is identical with T'; hence, as in the

previous cases, the transformations belonging to a complex conic

and its conjugate are connected by the relation that the one is the

inverse of the other: T' = T~^.

If the coefficients of V are real T and T' become identical and

reduce to

C = 0;
(IV)

T : aiw"- + 2biicz + a^z^ + 25iW + 2hz + ^h = 0.

The transformation z -^ w picturing the complex points on a real

conic is an equation of the second degree in z and w\ the coefficients

of the square terms and the terms of first degree being conjugate

complex in pairs; the coefficients of the product term and the constant

term being real}

If further we consider only those curves admitting oo^ real

points, we may put

^ + ir} = z and ^ — iri = z.

Our equation then becomes

(V) T : axz^ + 2byzz + a^z" + 2hz + 25i2 + 4/i = 0.^

Let us compare the expressions for the invariants and the

conditions for the different species of conies in terms of the

coefficients of (I) considered as real, a = a, ^ = x, • • • and

those of (V). We have

r = 0,

(D

C = •
•
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conditions for the different species of proper conies and their

special cases:

ai = 0, Circle,

61 = 0, Equilateral hyperbola,

Iai| < 61, Ellipse,

|ai| > 61, Hyperbola,

I
ail = ^ij Parabola.^

14. Reduction of the General Equation to Canonical Form.—li
we write (I) in the form:

r, f : Ci ± iC2 = ai^ + 261^77 + c^i' + 2di^ + 2^177

+ /i ± i{a2e + 2b2^r] + C2r + 2d.^ + 2e.ri + /a) = 0,

we identify F and F as members of a complex pencil

n : Ci + kCo = 0, K = k' + ik",

F and F being given by /c = i and — i respectively.

Among the real conies, k" = 0, of the pencil there is one and

only one equilateral hyperbola,^ for we have

:

(ai + k'a^)^ + 2(bi + k%)^rj + (ci + k'c^W + ' • • = 0,

and the value of k' which renders this conic an equilateral

hyperbola is

, , _ «! + Cl

^2 + C2

If tti + Ci = 0, Ci is the required hyperbola and A;' = is the

value of the parameter giving it. If a2 + C2 = 0, C2 is the

required curve and k' = qo . If both ai + Ci = and 02 + c-i =

both Ci and C2 are equilateral hyperbolas and k' is indeterminate.

In this case all the conies of the pencil are equilateral hyperbolas.

(See § 18.)

Supposing the pencil to have only one equilateral hyperbola*

we have

H:C^ + k'C2 = 0, k' = -«-^\
a2 + C2

Taking H and Ci as bases we have

n : /^ + XCi = (1 + X)(Ci + kCo),

^ Cesaro, loc. cit.

2 Niewengloski, "Cours de Geometric Analytique," sec. 460.
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where

X = k' -_K
, _ fll + Cj

J
, K —

02 + C2

We now take the asymptotes of the equilateral hyperbola as

our coordinate axes. We have

(1) // : a'e + 26'^77 - aV + 2(^'^ + 2e'r] +/' = 0,

where

a' = ai + k'a2, h' = hx + !:%,

or

k' = - gi + Ci

<l2 4" C2
'

n =
ni
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b =

c =

Sl — S2

aiSi — 26i — C1S2

Si — So

0^0 ^Si — S2 arjo \5i — 52

^so ^Si — So driQ y&S\ —So

^0, Vo being the coordinates of the new origin.

There is one real conic C of the pencil IT whose axes are parallel

to the asymptotes of H'. This conic is given by X = — 1/6,

taking H' and Ci in their reduced forms (2) and (3). Thus

C ^C -hH' = 0.

Taking C and H' as bases we have

where
- 1/6 + X

M =
^^

.

Thus we have finally

n : a^2 _|_ 2jLi^7; + erf + 2d^ + 2ey] + f + ixh = 0,

where

h = p=—

.

The values of the various parameters giving our original

conies r and T referred to the different bases and the different

configurations of reference are assembled as follows

:

(I) Hi : Ci + kCs; r, f : Ci + k"C2 = 0, /c" = ± i,

Uo.H + XCi; r, r : ^ + V'Ci = 0,

± I 02 + <?2

After change of origin T,f :H' - X" VFC =

Ha : c + M^'; r, f : C + fx"ir = 0,

(III)
,, _ - 1/6 + V^VF _ _ . ,

1
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We have thus reduced the equation of our conic

(I) ae + 2/3^^ + yr + 25^ + 2e77 + f =

containing five effective constants to an equivalent one

(VII) ae + 2/x^77 + cr?2 + 2d^ + 2er] + f + fxh =

containing only two complex constants which are linearly and

integrally related.

