Probabilités discrètes

- 1. On lance trois dés strictement identiques. Quelle est la probabilité pour que la somme des trois numéros obtenus soit égale à 12?
- 2. On dispose de n urnes U_1, U_2, \ldots, U_n qui contiennent chacune 3 boules. Toutes les boules sont blanches, sauf une qui est rouge. On ne sait pas dans quelle urne se trouve la boule rouge. On tire sans remise deux boules de U_1 .
 - (a) Quelle est la probabilité que les deux boules tirées soient blanches?
 - (b) Sachant que les deux boules tirées sont blanches :
 - i. Quelle est la probabilité que U_1 contienne la boule rouge?
 - ii. Quelle est la probabilité que U_2 contienne la boule rouge?
- 3. On dispose de n+1 urnes U_0, U_1, \ldots, U_n . L'urne U_k contient k boules blanches et n-k boules rouges. On tire une boule de l'une de ces urnes choisie au hasard.
 - (a) Quelle est la probabilité que la boule tirée soit blanche?
 - (b) Sachant que la boule tirée est blanche, quelle est la probabilité de l'avoir tirée dans U_n ?
- 4. Une urne contient b boules blanches et r boules rouges. On tire n boules en remettant la boule après tirage si elle est rouge, et en ne la remettant pas si elle est blanche. On considère les événements suivants :

A: « On obtient exactement une boule blanche en n tirages. »

 B_k : « On obtient une boule blanche au k-ième tirage. » $(k \ge 1)$

 R_k : « On obtient une boule rouge au k-ième tirage. » $(k \ge 1)$

- (a) Exprimer l'événement A en fonction des B_k et R_k $(k \ge 1)$.
- (b) Calculer la probabilité de l'événement A.
- 5. On dispose de deux urnes : l'urne U contient 1 boule blanche et 4 boules noires, l'urne V contient 3 boules blanches et 2 boules noires. Dans l'une de ces urnes choisie au hasard, on effectue une série de tirages d'une boule avec remise (tous les tirages ayant lieu dans la même urne).

Soit A_i l'événement "la $i^{\text{ème}}$ boule tirée est blanche".

- (a) Calculer $P(A_1)$ et $P(A_2)$. A_1 et A_2 sont-ils indépendants?
- (b) Calculer $P(A_1 \cap A_2 \cap \cdots \cap A_n)$ pour $n \in \mathbb{N}^*$.
- (c) Sachant que les (n-1) premiers tirages donnent chacun une boule blanche, quelle est la probabilité d'obtenir une boule blanche supplémentaire au tirage suivant?
- (d) Sachant que les n premières boules tirées sont blanches, quelle est la probabilité de les avoir tirées dans l'urne U?
- 6. On range au hasard p livres L_1, L_2, \ldots, L_p dans n tiroirs T_1, T_2, \ldots, T_n .
 - (a) Quelle est la probabilité qu'un tiroir donné T_i reste vide?
 - (b) Quelle est la probabilité que k tiroirs donnés $T_{i_1}, T_{i_2}, \ldots, T_{i_k}$ restent vides?
 - (c) Quelle est la probabilité s(p, n) qu'aucun tiroir ne reste vide?
- 7. Ernest a perdu son téléphone portable. Il se trouve avec la probabilité p ($p \in]0,1[$) chez l'un de ses sept amis. Il a déjà téléphoné a six amis, mais son portable n'est pas chez eux. Quelle est la probabilité qu'il soit chez son septième ami? (On admettra qu'il n'y a pas à priori d'ami privilégié!).
- 8. Dans un village africain, 25% des habitants sont vaccinés contre les piqûres de la mouche tsé-tsé. Parmi les vaccinés, il y a malgré tout $\frac{1}{12}$ de malades, et parmi les malades, il y a 4 non-vaccinés pour un vacciné. Quelle est la probabilité pour un non-vacciné de tomber malade?
- 9. Soient $p \in \left[0, \frac{1}{2}\right]$, et A, B, C, D quatre événements tels que :

$$A, B, C \text{ et } D \text{ sont } 2 \text{ à } 2 \text{ disjoints}$$
 $p(A) = p(D) = p$ $P(B) = p(C) = \frac{1}{2} - p$

- (a) Les événements $A \cup B$, $A \cup C$ et $A \cup D$ sont-ils deux à deux indépendants?
- (b) Les événements $A \cup B$, $A \cup C$ et $A \cup D$ sont-ils mutuellement indépendants?