15. "Localizing" the Conic in the Complex Pencil.—We have

identified our conic as a member of a complex pencil of conies

having two real conies (proper or degenerate) as bases. We
now proceed to "localize" it among the double infinity of conies

of the pencil. The locus of centers of 11 is given by

^ = M^ + C77 + e = 0.

Which on the elimination of ix yields

Cz : a^- — err + ^^s — ct) = 0,

an ellipse or an hyperbola according as C is an hyperbola or an

ellipse.

The double infinity of points on Cz are the centers of the

double infinity of conies of 11. The single infinity of real points

on Cz are the centers of the single infinity of real conies of 11.

The double infinity of imaginary conies have their centers

pictured by double infinity of point-pairs z-* w associated by a

Schwarzian reflection over the real branch of C3.

Thus at this stage of the investigation we are able to " localize"

our conic to the extent of determining the picture of the center.

In general: The point pairs Zo —» Wq, zvq —> Zq picturing the center

of an imaginary conic and its conjugate are symmetric ivith respect

to a real central conic, namely the locus of centers of the real conies

of a pencil determined by the real and pure imaginary component

parts of the conic.

Such localization of the foci is not so simple since they are

known to lie on a bicircular sextic.



CHAPTER IV.

THE REAL REPRESENTATION OF THE COMPLEX CONIC.

In this chapter we consider the reverse conformal trans-

formation z-^iv of the form §13, II which pictures the oo^

points whose coordinates satisfy an equation of the type § 1'], I

or § 14, VII. Or, stated more exphcitly, given a point (^', tj')

satisfying an equation of the above mentioned type, there is

simultaneously given, by virtue of the relations ^' + irj' = iv'

and ^' + it)' = z', a pair of associated points of the two picture

planes (w) and (z). This point-pair z' -* iv' we call the real

picture of the point (^', r;') and the ensemble of such pairs

picturing the double infinity of points on the conic we call the

Real Representation or Real Picture of the complex conic. We
shall find that these associated point-pairs may be grouped in

their respective planes on two orthogonal families of curves.

The two orthogonal nets thus formed in the two picture planes

are more or less similar depending on the complexity of the

case, being in the case of real conies identical.

We might take for the equation of our conic § 13, I and seek

its real representation through the corresponding transformation

§ 13, II. The method here developed would be found suf-

ficient. But we shall find it somewhat simpler and more inter-

esting to take the so-called canonical form § 13, VII—simpler

because we have only one complex quantity among the coef-

ficients, and with the vanishing of its pure imaginary part we

have at once the real case—interesting because we shall be able

at various points of the development to observe just how the

entering of the imaginary affects the configuration.

Accordingly we take for the equation of our conic:

(1) ae + 2^^n + C7,2 + 2(1^ + 2e-n + ^ = 0, T = / + ^f'^

writing /3 = 6i + ibi in the place of m in § 13, VII for uniformity

of notation. The corresponding equation in z and iv given by

33
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the relation

(2)

is

where

w = ^ + iri,

or ? = 2 (2 + w'),

= t irj;

7; = 2 (2 - w),

(3)

aw- + 2biuz + 72- + 2div + 2€2 + ^' = 0,

a = a — c — 2zj3, 5 = 2(d — ie), b = a -\- c,

y = a- c + 2ifi, e = 2((f + ie) - 6, r' = 4i'.

We shall use the following notation for the discriminants of

(1) and (1') and the complementary minors of their elements;

the symbols in the first column in each table being for the

complex case, 62 4= 0, and those in the second column for the

real case, 60 = 0:

(1) ar + 2i3$77 + cyf + 2d^ + 2e7? + s"
= 0;

(1') aw^ + 2hwz + 7|2 + 2bw + 262 + f ' = 0,

a
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coordinates, in fact the quantities z and w are called Isotropic

Coordinates.

Considering iv and z as rectangular coordinates equation (2)

expresses an imaginary projective transformation. The deter-

minant of this transformation is

J = = — 9i

,1 - i

We rewrite (5)

(5') 51 = J-[A - r + 2iB], 33 = riA + T],

e = J2[A - r - 2iB], (g = J2[A - lE].

Thus it appears that and Z are invariant under this imag-

inary projective transformation just as in the real case.

If Z 4= 0, we have for the coordinates of the center and its

corresponding picture

^0 =

Vo =

j3e — cd _ A
ac - iS2

" Z

I3d-ae _ E
ac - iS-'

~ Z J

Zo-^Wo

Wo = lo + ivo =

20 — ^0 — ^770 =

z ~
S'

A-iE _ Q
z ~

S-

Here again we observe the similarity of notation.

We proceed now to a detailed examination of equation (T).

It is an implicit relation between two complex variables. Solving

for w we have

ty = 1 [_ (62 + 5) ± V(62 - ay)z' + 2(65 - ae)z -^ 8'' - a'H,
a

or using the notation of (4) and (4')

w = -[- (bz + 5) ± V- Sz' + 2(gl - d],
a

= -[- (bz + d) ±2 VZ22 - 2{A- lEJz + A-r - 2iB],

then
1

w = - [- (62 + 5) ± 2 VZ V2' - 2002 + (A,
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and

iv = -[- (62 + 6) ± vi- n z' = ^., z = o.
a. z\X

If Z =1= 0, we have for the roots of the radical

z', 2 = 2 ± 2 = 20 ± a'^'/, / = I V2 ^ 3.

The corresponding values of w are

IV , w = ^ T 7^ = Wr) =F ba '''I.

If the conic is real, it is known^ that the points corresponding

to the roots of the radical are the two real foci of the conic in

the case Z 4= 0, and the real finite focus in the case Z = 0.

In the case of imaginary conies then z' -^ 10' and z" —» 10" are

the pictures of the foci, now imaginar}', corresponding to the

real foci in the real case.

Equation (!') is of the second degree in either of the variables,

hence a two-sheeted Reimann surface is required for complete

depiction in case either is expressed as a function of the other.

The obvious disadvantage of proceeding in this way is that an

irrationality is introduced. We avoid this by introducing a

parameter as in the real case. This we effect in the following

manner

:

The slope of (1) is given by

dt] a^ -\- ^Tf] -\- d

dk
" ~

^^-\-cv -\-~e'

The points where the tangent is perpendicular to the ^-axis is

given by intersection of (1) and ^^ + crj + e = 0. The ab-

scissas of these points are the roots of

(6) Ze - 2A^ 4- A =

or

(0 _
^

7 = Ve -^ Z = V- 2 4- 3.

The corresponding ordinates are

(8) VI, V2 = r7oT^j8c-l'2/.

1 Goursat, Nouvclles Annalles Mathematique (1887). Cesaro, Nouvelles

Annalles Mathematique (1901).
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The pictures of these points are
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i^uVi), Zi'-^wi]

Z\, Z2 = Zo ± I
—

Yir~ -'j Wi, W2 = Wo ± Z a/2

Forming the pencil of lines through (^1, 771) we have

(9) V - VI- r{^- ^1), T =s + it.

With the variation of r through the domain of complex numbers
the movable intersection of the line and the conic describes the

conic. Thus we introduce the parameter and expressing ^, 77,

tv and z in terms of it we have

2^-

(10)

^ = ^l-

7; = 771
-

ce

2V-c0r

IV IV I
—

Z = Z\ —

2 V-ce(i+tV)
c{a + 2|8r + cr^)

'

2^l-cQ{\-ir)

cia^- 2i3r + ct-)
'

c{a + 2i3r + cr^)

Thus we have expressed iv and 2 rationally in terms of a para-

meter and we proceed at once to a detailed study of the functions

thus obtained. We shall find it simpler however to pass through

a series of linear transformations of the parameter and thereby

transform the functions iv and z into forms more frequently met

with in function theory. To this end we notice that the common
denominator of the above expressions may be wTitten {ct + 18)''

+ Z, so our first change of parameter is by the transformation

t' =CT+ ^,

and we get

^ =b

V = Vi

2a/-c9

r'^ + Z

2<-cQ{t' -13)

c{t'' + Z)

IV = Wi —

2l -

2V-c9(c - i^ + It')

c{r'' + Z)

2 V^^(c + ^ig - ir')

cir'' + Z)

Again changing the parameter by the transformation

= iVz
1 -t"
1 + t"

we have after some reductions

ci/2/

/

1 \
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77 = 770 - ^^-[(^ + iAfZ)r" +^-^],

Finally:

(11)

w
c - i^ + Vz „

"^1 = 7u72 '"
'

ic^

Zo + T2
+ ?'/3-Vz ,,

2C
1/2

W = u'o 4- /o-i, cri = 9 ( '^1 + ~ )

'

Z = Zo -\- I(T2,

For a detailed study of the Riemann surfaces belonging to w

and z let us assemble the series of transformations by which we

have changed our parameter and examine each turn. We have,

first of all, r the variable slope of the lines of the pencil through

(^b Vi),

77 — 771 = t(^ - ^1), T = 5 + it,

whose intersection with the conic gives the 00 ^ complex points

of the conic.