- 10. On considère un microbe M pouvant occuper deux positions A et B et se déplaçant aléatoirement de la façon suivante :
 - \star La position initiale (au temps 0) du microbe M est A.
 - \star Au temps $n \in \mathbb{N}^*$, le microbe M est soit en A, soit en B.
 - \star Entre deux instants successifs n et n+1, le microbe M saute éventuellement d'une position à l'autre. Les divers facteurs influant sur cette évolution ne varient pas au cours du temps. L'éventualité d'un saut à l'instant n est, par ailleurs, indépendante de la position du microbe à cet instant.

Pour $n \in \mathbb{N}$, on note A_n (respectivement B_n) l'évenement : « le microbe se trouve en A (respectivement en B) à l'instant n ». On pose enfin $\alpha_n = P(A_n)$ et $\beta_n = P(B_n)$. On peut donc traduire les informations précédentes par :

$$\alpha_0 = 1$$

$$\forall n \in \mathbb{N}, \ \alpha_n + \beta_n = 1$$

$$\exists p \in]0,1[, \ \forall n \in \mathbb{N}, \ \begin{cases} P(A_n \cap A_{n+1}) = p\alpha_n \\ P(B_n \cap B_{n+1}) = p\beta_n \end{cases}$$

- (a) Calculer $P(B_n \cap A_{n+1})$ en fonction de p et β_n .
- (b) Montrer que : $\forall n \in \mathbb{N}$, $\alpha_{n+1} = (2p-1)\alpha_n + (1-p)$.
- (c) En déduire α_n et β_n en fonction de n et p.
- (d) Calculer $\lim_{n\to+\infty} \alpha_n$.
- 11. Une urne contient des boules numérotées de 1 à N, $(N \ge 3)$. On effectue une suite de tirages avec remise et on note $x_1, x_2, \ldots, x_n \ldots$ la suite des numéros obtenus. A_n est l'événement « les n premiers tirages donnent des résultats en ordre croissant (au sens large). »
 - (a) Combien y a-t-il de *n*-uplets (y_1, \ldots, y_n) d'entiers naturels tels que $1 \le y_1 < y_2 < \cdots < y_n \le P$?
 - (b) En considérant les entiers $x_1, x_2+1, \ldots, x_n+n-1$, dénombrer les n-uplets (x_1, \ldots, x_n) d'entiers naturels tels que $1 \le x_1 \le x_2 \le \cdots \le x_n \le N$.
 - (c) Calculer $u_n = p(A_n)$.
 - (d) Montrer qu'il existe un entier n_0 tel que $\forall n \geqslant n_0, \frac{u_{n+1}}{u_n} \leqslant \frac{2}{N}$, en déduire que la série $\sum u_n$ converge.
 - (e) On pose $v_n = u_n u_{n+1}$, montrer que $v_n = p(B_n)$ où B_n est un événement que l'on exprimera en fonction des A_k .
 - (f) Calculer $\sum_{n=1}^{\infty} v_n$ et interpréter ce résultat.
- 12. Deux pièces de monnaie donnent pile avec les probabilités p_1 et p_2 respectivement $(0 < p_1 < 1, \ 0 < p_2 < 1)$ et face avec les probabilités $q_1 = 1 p_1$ et $q_2 = 1 p_2$. On choisit une pièce au hasard, on la lance. À chaque lancer, si le résultat est pile on relance la même pièce, sinon on change de pièce pour le tour suivant. On définit les événements :

 A_k : «On utilise la pièce A pour le k^e lancer » et

 B_k : «On utilise la pièce B pour le k^e lancer »

- (a) Quelle est la probabilité que le deuxième lancer se fasse avec la pièce A?
- (b) Sachant que le deuxième lancer est effectué avec la pièce A, quelle est la probabilité que le quatrième ait lieu avec la pièce B?
- (c) Le deuxième lancer a été fait avec la pièce A, quelle est la probabilité que le premier ait eu lieu avec la pièce B?
- (d) Calculer u_n , la probabilité que l'on joue avec la pièce A pour la première fois lors du $n^{\rm e}$ lancer?
- (e) Que vaut $\sum_{n\geqslant 1}u_n$? va-t-on nécessairement finir par jouer avec la pièce A?