The quantities ^, 77, w and z expressed in terms of r are

2V-ce
^ = .^1

-

V = Vi
2V-cer

2V = Wi —
2Al-ce(l+^>)

Z = Z\
c{a + 2)3r + cj-)

Then by a series of transformations,

r' = CT-\- ^,

1 -r"
1 +r'"

c - i^ + Vz ,,

2V-ce(l -^V)

= ^VZ

Tl =
IC1/2

<^i

0-2
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we bring the functions iv and z to the final form

w = Wo + /o-i,

S = So + 1^2-

We examine these in the reverse order in which they are tabu-

lated. Whatever be the Riemann surfaces belonging to ai and a>

equations (11) express merely integral rational transformations

of the same. The first consists of an expansion
1

1
\
and a rota-

tion Z (/) followed by a translation over the vector wq. In

the second we have first of all a reflection over the axis of reals

of 0-2, followed by transformations identical in nature with those

of the first equation.

In §§ 4 and 5 we discussed functions very similar to ci and a-y-

There the constant entering, § 4, (7) and § 5, (3) was a real

number, c^. Here we have the complex numbers a = a — c

— 2ij3 and y = a — c -\- 2i/3 appearing in the place of c^. Let us

examine the Riemann surface belonging to ai. For the moment

let us write o-i = u + iv, n = x + iy and y = a — c -\- 'lijS

= p -\- iq, and resolve the expression into its real and pure

imaginary parts

1/ qx - py \

We seek the orthogonal families of curves in the cri-surface

corresponding to concentric circles x~ -\- y~ = r^, and the pencil

of rays y = ex in the ri-plane. For the first we have:

(^4 _ 2pr^ + R2)u2 _ 4qrhii, + (r' -f. 2pr'- + R'y - ^ ^^ = 0,

where R = Vp- -{- q^ = \y\. This is the equation of a conic

for which the discriminant, (r^ — R-)" is a quantity which is

never less than zero; hence corresponding to the family of con-

centric circles about the origin in the ri-plane is a family of

ellipses.

The curves in the o-i-surface corresponding to the pencil of

rays y = ex in the ri-plane are given by the equation,

2c(ep - g)w- + 2g(l + c')uv - 2(p - eq)v- - [2cp

- q(l - c2)]V4(l + c') = 0.



40 COMPLEX CONICS AND THEIR REAL REPRESENTATION.

This equation represents a one-parameter family of hyperbolas

for the discriminant, — {2cp — q + qc^Y, is a quantity which

is never greater than zero.

We find further that the real foci of both families of curves

is given by Vy and furthermore the slope of the principal axis

is given by {R — y)jq and this is the tangent of Z ( V7). The

(Ti-surface then consists of confocal ellipses and hyperbolas

corresponding to concentric circles about and radial lines through

the origin of the ri-plane.

Thus we see that the Riemann surface belonging to the func-

tion ci = ^(n + (t/ti)) is got from the surface belonging to

^(n + (l/ri)) by a magnification in the ratio 1 :
| V7I and a

rotation through the angle of V7, Similar results hold for the

function <J2 using a instead of 7.

The transformations

c - r/3 + VZ „ ,
c + 2/3 - VZ „

Ti = r-j7^ r and ti = r-r^ r

transform the ry and T2-planes into themselves, merely inter-

changing the concentric circles among themselves and the pencil

of rays among themselves.

Thus as t" describes a circle about the origin in its plane ri

and T2 describe circles about the origins in their respective planes

and in turn ai and <X2 describe ellipses in their respective planes

with centers at the origin; while finally iv and z describe ellipses

about M'o and 20 in their respective planes. Then as r" describes

a ray of the pencil orthogonal to the concentric circles w and 2

describe hyperbolas in their respective planes confocal with the

ellipses just described.

The Riemann surface belonging to the function

""K^+O
is two-sheeted, the cross-cut of the surface extending from — 1

to + 1- The unit circle of the r-plane maps into this line con-

sidered as double. Circles outside the unit circle and concentric

with it map into ellipses in the upper sheet of the o--surface.

Circles inside the unit circle and concentric with it map into

ellipses lying in the lower sheet. So for our functions cri and a-^.
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The Riemann surfaces belonging to them are two-sheeted, the

sheets being joined along the lines joining — V7 and + V7 or

— Va and + Va as the case may be. To the circle of radius

I

V7
1

of the n-plane corresponds this line joining the branch

points ± V7 counted twice. Ellipses in the ci-surface, corre-

sponding to circles lying outside the circle of radius
\ ^y\ in

the n-plane lie in the upper or first sheet of the surface, while

those corresponding to circles within the circle of radius
| V7I

lie in the lower or second sheet. As we have already noted,

iiri

>C

/

Fig. 3.
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the IV- and z-surfaces are integral rational transformations of

the ci- and <72-surfaces respectively.

With proper precautions we may consider all these surfaces

superposed and with origins common with that of the (^, 77)-

plane. The surfaces discussed are to be considered in no wise

organically connected with each other. A schematic diagram of

quantities considered is set forth in drawings.

The Case Z = 0.

17. So long as we require that the complex coefficient jS in our

so-called canonical equation of the conic be a general complex

quantity, that is /3 = 61 + ib2 with 61 and bo different from zero,

this case, Z = cannot occur; for we must have

Z = ac - i82 = ac - bi" + 62' - 216162 = 0,

which requires that either 61 = or 62 = 0.

This case requires, then, that either 61 or 62 vanish. If 62 = 0,

the conic becomes real and we have already considered this

case. Chapter I. Again Z may vanish for 61 = 0, that is, for

jS = ib2, pure imaginary. For this case we have

Z = ac - /3- = ac + 62- = 0.

Hence if |acl = 62" and a and c have opposite signs, Z will be

zero. Since bo = ±i '^ac, the terms of second degree for this

case, just as for the real case, form a perfect square:

a^2 _t- 2ib>i^r} - erf = ( Va^ ± ^ <cr}f.

Choosing the plus sign we have for the equation of the conic

with Z = 0:

a^2 -f 2i Vac^?7 - erf- + 2d^ + 2er) + T = 0.

The equation in z and w giving the real representation is

aV + 2b'wz + c'z" + 28io + 2€z + i' = 0,

where

a' = a + c -^2^ae = i-^-}- ^ef,

c' = a + c — 2^ = ( Va — Vc)2,

h' = a — c,
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8 = 2{d- ie),

e = 2{d + ie) = 5,

We resort to the use of the parameter in this case as in the

preceding, with the same method of introducing it.

The quadratic giving the points where the tangent is vertical

reduces for this case to — 2A^ + A = 0, which with

i3^
- C77 + e =

gives for the coordinates of the point

A
^1 = 2A*

irr vei

Introducing the parameter as in the preceding section we have

77 - Tji = r(^ - ^i), T = s -\- it,

which considered with (1) gives for ^, 77, w and z expressed as

functions of r

^ = ^1 +

^ = m +

2A

{cr - ^f

2Ar

= ^1 +

= T/l -}-

2a/^

2 -Veer

Making the transformations

T =

cr - /3 = r',

w = wi -\-

2 = Sl +

2(c - il3)

Ti — i

2(0 - i^)

T2 — i

2A(1 + Jt)

(cr - ^f

2A(1 + ir)

of the parameter and applying them respectively to the func-
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tions 20 and z we have after reduction

A Ve

A ^f

where 6 = ( Vc(^ + i Vae)^ is the determinant of the conic,

z' -> w' is the picture of the finite focus. The functions <ti and era

are well known and have been discussed in Chapter I. The

functions w and z are linear integral transformations of the

surfaces belonging to a-i and 0-2.

18. The Case, h = 0.—In § 13 we noted that in the case

b = a -\- c = our variables iv and z were rationally separable.

We have

mv^ + 28iv = - yz- - 28z - 4^,

Let us put

Then
,2 2 -/2W = p-^ — 2 .

This case is similar to the one discussed by Holzmiiller,

?(J = Vl — s^.

The complex quantity p however excludes the involutorial

property of the case just cited. The simplification of this case

is noted by observing equations (9) of section (16).

Jackson, Mississippi.
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